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Island Biodiversity and Human Palaeoecology in the Philippines: 

A zooarchaeological study of Late Quaternary faunas 

Janine Ochoa 

 

Abstract 

 
This thesis is a zooarchaeological analysis of Late Quaternary faunal assemblages from the 

Philippines, ca. 25,000 to 2,000 years ago. The research utilises several approaches within a 

broad ecological framework. The first element of the ecological approach is informed by 

zooarchaeology’s niche in palaeoecology and its application to modern biodiversity 

conservation. This approach is crucial for a tropical faunal region known for its exceptionally 

high levels of biodiversity and endemism but that also has a relative paucity of fossil studies. 

In this regard, the thesis aims to investigate the evolutionary and biogeographic history of 

these faunas. The second element of the framework uses the faunal subsistence record to 

explore human palaeoecology in the Philippines and its relevance to understanding indigenous 

ecological knowledge systems in the past. 

Using archaeofaunal material from Luzon and Palawan Islands, the study presents important 

fossil discoveries and palaeoecological insights into the dynamics of faunal change in the 

Philippines. The faunal analyses also allow the first attempt to construct Late Quaternary 

biostratigraphic sequences for the archipelago. For Palawan Island, the thesis presents an MIS-

2 (25,000-20,000 cal BP) faunal record based on the re-excavation and re-dating of Pilanduk 

Cave. This record provides evidence for the presence of the tiger on Palawan during the Last 

Glacial Maximum and morphological confirmation of the presence of two locally extinct deer 

taxa. For Luzon Island, the study presents evidence from Minori and Musang Caves for 

previously unknown and extinct endemic giant cloud rats, as well as for the human 

translocation of macaques and palm civets. In line with the second element of the framework, 

the zooarchaeological analyses also provide foraging histories of local human populations in 

tropical island environments. The subsistence data present the responses and possible roles 

of humans in observed faunal and environmental changes. Human impacts are possibly 

implicated in the Late Holocene extirpation of the hog deer of Palawan and two endemic cloud 

rat species on Luzon. The subsistence records also present island-specific strategies for 

tropical rainforest foraging across the Holocene. Taken together, the findings offer diachronic 

perspectives on indigenous ecological knowledge systems as manifested in these changing 

local settings. 
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Preface 

 

Various chronological and taxonomic terms appear throughout the thesis and their usage and 

definitions are clarified here. Abbreviations used are also listed below. 

Chronological Terms 

Geological time divisions used in the text follow the International Commission on Stratigraphy 

(ICS; www.stratigraphy.org). Radiocarbon ages within the text are typically given as calibrated 

calendar years before present and present is designated as 1950 CE. The main exceptions are 

for citing ages as reported by original authors in their publications, in which case dates in BP 

(uncalibrated), BC and cal BC are provided. The ICS defines the start of the Quaternary Period 

at 2.58 Ma, the Late Pleistocene at 0.126 Ma, the Early Holocene at 11,700 yr b2k (before AD 

2000), the Mid Holocene at 8326 yr b2k, and the Late Holocene at 4250 yr b2k. The informal 

term Late Quaternary is used to refer to the duration of the Late Pleistocene to the Holocene. 

 

Abbreviations 

AD anno Domini 

BP before present, present referring to 1950 CE 

BC before Christ 

14C radiocarbon 

BMNH British Museum of Natural History 

ca. circa 

cal BP calibrated years before present 

CE Common Era 

CT scanning computed tomography scanning 

FFI Freshness Fracture Index  

FMNH Field Museum of Natural History 

FUI Food Utility Index  

GIS Geographic Information System 

HBE human behavioural ecology 

IEK indigenous ecological knowledge 

IK indigenous knowledge 

ISEA Island Southeast Asia 

IUCN  International Union for Conservation of Nature 

LGM Last Glacial Maximum 

LGP Last Glacial Period 

Ma Mega-annum, one million years 

MAU minimum animal unit 

mbpsl meters below present sea level 

MCZ Museum of Comparative Zoology, Harvard University 

MIS Marine Isotope Stage 
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MNE minimum number of elements 

MNI minimum number of individuals 

N number of specimens 

NISP number of identified specimens 

NMP National Museum of the Philippines 

OFT optimal foraging theory 

ORAU Oxford Radiocarbon Accelerator Unit 

OUMNH Oxford University Museum of Natural History 

PAIC Pleistocene aggregate island complexes  

PIPRP Palawan Island Palaeohistoric Research Project 

r Pearson’s r or Pearson correlation coefficient  

R2 coefficient of determination  

rs Spearman’s rho  

SEA Southeast Asia 

sp. species 

spp. species pluralis, multiple species 

SST sea surface temperature 

TNF total number of fragments 

TEK traditional environmental/ecological knowledge  

UP University of the Philippines 
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Taxonomic Names and Common Names 

Scientific Name English Common Name Vernacular Names 

Aonyx cinereus Oriental small-clawed otter dingguin 

Arctictis binturong bearcat, binturong binturong, manturon 

Axis calamianensis Calamian hog deer pilanduk, usa 

Batomys sp. hairy-tailed rat  
Bubalus bubalis domestic water buffalo; carabao kalabaw 

Bullimus luzonicus large Luzon forest rat  
Canis lupus familiaris domestic dog aso 

Carpomys sp. dwarf cloud rat  
Chiropodomys calamianensis Palawan pencil-tailed tree mouse  
Crateromys sp. Luzon bushy-tailed cloud rat bu-ot 

Cuora amboinensis  Malayan box turtle bakoko, bao, pagong 

Cyclemys dentata Asian leaf turtle bakoko, bao, pagong 

Herpestes brachyurus short-tailed mongoose  
Hipposideros cf. ater roundleaf bat kabat-kabat, kabag 

Hipposideros diadema diadem roundleaf bat kabat-kabat, kabag 

Homo luzonensis Luzon human  
Homo sapiens modern human tao 

Hylopetes nigripes arrow-tailed flying squirrel bia'tat, tapilak 

Hystrix pumila Palawan porcupine dugyan, durian 

Macaca fascicularis long-tailed macaque bakes, amu, unggoy 

Manis culionensis Palawan pangolin balintong 

Maxomys panglima Palawan spiny rat daga 

Mydaus marchei Palawan stink badger pantot 

Panthera tigris tiger tigre 

Paradoxurus philippinensis palm civet musang 

Phloeomys cumingi southern Luzon giant cloud rat bugkun 

Phloeomys pallidus northern Luzon giant cloud rat bu-ot 

Prionailurus philippinensis leopard cat maral 

Rattus everetti Philippine forest rat daga 

Rattus tiomanicus Malaysian field rat daga 

Rhinoceros phillipinensis rhinoceros  
Rusa marianna Philippine brown deer usa 

Stegodon luzonensis stegodon  
Sundasciurus spp. tree squirrel bising, laksoy 

Sus ahoenobarbus Palawan bearded pig babuy, byak 

Sus philippensis Philippine warty pig babuy 

Sus scrofa domestic pig babuy 

Varanus spp. monitor lizard bayawak, biawak 
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Chapter 1 Introduction 

 

This thesis is an investigation of biodiversity changes, palaeoecological histories, and human-

environment interactions in the Philippine archipelago from ca. 25,000 to 2000 years ago. The 

research utilises ecological perspectives to investigate the history of faunal communities and 

of human subsistence in tropical island environments. More specifically, the thesis explores 

the structure of local fossil faunas, examines how these animal communities change through 

time, and considers how such changes relate to local environments and palaeohistoric 

economies. The Philippines presents a unique evolutionary and ecological laboratory for 

understanding island biodiversity changes in Southeast Asia. The archipelago also provides 

long archaeological sequences that offer early records of human occupation in the island 

tropics.  To explore specific ecological and archaeological histories in the region, I turn my 

focus to two large Philippine islands: Luzon and Palawan. 

The low-latitude wet tropics are known to contain the most diverse of terrestrial 

habitats (Gentry 1992; Myers 1988; Pimm and Raven 2000; Slik et al. 2015; Barlow et al. 2018) 

and Southeast Asia (SEA) indeed harbours tremendous biodiversity (Gower et al. 2012). Island 

Southeast Asia (ISEA) notably consists of three biodiversity hotspots: Sunda, Wallacea and the 

Philippines (Figure 1.1). In conservation biology, ‘hotspots’ are described as areas featuring 

exceptional concentrations of endemic species and experiencing exceptional loss of 

biodiversity (Myers 1988; Myers et al. 2000). The Philippines is one of only three countries on 

earth that, in its entirety, is considered a biodiversity hotspot. It is recognised not only as highly 

biodiverse but ‘megadiverse’. Megadiversity countries refer to the world’s top biodiversity-

rich countries (Mittermeier et al. 1997). The conservation of living species in these 

megadiverse hotspots is imperative to preserve and maintain the earth’s biodiversity.  

Many island faunas are often characterised as depauperate, unbalanced and 

disharmonic because of the absence or low diversity of certain taxonomic groups that have low 

dispersal capabilities over ocean crossings (Morwood 2014; van der Geer et al. 2010). In the 

case of the Philippines, a dominant biogeographical perspective for most of the 20th century 

viewed it as a ‘fringing archipelago’ (Brown and Alcala 1970; Dickerson et al. 1928). In this 

view, archipelagos near a continental source are expected to show an ‘immigrant pattern’ of 

faunal distributions. Islands like Palawan are considered as dispersal corridors  whereas 

islands like Luzon are viewed as the tail ends of island chains and are expected to be 

depauperate (see discussion in Brown et al. 2013a; Diamond and Gilpin 1983). Nonetheless, 
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recent studies of Southeast Asian islands show unexpectedly high levels of diversity and 

endemism. Islands vary considerably due to their geological histories, and unbalanced island 

faunas do not necessarily mean that they are species poor. Indeed, several large tropical 

islands have been recognised as highly biodiverse. Such is the case for Luzon, Mindanao and 

Sulawesi (Achmadi et al. 2013; Brown et al. 2013b; Heaney et al 2016a; Rowe et al. 2016). In 

Luzon alone, half (n=28) of the known native non-volant mammals (n=56) only became known 

to science in the last two decades (Heaney et al. 2016b). The herpetological diversity of Luzon 

is also high at over 380 species known, 74% and 80% of which are endemic for reptiles and 

amphibians, respectively (Brown et al. 2013b). It is also projected that more than 100 species 

await discovery and description with ongoing reptile and amphibian studies in the archipelago 

(Brown et al. 2013a). These findings indicate a very high rate of species discovery that is said 

to match discovery rates in Brazil and Peru, areas that are significantly larger than the 

Philippines. 

 

 

Figure 1.1 Map of the world’s 25 biodiversity hotspots highlighting the three hotspots in Island Southeast 
Asia: Sundaland, Wallacea and the Philippines (after Myers et al. 2000).  
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Given this potential for studying large tropical islands, the thesis focuses on two 

Philippine islands: Luzon and Palawan (Figure 1.2). Luzon is an oceanic island whereas 

Palawan is a continental shelf island. Luzon (18° to 12° N and 119° to 123° E) is the largest and 

most populous island with a land area of 104,688 km2. Palawan Island (11° to 8° N and 117° 

to 120° E) is the fifth largest island measuring 11,785 km2. The two islands present contrasting 

tales: Palawan presents continental (Sundaic) faunal affinities, while Luzon has a true oceanic 

island fauna.  The Philippine archipelago is located at the interface of the Asian and 

Australasian faunal zones, where biogeographers contend is the sharpest faunal demarcation 

on the planet (Brown et al. 2013; Lomolino et al. 2016). A classic biogeographic description 

comes from Alfred Russell Wallace’s (1881: 4) Island Life where he illustrates the conspicuous 

contrast between the faunas of Bali and Lombok (Indonesia):  

 

 

Figure 1.2 Map of Southeast Asia (SEA) showing Luzon and Palawan Islands in the Philippine 
archipelago. Drawn by J. Villasper.  
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“But here are some more striking cases even than this, of the diversity of the productions 

of countries not far apart. In the Malay Archipelago there are two islands, named Bali and 

Lombok, each about as large as Corsica, and separated by a strait only fifteen miles wide at its 

narrowest part. Yet these islands differ far more from each other in their birds and quadrupeds 

than do England and Japan… Bali has red and green woodpeckers, barbets, weaver-birds and 

black-and-white magpie-robins, none of which are found in Lombok, where, however, we find 

screaming cockatoos and friar-birds, and the strange mound-building megapodes, which are all 

equally unknown in Bali.” 

These comparisons typify the differences between the faunas of Sunda (Bali) and 

Wallacea (Lombok), and the water gap between the two islands forms the southernmost 

boundary between the two regions. Further north, the story of the transition between Palawan 

and the oceanic Philippines is lesser known. Nonetheless, this is an equally compelling story, 

and the contrast between Luzon and Palawan is striking. These two large islands harbour 

impressive biodiversity and endemism due to their larger land area and topographical 

complexity. These factors, among others, produced the megadiversity that is now known for 

the Philippines (Brown et al. 2013b; Heaney 2001; Heaney et al. 2016a; Rickart et al. 2019). 

The story also grows more interesting as new living species continue to be described for both 

islands (e.g. Balete et al. 2015; Hutterer et al. 2018; Welton et al. 2010). In the latter regard, 

the fossil record of these remarkable faunas is little known, and the zooarchaeological record 

has the potential of providing insights into the evolutionary and ecological histories of these 

faunal communities. 

Much of our understanding of these faunas relies on data on modern biotas. However, 

various authors have already observed that many modern faunas are heavily transformed 

faunas, largely due to human impacts (Helmus et al. 2014; Steadman 2006; Zalasiewicz et al. 

2011).  In this light, palaeozoological records are necessary for understanding not only the 

history of these faunas but also the biological patterns and processes prior to the Late 

Pleistocene colonisation of Homo sapiens. There has been greater recognition that fossil 

records are necessary for assessing baseline faunal structure and assembly, and these have 

implications for modern conservation planning (Barnosky et al. 2011; van der Geer et al. 2017; 

Lyman 2012; Stegner and Holmes 2013). Baseline ecological data include the confirmation of 

native versus non-native species, which can be ascertained by archaeological evidence for 

animal translocation (e.g. Heinsohn 2003, 2010). Such records are also critical for 

understanding the processes of defaunation that now pervade the Anthropocene (Dirzo et al. 

2014). 
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The archaeological and archaeofaunal records of ISEA are also important because they 

provide exemplary case studies on human adaptations in tropical rainforest and equatorial 

island environments. Tropical rainforests have been previously viewed as hinterland habitats 

or even barriers for human occupation (Bailey et al. 1989; Boivin et al. 2013; Headland and 

Bailey 1991; Hutterer 1983). Archaeological evidence from Southeast Asia, South Asia and 

Melanesia demonstrates that modern humans occupied tropical rainforests during its 

expansion beyond Africa during the Late Pleistocene from at least 49,000 years ago (Barker et 

al. 2007; Roberts and Petraglia 2015a; Roberts et al. 2015; Summerhayes et al. 2010). Beyond 

this recognition, there is a need to investigate human behavioural repertoires amidst the 

variety of habitats within tropical rainforest and tropical island environments. The view of 

tropical rainforests as primeval and unchanging has previously permeated archaeological and 

anthropological literature (see Mercader 2002), whereas ecologists have long recognised the 

complexity of habitats within tropical rainforests (Richards 1996; Whitmore 1992). Moving 

beyond notions that such environments were barriers to occupation, we can now re-frame the 

discourse to explore the complexity of adaptations entailed in the human colonisation of these 

‘forests of plenty’ (Mercader 2002; Roberts 2017). The Pleistocene colonisation of Island 

Southeast Asia and Melanesia also presents important thresholds for our species, such that 

these colonists are referred to as ‘first mariners’ (Connor and Veth 2000) or ‘first islanders’ 

(Bellwood 2017). To these ends, Luzon and Palawan offer some of the oldest records of human 

occupation in ISEA, which lend substance to the exploration of these research themes.  

To summarise, the study of Late Quaternary faunal assemblages of the Philippines 

contributes to a number of palaeoecological, biogeographic and archaeological questions. The 

rationale for choosing the Philippines – and Luzon and Palawan Islands, in particular – is as 

follows: 

1. Philippine faunal assemblages provide an opportunity to investigate the 

biogeographic and evolutionary history of an archipelago recognised as one of the 

world’s richest hotspots of biological diversity, as well as harbouring the highest 

concentration of endemic terrestrial vertebrates per unit land area on Earth (Brown 

et al. 2013b, Heaney et al. 2016b). The tropics are known to disproportionately 

harbour a large amount of global biodiversity (Barlow et al. 2018), and this has 

partly to do with high diversity coupled with high endemism, such as that observed 

for the terrestrial faunas of the Philippines (Heaney et al. 2016b; Justiniano et al. 

2015; Lomolino et al. 2016). The zooarchaeological analysis aims to contribute to 

the understanding of diversity and endemism patterns observed today in the 

archipelago.  
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2. The focus on Luzon and Palawan Islands particularly illuminates on the 

palaeoecological comparison of oceanic (Philippine/Wallacean) and continental 

(Sundaic) island faunas, respectively.  

3. Luzon and Palawan Islands also hold the longest archaeological sequences in the 

archipelago, and as such the periodisation of Philippine archaeology has been based 

on these two islands. The sites chosen for this study serve to fill in certain temporal 

gaps in the Late Quaternary faunal and archaeological sequences of the archipelago.  

4. The Philippines also provides long sequences of human occupation in the island 

tropics of Southeast Asia. These sequences offer long records of environmental 

change, and in this thesis, emphasis is placed on the Last Glacial Maximum, the 

Pleistocene-Holocene transition and the Late Holocene. These sequences also 

provide human subsistence records in tropical island environments and tropical 

rainforests, as well as evidence for long-term human impacts in these ecosystems. 

The focus on two islands of Luzon and Palawan can also offer insights into local 

trajectories of human behaviour in these island settings. 

5. The study of human impacts on tropical islands across the Holocene builds upon the 

author’s previous research on large mammal extinctions on Palawan Island (Ochoa 

2009; Ochoa et al. 2017; Piper et al. 2008, 2011). This current study further 

examines extinction dynamics and other impacts such as the translocation of 

Sundaic mammals to an oceanic island (Luzon).  

 

1.1 Research Questions 

 

Based on these biogeographic, palaeoecological and archaeological premises, the thesis asks 

two main research questions:  

1. What are the processes that influence Late Quaternary biodiversity changes in 

tropical island ecosystems of Southeast Asia? 

 

2. What were the behavioural responses and environmental impacts of human 

groups living in the tropical island environments of Southeast Asia? 

 

The thesis aims to explore long-term ecological and evolutionary histories as may be 

evident in the faunal record. More particularly, it aims to analyse palaeoecological dynamics 

as they relate to local faunas, human adaptation, and human ecological knowledge systems in 

the past. To these ends, the thesis will consider the theoretical interface of ‘ecological’ 
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disciplines that inform zooarchaeology. At one end of the spectrum are palaeoecology, 

biogeography and conservation biology, while on the other end are human behavioural 

ecology and ecological/environmental anthropology. 

The first research question forms the palaeoecological component of this research. 

