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Background and purpose: There are concerns that radiotherapy doses delivered in a magnetic field might
be distorted due to the Lorentz force deflecting secondary electrons. This study investigates this effect on
lung stereotactic body radiotherapy (SBRT) treatments, conducted either with or without multileaf
collimator (MLC) tumor tracking.
Material and methods: Lung SBRT treatments with an MR-linac were simulated for nine patients. Two
different treatment techniques were compared: conventional, non-tracked deliveries and deliveries with
real-time MLC tumor tracking, each conducted either with or without a 1.5 T magnetic field.
Results: Slight dose distortions at air-tissue-interfaces were observed in the presence of the magnetic
field. Most prominently, the dose to 2% of the skin increased by 1.4 Gy on average. Regardless of the pres-
ence of the magnetic field, MLC tracking was able to spare healthy tissue, for example by decreasing the
mean lung dose by 0.3 Gy on average, while maintaining the target dose.
Conclusions: Accounting for the magnetic field during treatment plan optimization allowed for design
and delivery of clinically acceptable lung SBRT treatments with an MR-linac. Furthermore, the ability
of MLC tumor tracking to decrease dose exposure of healthy tissue, was not inhibited by the magnetic
field.
� 2016 The Author(s). Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 119 (2016) 461–466
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The integration of magnetic resonance (MR) imaging with
either a linear accelerator (MR-linac) or Cobalt-60 radiation
sources is one of the recent advancements in radiotherapy
technology [1–3]. It allows radiotherapeutic treatment of patients
while simultaneously acquiring MR images featuring excellent
soft-tissue contrast. However, there are concerns regarding the dis-
tortion of dose distributions caused by the MR scanner’s magnetic
field deflecting secondary electrons due to the Lorentz force [4]. As
this predominantly alters dose distributions at air-tissue-
interfaces, treatments of lung tumors are expected to be particu-
larly affected.

Lung tumors can exhibit deformations, rotations and transla-
tions of up to a few centimeters, which may result in underdosage
of the target and additional irradiation of nearby healthy organs
[5]. Techniques have been developed to recover the target dose
by adapting the treatment to the tumor motion in real-time. This
can be achieved by repositioning the patient using a robotic treat-
ment couch [6,7], tilting or moving the entire linear accelerator
[8,9] or by dynamically adapting the linear accelerator’s multileaf
collimator (MLC) [10–12]. In the future, MLC tumor tracking may
be performed on MR-guided radiotherapy units allowing adapta-
tion of the treatment based on anatomical information obtained
from high-contrast MR images [13,14].

Recent studies have investigated radiotherapy of lung tumors
under the influence of an external magnetic field [15,16]. They
reported dose distortions due to the magnetic field that resulted
in an underdosage of the target volume. However, these studies
only included one patient each and did not consider the effect of
the magnetic field during optimization of the treatment plan,
which has been shown to partly alleviate its distorting effect in
phantom experiments and for other tumor sites [17,18].
Furthermore, the influence of intrafractional changes of the patient
anatomy was not evaluated in either study.

This planning study investigates the clinical feasibility of lung
stereotactic body radiotherapy (SBRT) treatments with an
MR-linac. It accounts for the magnetic field during optimization
of the treatment plan and also considers intrafractional tumor
motion with and without compensation by real-time MLC tumor
tracking for a cohort of nine patients.
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Material and methods

Patient cohort

Nine 4DCT scans of lung cancer patients (four male/five female,
age: 69–86 years) undergoing SBRT at our institution were selected
from a group of 15. The other six 4DCT scans were excluded from
this study as they featured severe image artifacts in the tumor
region, which might have substantially influenced the accuracy
of the deformable image registration (DIR) used for dose accumu-
lation. The mean tumor volume was 10.1 cc (range: 3.3–25.5 cc).
The tumor was located in the upper left lobe of the patient’s lung
in five cases and in the lower left lobe and upper right lobe in
two patients each. The centroids of the tumors exhibited a
mean three-dimensional peak-to-peak motion of 5.7 mm (range:
1.5–14.1 mm).
Contouring

