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The Pharmacological Audit Trail (PhAT) comprises a set of critical questions that need to be asked during
discovery and development of an anticancer drug. Key aspects include: (1) defining a patient population;
(2) establishing pharmacokinetic characteristics; (3) providing evidence of target engagement, pathway
modulation, and biological effect with proof of concept pharmacodynamic biomarkers; (4) determining
intermediate biomarkers of response; (5) assessing tumor response; and (6) determining how to
overcome resistance by combination or sequential therapy and new target/drug discovery. The questions
asked in the PhAT should be viewed as a continuum and not used in isolation. Different drug
development programmes derive different types of benefit from these questions. The PhAT is critical
in making go-no-go decisions in the development of currently studied drugs and will continue to be
relevant to discovery and development of future generations of anticancer agents.
& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Molecularly targeted drugs have become an integral compo-
nent of the treatment of cancer patients over the last three
decades and their importance continues to increase. There have
been successes where targeted agents have shown benefit in
disease subtypes such as melanoma (vemurafenib [1]) and renal
cancer (sorafenib [2]) where conventional chemotherapy had close
to no efficacy. Molecular therapeutics have also added incremental
patient benefit for diseases such as diffuse B-cell lymphoma
(rituximab [3]) where chemotherapy was already of proven
benefit. However, despite successes, there have been many failures
and there is a distinct feeling in the oncology research community
that the full potential of molecularly targeted approaches has not
yet been realised. Many failures of novel anticancer drugs to meet
endpoints in phase III studies have led to an economic model of
drug discovery and development that is unsustainable to the
pharmaceutical companies [4–6] and to pricing of drugs that
will often be out of reach for healthcare systems and cancer
patients [7].

The Pharmacological Audit Trail (PhAT) is based on addressing
essential questions relating to biomarkers (Fig. 1A) at the appropriate
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stages of drug development, aiming to maximize our chances of
success [8–10]. It is designed to help researchers in evidence-based
decision-making at various points in the life cycle of drug discovery
and development (Fig. 1B).
2. Population identification for targeted drugs

Many drug discovery campaigns target protein products of
specific genetic alterations linked to a tumor type or a subset of
patients with poor prognosis within a cancer type. Thus, before the
initiation of a first-in-human clinical trial there is often a bio-
logically defined patient population. Clear examples include BRAF
mutations in melanoma [11] or HER-2 amplifications in breast
cancer [12]. An extension to this is to include the drugs that target
an aberrant pathway downstream of a pre-specified genetic
alteration, such as MEK inhibitors used in the setting of melanoma
driven by BRAF mutations [13]. However, this approach does not
always lead to finding populations of patients with mutant
oncogenes that are likely to respond to treatment; for example,
PIK3CA mutations do not exclusively predict response to mamma-
lian target of rapamycin (mTOR) inhibitors [14]. Nevertheless,
mutation and amplification status of tumors are increasingly being
seen as critical to regulatory approval (Table 1).

The availability of affordable hotspot mutation [15,16] and next-
generation sequencing platforms [17] have made clinical testing of
specific target-based hypotheses possible even in early-stage clinical
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/237403718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/ysonc
www.elsevier.com/locate/ysonc
http://dx.doi.org/10.1053/j.seminoncol.2016.06.001
http://dx.doi.org/10.1053/j.seminoncol.2016.06.001
http://dx.doi.org/10.1053/j.seminoncol.2016.06.001
http://crossmark.crossref.org/dialog/?doi=10.1053/j.seminoncol.2016.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1053/j.seminoncol.2016.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1053/j.seminoncol.2016.06.001&domain=pdf
mailto:paul.workman@icr.ac.uk
http://dx.doi.org/10.1053/j.seminoncol.2016.06.001


Pharmacological Audit Trial (PhAT)
Defining target population 

• Clinically testable hypothesis
Pharmacokinetics

• ADME, PK-PD-toxicity relationships
• Population PK, food effect, drug interactions 

Pharmacodynamics
• Proof of mechanism (POM)
• Proof of concept (POC)

Intermediate biomarkers of response 
• Early prediction of response/resistance

Reassessment of tissue at resistance
• Understand mechanisms of acquired resistance 

Overcome Resistance 
• Combination/sequential therapy 
• New targets/drugs

Anticancer drug development life cycle and PhAT

Pre-clinical
development 

Phase I
studies 

Phase II
studies 

Phase III studies 

Phase IV 
studies 

• Pre-clinical xenograft
growth delay

• Pre-clinical PK-PD 
required to cause 
growth delay

• Population likely to 
respond

Dose and schedule that have:
• Achieved PK targets
• POM PD biomarkers in tumour
• Tested assays to define population 
• Food effect/drug interaction 

• Validated tests to 
identify patients likely to 
respond 

• POC biomarkers
• Biopsies at progression  

following response to 
study mechanisms of 
resistance 

• Identify mechanisms of resistance
• Combination/sequential therapy to overcome  

resistance 
• New targets/drugs

• Population PK
• Pharmacogenomic studies 

related to toxicity

Fig. 1. The pharmacological audit trail (PhAT). (A) The six crucial aspects of the pharmacological audit trail. (B) The relationship of the PhAT to the various phases of the life
cycle of an anticancer drug. The red lines indicate ‘checkpoints’ between different phases of drug development where go-no-go decisions are made.
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trials. This has led to the possibility of conducting ‘basket’ clinical trials
where subpopulations of patients with a specific mutation can be
tested irrespective of their tumor type [18]. In addition to DNA
mutations, protein expression can also be used to define tumor
subtypes likely to respond to treatment. As previously noted, HER-2
amplification has been used to define patients likely to respond to
HER-2–targeting therapy and this can be detected by overexpression of
the protein in cancer cells.

Immunotherapy has made huge advances in the last decade
and more recently programmed death receptor ligand-1 (PDL-1)
expression [19] is currently being used to stratify patient groups
entering clinical trials of anti–PDL-1 antibodies [20]. Of recent
interest, the evaluation of unexpected responders in early phase
clinical trials (sometimes called n¼1 studies) has led to the
retrospective study of determinants of sensitivity to targeted
anticancer drugs [21].

To help define and validate a patient population biomarker
before the start of a first-in-human clinical trial, various approaches
have been tried. The use of large (4500) cancer cell line panels is
now feasible. This approach has been retrospectively validated by
identifying patient populations with, for example, BRAF or EGFR
mutations that are predictive for the activity of BRAF or EGFR
inhibitors, respectively, and remains a promising approach. How-
ever, prospective validation of new subgroups of patients suggested
by this approach is needed [22]. Other methodologies include use of
mRNA gene expression signatures; examples include RAF or RAS-
like signatures [23,24], which have been proposed and are currently
being used in clinical trials [25]. The use of established cancer cell



Table 1
Licensed targeted anticancer drugs, their targets, and tests done to define
sensitivity or resistance to these agents.

Drug Target Test

Imatinib c-KIT KIT mutations
Trastuzumab HER-2 HER-2 IHC, HER-2 FISH
Lapatinib HER-2 IHC, HER-2 FISH
T-DM1 HER-2 IHC, HER-2 FISH
Pertuzumab HER-3 HER-2 IHC, HER-2 FISH
Erlotinib EGFR EGFR mutations
Afatinib EGFR mutations
Dabrafenib BRAF BRAF mutations
Vemurafenib BRAF mutations
Trametenib MEK BRAF mutation
Crizotinib ALK ALK rearrangement FISH
Cetuximab EGFR KRAS mutation
Tamoxifen ER Estrogen receptor IHC
Rituximab CD20 CD-20 IHC

FISH ¼ fluorescence in situ hybridization; IHC ¼ immunohistochemistry.
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line panels and tumor xenografts to study drug sensitivity has been
questioned, and the use of patient-derived xenografts [26] and
alternative models such as organoid cultures and patient ‘avatar’
models have been hypothesized to better reflect patients’ tumors
[27].

