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Running head: DISTINCT TEMPORAL AND SPATIAL ENSEMBLE CODING 1 

Abstract 1 

Our brains can extract a summary representation of the facial characteristics provided by 2 

a group of faces. To date, there has been a lack of clarity as to what calculations the brain is 3 

actually performing during this ensemble perception. For example, does ensemble processing 4 

average the fiducial points (e.g., distance between the eyes, width of the mouth) and surface 5 

characteristics (e.g., skin tone) of a set of faces in a fashion that produces what we call a ‘morph 6 

average’ face from the group? Or does ensemble perception extract a general ‘gist average’ of the 7 

face set (e.g., these faces are unattractive)? Here, we take advantage of the fact that the ‘morph 8 

average’ face derived from a group of faces is more attractive than the ‘gist average’. If ensemble 9 

perception is performing morph averaging, then the adaptation aftereffects elicited by a morphed 10 

average face from a group should be equivalent to those elicited by the group. By contrast, if 11 

ensemble perception reflects gist averaging, then the aftereffects produced by the group should 12 

be distinct from those elicited by the more attractive morphed average face. In support of the 13 

morph averaging hypothesis, we show that the adaptation aftereffects derived via temporal 14 

ensemble perception of a group of faces are equal to those produced by the group’s morphed 15 

average face. Moreover, these effects increase as a linear function of increasing attractiveness in 16 

the underlying group. We also reveal that spatial ensemble processing is not equal to temporal 17 

ensemble processing, but instead reflects the ‘gist’ attractiveness of the group of faces; e.g., these 18 

faces are unattractive. Finally, we show that gist averaging of a spatially presented group of faces 19 

is abolished when a temporal manipulation is additionally employed; under these circumstances, 20 

morph averaging becomes apparent again. In summary, we have shown for the first time that 21 

temporal and spatial ensemble statistics reflect qualitatively different perceptual calculations.  22 
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Introduction 24 

When we are presented with an array of stimuli in a scene, our brains involuntarily 25 

extract the ensemble statistics of the information that they convey (Alvarez, 2011; Haberman & 26 

Whitney, 2007, 2012; Whitney & Yamanashi Leib, 2017). For example, we can accurately report 27 

the mean emotion from a group of emotional faces (Haberman & Whitney, 2007, 2009; Whitney 28 

& Yamanashi Leib, 2017; Wolfe, Kosovicheva, Leib, Wood, & Whitney, 2015; Ying & Xu, 2017). 29 

Such averaging is considered to be a type of ensemble statistics (Alvarez, 2011; Ariely, 2001; 30 

Haberman, Brady, & Alvarez, 2015; Haberman & Whitney, 2007, 2009, 2012; Whitney & 31 

Yamanashi Leib, 2017; Ying & Xu, 2017), and can occur both spatially (i.e., multiple faces 32 

presented at once in a scene; e.g., Haberman & Whitney, 2007, 2009; Ying, Burns, Lin, & Xu, 33 

2019) and temporally (i.e., different faces presented one at a time in rapid succession; e.g., 34 

Haberman, Harp, & Whitney 2009; Ying & Xu, 2017).  35 

Despite researchers widely describing ensemble statistics as extracting the gist of a scene, 36 

it is still far from clear what this ‘gist’ represents (Alvarez, 2011; Whitney & Yamanashi Leib, 37 

2017). For example, does ensemble coding extract a general representation of the group’s mean 38 

characteristics, whereby the faces are summarized via what we call ‘gist averaging’; e.g., the 39 

mean attractiveness of these unattractive faces is unattractive? Alternatively, does the brain 40 

calculate the fiducial points for each face (e.g., distance between eyes, width of the lips) with 41 

their surface characteristics (e.g., the redness of the cheeks), and then average them together to 42 

create a new mean face derived from this information? We call this latter form of ensemble 43 

coding ‘morph averaging’ due to the fact that it is very similar to how specialist computer 44 

morphing software creates an average face from a group of faces (Debruine & Tiddeman, 2017, 45 

Tiddeman, Burt, & Perrett, 2001). 46 
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Remarkably to date, there has been no clear evidence to support either the gist or morph 47 

averaging accounts of ensemble coding. Here, we tested these potential hypotheses by taking 48 

advantage of the well-established fact that a computer-generated average face, created by 49 

averaging the fiducial points and surface characteristics of a group of faces, is generally more 50 

attractive than the individual faces from which the average is comprised (DeBruine, Jones, Unger, 51 

& Little, 2007; Galton, 1878; Perrett, May, & Yoshikawa, 1994; Valentine, Darling, & Donnelly, 52 

2004). This effect has been documented from the dawn of modern psychology, with Galton 53 

(1878) relaying that averaging leads to ‘…in every instance, a decided improvement of beauty’ 54 

(Valentine et al., 2004). By requiring participants to perceive facial attractiveness in a temporal 55 

ensemble fashion, we can clearly test for the first time whether the morph average (i.e., the 56 

ensemble statistics of the group is equivalent to the morphed average face, such that a group of 57 

unattractive faces should no longer be perceived as unattractive) or the gist average (i.e., 58 

ensemble perception of the group should be less attractive than the morph average, such that a 59 

group of unattractive faces remains unattractive) hypothesis of ensemble coding is correct. 60 

We therefore adapted participants to a group of faces presented one at a time in rapid 61 

serial visual presentation (RSVP; Potter, 1976). We chose an adaptation paradigm instead of a 62 

direct rating approach as adaptation is a powerful method that can detect perceptual effects even 63 

when explicit ratings are unable to (Liu, Montaser-Kouhsari, & Xu, 2014). After adapting to a 64 

face for a few seconds, the facial characteristics of the adapting face appear less apparent in 65 

subsequently viewed faces (Leopold, O'Toole, Vetter, & Blanz, 2001; Luo, Burns, & Xu, 2017; 66 

Rhodes & Jeffery, 2006; Webster, Kaping, Mizokami, & Duhamel, 2004; Webster & MacLeod, 67 

2011; Xu, Dayan, Lipkin, & Qian, 2008; Ying & Xu, 2017); thus, adapting to an attractive face 68 

will lead to the subsequently viewed face as being less attractive; a powerful visual illusion 69 
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known as an attractiveness adaptation aftereffect (Pegors, Mattar, Bryan, & Epstein, 2015; 70 

Rhodes, Jeffery, Watson, Clifford, & Nakayama, 2003; Ying et al., 2019). The magnitudes of 71 

these adaptation aftereffects reflect the strength of different attributes present in the adapting 72 

face; i.e., an extremely attractive face will produce larger aftereffects than a face that is only 73 

moderately attractive (e.g., Webster et al., 2004; Ying et al., 2019). In our first experiment, we 74 

therefore compared the adaptation aftereffects produced by a group of RSVP faces, versus those 75 

elicited by their computer-generated, morph average: if they are indistinguishable from one 76 

another, then it would suggest that ensemble statistics is not a simple extraction of the group’s 77 

gist (e.g., these faces are unattractive), but instead stems from a process that is consistent with 78 

morph averaging the fiducial points and surface aspects of the faces together. By contrast, if our 79 

gist averaging hypothesis is correct, the computer-generated morph average face should produce 80 

adaptation aftereffects that are distinct from the RSVP streams. This is because the computer-81 

generated morph average face is invariably more attractive than the underlying group it is 82 

comprised of (DeBruine et al., 2007; Perrett et al., 1994; Valentine et al., 2004).  83 

