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Abstract. This paper investigates the dependence of functional portfolio gener-
ation, introduced by Fernholz (1999), on an extra finite variation process. The
framework of Karatzas and Ruf (2017) is used to formulate conditions on trad-
ing strategies to be strong arbitrage relative to the market over sufficiently large
time horizons. A mollification argument and Komlós theorem yield a general
class of potential arbitrage strategies. These theoretical results are comple-
mented by several empirical examples using data from the S&P 500 stocks.
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1. Introduction
E.R. Fernholz established Stochastic Portfolio Theory (SPT) to provide a theoretical

tool for applications in equity markets, and for analyzing portfolios with controlled be-
havior; see Fernholz (1999) and Fernholz and Karatzas (2009), for example. SPT studies
so called functionally generated portfolios. The value of a functionally generated portfo-
lio relative to the total market capitalization is merely a function, known as the so called
master formula, of the market weights. This formula does not involve stochastic integra-
tion or drifts, which makes the analysis very easy as the need for estimation is reduced.

One very interesting topic following up this construction is the study of relative arbi-
trage opportunities between functionally generated portfolios and the market portfolio.
Fernholz (1999, 2001, 2002) states conditions for such relative arbitrage to exist over suf-
ficiently large time horizons. To implement this relative arbitrage, trading strategies gen-
erated by suitable portfolio generating functions are required. Karatzas and Ruf (2017)
interpret portfolio generating functions as Lyapunov functions. More precisely, the super-
martingale property of the corresponding wealth processes after an appropriate change of
measures is utilized to study the performance of functionally generated trading strate-
gies. Relative arbitrage over arbitrary time horizons under appropriate conditions is also
studied by Fernholz et al. (2018).
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One offspring of portfolio generating functions is a generalized portfolio generating
function, which depends on an additional argument with continuous path and finite vari-
ation. This is inspired by the fact that in practice, people tend to take historical data, such
as past performance of stocks, or statistical estimates, into consideration when construct-
ing portfolios. Besides, this generalization provides additional flexibility in choosing
portfolio generating functions. Section 3.2 of Fernholz (2002) formulates the concept of
time-dependent generating functions, and presents the master formula under this situa-
tion. In the same framework, Strong (2014) shows an extension of the master formula to
portfolios generated by functions that also depend on the current state of some continuous
path process of finite variation. Also based on Fernholz’s structure, Schied et al. (2018)
provide a pathwise version of the relevant master formula. They also analyze examples
where the additional process is chosen to be the moving average of the market weights.
In a recent paper, Karatzas and Kim (2018) generalize the methodology developed by
Karatzas and Ruf (2017) in a pathwise, probability-free setting. They also generalize
portfolio generating functions with path-dependent functionals.

All the above mentioned papers (Fernholz (2002), Strong (2014), Schied et al. (2018),
and Karatzas and Kim (2018)) make assumptions on the smoothness of the portfolio gen-
erating function with respect to both the finite variation process and the market weights.
In this paper, we weaken these assumptions such that the choice for the portfolio gen-
erating function is less restricted. To this end, we use a mollification argument and the
Komlós theorem. Then we study several examples empirically, using data from the S&P
500 index.1

An outline of the paper is as follows. Section 2 specifies the market model and recalls
the definitions of trading strategies and relative arbitrage. Section 3 first gives the defini-
tions of regular functions and Lyapunov functions, and then presents sufficient conditions
for a function to be regular and Lyapunov, respectively. The appendix presents the proofs
of these results. Section 4 defines additive and multiplicative generation, and the cor-
responding trading strategies and wealth processes. Section 4 also gives conditions for
arbitrage relative to the market portfolio to exist. Section 5 describes the data involved
and the processing method to implement the empirical analysis. Section 6 contains sev-
eral examples of portfolio generating functions and discusses empirical results. Section 7
concludes.

2. Model setup

We fix a filtered probability space
(
Ω,F(∞),F(·),P

)
, where F (·) is right-continuous

and F(0) = {∅,Ω}, and write

∆d =

{
(x1, · · · , xd)′ ∈ [0, 1]d :

d∑
i=1

xi = 1

}
and ∆d

+ = ∆d ∩ (0, 1)d.

We consider an equity market with d ≥ 2 companies, where each company has al-
ways one share of stock outstanding. We denote the market weights process by µ(·) =

1As the constituent list of the stocks in the S&P 500 index changes over time, we avoid a survivorship bias by not restricting the
analysis to the current stocks in the S&P 500 index. Instead, we reconstruct the historical constituent list of the S&P 500 index and
adjust the portfolios appropriately when the constituent list changes.
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(
µ1(·), · · · , µd(·)

)′. Here, µi(·) is the market weight process of company i computed by
dividing the capitalization of company i by the total capitalization of all d companies in
the market, for all i ∈ {1, · · · , d}. We assume that µ(·) is ∆d-valued with µ(0) ∈ ∆d

+,
and that µi(·) is a continuous, non-negative semimartingale, for all i ∈ {1, · · · , d}.

To define a trading strategy for µ(·), let us consider a process ϑ(·) =
(
ϑ1(·), · · · , ϑd(·)

)′
in Rd, which is predictable and integrable with respect to µ(·). We denote the collection
of all such processes by L(µ).

For such a process ϑ(·) ∈ L(µ), we interpret ϑi(t) as the number of shares in the stock
of company i held at time t ≥ 0, for all i ∈ {1, · · · , d}. Then

V ϑ(·) =
d∑
i=1

ϑi(·)µi(·)

can be interpreted as the wealth process corresponding to ϑ(·).

Definition 1. (Trading strategies). A process ϕ(·) ∈ L(µ) is called a trading strategy if

V ϕ(·)− V ϕ(0) =

∫ ·
0

d∑
i=1

ϕi(t)dµi(t). �

Remark 1. To convert a predictable process ϑ(·) ∈ L(µ) into a trading strategy ϕ(·), we
adapt the measure of the “defect of self-financibility” of ϑ(·), introduced in Section 2 in
Karatzas and Ruf (2017) and defined as

Qϑ(·) = V ϑ(·)− V ϑ(0)−
∫ ·

0

d∑
i=1

ϑi(t)dµi(t). (1)

As a result, the process ϕ(·) with components

ϕi(·) = ϑi(·)−Qϑ(·) + C, i ∈ {1, · · · , d}, (2)

where C can be any real constant, is a trading strategy for µ(·).

Below, we shall analyze the performance of certain long-only portfolios, that is,
portfolios for which the trading strategies ϕ(·) of Definition 1 are nonnegative at any
time. Especially, we focus on studying the conditions for the existence of so called
relative arbitrage.

Definition 2. (Arbitrage relative to the market). A trading strategy ϕ(·) is said to be
relative arbitrage with respect to the market over a given time horizon [0, T ], for T ≥ 0,
if

V ϕ(·) ≥ 0 and V ϕ(0) = 1,

along with
P
[
V ϕ(T ) ≥ 1

]
= 1 and P

[
V ϕ(T ) > 1

]
> 0. (3)

If P
[
V ϕ(T ) > 1

]
= 1 holds, we say that the relative arbitrage is strong over [0, T ].

3



Remark 2. The trading strategy that invests in each asset in proportion to its relative
capitalization at all times has constant components 1 throughout [0, T ]. This strategy is
implemented in the so-called market portfolio. Hence, Definition 2 makes sense due to
the fact that the wealth process of the market portfolio at any time is given by

V (1,··· ,1)(·) =
d∑
i=1

µi(·) = 1.

Then relative arbitrage exists over a given time horizon [0, T ] when a non-negative wealth
process V ϕ(·) has the same initial wealth as the market portfolio, the probability for
V ϕ(T ) to be greater than the wealth of the market portfolio is strictly positive, and V ϕ(T )
is not lower than the wealth of the market portfolio.

In the following sections, we study portfolio generating functions that depend on some
Rm-valued continuous process of finite variation on [0, T ], for T ≥ 0 and some m ∈ N.
We use Λ(·) to denote such a process. This process allows for more flexibility in selecting
portfolio generating functions. To this end, letW be some open subset of Rm × Rd such
that

P
[(

Λ(t), µ(t)
)
∈ W , ∀ t ≥ 0

]
= 1. (4)

The following notations are introduced for the ranked market weights, which are stud-
ied in Theorem 2 and Example 3. For a vector x = (x1, · · · , xd)′ ∈ ∆d, denote its
corresponding ranked vector as x =

(
x(1), · · · , x(d)

)′, where

max
i∈{1,··· ,d}

xi = x(1) ≥ x(2) ≥ · · · ≥ x(d−1) ≥ x(d) = min
i∈{1,··· ,d}

xi

are the components of x in descending order. Denote

Wd =
{(
x(1), · · · , x(d)

)′ ∈ ∆d : 1 ≥ x(1) ≥ x(2) ≥ · · · ≥ x(d−1) ≥ x(d) ≥ 0
}

;

then the rank operator R : ∆d → Wd is a mapping such that R(x) = x. Moreover,
denote Wd

+ = Wd ∩ (0, 1)d.