In rare instances, biomarkers have been introduced into pre-
scribing guidelines after the drug has been licensed, as was done
when KRAS mutation status was found to determine resistance to
cetuximab in the setting of colorectal cancer [28]. However, there
are clear examples of targeted drugs that have been licensed
without a link to a specific biomarker for the activity of the drug,
as in the case of histone deacetylase (HDAC) inhibitors used to
treat cutaneous T-cell lymphoma [29], or the administration of
vascular endothelial growth factor receptor (VEGFR) inhibitors in
renal cancer [30].

While appreciating that many drug development programs will
have different features, the definition of a patient subgroup likely
to respond to treatment is a critical early step in all cases. Multiple
responses may be demonstrated in specified populations, even
early in phase I, as was the case for BRAF mutations predicting
response to BRAF inhibitors [1], or germline BRCA mutations
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Fig. 2. Pharmacokinetics in the PhAT. The two main questions asked using PK analysis in
the umbrella of pharmacokinetics and their clinical importance are also shown.
predicting response to poly ADP ribose polymerase (PARP) inhib-
itors [31]. If predictive biomarker assays can be tested in phase I
and refined in phase II studies, they are more likely to be used as
companion diagnostics in phase III studies and the post-
registration setting.
3. Pharmacokinetics

Pharmacokinetic (PK) studies are essential in drug develop-
ment, predominantly adding value in early-stage studies. First,
attaining a PK exposure in humans that causes anticancer activity
in preclinical models plays an important part in go-no-go decisions
during phase I studies. Bench-marking human PK to preclinical
models is now routine practice, and we have used this approach to
evaluate AKT, mTOR, HSP90, and HDAC inhibitors at our institution
[32–35]. Second, PK studies can help clarify toxicity profiles in
early phase development, especially by correlating PK profiles with
dose-limiting toxicities. Some drugs have toxicities related to early
Cmax (the maximal concentration achieved in plasma), as in the
case of serous retinopathy observed with MEK inhibitors [36,37],
or hyperglycemia, as observed with AKT inhibitors [35,38]. Adjus-
ting the dose of the drug such that the Cmax falls below levels that
cause unacceptable toxicity is a critical aspect of phase I studies.
Third, PK characterization is essential for determining the schedule
of oral anticancer agents. For example, the allosteric mTOR
inhibitor everolimus has a half-life of approximately 26 hours
and is administered once daily [39], while mTORC1/2 kinase
inhibitors such as AZD2014 have a half-life of approximately
3 hours and are administered twice a day [40]. Fourth, PK studies
are also critical to determine dosing recommendations for use of
the drug in relation to the consumption of food and concomitant
medications. For example, plasma concentrations of lapatinib can
be significantly higher when taken with food, and this may have
implications for interpreting toxicity and efficacy [41]. Fifth,
because targeted drugs are often administered orally, PK drug
interaction studies are important due to their metabolism by
CYP3A4 [42].

Therapeutic drug monitoring (TDM) uses PK measurements to
determine efficacy and toxicity in routine clinical practice in areas
such as anti-epileptic or anticoagulation therapy; however, its use
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in cancer therapy is not widespread [43,44]. In those instances
where cancer has become a disease that requires chronic treat-
ment, such as imatinib for the treatment of chronic myeloid
leukaemia [45], TDM will become increasingly relevant [46].

As the above examples demonstrate, PK assessment is essential
to decision-making in phase I studies and also in preclinical
discovery and development (Figs. 1B and 2). On rare occasions
PK studies can play a role in drug development as late as the post-
marketing phase.
4. Pharmacodynamic and proof of mechanism biomarkers

Use of pharmacodynamic (PD) biomarkers, including proof of
mechanism (POM) endpoints, is a critical aspect of the PhAT in the
development of targeted agents (Fig. 3). It is extremely important
to demonstrate modulation of the target by the drug, and also to
ensure that target engagement results in downstream perturba-
tion of the intended biochemical pathway and the subsequent
biological phenotype.

The first question to be asked is what is the best POM
biomarker? An ideal biomarker is one that measures changes in
the target itself or in proteins that are in close functional proximity
to the target. An example of studying changes in the target itself is
quantifying phospho-AKT (p-AKT) while evaluating an allosteric
AKT inhibitor such as MK2206 where the POM biomarker is a
phosphorylation site on the target [38]. An example of a proximal
mechanistic biomarker is quantifying the accumulation of dehy-
drocorticosterone while evaluating the CYP17:C17,20 lyase inhib-
itor abiraterone [47]. A more commonly used strategy includes the
measurement of protein biomarkers ‘downstream’ of the intended
target such as quantification of p-ERK while studying MEK
inhibitors including trametinib and selumetinib [36,48].

The second question to be asked in developing PD endpoints is
what is the best tissue in which to study the biomarker? Clinical
trials often use surrogate normal tissues at early dose levels in
phase I studies because it may be considered unethical to take
tumor biopsies from patients at dose levels that are unlikely to
show PD effects. Normal tissue also has the advantage of being
Pharmacodynamic

Proof of Mechanism (POM)
Is intended target modulated?
• Proximity of biomarker to target, i.e., 

downstream, target itself, or upstream 
(p-EGFR, p-AKT, p-ERK)

• What tissue (PRP, PBMNC, hair 
follicle, tumour)

• Inhibition – how much?
• Inhibition – how long?
• Relationship with PK (PK-PD 

relationship)
• Relationship with preclinical toxicity 

and efficacy
• Relationship with clinical toxicity and 

efficacy

Drug Molecular target 

Fig. 3. Pharmacodynamics in the PhAT. Pharmacodynamic biomarkers can be concep
questions, tissues studied, and platforms used to study them are shown.
able to be sampled repeatedly. Examples of normal tissue used in
POM-PD studies include measuring p-AKT in platelet rich plasma
while studying PI3K inhibitors [49,50], or using peripheral blood
mononuclear cells to measure histone acetylation or p-ERK levels
when evaluating HDAC [34,51] and MEK [36] inhibitors, respec-
tively. Normal cells extracted from blood have the advantage of
allowing PD endpoints and plasma drug levels to be determined
simultaneously, thus making PK-PD modeling particularly rele-
vant. Examples of PK-PD modelling using combined PK and PD
determinations in blood to recommend a phase II dose include the
use of p-S6 or protein acetylation in peripheral blood mononuclear
cells in the case of mTOR or HDAC inhibitors, respectively [32,34].

However, blood-derived POM-PD can be criticised for showing
positive PD effects even if a drug has limited penetration outside
the vascular space. Assessing hair follicles circumvents this prob-
lem. Histone acetylation or p-PRAS40 quantification in hair fol-
licles while evaluating HDAC [34,51] and AKT [38] inhibitors,
respectively, and punch skin biopsies to quantify p-ERK when
evaluating MEK inhibitors [37] have been used successfully in first-
in-human studies.