 84 

Experiment 1: Temporal ensemble statistics represent morph averaging 85 

In our first experiment, we directly tested our morph versus gist averaging hypotheses by 86 

comparing the adaptation aftereffects produced by an RSVP stream of faces to the morphed 87 

average face derived from their group. If ensemble coding represents the morph average, then we 88 

should observe (a) similar and correlated aftereffects between the RSVP face stream and its 89 

computer-generated morph average, and (b) since this morph average will be more attractive 90 

than the individual faces in the group, the unattractive face stream may fail to generate 91 

aftereffects in the direction that we would expect from those typically induced by unattractive 92 
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faces (e.g., the faces may produce no aftereffects, or even make faces presented after them seem 93 

less attractive). On the other hand, if the ensemble coding represents gist averaging, then the 94 

unattractive face stream should generate a significant aftereffect (e.g., faces presented after the 95 

stream should appear more attractive relative to no adaptation baseline) since the gist average of 96 

an unattractive face stream is still considered to be unattractive.  97 

 98 

Experiment 1: Methods 99 

Participants 100 

Twenty-nine participants (14 Females; Mean Age: 22.03) with normal or corrected-to-101 

normal vision were recruited from Nanyang Technological University. We aimed to recruit 30 102 

participants; however, one dropped out during the experiment and was not replaced, thus leaving 103 

us with only 29 participants. We selected this sample size based upon previous face 104 

attractiveness adaptation work (n = 30 in Pegors et al, 2015). Written informed consent was 105 

provided by participants in all four experiments beforehand. This study was approved by the 106 

Institutional Review Board (IRB) at Nanyang Technological University, Singapore, in 107 

accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) 108 

for experiments involving human participants.  109 

 110 

Apparatus 111 

Visual stimuli were presented on a 17-inch Philips CRT monitor (refresh rate 85 Hz, 112 

spatial resolution 1024 × 768 pixels; comparison between CRT and LCD monitor can be found 113 

in Zhang et al., 2018). The monitor was controlled by an iMac Intel Core i3 computer running 114 



DISTINCT TEMPORAL AND SPATIAL ENSEMBLE CODING 6 

Matlab R2010a (Mathworks, MA, USA) via Psychophysics Toolbox (Brainard, 1997; Pelli, 115 

1997). The experiment was conducted in a dimly lit room. During the experiment, participants 116 

rested their heads on a chin rest 75 cm in front of the monitor. Each pixel subtended 0.024
°
 on 117 

the screen.  118 

 119 

Visual Stimuli 120 

Thirty-Five Chinese female faces were chosen from the N-FEE database (Yap, Chan & 121 

Christopoulos, 2016). Due to copyright restrictions we are not allowed to publicly publish these 122 

images, so we have used faces from the KDEF database for illustrative purposes (Lundqvist, 123 

Flykt, & Öhman, 1998). In this study, we only selected portrait pictures from 35 female Chinese 124 

Singaporeans with neutral expressions. All face images were grey scaled and masked so that only 125 

the facial region of each face was visible to the participants. The luminance of the face images 126 

was equalized via SHINE toolbox (Willenbockel et al., 2010). Every participant rated the 127 

attractiveness of the 35 faces at least two weeks before the main experiment in Experiment 1 128 

(adapted from Rhodes & Jeffery, 2006; 1 for most unattractive and 7 for most attractive). Prior to 129 

rating, participants were exposed to all of the faces, each for 400ms in a randomized order, in 130 

order to gauge the range of attractiveness in the faces before rating each face. Each face was 131 

rated four times, with the mean rating for each face ranging between 2.67 and 5.00 (M = 3.53, 132 

SD = 1.31). Inter-rater reliability was high (Cronbach’s alpha = .98). The adapting stimuli were 133 

selected from the four faces rated as most attractive and the four that were least attractive.  134 

The test faces included one of the most attractive and one of the most unattractive faces 135 

from the originally rated 35 faces (excluding the adaptors), and a further five faces that were 136 

produced by morphing these two faces in equally incremental steps between them (thus giving us 137 
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7 attractiveness units ranging from the original unattractive face through to the original attractive 138 

face) via Webmorph (Debruine & Tiddeman, 2017). Therefore, there are seven test faces in total. 139 

To minimize low-level adaptation as per prior research (Burns et al., 2017; Rhodes et al., 2003; 140 

Ying & Xu, 2017; Zhao & Chubb, 2001), the adapting stimuli were displayed at 3.20
°
 × 4.03

°
, 141 

which was roughly 133% of the size of the test stimuli. The adapting stimuli and the test stimuli 142 

were always presented at the same side of the central fixation cross within one trial, and their 143 

centers were roughly 3.8
°
 away from the central fixation cross (159 pixels). Our reason for 144 

presenting the faces in the periphery was because adaptation aftereffects have been found to be 145 

greater in the visual periphery compared to the fovea (Bachy & Zaidi, 2014; Chen, Chen, Gao, 146 

Yang, & Yan, 2015; Ying & Xu, 2017). Similar to Haberman, Lee, and Whitney (2015), we are 147 

aware that the ‘attractiveness unit’ is arbitrary, and we do not mean that the (perceived) 148 

attractiveness differences between the testing faces are strictly linear. The ‘attractiveness unit’ 149 

merely represents the relative differences between these faces. 150 

 151 

Procedure 152 

Participants completed five blocks: baseline, RSVP unattractive, RSVP attractive, 153 

computer-generated average unattractive morph, and computer-generated average attractive 154 

morph. In the baseline condition, participants simply rated the test faces, which were presented 155 

for 400 ms, as attractive or unattractive. Each test face was presented 10 times at random giving 156 

a total of 70 trials in each block. The same test face sampling occurred in the attractive RSVP 157 

block, but this time participants viewed an RSVP stream of the four attractive adapting faces 158 

prior to viewing each test face. The temporal frequency of the RSVP sequence was 42.5 Hz, with 159 

each face displayed for 23.5 ms per face frame (with no interval between two face frames, the 160 
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same as Ying & Xu, 2017). Thus, each adapting face was presented 40 times, in a random order, 161 

during the 3.764 s adaptation phase (23.5 ms × 4 faces × 40 repetitions). Figure 1 displays the 162 

trial sequence. This method was repeated for the unattractive RSVP block, except the RSVP 163 

stream comprised the unattractive adaptors. The same process occurred for the attractive 164 

morphed average block, except during adaptation when participants were simply presented with 165 

a single face that was created by morphing all of the four attractive adaptors’ visual properties 166 

together. The same was true for the unattractive morphed average block, except the unattractive 167 

adaptors were used to create its adapting face morph. The blocks were presented in a random 168 

order, with instructions given beforehand. Participants were given breaks that were roughly equal 169 

in duration to an experimental block to disperse any carryover effects. Participants practiced for 170 

5-10 trials before participating in each of the experiments reported here.  171 

 172 

Figure 1. Example trial sequence from the RSVP adaptation condition (the demonstrated faces are 173 

AF01NES and AF34NES from the KDEF database). Participants fixated on the cross at all times. After 1.494 s, the 174 

RSVP of the faces appeared onscreen for 3.764 s. After a short interval (0.506 s), the test face appeared for 0.4 s. 175 

Then a beep sound prompted participants to judge the target face by pressing the ‘A’ button as attractive, or the ‘S’ 176 

button as unattractive.  177 

 178 

In each trial, the test stimulus presented was one of the seven test faces selected at 179 

random. After that, a 50 ms beep sound prompted for participants to respond. Participants had to 180 
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press the “A” or “S” key to express whether they found the test faces “attractive” or “unattractive” 181 

respectively. Such two-alternative forced choice (2-AFC) methods have been commonly used in 182 

adaptation experiments (e.g., Fox & Barton, 2007; Webster et al., 2004; Xu, Dayan, Lipkin, & 183 

Qian, 2008). After the participant responded in each trial, the trial would terminate, thus 184 

commencing the next trial. No feedback was given throughout. Within each block there were 70 185 

trials, which comprised a presentation of each of the 7 test faces 10 times in a random sequence.  186 