Firstly, the investigation of biodiversity dynamics and changes must tackle the baseline query 

relating to the composition and structure of local faunal communities. From these data, we can 

ask: what insights can zooarchaeological records of ISEA shed on fundamental biogeographic 

and evolutionary processes in island environments? With previous Holocene records of large 

mammal extinctions reported from Palawan Island (Ochoa and Piper 2017, Piper et al. 2011), 

it is of interest to investigate whether Philippine terrestrial vertebrate biodiversity decreases 

after the Pleistocene-Holocene transition at ca. 11,700 years ago. During the Holocene, one 

driver of faunal change was the human introduction of non-native taxa into island 

environments (Heinsohn 2003; Pimm et al. 2014; Tershy et al. 2015), yet these processes 

remain largely unresolved for the biodiversity hotspots of SEA.  This factor, in turn, relates to 

the second research question, which aims to probe possible human impacts on local faunal 

communities. More broadly, the second question relates to the human ecological component 

of the research. The analysis of long-term subsistence records aims to examine the behavioural 

responses and adaptive repertoire of modern humans colonising and occupying the changing 

tropical environments of ISEA.  

 

1.2 Thesis Structure 
 

The thesis is divided into nine chapters. Chapter Two lays down the research context and 

intellectual landscape in which the thesis took root and evolved. This chapter tackles the 

biogeographic data for the Philippine archipelago and the palaeoenvironmental background 

for ISEA from the Late Pleistocene to the Holocene. Chapter 2 also delves into the 

archaeological record of modern humans in ISEA. This discussion begins with the earliest 

evidence of modern human occupation of the region and surveys the tropical subsistence 

record of ISEA. The chapter ends with a discussion of the concepts of indigenous knowledge 

(IK) and indigenous ecological knowledge (IEK), as they are applied in archaeology. 

 Chapter Three outlines the research framework, materials and methods chosen for this 

thesis. The ecological framework used here hinges on four ecological perspectives employed 

across the disciplines of biology, archaeology and anthropology. To operationalise this 
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framework, I present the zooarchaeological materials and toolkit of the thesis, consisting of 

the study sites, vertebrate assemblages and faunal analytical methods. 

 Chapter Four provides the archaeological background for the Philippines, with 

particular focus on Luzon and Palawan Islands. This chapter describes the three main study 

sites – Pilanduk, Minori and Musang Caves – and presents how these sites are apt for the 

ecological agenda of the research. Comparative sites in both islands are also presented, along 

with an overview of the faunal assemblages within these sites. The chapter also provides the 

first set of results of the thesis, with the re-excavation and re-dating of Pilanduk Cave. 

 Chapters Five and Six present the core zooarchaeological and morphological data for 

the vertebrate assemblages of Palawan and Luzon, respectively. The results are presented in 

the format of an account of species, which facilitates the discussion of the relevant 

biogeographic and archaeological significance of mammal taxa identified in the assemblages. 

 Chapter Seven provides a biogeographic synthesis of the archaeofaunal data and 

addresses the research question pertaining to Late Quaternary biodiversity changes. The 

chapter combines the zooarchaeological data from the three study sites with published faunal 

studies to present biostratigraphic sequences for the Philippines.  The chapter examines in 

detail the ecological processes contributing to faunal and palaeoecological changes across the 

Holocene. 

 Given the palaeoecological data presented in Chapters Five to Seven, Chapter Eight 

provides the zooarchaeological subsistence data for the three assemblages. A 

zooarchaeological synthesis is also provided by augmenting the primary data with published 

data from Philippine comparative sites.  

 The thesis concludes with Chapter Nine, in which a summary of the palaeoecological 

and zooarchaeological findings and conclusions are presented. These are appraised within the 

broader regional and theoretical setting of the research. To end, avenues for future work are 

offered. 
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Chapter 2 Biogeography, Palaeoenvironments and Human 

Palaeoecology in Island Southeast Asia 

 

2.1 Introduction  

 

This chapter provides the broad research context in which this thesis has developed. The first 

section presents the background for the biogeographic, palaeoenvironmental and geologic 

history of the Philippines and Island Southeast Asia. The second section deals with the 

archaeological record of modern humans in the region, along with evidence for foraging 

practices across different tropical environments. Based on the subsistence record of ISEA, the 

last section brings in the concept of indigenous ecological knowledge, with an overview of its 

theoretical context within anthropology, conservation and development studies. 

 

2.2 Sunda, Wallacea and the Philippines 

 

Island Southeast Asia is comprised of over 26,000 islands spanning across modern-day 

Malaysia, Indonesia, Papua New Guinea, the Philippines and Taiwan. These islands fall into 

three main biogeographic divisions: Sunda, Wallacea and Sahul (Figure 2.1). The Sunda region 

consists of the Southeast Asian mainland and islands lying on or attached to the Sunda shelf. 

Covering over 1.8 million square kilometres, Sunda is known as the largest area of shallow 

submerged continental shelf outside of the polar regions (Hanebuth 2000; Molengraaff 1921). 

Maximum exposure of the shelf is estimated to have occurred during Pleistocene glacial 

maxima and this exposed land mass is called Sundaland (Molengraaff 1921; Voris 2000). To 

the east, the Sahul shelf forms another shallow and drowned continental mass, consisting of 

the Australian continent and New Guinea. Between these two continental shelves are the 

oceanic islands of Wallacea. In general, Sunda has an Asian placental mammal fauna, Sahul has 

an Australasian marsupial fauna, and Wallacea has endemic oceanic faunas with a mixture of 

Asian and Australasian influence. 
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The biota of ISEA has long fascinated scientific communities, particularly since Alfred 

Russel Wallace’s explorations and narratives of the region (Wallace 1859, 1869, 1876). Such 

was the impact of Wallace on classical zoogeography that one of these regions – Wallacea – 

was  subsequently named after him (Dickerson et al. 1928). Huxley (1868) also coined the term 

Wallace’s Line, which was originally drawn by Wallace crossing through the Makassar Straits 

and across the Celebes Sea between Mindanao Island (of the Philippines) and the Talaud 

Archipelago (of Indonesia). Huxley’s modification (Huxley’s Line) of the original line drawn by 

Wallace grouped the oceanic portion of the Philippines in Wallacea, but apportioned Palawan 

Island westward of this line to the Sunda region. As a consequence of these drawn boundaries 

and depending on the faunal classes used, the Philippines is sometimes considered as its own 

zoogeographic region separate from Wallacea, whereas in other instances, it is considered a 

part of Wallacea. 

The physical and environmental setting of the Philippine archipelago lies in the wet 

tropics and characterised by the biome of tropical and subtropical moist broadleaf forests 

(Wikramanayake et al. 2002). Seasonality is largely influenced by rainfall and can vary across 

Figure 2.1 Map of Southeast Asia showing present-day land distribution, biogeographic regions, 
biogeographic boundaries and the major islands mentioned in the text. The -120 m isobath 
approximates the possible extent of land masses during the Last Glacial Maximum. Map drawn by J. 
Villasper.   



 

11 
 

islands. Luzon and Palawan has a mean annual rainfall of 1500-3000mm (Baillie et al. 2000; 

Heaney et al. 2016a). Two prevailing wind systems bring heavy rains to the archipelago: the 

northeast monsoon (October–March) and the southwest monsoon (July–September) (Yumul 

et al. 2011). Temperature varies with increasing elevation, but in the lowlands, it averages 

from 26 to 28°C. The dry season typically lasts from December to April but the duration can 

vary across the archipelago. Prior to extensive anthropogenic disturbance, lowlands were 

dominated by evergreen dipterocarp rainforest. On Palawan, the eastern half of the main 

island is in a rainshadow and contains moist semi-deciduous forests, along with specialised 

forest types in ultramafic soils, limestone and coastal areas (Wikramanayake et al. 2002). 

Similar specialised lowland forest habitats are also found in Luzon. With increasing elevation, 

montane and mossy forests are also found in the mountain ranges of Luzon. 

 

2.2.1 Philippine Biogeography and Geologic History 

 

The Philippines is a volcanic island archipelago that consists of five major faunal regions 

(Figure 2.2), all of which display substantial levels of diversity and endemism (Brown and 

Diesmos 2001; Heaney 1985). Biogeographic syntheses suggest that the archipelago may have 

the highest concentration of endemic terrestrial vertebrates per unit land area on Earth 

(Brown and Diesmos 2009; Brown et al. 2013; Catibog-Sinha and Heaney 2006; Heaney et al. 

2016).  The exceptional rates for endemism within Philippine faunas by themselves necessitate 

the study of these highly diverse components of the earth’s biodiversity that are found 

nowhere else. The study of fossil faunas from Luzon and Palawan involves not just studying 

two island faunas; instead, it encompasses two distinct faunal regions within the Philippines 

that harbour unique and highly speciose ecological communities that have been generated by 

different processes of evolutionary diversification.  From this evolutionary standpoint, the 

Philippines has been regarded as a model island archipelagic system that is valuable for 

understanding general patterns of faunal assembly and diversification (Brown et al. 2013; 

Heaney et al 2016a). From the palaeoecological standpoint of this thesis, the analysis of the 

faunal composition and structure of these island faunas form the baseline by which we can 

examine patterns of biodiversity distribution and faunal change during particular segments of 

the Late Quaternary. 

A synopsis of Philippine mammals by Heaney et al. (2010, 2016a) describes at least 

215 native species, 150 (70%) of which are endemic. The non-volant (non-flying) mammals 

comprise 103 species, 93 (90%) of which are unique to the Philippines. Endemicity is also 
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exceptional at the generic level, with 24 of 84 genera endemic to the archipelago. Further land 

vertebrate summaries across the archipelago show that there are at least 440 native resident 

bird species (56% endemic), 111 amphibians (80% endemic) and 27 reptiles (74% endemic) 

(Brown et al. 2013).  These high rates of diversity and endemism are constrained within a land 

area of only 300,000 km2, and more species are being discovered and described. Half of the 

extant native mammals species (n=28) on Luzon have only been described in the last two 

decades, indicating a very high rate of species discovery (Heaney et al. 2016b). This rate of 

species discovery by modern biologists is said to be matched only by discoveries in Peru and 

Brazil, areas that are more than ten times the size of the Philippines.  

 

Figure 2.2 Map of faunal regions in the Philippines following Heaney (1985, 1986) and 
demarcated using the -120m isobath to show the maximum extent of islands during the 
Last Glacial Maximum. The approximate location of the major mountain ranges of northern 
Luzon are also shown. Map drawn by J. Villasper.   
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The present-day configuration of Philippine faunal regions is shaped by the geology and 

palaeogeography of the archipelago. The boundaries of the faunal regions correspond to the 

maximal extent of land exposed and connected by land bridges during Pleistocene sea-level 

lowstands (Figure 2.2). The Calamianes, Cuyo and Balabac group of islands would have been 

connected to Palawan, forming what is labelled as the Greater Palawan faunal region. In the 

case of Luzon, most of the coastlines would have advanced during sea-level lowstands, and 

several islands off the south and east coast would have been connected to form what is called 

Greater Luzon. As biogeographic sub-units, these connected land areas are also called 

Pleistocene aggregate island complexes (PAICs) (Brown and Diesmos 2001). In this study, 

Heaney’s (1985) original labelling of Greater Palawan and Greater Luzon are used for the two 

PAICs. 

The observed patterns of diversity and endemism on these island complexes are set 

against the complex geological history of the region (Hall 2013; Heaney et al. 2016a). The 

Philippines is situated in one of most geologically active places on earth that is often dubbed 

as the ‘Pacific Ring of Fire’. It is an island arc system bounded on both sides by trench systems 

(the Manila Trench and Philippine Trench) and transected by a major strike–slip fault zone 

(Philippine Fault Zone) (Figure 2.3). On the east of the archipelago lies the Philippine Sea Plate 

and, on the west, the Sundaland-Eurasian Plate. The archipelago itself is composed of two 

major geologic blocks: the aseismic Palawan microcontinental block and the seismically-active 

Philippine Mobile Belt (PMB). The geologic history  for Palawan that is provided here comes 

from the review by Yumul et al. (2009) and Suzuki et al. (2000). Within Palawan, two primary 

geological units or terranes are recognised: the North Palawan Continental Terrane 

(NPCT) and the South Palawan Terrane (SPT). Terranes are older tectonic fragments 

incorporated into younger orogenic systems (Roeder 2012). The NPCT consists of 

sedimentary and metamorphic formations derived from the Asian continent. Its 

northernmost tip and portions of the Calamianes contain the oldest reported sequences in 

the archipelago, which are of Upper Palaeozoic to Mesozoic in age (300 – 60 Ma). The 

sedimentary sequences in the NPCT are of Late Cretaceous to Eocene age (100 – 33 Ma). 

The NPCT was originally attached to what is now Southern China and rifted during the 

opening of the South China Sea basin during the Early Oligocene to Early Miocene (33 – 20 

Ma). The SPT, on the other hand, primarily consists of oceanic-derived rock formations 

that includes the Palawan Ophiolite Complex. The major collision between the Palawan block 

and the PMB is estimated to have occurred during the Early Miocene to early Middle Miocene 

age (20–16 Ma) (Yumul et al. 2003) and reached its current position at about 5 Ma (Hall 

1998; 2013). Uplift of the current mountains possibly occurred not more than 5 Ma, with 
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Mt. Mantalingahan (its highest peak) and other Palawan high peaks reaching their current 

elevations more recently. 

 

  

Figure 2.3 Map of the Philippine Island arc system from Yumul et al. (2009), showing 
the two major tectonic regions in the archipelago: the Palawan Microcontinental Block 
and the Philippine Mobile Belt. Legend (relevant for the discussion): MT = Manila 
Trench, PT = Philippine Trench, Pa = Palawan, CIG = Calamian Island Group.  
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Luzon Island occupies the northern portion of the Philippine Mobile Belt.  The PMB is 

composed of Cretaceous to early Paleogene basement rocks and middle Paleogene to 

Quaternary sedimentary and volcanic cover (Suzuki et al. 2017). The PMB also consists of some 

proto-Philippine Sea Plate fragments and the major components of the basement rocks are 

ophiolite complexes. Based on paleomagnetic data, Luzon and other islands in the PMB have 

been translated northwestward and consequently, rotated clockwise (Hall 2002). The oldest 

geological unit in the island that existed above sea level is the Central Cordillera of the Luzon 

volcanic arc, emerging as a set of scattered islands during the late Oligocene to the Early 

Miocene (26-20 Ma). The Central Cordillera was the only portion of Luzon that had a 

substantial highland area from the period of 15 to 7 million years ago. The Northern Sierra 

Madre coalesced around 5 million years ago and much of the other areas of Luzon would join 

together mostly within the last three million years.  

This broad outline of the geological history and configuration of the archipelago sets 

the stage for evolutionary processes of diversification within the Philippines. Brown and 

colleagues (2013: 413-414) summarise four major processes that have produced and 

maintained Philippine biodiversity: a) isolation of ancient colonists that diversified in 

precursor palaeoislands over the past 5-30 Ma; b) recent arrival of mainland-derived colonists 

through Pleistocene land bridges and island chains; c) stratification and in situ diversification 

along elevational gradients; and d) “species pump” action of oscillating sea levels resulting in 

the repeated formation and fragmentation of PAICs. 

The present-day mammal fauna of Palawan Island is composed of at least 63 native 

species (Esselstyn et al. 2004; Heaney et al. 2010; Hutterer et al. 2018). Fourteen species (22%) 

are endemic to the island, 13 of which are non-volant (non-flying) taxa. Heaney (1986) 

observed that over 90% of Palawan's mammalian genera are shared with Borneo and that 

most species have their closest relatives on the Sunda Shelf. More recently, other authors have 

also explored Palawan's affinities with the oceanic faunas of the Philipppine archipelago. Most 

Palawan vertebrate taxa are indeed shared with the Sunda Shelf only, or with both the Sunda 

Shelf and the Philippines, but there are also vertebrate lineages that are most closely shared 

with the oceanic Philippines (Esselstyn et al. 2010). The  latter includes, for instance,  the 

Palawan spotted stream frog (Rana moellendorffi), the Palawan spadefoot toad 

(Leptobrachium tagbanorum), and the Palawan bearded pig (Sus ahoenobarbus) (Brown and 

Guttman 2002; Brown et al. 2009; Lucchini et al. 2005).  

Luzon Island presents a very different composition from Palawan – an oceanic island 

fauna with exceptionally high levels of endemism brought about by speciation and in situ 

diversification. The mammal fauna supports at least 56 species of native non-volant  species, 
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of which 51 (93%) are endemic to the island (SIEs or single island endemics; Heaney et al. 

2011, 2016a). Of these SIEs, 42 species (76%) are single-area endemics (SAEs, i.e., endemic to 

a single subcentre of endemism within the island). Due to its size and geological complexity, 

Luzon harbours eight known local subcentres of endemism (Heaney et al. 2016a; Rickart et al. 

2011). They are often referred to as ‘sky islands’ because they are isolated mountain ranges or 

mountain tops that harbour distinct habitats and species. Biologists currently working on 

Luzon observe that  no other location has as many endemic species of mammals in an area 

equal to or smaller than Luzon, and that no region contains as many centres of endemism 

(Heaney et al. 2016a). Murids comprise 84% of non-volant mammal diversity on Luzon (47 

out of 56 species). Within the Philippine Muridae, two ancient clades (collectively referred to 

as ‘Old Endemics’) have diversified into an extensive range of morphological and ecological 

specialisations (Heaney et al. 2010; Jansa et al. 2006; Musser and Heaney 1992). Among 

herpetiles (amphibians and reptiles), diversity and endemism is also very high:  at least 110 

species are recognized, 70% of which are endemic (Brown et al. 2013). 

The production of this diversity has been driven by in situ speciation as well as vertical 

diversification along elevational gradients within ‘sky islands’ across the archipelago. It has 

been observed that the species richness of non-volant small mammals increases with 

elevation, peaking at the transition zone from montane to mossy forest (Heaney 2001). This 

pattern has been observed in several mountains in different Philippine Islands that each 

harbour several SAEs  (e.g. Balete et al. 2011; Heaney et al. 1999; Hutterer et al. 2018; Rickart 

et al. 2016). Philippine amphibian and reptile diversity peaks at lower elevations, at 700 - 900 

m (Brown et al. 2013). This unimodal pattern of increasing biological diversity up to an 

intermediate elevation is a general trend observed in many studies of elevational gradients in 

diversity (Lomolino et al. 2016).  

Pleistocene glacial-interglacial cycles comprise another factor amongst mechanisms of 

diversification. These cycles produced alternating episodes of isolation and connection and 

have long been recognized as a main driver in the evolution and assembly of Philippine 

biodiversity within the PAIC paradigm (Brown and Diesmos 2001; Dickerson 1928; Heaney 

1985; Kloss 1929). However, within-island shifts of ecological ranges and barriers also 

promoted divergence and speciation, creating what is labelled as a ‘species pump’ mechanism 

(Heaney 1985; Esselstyn and Brown 2009; Lomolino et al. 2016; Siler et al. 2009). This is 

evidenced from deep phylogenetic splits among terrestrial vertebrate lineages and species 

diversity within-PAICs (=within faunal regions), suggesting that ecological factors apart from 

coastline and land-bridge connections are at play (Brown et al. 2013; Siler et al. 2010; Welton 

et al. 2010). There have been several calls to go beyond the PAIC paradigm to further 
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understand the scale and dimensions of Philippine biodiversity (Brown et al. 2013; Esselstyn 

et al. 2011; Siler et al. 2009; Vallejo 2011). The PAIC theory is able to explain speciation of 

Philippine taxa within the last 5 million years and speciation within the geologically younger 

islands such as Negros and Panay; however, the paradigm finds certain difficulties for deeper 

phylogenetic relationships (Vallejo 2014). Although many of these processes operate within 

long evolutionary timescales, they give shape to the biodiversity and ecological patterns 

observed in the faunal regions across the Late Quaternary. 