The ranked market weights process µ(·) is given by

µ(·) = R
(
µ(·)

)
=
(
µ(1)(·), · · · , µ(d)(·)

)′
, (5)

which is itself a continuous, ∆d-valued semimartingale whenever µ(·) is a continuous,
∆d-valued semimartingale (see Theorem 2.2 in Banner and Ghomrasni (2008)). At last,
letW be some open subset of Rm × Rd such that

P
[(

Λ(t),µ(t)
)
∈W , ∀ t ≥ 0

]
= 1. (6)

To conclude this section, we introduce several notions that will be used in the following.
For a continuous function F , write F ∈ C∞ if F is infinitely differentiable. If F =
F (λ, x), write F ∈ C0,1 if F is differentiable with respect to the second argument and
∂F/∂x is jointly continuous; write F ∈ C1,2 if F is once differentiable with respect to the
first argument, twice differentiable with respect to the second arguments, and ∂F/∂λ and
∂2F/∂x2 are both jointly continuous. In addition, write ‖z‖2 = (

∑n
i=1 z

2
i )

1/2 to denote
the L2 norm of z = (z1, · · · , zn)′ ∈ Rn.
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3. Generalized regular and Lyapunov functions
In this section, we consider two classes of portfolio generating functions, regular and

Lyapunov functions, which are introduced in Karatzas and Ruf (2017). We generalize
these notions here to allow for the additional process Λ(·). To this end, recall the open set
W , in which

(
Λ(·), µ(·)

)
take values, from (4).

Definition 3. (Generalized regular function). A continuous function G : W → R is said
to be generalized regular for Λ(·) and µ(·) if

1. there exists a measurable function DG = (D1G, · · · , DdG)′ :W → Rd such that
the process ϑ(·) =

(
ϑ1(·), · · · ,ϑd(·)

)′ with components

ϑi(·) = DiG
(
Λ(·), µ(·)

)
, i ∈ {1, · · · , d}, (7)

is in L(µ); and
2. the continuous, adapted process

ΓG(·) = G
(
Λ(0), µ(0)

)
−G

(
Λ(·), µ(·)

)
+

∫ ·
0

d∑
i=1

ϑi(t)dµi(t) (8)

is of finite variation on the interval [0, T ], for all T ≥ 0.

Definition 4. (Generalized Lyapunov function). A generalized regular functionG :W →
R is said to be a generalized Lyapunov function for Λ(·) and µ(·) if, for some function
DG as in Definition 3, the finite variation process ΓG(·) of (8) is non-decreasing.

A Lyapunov function turns the semimartingale µ together with the finite variation pro-
cess Λ into a supermartingale under a related measure; also see Remark 3.4 in Karatzas
and Ruf (2017) for further explanations. In the following, we shall omit the terminology
“generalized” for simplicity.

In the next example, we discuss sufficient conditions for a smooth function to be
regular or Lyapunov.

Example 1. Consider a C1,2 function G : W → R. Setting ϑi(·) = ∂G/∂xi(Λ(·), µ(·))
and applying Itô’s formula yield that G is regular for Λ(·) and µ(·). Indeed, we get the
finite variation process

ΓG(·) =−
∫ ·

0

m∑
v=1

∂G

∂λv

(
Λ(t), µ(t)

)
dΛv(t)

− 1

2

d∑
i,j=1

∫ ·
0

∂2G

∂xi∂xj

(
Λ(t), µ(t)

)
d [µi, µj] (t).

(9)

Moreover, if the process ΓG(·) is non-decreasing, then G is not only a regular function,
but also a Lyapunov function for Λ(·) and µ(·). For instance, this holds if G is non-
decreasing in every dimension with respect to the first argument and Λ(·) is decreasing in
every dimension, and G is concave with respect to the second argument.
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Below we give sufficient conditions for a function G to be regular (Lyapunov). To this
end, recall the open setW from (4).

Theorem 1. For a continuous function G :W → R, consider the following conditions.

(ai) On any compact set V ⊂ W , there exists a constant L = L(V) ≥ 0 such that, for
all (λ1, x), (λ2, x) ∈ V ,

|G(λ1, x)−G(λ2, x)| ≤ L‖λ1 − λ2‖2.

(aii) G(·, x) is non-increasing, for fixed x, and Λ(·) is non-decreasing in every dimen-
sion.

(bi) G is differentiable in the second argument and ∂G/∂x is jointly continuous. More-
over, on any compact set V ⊂ W , there exists a constant L = L(V) ≥ 0 such that,
for all (λ, x1), (λ, x2) ∈ V ,∥∥∥∥∂G∂x (λ, x1)− ∂G

∂x
(λ, x2)

∥∥∥∥
2

≤ L‖x1 − x2‖2.

(bii) G(λ, ·) is concave, for fixed λ.

If one of the conditions (ai) or (aii) holds and one of the conditions (bi) or (bii) holds, G
is a regular function for Λ(·) and µ(·). Moreover, in the case that (aii) and (bii) hold, G
is Lyapunov.

The proof of Theorem 1 is given in the appendix. A generalized version of Itô’s formula
studied in Krylov (2009) is related but can only be applied in a Markovian setting.

Theorem 1 can be applied to functions not in C1,2, such as in Example 3. Another
choice of a non-C1,2 function G is the Gini function; see Example 6.1 in Karatzas and
Ruf (2017) for details.

Remark 3. Consider the special case where Λ(·) is set to be a constant λ. Then Theorem 1
generalizes Theorem 3.7(i) and (ii) in Karatzas and Ruf (2017). If Λ(·) is non-constant,
in contrast to Theorem 3.7 in Karatzas and Ruf (2017), even if G can be extended to a
continuous function concave in the second argument, G may not be Lyapunov. A coun-
terexample is given in Example 2. Therefore, for the generalized case, Theorem 3.7 in
Karatzas and Ruf (2017) cannot be applied, and instead we have to use modified condi-
tions such as given by Theorem 1.

Example 2. Assume that µ(·) ∈ ∆d with [µ1, µ1] (t) > 0, for all t > 0, and that

Λ(·) = γ

d∑
i=1

[µi, µi] (·),

where γ is a constant.

Define the concave quadratic function

G(λ, x) = λ−
d∑
i=1

x2
i , λ ∈ R, x ∈ ∆d.
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Then from (9) we have

ΓG(·) = −
∫ ·

0

dΛ(t) +
d∑
i=1

∫ ·
0

d [µi, µi] (t) = (1− γ)
d∑
i=1

[µi, µi] (·).

Observe that ΓG(·) is decreasing for γ > 1; hence G is not a Lyapunov function for Λ(·)
and µ(·), although it is concave in its second argument.

Define now G(λ, x) = −G(λ, x). Then we have ΓG(·) = −ΓG(·). Therefore, if γ > 1

holds, ΓG(·) is increasing; hence G is Lyapunov although convex in its second argument.

Recall the ranked market weights process µ(·) defined in (5) and the open set W from
(6).

Theorem 2. If a function G : W → R is regular for Λ(·) and µ(·) = R
(
µ(·)

)
, then the

composition G = G ◦R is regular for Λ(·) and µ(·).

To prove Theorem 2, we can apply the same techniques used in the proof of Theorem
3.8 in Karatzas and Ruf (2017), but now with the generalized form of the functionG; see
the appendix for details.

The following example concerns a function G which is not in C1,2.

Example 3. Assume that µ(·) ∈ ∆d
+ and consider the C1,2 function

G(λ,x) = −λ
d1∑
l=1

x(l) log x(l) + 1−
d2∑

l=d1+1

x2
(l), λ ∈ R, x ∈Wd

+,

where d1 and d2 are positive integers with d1 < d2 ≤ d. According to Example 1, G is
regular for Λ(·) and µ(·). In particular, the corresponding measurable function DG as in
Definition 3 can be chosen with components

DlG(λ,x) =


−λ log x(l) − λ, if l ∈ {1, · · · , d1}
−2x(l), if l ∈ {d1 + 1, · · · , d2}
0, otherwise

. (10)

In this case, Itô’s lemma yields

G
(
Λ(·),µ(·)

)
=G

(
Λ(0),µ(0)

)
+

∫ ·
0

d∑
l=1

DlG
(
Λ(t),µ(t)

)
dµ(l)(t)− ΓG(·)

−
∫ ·

0

d1∑
l=1

µ(l)(t) log µ(l)(t)dΛ(t)

(11)

with DlG given in (10) and

ΓG(·) =
1

2

∫ ·
0

d1∑
l=1

Λ(t)

µ(l)(t)
d
[
µ(l), µ(l)

]
(t) +

∫ ·
0

d2∑
l=d1+1

d
[
µ(l), µ(l)

]
(t). (12)
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Denote the number of components of x = (x1, · · · , xd)′ ∈ ∆d that coalesce at a given
rank l ∈ {1, · · · , d} by

Nl(x) =
d∑
i=1

1{xi=x(l)}.

Then by Theorem 2.3 in Banner and Ghomrasni (2008), the ranked market weights pro-
cess µ(·) has components

µ(l)(·) =µ(l)(0) +

∫ ·
0

d∑
i=1

1{µi(t)=µ(l)(t)}
Nl

(
µ(t)

) dµi(t) +
d∑

k=l+1

∫ ·
0

dΛ(l,k)(t)

Nl

(
µ(t)

)
−

l−1∑
k=1

∫ ·
0

dΛ(k,l)(t)

Nl

(
µ(t)

) , l ∈ {1, · · · , d},

(13)

where Λ(i,j)(·) with 1 ≤ i < j ≤ d is the local time process (refer to Section 6, Chapter 3
in Karatzas and Shreve (2012) for details) of the continuous semimartingale µ(i)(·) −
µ(j)(·) ≥ 0 at the origin.

By Theorem 2, the function

G(λ, x) = G
(
λ,R(x)

)
= −λ

d1∑
l=1

d∑
i=1

1{xi=x(l)}
Nl(x)

xi log xi + 1−
d2∑

l=d1+1

d∑
i=1

1{xi=x(l)}
Nl(x)

x2
i

is regular for Λ(·) and µ(·), sinceG is regular for Λ(·) and µ(·).