 187 

Analysis 188 

Participants’ responses were sorted into proportions of ‘attractive’ responses to each test 189 

stimulus per adaptation condition. A psychometric curve was created with the x-axis indexing the 190 

test stimuli and the y-axis plotting the fractions of ‘attractive’ responses. Subsequently, the 191 

psychometric curves were fitted with a sigmoidal function f(x) = 1/ [1 + e
-a(x-b

)], where a/4 is the 192 

slope and b provides the test-stimulus parameter corresponding to 50% of the psychometric 193 

function, the point of subjective equality (PSE). We measured the adaptation aftereffects by 194 

comparing the difference between the PSEs of the adapting conditions and the baseline condition. 195 

Any subsidiary pairwise comparisons after the analysis of variance (ANOVA) were Bonferroni 196 

corrected. Note that goodness of fit was evaluated by coefficient of determination (R
2
 = 1 197 

indicates the perfect fit). The mean goodness of fit (R
2
) for all experiments was > 0.89, 198 

indicating that the predicted lines fitted the observed data well. 199 

To confirm that any non-significant results truly supported the null hypothesis, we used 200 

Bayes Factors to analyze the data (Dienes, 2014; Rouder, Speckman, Sun, Morey, & Iverson, 201 

2009) in addition to the traditional Frequentist analyses. In brief, Bayes Factor utilizes the 202 

observed evidence for either the null or alternative hypothesis, with this weight of evidence 203 
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realized as a ratio between the likelihoods of the hypotheses. For instance, ‘BF01 = 3’ suggests 204 

that the observed data is 3 times more likely to fit the null-hypothesis compared to the alternative 205 

hypothesis. Generally, BF01 > 3 is suggested to provide evidence for the null hypothesis. All 206 

statistical analyses were conducted in JASP 0.8.6 (JASP team, 2018), R 3.4.3 (R Core Team, 207 

Vienna, Austria), Matlab R2017a (Mathworks, MA, USA) and SPSS Statistics 22 (IBM, NY, 208 

USA). 209 

 210 

Experiment 1: Results and Discussion 211 

The results from all the participants judging the facial attractiveness of the test faces 212 

under various conditions are shown in Figure 2A. We plotted the fraction of attractive responses 213 

as a function of the proportion of attractiveness of the test faces. The black (solid line with filled 214 

squares) psychometric curve is the baseline condition without adaptation. After adapting to the 215 

most attractive RSVP face stream, the participants judged the test faces as unattractive more 216 

frequently than baseline, and the psychometric curve (blue dashed line with open diamonds, 217 

RSVPa) shifted to the right. This is the standard facial-attractiveness aftereffect (Hsu & Young, 218 

2004; Webster et al., 2004). The same finding occurred after adapting to the morphed average of 219 

this face stream (light blue solid line with filled diamonds, Statica). Curiously, after adapting to 220 

the most unattractive face stream (red dotted line with circles, RSPVu) or its morphed average 221 

(magenta dashed-dotted line with filled circles, Staticu), there were no adaptation aftereffects 222 

observed relative to baseline.  223 

To determine the presence of adaptation aftereffects in our experiment, we performed 224 

paired t-tests between the baseline PSE and the PSEs of the adaptation conditions (Figure 2B). 225 
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As expected, both the attractive RSVP and morph average conditions produced significant 226 

aftereffects (both ps < .001), with participants reporting the test faces as unattractive more 227 

frequently in the two attractive conditions relative to the no adaptation baseline. Surprisingly, 228 

neither of the unattractive conditions produced any aftereffects (both ps > .62). Bayesian t-tests 229 

provided further support for the null hypothesis (RSVPu: BF01 = 4.52; Staticu: BF01 = 5.06): the 230 

unattractive conditions did not generate significant aftereffects relative to baseline. Participants 231 

did not seem to be processing either set of unattractive adaptors as unattractive. These findings 232 

contradict the outcome predicted by the gist averaging hypothesis, for if this hypothesis had been 233 

correct, then the unattractive RSVP group should have displayed aftereffects that shifted the 234 

psychometric curve in the opposite direction to those found in our attractive conditions (i.e., 235 

negative relative to baseline, where test faces were rated as attractive more frequently after 236 

adaptation).  237 

To test whether temporal ensemble perception was indistinguishable from the computer-238 

generated morph average, we performed a two-way repeated-measures ANOVA on the PSE 239 

shifts relative to baseline with factors of Attractiveness (attractive vs. unattractive) and Adaptor 240 

(RSVP vs. morph average). While there was a significant main effect of Attractiveness (F(1, 28) 241 

= 49.55, p < .001, ηp
2
 = .64) due to the attractive conditions producing larger aftereffects than the 242 

unattractive conditions, there was no significant main effect of Adaptor (F(1, 28) = 0.001, p = .99, 243 

ηp
2
 < .001) nor any interaction (F(1, 28) = 0.46, p = .50, ηp

2
 = .016). Bayesian t-tests comparing 244 

the attractive RSVP condition versus the attractive morph average (BF01 = 4.57), and the 245 

unattractive RSVP versus the unattractive morph average (BF01 = 4.50), provided further 246 

evidence for the null hypothesis. This confirms that the RSVP streams were processed by our 247 

participants in a similar way to their morph averages. Further support for this came from the fact 248 
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that the aftereffects from attractive (r = .65, p < .001; blue open diamonds with dashed line in 249 

Figure 2C) and unattractive (r = .43, p = .019; red full circles with solid line) RSVP streams were 250 

correlated with their computer-generated morphed average face counterparts.  251 

 252 
 253 

Figure 2. The RSVP and computer-generated morph average aftereffects (Experiment 1). (A) The psychometric 254 

functions of all participants averaged together. Error bars indicate the standard error of the mean. (B) Summary of 255 

all participants’ results. For each condition, the adaptation aftereffect measured by PSE shift relative to baseline and 256 

the SEMs were plotted. The p-value shown for each condition in the figure was calculated using paired t-tests. 257 

Noticeably, a positive adaptation aftereffect measured by PSE shift indicates the target faces were perceived as less 258 

attractive than during baseline. The following figures adopt the same statistical analyses. (C) The relationship 259 

between the RSVP conditions and the paired morph average conditions. Each dot represents data from one 260 

participant: blue open diamond for the attractive conditions, and red filled circle for the unattractive conditions.  261 
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 262 

We found that adapting to an RSVP stream and its computer-generated morphed average face led 263 

to comparable, and correlated, facial attractiveness aftereffects. While these findings replicate 264 

prior work that showed similar effects for facial emotion (Ying & Xu, 2017), our results clarify 265 

what characteristics of a face are extracted in order to produce temporal ensemble perception. 266 

For example, the lack of differences between the morphed average faces and their RSVP groups 267 

suggest that morph, rather than gist, averaging occurs during temporal ensemble coding. If gist 268 

averaging had been occurring, then adapting to the unattractive face stream should have induced 269 

aftereffects where the viewer rated subsequently presented test faces as attractive more often than 270 

in the baseline. We did not observe this effect here with our unattractive RSVP group, instead, 271 

these faces produced no aftereffects, with aftereffects actually comparable to their morphed 272 

average counterpart. However, we do not think that this finding indicates that these faces were 273 

not processed at all during adaptation. We believe that the data simply fits with the hypothesis 274 

that the participants were morph averaging these faces together so that the group of unattractive 275 

faces were processed as more attractive (i.e., roughly equal to baseline levels) than what they 276 

were (i.e., unattractive). A similar lack of differences was found between the aftereffects 277 

produced by the attractive group and its morphed average face. To our knowledge, this is the first 278 

time that the morph averaging hypothesis of ensemble perception has been demonstrated as 279 

having empirical support over the gist hypothesis.  280 

 281 

  282 
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Experiment 2: Temporal ensemble coding is driven by the underlying 283 

mean attractiveness of the group 284 

In Experiment 1, adapting to unattractive RSVP faces produced no significant adaptation 285 

aftereffects. We do not believe that this was due our participants not processing the unattractive 286 

faces. Instead, we posit that participants simply processed this face stream as more attractive than 287 

the gist attractiveness of the individual faces in the group (i.e., unattractive). If this is the case, 288 

then adding in a new mixed (‘MIX’) condition, comprised of attractive and unattractive faces, 289 

should induce aftereffects somewhere in between those observed for the attractive and 290 

unattractive conditions in Experiment 1. Moreover, the magnitudes of these aftereffects across all 291 

conditions should also be associated with the underlying mean attractiveness of the individual 292 

faces, thereby demonstrating that our visual system adapts to the RSVP of face streams in a 293 

linear fashion that is consistent with the principles of ensemble coding.   294 

 295 

Experiment 2: Methods 296 

Twenty new participants (10 Females; Mean Age: 22.84) participated in this experiment. 297 