This biogeographic overview sets the stage for the analysis of terrestrial vertebrate 

fossils in the archaeological record (Chapters 5 and 6). It also puts into context the relevant 

biogeographic patterns and observations derived from the faunal analysis (Chapter 7). As 

described above, the zoogeography and faunal composition of Palawan Island vary 

significantly from that of Luzon Island, primarily due to their differing geological histories. 

Palawan is in fact distinct within the archipelago for its high levels of Sundaic affinities, 

whereas the fauna of the rest of the archipelago is truly oceanic. It is this contrast that provides 

for a valuable comparison of the two island faunas. Such a contrast is useful for understanding 

patterns of biodiversity and faunal changes in tropical island ecosystems of the region. It also 

allows the examination of varying human impacts in these differing settings. 

 

2.2.2 Southeast Asian Palaeoenvironments and Sea Level Change  

 

The archaeological records covered in this study span the last ca. 67,000 years and are 

subsumed under Marine Isotope Stage (MIS) 4 to MIS-1. A number of marine and terrestrial 

sediment cores in SEA cover MIS-4 and MIS-3. Two deep-sea cores off the island of Sumatra 

document the environment of the island for the last 100,000 years (van der Kaars et al. 2010, 

2012). Multi-proxy palaeoecological data indicate that the environment predominantly 

consisted of closed-canopied complex lowland rainforest and that climatic conditions were 

principally everwet. MIS-4 conditions on the island were drier, with fire activity and 

herbaceous cover increased, and a generally weaker monsoon. Such patterns are said to persist 

until the onset of MIS-1. Both cores also show that the vegetation in Sumatra was most open 

during MIS-3 and that this phase was the driest of the last glacial rather than MIS-2. In contrast, 

other marine pollen records in the region identify the period between 50,000 and 45,000 as 

the driest phase (e.g. Makassar Strait record from Morley et al. 2004; Halmahera Island record 

from van der Kaars 1991; Banda Sea record from van der Kaars et al. 2000). Such incongruities 

imply that there are no direct links between maximum global aridity and the extent of 
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herbaceous taxa in these records (van der Kaars et al. 2010). Another record that covers this 

time period comes from intramontane sediment cores from the Bandung Basin of West Java 

spanning the last 135,000 years (van der Kaars and Dam 1995, 1997). The coldest climatic 

conditions in these records span from ca. 52,000 to 16,000 years, reportedly characterised by 

the decrease of lowland trees and the expansion of montane trees.  

In Niah Cave in Borneo, the 50,000-year old sequence show alternating phases where 

lowland forest taxa and open-ground/montane taxa varyingly dominate pollen assemblages 

(Barker et al. 2007; Hunt et al. 2012). The earliest part of the Niah Cave record (>46,000 BP) 

shows pollen zones belonging to interstadial phases. In certain pollen zones interpreted as 

corresponding to thermal maxima, taxa typical of lowland and swamp forests have been 

identified (Hunt et al. 2012). Another pre-LGM terrestrial proxy comes from Tabon Cave in 

Palawan Island (see Chapter 2.2.3). Re-dating of assemblages and stable isotope analysis of 

guano sequences by Choa (2018) has revealed that the earliest occupation levels are of MIS-3 

age (ca. 39,000 BP) and that the cave environs were characterized by closed forest during this 

period. 

Climate-driven marine transgressions and regressions have repeatedly exposed and 

drowned the Sunda Shelf. The Southeast Asian tropics were less prone to extreme temperature 

shifts during glacial-interglacial cycles, but these glacio-eustatic changes produced dramatic 

geographic remodeling of the region (Sathiamurthy and Voris 2006; Voris 2000). During 

periods of glacial maxima, the Sunda Shelf would have been exposed and islands such as Java, 

Sumatra and Borneo were connected to the mainland. At the LGM, the sea-level lowstand is 

estimated at -123 ± 2 mbpsl (meters below present mean sea level) (Hanebuth et al. 2009). 

Bathymetric reconstructions using Geographic Information Systems (GIS) show that 

Sundaland doubled in size, with an additional 2.3 million km2 exposed during the terminal 

phase of the LGM (Sathiamurthy and Voris 2006). In Wallacea, numerous oceanic islands were 

also enlarged and/or connected to one another, such as in the Maluku Islands, Lesser Sundas 

and the Talaud archipelago (O’Connor et al. 2017). LGM reconstructions of Sundaland also 

depict a broad plain of low relief that is drained by several complex river systems 

(Sathiamurthy and Voris 2006; Voris 2000). Amongst these, the North Sunda River is the 

largest palaeoriver system identified, and it flowed and drained to the northeast (Tjia 1980). 

The epicontinental seas surrounding SEA are part of the Indo-Pacific Warm Pool  

(IPWP), which is a major source of heat and driver of global oceanic circulation and 

atmospheric processes (Bird et al. 2005; Gagan et al. 2004; Webster 1994). With the exposure 

of the Sunda Shelf, a reorganisation of oceanic currents and heat and moisture transport 

systems would have been in effect in the region (De Deckker et al. 2003). It is estimated that 
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sea surface area was only 1.6 times the size of land exposed during the LGM, whereas it is 4.1 

times at present. Reconstruction of sea surface temperatures (SSTs) in the IPWP during the 

LGM shows a decrease of 2°- 3°C compared to the present (De Deckker et al. 2003; Gagan et al. 

2004). This lowering would have led to a drier atmosphere, diminished level of cloud cover 

and a further cascade of atmospheric changes that would have forced the tree line to drop.  

These climatic, sea-level, and geographic changes would have consequently shaped 

vegetation patterns across the region. From the Khorat Plateau in Thailand to the islands of 

Sulawesi and Java, many pollen records across the region show that it had a drier environment 

during the LGM (e.g. Dam et al. 2001; Hunt et al. 2016; Morley 1981; van der Kaars and Dam 

1995; Wurster et al. 2010; Yang and Grote 2018). The absence of lowland peat accumulation 

in the region during this period also supports drier environmental regimes  (Anshari et al. 

2004; Dommain et al. 2014). Such data have been used to support the hypothesis that a 

savanna corridor  existed in the central region of Sundaland, as well as on the western flank of 

the Philippine archipelago, following Heaney (1991). Pollen, geomorphological and other 

environmental proxies for the LGM appear to support such a scenario, along with the 

contraction of closed forests (Bird et al. 2005; Gathorne-Hardy et al. 2002). It has been pointed 

out, though, that comparable palynological studies in the central part of the Sunda Shelf are 

lacking, and so it remains open to interpretation whether such a savanna corridor existed 

(Morley 2018). Among available LGM proxies, rainforest refugia are argued for several regions 

such as Sumatra (Stuijts et al. 1988; van der Kaars et al. 2012), Borneo  (Gathorne-Hardy et al. 

2002; Hunt et al. 2012) and the northern edge of the Sunda Shelf (Sun et al. 2000). Climate 

modelling (Cannon et al. 2009) and tree population modelling for dipterocarps  (Raes et al. 

2014) propose that the climate of central Sundaland was possibly suitable to sustain 

dipterocarp rainforest, contrasting with the hypothesis of a transequatorial savanna corridor. 

Morley (2018) suggests that more seasonally dry vegetation types, such as semi-evergreen and 

deciduous forests, may have been possible instead of open savanna vegetation. More recently, 

stable carbon isotope records from bat guano sequences in Saleh Cave lend support to the 

presence of savanna vegetation in equatorial Borneo for much of the last 40,000 years 

(Wurster et al 2019), contrasting with other environmental proxies on the island indicating 

rainforest refugia. 

The warming trend after the Pleistocene led to a suite of palaeoenvironmental changes 

including sea level transgression, a strengthening of the Asian monsoon, and the expansion of 

forested environments (e.g., van der Kaars and Dam 1997; van der Kaars et al. 2000; Kershaw 

et al. 2007; Wang et al. 2008).  This shift from cold/dry to very warm/humid conditions is 

supported by speleothem records from Borneo (Partin et al. 2007) and Flores (Griffiths et al. 
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2009) showing evidence for an increase in precipitation. The sea continued to rise and 

inundate the Sunda shelf: at the beginning of the Holocene, sea levels were at around -48 m 

and the rise continued to levels even higher than present during the mid-Holocene high-stand 

(Horton et al. 2005; Maeda et al. 2004; Tjia 1996). An accelerated increase of sea levels in 

Southeast Asia is recorded during 14,300 -13,100 BP at 1.33 m /100 years during meltwater 

pulse IA (Hanebuth et al. 2000). Within this period, the most rapid record of flooding is 

estimated between 14,600 and 14,300 BP, when sea level rose from −96 to −80 m at an 

accelerated rate of 5.33 m per 100 years. 

 

2.2.3 Palawan Island Palaeoenvironments 

 

A number of palaeoenvironmental records from Palawan Island provide a picture of 

vegetation, climate and palaeogeography from MIS-3 to MIS-1 (Figure 3.1).  As mentioned 

above, Choa’s (2018) re-dating of Tabon Cave Flake Assemblages II and III (sensu Fox 1970) 

pushes the age range of these layers to 33,000 – 39,000 cal BP (see Chapter 4). Tabon Cave is 

located in the southern portion of the Island. Choa’s (2018) stable isotope analysis of three 

phases of ancient cave guano deposits reveals environments that are predominantly 

characterised by closed forest. The youngest of these sequences corresponds in age with Flake 

Assemblage III at ca. 39,000 cal BP. It is suggested that during this period, conditions were 

drier than at present, with possible clearings and other open areas, although the environment 

was still generally characterised by closed forest. 

 
From the LGM to the onset of the Holocene, two cave sites present evidence for 

changing vegetation communities on the island based on stable carbon isotope analysis of 

guano sequences. The first methodological attempt to obtain a proxy environmental record 

using tropical cave guano was applied in Makangit Cave in El Nido, northern Palawan (Bird et 

al. 2007). Results show that carbon-isotope values in ancient guano deposited during the LGM 

are indicative of a C4-dominated grassland around the cave at this time. The data also suggest 

that the climate of northern Palawan was substantially drier at the LGM than at present. By the 

mid-Holocene, the open vegetation was replaced by C3-dominated closed tropical forest, 

similar to that of the present. The same method was applied in Gangub Cave in southern 

Palawan (Wurster et al. 2010). The Gangub Cave guano sequence shows that closed forest was 

present in the area ca. 50,000 – 33,000 BP. Thereafter, a substantial increase in δ13C values is 

recorded during the LGM, indicating the presence of open savanna (C4) vegetation. Closed 
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rainforest is said to have expanded again by ca. 13,500 BP. Together, the ancient guano profiles 

from Makangit and Gangub Caves show that the north and south of Palawan were dominated 

by open savanna during the LGM  and rainforest refugia proposed by other authors (Meijaard 

2003; Cannon et al. 2009) must have been severely reduced (Wurster et al. 2010: 15510).  

Marine cores off the coast of the southern Philippines present further 

palaeoenvironmental evidence from MIS-2 to the present. The first is a high-resolution 

planktonic δ18O record from the Sulu Sea, which provides a record of SST change in the last ca. 

25,000 years (Rosenthal et al. 2003).  The data suggest that SST during the LGM were cooler 

by 2.3 ± 0.5°C and that this rose to approximately modern levels by the beginning of the 

Holocene.  

A marine pollen record from the Davao Gulf off the southern coast of Mindanao Island 

also provides evidence for the last ca. 30,000 years (Bian et al. 2011).  The base of this record 

indicates that vegetation cover was dominated by tropical upper montane and lowland 

rainforests, although the lower montane rainforest was suppressed, along with open 

herbaceous swamp and mangrove vegetation. The pollen record further suggests that upper 

montane vegetation expanded to lower altitudes, with a concomitant increase of herbaceous 

cover. The data are consistent with other Palawan and regional proxies reflecting cooler and 

drier conditions during the LGM. By the Early Holocene, there is a recorded reduction in 

montane and herbaceous taxa, suggesting the onset of warmer and wetter climatic conditions. 

Relatively high levels of herbaceous pollen are recorded during the Late Holocene, which 

suggests a more open environment than in the Early Holocene. However, the area was still 

generally covered by tropical lowland rainforest at this period. 

The only terrestrial pollen record for Palawan comes from the >5000-year Makinit peat 

sequence in El Nido, northern Palawan (O’Donnell 2016). This record shows evidence of 

marine regression and hydrological fluctuations that are likely related to ENSO cyclicities. In 

contrast to the Holocene guano sequences described above, this pollen record details the 

persistence of open landscapes in northern Palawan during the last 5000 years, with minor 

evidence of closed forest after 2750 cal BP. Such data may relate to other palaeoclimatic 

proxies indicating ENSO (El Niño - Southern Oscillation) intensification from ca. 3000 cal BP 

(Gagan et al. 2004). However, O’Donnell (2016) does not speculate further on anthropogenic 

versus natural causes of open vegetation regimes due to problems of equifinality of pollen 

signatures. 

The geographic configuration of Palawan during the Late Quaternary is also crucial in 

building the palaeoenvironmental history of the island. Like many other islands in ISEA, the 
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maximum exposure of Greater Palawan during the Pleistocene occurred during sea-level low-

stands. Because of the Sundaic affinities of its fauna, the question of a land bridge with Borneo 

is also of long-standing interest. The maximum depth separating Palawan from Borneo is 

measured at 145 m across the Balabac Strait, making it unlikely that a connection existed 

during the LGM when sea levels were lowered to -116 to -123 m. GIS-based reconstructions of 

Palawan’s palaeocoastlines by Robles et al. (2015) suggest a minimal connection may have 

been present in the Middle Pleistocene at ca. 420,000 BP. This is based on the data from 

Rohling et al. (1998) suggesting that ice volumes during the glacial period at ca. 450,000 BP 

may have been ~15% greater than at the LGM and greater than at any time during the last 3 

million years (Bird et al. 2007; Lambeck et al. 2002). Along with biogeographic and fossil 

evidence (Heaney 1985, 1986; Piper et al. 2011; Reis and Garong 2001), the most recent data 

indicate that this episode in the Middle Pleistocene may have been the most recent time a land 

connection existed between Borneo and Palawan. The GIS reconstructions (Robles et al. 2015) 

also estimate that post-LGM transgression from 19,000 to 14,500 BP would have drowned 

approximately 4033 km2 of Greater Palawan (at a rate of ~92 km2/100 yrs). The onset of the 

Holocene, when sea levels stood at about -48 m, is possibly marked by a change in the local 

hydrological regime of Ille Cave, as reflected in its geoarchaeological history. At ca. 13,000-

12,000 BP, a long phase of stream deposition ceased and cave deposits became more organic 

and dry (Lewis et al. 2008). The GIS coastline reconstructions also further show that the 

appearance of mid-Holocene shell middens in several Palawan sites was brought about by the 

formation and proximity of mangrove forests during the sea-level high-stand. 

 

2.2.4 Luzon Island Palaeoenvironments 

 

For Luzon Island, there are fewer palaeoenvironmental proxies available. Two terrestrial 

pollen records are known (Figure 3.1). The first comes from a 7000-year core from Paoay Lake 

in the northwestern portion of the island (Stevenson et al. 2010). This record reflects 

vegetation changes in the surrounding coastal plain and the adjacent Central Cordillera range 

and Ilocos mountains. There is no direct pollen record available for the archaeological 

assemblages covered in the study, which are located in the northeast portion of the island and 

at the foothills a separate mountain range, the North Sierra Madre. At ca. 6500-5000 BP, 

submontane forest disturbance is observed in the Paoay record, characterised by high values 

for Pinus. Charcoal is abundant throughout the Paoay record, but its highest values appear to 

coincide with the Pinus-related disturbance during the mid-Holocene. Pinus values increase 
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once again after 4200 BP, but the percentage input does not return to values recorded in the 

pre-5000-year levels until after 1000 BP. 

The only other Luzon pollen record comes from Laguna de Bay (Ward and Bulalacao 

1999). This lake is situated at the southwest section of the island and also southward of the 

Central Cordillera. There is minimal representation of pine pollen in this record, since the 

prevailing southwest monsoon prohibit accumulation from pine forests in the Central 

Cordillera. The Laguna de Bay record indicates forest decline at ca. 5000 BP, which parallels 

with the Paoay record. The results from both pollen studies are interpreted as climate-driven 

changes, possibly during a period of higher temperature and lower rainfall in the mid-

Holocene. For the Paoay record, it is suggested that forests appear to have slowly recovered in 

the succeeding 3000 years. In contrast, forest recovery is not observed in the Laguna de Bay 

record; instead, grass and charcoal concentrations continue to increase after 2500 BP.  

Related to the palynological data are sea surface salinity records developed from fossil 

and modern coral data from the South China Sea (SCS) (Yokoyama et al. 2011; see Figure 3.1). 

This 6600-year old record was taken off the Currimao coast of northwest Luzon, 

approximately 50km to the south of Paoay Lake. The data suggest an increase in salinity that 

is attributable to less precipitation in the northern SCS. The cooler and drier SCS, in turn, is 

connected to the enhanced Asian Monsoon and the northward shift of the inter-tropical 

convergence zone. The analysis by Yokoyama and colleagues runs parallel with studies near 

Hainan (west coast of SCS) (Sun et al. 2005) and in the Great Barrier Reef (Gagan et al. 1998) 

that higher sea surface salinity is recorded across the IPWP region at least until 4400 BP. 

These palaeoenvironmental records are crucial for understanding the ecological 

histories of the island faunas (see Chapter 7). They also form the broad canvas for human 

occupation and adaptation in the region from the Late Pleistocene to the Holocene. The 

overview that follows begins from the earliest modern human colonisation of ISEA and 

continues into the Holocene.  
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2.3 Modern Human Adaptations and Tropical Foraging in Island 

Southeast Asia 

 

The behavioural repertoire and technological flexibility of Homo sapiens is given breadth by 

the Late Pleistocene records of Southeast Asia in the form of tropical foraging strategies and 

maritime adaptations. Mounting evidence has come to light, particularly in the last decade 

when there has been an upsurge in Palaeolithic research in the region. This regional record is 

providing a more diverse picture of human adaptability and alternative views on human 

‘modernity’.  SEA has not traditionally been in the forefront of discussions on the Upper 

Palaeolithic, largely because of persisting descriptions of ‘primitive’ and ‘conservative’ lithic 

industries that date back to the descriptions of Movius (1948). Southeast Asian and 

Australasian lithic tools do not conform to formal types known from other regions of parallel 

ages and currently do not permit differentiation of human groups or tool traditions in the 

region (Moore and Brumm 2007; Pawlik 2009; Xhauflair et al. 2016). Some authors explain 

this phenomenon based on the loss of technological diversity with distance from Africa owing 

to stochastic effects and founder effects (Lycett and Norton 2010; Mellars 2006). Others see 

this as a refutation of the perceived inevitability of the technological sequence seen in Africa 

and Eurasia (Moore and Brumm 2007). Further explanations suggest that technological 

developments happened in other media – such as in plants, in the form of the ‘bamboo 

hypothesis’ (e.g. Pope 1989; Solheim 1972; Xhauflair et al. 2016), and in shell tools (Szabo et 

al. 2007). The ‘Upper Palaeolithic’ evidence in the region comes from a variety of tropical 

environments, ranging from the caves of continental Borneo, Java and Vietnam, to the oceanic 

islands of the Philippines and Timor, and further afield to the highlands of New Guinea (Barker 

et al. 2007; O’Connor and Bulbeck 2014; O’Connor 2015; Rabett 2012; Summerhayes et al. 