The tumor and organs-at-risk were delineated on the peak-
exhale phase using RayStation, research version 4.6.100.12 (Ray-
Search Laboratories AB, Stockholm, Sweden). The peak-exhale
phase was selected for contouring and treatment planning as it is
usually the most reproducible phase of the breathing cycle and
its images consequently feature only small motion artifacts. Nor-
mal tissue structures were outlined according to the RTOG 1021
guideline [19]. Two different approaches were used to define the
target: an internal target volume (ITV) approach for conventional
treatments without real-time motion compensation and a so-
called moving target volume (MTV) approach for tracked deliveries
with MLC tumor tracking, as suggested by Kamerling and Fast et al.
[20]. The ITV is defined by the union of the gross tumor volumes
(GTV) contoured on each of the 10 4DCT phases. The MTV is
obtained by shifting the GTV contour of each 4DCT phase so that
its centroid overlaps with the centroid of the GTV on the reference
phase. Calculating the union of the shifted contours and using it as
planning target implicitly accounts for tumor deformation during
MLC tumor tracking, which localizes and adapts the treatment to
translations of the target’s center. Use of the MTV is a conservative
approach as the maximum extent of tumor deformation measured
over all phases is assumed to occur in every single phase. Both the
ITV and MTV were expanded by an isotropic margin of 5 mm to
create the respective planning target volumes (PTV) as it is clinical
practice at our institution to account for residual localization and
setup errors.
Treatment planning

The outlined contours were then transferred to the Monaco
treatment planning software, research version 5.19.00 (Elekta AB,
Stockholm, Sweden). The software features a machine model of
the MR-linac currently being developed by Elekta. This model
includes the treatment beam with a nominal beam energy of
7 MV, the MLC as well as the cryostat. Each of the 160 leaves of
the MLC, which is fixed to 90� (coordinate system according to
IEC-61217), has an isocenter-projected width of 7.15 mm and the
maximum field size is 27.20 cm parallel to leaf direction and
57.15 cm perpendicular to leaf direction [21]. This large field of
view allows treatment of peripheral tumors even though the treat-
ment beam isocenter is fixed to the center of the bore. The cryostat
is simulated by beam-angle-dependent filtration layers attenuat-
ing and scattering the treatment beam. Monaco is able to calculate
doses and optimize treatment plans for a patient geometry located
in a magnetic field. For each patient four different step-and-shoot
IMRT treatment plans were prepared on the peak-exhale phase:
two each for the ITV + 5 mm or MTV + 5 mm target volume; each
either with or without a 1.5 T magnetic field oriented in the supe-
rior–inferior patient direction. In order to keep all plans as compa-
rable as possible nine equidistant beams were used in all cases and
each plan was normalized to deliver 54 Gy in 3 fractions to 95% of
the respective PTV. Additionally, we aimed to deliver a similar
maximum target dose. The treatment plans fulfilled the organ-at-
risk constraints of the RTOG 1021 guideline in almost all cases.
In two patients, in which the tumor was attached directly to the
pleural wall, the constraints to the skin and ribs were violated
and in one patient the R50% dose spillage constraint to the entire
patient was slightly exceeded. These guideline violations occurred
independently of the used planning strategy or presence of mag-
netic field. All treatment plans were reviewed by an experienced
radiation oncologist and would have been accepted for clinical
delivery at our institution based on the planned dose distributions.
Simulated dose delivery and dose accumulation

Delivery of the treatment plans was simulated inMonaco by cal-
culating the dose distribution of each plan for all 10 4DCT phases.
Plans were calculated using Monaco’s build-in Monte Carlo does
engine based on work by Hissoiny et al. with a statistical uncer-
tainty of 2% on a dose grid of 0.25 � 0.25 � 0.25 cm3 [22,23]. For
the conventional, non-tracked treatments, the isocenter and
treatment field apertures were kept unchanged. For the tracked
deliveries, the treatment plans were exported and post-processed
in our in-house MLC tumor tracking software [12]. All segments
were deformed according to the beams-eye-view target translation
in each 4DCT phase and resnapped to the MLC grid to account for
the finite MLC leaf width [24]. The resulting 10 treatment plans
were reimported into Monaco and the dose was calculated for each
phase.