Now, let us assume that Λ(·) is of the form

Λ(·) = ξ ∧
(
ξ ∨ Λ′(·)

)
,

where ξ and ξ are two positive constants with ξ < ξ, and the process Λ′(·) is of finite
variation. Let G(λ′, x) = G

(
ξ ∧

(
ξ ∨ λ′

)
, x
)
, for all λ′ ∈ R and x ∈ ∆d

+. Then with
DlG and ΓG(·) given in (10) and (12), respectively, inserting (13) into (11) yields

G
(
Λ′(·), µ(·)

)
= G

(
Λ′(0), µ(0)

)
+

∫ ·
0

d∑
i=1

DiG
(
Λ′(t), µ(t)

)
dµi(t)− ΓG(·),

where

DiG(λ′, x) =
d∑
l=1

1{xi=x(l)}
Nl(x)

DlG
(
ξ ∧

(
ξ ∨ λ′

)
,R(x)

)
, i ∈ {1, · · · , d},

and

ΓG(·) =ΓG(·) +

∫ ·
0

d1∑
l=1

µ(l)(t) log µ(l)(t)1{ξ≤Λ′(t)≤ξ}dΛ′(t)

−
d−1∑
l=1

d∑
k=l+1

∫ ·
0

DlG
(
Λ(t),R(µ(t))

)
Nl

(
µ(t)

) dΛ(l,k)(t)

+
d∑
l=2

l−1∑
k=1

∫ ·
0

DlG
(
Λ(t),R(µ(t))

)
Nl

(
µ(t)

) dΛ(k,l)(t).

Observe that G is regular for Λ′(·) and µ(·), yet it is not in C1,2.
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4. Functional generation and relative arbitrage
In Karatzas and Ruf (2017), two types of functional generation, additive and multiplica-

tive generation, are constructed to study the properties of relative values of functionally
generated portfolios. In this section, we first discuss the generalized versions of these
functional generations and corresponding properties. Then we consider sufficient condi-
tions for strong arbitrage relative to the market to exist.

4.1. Additive generation
Recall the open setW from (4).

Definition 5. (Additive generation). For a function G : W → R, regular for Λ(·) and
µ(·), and the process ϑ(·) given in (7), the trading strategy ϕ(·) with components

ϕi(·) = ϑi(·)−Qϑ(·) + C, i ∈ {1, · · · , d},

in the manner of (2) and (1), and with the real constant

C = G
(
Λ(0), µ(0)

)
−

d∑
j=1

µj(0)DjG
(
Λ(0), µ(0)

)
, (14)

is said to be additively generated by the regular function G.

Proposition 1. The trading strategy ϕ(·), generated additively by a regular function G :
W → R, has components

ϕi(·) =DiG
(
Λ(·), µ(·)

)
+ ΓG(·) +G

(
Λ(·), µ(·)

)
−

d∑
j=1

µj(·)DjG
(
Λ(·), µ(·)

)
, (15)

for all i ∈ {1, · · · , d}. Moreover, the wealth process of ϕ(·) is given by

V ϕ(·) = G
(
Λ(·), µ(·)

)
+ ΓG(·). (16)

Proof. The proposition is proven exactly like Proposition 4.3 in Karatzas and Ruf (2017).

4.2. Multiplicative generation
Definition 6. (Multiplicative generation). For a function G : W → (0,∞), regular for
Λ(·) and µ(·), let the process ϑ(·) be given in (7) and assume that 1/G

(
Λ(·), µ(·)

)
is

locally bounded. Consider the process ϑ̃(·) ∈ L(µ) with components

ϑ̃i(·) = ϑi(·)× exp

(∫ ·
0

dΓG(t)

G
(
Λ(t), µ(t)

)) , i ∈ {1, · · · , d}. (17)

Then the trading strategy ψ(·) with components

ψi(·) = ϑ̃i(·)−Qϑ̃(·) + C, i ∈ {1, · · · , d},

in the manner of (2) and (1), and with C given in (14), is said to be multiplicatively
generated by the regular function G.
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Proposition 2. The trading strategyψ(·), generated multiplicatively by a regular function
G :W → (0,∞) with 1/G

(
Λ(·), µ(·)

)
locally bounded, has components

ψi(·) = V ψ(·)

(
1 +

DiG
(
Λ(·), µ(·)

)
−
∑d

j=1 µj(·)DjG
(
Λ(·), µ(·)

)
G
(
Λ(·), µ(·)

) )
, (18)

for all i ∈ {1, · · · , d}, where the wealth process of ψ(·) is given by

V ψ(·) = G
(
Λ(·), µ(·)

)
exp

(∫ ·
0

dΓG(t)

G
(
Λ(t), µ(t)

)) > 0. (19)

Proof. The same argument as in Proposition 4.8 in Karatzas and Ruf (2017) applies.

4.3. Sufficient conditions for arbitrage relative to the market

In Karatzas and Ruf (2017), Theorems 5.1 and 5.2 give sufficient conditions for strong
arbitrage relative to the market to exist for both additively and multiplicatively generated
portfolios, respectively. These results still hold for a regular / Lyapunov function G :
W → [0,∞) under specific conditions.

To be consistent with the conditions of arbitrage relative to the market in (3), we
normalize G

(
Λ(0), µ(0)

)
= 1 such that both of the wealth processes in (16) and (19)

have initial values 1. This normalization is guaranteed by replacing G with G + 1 when
G
(
Λ(0), µ(0)

)
= 0, or with G/G

(
Λ(0), µ(0)

)
when G

(
Λ(0), µ(0)

)
> 0.

Theorem 3. Fix a function G : W → [0,∞), Lyapunov for Λ(·) and µ(·), with
G
(
Λ(0), µ(0)

)
= 1. For some real number T∗ > 0, suppose that

P
[
ΓG(T∗) > 1

]
= 1.

Then the additively generated trading strategy ϕ(·) of Definition 5 is strong arbitrage
relative to the market over every time horizon [0, T ] with T ≥ T∗.

Proof. Use the same reasoning as in the proof of Theorem 5.1 in Karatzas and Ruf (2017).

Theorem 4. Assume that |Λ(·)| is uniformly bounded. Fix a function G : W → [0,∞),
regular for Λ(·) and µ(·), with G

(
Λ(0), µ(0)

)
= 1. For some real numbers T∗ > 0,

suppose that we can find an ε = ε(T∗) > 0 such that

P
[
ΓG(T∗) > 1 + ε

]
= 1.

Then there exists a constant c = c(T∗, ε) > 0 such that the trading strategy ψ(c)(·),
generated multiplicatively by the regular function

G(c) =
G+ c

1 + c

as in Definition 6, is strong arbitrage relative to the market over the time horizon [0, T∗].
Moreover, if G is a Lyapunov function for Λ(·) and µ(·), then ψ(c)(·) is also a strong
relative arbitrage over every time horizon [0, T ] with T ≥ T∗.
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Proof. See the proof of Theorem 5.2 in Karatzas and Ruf (2017). Note that G
(
Λ(·), µ(·)

)
is uniformly bounded thanks to the assumptions.

5. Data source and processing
We start this section by describing the data used in the next section, where several

trading strategies are implemented. Then we discuss the method to process the data.

5.1. Data source and description

We shall consider a market consisting of all stocks in the S&P 500 index. We are inter-
ested in the beginning of day and the end of day market weights of each of these stocks.
To calculate these market weights accurately (according to the method in Subsection 5.2),
we make use of two time series: the daily market values (market capitalizations, which
exclude all the dividend payments) and the daily return indexes (used to consider the ef-
fect of reinvestment of dividend payments) of the corresponding component stocks in the
S&P 500 index. Both of these time series are available at the end of each trading day.

The data of the market values and return indexes is downloaded from DataStream2. The
first day, for which the data is available on DataStream, is September 29th, 1989. Since
then there are in total 1140 constituents that have belonged to the S&P 500 index. A list
of stocks in the S&P 500 index is also attainable on DataStream. In particular, for each
month, we derive the list of constituents of the index at the last day of this month. For
a constituent delisted from the index in that month, we keep it in our portfolio provided
that the constituent still remains in the market till the end of that month. However, we get
rid of it from our portfolio on the same day when the constituent does no longer exist in
the market, usually due to mergers and acquisitions, bankruptcies, etc. For a constituent
newly added to the index in that month, we put it into our portfolio from the first day of
the following month.

5.2. Data processing

Theoretically, trading strategies vary continuously in time, while in the empirical analy-
sis a daily trading frequency is used. The following procedure illustrates how we examine
the gains and losses in our portfolio relative to the market portfolio.

We discretize the time horizon as 0 = t0 < t1 < · · · < tN−1 = T , where N is the total
number of trading days.

• The transaction on day tl, for all l ∈ {1, · · · , N − 1}, is made at the beginning
of day (tl), taking the beginning of day tl market weights µ(tl) as inputs. These
market weights µ(tl) are computed by

µi(tl) =
MVi(tl)

Σ(tl)
, i ∈ {1, · · · , d},

where MVi(tl) is the market value of stock i at the beginning of day tl, which is
assumed to be equal to the market value attainable at the end of the last trading

2DataStream, operated by Thomson Reuters, is a financial time series database; see
https://financial.thomsonreuters.com/en/products/data-analytics/economic-data.html.
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day tl−1, and Σ(tl) =
∑d

j=1 MVj(tl) denotes the total market capitalization at the
beginning of day tl.

• The theoretical (non-self-financing) trading strategy throughout tl, denoted by
θ(tl), is computed based on either (7) or (17), taking µ(tl) as inputs. Denote
the implemented (self-financing) trading strategy corresponding to θ(tl) by φ(tl).
Then V φ(tl), the beginning of day tl wealth of the portfolio corresponding to φ(tl),
is given by

V φ(t1) =
V φ(tl−1)Σ(tl−1)

Σ(t1)
. (20)

This is based on the assumption that the real portfolio wealth does not change
overnight. In (20), V φ(tl−1) and Σ(tl−1) are the end of day tl−1 portfolio wealth
and total market capitalization, respectively, computed at tl−1 (thus already known
at tl).