2010). This regional record has consequently challenged conventional assumptions regarding 

the behavioural modernity of our species and is providing insights into the lifeways of foragers 

that successfully colonised and inhabited these diverse environments. 
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2.3.1 Modern Humans in Island Southeast Asia 

 

The earliest unambiguous fossil evidence for modern humans in Island SEA is the ‘Deep Skull’ 

from Niah Cave in Borneo, dated at 45,000–39,000 cal BP (Barker et al. 2007; Barker and Farr 

2016). In mainland SEA, Demeter et al. (2017) report cranial remains attributed to Homo 

sapiens from Tam Pa Ling Cave (Laos), with an age range of 63,000 to 44,000 BP. In the 

Philippines, human remains from Tabon Cave are suggested to be of similar age, having been 

dated by uranium-series techniques to 47,000 +/- 11,000 years ago (Detroit et al. 2004). On 

Luzon Island, Callao Cave produced a single human third metatarsal fossil of greater antiquity 

and was provisionally ascribed to H. sapiens (Mijares et al. 2010). The fossil is associated with 

hunted faunal remains showing cutmarks and is dated by uranium series and electron spin 

resonance methods to between 67,000 and 52,000 years ago. More recently, additional fossils 

have been described and this fossil human has been ascribed to a novel species, Homo 

luzonensis (Detroit et al. 2019). In this thesis, the focus is on modern humans, but the 

Pleistocene record of Callao Cave also presents an opportunity to examine subsistence modes 

of an endemic island hominin and compare this to H. sapiens. 

Claims for a much older presence of modern humans come from the continental island 

of Java, specifically from the Punung locality where a human premolar is designated as H. 

sapiens (Storm et al. 2005). The Punung III breccia, and consequently the tropical rainforest 

Punung fauna, has been dated to 128 – 115 ka BP (Westaway et al. 2007), suggesting that H. 

sapiens may have arrived in Southeast Asia during the last interglacial. This MIS 5e age 

coincides with several fossil finds from southern China. In Tongtianyan Cave, Liujiang, a 

modern human cranium is reported to have an age between 111–139 ka (Shen et al. 2002). 

Zhiren Cave in Guangxi Zhang also produced dental remains ascribed to modern humans with 

a minimum age of 113-100 ka (Liu et al 2010). More recently, a larger fossil sample of teeth 

(N=47) from Fuyan Cave, Daoxian is more definitively ascribed as H. sapiens (Liu et al. 2015). 

The age of the fossils is bracketed between 120,000–80,000 year ago based on dating of 

speleothems and biostratigraphic association.  
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2.3.2 Subsistence Strategies in Island Southeast Asia 

 

The current corpus of archaeological data for the region provide greater detail into the lifeways 

and technologies of Homo sapiens populations by ca. 50,000 years ago. In this review, I turn 

my focus specifically to the earliest records found in Island Southeast Asia. As noted by  

O’Connor and Bulbeck (2014:11), tools made of organic materials and subsistence remains 

demonstrate the use of sophisticated composite tools, plant exploitation strategies, and 

capture technologies for prey taxa.  This is exemplified by the 50,000-year old record of Niah 

Cave in Borneo, which shows evidence from the earliest occupation levels of habitat-tailored 

foraging, trapping and projectile hunting technologies for terrestrial fauna, tuber digging, plant 

detoxification and forest burning (Barker et al. 2007; Barker and Farr 2016). It also provides 

one of the oldest dated examples of unequivocal rainforest foraging in the Indo-Pacific region. 

Gathered plants included a wide range of rainforest taxa of roots, tubers, palms, fruits and nuts, 

including toxic varieties which needed leaching techniques prior to consumption (Barton et al. 

2016; Barton 2005; Paz 2005). The diverse terrestrial vertebrate taxa also indicates a variety 

of hunting and trapping methods used to exploit different habitats surrounding the cave 

system (Barton et al. 2009; Rabett et al. 2006). Bone tools also appear at the base of the Niah 

cultural deposits (N=3), and become much more abundant (N=77) in the Terminal Pleistocene 

and Early Holocene (Rabett 2005; Piper and Rabett 2009). 

The work in Niah has also extended into several sites in the Kelabit highlands of central 

Borneo (Barker et al. 2017; Jones et al. 2013; Hunt and Premathilake 2012). From ca. 7000 

years ago to the second millennium AD, there is evidence of pollen changes and disturbances 

that are indicative of forest clearance, sago management and, later on, mound building. At 

10,000 years ago, there is also early evidence of the translocation of Metroxylon, a sago taxon 

native to New Guinea (Hunt and Rabett 2014). The long histories present link to the present, 

particularly to the molong system of plant management and forest stewardship of the Penan 

foragers and to antecedent farming practices and mound-building among the Kelabit (Brosius 

1991; Janowski and Langub 2011). Nonetheless, the extensive record also shows practices that 

have no known modern analogues. Such a case is presented in the differential butchery 

practices of viverrids and monkeys at Niah (Piper and Rabett 2016) and the possible 

translocation of sago palms from upland ridges to valley bottoms in the Late Holocene (Barker 

et al. 2017). 
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In the oceanic islands of Wallacea, complex maritime technologies are necessary for 

colonisation and there is growing evidence for it. The occupation of Wallacea, Near Oceania 

and Australia necessitated separate open-sea crossings from a few tens to a few hundred 

kilometres. Actual remains of ancient watercraft technologies have not yet been reported; 

however, what has been archaeologically visible is evidence for coastal and marine resource 

exploitation, especially in places where coastlines were relatively stable throughout the Late 

Pleistocene (Erlandson 2001; Robles et al. 2015). Earliest examples derive from Jerimalai and 

Lene Hara in East Timor (O’Connor et al. 2002, 2011) and Leang Sarru in Talaud Island (Ono 

et al. 2009). In Jerimalai rockshelter, evidence for pelagic fishing is traced back to 42,000 years, 

and earliest fish hook manufacture is dated between 23,000 and 16,000 years BP (O’Connor et 

al. 2011). Such early dates are significant not only for the region, but for the global seafaring 

record of Homo sapiens.  

In terms of aquatic resources and tool technologies, the molluscan record plays a 

central role. The Jerimalai fish hooks are made of sea snails of the genus Trochus. Early shell 

artefact production is also present in Golo Cave (Gebe Island) by 32,000-28,000 BP, where it is 

observed that the knappers were producing more sophisticated tools from Turbo opercula 

compared to their lithic counterparts in the same site and period (Szabo et al. 2007). The 

exploitation of molluscs as food expands in the record of SEA by around 40,000 years ago, with 

variable habitats being explored throughout the Pleistocene and Holocene (Szabó and 

Amesbury 2011). Another notable example is from the 35,000-year old site of Leang Sarru 

rockshelter in the Talaud Islands. The faunal record of the Pleistocene is exceptional in that it 

consists solely of marine shellfish, with no fish or terrestrial remains (Ono et al. 2009).  

Further into Melanesia, the Late Pleistocene record of New Guinea presents some 

remarkable evidence for human occupation of tropical highland forests. The 50,000-year old 

record of the Ivane Valley provide evidence for early arboriculture or forest management 

practices (Summerhayes et al. 2010; 2017). The sites are found over 2000 m above sea level 

and show repeated burning in areas without natural fires. Archaeobotanical data indicate the 

exploitation of Pandanus nuts and yams. 

Of particular relevance to the PhD research are sites dating to the MIS-2 (29,000-

11,700 BP) because of the reported LGM age of one of the main study sites in the thesis 

(Pilanduk Cave) and the reported ages of comparative sites (Callao and Ille Caves). Some of the 

sites in Nusa Tenggara (Lesser Sundas) are already mentioned above, and here I enumerate a 

few others, with particular reference to sites from the LGM (25,000-18,000) and their 

subsistence data. LGM sites are relatively few in the region, compared to Terminal Pleistocene 

and Early Holocene sites. In the Philippines, Callao Cave of northern Luzon has a 26,000-year 
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old layer with elongated or blade-like lithic implements  (Mijares 2008). This is slightly older 

than the LGM, but it is the only other Philippine site (apart from Pilanduk Cave) dated around 

this period so far. Exploitation of forest products in Callao Cave is said to be evident from 

parenchymatous tissues of tubers and starch grains. The lithic tools are said to be  comparable 

to those found in the 17,000 year old levels of Hagop Bilo rockshelter on Borneo (Bellwood 

1988; O’Connor and Bulbeck 2014). Nonetheless, with the announcement of H. luzonensis, 

there is uncertainty with regards to the ascription of which human species resided in the Callao 

Complex during this period due to the absence of human remains in this layer. 

 In Java, Braholo Cave contains well-preserved LGM faunal assemblages, which show 

the prevalence of animals adapted to an open environment in the LGM (Amano et al. 2015; 

Simanjuntak 2004). This is said to contrast with the subsequent predominance of arboreal and 

semi-arboreal species during the onset of the Holocene.  In Sulawesi, Leang Sakapao and Leang 

Burung 2 show occupation levels between 30,000-25,000 years ago, but appear to have been 

abandoned at the height of the LGM (Bulbeck et al. 2004). Freshwater shells are said to be 

predominant over vertebrate faunal remains in the sites. 

Terminal Pleistocene and Early Holocene sites across the region (after ca. 16,000 BP) 

show increase in intensity of occupation and in the abundance of tropical rainforest taxa. These 

are evident for example in the Niah Caves of Borneo (Barker et al. 2007; Piper and Rabett 

2016), Hang Boi in northern Vietnam (Rabett et al. 2009), Song Terus in Java (Semah et al. 

2004) and Ille Cave in Palawan Island (Lewis et al. 2008). Bone technologies appear from ca. 

45,000 years ago, but it was not until after the LGM that they become a more widespread 

component of forager toolkits (Rabett 2005, 2012). These changes occur against the backdrop 

of sea-level and environmental changes described above. It is at this point when tropical 

rainforests expand at the end of the Pleistocene that a subsistence shift to a broad-spectrum 

diet appears across the region (O’Connor and Bulbeck 2014). 

 

2.3.3 Tropical Rainforest Foraging 

 

As a subset of the Palaeolithic record, there is now growing evidence for tropical rainforest 

foraging and its importance in the evolution of our species (Mercader 2002; Roberts et al. 

2015).  Prior to this, such ecosystems where variously negatively perceived as ‘green deserts’ 

and barriers to human expansion (e.g. Bird et al. 2005; Boivin et al. 2013). This perceived 

marginality promoted a concurrent peripheral treatment of such environments in 

archaeological and palaeoanthropological investigations of human and hominin adaptations. 
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In Asia, a notable portion of these environments also covered areas east of the Movius Line, 

which were previously considered as prehistoric backwaters in lithic studies.  

The ‘green desert’ debate refers to an old discourse and question raised by Headland 

and Bailey (1991) in a journal issue of Human Ecology dedicated to the question of whether 

hunter-gatherers have ever lived in tropical rain forests independent of agriculture. Bailey et 

al. (1989) explored this hypothesis by arguing that despite high biomass in tropical rainforests, 

edible plants, carbohydrate sources and calorie-rich fatty foods are all highly dispersed and 

more seasonal than generally acknowledged. Headland (1987) posed the question in terms of 

a starch scarcity hypothesis – also labelled as the ‘wild yam question’ – arguing that the critical 

limiting factor for human subsistence in rainforests was wild starch foods. Both authors came 

to the conclusion that at that time, there was no sufficient evidence and unequivocal cases in 

the ethnographic and archaeological literature of peoples living in tropical rainforests without 

access to cultivated foods.  

The hypothesis stimulated research on tropical foraging, as well as a lot of critique. In 

the same volume itself, several authors present evidence contrary to Headland and Bailey’s 

null hypothesis. Brosius (1991) posed strong challenges to the conceptual assumptions of the 

hypothesis. This included the notion of ‘pure foraging,’ the dichotomy between agriculture and 

foraging, and the variability and ecotones in tropical forest ecosystems. Many of these 

objections relate to the working definition of foragers and hunter-gatherers. Brosius 

(1991:145) presents the case of the Western Penan in the 1980s as that of a foraging mode of 

subsistence “without recourse to agricultural supplements in areas mostly undisturbed by 

previous clearance.” Within the stewardship concept of molong, the Penan actively manage 

sago (Eugeissona) as their main starch source, and preferably hunt the bearded pig as a source 

of protein and fat. 

Mercader (2002) provided critiques of these negative perceptions on tropical 

rainforests and instigated further studies on rainforest archaeology. This was particularly in 

the context of the African continent, where he suggested that Homo sapiens could have utilised 

these habitats as early as ca. 200,000 years ago. At this point, it was clear from other sources 

that as populations expanded outside of Africa, Homo sapiens successfully colonised and 

occupied such environments in Asia and into the islands of the Indo-Pacific. Over a decade on, 

Barton et al. (2012) and Roberts (2017) present several examples of long-term research on 

human-rainforest interactions, with vital  papers coming from Southeast Asia and Melanesia. 

Indeed, despite the ‘green desert’ debates of their time, even Bailey et al. (1989) recognized 

that Southeast Asia presented a promising venue for exploring this question. The evidence for 

rainforest foraging across the Indo-Pacific region now definitively extends back into the Late 
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Pleistocene, with sites from South Asia (Roberts et al. 2015), Borneo (Barker et al. 2007, 2016; 

Bulbeck 2003), Sumatra (Westaway et al. 2017) and New Guinea (Summerhayes et al. 2010; 

2017).  

 

2.4 Indigenous Ecological Knowledge 

 

The palaeoecological and zooarchaeological data generated in this research is also framed 

within the concept of indigenous ecological knowledge (IEK). This concept is often 

synonymously used with the term traditional environmental/ecological knowledge (TEK). 

TEK or IEK refers to “a cumulative body of knowledge, practice, and belief, evolving by adaptive 

processes and handed down through generations by cultural transmission, about the 

relationship of living beings (including humans) with one another and with their environment” 

(Berkes et al. 2000: 1252). IEK and TEK fall under the broader rubric of ‘indigenous 

knowledge’ or IK. The latter is often juxtaposed against conventional ‘western knowledge’ or 

‘Western science’. However, the epistemological distinction between indigenous knowledge 

and other forms of knowledge – such as western, scientific, etc. – has been rightly critiqued and 

collapsed (Agrawal 1995; Ellen 2004; Sillitoe 1998). It is recognized that there are substantial 

methodological and substantive overlaps among these knowledge systems, and all are 

themselves culture-bound (Ellen and Harris 2005). Nonetheless, the use of the concept 

persists, particularly in the literature of development studies and conservation to refer broadly 

to technologies and practices developed in local niches, and which may or may not be unique 

to a particular community or culture (Stump 2015: 2).  

The term ‘indigenous’ is highly contentious in archaeological and anthropological 

discussions. The term indigenous is typically laden with political and moral significance, and 

is often used as an identifying marker to protect rights and interests of particular groups. 

Arguably, it is in these struggles over rights and territories that IK and IEK can be located and 

where it takes on relevance and meaning (Li 2005). It has been observed that it appears 

impossible to use ‘indigenous’ in a morally neutral or apolitical way (Ellen and Harris 2005). 

Conceptually, the term can force an oppositional logic of ‘us and them’ and more particularly, 

a ‘hegemonic opposition’ of a privileged (non-indigenous) us to a subordinate them (Ellen and 

Harris 2005: 2). This form of ‘othering’ is part and parcel of the history of archaeological and 

anthropological practice – and simmering underneath the notion of indigeneity are the 

disciplines’ colonial origins. In her manifesto of ‘indigenous archaeology as decolonizing 

practice’, Atalay  (2006: 284-85) explains several levels on which this manner of ‘othering’ 
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operates. Through colonial contact, European and American ‘westerners’ initially gained the 

power to study not only people distant from themselves temporally (distanced by time) but 

also the pasts of others who were distant from themselves culturally and geographically. As 

the discipline developed during the 20th century, archaeologists have utilised western 

epistemologies to study the lifeways of others. This research has been carried out by scholars 

using western methodologies and generated in western-dominated forms of discourse and 

practice. Such epistemologies and methodologies have then been transferred to and engaged 

by local archaeologists, who can often find themselves reproducing works based on these 

dominant archaeological paradigms.  

 
Beyond the confines of archaeology and anthropology, the notion of indigeneity also 

carries much ambiguity and conflicting ethical weight. The label of IEK and IK entails belonging 

and ownership to indigenous peoples. The most widely cited ‘working definition’ of indigenous 

peoples was devised by Special Rapporteur José Martinez Cobo (1986-1987) in the landmark 

United Nations study of the Problem of Discrimination against Indigenous Populations: 

“Indigenous communities, peoples and nations are those which, 

having a historical continuity with pre-invasion and pre-colonial societies 

that developed on their territories, consider themselves distinct from other 

sectors of the societies now prevailing in those territories, or parts of them. 

They form at present non-dominant sectors of society and are determined to 

preserve, develop and transmit to future generations their ancestral 

territories, and their ethnic identity, as the basis of their continued existence 

as peoples, in accordance with their own cultural patterns, social institutions 

and legal systems.” (Martinez Cobo 1987: paragraph 379) 

Under Philippine Law, the definition of indigenous cultural communities or indigenous 

peoples (ICCs or IPs) is defined under the Indigenous Peoples Rights Act (IPRA) of 1997:  

“ICCs and IPs - refer to a group of people or homogenous societies 

identified by selfascription and ascription by others, who have continuously 

lived as organized community on communally bounded and defined territory, 

and who have, under claims of ownership since time immemorial, occupied, 

possessed and utilized such territories, sharing common bonds of language, 

customs, traditions and other distinctive cultural traits, or who have, through 

resistance to political, social and cultural inroads of colonization, non-

indigenous religions and cultures, became historically differentiated from the 

majority of Filipinos.” (Republic Act No. 8371, Chapter 2, Section 3) 
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The notion of historical continuity is contingent to these definitions. In the case of the 

Philippines, pre-colonial historical connections (i.e. before the 16th century) of IPs help 

characterise indigeneity.  Evidence for this part of the Philippine past is largely in the remit of 

archaeology, particularly in prehistoric archaeology. This is due to the fact that historical 

narratives of the Philippines overwhelmingly dwell on ‘colonial periods’ of the last few 

centuries, and gloss over the deeper past. Given this problematic state of Philippine 

historiography, archaeology has the potential to uncover ‘precolonial’ past(s) and reveal 

indigenous lifeways prior to Spanish and American colonisation. Such acts of reclaiming one’s 

past (or multiplicities of the past) are essential to the project of decolonisation. 

Archaeological attempts to characterise and redefine indigenous pasts coalesce in the 

praxis of indigenous archaeology. This encompasses active engagements and collaborations of 

archaeologists and local communities in the practice and interpretations of archaeological 

research. Nicholas (1997:85) defined indigenous archaeology as “archaeology done with, for, 

and by indigenous people”. Smith and Wobst (2005) have also advocated for an archaeology 

shaped by indigenous knowledges such that it helps to decolonise the discipline. This practice 

of archaeology is growing today because indigenous peoples are actively creating “counter-

discourses that speak back to the power of colonialist and imperialist interpretations of the 

past” (Atalay 2006: 294). It is further argued that indigenous archaeology need not only be 

done by Indigenous or Aboriginal persons. Instead, as part of decolonising methodologies, the 

research agenda of indigenous archaeology encompass critiques of power imbalances in 

mainstream archaeological practice that marginalise indigenous views and approaches that 

seek to make archaeology more relevant to indigenous peoples. To this end, Nicholas (2010) 

has called for ‘the end of indigenous archaeology’, i.e. to de-centre it from the margins and 

incorporate it into the mainstream of the discipline.  