Afterward, the dose distributions were transferred to RaySta-
tion. One tenth of the dose simulated to each phase was accumu-
lated on the peak-exhale phase. The resulting dose distributions
were used for the further evaluation. Dose accumulation was based
on direct dose mapping and RayStation’s hybrid DIR aided by the
manually delineated patient and lung contours. Although deform-
able dose accumulation and validation methods for its accuracy are
still being heavily researched [25,26], we believe that visual
inspection of the deformation vector fields with regard to their
physical plausibility and the use of a single 4DCT scan allowed
for confident deployment of this methodology.
Evaluation and statistical tools

The effect of the magnetic field was evaluated by comparing the
simulated dose distributions delivered without a magnetic field to
the ones delivered with a 1.5 T magnetic field. This was done for
conventional treatments as well as tracked deliveries. By compar-
ing the conventional dose distributions to the tracked ones, the
dosimetric effect of MLC tumor tracking was investigated.

Due to the treatment plan optimizer having to solve a different
optimization problem dependent on the PTV definition and
magnetic field strength, the four treatment plans per patient could
differ with regard to beam weights and fluence shapes. Therefore,
we refrained from comparing the plans on a voxel-by-voxel basis.
Instead, the differences in a number of dose–volume metrics as
well as the integral deposited energy in the patient were evaluated.
The integral deposited energy was calculated by summing over all
voxels and multiplying the mass density of each voxel with the
corresponding dose and voxel volume. The density grid was
derived from the CT numbers and interpolated to the dose grid.
Primary endpoints being tested were the differences in the dose
to 98% of the GTV, dose to 2% of the skin volume, mean lung dose
and the integral deposited energy. These endpoints were selected
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a priori as they were expected to be strongly influenced by a mag-
netic field or tumor tracking. Statistical significance of the differ-
ences was evaluated using a two-sided paired t-test after
verifying that the differences were normally distributed using Lil-
liefors test [27]. For the primary endpoints, a significance level of
p = 0.0125 was chosen by performing a Bonferroni correction for
multiple testing for a significance level of p = 0.05 [28]. Differences
in several other dose–volume metrics were evaluated in an
exploratory analysis without correcting for multiple testing with
a significance level of p = 0.05.
Fig. 2. Transversal CT slice of a lung cancer patient. Overlaid are either (A) the
simulated dose accumulated on the reference 4DCT phase with a 1.5 T magnetic
field present, (B) the delivered dose without a magnetic field and (C) the difference
(A - B) between those two distributions. The GTV is contoured in dark green and the
ITV + 5 mm is contoured in light green.
Results

Influence of the magnetic field

The presence of the 1.5 T magnetic field caused significant
changes in several investigated dose-volume metrics, especially
those featuring air-tissue-interfaces (see Fig. 1). Most prominently,
the dose to 2% of the skin volume increased significantly for treat-
ments with as well as without MLC tracking. Dose to 98% of the
GTV decreased in conventional deliveries and significantly
decreased in tracked deliveries, while the mean lung dose slightly
decreased. The integral deposited energy varied over all 36 plans
(mean: 36.5 J, range: 19.9–62.2 J), but the magnetic field did not
have a systematic effect on it. The exploratory analysis found a sig-
nificant increase in the mean skin dose due to the magnetic field.
The remaining dose-volume metrics did not show any significant
differences. It is important to note that despite all of these effects,
the GTV was covered by the prescribed dose in all 36 simulated
dose deliveries. Furthermore, there were no substantial violations
of normal tissue constraints, that did not already occur in the
planned dose distributions (see section Treatment planning).