• To derive the implemented (self-financing) trading strategy φ(tl) corresponding to
θ(tl), we compute the number

C(tl) =
d∑
j=1

θj(tl)µj(tl)− V φ(tl). (21)

Then φ(tl) is derived by

φi(tl) = θi(tl)− C(tl), i ∈ {1, · · · , d}. (22)

This guarantees V φ(tl) =
∑d

i=1 φi(tl)µi(tl).

• At the end of day tl, the return indexes of the stocks for tl are available, and the
total returns TR(tl) are computed through dividing the return indexes of tl with
the return indexes of tl−1. Then the end of day tl implied market values MV(tl),
which take the dividend payments into consideration, are given by

MVi(tl) = MVi(tl)TRi(tl), i ∈ {1, · · · , d}.

The end of day tl modified total market capitalization Σ(tl) and market weights
µ(tl) are calculated similarly as Σ(tl) and µ(tl), with MV(tl) replaced by MV(tl).

• The end of day tl portfolio wealth is then computed by

V φ(tl) =
d∑
j=1

φj(tl)µj(tl).

Note that we have

V φ(tl) = V φ(tl) +
d∑
j=1

θj(tl)
(
µj(tl)− µj(tl)

)
. (23)

In particular, at the beginning of day t0, all of the above steps are still applied, except that
we have V φ(t0) = 1 instead of (20) due to Definition 2.
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6. Examples and empirical results
In this section, several examples of portfolio generating functions are empirically stud-

ied.

Example 4. Define the generalized entropy function

G(λ, x) = λ

d∑
i=1

xi log

(
1

xi

)
, λ ∈ R+, x ∈ ∆d

+,

with values in (0, λ log d), for fixed λ > 0. Suppose that µ(·) takes values in ∆d
+ and that

Λ(·) is (0,∞)-valued.

From (9) we have

ΓG(·) =
d∑
i=1

∫ ·
0

µi(t) log µi(t)dΛ(t) +
1

2

d∑
i=1

∫ ·
0

Λ(t)
d [µi, µi] (t)

µi(t)
. (24)

Then G is a Lyapunov function for Λ(·) and µ(·) provided that ΓG(·) is non-decreasing.
One sufficient condition for this to hold is that Λ(·) is non-increasing.

From (15), the trading strategy ϕ(·), generated additively by G, has components

ϕi(·) = ΓG(·)− Λ(·) log µi(·), i ∈ {1, · · · , d}. (25)

Using (16), the corresponding wealth process V ϕ(·) = G
(
Λ(·), µ(·)

)
+ ΓG(·) is strictly

positive if G is Lyapunov for Λ(·) and µ(·).

For the multiplicative generation, G is required to be bounded away from zero. One
sufficient condition for this to hold is that Λ(·) is bounded away from 0 and the market is
diverse on [0,∞), i.e., there exists ε > 0 such that G

(
Λ(t), µ(t)

)
≥ Λ(t)ε, for all t ≥ 0

(see Proposition 2.3.2 in Fernholz (2002)). Then from (18), the trading strategy ψ(·),
generated multiplicatively by G, has components

ψi(·) = −Λ(·) log µi(·) exp

(∫ ·
0

dΓG(t)

G
(
Λ(t), µ(t)

)) , i ∈ {1, · · · , d}.

The corresponding wealth process V ψ(·) is given in (19).

Now, let us discuss sufficient conditions for the existence of arbitrage relative to the
market. To this end, let Λ(·) be such that G is Lyapunov for Λ(·) and µ(·), for example,
let Λ(·) be non-increasing. Next consider

G =
G

G
(
Λ(0), µ(0)

) , (26)

together with the non-decreasing process

ΓG(·) =
ΓG(·)

G
(
Λ(0), µ(0)

) . (27)

Then from Theorem 3, if

P
[
ΓG(T∗) > 1

]
= P

[
ΓG(T∗) > G

(
Λ(0), µ(0)

)]
= 1,
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then the trading strategyϕ(·)/G
(
Λ(0), µ(0)

)
, generated additively by G, is strong relative

arbitrage over every time horizon [0, T ] with T ≥ T∗.

Similarly, from Theorem 4, if

P
[
ΓG(T∗) > 1 + ε

]
= P

[
ΓG(T∗) > G

(
Λ(0), µ(0)

)
(1 + ε)

]
= 1,

then the trading strategy ψ(c)(·), generated multiplicatively by

G(c) =
G+ c

G
(
Λ(0), µ(0)

)
+ c

, (28)

for some sufficiently large c > 0, is strong relative arbitrage over every time horizon [0, T ]
with T ≥ T∗.

To empirically examine the performance of the portfolio generated by G, we only re-
strict G to be regular for Λ(·) and µ(·), although G is Lyapunov for some of the choices
of Λ(·) in the following.

Recall that the wealth processes of portfolios generated either additively or multiplica-
tively are relative to the S&P 500 index. For a specific day tn, we estimate

[µi, µi] (tn) ≈
n∑
l=1

(
µi(tl)− µi(tl)

)2
, i ∈ {1, · · · , d},

where tl (tl) denotes the beginning (end) of the day tl.

Figure 1. Gamma process ΓG(·) and relative wealth pro-
cesses (minus 1) of both the additively and the multi-
plicatively generated portfolios with constant Λ(·) = 1.

Figure 1 presents ΓG(·) given in (27) and the relative wealth processes V ϕ(·) and
V ψ

(0)
(·) (minus 1 to start from 0 as ΓG(·)) of portfolios generated additively and mul-

tiplicatively by G, respectively, with finite variation process Λ(·) = 1. As we can observe
from the figure, both V ϕ(·) and V ψ

(0)
(·) have been continuously outperforming the mar-

ket portfolio since the year 2000.

Next, we examine the effect that choosing some non-constant Λ(·) may have on the
portfolio performance. Figures 2 and 3 display the relative wealth processes V ϕ(·) (in

14



Figure 2. Relative wealth process V ϕ(·) (in
logarithmic scale) of additively generated
portfolios with Λ(·) a deterministic expo-
nential.

Figure 3. Relative wealth process V ϕ(·) (in
logarithmic scale) of additively generated
portfolios with Λ(·) an exponential of the
quadratic variation of µ(·).

logarithmic scale) generated additively corresponding to two different groups of Λ(·).
The first group of Λ(·) is increasing, which results in decreasing ΓG(·) given by (24); the
corresponding G is only regular but not Lyapunov for Λ(·) and µ(·). The second group of
Λ(·) is decreasing; the corresponding ΓG(·) given by (24) is increasing andG is Lyapunov
for Λ(·) and µ(·).

More precisely, for all l ∈ {1, · · · , N}, in Figure 2, the wealth processes V ϕ(·) corre-
sponding to Λ(tl) = exp (10−4l) and Λ(tl) = exp (−10−4l) are plotted; in Figure 3, the
wealth processes V ϕ(·) corresponding to

Λ(tl) = exp

(
100

d∑
j=1

[µj, µj] (tl)

)
and Λ(tl) = exp

(
−100

d∑
j=1

[µj, µj] (tl)

)

are plotted. The constants 10−4 and 100 are chosen such that, with these forms, the
daily changes of both G

(
Λ(·), µ(·)

)
and ΓG(·) are roughly at the same level of magnitude.

Hence, in (16), neither part on the right hand side dominates the other.

As we can observe from the figures, choosing Λ(·) increasing seems to lead to a better
performance than choosing Λ(·) constant, which again seems to be better than choosing
Λ(·) decreasing. We attribute the reason behind this observation to the state of market
diversification as follows.

Observe that (23) yields

V ϕ(tl) = V ϕ(tl) +
1

G
(
Λ(0), µ(0)

)Λ(tl)D(tl), l ∈ {0, · · · , N}, (29)

where D(tl) is given by

D(tl) =
d∑
j=1

− log µj(tl)
(
µj(tl)− µj(tl)

)
. (30)

The value D(tl) can be considered as an indicator of the direction of changes in mar-
ket weights from the beginning to the end of date tl. The value D(tl) will be positive
(negative), if market weights are shifted from companies with large (small) beginning
of day market weights to companies with small (large) beginning of day market weights
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throughout date tl. We consider a simple example to better understand why this is the
case.

Fix d = 2 and assume that µ1(tl) > µ2(tl). Then

D(tl) = − log µ1(tl)
(
µ1(tl)− µ1(tl)

)
− log µ2(tl)

(
µ2(tl)− µ2(tl)

)
= (− log µ1(tl) + log µ2(tl))

(
µ1(tl)− µ1(tl)

)
holds due to the fact that

(
µ1(tl)− µ1(tl)

)
= −

(
µ2(tl)− µ2(tl)

)
. Hence, D(tl) > 0 if

and only if µ1(tl) < µ1(tl), i.e., the market weight of the company with larger beginning
of day market weight decreases, while the market weight of the company with smaller
beginning of day market weight increases.

Hence, a positive D(·) indicates an enhancement in market diversification, while D(·)
being negative actually implies a reduction in market diversification. Figure 4 plots the
cumulative process E(·) =

∑·
tl=t1

D(tl). The process E(·) is increasing (decreasing)
whenever D(·) is positive (negative). From Figure 4 we can observe that after a slight
increase from the year 1991 to the year 1995, E(·) keeps declining till the year 2000.
Then E(·) rises up in the long run from the year 2000 until now.

Figure 4. Integration process E(·) with
components given by (30).