De-centering indigenous contributions and promoting multivocality in interpretations 

of the past are also critical elements of a postcolonialist agenda (e.g. Damm 2005; Deloria 1997; 

Lane 2006, 2011; Smith 2013). It has been argued that despite the colonial origins of the 

discipline, archaeology can be a form of anti-colonial practice through its attempts to recover 

unwritten pasts of former colonial subjects and challenge the denigration and dismissal of the 

history of indigenous groups (Lane 2011:11). The usage of the IK concept is situated within 

this broader agenda of decolonisation and active engagements and partnerships of 

archaeologists and local communities in archaeological research and practice. The privileging 

of normative and universalized forms of archaeological and scientific knowledge has 

historically led to the marginalisation of IK forms. The languages (dominantly English or other 

European language) and methodologies used are intrinsically tied to knowledge production. 
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In the process, these acts of extractive documentation and translation of archaeological data 

can have the effect of dislocating these forms of knowledge and separating them from an 

audience that equally deserves recognition – the local and indigenous communities living in 

the landscapes and places where archaeological sites are situated.  

 
Indigenous knowledge forms have also been used in other spheres of archaeology. 

Stump (2013: 268) identifies three key areas in the literature wherein applied archaeology and 

indigenous knowledge interact. The first involves conflicts and confluences between 

archaeological and local interpretations. The second point deals with the question of local 

ownership of land, technologies, and archaeological materials. The third area covers the 

interests within development, conservation, and ecology in the potential efficacy and 

sustainability of local resource-use strategies. The field study that I conducted in the 

Philippines and the broader context in which the archaeological research occurs involves all 

three aspects. However, in the analyses and interpretations offered in later chapters, the thesis 

will largely deal with the third area regarding ecology and conservation. To a lesser degree, 

this work will also touch upon the first area involving archaeological and local interpretations 

of the past.  

 

2.5 Conclusion 

 

This chapter has provided a broad review of the palaeoecological and archaeological 

context of the thesis.  This review lays down the conceptual setting for the ecological 

framework that shall be discussed in Chapter 3. The biogeographic and palaeoenvironmental 

data reviewed set the stage for the palaeozoological aims of the thesis and underscore the 

research links to modern biodiversity studies. As shall be seen in succeeding chapters, the 

combination of data from palaeobiology and neobiology have specific implications for 

biodiversity conservation issues. The archaeological record for ISEA and the overview on IEK 

frame the human palaeoecological components of the thesis. I set out the theoretical 

parameters of the thesis within the framework described in the succeeding chapter. 
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Chapter 3 Research Approach and Methods  

 

3.1 Research Framework and Rationale: Ecological Approaches to 

Archaeological Faunas 

 

This PhD thesis is an ecological study that employs the concept of ecology in a number of ways. 

As common in many archaeological endeavours, the project draws from the intellectual fields 

of biology and anthropology. The first use of the ecology concept is informed by 

zooarchaeology’s niche in palaeoecology. Archaeozoology and palaeozoology (vis à vis 

zooarchaeology) are typical terms used by archaeologists who study faunal remains and focus 

on biological and ecological questions (Bobrowsky 1982; Legge 1978; Reitz and Wing 1999). 

The roster of quantitative methods in palaeozoology largely overlaps with zooarchaeology 

(Lyman 2008), although many morphological and morphometric approaches are borrowed 

and developed from the life sciences. One main thrust of the thesis is in describing and 

characterising past biodiversity as observable in the time scale of the archaeological record. 

This is fundamental, since, as described in previous chapters, the Philippine archipelago 

harbours remarkable mega-biodiversity. These islands also have a rather impoverished 

Quaternary palaeoecological record, and this hampers our understanding of long-term 

biological processes shaping faunal communities. Because we, as archaeologists, are interested 

in periods and time scales involving humans, another research aim covers the interactions of 

humans and their environments – particularly the impacts of environmental changes on 

human societies and the impacts of human activities on ecological habitats.   

This brings us to the second element of this approach, which deals with ecological 

conservation. The term ecological typically has the connotation of conservationism in biology, 

anthropology and development studies. It is often connected with the notion of sustainability 

and the ability to persist in the same environment over long durations (Harkin and Lewis 

2007). It is also a politicized concept entangled in power and identity struggles in present-day 

states and communities over access to natural resources. In the archaeological record, we can 

obtain evidence to disentangle and substantiate this perceived immemoriality of time and the 

persistence of traditions.  It is also particularly valuable for investigating how human activities 

have affected environments across time. 

With respect to the discourse on environmentalism, palaeozoology has long had the 

agenda of addressing and aiding present-day conservation efforts (Dietl and Flessa 2009; 
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Lyman 1996; 2006; 2015; Wolverton and Lyman 2012). The long-term data that 

palaeozoologists generate have much potential to contribute to major concerns in 

conservation biology, such as wildlife management and restoration ecology. Although some 

neobiologists have previously expressed reservations about the utility of palaeobiological data 

(e.g. Hofreiter and Barnes 2010; Houston and Schreiner 1995), palaeobiological knowledge 

has been increasingly appreciated and applied for conservation issues.  The fossil record is still 

the most direct physical source of evidence for ecological and biogeographic histories of taxa 

and communities. Any nuanced understanding of present-day communities and forecasting of 

future change is contingent on the complex record of the past. For instance, Williams and 

Jackson (2007) observe that ‘no-analog’ communities (i.e. ecological communities that are 

compositionally unlike modern communities and hence have no modern analogues) are 

pervasive in the Quaternary palaeobiological record. In the case of island communities, van der 

Geer and colleagues' (2017) study of palaeo-island mammalian communities has shown that 

prevailing models of biogeography can prove inadequate if based solely on extant biotas. 

Different biogeographic patterns arise when long-term evolutionary processes and the 

impacts of humans on island faunas are accounted for in these models. These palaeobiological 

studies allow for more accurate models and accounts of biodiversity changes and 

biogeographic patterns observed at the present. These, in turn, can inform present-day 

conservation decisions and forecasting of ecological responses to future environmental 

changes. One example of how palaeozoological data have been given a high profile in 

conservation biology is in the controversial conservation approach of re-wilding (Donlan et al. 

2006; Fernández et al. 2017; Lyman 2015). In the Asia-Pacific region, Louys et al. (2014) 

provide case studies for nine species to make a case for rewilding the tropics.  

For the Philippine archipelago and much of Wallacea, there remains the basic task of 

describing and accounting for the highly biodiverse island biotas. There is increasing 

documentation that extant island communities are remnants of heavily impacted assemblages, 

many of which were transformed by humans (Ellis 2011; Steadman 2006; Zalasiewicz et al. 

2011). Studies are needed to ascertain how further back in time from the Anthropocene such 

transformations occurred (see Waters et al. 2016). Animal translocation is a known 

phenomenon across Wallacea (Heinsohn 2003), but further work is needed for the Philippines 

in identifying invasive taxa. Furthermore, the timing and impacts of these translocation events 

remain largely undocumented in the region. Another critical issue pertains to defaunation, 

which refers to the loss of wildlife species and populations (Dirzo et al. 2014). Once again, this 

historical process remains understudied in a region of such extraordinary biodiversity. These 

fundamental records are necessary to provide more accurate ecological baselines or 
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benchmarks for current biodiversity and conservation studies, and this is a major aim of the 

palaeoecological component of the PhD thesis.  

The third element for an ecological approach relates to human ecology. In this sense, 

the term ecological pertains to having recurring, structural relations with the natural world 

(Harkin and Lewis 2007). One of the foundations of zooarchaeological methodologies and 

hunter-gatherer studies lies in human behavioural ecology (HBE). A principal assumption of 

HBE is that foragers are proficient and skilled, and this assumption is applied through the 

reductionist methodology of constrained optimisation (Winterhalder 2001; Winterhalder and 

Smith 2000). Another assumption is that people’s behaviour is aimed at maximizing 

reproductive success  (Kelly 2007,  2013). These models largely derive from optimal foraging 

theory (OFT), which ecologists originally developed for various animal taxa (Charnov 1976; 

MacArthur and Pianka 1966; Stephens and Krebs 1986), and was subsequently picked up by 

anthropologists for its potential in human foraging studies. The  methodological and 

explanatory utility of HBE and OFT has been questioned on various fronts (e.g. Ingold 2000; 

Zeder 2012). Nonetheless, HBE is still widely used for its methodological tools for inquiry into 

human subsistence choices. In fact, as Gifford-Gonzalez (2018) notes, some HBE studies have 

provided some of the most rigorously supported cases for people violating HBE predictions, 

leading researchers to find other explanations beyond fitness and return rates. This reveals a 

powerful aspect of the application of HBE models when cases are exposed where people do 

not behave like ‘optimal foragers’ (Gifford-Gonzalez 2018). Put another way, HBE presents a 

set of null hypotheses, and deviations from such patterns can provide novel insights into 

human behaviour and sociality. 

In this light, familiar methods in the zooarchaeological toolkit used to test HBE and 

other processualist hypotheses have also been applied to questions of social relations. The 

latter forms the explicit agenda of social zooarchaeology (Marciniak 2005; Orton 2012; Russell 

2011). With the availability of contextual information, zooarchaeological data can shed further 

insights into various scales of social interactions. Intra-site analysis of faunal assemblages from 

spatially discrete units can potentially provide insights on food sharing, feasting and 

household relations. Inter-site comparisons can possibly shed light on questions on social 

inequality, identity, trade and exchange. 

HBE and social zooarchaeology data can bear on the fourth element of these ecological 

perspectives: indigenous ecological knowledge (IEK). This fourth element informs the 

objective of analysing subsistence data and human behaviours. The theoretical domain of 

indigenous knowledge (IK) closely allies with that of social zooarchaeology. The ethnographic 

literature is replete with examples of how hunting and foraging practices provide fundamental 
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sources of metaphors that structure relations between foragers, animals and the living world 

(Alves 2012; Anderson 2011; Brightman et al. 2012; Fernández-Llamazares et al. 2017; Medin 

et al. 1999; Sulkin 2005). Nonetheless, IK is also recognised as holistic and integrative, such 

that separating categories of technical/non-technical, rational/non-rational or economic/non-

economic would be problematic and simplistic (Ellen and Harris 2005; Scoones and Thompson 

1994). Given this, IK and IEK systems also incorporate practical, economic and functional 

strategies, along with symbolic and social aspects of human knowledge. Through archaeology, 

there is the potential to historicize IK: demonstrating its rootedness to place and exploring 

long perspectives on indigenous pasts. Sliding the scale from a regional archaeological 

perspective, I highlight here the idea that IK is local, i.e., “it is rooted to a particular place and 

set of experiences, and generated by people living in those places” (Ellen and Harris 2005). I 

further underscore the aspect of ‘rootedness’: that knowledge is contextualised within 

particular places and milieus and embedded within experiential spheres of human-

environment interactions. In the author’s first language, Filipino, indigenous translates to 

katutubo, where the root word (tubo) connotes ‘to be rooted in’ and ‘to grow’. This 

characteristic underscores the spatio-temporal context of both archaeological knowledge and 

IK, and serves as a fundamental (and obvious) reference point for the usage of IK in 

archaeological discourse.  

3.1.1 Kaninong Kasaysayan? (Whose history?) 

 

Why use the concept of ‘indigenous’ and indigenous knowledge in a zooarchaeological project?  

One simple answer is to emphasise the fact that part of what we try to uncover in archaeology 

are histories of indigenous populations who live in particular locales. These ancient 

populations may or may not have direct descendants among present-day indigenous peoples, 

but an important link is the locale or environment on which lifeways are anchored. There is a 

firm need to locate and place IK and IEK, whether contemporary or of the past. An important 

goal of the research is to provide ‘long perspectives’ with regards to histories of human-

environment interactions. The emphasis on diachronicity stems not only from attempts to 

understand the evolution and adaptation of cultures but also to highlight the historicity, 

specificity and temporal depth of indigenous knowledge systems. In Filipino, history translates 

into kasaysayan –  in its essence, it does not distinguish between history and ‘prehistory’ (Paz 

2003).  It derives from the root word “saysay”, referring to ‘sense’ or ‘meaning’. The utility of 

archaeological knowledge for kasaysayan has been increasingly recognised (Salazar 1998; 

2004). One definition of kasaysayan is  “salaysay na may saysay”, i.e. history as ‘meaningful 

narrative’ (Navarro 2000). In this light, forms of archaeological knowledge can help us make 

sense of and give meaning to the past. This long perspective is something archaeology provides 
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and the zooarchaeological record can offer added insights about ways of knowing about the 

past.  

It is also pertinent to ask the question whose history: kaninong kasaysayan? On one 

level, we can look at Philippine nationalist discourses as forms of counter-discourses to 

prevailing colonialist historical narratives (see Paz 2014, 2017). At another level, these long-

term historical (in the sense of kasaysayan) records can also be connected to the histories and 

knowledge systems of indigenous groups of Luzon and Palawan. In brief, I specify particular 

groups that are indigenous to the location of archaeological sites covered in this study and that 

maintain certain aspects of foraging lifeways. 

In Luzon, of particular interest are the Agta and Aeta populations.  They are known for 

their salient phenotype of small stature, dark skin and curly hair. This phenotype is shared 

with a few other Philippine groups such as the Ati of Negros and Panay, Batak of Palawan, and 

Mamanwa of Mindanao. The Agta of northern Luzon are well-known hunter-gatherers. Their 

genetic ancestry is not fully understood; however, they are hypothesised to be descendants of 

early/initial population expansions of Homo sapiens in the region and have significant 

admixture with other Philippine ethnic groups (Bulbeck 2013; Delfin et al. 2011, 2015; Jinam 

et al. 2017; Scholes et al. 2011; Thangaraj et al. 2003). Agta groups today combine subsistence 

practices of foraging and food production. On one hand, some groups show extensive foraging, 

small size, high mobility and few belongings, while other groups have larger size, more 

sedentization, more food production, and many belongings (Griffin 1984; 2013; Page et al. 

2016: 4695; Peterson 1990). The Itawes and Ibanag are also local to the study area of Cagayan, 

northeastern Luzon. They are both lowland Christian ethnic groups that predominantly rely 

on sedentary agriculture. 

On Palawan Island, the three main indigenous groups are the Batak, Pala’wan, and 

Tagbanua. The Batak share a similar phenotype with the Agta of Luzon. The Batak currently 

occupy the central part of Palawan, and its population has been in significant decline in the 

past several decades (Eder 1987, 1990; Novellino 2007). The Pala’wan and Tagbanua are 

perceived to originate from Austronesian-speaking populations. The Pala’wan mainly occupy 

southern portions of the island. They perceive themselves as divided into two groups: the 

upland (Pala’wan at bukid) and the lowland (Pala’wan at napan) groups (Novellino 2001). The 

Tagbanua mainly occupy the central and northern portions of Palawan Island. All three 

indigenous groups in Palawan have a heterogenous mode of subsistence that is mainly centred 

on swidden cultivation, combined with hunting and commercial foraging  (Novellino 1998; 

2001).  
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To summarise, it is with the four perspectives enumerated above – palaeoecological 

reconstruction, ecological conservation, human paleoecology and indigenous ecological 

knowledge – that the notion of ‘ecological’ is employed and explored in this thesis. A larger 

portion of the research involves studies on the biodiversity and conservationist aspects. 

Nevertheless, an exploration of human-environment interactions and ecological knowledge is 

also attempted using familiar methods in the zooarchaeological repertoire. 

 

3.2 The Zooarchaeology Toolkit 

 

An attempt to operationalise these modes of ecological inquiry using archaeofaunal 

assemblages requires the use of various methods in the zooarchaeological toolkit. Lyman 

(1994) still provides the authoritative compendium of methods in vertebrate taphonomy, but 

one must carefully choose among the myriad techniques depending on research questions and 

applicability. More recently, Gifford-Gonzalez (2018) has provided an updated overview of 

such methods that combines a critical assessment of their application to behavioural, 

ecological and social  zooarchaeology questions.  

 

Amid the multitude of zooarchaeological techniques, several authors have explicitly 

developed frameworks that advocate sequential implementation of taphonomic methods. Bar-

Oz and Munro (2004) have proposed a ‘multivariate taphonomic approach’ that aims to 

determine the significant agents of assemblage formation and to disentangle the problems of 

equifinality.  The framework prescribes three analytical stages (Bar-Oz and Munro 2004:203): 

 

i) a descriptive stage that summarizes the representation of key taphonomic variables 

of each assemblage;  

ii) an analytical stage that investigates the completeness and fragmentation of skeletal 

parts; and  

iii) a comparative stage that evaluates taphonomic variation amongst subgroups 

within a zooarchaeological assemblage. 

Marciniak (2005) also proposed a methodological framework that explicitly addresses 

the aims of interpretive social zooarchaeology. He emphasizes that the most efficient analytical 

strategy for investigating social dimensions of human-animal relationships is the 

interpretation of the horizontal distribution of skeletal parts across a settlement (Marciniak 

2005: 103). To implement this strategy, a series of zooarchaeological methods must be 
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conducted, namely: 1) taphonomy; 2) analysis of bone density and body part representation; 

3) analysis of food utility indices and body part representation; 4) quantification of body part 

representation; 5) anatomical body part distribution; and 6) species composition. With these 

data in hand, the final step of a contextual analysis of the horizontal distribution of faunal 

remains can be conducted. The latter requires connecting the faunal data with archaeological 

features where they were deposited and other categories of archaeological data to ascertain 

their spatial and chronological associations.  

 

The multivariate taphonomic framework of Bar-Oz and Munro (2004) is 

comprehensive in its scope of methods and is geared towards determining the most significant 

agents of assemblage formation. Marciniak’s (2005) methodology may not be as 

comprehensive, although it is clearly geared towards investigating social relations.  Expanding 

on these two models, Orton (2012) also proposed an analytical framework for social 

zooarchaeology. This framework’s strengths lie in its methodological rigour and its principal 

aim of isolating archaeologically relevant patterns of human behaviour. The methodology 

proposed has five stages, working ‘backwards’ towards the death assemblage (taphoconoese): 

 

Stage 1 Evidence for density-mediated attrition 

Stage 2 Evidence for peri-depositional damage 

Stage 3 Breakage and fragmentation 

Stage 4 Visible human modification 

Stage 5 Assessment of element representation 

 

The taphonomic framework that is used in this thesis combines the work of Bar-Oz and 

Munro (2004) and Orton (2012). The main variation between the two frameworks lies in the 

sequencing of analytical tasks. This has to do with the methodological aim of both frameworks. 

Whereas Bar-Oz and Munro (2004) aim to characterize the significant agents of bone assembly 

and formation, Orton’s (2012) approach aims to isolate archaeologically interesting patterns 

from more mechanistic taphonomic variables. However, the recommended analytical 

techniques for each of the stages in both frameworks are largely similar. These techniques are 

not themselves novel; instead they are well-known methods in the zooarchaeological toolkit 

(Gifford-Gonzalez 2018; Lyman 1994; Reitz and Wing 1999). What is important, nonetheless, 

is the critical assembly of such techniques and the analytical structure by which they are 

employed such that they target certain research problems. Sample size permitting, such 

methods are recommended for use so that some of the problems of equifinality are addressed 

and sound inferences about human behaviour and activities are drawn.  The ‘taphonomic 

workflow’ of choice used in this thesis is further described in Section 3.5. 
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3.3 Sites and Materials 

 

3.3.1 Selection of Sites 

 

The main rationale for selecting archaeological sites was driven by the aim of comparing two 

island archaeofaunas that cover the temporal span of the Late Pleistocene to the Late Holocene. 