We selected this sample size for two reasons: firstly, a power analysis based upon the effect size 298 

of Experiment 1 (ηp
2 

= .65; using G*Power 3.1 software; Faul, Erdfelder, Buchner, & Lang, 299 

2009), with α-value at .05, and power (1 – β) at .80 indicated that we needed at least 7 300 

participants. However, considering the differences in experimental design, we chose to greatly 301 

expand this number to roughly triple that sample size. 302 

 We used the same adaptation procedure as in Experiment 1, except there were three 303 

adaptation conditions in addition to the baseline: RSVP of attractive faces (‘ATT’, four attractive 304 
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faces), RSVP of mixed faces (‘MIX’, four attractive faces and four unattractive faces), and RSVP 305 

of unattractive faces (‘UNA’, four unattractive faces) at a reduced adaptation duration (1.88 s in 306 

Exp 2 vs. 3.764 s in Exp1). Note that in the ‘MIX’ condition the adapting RSVP streams were 307 

presented for the same duration as the ‘ATT’ and ‘UNA’ conditions (see Experiment 1, Methods 308 

section). Thus, in the ‘MIX’ condition, each adapting face was only presented 10 times during 309 

the adaptation phase, so that the adapting duration is equated across different conditions. Also, 310 

each test face in each block appeared 12 times in a random order. Additionally, after the main 311 

experiment, we asked the participants to rate the mean attractiveness of the RSVP sequences on a 312 

7-point scale (1 for most unattractive and 7 for most attractive), with each stream presented 10 313 

times. These RSVP sequences were randomly presented for the same duration (42.5 Hz; 80 314 

frames × 23.5 ms; in total 1.88 s) as that during the adapting stage in the main experiment. 315 

Since our data consisted of repeated measures from three observations (i.e., an 316 

observation from each of the unattractive, mixed, and attractive conditions) for each participant, 317 

we used the repeated measures correlation analysis (Bakdash & Marusich, 2017) to quantify the 318 

strength of the relationship between the attractiveness ratings of the faces and the adaptation 319 

aftereffects produced by those faces. It uses the analysis of covariance (ANCOVA) to 320 

‘statistically adjust for inter-participant variability’, thus ‘estimates the common regression slope’ 321 

(generating the same slope), in other words, the association shared among individuals. 322 

 323 

Experiment 2: Results and Discussion 324 

The mean adaptation results from all participants are shown in Figure 6A. Similar to 325 

Experiment 1, the RSVP of the Attractive condition generated a significant rightward shift of the 326 
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psychometric curve, while the RSVP of the Unattractive condition failed to produce a shift. 327 

Interestingly, the RSVP of the Mixed condition generated a smaller yet substantial rightward 328 

shift. Relative to baseline, significant aftereffects were generated by the RSVPs of attractive 329 

(Figure 3A, M = .22, SEM = .004; t(19) = 5.85, p < .001) and mixed (M = .12,  SEM = .002; t(19) 330 

= 5.06, p < .001) but not the unattractive (M = .01, SEM = .02; t(19) = .47, p = .64) faces. 331 

Bayesian analyses suggested that the lack of aftereffects in the unattractive condition was in 332 

favor of the null hypothesis (BF01 = 3.89); i.e., no adaptation aftereffect relative to baseline. 333 

Participants therefore rated the test faces as less attractive after adapting to the attractive and 334 

mixed RSVP streams (Figure 3C). Moreover, we replicated Experiment 1 in showing no 335 

aftereffects in the unattractive group, suggesting participants were not processing the RSVP 336 

stream as unattractive. An ANOVA yielded significant differences among all three adaptation 337 

conditions (with Greenhouse-Geisser correction, F(1.55, 29.36) = 33.22, p < .001, ηp
2
 = .64). 338 

Subsidiary Bonferroni corrected comparisons showed significant differences between the 339 

attractive and unattractive (t(19) = 6.73, p < .001), attractive and mixed (t(19) = 3.88, p = . 003), 340 

and mixed and unattractive (t(19) = 5.86, p < .001) conditions. 341 

As the ‘Mixed’ condition contains the adapting stimuli from the ‘Attractive’ and the 342 

‘Unattractive’ conditions, it should in theory yield an aftereffect which is roughly equal to the 343 

mean of those of two conditions. We therefore compared the adaptation aftereffects of the ‘MIX’ 344 

condition with the average of the aftereffects from those two conditions. The paired samples t-345 

test suggested that there was no significant difference between this pair (t(19) = .28, p = . 78, 346 

BF01 = 4.15). Therefore, the ‘Mixed’ condition closely resembles the midpoint of the ‘Attractive’ 347 

and ‘Unattractive’ conditions. This indicates that the participants perceived the attractiveness of 348 

the adapting stream in a graded fashion consistent with ensemble coding.  349 
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An ANOVA on the participants’ attractiveness ratings of the RSVP streams showed they 350 

were also significantly different from one another (F(2, 38) = 112.55, p < .001, ηp
2
 = .86). 351 

Further comparisons indicated that participants judged the RSVP of the attractive faces (M = 352 

4.89, SEM = .013) as the most attractive, followed by the RSVP of mixed faces (M = 3.98, SEM 353 

= .016), and the RSVP of unattractive faces (M = 2.65, SEM = .017) were judged as least 354 

attractive (all ps < .001). Further repeated measures correlation analyses (Bakdash & Marusich, 355 

2017) revealed a significant positive correlation between the attractiveness ratings of the RSVP 356 

streams and the adaptation aftereffects (Figure 3D, r = .71, p < .001, 95% CI [0.50, 0.84]); 357 

indicating that the brain performs temporal ensemble statistics in a linear fashion from the 358 

underlying attractiveness of the stream.  359 

 360 
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 361 

Figure 3. Adaptation aftereffects to temporally presented RSVPs (Experiment 2) and spatially presented 362 

faces (Experiment 3). (A) The psychometric functions of Experiment 2’s participants averaged together. ‘Error bars 363 

indicate the standard error of the mean. (B) The psychometric functions of Experiment 3’s participants averaged 364 

together. (C) Combined summary of all participants’ results from Experiment 2 and Experiment 3. The hatched bars 365 

indicate Temporal Presentation RSVP conditions (Experiment 2), and the solid bars represent Spatial Presentation 366 

conditions (Experiment 3). (D) The adaptation aftereffect as a function of the attractiveness rating of the RSVP of 367 

faces in Experiment 2. (E) The adaptation aftereffect as a function of the mean attractiveness rating of the adapting 368 
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faces in Experiment 3. In both (D) & (E), each color represents the data from one individual participant. The 369 

horizontal dashed black auxiliary line indicates no adaptation aftereffect. 370 

 371 

In Experiment 2, we replicated the results from Experiment 1, but further illustrated the 372 

linear fashion in which the brain morph averages the attractiveness of a temporal stream of 373 

attractive, unattractive and mixed faces. These results therefore lend further support to our morph 374 

averaging hypothesis for temporally presented face groups. Interestingly, although the ensemble 375 

representation of the unattractive face RSVP stream was not processed as unattractive, as 376 

reflected by the lack of aftereffects, the direct ratings of these unattractive RSVPs did appear to 377 

be perceived as unattractive to some extent (M = 2.65 out of a 1-to-7 scale, see the above Results 378 

section for more details). Previous work has shown that adaptation aftereffects can yield insights 379 

into perceptual operations even in the absence of differences in direct ratings (Liu et al., 2014). 380 