Figure 5. Process
∑d

i=1(µi ∧ 0.002)(·) as a
measure of the market diversification de-
gree in the S&P 500 market.

The behavior of the process E(·) is in line with another measurement of the market
diversification. More precisely, let us consider the process

∑d
i=1(µi∧0.002)(·). Note that

the value 0.002 = 1/500, which is roughly the number of constituents in the portfolio.
This process is a measure of the market diversification, as it goes up when the market
weights of small companies become larger, i.e., the market diversification is strengthened.
Figure 5 plots the process, which first grows from the year 1991 to the year 1995. Then
from the year 1995 to 2000, the process declines fast. This indicates that during this
period, the market diversification weakens. On the contrary, the market diversification
strengthens afterwards until the year 2008, as the process goes up. Then the level of
market diversification remains within a relatively small range.

As a result, according to (29), if the market presents a trend of increasing diversification,
an increasing positive Λ(·) helps to reinforce this effect, and further assists in pulling up
V ϕ(·), while a decreasing positive Λ(·) is counteractive. On the other hand, if the market
presents a trend of decreasing diversification, then a decreasing positive Λ(·) helps to
slow down the declining speed of V ϕ(·), while an increasing positive Λ(·) would make
the speed even faster. This is confirmed in Figures 2 and 3, as from the year 1991 to
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the year 1995 and from the year 2000 till now, an increasing positive Λ(·) makes V ϕ(·)
perform better, while from the year 1995 to the year 2000, V ϕ(·) corresponding to a
decreasing positive Λ(·) is slightly larger.

Although an increasing positive Λ(·) has positive effect on the portfolio performance
V ϕ(·) whenever the market diversification strengthens, we are not allowed to choose Λ(·)
arbitrarily fast increasing. The reason is that the portfolio is required to be long-only in
our framework, i.e., the trading strategy ϕ(·) given by (25) must be nonnegative at any
time. If Λ(·) is increasing fast enough, ΓG(·) will become negative and decrease fast,
which may result in negative ϕ(·) according to (25).

As for the multiplicative generation, the different choices of finite variation processes
do not change the wealth processes significantly. Indeed, according to (24), an increasing
Λ(·) may slow down the growth rate of Γ(·), or even turn Γ(·) into a decreasing one.
When applying (22) to ϑ̃(·) from (17), we have

V ψ
(c)

(tl) = exp

(∫ tl

0

dΓG(t)

G
(
Λ(t), µ(t)

)
+ c

)
Λ(tl)

G
(
Λ(0), µ(0)

)
+ c

D(tl) + V ψ
(c)

(tl),

for all l ∈ {0, · · · , N}, with D(·) given in (30). In this example, according to the above
equation, the positive effect in boosting V ψ

(c)
(·) contributed by an increasing positive Λ(·)

is counteracted more or less by the opposite impact the same Λ(·) has on the exponential
part. A similar analysis also applies to a decreasing positive Λ(·). Therefore, under
the above mentioned situation (market diversification increases in general), the different
choices of a monotone Λ(·) do not influence V ψ

(c)
(·) as much as they do on V ϕ(·).

Note that our process D(·) is related but not the same as the Bregman divergence

DB,G

[
µ(tl)|µ(tl)

]
= Λ(tl)D(tl)−

(
G
(
Λ(tl), µ(tl)

)
−G

(
Λ(tl), µ(tl)

))
,

defined in Definition 3.6 in Wong (2017). For its connection to optimal transport, we refer
to Wong (2017).

To conclude this example, we compute several empirical indicators corresponding to the
performance of above mentioned portfolios over the chosen time horizon. The S&P 500
market portfolio has an averaged yearly return of 9.87% and a Sharpe ratio3 of 0.37. As
for the functionally generated portfolios analyzed in this example, their averaged yearly
returns are ranging from 11.12% to 12%, their Sharpe ratios lie between 0.45 and 0.49,
and their excess returns with respect to the market portfolio vary from 1.25% to 2.13%.
We refer to Banner et al. (2018) for a detailed empirical study to explain these excess
returns.

The following example is motivated by Schied et al. (2018).

Example 5. Consider the function

G(λ, x) =

(
d∑
i=1

(αxi + (1− α)λi)
p

) 1
p

, λ ∈ Rd
+, x ∈ ∆d

+,

3To compute the Sharpe ratios of the market portfolio and other functionally generated portfolios, the one-year U.S. Treasury yields
are used. The data of these yields can be downloaded from https://www.federalreserve.gov.
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with constants α, p ∈ (0, 1). Then G is concave.

For fixed constant δ > 0, define the Rd
+-valued moving average process Λ(·) by

Λi(·) =

{
1
δ

∫ ·
0
µi(t)dt+ 1

δ

∫ 0

·−δ µi(0)dt on [0, δ)
1
δ

∫ ·
·−δ µi(t)dt on [δ,∞)

,

for all i ∈ {1, · · · , d}.
Write µ(·) = αµ(·) + (1− α)Λ(·). Then by (9),

ΓG(·) = −(1− α)
d∑
i=1

∫ ·
0

(
G
(
Λ(t), µ(t)

)
µi(t)

)1−p

dΛi(t)

− α2(1− p)
2

d∑
i,j=1

∫ ·
0

(
G
(
Λ(t), µ(t)

)
µi(t)µj(t)

)1−p
1∑d

v=1 (µv(t))
p
d [µi, µj] (t)

+
α2(1− p)

2

d∑
i=1

∫ ·
0

(
G
(
Λ(t), µ(t)

)
µi(t)

)1−p
1

µi(t)
d [µi, µi] (t).

Notice that G is not Lyapunov in general.

The trading strategies ϕ(·) and ψ(·), generated additively and multiplicatively by G,
respectively, are given by

ϕi(·) = G
(
Λ(·), µ(·)

)( α (µi(·))
p

µi(·)
∑d

v=1 (µv(·))
p
−

d∑
j=1

αµj(·)
(
µj(·)

)p
µj(·)

∑d
v=1 (µv(·))

p
+ 1

)
+ ΓG(·)

and

ψi(·) =
(
ϕi(·)− ΓG(·)

)
exp

(∫ ·
0

dΓG(t)

G
(
Λ(t), µ(t)

)) ,
for all i ∈ {1, · · · , d}. The corresponding wealth processes V ϕ(·) and V ψ(·) can be
derived from (16) and (19), respectively.

Consider the normalized regular function G given in (26) and the corresponding process
ΓG(·) given in (27). By Theorem 4, if

P
[
ΓG(T∗) > 1 + ε

]
= P

[
ΓG(T∗) > G

(
Λ(0), µ(0)

)
(1 + ε)

]
= 1,

then the trading strategyψ(c)(·), generated multiplicatively by G(c) given in (28) for some
sufficiently large c > 0, is strong relative arbitrage over the time horizon [0, T∗].

To simulate the relative performance of the portfolio, we use the parameters δ = 250

days and p = 0.8. Figure 6 shows ΓG(·) and the wealth processes V ϕ(·) and V ψ
(0)

(·)
without the effect of the moving average part, i.e., α = 1. In this case, G is Lyapunov.
The relative performance of the portfolio is similar to that in Example 4, when the finite
variation process is chosen to be constant. Figure 7 presents the case when α = 0.6. It
can be observed that ΓG(·) increases slower when the moving average part is considered.
Compared with the case that the moving average part is not included, the wealth processes
V ϕ(·) and V ψ

(0)
(·) also take smaller values in the long run. This is due to the fact that
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Figure 6. Gamma process ΓG(·) and rel-
ative wealth processes (minus 1) of both
the additively and the multiplicatively gen-
erated portfolios with δ = 250 days, p = 0.8,
and α = 1.

Figure 7. Gamma process ΓG(·) and rel-
ative wealth processes (minus 1) of both
the additively and the multiplicatively gen-
erated portfolios with δ = 250 days, p = 0.8,
and α = 0.6.

when α decreases, the volatility of µ(·) decreases as well. In this case, we trade slower,
and the gains and losses will also be relatively less.

For the four functionally generated portfolios examined in this example, their averaged
yearly returns range from 11.21% to 11.47%, their Sharpe ratios lie between 0.45 and
0.47, and their excess returns with respect to the market portfolio vary from 1.34% to
1.6%.

The above two examples illustrate that the choice of the finite variation process Λ(·)
has an effect on the corresponding portfolio performance. The process Λ(·) can be cho-
sen to magnify the impact of market diversification on the portfolio performance, to speed
up or slow down the trading frequency, etc. In addition, an extra source of randomness,
such as market sentiment indicators used in sentiment trading strategies, could be intro-
duced when constructing Λ(·). We leave it to future research to develop a methodology
to construct such processes Λ(·) systematically.

7. Conclusion

Karatzas and Ruf (2017) build a simple and intuitive structure by interpreting the port-
folio generating functions G initiated by Fernholz (1999, 2001, 2002) as Lyapunov func-
tions. They formulate conditions for the existence of strong arbitrage relative to the
market over appropriate time horizons. The purpose of this paper is to investigate the
dependence of the portfolio generating functions G on an extra Rm-valued, progressive,
continuous process Λ(·) of finite variation on [0, T ], for all T ≥ 0.

The results of this paper are illuminated by several examples and shown to work on
empirical data using stocks from the S&P 500 index. The effects that different choices of
Λ(·) have on the portfolio wealths are analyzed. Provided that the market undergoes an
explicit trend of either increasing or decreasing market diversification, certain choices of
Λ(·) are better than others.
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A. Proofs of Theorems 1 and 2

A.1. Preliminaries

Before providing the proof of Theorem 1, we discuss some technical details.