I identified the temporal and fossil gaps that exist within this time span and aimed to fill in 

certain gaps. To this end, three cave assemblages were chosen: Pilanduk Cave in Palawan 

Island and Minori and Musang Caves in Luzon Island (Figure 3.1).  

Across the archipelago, there is a paucity of faunal studies that go back in time beyond 

the Holocene. In Palawan Island, existing zooarchaeological studies are nearly all from the 

Holocene. Only Ille Cave provided a faunal assemblage securely dated to the Terminal 

Pleistocene (Lewis et al. 2008). It was thus imperative to find and analyse a Late Pleistocene 

assemblage that ideally pushed back beyond the Terminal Pleistocene. Among all sites 

reported in the literature, Pilanduk Cave was the best candidate for this. I considered the site 

to have great potential due to its reported LGM age and the fact that Kress’ 1970 excavation 

yielded a well-preserved faunal assemblage stored in the National Museum of the Philippines 

(NMP). Kress (2000) previously published dates for Pilanduk Cave that range from 25,000-

18,000 BP. These dates were processed and obtained in the 1970s. The only other known 

archaeological site on Palawan that has Late Pleistocene levels is Tabon Cave (Fox 1970). 

However, the vertebrate remains from the 1960s excavations of the site have not been 

preserved in museum storage and many of them appear to have been misplaced during the 

intervening decades.  



 

43 
 

  

Figure 3.1 Map of the Philippines showing location of archaeological sites used in the study, 
along with Philippine palaeoenvironmental records described in Chapter 2: 1) Paoay Lake, 
2) Currimao Coast, 3) Laguna de Bay, 4) Makinit site, 5) Makangit Cave, 6) Sulu Sea, 7) 
Gangub Cave, 8) Davao Gulf. Drawn by J. Villasper. 
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On Luzon Island, the Late Pleistocene site of Callao Cave has the oldest dated evidence 

of human presence in the Philippine archipelago at 67,000 years ago (Mijares et al. 2010), 

which has been recently ascribed to Homo luzonensis (Detroit et al. 2019). Callao is also the 

only site that has a Late Pleistocene faunal record. What the Luzon record further lacked is a 

continuous and well-dated Holocene faunal sequence. Published zooarchaeological work 

includes only two Late Holocene sites, namely, Nagsabaran open site and Pintu Rockshelter. 

The oldest levels for both sites are at 4500-4000 years ago.  To fill the gap for a Holocene 

sequence, I investigated whether other known and previously excavated cave sites in Luzon 

had vertebrate assemblages. The NMP have long-standing projects in the Cagayan region, 

particularly within the Callao limestone formation where seven caves were excavated between 

1977 and 1982. These were the caves sites of Rabel, Laurente, Arku, Lattu-lattuc, Callao, Minori 

and Musang Caves. I selected two of the sites that had the largest and better-preserved samples 

for the vertebrate fauna. These were Minori and Musang Caves. The Callao Cave sequence also 

has a Holocene component, but due to various reasons, I chose the two other sites. The analysis 

of materials from Callao Cave was covered by another research project and there were other 

specialists involved in the study of these materials. Given the time and resource constraints of 

the PhD project, I chose to focus on Minori and Musang Caves. 

 

3.3.2 Excavation and Dating of Pilanduk Cave 

 

Another key aspect of the research involves establishing a robust Late Pleistocene chronology 

and faunal sequence for Palawan through the re-excavation of Pilanduk Cave. Archaeological 

sites that date to the LGM or older are relatively rare in Southeast Asia (O’Connor and Bulbeck 

2014), and hence clarifying the age and chronology of the Pilanduk record stands to be an 

important contribution. Kress (1977, 2000) published three radiocarbon dates for the site that 

range in age from 25,000 to 18,000 BP (see Chapter 4). All dates were taken from shell remains 

of unpublished taxonomic designation processed during the 1970s. Due to the known 

limitations of radiocarbon dating technology during this period particularly in relation to the 

calibration of shell dates, there was reasonable scepticism over the dates. Despite the 

limitations, the site has the largest (potential) LGM faunal and lithic assemblage known in the 

archipelago, based on the materials excavated by Jonathan Kress and the NMP in 1970. Re-

excavation was therefore necessary in order to re-date the site using more advanced 
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radiometric dating techniques and to provide a more robust chrono-stratigraphic anchor to 

the existing fossil and lithic assemblage.  

The excavation was conducted during October 2016 under the directorship of Dr. Ame 

Garong of the NMP. Permission to excavate in the site was also given by the local government 

of Quezon Municipality and Barangay Maasin. The excavation team was composed of 

participants from the NMP, the local community of Maasin, Quezon, and the University of the 

Philippines (UP). Fieldwork funding was provided by the University of Cambridge Fieldwork 

Funds, the Evans Fund and the Anthony Wilkins Fund. Due to the logistical and resource 

constraints of the project, there were only eleven digging days for the project. During this short 

period, the team aimed to find in situ deposits within the site. We also aimed to uncover a 

spatially delimited, yet continuous, archaeological sequence that potentially covered the 

temporal succession previously reported by Kress (2000).  

The excavation method employed was a contextual excavation approach. Deposited 

sediments were removed and excavated, guided by the approach of single context excavation 

and recording. In this approach, all features, structures, and layers are given individual context 

numbers. These numbers are referred to as ‘context #’ in the rest of this text. A modified 

version of the context recording form of the UP Archaeological Studies Program was used 

during the excavation. All elevation values (Z) are based on one reference point, the Datum 

Point of the site. To increase the resolution of archaeological recovery, dry-sieving with 2mm-

mesh wires was used. Selected contexts were also targeted for wet-sieving and flotation, 

particularly for the recovery of archaeobotanical and microvertebrate remains. Recovered 

artefacts were bagged and recorded according to square, quadrant, context and depth. The 

archaeological finds were accessioned following the inventory protocols of the NMP. At the end 

of the excavation, the site was also completely backfilled following NMP protocols. 

Charcoal, bone and teeth samples from the 2016 excavation were submitted to the 

Oxford Radiocarbon Accelerator Unit. Bone and teeth samples did not yield sufficient collagen 

and so all radiocarbon dates for Pilanduk Cave come from charcoal samples. Mollusc 

preservation was also poor and so molluscs were not selected for dating. Identification of wood 

charcoal samples was conducted by Jane Carlos (UP), who is also analysing macrobotanical 

remains from the site. Pre-treatment of samples and radiocarbon determination methods 

follow the protocols of ORAU. Radiocarbon dates were calibrated using OxCal v4.3.2 (Ramsey 

2017) and IntCal 13 (Reimer et al. 2013). 
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3.3.3 Within-Site Sampling 

 

The sampling strategy aimed to cover the entire temporal sequence documented in each site.  

The main study sites all have archival fossil material excavated during 1970-1983. In addition 

to this, new material deriving from the re-excavation of Pilanduk Cave was incorporated in the 

analysis. I chose material from trenches/squares with the most abundant finds that cover as 

much of the reported archaeological sequence and that have supporting archaeological 

records such as publications, inventory and excavation records. The NMP provides the 

repository for the archaeological records. A common problem in old collections is the loss of 

archaeological records and the loss of specimens. The loss of records was a significant problem 

for Minori Cave. Loss of records and specimens were both a problem for Musang Cave (See 

Chapter 4). To reconstruct provenance, specimen labels were checked against artefact 

inventory records (in the case of Minori and Pilanduk) and publication and excavation records 

(Musang), whenever available. However, it was not possible to reconstruct the original sample 

size retrieved during the excavations of Minori and Musang Caves because inventory records 

from both sites are incomplete. Further information on the available archival and published 

archaeological data for each site are presented in Chapter 4.  

For Pilanduk Cave, I analysed a small portion of the materials excavated by Kress and 

the NMP, focusing on material that still retained specimen labels. The materials were stored in 

the site branch of the NMP in Quezon, Palawan. During the analysis in spring 2016, I 

unfortunately found that only a small portion of the assemblage in museum storage still 

retained labels and that existing site records were also insufficient to reconstruct provenance 

of finds. This also gave further impetus to re-excavate the site. The successful excavation of 

2016 yielded sizeable assemblages from two excavation units, Trench 3 and 4 (see Chapter 4). 

I focused my analysis on Trench 3, which provided the longest sequence out of four excavation 

units opened. The Trench 4 excavation only reached up to Layer II of the site, whereas Trench 

3 reached Layer IV. 

For Minori Cave, I selected the two trenches that had the greatest number of remains 

found in storage. These two units – Squares 37 and 27 – also represent each of the two main 

chambers of the site, Chamber A and Chamber D, respectively. The remains from Square 37 

were stored in the museum site branch in Peñablanca, Cagayan. The remains from Square 27 

were found stored in the main branch of the NMP in Manila.  
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In the case of Musang Cave, the chosen and analysed bone assemblage come from 

squares G4 and G5 from the 1976 excavation of Barbara Thiel. A subsequent excavation in 

1977 was conducted by the NMP. However, the excavation methodologies employed by these 

two teams were different. The 1977 excavation was done solely by arbitrary spits and gave no 

further information about archaeological layers. Only a short descriptive report was produced 

by the 1977 excavation and stratigraphic information was not available. In contrast, Thiel’s 

team excavated by natural layers and 10-cm spits within the layers. Thiel’s excavated material 

from 1976 had sufficient stratigraphic information that could be reconstructed, primarily 

based on her 1990 publication. The publication included a site plan, stratigraphic profile, 

artefact descriptions and faunal counts. The information on each bone specimen analysed 

primarily comes from its original bag label, which indicates the layer it came from. The 

information on the layers were then checked in Thiel’s (1990) publication and in the 

excavation recording plans from the NMP archives. There was no surviving artefact inventory 

record, however, to verify artefact labels and reconstruct provenance.  

 

3.4 Faunal Analysis: Identification and Quantification  

 

The zooarchaeological recording system used in this study follows a modification of categories 

and attributes in the York System (Harland et al. 2003) and Bonecode (Meadow 1978). 

Recording of element portions follows the zonation method by Dobney and Reilly (1988). All 

identifications are recorded in an excel file format from which pivot tables are derived. 

Identifications form the core of taxonomic work, and in turn, taxonomy underpins biodiversity 

studies and species discovery. In this thesis, the taxonomic studies are particularly crucial due 

to the discovery of novel species and rare fossil evidence for extinct large mammals. 

Taxonomic and osteological identifiability can have relative levels of confidence from 

low to high (Gifford-Gonzalez 2018). In this study, specimens that are osteologically 

identifiable to element (or portion of element) and that had low levels of taxonomic 

identifiability (e.g. large mammal, fish or avian) were included as separate categories within 

tallies of NISP counts. Some typical examples coming from this study are identifications of 

‘large mammal diaphysis (shaft)’ or ‘medium mammal vertebra fragment’. The cut-off used 

here for identifiability is when specimens could not be identified to element portion and nor 

could be assigned to a traditional vertebrate class of mammal, reptile, bird or fish. Such 

indeterminate fragments were sorted by size into categories of microvertebrate or 

macrovertebrate specimens. Within the mammal class, three main categories were used: large, 
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intermediate (=medium) and small. The use of these categories is dependent on the nature of 

the endemic fauna of the archipelago. In most Philippine islands, the largest extant native 

species would be deer or pig, which are typically smaller (or dwarfed) forms compared to 

continental forms of the same taxa. Large mammals were further subdivided into two. Those 

in the size of deer and pig were tallied as ‘large mammal I’, and this is the most commonly 

observed mammal category in the assemblages. Mammals bigger than deer such as a cattle-

sized bovid or tiger were tallied as ‘large mammal II’. Intermediate or medium- sized mammals 

were those in the size range of canids, macaques and small carnivores such as civet cats and 

otter. Small mammals typically contain murids and bats. However, due to the phenomenon of 

island gigantism, giant murid species are known in the oceanic Philippines. These animals can 

overlap in the size range of small carnivores, such that these giant rodents were classified 

under medium mammal.  

Taxonomic identifications were aided by morphometric analysis. For large and 

medium mammals, standards for measurement and nomenclature followed von den Driesch 

(1976) unless otherwise stated. Standards and nomenclature for murid rodents typically 

followed Musser and Heaney (1992) and Heaney et al. (2011).  Based on previous work, the 

author has a database of biometric measurements of teeth and postcranial material for pigs, 

deer and several other native mammal taxa of Palawan. Additional data, though, were 

necessary for pantherines and for the native murid rodents of Luzon Island. Reference 

measurements were gathered from museum comparative collections of the University of 

Cambridge Museum of Zoology and Zooarchaeology Laboratory, Oxford University Museum of 

Natural History, Natural History Museum (London), and the Field Museum of Natural History 

(Chicago). 

The main unit of quantification used in the study is the NISP or number of identified 

specimens. The NISP is the most basic counting unit used by zooarchaeologists and employing 

it allows for comparison of faunal counts across sites. Following Grayson (1984: 16), a 

specimen is a bone or tooth or fragment thereof. A skeletal element is a complete discrete 

anatomical unit such as bone or tooth (Lyman 2008:5). The NISP includes specimens identified 

to both element (or portion of element) and taxon. It is generally used as an estimate of relative 

frequencies of taxa in a faunal assemblage (Reitz and Wing 1999). 

Another counting unit that will be encountered in this study is the TNF or total number 

of fragments, following usage by O’Connor (2008). This unit is equivalent to the NSP, or 

number of specimens. In this study, the TNF is mainly used for taphonomic analyses, wherein 

counts of identified specimens (NISP) are combined with counts of indeterminate fragments. 

The TNF is usually aggregated per context, temporal unit or spatial unit within an assemblage. 
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For various reasons, many specimens cannot be identified to either element or taxon and are 

considered indeterminate. Lyman (1994) notes that fragmentation has the initial effect of 

increasing NISP values, but as specimens are progressively broken, this leads to a reduction of 

NISP counts. Subsequently, fragmentation can produce an analytical absence of skeletal parts 

(Lyman 1994: 282). Nonetheless, what are considered indeterminate specimens retain useful 

taphonomic information, such as for carcass processing  (Outram 2001).  

As a raw counting unit, the NISP may appear to behave as a continuous, interval scale 

variable that has increments of one between each value (Gifford-Gonzalez 2018: 396). 

However, the NISP actually cannot guarantee specimen independence, since it can count more 

than one specimen for a fragmented element, and can also count more than one element per 

individual (Grayson 1984). This is the problem of interdependence, and accordingly, Lyman 

(1994) cautions that the NISP must be treated as an ordinal scale variable in statistical 

analyses. Based on this and other statistical criteria, non-parametric statistical tests can be 

more appropriate for zooarchaeological counting units. 

To address the problem of interdependence, the MNI (minimum number of 

individuals) and MNE (minimum number of elements) are also used. The MNI is derived by 

identifying the most abundant element for each taxon. The MNE is an estimate of the lowest 

number of individual elements of a particular taxon. In this respect, the MNI estimate is based 

on the MNE (Lyman 2008; Marean et al. 2001). In the literature, there are a number of ways 

by which authors have computed the MNE (Marean et al. 2001). In this study, the MNE is 

calculated based on counting specimens with portions of an element that do not overlap with 

other specimens. The overlaps are primarily estimated based on the zonation system used. 

Factors such as siding, age, fusion and individual size are also taken into account when 

possible. Both MNI and MNE counts derive from the NISP and require a secondary calculation 

based on the primary quantitative data. In the case of the MNI, Lyman (2008: 70) notes that it 

is redundant with the NISP and that the information on taxonomic abundances within the MNI 

is found in the NISP. The strong linear relationship between these two units means that the 

MNI values can be closely predicted from NISP values. Both MNI and MNE suffer from the 

problem of aggregation, i.e. that different ways of aggregating or grouping specimens can 

produce different values. The MNE lends its main utility to the analysis of skeletal element 

representation and patterns of fragmentation. It is also used here to compute for another 

counting unit, the MAU or minimal animal unit. Following Lyman (2008:133), the MAU is 

derived by dividing MNE values for each anatomical part or portion by the number of times 

that element occurs in one complete skeleton. From the MAU, another counting unit is derived, 

the %MAU. Lyman (1994:255) observes that %MAU is equivalent to the value of 



50 
 

%survivorship that Brain (1969) originally calculated. This measure is computed by dividing 

all MAU values by the greatest observed MAU value in the assemblage and multiplying the 

results by 100. The MAU and %MAU are units that are used for the analysis of skeletal part 

frequencies. 

 

3.4.1 Measures of Taxonomic Diversity and Structure 

 

Another set of quantification units involves measurement of taxonomic diversity. 

Zooarchaeologists have typically used alpha diversity measures derived from ecology and 

applied them to archaeological assemblages. Alpha diversity measures diversity at spatially 

defined units, often at the level of ecological communities (Magurran 1988, 2004).  In 

archaeology, it is commonly applied to an assemblage or series of assemblages from particular 

geographic regions. Archaeologists deal with a subset of the death assemblage (taphoconoese), 

yet we are also interested in what this can tell us about the living biotic communities 

(biocoenose) from which they derived. Measures of taxonomic diversity allow the assessment 

of assemblage structure and faunal community structure, as well as inform patterns of human 

subsistence.  

One of the most basic measures of diversity is taxonomic richness. In the ecological 

literature, this is also called numerical species richness or S, defined as the number of species 

per specified number of individuals (Magurran 2004: 75). In zooarchaeology, it is often 

referred to as the number of identified taxa or NTAXA (Lyman 2008). NTAXA or S is a nominal 

scale measure that is also used as an archaeological measure of ecological resources utilized 

by human groups, wherein the variation can be measured per geographic location and per 

temporal period.  

Another important estimate looks at how abundant each of the identified taxa are 

within an assemblage.  This is taxonomic evenness or equitability (Magurran 1988). I use 

Simpson’s index (D) and its reciprocal (1/D) as a measure of evenness. Faunas are said to be 

taxonomically even if each has the same number of individuals (Lyman 2008). The Simpson’s 

index provides a good estimate of diversity at relatively small sample sizes (Magurran 2004). 

The reciprocal of Simpson’s index (1/D) is attributed to be less sensitive to effects of taxonomic 

richness and more sensitive to dominance of the assemblage by one taxon (Lyman 2008). Low 

values of 1/D indicate that an assemblage is dominated by one taxon and consequently have 

less evenly distributed frequencies of taxa than those with higher values. Another measure, 

taxonomic heterogeneity, summarizes relative abundances of taxa and is a function of both 
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richness and evenness. The conventional measure used is the Shannon-Weiner index (H). 

From the Shannon-Weiner index, the Shannon index of evenness (e) can also be derived, 

following the equation e= H/lnS. The values of this index fall between 0 and 1, and the lower 

the value of e, the less even the assemblage. Diversity indices (Section 3.4.1) were calculated 

in PAST version 3.19 (Hammer et al. 2001), following (Harper 1999). 