The use of normal tissues as surrogates can be problematic
because they may not represent rapidly proliferating tumor tissue
and lack the activating mutations that drive cancer. Hence, pre-
and post-treatment tumor biopsies are the gold standard for
evaluating mechanistic biomarkers to examine PD changes in the
target malignant tissue in question [52]. Pre- and post-treatment
tumor biopsies are often done in the last few cohorts of a dose-
escalation phase I study and have been successfully used to
support recommendation of phase II doses of BRAF [1], MEK
[48], PI3K [49], and AKT [35,38] inhibitors. Tumor biopsies serve
to study cancer cells, but can also be used to study the stroma.
Tumor infiltration by specific subsets of lymphocytes (CD8þ) could
be used as POM biomarkers while evaluating immunotherapeutic
agents such as PDL-1 antibodies [20].

Pre- and post-treatment tumor biopsies are not without their
own problems. Although considered safe in the literature [53],
they are invasive procedures and have the potential for complica-
tions such as bleeding. Biopsies from multiple sites of resected
tumors have shown considerable genetic heterogeneity [54], and
s and PhAT
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this has the potential to influence interpretation of POM-PD
effects. In some instances, it is possible to circumvent being misled
by intra-tumoral heterogeneity by using imaging to assess POM-
PD biomarkers. An example is the use of 89Zr-labeled trastuzumab
positron emission tomography (PET) scans to detect degradation of
HER-2 caused by the HSP90 inhibitor AUY922 or luminespib [55].

The third important question asked in relation to PD assays is
how much target inhibition is enough? Because tumor biopsies are
not done in sufficient numbers across all dose levels, it may not be
possible to demonstrate a dose-response relationship in tumor
tissue; instead, this is commonly done in normal tissue where it is
sometimes possible to demonstrate a sigmoid shaped curve in
which no additional significant biomarker modulation occurs upon
increasing drug doses once a plateau is reached. Examples include
HSP70 induction while evaluating HSP90 inhibitors [33] (where, in
fact, depletion of protein clients is more important) and p-ERK
inhibition while evaluating MEK inhibitors [36], but data from
normal tissue identifying a plateau in POM-PD response should
not be the sole criterion used to halt dose escalation, as PD
changes in normal tissue may not mimic tumor tissue. In some
early-phase trials where it has been possible to biopsy multiple
patients (for example, while evaluating BRAF inhibitors such as
vemurafenib in the setting of melanoma), correlation of the degree
of biomarker modulation (in this case p-ERK inhibition) to tumor
response has been achieved [56]. Quantitation of PD effects is
important, especially where 495% of the signaling output must
be inhibited to have the desired effect, as with many kinase
inhibitors.

It is important to discuss the possible downside of conducting
PD biomarker studies. For drugs that target a relatively large
number of kinases, the final activity of a drug might not be related
to the POM-PD biomarker being studied. For example, phase I
trials of sorafenib, initially developed as a RAF inhibitor, success-
fully demonstrated reduction in p-ERK levels [57]. However, it
proved to be sorafenib’s anti-angiogenic activity that led to
approval for renal cell cancer [2], acting on VEGF and other targets;
trials of sorafenib in BRAF mutation-driven tumors, such as
melanoma, were negative [58]. As discussed in other articles in
this issue of Seminars in Oncology, the use of POM-PD biomarkers
does entail careful technical validation, which adds additional
costs [59,60]. However, the cost of failure of late-phase develop-
ment in clinical trials is very high, and we believe that the increase
in cost resulting from use of PD biomarkers in early drug develop-
ment is entirely justified as they could prevent drugs not
modulating target from progressing to expensive phase II and III
trials [61]. For example, the PARP inhibitor iniparib failed to
meet its endpoint in a phase III study and, regrettably, it was
only at this stage that its mechanism as a PARP inhibitor was
questioned, which is something that should have been discovered
in phase I [62].
5. PD proof of concept biomarkers

The ultimate effect of inhibiting a cancer target is usually
related to modulating one of the hallmark traits of the cancer
cells [63]. Proof of concept biomarkers thus predominantly focus
on assessing functional biological consequences of inhibiting
targets in tumor tissue (Fig. 3).

5.1. Proliferation

Examples of PD biomarkers for proof of concept have included
assessing proliferation through use of Ki67 determined by immu-
nohistochemistry [64]. As an example, use of this biomarker has
accompanied POM-PD studies in a clinical trial of trametinib,
where tumor Ki67 effects were measured to show the functional
consequence of inhibiting p-ERK [48]. In later stage phase II
studies, changes in Ki67 can be used as a surrogate measure to
determine clinical efficacy; for example, it has been employed in
randomized phase II studies of fulvestrant to demonstrate the
efficacy of two doses of the drug [65]. Other methods of determin-
ing proliferation include the use of imaging modalities like FLT-PET
[66], where it has been possible to correlate immunohistological
markers of proliferation such as Ki67 to SUVmax values. Post-
treatment FLT-PET changes in rapidly proliferative malignancies
like lymphoma not only confirm reduction in DNA synthesis and,
hence, proliferation as a consequence of treatment, but could also
be used as an early predictor of complete response [67].
5.2. Metabolism

There are multiple imaging platforms that detect changes in
metabolism caused by targeted anticancer agents. FDG-PET has
been extensively used to study glucose metabolism while evaluat-
ing anticancer drugs [68]. Changes in glucose metabolism are
usually not directly linked to the mechanism of action of the drug,
but rather a downstream consequence of inhibiting the intended
target. Examples include the FDG-PET changes observed in gastro-
intestinal stromal tumors (GIST) following treatment with imati-
nib, which inhibits c-KIT [69], or the alterations within tumors in
patients with melanoma following treatment with the BRAF or
MEK inhibitors vemurafenib [70] and trametinib [48], respectively.
Magnetic resonance spectroscopy has been used to observe
changes in phosphocholine and, more recently, lactate levels that
could be used to evaluate drugs targeting metabolism such as
BRAF, PI3K, and HSP90 and HDAC inhibitors [71].
5.3. Angiogenesis

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) studies have demonstrated changes in angiogenesis
during evaluation of anti-angiogenic agents such as bevacizumab
[72,73] and sorafenib [74,75]. These are examples of studying
downstream POC biomarkers of drugs that target VEGF or VEGFR.
5.4. DNA damage and apoptosis

DNA damage and apoptosis are important endpoints of many
targeted agents. For example, DNA damage caused by PARP
inhibitors has been studied using phosphorylation of γH2AX in
hair follicles [31]. Multiple 18F-labeled PET probes such methyl-
malonic acid (MMA) [76], caspase-3 [77], and annexin [78,79] are
under clinical evaluation to quantitate and determine the distri-
bution of apoptosis within tumors before and after drug treatment.