Thus, adaptation and direct rating may reflect two distinct visual processes: perceptual vs. 381 

cognitive process.  382 

 383 

Experiment 3: Spatial ensemble statistics represent the gist 384 

Across Experiments 1 and 2 we have shown temporal ensemble perception extracts the 385 

morph average. However, is this also true for spatial ensemble coding when a group of faces is 386 

presented simultaneously? We previously showed that the adaptation aftereffects produced by 387 

spatially presented faces (i.e., a group presented onscreen at the same time) generated aftereffects 388 

in the direction that we would expect if the gist averaging hypothesis was true (Ying et al., 389 

2019); i.e., the unattractive faces made subsequently presented faces appear more attractive, and 390 

adapting to a mix of unattractive and attractive faces produced no aftereffects relative to the 391 
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baseline no adaptation condition. This result is at odds with the morph averaging that we have 392 

observed from our RSVP paradigms in Experiments 1 and 2. We therefore wanted to replicate 393 

this gist averaging in a spatial adaptation paradigm by using the same adapting faces from 394 

Experiment 2. By using identical adapting faces, we could directly compare the aftereffects 395 

derived from temporal and spatial ensemble coding. If the aftereffects between Experiment 2 and 396 

3 are indistinguishable, then it would imply that a similar mechanism is at work both temporally 397 

and spatially; i.e., the faces are being morph averaged from their fiducial points and surface 398 

characteristics. However, if the aftereffects between the two experiments are different, then it 399 

would provide the first evidence that temporal and spatial ensemble statistics may reflect 400 

qualitatively distinct calculations. For example, if gist averaging occurs during spatial ensemble 401 

coding, then we would expect an overall negative shift for all of the adapting face conditions 402 

relative to those effects observed in Experiment 2: e.g., the unattractive group will now elicit 403 

negative aftereffects, the mixed group will be no different from baseline, and the attractive group 404 

will elicit smaller positive aftereffects than the attractive group in Experiment 2. We test these 405 

hypotheses in Experiment 3.  406 

 407 

Experiment 3: Methods 408 

Eighteen new participants (11 Females; Mean Age: 22.78) participated in this 409 

experiment; we had initially aimed for 20, but two dropped out during the experiment. Here we 410 

used the same adapting faces and blocks from Experiment 2, except the mixed condition only 411 

contained two attractive and two unattractive faces so that there were only four faces in the 412 

adapting group. During adaptation, the four adapting faces were presented around the central 413 
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fixation cross (Figure 4), with the test face presented at the center of the screen. The center-414 

center difference between each adaptor and the central fixation cross is around 3
°
 (124.5 pixels). 415 

This spatial layout is similar to our recent study on ensemble coding of facial attractiveness 416 

(Ying et al., 2019). The trial sequence was otherwise similar to Experiments 1 and 2. After the 417 

experiment we asked the participants to rate the attractiveness of the eight individual adapting 418 

faces to compute an average from the ratings, thereby reflecting the gist average.  419 

 420 

Figure 4. Example trial sequence from a spatial adaptation condition (the demonstrated faces are AF01NES, 421 

AF05NES, AF06NES, AF07NES and AF34NES from KDEF database). Participants fixated on the cross at all times. 422 

After 0.506 s, four adapting faces simultaneously appeared for 2 s. After a 0.4 s interval, the test face appeared on 423 

the screen for 0.2 s. Then a beep sound indicated participants should judge the attractiveness of the target face by 424 

pressing the ‘A’ button for attractive, or the ‘S’ button for unattractive. Experimental parameters for all conditions 425 

and experiments are detailed in the Methods section. 426 

 427 

Experiment 3: Results and Discussion 428 

The mean adaptation results from all participants are shown in the psychometric curves in 429 

Figure 3B. Unlike Experiments 1 and 2, the Unattractive condition generated a leftward shift 430 

away from baseline; this direction is what we would expect if our participants were adapting to 431 

the unattractive group as though they were unattractive (Ying et al., 2019). Such differences 432 
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relative to Experiment 2 were also observed for the Mixed condition, which failed to generate 433 

any significant aftereffects. We statistically examined what aftereffects our spatial conditions 434 

produced relative to the baseline condition. Significant aftereffects were generated by both the 435 

attractive (Figure 3C, M = .093, SEM = .016; t(17) = 5.91, p < .001) and unattractive (M = -.083,  436 

SEM = .020; t(17) = -4.20, p = .001) groups. Test faces were rated as unattractive following 437 

adaptation to the attractive group, and conversely rated as attractive more frequently following 438 

the unattractive groups adaptation, all relative to baseline. By contrast, the mixed faces evoked 439 

no aftereffects (M = .028, SEM = .019; t(17) = 1.48, p = .16).  440 

An ANOVA on the three adaptation conditions was significant (F(2, 34) = 50.42, p < .001, 441 

ηp
2
 = .75). Bonferroni corrected comparisons showed that the attractive and unattractive (t(17) = 442 

8.69, p < .001), attractive and mixed (t(17) = 3.56, p = . 007), and mixed and unattractive (t(17) = 443 

7.93, p < .001) conditions were all significantly different from one another. As in the case of 444 

Experiment 2, there was a significant positive repeated measures correlation (r = .87, p < .001, 445 

95% CI [0.75, 0.93]; Figure 3E) between the mean attractiveness ratings of the groups of 446 

adapting faces and their aftereffects. 447 

A side by side comparison between Experiment 2 and 3 (Figure 3C), shows qualitative 448 

differences between the aftereffects of our RSVP experiments and the spatial aftereffects here; 449 

note that these differences are apparent despite us using the same adapting faces between the 450 

experiments. To confirm these differences statistically, a mixed model ANOVA on the adaptation 451 

aftereffects was performed, with a between subject factor of Group (Experiment 2: Temporal vs. 452 

Experiment 3: Spatial) and a within subject factor of Attractiveness (unattractive vs. mixed vs. 453 

attractive). We found a significant main effect of Attractiveness (with Greenhouse-Geisser 454 

correction, F(1.60, 57.46) = 73.30, p < .001, ηp
2
 = .67) due to differences between the adaptation 455 
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aftereffects (i.e., attractive > mixed > unattractive, Figure 3A, all ps < .001). Similarly, there was 456 

also a significant main effect of Group (F(1,36) = 12.19, p = .001, ηp
2
 = .25) due to the 457 

Experiment 2 Temporal group exhibiting more positive aftereffects in contrast to our current 458 

Spatial group (Exp 2 M = .12 vs. Exp 3 M = .012). Finally, the Group × Attractiveness was not 459 

significant (with Greenhouse-Geisser correction, F(1.59, 57.36) = .80, p = .45, ηp
2
 = .02). These 460 

findings therefore indicate that while our participants were producing aftereffects that were 461 

comparably distinct between attractiveness conditions, the actual perceptual outcomes as 462 

reflected by adaptation aftereffects, appeared qualitatively different between Experiments 2 and 463 