Recall the open setW from (4) and consider a continuous function g :W → R. Define
a function g : Rm+d → R by

g(z) =

{
g(z), if z ∈ W
0, if z /∈ W

.

Next, let (gn1,n2)n1,n2∈N be the family of functions gn1,n2 :W → R given by

gn1,n2(λ, x) =

∫
Rd

ηn2(y)

∫
Rm

ηn1(u)g(λ− u, x− y)dudy, (31)

for all (λ, x) ∈ W , with gn1,n2(λ, x) = 0 whenever the right hand side of (31) is not
defined. Here in (31), for z ∈ Rl and n ∈ N,

ηn(z) =

{
βnl exp

(
1

n2‖z‖22−1

)
, if ‖z‖2 <

1
n

0, if ‖z‖2 ≥ 1
n

(32)

is used with the normalization constant

β =

(∫
Rl

exp

(
1

‖y‖2
2 − 1

)
dy

)−1

,

independent of n.

Lemma 1. Let V denote any closed subset of W . Consider a continuous function g :
W → R and the mollification (gn1,n2)n1,n2∈N of g defined as in (31).

(i) We have
lim
n2↑∞

lim
n1↑∞

gn1,n2 = g.

(ii) For n1, n2 ∈ N large enough, gn1,n2 ∈ C∞(V).
(iii) If there exists a constant L = L(V) ≥ 0 such that, for all (λ1, x), (λ2, x) ∈ V ,

|g(λ1, x)− g(λ2, x)| ≤ L‖λ1 − λ2‖2,

then, for n1, n2 ∈ N large enough and all (λ, x) ∈ V , we have∣∣∣∣∂gn1,n2

∂λv
(λ, x)

∣∣∣∣ ≤ L, v ∈ {1, · · · ,m}.

(iv) If g ∈ C0,1, then, for all (λ, x) ∈ W , we have

lim
n2↑∞

lim
n1↑∞

∂gn1,n2

∂xi
(λ, x) =

∂g

∂xi
(λ, x), i ∈ {1, · · · , d}.
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(v) If g ∈ C0,1 and if there exists a constant L = L(V) ≥ 0 such that, for all
(λ, x1), (λ, x2) ∈ V ,∥∥∥∥∂g∂x(λ, x1)− ∂g

∂x
(λ, x2)

∥∥∥∥
2

≤ L‖x1 − x2‖2,

then, for n1, n2 ∈ N large enough and all (λ, x) ∈ V , we have∣∣∣∣∂2gn1,n2

∂xi∂xj
(λ, x)

∣∣∣∣ ≤ L, i, j ∈ {1, · · · , d}.

Proof. For (i) and (ii), see Theorem 6 in Appendix C in Evans (1998).

For (iii), observe that, for each n1, n2 ∈ N large enough and all v ∈ {1, · · · ,m}, (31)
yields∣∣∣∣∂gn1,n2

∂λv
(λ, x)

∣∣∣∣ =

∣∣∣∣limδ→0

gn1,n2(λ+ δev, x)− gn1,n2(λ, x)

δ

∣∣∣∣
=

∣∣∣∣limδ→0

1

δ

∫
Rd

ηn2(y)

∫
Rm

ηn1(u)
(
g(λ+ δev − u, x− y)− g(λ− u, x− y)

)
dudy

∣∣∣∣
≤ lim

δ→0

1

δ

∫
Rd

ηn2(y)

∫
Rm

ηn1(u) |g(λ+ δev − u, x− y)− g(λ− u, x− y)| dudy

≤ lim
δ→0

1

δ
δL

∫
Rd

ηn2(y)

∫
Rm

ηn1(u)dudy = L,

for all (λ, x) ∈ V , where ev is the unit vector in the v-th dimension.

For (iv), apply the dominated convergence theorem and (i) to ∂g
∂xi

, for all i ∈ {1, · · · , d}.
For (v), apply the dominated convergence theorem and a similar argument as in (iii).

The following lemma is an extension of Lemma 2 in Bouleau (1981). For a continuous
function g : W → R, consider its corresponding mollification (gn1,n2)n1,n2∈N defined as
in (31).

Lemma 2. If a continuous function g :W → R is concave in its second argument, then

lim
n2↑∞

lim
n1↑∞

∂gn1,n2

∂xi
= fi, i ∈ {1, · · · , d},

for some measurable function fi :W → R, bounded on any compact V ⊂ W .

Proof. Fix i ∈ {1, · · · , d}. With the notation in (32), we have

ηn(z) = nlη1(nz), z ∈ Rl, n ∈ N.

For (λ, x) ∈ W and n2 ∈ N large enough, the definition of gn1,n2 in (31), the dominated
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convergence theorem, and Lemma 1(i)&(ii) yield

lim
n1↑∞

∂gn1,n2

∂xi
(λ, x) = lim

n1↑∞

∫
Rd

∂ηn2

∂xi
(x− y)

∫
Rm

ηn1(u)g(λ− u, y)dudy

=

∫
Rd

∂ηn2

∂xi
(x− y) lim

n1↑∞

∫
Rm

ηn1(u)g(λ− u, y)dudy

=

∫
Rd

∂ηn2

∂xi
(x− y)g(λ, y)dy

= −
∫
Rd

∂ηn2

∂yi
(y)g(λ, x− y)dy

=

∫
Rd

n2
∂η1

∂yi
(y)g

(
λ, x+

y

n2

)
dy

=

∫
Rd

∂η1

∂yi
(y)n2

(
g

(
λ, x+

y

n2

)
− g (λ, x)

)
dy.

Note that the last equality holds due to the fact that∫
Rd

∂η1

∂yi
(y)dy = 0.

Next, for all (λ, x) ∈ W and y ∈ Rd, define the one-sided directional partial derivative
as

∇g(λ, x; y) = lim
n2↑∞

g (λ, x+ y/n2)− g(λ, x)

1/n2

.

Such ∇g exists according to Theorem 23.1 in Rockafellar (1970). Since g is concave
in the second argument, it is locally Lipschitz in its second argument on W (see Theo-
rem 10.4 in Rockafellar (1970)). Hence, for each compact V ⊂ W , there exists a constant
L = L(V) ≥ 0 such that∇g(λ, x; y) ≤ L, for all y ∈ Rd and (λ, x) in the interior of V .

The statement now follows with

fi(λ, x) =

∫
Rd

∇g(λ, x; y)
∂η1

∂yi
(y)dy,

for all (λ, x) ∈ W , by the dominated convergence theorem.

Lemma 3. Assume that µ(·) has Doob-Meyer decomposition µ(·) = µ(0) +M(·) +V (·),
where M(·) is a d-dimensional continuous local martingale and V (·) is a d-dimensional
finite variation process with M(0) = V (0) = 0. Moreover, suppose that,

(i) for some open V ⊂ W , we have
(
Λ(·), µ(·)

)
=
(
Λ(· ∧ τ), µ(· ∧ τ)

)
, where

τ = inf
{
t ≥ 0;

(
Λ(t), µ(t)

)
/∈ V
}

;

(ii) for some constant κ ≥ 0, we have

d∑
i=1

(
[Mi,Mi] (∞) +

∫ ∞
0

d|Vi(t)|
)

+
m∑
v=1

∫ ∞
0

d|Λv(t)| ≤ κ <∞. (33)
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Let (hi)i∈{1,··· ,d} be a family of functions hi : V → R and let (hn1,n2

i )n1,n2∈N,i∈{1,··· ,d} be
a family of doubly indexed sequences of uniformly bounded functions hn1,n2

i : V → R. If

lim
n2↑∞

lim
n1↑∞

hn1,n2

i = hi, i ∈ {1, · · · , d},

then there exist two random subsequences
(
nk1
)
k∈N and

(
nk2
)
k∈N with limk↑∞ n

k
1 = ∞ =

limk↑∞ n
k
2 such that

lim
k↑∞

∫ t

0

d∑
i=1

h
nk
1 ,n

k
2

i

(
Λ(u), µ(u)

)
dµi(u) =

∫ t

0

d∑
i=1

hi
(
Λ(u), µ(u)

)
dµi(u), a.s., (34)

for all t ≥ 0.

Proof. Fix i ∈ {1, · · · , d} and write

Θn1,n2

i (·) = hn1,n2

i

(
Λ(·), µ(·)

)
− hi

(
Λ(·), µ(·)

)
.

By (33) and the bounded convergence theorem, we have

0 = E
[

lim
n2↑∞

lim
n1↑∞

∫ ∞
0

(
Θn1,n2

i (t)
)2

d [Mi,Mi] (t)

]
= lim

n2↑∞
lim
n1↑∞

E
[∫ ∞

0

(
Θn1,n2

i (t)
)2

d [Mi,Mi] (t)

]
= lim

n2↑∞
lim
n1↑∞

E

[(∫ ∞
0

Θn1,n2

i (t)dMi(t)

)2
]
,

by Itô’s isometry, and

0 = lim
n2↑∞

lim
n1↑∞

E

[(∫ ∞
0

|Θn1,n2

i (t)| d|Vi(t)|
)2
]
. (35)

Since
∫ ·

0
Θn1,n2

i (t)dMi(t) is a uniformly integrable martingale (as it is a local martingale
with bounded quadratic variation), Doob’s submartingale inequality yields

E

[(
sup
t≥0

∣∣∣∣∫ t

0

Θn1,n2

i (u)dMi(u)

∣∣∣∣)2
]
≤ 4E

[(∫ ∞
0

Θn1,n2

i (t)dMi(t)

)2
]
,

which implies

0 = lim
n2↑∞

lim
n1↑∞

E

[(
sup
t≥0

∣∣∣∣∫ t

0

Θn1,n2

i (u)dMi(u)

∣∣∣∣)2
]
. (36)

Therefore, (35), (36), and the triangle inequality yield

0 = lim
n2↑∞

lim
n1↑∞

E

[(
sup
t≥0

∣∣∣∣∫ t

0

Θn1,n2

i (u)dµi(u)

∣∣∣∣)2
]
.