An example, which highlights the observed effects, is shown in
Fig. 2. At air-tissue-interfaces in the lung as well as in the skin of
the patient returning electrons cause local hot spots. For this case,
the dose to 2% of the skin increased from 7.4 Gy to 9.2 Gy and the
mean lung dose increased from 4.2 Gy to 4.3 Gy in the presence of
the magnetic field. Even though both these increases are among
the highest observed in all patients, the absolute values for both
metrics are about average and substantially smaller than the
inter-patient variability. Averaged over all patients the dose to
Fig. 1. Differences in the investigated dose–volume metrics and integral deposited ene
simulated either without tumor tracking (conventional: 1.5 T–0 T) or with MLC tumor t
bands inside mark the median. The average values are represented by the crosses and the
are extrapolated from one fraction to the entire treatment.
2% of the skin is 8.7 Gy (range: 5.8–11.1 Gy) and the mean lung
dose is 4.7 Gy (range: 3.5–6.2 Gy). The long ‘‘stripes” of locally
increased or decreased dose along the beam paths are partly
rgy due to the presence of a 1.5 T magnetic field. The compared treatments were
racking (tracked: 1.5 T–0 T). The boxes mark the first and third quartile, while the
standard deviations by the whiskers. Outliers are denoted by the circles. All values
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caused by the inverse treatment plan optimizer creating differently
weighted and shaped segments depending on the optimization
problem.
Effect of MLC tumor tracking

Tracked deliveries featured significant decreases in the dose to
2% of the skin volume, mean lung dose and integral deposited
energy, while the dose to 98% of the GTV remained similar com-
pared to conventional deliveries (see Fig. 3). Furthermore, the
exploratory analysis found the dose to 2% of the great vessels
and mean skin dose to decrease significantly. The magnitude of
the differences is similar for treatments delivered at 1.5 T and
0 T. The differences are all most likely caused by the larger PTV
for conventional treatments compared to tracked deliveries in
cases of target motion.

Fig. 4 presents the dose distributions delivered at 1.5 T for the
case with the largest observed peak-to-peak tumor motion of
14.1 mm. This results in the ITV + 5 mm being 44% larger than
the MTV + 5 mm (22.9 versus 15.8 cc). In this case, tracking was
able to reduce the mean lung dose by 0.8 Gy and the integral
deposited energy by 6.4 J while maintaining the tumor dose. Both
differences were the largest among all investigated cases. The
strong correlation between the decrease in the mean lung dose
and integral deposited energy and the observed peak-to-peak
tumor motion is shown in Fig. 5.
Discussion

This study has found that considering the effect of the magnetic
field during the treatment planning stage allows to conduct clini-
cally acceptable lung SBRT treatments with an MR-linac. The
1.5 T magnetic field did not inhibit the ability to generate treat-
ment plans fulfilling the planning goals set by the RTOG 1021
guideline. Still, the presence of a magnetic field caused systematic
differences in the dose exposure of the tumor and organs-at-risk.
Most prominently, the skin dose increased with the magnetic field
present. This and the observed reduction in lung dose are caused
by electrons returning to the air-tissue-interface they were ejected
from due to the Lorentz force. Additionally, a decrease in the dose
level covering the GTV was found, although it received more than
the intended dose in all investigated cases. Differences in the dose
Fig. 3. Differences in the investigated dose–volume metrics and integral deposited ene
simulated either without a magnetic field (0 T: tracked–conventional) or with a magnet
to other organs-at-risk were strongly dependant on the individual
patient geometry and no general trends were found. All of these
differences are small compared to the magnitude of inter-patient
heterogeneity and are expected to only have a very minor clinical
impact.