3.  464 

To test whether the above differences in adaptation were also present in the direct ratings, 465 

we performed a mixed model ANOVA on the mean attractiveness ratings of the adapting faces 466 

with a between subjects factor of Group (Temporal Experiment 2 vs. Spatial Experiment 3) and a 467 

within subjects factor of Attractiveness (unattractive vs. mixed vs. attractive). There was a 468 

significant main effect of Attractiveness (F(2, 72) = 302.74, p < .001, ηp
2
 = .89) due to the faces 469 

being rated significantly different from one another (i.e., attractive > mixed > unattractive, all ps 470 

< .001), but no main effect of Group (F(1, 36) = .025, p = .88, ηp
2
 = .001; Bayesian analyses 471 

provided further support for the null hypothesis; BF01 = 4.08). There was, however, a significant 472 

interaction between the effects of Attractiveness and Group (F(2, 72) = 3.64, p = .031, ηp
2
 473 

= .092). Despite this interaction, there were no significant between group differences in the mean 474 

attractiveness ratings of the adapting faces for each of the attractiveness blocks (attractive p = .11, 475 

mixed p = .82, unattractive p = .43). Thus, presenting the adapting faces spatially or temporally 476 

(RSVP) did not change participants’ ratings of the adapting faces’ attractiveness. These results 477 

suggest that the qualitative differences in adaptation aftereffects derived from temporal and 478 
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spatial ensemble coding are not due to differences in the perceptions of the adapting faces’ 479 

attractiveness.  480 

While there were some minor differences between the adaptation durations in 481 

Experiments 2 & 3, we do not believe that these differences affect our interpretations of the data. 482 

Research into the time course of face adaptation has revealed (e.g., facial identity: Rhodes, 483 

Jeffery, Clifford, & Leopold, 2007; facial expression: Burton, Jeffery, Bonner, & Rhodes, 2016) 484 

that adaptation aftereffects follow the classic time course pattern of ‘logarithmic build-up’ and 485 

‘exponential decay’. This means that the adaptation aftereffect can be altered quantitatively by 486 

some changes in time (like the adaptation duration), but not qualitatively. We recently found that 487 

facial expression adaptation aftereffect can be generated after as brief as 34 ms of adaptation 488 

(Sou & Xu, 2019). Thus, the qualitative differences in aftereffects from temporal and spatial 489 

ensemble coding here are likely to be maintained, even if the adaptation duration was matched 490 

across conditions. To confirm this fact though, we ran a new experiment.  491 

 492 

Experiment 4: Spatial-Temporal ensemble statistics induce morph 493 

averaging 494 

While the attractive and unattractive temporal face streams generated asymmetrical 495 

aftereffects in Experiment 2 (i.e., the attractive group generated aftereffects, but the unattractive 496 

faces did not), the spatial face groups generated symmetrical aftereffects in Experiment 3 (Figure 497 

3C, attractive group generated aftereffects, as too did the unattractive group). While there are 498 

other minor differences between the procedures across Experiments 2 and 3, such as the 499 

locations of the RSVP versus the static spatial adaptor locations, we do not believe these are 500 
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causing the qualitative differences we observe between temporal and spatial ensemble coding. 501 

Instead, we believe that these effects reflect the fact that temporal and spatial ensemble coding 502 

computations are distinctly different. However, to be certain of this belief, we decided to run 503 

Experiment 3 again, except this time, we added an RSVP manipulation to the adapting faces. 504 

This meant that we could directly compare ‘pure’ spatial ensemble coding (i.e., that derived from 505 

the static groups of faces in Experiment 3) versus temporal ensemble coding (i.e., that derived 506 

from the RSVP of faces presented at the same four locations as the static spatial groups).  507 

Furthermore, we had participants directly rate the mean attractiveness of the groups of 508 

adapting faces in both the spatial and temporal conditions so that we could assess whether the 509 

direct rating and the adaptation measures of ensemble coding were similar across presentation 510 

methods. 511 

 512 

Experiment 4: Methods 513 

Twenty new participants (13 Females; Mean Age: 21.75) participated in this experiment. 514 

We matched the sample size of the current experiment with the previous two experiments. The 515 

general design was adapted from Experiments 2 and 3. The trial sequence was similar to that of 516 

Experiment 3. During adaptation, there were four RSVP face streams simultaneously presented 517 

surrounding the central fixation cross (Figure 5). The spatial locations of the four streams were 518 

identical to those in Experiment 3 (3
°
 away from the fixation cross). Thus, we name this 519 

manipulation the Spatial-Temporal condition. Within each RSVP stream, the faces were 520 

presented at 42.5 Hz (the same as Experiments 1 and 2) for 1.98 s (84 faces in total, and each 521 

presented for 23.5 ms; the adaptation duration is almost identical to Experiment 3: 2 s). All of the 522 
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faces presented within the Spatial-Temporal streams were the faces used in Experiment 3, with 523 

‘ATT’, ‘MIX’, and ‘UNA’ conditions. These faces were presented in a pseudo-random order, so 524 

that within each frame, the four faces presented onscreen together were always of different 525 

identities. 526 

 527 

Figure 5. The Spatial-Temporal adaptor for Experiment 4 (the demonstrated faces are AF01NES, 528 

AF05NES, AF06NES, AF07NES and AF34NES from KDEF database). The adaptor is four simultaneous streams of 529 

RSVPs of faces (42.5 Hz, the same as Experiment 2), presented for 1.98 s in total. The spatial relationships of the 530 

four streams (3
°
 away from the central fixation cross) were the same as that in Experiment 3. Thus, the Spatial-531 

Temporal adaptor is a combination of the adaptation manipulations from Experiments 2 and 3. 532 

 533 

In addition to our adaptation paradigm, we also measured ensemble perception of facial 534 

attractiveness via direct ratings. We asked our participants to rate the attractiveness of each 535 

adapting face, and these adapting faces as a group in the spatial-temporal configuration on a 7-536 

point scale. Each group of faces was presented for 1 s. We chose 1 s for direct rating because it 537 

has been shown that this is sufficiently long for the participants to make judgments on 538 

attractiveness (e.g., Ying et al., 2019). Moreover, to clarify whether the computer-generated 539 

averaged face is indeed more attractive than the mean of its components, we also asked 540 
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participants to rate the computer-generated averaged face of the attractive and unattractive 541 

groups. The order of the stimuli in direct rating tasks was randomized for each participant.  542 

 543 

Experiment 4: Results and Discussion 544 

The mean adaptation results from all participants are summarized in Figure 6A. After 545 

exposure to the attractive Spatial-Temporal faces (blue dotted line), there was a rightward shift in 546 

the psychometric curve relative to baseline, indicating that the ensemble representation of this 547 

group is attractive. A similar shift, albeit smaller in magnitude, is observed in the ‘MIX’ 548 

condition (magenta dash-dotted line). By contrast, the ‘UNA’ condition (red dotted line) failed to 549 

generate a significant shift from the baseline condition. This finding replicates our temporal 550 

ensemble coding results in Experiment 2, and appears qualitatively different from the aftereffects 551 

induced via spatial adaptation in Experiment 3.  552 

Overall, significant aftereffects were generated by the Spatial-Temporal attractive (Figure 553 

6B, M = .16, SEM = .029; t(19) = 5.57, p < .001) and mixed (M = .068,  SEM = .022; t(19) = 2.97, 554 

p = .008) but not the unattractive (M = -.013, SEM = .02; t(19) = -.85, p = .41) faces. Bayesian 555 

analyses suggested that the lack of aftereffects in the unattractive Spatial-Temporal condition 556 

was in favor of the null hypothesis (BF01 = 3.122). Thus, the observed data indicates that there 557 

was indeed no adaptation aftereffect in the unattractive Spatial-Temporal condition. To compare 558 

the three adaptation conditions, we conducted an ANOVA and found significant differences 559 

among all three adaptation conditions (with Greenhouse-Geisser correction, F(1.47,27.98) = 560 