Write

En1,n2

i = E

[(
sup
t≥0

∣∣∣∣∫ t

0

Θn1,n2

i (u)dµi(u)

∣∣∣∣)2
]
, n1, n2 ∈ N,

23



and
Ei = lim

n2↑∞
lim
n1↑∞

En1,n2

i .

For each n2 ∈ N, denote En2
i = limn1↑∞E

n1,n2

i . Then we can find a subsequence(
n1(n2)

)
n2∈N

of N with n1(n2) ↑ ∞ as n2 ↑ ∞ such that, for each n2 ∈ N,∣∣∣En1(n2),n2

i − En2
i

∣∣∣ ≤ 1

n2

.

Since the triangle inequality yields∣∣∣En1(n2),n2

i − Ei
∣∣∣ ≤ 1

n2

+ |En2
i − Ei| → 0 as n2 ↑ ∞,

we have limn2↑∞E
n1(n2),n2

i = Ei = 0. This implies

lim
n2↑∞

sup
t≥0

∣∣∣∣∣
∫ t

0

d∑
i=1

h
n1(n2),n2

i

(
Λ(u), µ(u)

)
dµi(u)−

∫ t

0

d∑
i=1

hi
(
Λ(u), µ(u)

)
dµi(u)

∣∣∣∣∣ = 0

in L2. Since convergence in L2 implies almost sure convergence of a subsequence, we
can find a random subsequence

(
nk2
)
k∈N of N with nk2 ↑ ∞ as k ↑ ∞ such that (34) holds

with nk1 = n1(nk2).

Lemma 4. Fix l ∈ N; let Λ(·) be an l-dimensional continuous process of finite variation;
let
(
Υu,n(·)

)
u∈{1,··· ,l},n∈N be a family of processes with

(
Υu,n(·)

)
n∈N uniformly bounded,

for each u ∈ {1, · · · , l}; and let
(
Θn(·)

)
n∈N be a sequence of non-decreasing continuous

processes. Define

Hn(·) =

∫ ·
0

l∑
u=1

Υu,n(t)dΛu(t) + Θn(·), n ∈ N.

If limn↑∞Hn(·) = H(·), a.s., then H(·) is of finite variation.

Proof. The following steps are partially inspired by the proof of Lemma 3.3 in Jaber et al.
(2018).

Since
(
Υ1,n(·)

)
n∈N is uniformly bounded, the Komlós theorem (see Theorem 1.3 in

Delbaen and Schachermayer (1999)) yields the following. For each n ∈ N, there exists
a convex combination Υ1

1,n(·) ∈ Conv
(
Υ1,k(·), k ≥ n

)
such that

(
Υ1

1,n(·)
)
n∈N converges

to some adapted bounded process Υ1(·). More precisely, for each n ∈ N, we can find
some random integer Nn ≥ 0 and

(
wkn
)
n≤k≤Nn

⊂ [0, 1] such that

Nn∑
k=n

wkn = 1 and Υ1
1,n(·) =

Nn∑
k=n

wknΥ1,k(·).

For each n ∈ N, define

H1
n(·) =

Nn∑
k=n

wknHn(·), Θ1
n(·) =

Nn∑
k=n

wknΘk(·), and Υ1
u,n(·) =

Nn∑
k=n

wknΥu,k(·),
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for all u ∈ {2, · · · , l}.
Since limn↑∞Hn(·) = H(·), a.s., we have

∣∣H1
n(·)−H(·)

∣∣ =

∣∣∣∣∣
Nn∑
k=n

wknHk(·)−H(·)

∣∣∣∣∣ ≤
Nn∑
k=n

wkn |Hk(·)−H(·)| → 0

as n ↑ ∞, which implies limn↑∞H
1
n(·) = H(·), a.s. Besides, Θ1

n(·) is non-decreasing, as
it is a convex combination of non-decreasing processes.

Since
(
Υ1

2,n(·)
)
n∈N is also uniformly bounded, by the Komlós theorem again, for each

n ∈ N, there exists another convex combination Υ2
2,n(·) ∈ Conv

(
Υ1

2,k(·), k ≥ n
)

such
that

(
Υ2

2,n(·)
)
n∈N converges to some adapted bounded process Υ2(·). With the same con-

vex combination for each n ∈ N, define Υ2
u,n(·), for all u ∈ {1, 3, · · · , l}, H2

n(·), and
similarly Θ2

n(·). In particular,
(
Υ2

1,n(·)
)
n∈N still converges to Υ1(·), as for each n ∈ N,

Υ2
1,n(·) is a convex combination of processes that converge to Υ1(·). Similarly, we have

limn↑∞H
2
n(·) = H(·), a.s. Moreover, Θ2

n(·) is non-decreasing.

Iteratively, we construct sequences of processes
(
Υ3
u,n(·)

)
n∈N , · · · ,

(
Υl
u,n(·)

)
n∈N, for

each u ∈ {1, · · · , l}, and processes H3
n(·), · · · , H l

n(·) and Θ3
n(·), · · · ,Θl

n(·) in the same
manner. In particular,

(
Υl
u,n(·)

)
n∈N converges to some adapted bounded process Υu, for

each u ∈ {1, · · · , l}, and we have limn↑∞H
l
n(·) = H(·), a.s. Moreover, Θl

n(·) is non-
decreasing.

By the dominated convergence theorem, we have

lim
n↑∞

∫ ·
0

l∑
u=1

Υl
u,n(t)dΛu(t) =

∫ ·
0

l∑
u=1

Υu(t)dΛu(t), a.s.,

which is of finite variation. Therefore, we have

H(·) = lim
n↑∞

H l
n(·) =

∫ ·
0

l∑
u=1

Υu(t)dΛu(t) + lim
n↑∞

Θl
n(·), a.s.

Since Θl
n(·) is non-decreasing and converges, it is of finite variation, which implies the

assertion.

A.2. Proof of Theorem 1
Proof of Theorem 1. Assume that the semimartingale µ(·) has the Doob-Meyer decom-
position µ(·) = µ(0) + M(·) + V (·), where M(·) is a d-dimensional continuous local
martingale and V (·) is a d-dimensional finite variation process with M(0) = V (0) = 0.

Let (Wn)n∈N be a non-decreasing sequence of open sets such that the closure ofWn is
inW , for all n ∈ N. For each κ ∈ N, we consider the stopping time

τκ = inf

{
t ≥ 0;

(
Λ(t), µ(t)

)
/∈ Wκ

or
d∑

i,j=1

[Mi,Mj] (t) +
d∑
i=1

∫ t

0

d|Vi(u)|+
m∑
v=1

∫ t

0

d|Λv(u)| ≥ κ

} (37)
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with inf{∅} =∞. Since
(
Λ(·), µ(·)

)
∈ W , we have limκ↑∞ τκ =∞, a.s. As

⋃
κ∈N{τκ >

t} = Ω, for all t ≥ 0, to prove that G is regular (Lyapunov), it is equivalent to show that
G is regular (Lyapunov) for Λ (· ∧ τκ) and µ (· ∧ τκ), for all κ ∈ N. Hence, without loss
of generality, let us assume that

(
Λ(·), µ(·)

)
=
(
Λ(· ∧ τκ), µ(· ∧ τκ)

)
, for some κ ∈ N.

Without loss of generality, assume that aij(·) is a predictable and uniformly bounded
process, for all i, j ∈ {1, · · · , d}, such that

[µi, µj] (t) =

∫ t

0

aij(u)dA(u) ≤ κ, t ≥ 0,

where A(·) =
∑d

i=1 [µi, µi] (·). Here, the equality holds according to the Ku-
nita–Watanabe inequality (see also Proposition 2.9 in Jacod and Shiryaev (2003)) and
the inequality due to (37).

Now, consider a mollification (Gn1,n2)n1,n2∈N of G defined as in (31). By Lemma 1(ii),
for n1, n2 ∈ N large enough, Itô’s lemma applied to Gn1,n2 yields

Gn1,n2

(
Λ(t), µ(t)

)
= Gn1,n2

(
Λ(0), µ(0)

)
+

∫ t

0

d∑
i=1

∂Gn1,n2

∂xi

(
Λ(u), µ(u)

)
dµi(u)

+

∫ t

0

Υ0,n1,n2(u)dA(u) +

∫ t

0

m∑
v=1

Υv,n1,n2(u)dΛv(u),

(38)

for all t ≥ 0, where

Υ0,n1,n2(t) =
1

2

d∑
i,j=1

∂2Gn1,n2

∂xi∂xj

(
Λ(t), µ(t)

)
aij(t) and Υv,n1,n2(t) =

∂Gn1,n2

∂λv

(
Λ(t), µ(t)

)
,

for all v ∈ {1, · · · ,m}.
For all (λ, x) ∈ W and i ∈ {1, · · · , d}, if (bi) holds, Lemma 1(iv) yields

lim
n2↑∞

lim
n1↑∞

∂Gn1,n2

∂xi
(λ, x) =

∂G

∂xi
(λ, x);

if (bii) holds, Lemma 2 yields

lim
n2↑∞

lim
n1↑∞

∂Gn1,n2

∂xi
(λ, x) = fi(λ, x),

for some measurable function fi. Moreover, thanks to (bi) or (bii), there exists a constant
L = L(Wκ) ≥ 0 such that, for n1, n2 ∈ N large enough,∣∣∣∣∂Gn1,n2

∂xi

∣∣∣∣ ≤ L, i ∈ {1, · · · , d}.