The expectations for and interpretation of these biomarker
endpoints depends on the setting in which they are used. In phase
I studies, biomarkers for proof of concept are often used to
accompany POM-PD biomarkers where it is critical to determine
that target modulation has led to functional consequences in the
tumor. Examples discussed above in this section include evaluat-
ing the degree of modulation of proliferation (Ki67, FLT-PET),
apoptosis (cleaved caspase-3), angiogenesis (DC-MRI), or metabo-
lism (FDG-PET). In later, phase II–III studies these biomarkers are
often correlated to clinical outcomes such as response or time to
progression. In this setting there has been some success, such as
the use of FDG-PET predicting early response to treatment in
specific subtypes of lymphoma [80,81]. Although widely used,
such biomarkers should not be the sole criteria for decision-
making [82].
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6. Intermediate endpoints of clinical response

This is an area of emerging importance in the PhAT. Having an
early insight into whether a patient will benefit from treatment or
not is important as it empowers the treating clinician to change
treatment early, improving patient outcomes, reducing unneces-
sary toxicity experienced by the patient, and improving efficiency
in healthcare delivery.
6.1. Tumor-specific circulating biomarkers

Prostate-specific antigen (PSA) has been used to follow
response in prostate cancer, as there is often ‘bone only’ disease,
making imaging to delineate clinical outcome challenging. An
early drop in PSA has been shown in some clinical trials to predict
survival [83], though this is not universally accepted [84]. CA-125
has been conventionally used to follow treatment outcomes in
ovarian cancer; however, tests such as CA-125 have been validated
in patients receiving cytotoxic chemotherapy where rapid tumor
regression is seen [85]. More sophisticated analysis is required to
interpret data related to CA-125 when evaluating molecularly
targeted agents such as tamoxifen where rapid tumor regression
may not be seen [86].
6.2. Circulating tumor cell count and circulating free DNA

Circulating tumor cell (CTC) counts have been used to assess
early response to treatment of prostate cancer [87]. CTCs have
many advantages, including the ability to sample multiple time
points, and use in a disease where the only site of metastasis is
bone, where conventional imaging is difficult [88]. Quantification
of circulating free DNA (cfDNA) has been linked to tumor burden
and prognosis in patients with metastatic cancers entering phase I
studies [15], and it is being studied further to determine whether
changes in cfDNA levels can be used as an early biomarker of
response or resistance in breast cancer [89].
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6.3. Imaging techniques

FDG-PET has provided insights into early response to targeted
treatment such as imatinib [90] for the treatment of GIST or in
Hodgkin’s lymphoma with chemotherapy [81]. Early changes in
cell number within a tumor can be studied using diffusion-
weighted MRI [91], and this is currently being validated to study
response in tumors such as ovarian [92], prostate [93], and colon
cancer [94].

Overall, intermediate endpoints of response or resistance to
treatment are thus critical to drug development (Fig. 4). However,
they need extensive validation, often in a large number of patients.
Also of note, care should be taken to differentiate intermediate
biomarkers of response from prognostic biomarkers.
7. Reassessment of molecular alteration at disease progression

The use of targeted anticancer agents in patients with tumors
that have been genetically characterized has led to considerable
success; however, it has increasingly become evident that acquired
resistance is inevitable. For example, resistance occurs within 6–12
months of treatment with vemurafenib for the treatment of BRAF-
mutant melanoma [95] or gefitinib for the treatment of EGFR-
mutant lung cancer [96].

Obtaining tumor biopsies at progression following initial
response has given researchers insights into mechanisms of
resistance. For example, biopsies obtained after patients with
melanoma became resistant to BRAF inhibitors were compared
to pretreatment samples, and these revealed (among other
changes) the presence of new MEK1 and MEK2 mutations [97].

Sampling circulating cells has the advantage that it can be
repeated at many time points. CTCs have many applications [88].
In addition to quantifying them, it is possible to detect novel
mutations that cause resistance to targeted treatment, for exam-
ple, T790M EGFR mutations were found in CTCs from patients with
EGFR-mutant lung cancer receiving EGFR-targeted treatment [98].
Serial blood samples to study cfDNA is an important approach, and
can be used in early phase clinical trials [15] in a variety of tumor
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types for detecting new mutations after resistance has appeared
following treatment with chemotherapy or targeted anticancer
agents (Fig. 4) [89,99].

Growing tumor xenografts [100,101] from patient biopsies
allows parallel treatment of the xenografts while the patient is
undergoing treatment. These tumor xenograft models, variously
called patient-derived xenografts (PDX) or avatar models, are
being used to elucidate mechanisms of resistance in patients
[27], and their use will be more widespread in the future.

Thus, reassessment of tissue, cells, and circulating cells and DNA
from human tumors is critical to understand the mechanism of
resistance and plan further treatment. Technological advances now
allow us to sample cfDNA representing tumor in blood samples,
which could, in the future, enable us to change treatment or propose
combination therapy in real time.
8. Reversal of resistance by new drugs or combination therapy

Reassessment of tumors when a patient has become clinically
resistant to the treatment had led to the identification of alter-
ations within the original target. This information can be success-
fully exploited, as is exemplified in the case of detection of ‘gate
keeper’ T790M EGFR mutations occurring following treatment
with gefitinib [98]. These observations led to the development of
irreversible EGFR inhibitors such as afatinib [102] and, more
recently, the development of the T790M EGFR-specific inhibitor
AZD9291 [103].

While analysis of mutations can help us understand mecha-
nisms of resistance, cross talk and altered feedback loops in signal
transduction networks that are not a consequence of mutation can
also be a mechanism of resistance [104]. An example of the clinical
importance of feedback loops is EGFR phosphorylation following
BRAF inhibition in BRAF-mutant colon cancer. This was brought to
light with elegant experiments using shRNA screens in the
presence of a BRAF targeted drug as a means of identifying
synthetic lethality [105]. This mechanism of resistance could be
circumvented by combining BRAF and EGFR inhibitors, as currently
being evaluated in hypothesis-testing clinical trials.

Also of importance is understanding transient, reversible changes
in signalling following the exposure to a drug. For example, transient
SOX-10–mediated transforming growth factor-beta (TGF-β) signaling
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in melanomas can follow treatment with BRAF and MEK inhibitors;
this could theoretically be circumvented by re-introducing the drug
after a ‘drug holiday’ [106]. Interestingly, high throughput platforms
now being used have correctly predicted resistance even before such
events have occurred in the clinical development of the drug. For
example, over-expression of a large panel genes in a V699E mutant
melanoma cell line to look for genes conferring resistance to BRAF
inhibitors led to the elucidation of the mechanism of COT-mediated
MEK activation [107,108], subsequently overcome by combinations of
BRAF and MEK inhibitors [109].

Combining anticancer agents is an attractive proposition to
overcome resistance but there may be considerable challenges due
to combinatorial toxicity [110]. Careful attention to detail of
scheduling and dose, using all aspects of the PhAT, are necessary
to fully realize the clinical promise of innovative combinations
(Fig. 5) [111].
9. Future of the PhAT

The PhAT is a conceptual framework that we developed which
codifies a series of biomarker-driven questions that are used to
support pharmacologic understanding and evidence-based deci-
sion-making in drug discovery and development [8–10].

Over the last three decades, the focus of cancer drug discovery
has changed substantially from the development of one-size-fits-all
cytotoxic chemotherapy agents, to personalized or precision molec-
ular targeted agents that modify oncogenic signal transduction and
epigenetic control mechanisms, and more recently to immunother-
apy and antibody drug conjugates. The development of all targeted
treatments has benefited from asking the critical questions detailed
in the PhAT. Each category of drugs and individual agents presents
different unique challenges and rewards as well as specific technical
differences when using the PhAT.

Newer drugs, however, like immune checkpoint modulator
antibodies, notably anti-CTLA4, PD-1, and PDL-1, have resulted in
clinical response in an increasingly wide range of tumor types
without the use of specific patient-selection biomarkers for
example. Further, clinical trials have not reported widely on PK
and PD of these agents. Note that this is not a failure of the PhAT,
but reflects the speed of development of these agents, which have
been taken forward without answering multiple key questions
nce and PhAT
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defined by the PhAT. Immune checkpoint agents do have signifi-
cant toxicity; POM and POC biomarkers could be used to further
refine dosing and schedules in the future. Biomarkers that predict
response will rationalize giving such drugs to specific subgroups of
patients who will gain the most benefit.