26.36, p < .001, ηp
2
 = .58). Subsidiary Bonferroni corrected comparisons showed significant 561 

differences between the attractive and unattractive (t(19) = 5.85, p < .001), attractive and mixed 562 
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(t(19) = 3.92, p = . 003), and mixed and unattractive (t(19) = 4.82, p < .001) conditions. These 563 

findings confirm our hypothesis that temporal ensemble coding induces morph averaging, 564 

whereas ensemble coding for spatially presented face groups (i.e., Experiment 3) results in gist 565 

averaging.   566 

 567 

Figure 6. Spatial-Temporal adaptation aftereffects (Experiment 4). (A) The psychometric functions of all 568 

participants averaged together. Error bar indicates the SEM. (B) Summary of all 20 participants’ results from 569 

Experiment 4. (C) The adaptation aftereffect as a function of the reported mean attractiveness of the adapting faces 570 

in Experiment 4. Each color represents the data from one individual participant.  571 

 572 
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To directly test whether the RSVP spatial manipulation we employed here was similar to 573 

the effects observed from the RSVP streams in Experiment 2, we ran an ANOVA on the 574 

aftereffects of Experiments 2 and 4, with Group (Exp 2, Exp 4) being the between subject factor, 575 

and Attractiveness (ATT, MIX, UNA) being the within subject factor. The results showed that 576 

there were no significant differences between these two experiments (F(1, 38) = 2.20, p = .15, 577 

ηp
2
 = .055), nor any interaction between them and the attractiveness of the faces (with 578 

Greenhouse-Geisser correction, F(1.51, 57.47) = .65, p = .49, ηp
2
 = .017). Instead, there was only 579 

a significant difference among the three attractiveness conditions (with Greenhouse-Geisser 580 

correction, F(1.51, 57.47) = 59.51, p < .001, ηp
2
 = .61). Thus, the aftereffects induced by a single 581 

RSVP stream (Experiment 2) and multiple RSVP streams (Experiment 4) were comparable, and 582 

reflective of morph averaging. 583 

To confirm that temporal and spatial ensemble coding reflect distinct perceptual 584 

outcomes, we compared the aftereffects between Experiments 3 and 4 using the same ANOVA. 585 

While we did not find any significant interaction between the experiments and the attractiveness 586 

of the faces (with Greenhouse-Geisser correction, F(1.56, 55.97) = .58, p = .52, ηp
2
 = .016), there 587 

was a significant difference among three attractiveness conditions (with Greenhouse-Geisser 588 

correction, F(1.56, 55.97) = 66.85, p < .001, ηp
2
 = .65). However, in addition, there was also a 589 

significant difference between the two experiments (F(1, 36) = 6.07, p = .019, ηp
2
 = .14); the 590 

Spatial-Temporal aftereffects in Experiment 4 were more positive than those induced by the 591 

spatial group in Experiment 3. Taken together, the pattern of observed aftereffects in Spatial-592 

Temporal adaptation is more similar to temporal ensemble coding, than to the static spatial 593 

ensemble coding we observed in Experiment 3. In other words, the Spatial-Temporal ensemble is 594 

largely driven by morph averaging of the faces from the temporal streams.  595 
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To examine the attractiveness ratings of the adapting faces directly, we conducted an 596 

ANOVA on the participants’ attractiveness ratings of the Spatial-Temporal streams and found a 597 

significant difference among the three types of attractiveness adaptors (F(2, 38) = 47.72, p < .001, 598 

ηp
2
 = .72). Further comparisons revealed that participants rated the Spatial-Temporal streams of 599 

the attractive faces (M = 5.38, SEM = .015) as the most attractive, followed by the Spatial-600 

Temporal streams of mixed faces (M = 4.16, SEM = .015), with the Spatial-Temporal streams of 601 

unattractive faces (M = 3.20, SEM = .020) being rated as least attractive (all ps < .001). We 602 

further compared the direct ratings between Experiments 3 and 4 with a mixed-model ANOVA. 603 

There was a significant difference among the three attractiveness conditions, as expected (with 604 

Greenhouse-Geisser correction, F(1.43,51.30) = 169.33, p < .001, ηp
2
 = .83). Importantly, there 605 

was also a significant difference between the two experiments (F(1,36) = 4.42, p = .043, ηp
2
 606 

= .11); the spatial-temporal streams (Exp 4) were rated as more attractive than the ‘spatial group’ 607 

(Exp 3). Thus, both rating and adaptation aftereffects data suggest that spatial (Exp 3) and 608 

spatial-temporal (Exp 4) ensemble coding are distinct from each other. There was no significant 609 

interaction between the experiments and the attractiveness of the faces (with Greenhouse-Geisser 610 

correction, F(1.43,51.30) = 2.74, p = .09, ηp
2
 = .071).  611 

Why were there similar ratings between Experiments 2 and 3, but different ratings 612 

between Experiments 3 and 4? We believe the reason was in the tasks in rating. In Experiment 2, 613 

‘mean attractiveness’ was measured by participants rating the mean attractiveness of each RSVP 614 

stream; while in Experiment 3, the ‘gist/mean attractive’ was measured by the mean rating of 615 

individual adapting faces by another group of participants. By contrast, in Experiment 4, ‘mean 616 

attractiveness’ was measured by participants rating the mean attractiveness of Spatial-Temporal 617 
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streams. Due to these differences, future experiments on the comparisons on ratings in the same 618 

task should be conducted.  619 

Further repeated measures correlation analyses (Bakdash & Marusich, 2017) revealed a 620 

significant positive correlation between the attractiveness ratings of the Spatial-Temporal streams 621 

and the adaptation aftereffects (Figure 6C, r = .65, p < .001, 95% CI [0.42, 0.80]). This indicates 622 

that the observed attractiveness aftereffects were driven by the ensemble coding of the 623 

attractiveness of the adapting stimuli. 624 

To test whether the computer-generated averaged face was more attractive than its 625 

components, we compared the mean ratings of individual attractive (M = 4.35, SEM = .18) and 626 

unattractive (M = 1.92, SEM = .19) faces with their computer-generated average faces (attractive: 627 

M = 5.65, SEM = .19; unattractive: M = 2.59, SEM = .17) conditions. We found that in both the 628 

attractive (t(19) = 7.46, p < . 001) and unattractive (t(19) = 5.58, p < . 001) conditions, the 629 

computer-generated average faces were more attractive than their components. 630 

 631 

General Discussion 632 

We investigated the perceptual calculations performed during ensemble statistics across 633 

four experiments. Experiment 1 showed that RSVP streams and their paired computer-generated 634 

morphed averages led to comparable, and correlated, facial attractiveness aftereffects. 635 

Experiment 2 replicated the findings from Experiment 1, thereby further supporting the morph 636 

average hypothesis; i.e., no aftereffects in the unattractive condition, such that the unattractive 637 

group was perceived as more attractive than the gist of the group (i.e., these faces are 638 

unattractive), and positive aftereffects in the mixed condition. Moreover, in Experiment 2 we 639 
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found that aftereffects increased as a function of the underlying RSVP stream’s attractiveness, 640 

suggesting that temporal ensemble perception occurs in a linear fashion. In contrast to the first 641 

two experiments, however, Experiment 3 showed that spatial ensemble statistics favored the gist 642 

averaging hypothesis; i.e., no aftereffects in the mixed condition, and negative aftereffects in the 643 

unattractive condition. Combining the manipulations in Experiments 2 (temporal) and 3 (spatial) 644 

together, Experiment 4 showed that ensemble coding of a Spatial-Temporal presentation of faces 645 

is formed by morph averaging, and not the gist. This confirms that the observed differences 646 

between Experiments 2 and 3 were not driven by the minor differences in presentation formats, 647 

but by distinct ensemble coding operations. Taking all four experiments together, it is clear that 648 

temporal and spatial ensemble statistics stem from qualitatively different extraction processes.  649 