 

3.5 Faunal Analysis: Vertebrate Taphonomy 

 

The taphonomic workflow (Table 3.1) employed in this research combines recommendations 

of the frameworks devised by Bar-Oz and Munro (2004) and Orton (2012). The main goal of 

the taphonomic analysis is to identify and characterise human-induced modifications in the 

assemblages. This involves distinguishing human and non-human agents involved in the 

accumulation of the assemblage and describing the effects of these agents. Stage 1 is a 

summary descriptive stage, as suggested by Bar-Oz and Munro (2004). A summary of 

taphonomic modifications is provided in tabular form in order to present an initial quantitative 

picture of the relevant taphonomic variables in an assemblage. Macroscopic bone surface 

modifications were the focus of the analysis. The bone modifications are grouped into two 

general categories: abiotic factors and biotic factors. Abiotic factors include mechanical and 

physical processes caused by water action, wind, sunlight, etc. Biotic factors include 

modifications produced by living organisms, including humans. Significant patterns observed 

in the summary of taphonomic data can be further investigated, particularly as they relate to 

the main agents of assemblage formation. The next three stages involve the analyses of 

density-mediated attrition, anatomical representation and fragmentation. Further focus is 

then given to patterns of anthropic modifications when available, particularly in the form of 

burning, fracturing and butchery marks. The details of the methods chosen for each analytical 

stage are further explained in Chapter 8.  

Statistical analyses for morphological and taphonomic data were conducted using 

PAST version 3.19 (Hammer et al. 2001) and R Studio version 3.4.4 (R Core Team 2018). The 

R package ggplot2 (Wickham 2016) was used to analyse and visualise quantitative taphonomic 

data. 
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Table 3.1 Taphonomic workflow employed in the analysis, with references to equivalent stages in the 
frameworks devised by Bar-Oz and Munro (2004) and Orton (2012). 

Stage Description  
Stage under Bar-

Oz and Munro 
(2004) 

Stage under Orton 
(2012) 

1 Summary of taphonomic variables 1 2, 4 

2 Density-mediated attrition 2.2 1 

3 Anatomical representation 2.3, 2.4 5 

4 Fragmentation 2.3 3 

5 Human modifications 1 4 

 

 

 

3.6 Conclusion 

 

This chapter has outlined the research approach and the rationale behind the ecological 

framework proposed in this thesis. As outlined above, the usage of the ecological concept 

follows four perspectives: palaeoecological reconstruction, ecological conservation, human 

paleoecology and indigenous ecological knowledge. I have also described the faunal 

assemblages and the zooarchaeological methods selected for this research. These methods are 

implemented in the succeeding data analyses in Chapters Four to Eight.  
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Chapter 4 The Archaeology of Luzon and Palawan 

 

4.1 Introduction 

 

This chapter presents the archaeological background of the Philippines, with particular focus 

on the islands of Luzon and Palawan. The chapter also presents the first set of results of the 

thesis involving the re-excavation and re-dating of Pilanduk Cave on Palawan Island. Out of 

more than 7000 islands across the archipelago, Luzon and Palawan are the foci of the study 

since they hold the longest archaeological sequences in the Philippines. Most of the data used 

for the periodisation of Philippine archaeology derive from sites in these two islands (Fox 

1970; Paz 2017). These are based on several decades of sustained archaeological 

investigations in these two islands since the 1960s. The Late Pleistocene evidence from the 

Philippines is an integral part of the archaeological record of tropical forest foraging, since the 

archipelago holds very early records of human presence both in continental (Palawan) and 

oceanic (Luzon) islands. These records help us understand the complexities and antiquity of 

such behaviours and adaptations, which lie at the centre of discussions on human modernity 

and diversity.  

The main study sites and comparative sites are described per island. The exception is 

for Pilanduk Cave, which was purposely re-excavated for this thesis project and hence has its 

own section that provides original data regarding the results of the excavation (Section 4.4). 

Although the oldest study site (Pilanduk Cave) is of LGM age, the temporal backdrop of this 

study begins with the 67,000-year old levels of Callao Cave in Luzon, which to date hold the 

oldest direct evidence for human fossils in the archipelago. In Palawan Island, the oldest 

known archaeological site is Tabon Cave (ca. 50,000-30,000 years ago). Because this project 

will combine the zooarchaeological analysis with existing faunal records, I also present the 

background for Terminal Pleistocene and Holocene comparative sites in both islands and the 

faunal data from them. For Luzon, the main study sites are Musang and Minori Caves (Section 

4.2). The comparative sites are Callao Cave, Nagsabaran site and Pintu Rockshelter (Section 

4.2). In Palawan, the main comparative sites are Ille, Pasimbahan and Tarung-tarung Caves 

(Section 4.3). From here, I present the new archaeological data for Pilanduk Cave in a separate 

section (Section 4.4). 
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4.2 Luzon Island Archaeology 

 

Luzon is the largest island in the archipelago and holds the oldest archaeological records in the 

Philippines. The archaeology of Luzon is largely anchored on the sites in Cagayan province and 

the Cagayan Valley (Figure 4.1). The valley is surrounded by three major mountain ranges: the 

Sierra Madre to the east, the Cordilleras to the west and the Caraballo to the south. It is an 

interarc basin that is 250 km long and 80 km wide, containing extensive Plio‐Pleistocene fluvial 

and pyroclastic deposits (Mathisen and Vondra 1983). These deposits are divided into the 

Awidon Mesa and Ilagan formations.  

The Cagayan Valley is long known for fossil finds of Pleistocene megafauna (Beyer 

1947; Koenigswald 1958). The fossil fauna was tentatively associated with a ‘pebble culture’ 

for which von Koenigswald (1958) proposed the name ‘Cabalwanian’. Following these earlier 

reports, Fox (1971) initiated the Cagayan Valley Archaeological Project as part of the quest of 

the NMP for ‘Early Man’ in the archipelago. During these explorations, 54 localities were 

identified in the valley that contained stone tools and fossils of Pleistocene mammals (Fox 

1971). Many of these localities are found in the town of Solana (Cagayan province) and the 

adjacent town of Rizal (Kalinga province), within the Awidon Mesa formation. The fossil sites 

contain possible Middle Pleistocene megafauna including Elephas, Stegodon, Rhinoceros, and 

Geochelone (de Vos and Bautista 2001). The lithic tools found in the area were composed of 

unretouched flakes, choppers and other unifacially retouched pebble tools (Dizon and Pawlik 

2010). However, the chronostratigraphic associations of both fossils and stone tools have not 

been clearly established because of alluvial transport and secondary deposition in old 

riverbeds (see Chapter 6 Section 2).  

 The cave sites that are part of this study belong to the Callao Limestone formation of 

Peñablanca town within the Cagayan province (Table 4.1, Figure 4.1). This limestone 

formation is situated in a physiographic transition zone between the Cagayan Valley to the east 

and the Sierra Madre to the west. The Spanish place name ‘Peñablanca’ (‘white rock’) was 

historically ascribed to the town due to this geological feature. The Cagayan Valley is drained 

by the Cagayan River. One of its tributaries, the Pinacanauan de Tuguegarao River, drains into 

the Peñablanca area and bisects the Callao formation into north and south sections. 
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Figure 4.1 Map of northern Luzon (L) and the Peñablanca area (R) showing the location of Minori (1), Musang (2) and Callao (9) Caves and other 
sites. Peñablanca map (R) is modified after Mijares (2005: Figure 2). Barangay refers to local political village units. Luzon map drawn by J. Villasper. 
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A series of explorations were also undertaken by the NMP in the Callao formation 

between 1976 and 1977 (Ronquillo and Santiago 1977; Figure 4.1). At that time, 43 caves and 

rockshelters were identified that contained archaeological material. Following these 

discoveries, excavations were conducted in several cave sites between 1977 and 1982. Among 

the sites excavated are those included in this study: Musang and Minori Caves. 

As synthesised by Mijares (2001, 2005, 2008), the Peñablanca excavations revealed 

two major cultural levels in the Holocene. The older horizon is from the Mid to Early Holocene 

with flake assemblages of andesite and chert, faunal remains mostly consisting of deer, pig, 

and freshwater gastropods. These older deposits were found in Musang, Minori, Callao, Eme 

and Dalan Serkot Caves (Mijares 2005, 2008). A younger cultural horizon of Late Holocene age 

is identified in most of the cave sites, and it contains similar archaeological finds, but is mainly 

distinguished from the older layer by the presence of earthenware pottery.  Mijares reports 

the  oldest date for the introduction of pottery in the Peñablanca area at 1950–1740 cal BC 

(3900–3690 cal BP) from Dalan Serkot Cave (Mijares 2005). 

More than 30 open-air shell midden sites of Late Holocene age were also discovered in 

the Cagayan Valley since the 1970s (Amano 2011). One of these was first reported as Alaguia 

shell midden site, which was subsequently re-named Nagsabaran. This site is important for its 

relatively well-dated Neolithic and Metal Period sequence and for its well-preserved animal 

remains (Hung 2009; Hung et al. 2011; see Section 4.2.4). Another important shell midden site 

worth mentioning here is the Andarayan site, where a red-slipped pottery fragment with a rice 

husk inclusion has been dated to 3400 ± 125 BP (4000–3400 cal BP) (Snow et al. 1986). This, 

to date, is the earliest evidence of rice in the Philippines.  

In the following sections, I provide the archaeological background for the study sites. 

However, I begin the archaeological descriptions with the oldest known site included in this 

study, Callao Cave. I also describe two Late Holocene sites that have vertebrate faunal records: 

Nagsabaran open-air site and Pintu Rockshelter. The radiometric dates quoted in the site 

descriptions are those reported by the authors. I have also calibrated the radiocarbon dates 

and the age ranges at 95% probability are shown in Table 4.1. 
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Table 4.1 Reported radiometric dates for study sites (boldface) and other relevant sites in Luzon Island. Radiocarbon dates are the default unless 
indicated by **for uranium series and ***for electron spin resonance dates. Calibration was done using OxCal 4.3 (Bronk Ramsey 2017) and ranges 
shown are at 95.4% probability. Dates for Nagsabaran are not exhaustive (see original source for all dates). 

 

Site Location Age 
Reported Radiometric 

Dates (BP)
Calibrated Age Range (BP) Source

66,700 ±1000**
54,300 ± 1900***
52,000  ±1400***
25,968  ±373 30,929–29,369
4590 ±50 5465–5052

11,450 ±170 13,708–12,991
10,750 ±150 13,035–12,239
9670 ±220; 9390 ±280 11,804–10,401; 11,600–9795
4980 ±150; 4110 ±130 6173–5326; 4960–4244
3940±40; 3390±130 4517–4248; 3980–3362
3050±70; 2670±40 3442–3040; 2850–2745
2240±270; 1820±40 2918–1613; 1865–1625
3881 ±240 4960–3643

3291 ±230 4150–2950
2261 ±150 2719–1947
1401 ±100 1530–1084

Mijares et al. 2011

Mijares 2001

Thiel 1988

Hung et al. 2011

Peterson 1974

Late Holocene

Late Holocene

Callao

MINORI

MUSANG

Nagasabaran

Pintu

Late Pleistocene to Late 

Holocene

Early Holocene to Late 

Holocene
Cagayan, Luzon

Cagayan, Luzon

Cagayan, Luzon

Cagayan, Luzon

Nueva Vizcaya, Luzon

Early Holocene to Late 

Holocene
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4.2.1 Callao Cave 

 

Callao is a five-chambered cave and is the largest cave in the Callao limestone formation. The 

mouth of the cave is nearly 20 meters wide, and the height of the first chamber reaches up to 50 

meters. All archaeological excavations were conducted in the first chamber. The second chamber 

has been turned into a local chapel, and it was reported that certain sections of the cave were dug 

for this purpose. ‘Callao’ or ‘kalaw’ is the local name of the hornbill, which previously inhabited 

the cave complex. 

The site was first excavated in 1979-80 under the direction of Maharlika Cuevas (1980). 

Subsequent excavations were then conducted by a team led by Armand Mijares in 2003, 2007, 

2010 and 2015. The archaeological and stratigraphic data presented here are from Mijares (2005) 

and Mijares et al. (2011). An initial aim for re-excavating Callao Cave was to document the 

foraging-farming transition during the Mid-Late Holocene. Mijares (2008) further observed that 

out of 11 cave sites in the cave complex, eight were not excavated to the bedrock and have 

Holocene-age radiocarbon dates. This observation, along with the announcement of the enigmatic 

Homo floresisensis (Brown et al. 2004) in Flores Island, stimulated succeeding attempts to re-

excavate Callao Cave.  

A total of ten stratigraphic layers were reported from the 2003 excavation of the site 

(Mijares 2007). Of relevance to the foraging-farming transition are Layers 3 and 4. Layer 3 is a late 

Neolithic deposit with shell ornaments, earthenware, flake tools, human remains, bat bones and 

riverine gastropods. Layer 4 is also a Neolithic deposit with pottery but has no shell ornaments.  

The 2003 Callao excavation also produced an age of 25,968 ±373 BP for one cultural layer: 

Layer 8 (Table 4.1 Luzon dates). This is notable because Callao is one of only four sites in the 

archipelago that have cultural layers dating to MIS-2 (ca. 30,000 – 12,000 BP). Two other sites are 

in Palawan Island (Tabon and Pilanduk Caves) and another in Mindoro Island (Bubog Cave). Layer 

8 contained a relatively sparse record: a hearth deposit, chert and quartz flake tools and a few 

fragmentary burnt bones. Layer 9 and 10 were devoid of artefacts.  

Work resumed in 2007 and in 2010, wherein four additional cultural layers are reported 

(Mijares et al. 2010). The oldest cultural layer in Callao described so far is from a breccia deposit, 

Layer 14 (270-295 cm below surface), containing animal bones and a human third metatarsal 
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(Mijares et al. 2010). The latter represents the oldest known human fossil in the archipelago. The 

human fossil was dated by uranium series and electron spin resonance to 67,000 ± 1000 BP. The 

small size and other morphological features of this hominin bone raise the question of whether it 

may be another dwarfed endemic hominin similar to Homo floresiensis. The singular toe bone was 

provisionally assigned to Homo sapiens. However, additional human fossils were recovered in 

subsequent fieldwork, and these new fossils (now totaling 13 hominin specimens) have been 

ascribed to the novel species Homo luzonensis (Detroit et al. 2019). 

The Late Pleistocene assemblage used for comparison in this PhD study comes from these 

four layers from the 2007 excavation. A total of 807 bone fragments were recovered and analysed 

(Mijares et al. 2010; Piper and Mijares 2007). Two-thirds of the vertebrate remains were found in 

Layer 14, including the human third metatarsal. There are no other known bone accumulators in 

the faunal community of northern Luzon, and along with three cut marks found on a distal tibia 

fragment, indicating that the assemblage comes from human activity (Piper and Mijares 2007). 

The native Philippine brown deer (Rusa marianna) dominates the assemblage, constituting over 

90% of identifiable bone. The Luzon warty pig (Sus philippensis) is also present, along with a large 

bovid evidenced by two tooth fragments. The first fossil rodents in Luzon are also reported in the 

Late Pleistocene levels of Callao (Heaney et al. 2011). Two murid species were described: the 

extant Apomys microdon and a fossil member of the genus Batomys. In total, five mammal species 

were identified in these levels. 

 

4.2.2 Musang Cave 

 

Musang Cave is a site located within the Callao formation, with an elevation of 65 masl (meters 

above sea level). The entrance faces south and the cave is about 37 meters long. The front section 

of the cave chamber is well-lit and its ceiling reaches up to 4 meters (Figure 4.2). The back portion 

of the chamber is poorly lit and has a higher ceiling of over 20 m. Most of the excavation units were 

in the front portion of the cave. 

A team led by Barbara Thiel was the first to excavate in Musang Cave during 1976-77. She 

published a  site report from which I draw much of the Musang Cave archaeological background 

(Thiel 1990).  Within the NMP archives, a few recording plans, letters and short reports pertaining 

to the excavation are also stored, and most of these were written by Thiel.  
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The mapping of the cave floor divided the surface into 2-meter grid squares (Figure 4.3). 

Seven excavation units were opened during 1976-77, consisting of 2 x 2 m and 1 x 1 m squares. 

These are: G4, G5, F6, G7, F3, D2 and D12. The NMP also conducted a re-excavation of the site 

during 1978-79, in order to investigate the archaeological findings of Thiel. However, only short 

reports of the excavation were produced by the NM team and there were no other excavation 

records or site report for the 1978-79 investigations. Hence, the data for Musang Cave derive 

mainly from the published analysis of Thiel (1990). 

Thiel used three main stratigraphic components for describing the archaeology of the site: 

soil layers, excavation levels (‘spits’) and cultural layers. She identified five soil layers (1-5) and 

two major cultural layers (I and II) (Figure 4.4).  The older cultural layer (Layer I) is found mainly 

within soil layer 3, which is described as a hard, dark yellowish brown clay with many inclusions 

of small pieces of limestone. This layer contains flake tools, gastropod shells and animal bones. 

The younger cultural layer (Layer II) is mainly found within soil layer 2, a dark brown sandy clay 

loam. Similar lithic and faunal materials are found in this layer, but with the addition of pottery, 

an iron fragment, a brass needle, glass beads, clay earrings and shell ornaments. Most of the 

excavated material came from squares G4 and G5. 

 

Figure 4.2 Musang Cave showing (L-R): the cave mouth (viewed from the south), the narrow path leading 
to the cave mouth and platform, and view from inside the cave (viewed from the north). Photographs: J. 
Ochoa. 
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Thiel (1990) reports radiocarbon dates taken from shell remains of unknown taxonomic 

designation (Table 4.1). I quote here the calibrated age ranges at 95% probability. Cultural Level 

I has four dates ranging in age from 10,650 to 6930 cal BC. Cultural Level II has two reported dates 

ranging in age from 4095 to 2320 cal BC. Based on the dates for this younger level, Thiel (1990) 

posited early dates for pottery at 3740 cal BC. For the brass needle, Thiel reported the associated 

age of 2680 cal BC. However, the author advised caution with this early dating because the needle 

was separated from the dated shell sample by 2 m horizontally (Thiel 1990:77). 

  

Figure 4.3 Musang cave floor plan, from Thiel (1990: Figure 2). 
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Thiel used soil composition and presence of pottery as a distinguishing trait in separating 

cultural layers and excavation levels. Three main earthenware pottery types were found on site: 

plain brown, black and red-slipped. Cultural Layer I is designated as aceramic and occurs in 

excavation levels 4 to 12. Cultural Layer II is ceramic-bearing and occurs in levels 1-7. There is an 

apparent overlap in levels 4 to 7.  The author separated excavation levels 4 to 7 into pottery-

bearing (4a, 5a, 6a and 7a) and non-pottery bearing sections (4, 5, 6, and 7). Thiel’s excavation 

plans and records show that in Square G4, the northeast quadrant of the square contained pottery 

until level 7, while the rest of the quadrants did not have ceramics.  

I maintain some reservation with regards to the segregation of Levels 4 to 7 and finds 

based on observations from the faunal remains. The bones from Levels 1 to 7 have varying states 

of preservation and carbonate concretions (see Chapter 8), indicating that there has been some 

post-depositional mixing of remains in these levels. Although Thiel states that ceramics are only 

present in the northeast section of G4, there is no means to check the provenance of ceramic finds 

or bone fragments because specimen labels only indicate the soil layer and/or level and not the 3-

dimensional coordinates. There was no existing inventory of finds in the NMP archives. 

Furthermore, there are faunal remains of presumed non-native taxa that occur across Levels 4 to 

7, and these may also be indicators that faunal remains were also mixed into in situ remains. 