Drug discovery and development in oncology will continue
to respond to the understanding of the biology of cancers.
Hand-in-hand with developing drugs that block oncogene addic-
tion and target very small populations of patients with specific
genetic abnormalities such as ALK inhibitors, drug discovery
efforts are re-discovering the virtues of targeting a range of
mechanisms that are important in cancer such as cell cycle check
points (CDK4/6, CHK1), DNA repair (PARP, ATR), and epigenetic
regulation. This group of targets and drugs will bring its own set of
challenges of identifying patient populations and choosing the
correct PD biomarkers to help define dosing and schedules.

It is very important to view the PhAT as a continuum of critical
questions in the life cycle of an anticancer drug (Fig. 1B). Often
specific aspects, such as cost, stimulate passionate arguments
[59-61]. Further, while scientific rigor should not be compromised,
the degree of validation needed for PD assays in early-phase
clinical trials should be balanced with the important information
acquired. Extent of validation should not be an obstacle for using
these tests [112-115], when data can be further confirmed in
increasing detail in future trials. Fit-for-purpose validation will
be key in the future. The fact is that different aspects of the PhAT
will offer more important information in some drug discovery
projects than others, but that should not stop the oncology
community from asking all the relevant questions. The relation-
ship between different phases of clinical trials, ie, phase I/II/III, is
also likely to evolve. There have been provisional licences granted
to anticancer drugs based on phase II data, and the questions
currently posed later in the PhAT are now being asked earlier than
before. Reviewing the progress and development in the past three
decades and taking stock of the current trends, we believe the
PhAT is and will remain relevant and important irrespective of the
direction cancer drug discovery and development takes in the
future.

Conflicts of interest

Dr Banerji has received research funding from Astra Zeneca,
Novartis, Chugai, and Onyx. He has also received honoraria for
attending advisory boards for Astex, Novartis, and Debiopharm. Dr
Workman is a former employee of AstraZeneca and declares
commercial interactions with Yamanouchi (now Astellas), Piramed
Pharma (acquired by Roche), Genentech, Vernalis, Novartis,
Chroma Therapeutics, Astex Pharmaceuticals, AstraZeneca, Cycla-
cel, Onyx Pharmaceuticals, Merck Serono, Sareum, Janssen, Wilex
and Nextech Ventures. Dr Workman has received research funding
from Vernalis for the discovery of HSP90 inhibitors, and intellec-
tual property for this program was licensed to Vernalis Ltd., and
Novartis. He has also been involved in a research collaboration
with AstraZeneca in the area of stress and chaperone pathways,
has been a consultant to Novartis, is a founder of Chroma
Therapeutics, and is scientific advisory board member of Astex.

Drs Workman and Banerji are employees of The Institute of
Cancer Research, which has a commercial interest in the discovery
and development of anticancer drugs, including HSP90, PI3K, AKT,
and HDAC inhibitors discussed in this paper.
Acknowledgments

The authors are grateful to patients and their families who have
taken part in multiple phase I studies referenced in this article. The
authors acknowledge funding from Cancer Research UK (grants
C309/A8274/A309/A11566 and C51/A6883) to The Institute of
Cancer Research. The authors further acknowledge funding under
the Experimental Cancer Medicine Centres program funded by
Cancer Research UK and NIHR, CRUK to support our CRUK Centre
and NIHR funding to our Biomedical Research Centre at The
Institute of Cancer Research and The Royal Marsden NHS Founda-
tion Trust.

Research performed at: The Institute of Cancer Research and The
Royal Marsden NHS Foundation Trust.

References

[1] Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in
metastatic melanoma. N Engl J Med. 2010;363:809–19.

[2] Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-
cell carcinoma. N Engl J Med. 2007;356:125–34.

[3] Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab
compared with CHOP alone in elderly patients with diffuse large-B-cell
lymphoma. N Engl J Med. 2002;346:235–42.

[4] Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat
Rev Drug Discov. 2004;3:711–5.

[5] Hutchinson L, Kirk R. High drug attrition rates—where are we going wrong?
Nat Rev Clin Oncol. 2011;8:189–90.

[6] Moreno L, Pearson AD. How can attrition rates be reduced in cancer drug
discovery? Expert Opin Drug Dis 2013;8:363–8.

[7] Kantarjian HM, Fojo T, Mathisen M, Zwelling LA. Cancer drugs in the United
States: Justum Pretium—the just price. J Clin Oncol. 2013;31:3600–4.

[8] Workman P. How much gets there and what does it do?: The need for better
pharmacokinetic and pharmacodynamic endpoints in contemporary drug
discovery and development. Curr Pharm Design. 2003;9:891–902.

[9] Tan DS, Thomas GV, Garrett MD, et al. Biomarker-driven early clinical trials in
oncology: a paradigm shift in drug development. Cancer J. 2009;15:406–20.

[10] Yap TA, Sandhu SK, Workman P, de Bono JS. Envisioning the future of early
anticancer drug development. Nat Rev Cancer. 2010;10:514–23.

[11] Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human
cancer. Nature. 2002;417:949–54.

[12] Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human
breast cancer: correlation of relapse and survival with amplification of the
HER-2/neu oncogene. Science. 1987;235:177–82.

[13] Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition
in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

[14] Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-
receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9.

[15] Perkins G, Yap TA, Pope L, et al. Multi-purpose utility of circulating plasma
DNA testing in patients with advanced cancers. PLoS One. 2012;7:e47020.

[16] Janku F, Wheler JJ, Naing A, et al. PIK3CA mutation H1047R is associated with
response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase
clinical trials. Cancer Res. 2013;73:276–84.

[17] Ong M, Carreira S, Goodall J, et al. Validation and utilisation of high-coverage
next-generation sequencing to deliver the pharmacological audit trail. Br J
Cancer. 2014;111:828–36.

[18] Willyard C. ’Basket studies’ will hold intricate data for cancer drug approvals.
Nat Med. 2013;19:655.

[19] Droeser RA, Hirt C, Viehl CT, et al. Clinical impact of programmed cell death
ligand 1 expression in colorectal cancer. Eur J Cancer. 2013;49:2233–42.

[20] Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and
other features of the tumor immune microenvironment with response to
anti-PD-1 Therapy. Clin Cancer Res. 2014;20:5064–74.

[21] Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M,
et al. Genome sequencing identifies a basis for everolimus sensitivity.
Science. 2012;338:221.

[22] Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of
genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5.

[23] Popovici V, Budinska E, Tejpar S, et al. Identification of a poor-prognosis
BRAF-mutant-like population of patients with colon cancer. J Clin Oncol.
2012;30:1288–95.

[24] Loboda A, Nebozhyn M, Klinghoffer R, et al. A gene expression signature of
RAS pathway dependence predicts response to PI3K and RAS pathway
inhibitors and expands the population of RAS pathway activated tumors.
BMC Med Genomics. 2010;3:26.

[25] Gupta S, Munster P, Hollebecque A, et al. Safety/efficacy of MK-8669
(ridaforolimus) plus MK-2206 (AKT inhibitor) in patients with advanced
breast cancer with low RAS signature and PTEN deficient prostate cancer.
J Clin Oncol 2014;32 5s (suppl; abstr 2509).

[26] Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and develop-
ment. Cancer Res. 2014;74:2377–84.

[27] Garralda E, Paz K, Lopez-Casas PP, et al. Integrated next-generation sequenc-
ing and avatar mouse models for personalized cancer treatment. Clin Cancer
Res. 2014;20:2476–84.