The ability of adequate planning to partially compensate for the
effect of a magnetic field was also reported by Raaijmakers et al.
[17]. They designed radiotherapy treatment plans in a magnetic
field for a prostate, larynx and oropharynx cancer patient and
found a slight increase in skin dose to be the most prominent
effect. Van Heijst et al. also found an increase in skin dose while
investigating the effect of a magnetic field on radiotherapy of
breast tumors in 10 patients [29]. However, they were able to
reduce this increase by using an accelerated partial breast irradia-
tion approach instead of whole breast irradiation. Two studies
investigated the effect of magnetic fields on radiotherapy of lung
tumors [15,16]. Kirkby et al. reported severe dose distortions in
lung dose and a reduction in PTV coverage while evaluating the
effect of a magnetic field in one lung patient. Yang et al. also
warned of dose distortions at air-tissue-interfaces after investigat-
ing the effect of a magnetic field on the dose delivered with rota-
tional therapy for single prostate, head-and-neck and lung
patients. Our study has found similar dose distortions, although
of substantially smaller magnitude. This is probably because nei-
ther Kirkby et al. nor Yang et al. considered the magnetic field at
the stage of treatment plan optimization. Kirkby et al. focussed
on the effect of different magnetic field strengths and orientations.
Our study only investigated the effect of a 1.5 T magnetic field ori-
ented along the superior–inferior patient axis as has been realized
in the MR-linac prototype at University Medical Centre Utrecht [1].
This case was found to be one of the most challenging ones in the
study by Kirkby et al. In our study, the observed local dose hot
spots at air-tissue-interfaces did not conflict with any clinical plan-
ning goals. Still, treatment plan evaluation metrics more sensitive
to the occurrence of these hot spots might be needed to evaluate
the quality of treatment plans designed for delivery in the presence
of a magnetic field.

Additionally, our study compared treatments with real-time
MLC tumor tracking to conventional deliveries. Tumor tracking
was shown to be able to maintain dose coverage of the GTV while
reducing the integral deposited energy in the patient. Less depos-
ited energy usually led to a decrease in dose to organs-at-risk,
mainly the skin and normal lung tissue. The ability of real-time
rgy due to real-time MLC tumor tracking. The compared dose distributions were
ic field (1.5 T: tracked–conventional).



Fig. 4. Coronal CT slice of a lung cancer patient. Overlaid are either (A) the simulated delivered dose accumulated on the reference 4DCT phase deploying MLC tumor tracking
and a MTV target definition approach at 1.5 T, (B) the delivered dose using the conventional, non-tracked ITV approach at 1.5 T and (C) the difference (A - B) between those
two distributions. The GTV is contoured in dark green, while the MTV + 5 mm is contoured in light green and the ITV + 5 mm in yellow.

Fig. 5. Graph presenting the differences in the (A) mean lung dose and (B) integral deposited energy due to tumor tracking dependent on the peak-to-peak tumor motion.
Each data point denotes one patient case and the lines represent linear regression fits to the data.
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tumor tracking to decrease dose exposure of healthy tissue was not
inhibited by the magnetic field. This was the main interest of this
study when comparing tracked deliveries to conventional ones,
rather than an extensive investigation of the benefits of MLC tumor
tracking. Localization errors and their effect on MLC tracking were
not considered in this study. Furthermore, the deployed methodol-
ogy used a single 4DCT scan to both design treatment plans and
simulate the delivery. This disregards anatomical changes over
the course of the treatment or even a single fraction, such as base-
line shifts or setup errors. It is palpable that tracked treatments
would be able to more reliably achieve target dose coverage in
the presence of these changes compared to conventional deliveries.
The advantages of tracking might be increased even further by
implementing a more advanced form of MLC tumor tracking. For
example, MLC tumor tracking may be able to compensate for
tumor deformation and rotation [30]. Moreover, a perceived
advantage of real-time tumor tracking is the increased confidence
that the dose is accurately delivered. This might encourage a
reduction of treatment margins, which could lead to an additional
reduction of the dose to healthy tissue [31]. In this study the PTV
expansion margin was set to 5 mm for both conventional and
tracked deliveries.

In summary, this study has evaluated the feasibility of treating
lung cancer patients with SBRT with an MR-linac. When account-
ing for the 1.5 T magnetic field during treatment planning, we were
able to design and simulate the delivery of clinically acceptable
treatments. Furthermore, it was found that the ability of real-
time tumor tracking to decrease dose exposure of healthy tissue
was not inhibited by the magnetic field.
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