This follows from the Lipschitz continuity of G on the closure ofWκ in the second argu-
ment and a similar reasoning as in the proof of Lemma 1(iii). Then by Lemma 3, there
exist random subsequences

(
nk1
)
k∈N and

(
nk2
)
k∈N with limk↑∞ n

k
1 =∞ = limk↑∞ n

k
2 such

that, if we write Gk = Gnk
1 ,n

k
2
, we have

lim
k↑∞

∫ t

0

d∑
i=1

∂Gk

∂xi

(
Λ(u), µ(u)

)
dµi(u) = F

(
Λ(t), µ(t)

)
, a.s., (39)
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for all t ≥ 0, where

F
(
Λ(t), µ(t)

)
=

{∫ t
0

∑d
i=1

∂G
∂xi

(
Λ(u), µ(u)

)
dµi(u), if (bi) holds∫ t

0

∑d
i=1 fi

(
Λ(u), µ(u)

)
dµi(u), if (bii) holds

.

To proceed, write

Hk(t) = Gk

(
Λ(0), µ(0)

)
−Gk

(
Λ(t), µ(t)

)
+

∫ t

0

d∑
i=1

∂Gk

∂xi

(
Λ(u), µ(u)

)
dµi(u),

for all k ∈ N, and

H(t) = G
(
Λ(0), µ(0)

)
−G

(
Λ(t), µ(t)

)
+ F

(
Λ(t), µ(t)

)
,

for all t ≥ 0. Then, (38) with respect to the random subsequences
(
nk1
)
k∈N and

(
nk2
)
k∈N

is of the form

Hk(t) = −
∫ t

0

Υ0,k(u)dA(u)−
∫ t

0

m∑
v=1

Υv,k(u)dΛv(u), t ≥ 0.

Note that by Lemma 1(i) and (39), limk↑∞Hk(t) = H(t), a.s., for all t ≥ 0.

A measurable function DG in Condition 1 of Definition 3 is chosen with components

DiG
(
λ, x
)

=

{
∂G
∂xi

(λ, x), if (bi) holds
fi(λ, x), if (bii) holds

, i ∈ {1, · · · , d}.

Then, as ΓG(·) = H(·) according to (8), it is enough to show thatH(·) is of finite variation
in the following four cases.

Case 1.

Assume that (ai) and (bi) hold. Then by Lemma 1(iii)&(v), the processes
(
Υ0,k(·)

)
k∈N

and
(
Υv,k(·)

)
v∈{1,··· ,m},k∈N are uniformly bounded. With l = m + 1, Λv(·) = Λv(·) and(

Υv,k(·)
)
k∈N =

(
Υv,k(·)

)
k∈N, for all v ∈ {1, · · · ,m}, Λm+1(·) = A(·),

(
Υm+1,k(·)

)
k∈N =(

Υ0,k(·)
)
k∈N, and

(
Θk(·)

)
k∈N = 0, Lemma 4 yields that H(·) is of finite variation on

compact sets.

Case 2.

Assume that (ai) and (bii) hold. By Lemma 1(iii), the processes
(
Υv,k(·)

)
v∈{1,··· ,m},k∈N

are uniformly bounded. Since G is concave in the second argument, for each k ∈ N,
Gk is also concave in the second argument. Using the negative semidefinite property of
the Hessian of Gk and choosing the matrix-valued process a(·) =

(
aij(·)

)
i,j∈{1,··· ,d} to be

symmetric and positive semidefinite, one can show that Υ0,k(t) ≤ 0, for all t ≥ 0. This
implies that the processes

Θk(·) = −
∫ ·

0

Υ0,k(t)dA(t), k ∈ N,

are non-decreasing. Similar to Case 1, but now with l = m, Lemma 4 yields again that
H(·) is of finite variation.
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Case 3.

Assume that (aii) and (bi) hold. By Lemma 1(v), the process
(
Υ0,k(·)

)
k∈N is uniformly

bounded. As G is non-increasing in the v-th dimension of the first argument, so is Gk, for
all v ∈ {1, · · · ,m}. Therefore, Υv,k(t) ≤ 0, for all t ≥ 0, as Λ(·) is non-decreasing in
the v-th dimension, for all v ∈ {1, · · · ,m}. This implies that the processes

Θk(·) = −
∫ ·

0

m∑
v=1

Υv,k(t)dΛv(t), k ∈ N,

are non-decreasing. Similar to above, Lemma 4 implies that H(·) is of finite variation.

Case 4.

Assume that (aii) and (bii) hold. With

Θk(·) = −
∫ ·

0

Υ0,k(t)dA(t)−
∫ ·

0

m∑
v=1

Υv,k(t)dΛv(t), k ∈ N,

Lemma 4 implies again that H(·) is of finite variation. It is clear that G is Lyapunov.

A.3. Proof of Theorem 2

Proof of Theorem 2. The following steps are partially inspired by the proof of Theo-
rem 3.8 in Karatzas and Ruf (2017). According to Theorem 2.3 in Banner and Ghomrasni
(2008), for each l ∈ {1, · · · , d}, one can find a measurable function hl : ∆d → (0, 1] and
a finite variation processBl(·) withBl(0) = 0 such that

µl(·) = µl(0) +

∫ ·
0

d∑
i=1

hl
(
µ(t)

)
1{µ(l)(t)=µi(t)}dµi(t) +Bl(·). (40)

Since G is regular for Λ(·) and µ(·), by Definition 3, there exist a measurable function
DG and a finite variation process ΓG(·) such that

G
(
Λ(·),µ(·)

)
= G

(
Λ(0),µ(0)

)
+

∫ ·
0

d∑
l=1

DlG
(
Λ(t),µ(t)

)
dµl(t)− ΓG(·). (41)

By (40), we have∫ ·
0

d∑
l=1

DlG
(
Λ(t),µ(t)

)
dµl(t) =

∫ ·
0

d∑
l=1

DlG
(
Λ(t),µ(t)

)
hl
(
µ(t)

)
1{µ(l)(t)=µi(t)}dµi(t)

+

∫ ·
0

d∑
l=1

DlG
(
Λ(t),µ(t)

)
dBl(t).

(42)

Now consider the measurable function DG :W → Rd with components

DiG(λ, x) =
d∑
l=1

DlG
(
λ,R(x)

)
hl(x)1{x(l)=xi}, i ∈ {1, · · · , d},
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and the finite variation process

ΓG(·) = ΓG(·)−
∫ ·

0

d∑
l=1

DlG
(
Λ(t),µ(t)

)
dBl(t).

Then (41) and (42), together with G(λ, x) = G
(
λ,R(x)

)
, yield (8), i.e., G is regular for

Λ(·) and µ(·).

A.4. An alternative proof for a special case
The proof technique of Theorem VII.31 in Dellacherie and Meyer (1982) suggests an

alternative argument for the case that conditions (ai) and (bii) in Theorem 1 hold. We
summarize these ideas in the following result.

Theorem 5. If a function f : W → R is locally Lipschitz in the first argument and
concave in the second argument, then the process f

(
Λ(·), µ(·)

)
is a semimartingale.

Proof. Assume that the semimartingale µ(·) has the Doob-Meyer decomposition µ(·) =
µ(0)+M(·)+V (·), where M(·) is a d-dimensional continuous local martingale and V (·)
is a d-dimensional finite variation process with M(0) = V (0) = 0.

Let (Wn)n∈N be a non-decreasing sequence of open sets such that the closure ofWn is
in W , for all n ∈ N. For each κ ∈ N, we consider the stopping time τκ given in (37).
Without loss of generality, let us assume again that

(
Λ(·), µ(·)

)
=
(
Λ(· ∧ τκ), µ(· ∧ τκ)

)
,

for some κ ∈ N.

Since f is locally Lipschitz in both arguments (see Theorem 10.4 in Rockafellar
(1970)), we can find a Lipschitz constant L such that, for all s, t ≥ 0 with s ≤ t, we
have ∣∣f(Λ(t), µ(t)

)
− f

(
Λ(s), µ(0) +M(t) + V (s)

)∣∣
≤ L

(
m∑
v=1

∣∣Λv(t)− Λv(s)
∣∣+

d∑
i=1

∣∣Vi(t)− Vi(s)∣∣)

≤ L

(
m∑
v=1

∫ t

s

∣∣dΛv(u)
∣∣+

d∑
i=1

∫ t

s

∣∣dVi(u)
∣∣) .

(43)

Let

Z(·) = −f
(
Λ(·), µ(·)

)
+ L

(
m∑
v=1

∫ ·
0

∣∣dΛv(t)
∣∣+

d∑
i=1

∫ ·
0

∣∣dVi(t)∣∣) ,
then Z(·) is bounded. Hence we have

E [Z(t)− Z(s)|F(s)] = E
[
f
(
Λ(s), µ(s)

)
− f

(
Λ(s), µ(0) +M(t) + V (s)

)
|F(s)

]
+ E

[
f
(
Λ(s), µ(0) +M(t) + V (s)

)
− f

(
Λ(t), µ(t)

)
+ L

(
m∑
v=1

∫ t

s

∣∣dΛv(u)
∣∣+

d∑
i=1

∫ t

s

∣∣dVi(u)
∣∣) ∣∣∣F(s)

]
≥ E

[
f
(
Λ(s), µ(s)

)
− f

(
Λ(s), µ(0) +M(t) + V (s)

)
|F(s)

]
≥ 0,
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where the first inequality is by (43) and the second inequality holds by Jensen’s inequality.
Therefore, Z(·) is a submartingale, which makes f

(
Λ(·), µ(·)

)
a semimartingale.
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