[28] Allegra CJ, Jessup JM, Somerfield MR, et al. American Society of Clinical
Oncology provisional clinical opinion: testing for KRAS gene mutations in

http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref2
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref2
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref3
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref3
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref3
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref4
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref4
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref5
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref5
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref6
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref6
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref7
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref7
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref8
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref8
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref8
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref9
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref9
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref10
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref10
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref11
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref11
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref12
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref12
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref12
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref13
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref13
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref14
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref14
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref15
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref15
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref16
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref16
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref16
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref17
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref17
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref17
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref18
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref18
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref19
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref19
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref20
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref20
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref20
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref21
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref21
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref21
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref22
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref22
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref23
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref23
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref23
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref24
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref24
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref24
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref24
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref25
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref25
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref25
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref25
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref26
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref26
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref27
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref27
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref27
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref28
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref28


U. Banerji, P. Workman / Seminars in Oncology 43 (2016) 436–445444
patients with metastatic colorectal carcinoma to predict response to anti-
epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol.
2009;27:2091–6.

[29] Olsen EA, Kim YH, Kuzel TM, et al. Phase IIb multicenter trial of vorinostat in
patients with persistent, progressive, or treatment refractory cutaneous T-
cell lymphoma. J Clin Oncol. 2007;25:3109–15.

[30] Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in
metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.

[31] Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in
tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

[32] Tanaka C, O’Reilly T, Kovarik JM, et al. Identifying optimal biologic doses of
everolimus (RAD001) in patients with cancer based on the modeling of
preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin
Oncol. 2008;26:1596–602.

[33] Sessa C, Shapiro GI, Bhalla KN, et al. First-in-human phase I dose-escalation
study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors.
Clin Cancer Res. 2013;19:3671–80.

[34] Banerji U, van Doorn L, Papadatos-Pastos D, et al. A phase I pharmacokinetic
and pharmacodynamic study of CHR-3996, an oral class I selective histone
deacetylase inhibitor in refractory solid tumors. Clin Cancer Res. 2012;18:
2687–94.

[35] Banerji U, Ranson M, Schellens J, et al. Results of two phase I multicenter
trials of AZD5363, an inhibitor of AKT1, 2 and 3: Biomarker and early clinical
evaluation in Western and Japanese patients with advanced solid tumors.
Cancer Res. 2013;73(8 Suppl) abstr LB-66.

[36] Banerji U, Camidge DR, Verheul HM, et al. The first-in-human study of the
hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244
(ARRY-142886): a phase I open-label multicenter trial in patients with
advanced cancer. Clin Cancer Res. 2010;16:1613–23.

[37] Martinez-Garcia M, Banerji U, Albanell J, et al. First-in-human, phase I dose-
escalation study of the safety, pharmacokinetics, and pharmacodynamics of
RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid
tumors. Clin Cancer Res. 2012;18:4806–19.

[38] Yap TA, Yan L, Patnaik A, et al. First-in-man clinical trial of the oral pan-AKT
inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol.
2011;29:4688–95.

[39] O’Donnell A, Faivre S, Burris HA 3rd, et al. Phase I pharmacokinetic and
pharmacodynamic study of the oral mammalian target of rapamycin
inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol.
2008;26:1588–95.

[40] Banerji U, Dean E, Gonzales M, et al. First-in-human phase I trial of the dual
mTORC1 and mTORC2 inhibitor AZD2014 in solid tumors. J Clin Oncol.
2012:30 (suppl; abstr 3004).

[41] Koch KM, Reddy NJ, Cohen RB, et al. Effects of food on the relative
bioavailability of lapatinib in cancer patients. J Clin Oncol. 2009;27:1191–6.

[42] Hamilton M, Wolf JL, Drolet DW, et al. The effect of rifampicin, a prototypical
CYP3A4 inducer, on erlotinib pharmacokinetics in healthy subjects. Cancer
Chemoth Pharm. 2014;73:613–21.

[43] Bardin C, Veal G, Paci A, et al. Therapeutic drug monitoring in cancer - Are we
missing a trick? Eur J Cancer. 2014;50:2005–9.

[44] Widmer N, Bardin C, Chatelut E, et al. Review of therapeutic drug monitoring
of anticancer drugs part two—targeted therapies. Eur J Cancer. 2014;50:
2020–36.

[45] Kantarjian H, O’Brien S, Garcia-Manero G, et al. Very long-term follow-up
results of imatinib mesylate therapy in chronic phase chronic myeloid
leukemia after failure of interferon alpha therapy. Cancer. 2012;118:
3116–22.

[46] Sharma SK, Kumar S, Vijayakumar AR, et al. Utility of the trough plasma
imatinib level monitoring at two time points in patients with the chronic
myeloid leukemia-chronic phase. J Cancer Res Ther. 2014;10:305–8.

[47] Attard G, Reid AH, Yap TA, et al. Phase I clinical trial of a selective inhibitor of
CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer
commonly remains hormone driven. J Clin Oncol. 2008;26:4563–71.

[48] Infante JR, Fecher LA, Falchook GS, et al. Safety, pharmacokinetic, pharma-
codynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1
dose-escalation trial. Lancet Oncol. 2012;13:773–81.

[49] Sarker D, Ang JE, Baird R, et al. First-in-human phase I study of pictilisib
(GDC-0941), a potent class I phosphatidylinositol-3-kinase (PI3K) inhibitor,
in patients with advanced solid tumours. Clin Cancer Res. 2015;21:77–86.

[50] Blagden S, Omlin A, Josephs D, et al. First-in-human study of CH5132799, an
oral class I PI3K inhibitor, studying toxicity, pharmacokinetics and pharma-
codynamics, in patients with metastatic cancer. Clin Cancer Res. 2014;
20:5908–17.

[51] Venugopal B, Baird R, Kristeleit RS, et al. A phase I study of quisinostat (JNJ-
26481585), an oral hydroxamate histone deacetylase inhibitor with evidence
of target modulation and antitumor activity, in patients with advanced solid
tumors. Clin Cancer Res. 2013;19:4262–72.

[52] Ang JE, Kaye S, Banerji U. Tissue-based approaches to study pharmacody-
namic endpoints in early phase oncology clinical trials. Curr Drug Targets.
2012;13:1525–34.

[53] Dowlati A, Haaga J, Remick SC, et al. Sequential tumor biopsies in early phase
clinical trials of anticancer agents for pharmacodynamic evaluation. Clin
Cancer Res. 2001;7:2971–6.

[54] Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and
branched evolution revealed by multiregion sequencing. N Engl J Med.
2012;366:883–92.
[55] Gaykema SB, Schroder CP, Vitfell-Rasmussen J, et al. 89Zr-trastuzumab and
89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-
AUY922 in metastatic breast cancer patients. Clin Cancer Res. 2014;20:
3945–54.

[56] Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad
target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9.

[57] Strumberg D, Richly H, Hilger RA, et al. Phase I clinical and pharmacokinetic
study of the novel Raf kinase and vascular endothelial growth factor receptor
inhibitor BAY 43-9006 in patients with advanced refractory solid tumors.
J Clin Oncol. 2005;23:965–72.

[58] Eisen T, Ahmad T, Flaherty KT, et al. Sorafenib in advanced melanoma: a
phase II randomised discontinuation trial analysis. Br J Cancer. 2006;95:
581–6.

[59] Goulart BH, Clark JW, Pien HH, Roberts TG, Finkelstein SN, Chabner BA.
Trends in the use and role of biomarkers in phase I oncology trials. Clin
Cancer Res. 2007;13:6719–26.