While a number of prior studies have examined spatial ensemble coding and temporal 650 

ensemble coding (Haberman et al., 2015; Haberman & Whitney, 2007, 2009; Whitney & Levi, 651 

2011; Whitney & Yamanashi Leib, 2017; Wolfe et al., 2015; Ying & Xu, 2017; Ying et al., 2019), 652 

no study to our knowledge has compared the effects of both. Moreover, even if researchers had 653 

compared the averaging of facial traits other than attractiveness (e.g., emotion) across these two 654 

presentation formats, it would have been highly unlikely that they would have observed 655 

differences between temporal and spatial ensemble coding anyway. This is because adapting to 656 

facial emotion, via either a morph or gist averaging process, would result in the same outcome 657 

(as illustrated in Figure 7A with hypothetical data). Here, we took advantage of the fact that 658 

averaging faces together from their morphed properties makes them more attractive (DeBruine et 659 

al., 2007; Leder, Goller, Forster, Schlageter, & Paul, 2017; Perrett et al., 1994; Valentine et al., 660 

2004; as illustrated in Figure 7B with hypothetical data). By doing so, we confirmed that there 661 
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are qualitative differences between how ensemble coding mechanisms extract distinct 662 

information across spatial and temporal presentations.  663 

 664 

Figure 7. The ‘morph averaging’ and ‘gist averaging’ hypotheses (the demonstrated faces are AF01NES, 665 

AF05NES, AF06NES and AF07NES from KDEF database; the digits are from hypothetical data only for 666 

demonstration purposes). (A) Ensemble coding for facial expressions: the ‘morph averaging’ and ‘gist averaging’ 667 

hypotheses predict the same perceptual outcome for emotion; i.e., happy intensity rating of 6.8. (B) Ensemble 668 

coding of facial attractiveness: the ‘morph averaged’ face is more attractive than the mean attractiveness of its 669 

individual component faces, with the averaged face not equal to the mean ‘judgments’ (i.e., attractiveness rating of 670 

3.8 versus 2).   671 

 672 

We should explicitly clarify to readers that the null results found in Experiments 1, 2 and 673 

4 (i.e., in the unattractiveness conditions) actually support our morph averaging hypothesis of 674 

temporal ensemble coding. These findings were not due to the unattractive faces not being 675 

unattractive enough to elicit negative aftereffects, nor are the lack of effects due to a lack of 676 

power. First, we used the very same stimuli in Experiments 2, 3, and 4, with the presentation 677 

methods being the largely the only difference among the 3 studies. The negative aftereffects 678 

generated by the unattractive condition in Experiment 3 shows that the unattractive group was 679 

processed by the participants as unattractive; i.e., the participants perceived the subsequently 680 
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presented faces as attractive (which replicates the results from Ying et al., 2019). In other words, 681 

the very same faces generated asymmetrical aftereffects when being presented temporally, but 682 

generated symmetrical aftereffects when presented spatially.  683 

This finding is at odds with the suggestion that the unattractive adapting faces in 684 

Experiments 1, 2, and 4 were simply insufficient in unattractiveness to elicit the aftereffects 685 

expected from an unattractive group. This point is further strengthened by the large effect size in 686 

the unattractive condition’s aftereffects in Experiment 3. Moreover, by analyzing the data via 687 

Bayes Factors (Dienes, 2014; Rouder et al., 2009), we found evidence supporting the null 688 

hypothesis (i.e., the unattractive RSVP faces are equivalent to baseline and their computer-689 

generated average face), thus countering any suggestion that the null effects across Experiments 690 

1, 2, and 4 were a result of low statistical power. Simply put, the current data strongly favors the 691 

notion that the RSVP streams of unattractive faces are perceived as neither attractive nor 692 

unattractive relative to participants’ baseline norms of attractiveness, and that this perceptual 693 

outcome was not due to these faces not being unattractive enough to elicit negative aftereffects. 694 

Instead, participants must have been averaging the unattractive RSVP stream in such a fashion 695 

that it made the faces be processed as more attractive than their underlying gist (i.e., unattractive). 696 

This was clarified by the fact that the aftereffects of the RSVP streams were equivalent to, and 697 

correlated with, their computer-generated averaged morph face counterparts.  698 

The qualitative differences between the adaptation aftereffects produced by RSVP 699 

streams and spatial presentations of faces likely reveal the hierarchical nature of the human face 700 

perception system (Bartolomeo, Vuilleumier, & Behrmann, 2015; Behrmann & Plaut, 2013; 701 

Duchaine & Yovel, 2015; Eimer, 2000; Gobbini & Haxby, 2007; Haxby, Hoffman, & Gobbini, 702 

2000, 2002; Haxby & Gobbini, 2012; Liu, Harris, & Kanwisher, 2002; Young & Bruce, 2011; 703 
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Zhao, Zhen, Liu, Song, & Liu, 2017). For example, extracting the morph averaging properties of 704 

a face arguably occurs at an earlier stage of encoding (Eimer, 2000; Gauthier et al., 2000; Grill-705 

Spector, Knouf, & Kanwisher, 2004; Kanwisher, McDermott, & Chun, 1997; Kanwisher & 706 

Yovel, 2006; Pitcher, Walsh, Yovel, & Duchaine, 2007) in comparison to when the brain can 707 

conceptually calculate the aspects of a face that make it unattractive (i.e., gist; O’Doherty et al., 708 

2003). If we consider the visual features processing as perceptual, and the assessment of 709 

attractiveness as cognitive, we therefore provide the first direct evidence for distinct ensemble 710 

processing of temporal and spatial stimuli such that ensemble coding for temporal stimuli occurs 711 

at a perceptual level, whereas ensemble coding for spatial stimuli occurs at a cognitive level. 712 

This spatial process may be based on ‘local support’ such that “data coming from spatially local 713 

components of the image tend to use parallel computations, rather than global or serial methods” 714 

(e.g., Firestone & Scholl, 2016; Pylyshyn, 1999; Dawson & Pylyshyn, 1988; Marr & Poggio, 715 

1979; Rosenfeld, Hummel, & Zucker, 1976). On the other hand, the refresh rate of the RSVP and 716 

spatial-temporal conditions in our experiments are really high. However, we are yet sure that 717 

whether the temporal (morph) averaging occurs before or after the attractiveness of the 718 

individual faces has been determined. We suspect that a new face norm is continuously being 719 

updated as each face is presented in the RSVP stream, and its information extracted. Only once 720 

this information has been extracted in the form of a new morphed face norm, can it then produce 721 

a conceptual appraisal (e.g., this group of unattractive faces’ information morphs together to then 722 

be judged as moderately attractive) that drives subsequent adaptation aftereffects. We anticipate 723 

future neuroimaging and electrophysiological work will confirm these distinct neural stages 724 

responsible for driving ensemble statistics derived from temporal versus spatial averaging.   725 

 726 
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Conclusions 727 

Researchers have long speculated as to the composition of the neural calculations 728 

performed during ensemble coding. We have shown for the first time that temporal ensemble 729 

statistics do not simply reflect the ‘gist’ of the attractiveness judgements attributed to a group of 730 

faces, but are instead extracted by morph averaging the group’s fiducial points and surface 731 

characteristics together. By contrast, spatial ensemble coding appears reflective of a gist 732 

averaging process in which the group’s general characteristics of attractiveness (e.g., this group 733 

is unattractive), can be maintained. This reveals two distinct levels of ensemble statistics that can 734 

occur for the same facial trait: the gist averaging we observed during static spatial ensemble 735 

coding, and the morph averaging for temporal ensemble coding. We anticipate that these results 736 

will help inform a broader theoretical framework to understand ensemble perception, but also 737 

enhance our knowledge of face processing and appraisal mechanisms.  738 
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