[60] Ratain MJ, Glassman RH. Biomarkers in phase I oncology trials: signal, noise,
or expensive distraction? Clin Cancer Res. 2007;13:6545–8.

[61] Banerji U, de Bono J, Judson I, Kaye S, Workman P. Biomarkers in early
clinical trials: the committed and the skeptics. Clin Cancer Res. 2008;
14:2512.

[62] Mateo J, Ong M, Tan DS, Gonzalez MA, de Bono JS. Appraising iniparib, the
PARP inhibitor that never was—what must we learn? Nat Rev Clin Oncol.
2013;10:688–96.

[63] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.
2011;144:646–74.

[64] Polley MY, Leung SC, McShane LM, et al. An international Ki67 reproduci-
bility study. J Natl Cancer I 2013;105:1897–906.

[65] Kuter I, Gee JM, Hegg R, et al. Dose-dependent change in biomarkers during
neoadjuvant endocrine therapy with fulvestrant: results from NEWEST, a
randomized phase II study. Breast Cancer Res Tr. 2012;133:237–46.

[66] Woolf DK, Beresford M, Li SP, et al. Evaluation of FLT-PET-CT as an imaging
biomarker of proliferation in primary breast cancer. Br J Cancer. 2014;110:
2847–54.

[67] Herrmann K, Buck AK, Schuster T, et al. Week one FLT-PET response predicts
complete remission to R-CHOP and survival in DLBCL. Oncotarget 2014;5:
4050–9.

[68] Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical
tumour response using [18F]-fluorodeoxyglucose and positron emission
tomography: review and 1999 EORTC recommendations. European Organ-
ization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J
Cancer. 1999;35:1773–82.

[69] McAuliffe JC, Hunt KK, Lazar AJ, et al. A randomized, phase II study of
preoperative plus postoperative imatinib in GIST: evidence of rapid radio-
graphic response and temporal induction of tumor cell apoptosis. Ann Surg
Oncol. 2009;16:910–9.

[70] McArthur GA, Puzanov I, Amaravadi R, et al. Marked, homogeneous, and
early [18F]fluorodeoxyglucose-positron emission tomography responses to
vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol. 2012;30:
1628–34.

[71] Beloueche-Babari M, Workman P, Leach MO. Exploiting tumor metabolism
for non-invasive imaging of the therapeutic activity of molecularly targeted
anticancer agents. Cell Cycle. 2011;10:2883–93.

[72] Chase DM, Sill MW, Monk BJ, et al. Changes in tumor blood flow as measured
by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may
predict activity of single agent bevacizumab in recurrent epithelial ovarian
(EOC) and primary peritoneal cancer (PPC) patients: an exploratory analysis
of a Gynecologic Oncology Group phase II study. Gynecol Oncol. 2012;126:
375–80.

[73] De Bruyne S, Van Damme N, Smeets P, et al. Value of DCE-MRI and FDG-
PET/CT in the prediction of response to preoperative chemotherapy with
bevacizumab for colorectal liver metastases. Br J Cancer. 2012;106:
1926–33.

[74] Meyer JM, Perlewitz KS, Hayden JB, et al. Phase I trial of preoperative
chemoradiation plus sorafenib for high-risk extremity soft tissue sarcomas
with dynamic contrast-enhanced MRI correlates. Clin Cancer Res. 2013;19:
6902–11.

[75] Hahn OM, Yang C, Medved M, et al. Dynamic contrast-enhanced magnetic
resonance imaging pharmacodynamic biomarker study of sorafenib in
metastatic renal carcinoma. J Clin Oncol. 2008;26:4572–8.

[76] Oborski MJ, Laymon CM, Lieberman FS, Drappatz J, Hamilton RL, Mountz JM.
First use of (18)F-labeled ML-10 PET to assess apoptosis change in a newly
diagnosed glioblastoma multiforme patient before and early after therapy.
Brain Behav 2014;4:312–5.

[77] Challapalli A, Kenny LM, Hallett WA, et al. 18F-ICMT-11, a caspase-3-specific
PET tracer for apoptosis: biodistribution and radiation dosimetry. J Nucl Med.
2013;54:1551–6.

[78] Collingridge DR, Glaser M, Osman S, et al. In vitro selectivity, in vivo
biodistribution and tumour uptake of annexin V radiolabelled with a
positron emitting radioisotope. Br J Cancer. 2003;89:1327–33.

[79] Wang MW, Wang F, Zheng YJ, et al. An in vivo molecular imaging probe (18)
F-Annexin B1 for apoptosis detection by PET/CT: preparation and prelimi-
nary evaluation. Apoptosis. 2013;18:238–47.

[80] Rossi C, Kanoun S, Berriolo-Riedinger A, et al. Interim 18F-FDG PET SUVmax
reduction is superior to visual analysis in predicting outcome early in
Hodgkin lymphoma patients. J Nucl Med. 2014;55:569–73.

http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref28
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref28
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref28
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref29
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref29
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref29
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref30
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref30
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref31
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref31
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref32
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref32
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref32
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref32
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref33
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref33
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref33
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref34
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref34
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref34
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref34
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref35
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref35
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref35
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref35
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref36
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref36
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref36
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref36
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref37
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref37
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref37
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref37
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref38
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref38
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref38
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref39
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref39
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref39
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref39
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref40
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref40
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref40
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref41
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref41
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref42
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref42
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref42
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref43
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref43
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref44
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref44
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref44
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref45
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref45
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref45
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref45
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref46
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref46
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref46
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref47
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref47
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref47
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref48
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref48
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref48
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1049
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1049
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1049
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1147
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1147
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1147
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1147
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref49
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref49
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref49
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref49
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref50
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref50
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref50
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref51
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref51
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref51
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref52
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref52
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref52
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref53
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref53
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref53
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref53
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref53
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref53
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref53
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref54
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref54
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref55
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref55
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref55
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref55
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref56
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref56
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref56
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref57
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref57
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref57
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref58
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref58
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref59
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref59
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref59
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref60
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref60
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref60
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref61
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref61
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref62
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref62
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref63
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref63
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref63
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref64
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref64
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref64
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref65
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref65
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref65
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref66
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref66
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref66
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref66
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref66
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref67
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref67
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref67
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref67
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref68
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref68
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref68
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref68
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref69
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref69
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref69
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref70
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref70
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref70
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref70
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref70
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref70
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref71
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref71
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref71
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref71
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref72
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref72
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref72
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref72
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref73
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref73
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref73
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref74
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref74
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref74
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref74
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref75
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref75
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref75
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref75
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref75
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref76
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref76
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref76
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref77
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref77
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref77
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref78
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref78
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref78
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref78
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref78


U. Banerji, P. Workman / Seminars in Oncology 43 (2016) 436–445 445
[81] Gallamini A, Kostakoglu L. Interim FDG-PET in Hodgkin lymphoma: a
compass for a safe navigation in clinical trials? Blood. 2012;120:4913–20.

[82] Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the
staging and response assessment of lymphoma: consensus of the Interna-
tional Conference of Malignant Lymphomas Imaging Working Group. J Clin
Oncol. 2014;32:3048–58.

[83] Armstrong AJ, Garrett-Mayer E, Ou Yang YC, et al. Prostate-specific antigen
and pain surrogacy analysis in metastatic hormone-refractory prostate
cancer. J Clin Oncol. 2007;25:3965–70.

[84] Collette L, Burzykowski T, Carroll KJ, et al. Is prostate-specific antigen a valid
surrogate end point for survival in hormonally treated patients with
metastatic prostate cancer? Joint research of the European Organisation
for Research and Treatment of Cancer, the Limburgs Universitair Centrum,
and AstraZeneca Pharmaceuticals. J Clin Oncol. 2005;23:6139–48.

[85] Rustin GJ, Vergote I, Eisenhauer E, et al. Definitions for response and
progression in ovarian cancer clinical trials incorporating RECIST 1.1 and
CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int J Gynecol
Cancer. 2011;21:419–23.

[86] Hall MR, Petruckevitch A, Pascoe J, et al. Using serum CA125 to assess the
activity of potential cytostatic agents in ovarian cancer. Int J Gynecol Cancer.
2014;24:676–81.

[87] Scher HI, Jia X, de Bono JS, et al. Circulating tumour cells as prognostic
markers in progressive, castration-resistant prostate cancer: a reanalysis of
IMMC38 trial data. Lancet Oncol. 2009;10:233–9.

[88] Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a
multifunctional biomarker. Clin Cancer Res. 2014;20:2553–68.

[89] Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to
monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209.

[90] Gayed I, Vu T, Iyer R, et al. The role of 18F-FDG PET in staging and early
prediction of response to therapy of recurrent gastrointestinal stromal
tumors. J Nucl Med. 2004;45:17–21.

[91] Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance
imaging as a cancer biomarker: consensus and recommendations. Neoplasia.
2009;11:102–25.

[92] Kyriazi S, Collins DJ, Messiou C, et al. Metastatic ovarian and primary
peritoneal cancer: assessing chemotherapy response with diffusion-
weighted MR imaging—value of histogram analysis of apparent diffusion
coefficients. Radiology. 2011;261:182–92.

[93] Afaq A, Koh DM, Padhani A, van As N, Sohaib SA. Clinical utility of diffusion-
weighted magnetic resonance imaging in prostate cancer. BJU Int. 2011;108:
1716–22.

[94] Scurr ED, Collins DJ, Temple L, Karanjia N, Leach MO, Koh DM. Appearances
of colorectal hepatic metastases at diffusion-weighted MRI compared with
histopathology: initial observations. Br J Radiol. 2012;85:225–30.

[95] Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemur-
afenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:
2507–16.

[96] Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for
non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:
2380–8.
[97] Van Allen EM, Wagle N, Sucker A, et al. The genetic landscape of clinical
resistance to RAF inhibition in metastatic melanoma. Cancer Discov 2014;
4:94–109.

[98] Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in
circulating lung-cancer cells. N Engl J Med. 2008;359:366–77.

[99] Murtaza M, Dawson SJ, Tsui DW, et al. Non-invasive analysis of acquired
resistance to cancer therapy by sequencing of plasma DNA. Nature.
2013;497:108–12.

[100] Li S, Shen D, Shao J, et al. Endocrine-therapy-resistant ESR1 variants revealed
by genomic characterization of breast-cancer-derived xenografts. Cell Rep.
2013;4:1116–30.

[101] Seol HS, Kang HJ, Lee SI, et al. Development and characterization of a colon
PDX model that reproduces drug responsiveness and the mutation profiles of
its original tumor. Cancer Lett. 2014;345:56–64.

[102] Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2
inhibitor highly effective in preclinical lung cancer models. Oncogene.
2008;27:4702–11.

[103] Cross DA, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI,
overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer.
Cancer Discov. 2014;4:1046–61.

[104] Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer
in the post-genomic era. Nat Biotechnol. 2012;30:679–92.

[105] Prahallad A, Sun C, Huang S, et al. Unresponsiveness of colon cancer to BRAF
(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:
100–3.

[106] Sun C, Wang L, Huang S, et al. Reversible and adaptive resistance to BRAF
(V600E) inhibition in melanoma. Nature. 2014;508:118–22.

[107] Johannessen CM, Johnson LA, Piccioni F, et al. A melanocyte lineage program
confers resistance to MAP kinase pathway inhibition. Nature. 2013;504:138–42.

[108] Johannessen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF
inhibition through MAP kinase pathway reactivation. Nature. 2010;468:
968–72.

[109] Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in
melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.

[110] Shimizu T, Tolcher AW, Papadopoulos KP, et al. The clinical effect of the dual-
targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in
patients with advanced cancer. Clin Cancer Res. 2012;18:2316–25.

[111] Yap TA, Omlin A, de Bono JS. Development of therapeutic combinations
targeting major cancer signaling pathways. J Clin Oncol. 2013;31:1592–605.

[112] Garcia VM, Cassier PA, de Bono J. Parallel anticancer drug development and
molecular stratification to qualify predictive biomarkers: dealing with
obstacles hindering progress. Cancer Discov 2011;1:207–12.

[113] Sarker D, Pacey S, Workman P. Use of pharmacokinetic/pharmacodynamic
biomarkers to support rational cancer drug development. Biomark Med.
2007;1:399–417.

[114] Sarker D, Workman P. Pharmacodynamic biomarkers for molecular cancer
therapeutics. Adv Cancer Res. 2007;96:213–68.

[115] Yap TA, Banerji U, de Bono JS, Workman P. Biopsy-derived biomarkers in
phase I trials: building confidence in drug development. J Clin Oncol. 2016
May 2. pii: JCO670075.

http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref79
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref79
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1082
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1082
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1082
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1082
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref81
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref81
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref81
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref82
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref82
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref82
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref82
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref82
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref83
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref83
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref83
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref83
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref84
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref84
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref84
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref85
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref85
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref85
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref86
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref86
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref87
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref87
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref88
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref88
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref88
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref89
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref89
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref89
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref90
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref90
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref90
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref90
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref91
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref91
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref91
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref92
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref92
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref92
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref93
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref93
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref93
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref94
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref94
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref94
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref95
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref95
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref95
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref96
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref96
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref97
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref97
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref97
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref98
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref98
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref98
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref99
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref99
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref99
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref100
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref100
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref100
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1103
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1103
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1103
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref102
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref102
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref103
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref103
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref103
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref104
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref104
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref105
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref105
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref106
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref106
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref106
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref107
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref107
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref108
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref108
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref108
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref109
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref109
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref110
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref110
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref110
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1113
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1113
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1113
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1114
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1114
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1115
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1115
http://refhub.elsevier.com/S0093-7754(16)30030-6/sbref1115

	Critical parameters in targeted drug development: the pharmacological audit trail
	Introduction
	Population identification for targeted drugs
	Pharmacokinetics
	Pharmacodynamic and proof of mechanism biomarkers
	PD proof of concept biomarkers
	Proliferation
	Metabolism
	Angiogenesis
	DNA damage and apoptosis

	Intermediate endpoints of clinical response
	Tumor-specific circulating biomarkers
	Circulating tumor cell count and circulating free DNA
	Imaging techniques

	Reassessment of molecular alteration at disease progression
	Reversal of resistance by new drugs or combination therapy
	Future of the PhAT
	Conflicts of interest
	Acknowledgments
	References