Figure 4.4 Stratigraphic profile of excavated areas F and G of Musang Cave. Legend: 1. Dark brown very 
hard sandy clay loam with pottery, animal bone, shell and flake tools. 2. Dark brown hard sandy clay loam 
with pottery, animal bone, shell and flake tools. 3. Dark yellowish brown hard clay with many small 
limestones and with animal bone, shell and flake tools (no sherds). 3a Dark yellowish brown soft, sandy 
clay with many small pieces of limestone and a few sherds and shells. 4. Very dark grayish brown, very 
stony hard clay with no cultural remains. After Thiel (1990: Figure 4). 
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Thiel (1990: Table 1) provides a preliminary description of the bone assemblage and raw 

counts of pig, deer, and human remains. Pig bones supposedly comprise about 98% of the 

assemblage. A quick re-study of the bones, however, reveal that some human bone fragments were 

misidentified and labelled as pig bones. The human bones also had a different state of preservation 

from the fauna, indicating that they were intrusive. Some bones with low identifiability (e.g. long 

bone shaft fragment or ribs) have been designated as pig remains even though there is no 

sufficient morphological information on the bones for specific taxonomic designation. For these 

reasons, I do not use the bone counts from Thiel for comparative purposes and rely on my own re-

analysis of the materials. 

In terms of the fauna, Thiel (1990) reports that there were nearly three times as much 

animal bone in Cultural Layer II compared to Cultural Level I. Drastic reduction of shell remains is 

also observed in Cultural Layer II, which only has about 5% percent of the amount in shell in 

Cultural Level I. In the older level, it appears then that the cave was primarily used as a campsite 

for shellfish gathering, whereas hunting was more intensive in the Layer II. Thiel also argued for 

probable resource intensification in the use of shellfish based on the diminishing sizes of shell taxa 

across the sequence. 

The zooarchaeological analysis focuses only on the collection from Thiel’s excavation 

because it has proper documentation. The subsequent NMP excavation has no information about 

stratigraphy or excavation records. I also focus on two main squares, G4 and G5, because these 

squares have the longest sequences, the greatest number of remains excavated, and the most 

number of remains preserved in museum storage. Post-excavation assemblage loss is apparent in 

that the numbers of bones in Thiel’s counts (1990: Table 1) for the large mammals (pig, deer and 

human) do not match NISP and TNF per square in the current analysis. It is not certain if some of 

the finds were brought into a different storage place of the NMP or if they were brought by Thiel 

to the United States. Regardless, G4 and G5 still retain a relatively good assemblage size compared 

to the original excavated assemblage. 
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4.2.3 Minori Cave 

 

Minori Cave is a four-chambered cave that was first excavated by the NMP in 1981 under the 

former chief of the Archaeology Division, Wilfredo Ronquillo (1981) (Figure 4.5). It is situated 

further north in the Callao formation and is found at 240 masl. There are two cave openings, a 

northeast- and a west-facing entrance. The west chamber is labelled as Chamber D (Site accession 

code: II-1977- J11A) and the northeast chamber is Chamber A (Site accession code: II-1977- J11B). 

Chamber D was excavated in 1981 while Chamber A was excavated in 1982. There is no published 

record of the 1981-82 excavations and the data that I cite here are from unpublished manuscripts 

in the NMP (Orogo 1982; Ronquillo 1981). The excavation procedure followed observed natural 

layers and used 5-cm spits. All artefacts were plotted in three dimensions and sediments were 

sieved using 4-mm screens.  Two soil layers were identified in these excavations. A topsoil layer 

of dark brown clay (Layer I) and a stony, slightly loose and yellowish brown clay (Layer II). In 

Chamber A, Orogo (1982) reports that Layer I  contained lithic tools, bone and shell remains, 

earthenware sherds and modern (ca. 20th century) artefacts. Layer II contained similar lithic tools 

and faunal remains but did not have modern materials and had a smaller number of earthenware 

sherds. Layer II was only exposed in Squares 30 and 37 of Chamber A. Logbook records for 

Chamber D indicate a similar description of finds, but there is no official report on the excavation 

of the chamber. In the absence of detailed stratigraphic records, I have mainly used the Minori 

Cave artefact inventory forms and excavation logbook to reconstruct the stratigraphic 

associations of materials excavated during 1981-82 excavations.  

A re-excavation of Chamber D was conducted in 1999 by a team led by Armand Mijares 

(2001, 2002).  Two major cultural levels were uncovered: an Early Holocene level with lithics and 

faunal remains and a mid to late Holocene level with similar lithics and fauna, but with the addition 

of earthenware ceramics. The stratigraphic plan from the 1999 excavation is the only existing 

stratigraphic profile for Minori Cave, and it shows the two cultural layers (labelled as spits) 

reflected in the profile of Square 45 (Figure 4.6). The lithic artefacts are predominantly made from 

andesite, and a few were from chert. A single radiocarbon determination of 4590 ± 50 B.P. was 

obtained for the younger cultural layer that contained lithic tools and ceramics. This pattern in the 

Callao formation – wherein two Holocene cultural layers are found with similar lithic and faunal 
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material and the younger layer is differentiated by ceramic finds – is replicated in Musang, Eme, 

and Dalan Serkot Caves (Mijares 2005; Thiel 1990). 

 

 

Mijares (2001, 2002) has argued for the presence of an expedient lithic technology in 

Minori Cave. Coarse- and fine-grained lithic tools are hypothesised to have been used on hard 

contact materials such as bamboo and rattan. It is argued that the lithics were expediently utilised 

to maintain such organic tools. A more formal lithic technology did not need to be developed, and 

this is deemed an appropriate cultural adaptation in a specific environmental setting (Mijares 

2001:150). This was based on the analysis of a sample of Minori andesite flakes. The flakes did not 

possess features of retouch, but the microwear analysis showed that nearly all were utilised. A 

portion of these were used on hard contact materials. 

  

Figure 4.5 Minori Cave plan showing 1) cave floor and designated chambers, 2) Longitudinal cross-
section of cave, 3) Grid plan of Chamber D and excavated squares. Modified from Figures 2 and 3 of 
Mijares (2002). 
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De Vera-Alba (1990) provides a preliminary study of the vertebrate fauna from the 1981 

excavation of Chamber D. Deer is the dominant taxon, followed by wild pig. Numerous rodent 

remains were listed, but were not further identified. Macaques and carnivores are also reported, 

although the carnivores were also not further identified. I present De Vera’s identifications in 

Chapter 6 for comparison with my own analysis.  

One of the main interests of the thesis is to look at the question of animal translocation, as 

it relates to both biodiversity changes and human impacts on local environments. In this regard, I 

submitted two macaque (M. fascicularis) tooth specimens from Minori Cave for radiocarbon dating 

to the Oxford Radiocarbon Accelerator Unit and the results are shown in Table 4.2. The museum 

specimens are from Square 37 in Chamber A and were excavated in 1982. Only two specimens 

Figure 4.6 Stratigraphic profile for Squares 62 and 45 of Minori Cave Chamber D that were 
excavated in 1999. After Mijares (2002: Figure 4). 
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were submitted due to limited funds (which were mostly allocated for Pilanduk Cave) and due to 

the relative rarity of macaque remains. Square 37 had the greatest number of macaque remains 

(n=14) among all excavation squares (see Chapter 7). The chosen specimens were recovered from 

Layer II, which contains earthenware ceramics. They were found at a similar depth but have 

dissimilar ages. The recorded depths are -226 and -227 cm, which are only about ~10 cm below 

the surface. Surface depth from the local datum point of Square 37 is -215 to -219 cm. Macaque 

remains are only found in the uppermost levels of Minori Cave, and the macaque specimen with 

the lowest depth is recorded at -229cm. Because of the relative shallowness of levels in which 

macaque remains were found, it is very likely that there has been mixing of remains in the 

uppermost levels. This is the main reason why direct dates on targeted taxa were taken. One of the 

specimens (Minori-2409) yielded a recent age of AD 1645-1927. Another specimen (Minori-2402) 

yielded an older age of 1860–1706 cal BP. All quoted age ranges are at 95.4% probability. To date, 

these are the only directly dated macaque specimens in the archipelago. Effectively, the age of 

Minori-2402 represents the minimum age for the presence of macaques on Luzon (see Chapter 7 

discussion on translocation). There are currently no older records for macaques on Luzon, and 

they are not represented in the Pleistocene levels of Callao Cave.  

 

Table 4.2 Radiocarbon dates for macaque tooth specimens from Chamber A of Minori Cave. Calibration was 
conducted using OxCal 4.3.2 (Bronk Ramsey 2017). Calibrated age ranges are at 95.4% shown in BP and CE. 
LDP = local datum point. 

 

 

  

Accession 
Code 

OxA No. Layer 
Depth from 

LDP (cm) 
Radiocarbon 

age (BP) 

Calibration 
age range 

(cal BP) 

Calibration 
age range (cal 

CE) 

2402 36333 Layer II 227 1833 ± 25 1860–1706 90–244 

2409 36334 Layer II 226 217 ± 24 305–14 1645–1927 
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4.2.4 Nagsabaran Site 

 

Nagsabaran is an extensive shell midden site located in the northern Cagayan town of Lal-lo. The 

4.2-hectare open-air site lies on the south bank of Zabaran Creek, a small tributary of the Cagayan 

River. There are two major depositional periods: an early Neolithic phase (beginning at ca. 4500–

4000 cal BP) consisting of lower alluvial silts and a Late Neolithic/Metal Period shell midden phase 

(ca. 2500 cal BP to AD 400) (Hung 2009; Hung et al. 2011; Oxenham et al. 2015). Nagsabaran site 

provides secure dates for the introduction of ceramics in Luzon in its early Neolithic levels. The 

earlier phase contains red-slipped pottery, trapezoidal-sectioned stone adzes, baked clay 

penannular earrings and jade ornaments. The Late Neolithic/Metal Period layers contain black 

and red pottery, iron tools, bronze bells, glass beads and human burials.  

The faunal remains from Nagsabaran were analysed by Amano (2011) and Piper et al. 

(2009). The assemblage is dominated by wild fauna, particularly deer and wild pig. There is said 

to be no apparent shift from hunting to a reliance on domestic animals for food even in the later 

periods of site occupation, as might be expected in a ‘Neolithic transition’. Several domesticates 

are recorded, nonetheless. The site has the oldest record of introduced domestic pigs (S. scrofa) in 

the archipelago, with several associated dates on charcoal and one specimen holding a direct date 

of 3940 ± 40 BP or 4517-4248 cal BP (Hung et al. 2011; Piper et al. 2009). Nagsabaran also has 

Late Neolithic/Metal Period records for domestic water buffalo (Bubalus bubalis) and domestic 

dogs (Canis lupus familiaris) (Amano et al. 2013). These identifications are important because 

there are very few well-studied archaeofaunal assemblages on Luzon and few well-dated records 

of introduced domesticates in the region.  

 

4.2.4 Pintu Rockshelter 

 

Pintu/Busibus Rockshelter is in Nueva Vizcaya province, which is located south of the Cagayan 

Valley. It also lies on the eastern side of the Sierra Madre and on the banks of the Ngilinan River, a 

tributary of the Cagayan River. It was excavated in 1968-1969 by a team led by Warren Peterson 

(1974). Eleven soil layers were uncovered up to a depth of 1.75m. Eight of the layers had cultural 
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material. Layer 10 shows the deepest evidence of occupation, with a pig mandible fragment and a 

few lithic tools. Significant quantities of lithics and bone appear in Layers 7 to 1. Pottery first 

appears in Level 6 with one vessel; thereafter, earthenware is present in small numbers from 

Layers 5 to 1. There are no metal, stoneware or porcelain artefacts, but two beads are recorded in 

Layers 4 and 5. Peterson (1974) reports four radiocarbon dates derived from charcoal samples 

(Table 4.1). The samples were from Layers 4, 5, 6 and 10. The author states that the probable time 

span of occupation of these layers is from 4120 to 2110 cal BP.  The dating for Layer 6, where 

pottery appears, is 3520-3060 cal BP. 

The faunal material from Pintu was studied by Mudar (1997). A total of 1029 fragments 

were analysed, 296 of which were identified to taxon. Eighty-five percent of the sample came from 

Layers 3 and 4, which post-date 2100 uncal. BP. Deer is the most common taxa (n=157), followed 

by wild pig (n=123). Four specimens are also attributed to the domestic water buffalo in Layers 2, 

4 and 5. Macaque remains are also reported (n=7) in Layers 3, 4 and 5. Based on the faunal 

evidence, Mudar (1997) states that the cave was used as a base camp intermittently occupied for 

both extended and limited periods. This is supported by the skeletal representation of pig and 

deer, where both high and low meat-bearing elements are present.  The narrow range of species 

represented, absence of fish, and the focus on hunting terrestrial game are said to be indicative of 

occupation during the rainy season. 

 

4.3 Palawan Island Archaeology 

 

Palawan is the fifth largest island in the archipelago. The archaeology of Palawan, and arguably a 

large part of Philippine palaeohistory, is anchored on the Tabon Cave Complex. Tabon Cave is 

located in a limestone formation in Lipuun Point, Quezon municipality (Figure 4.7) in southern 

Palawan. The complex consists of over 200 caves that were first explored by the NMP during the 

1960s (Fox 1970), hence the collective name Tabon Cave Complex. Over 30 caves have been 

assessed that have archaeological deposits. Fox’ 1962-66 excavations in Tabon yielded human 

fossils and cultural assemblages that documented the Late Pleistocene human occupation of 

Palawan. The cave is named after a local species of megapode (Megapodius cumingii) called tabon, 

which nested and dug holes in the cave to lay its eggs.  
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Figure 4.7 Map of Palawan Island showing present-day coastlines and the location of archaeological 
sites. The maximum extent of the island group (or ‘Greater Palawan’) during the Last Glacial 
Maximum is approximated by the -120 m isobath. Note that the Calamianes, Balabac and Cuyo Islands 
would have been connected to the main island in this reconstruction. Map drawn by J. Villasper. 
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Prior to the 2010 discovery of the Callao human, ‘Tabon man’ represented the earliest 

human in the archipelago. The Tabon Cave human fossils are ascribed to Homo sapiens (Fox 1970, 

Dizon 2002). The inventory of Pleistocene H. sapiens fossils totals to 13, which includes a frontal 

bone (the ‘Tabon skull cap’), a right mandible fragment from Fox’ 1962 excavation, and eleven 

fossils from a 2000 re-excavation of the site (Détroit et al. 2004).  The fossils were found in 

association with lithic assemblages, which Fox categorised as Flake Assemblages I-IV. Fox 

associated the human fossils with Flake Assemblage III, which has a 14C date of 23,000 ±1000 BP 

(Table 4.3). Subsequent direct dating of the frontal bone yielded a date of 16,500 ± 2000 years cal 

BP (Dizon et al. 2002). Détroit and colleagues (2004) published direct U-series dates on two more 

human fossils, yielding dates of 31,000 ± 8000 BP and 47,000 ± 11,000 BP.  The dates confirm 

Fox’s earlier dates and estimates on the Late Pleistocene age of Tabon, but the maximum age of 

the fossils must be taken with caution. Lewis et al. (2007) also conducted preliminary dating of a 

speleothem formation underlying Flake Assemblage II through uranium-series methods, and 

provided an age range of 20,200 to 19,400 BP.  As mentioned in Chapter 2, Choa (2018) has 

provided new dates for Tabon Cave, particularly in reference to Flake Assemblages II and III, which 

were previously dated by Fox and Lewis to MIS-2 (ca. 23,000–20,000 BP). The new dates push 

back the age range of these layers to MIS-3, at 39,000–33,000 cal BP. 

Tabon Cave, along with several other caves in Lipuun Point, were characteristically used 

as burial sites in later periods. This is a phenomenon that is observed across the archipelago and 

in many other Southeast Asian sites. Fox (1970) describes a jar burial complex for Palawan, 

including that of Manunggul Cave. In Philippine chronology, periods labelled as ‘Late Neolithic’, 

and ‘Metal Period’ were initially based on the material culture and chronology of the Tabon Cave 

Complex.  

Fox also investigated nearby cave systems in Quezon, including those in the Iwaig River 

area. An important discovery was Duyong Cave, which is named after the dugong (Dugong dugon). 

Numerous bones of this large marine mammal were found scattered on the surface and subsurface 

of the site. A single flexed Neolithic human burial is described by Fox (1970:60) that has associated 

Tridacna adzes and Conus ornaments.  One of Fox’s junior colleagues, Jonathan Kress, further 

explored cave systems around the Iwaig (=Iwahig) River. Two important cave sites were 

excavated – the Late Pleistocene site of Pilanduk Cave and the Holocene-age Sa’gung Rockshelter. 

Subsequent investigations by Reis and Garong (2001) also revealed additional sites in southern 

Palawan, such as Tarung-tarung Cave, which contained vertebrate assemblages. 
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To the north of Palawan, cave sites in the El Nido area have produced an equally rich 

archaeological record. The area was already recognized as an important area from early 

investigations of Carl Guthe (1927) and the University of Michigan Expedition. It was subsequently 

explored and studied by the NMP (Fox 1970). Our current knowledge of the archaeology of 

northern Palawan is anchored on Ille Cave, which has produced well-stratified and well-preserved 

cultural remains spanning the last 14,000 years (Lewis et al. 2008).  The current research is 

undertaken by the Palawan Island Palaeohistoric Research Project (PIPRP).  Another cave site 

investigated by the PIPRP is Pasimbahan-Magsanib Cave, which also contains a sizeable vertebrate 

assemblage.  

4.3.1 Ille Cave 

 

Ille Cave is located in the Dewil Valley of El Nido town in northern Palawan (Figure 4.7). The 

earliest layers of the site date back to the Terminal Pleistocene and continue up to the near-

present. Two major mouths at the base of the tower – the East and West mouths – serve as the 

main access to the cave system. The two main excavation trenches were placed in these openings. 

The data reviewed here for the archaeology and dating of Ille Cave come from Lewis et al. 

(2008). The deepest cultural levels consist of several steeply sloping sedimentary layers of clay 

and gravels. They are of Terminal Pleistocene age, based on a radiocarbon date on charcoal from 

context 866 of 14,116–13,820 cal BP (Table 4.3). Immediately below context 866 is context 1306, 

a sedimentary horizon that produced a sizeable animal bone assemblage mixed with chert flakes, 

obsidian flakes and charred nut fragments. Overlying these clay and gravel layers is a cultural 

horizon with several human cremation burials and hearth features. These are dated between 

9,000 to 11,000 cal BP. The human remains are of considerable significance, because they are the 

oldest known human cremations in Island Southeast Asia. 

By the mid-Holocene, an extensive shell and bone midden is observed across the site. This 

layer has radiocarbon dates spanning 5500-6500 cal BP (Lewis et al. 2008; Szabo et al. 2004).  The 

shell midden deposits are dominated by marine and mangrove molluscs. Human burials with 

associated ground and polished shell and stone burial goods were also found.  The uppermost 

deposits contain more midden remains and an extensive human burial layer. These layers have 

pottery, and based on artefact typology, they range in age from the Metal Period up to later historic 

times.  
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Table 4.3 Reported radiometric dates for Pilanduk Cave and other sites in Palawan Island. Radiocarbon dates are the default unless indicated by **for 

uranium series dates. Calibration was done using OxCal 4.3 (Bronk Ramsey 2017) and ranges shown are at 95.4% probability. Calibrated dates in 
boldface are as originally reported by the source. Dates for Ille Cave are not exhaustive (see source for all dates). 

Site Location Age  
Reported Radiometric 

Dates (BP) 
Calibrated Age Range (BP) Source 

  Palawan Island         

Tabon Quezon, Palawan Late Pleistocene to Late 
Holocene 

47,000 + 11,000/–10,000**   Detroit et al. 2004 

    31,000 + 8000/–7000**   Dizon et al. 2002 

      30,100  ± 1100 36,876–31617 Fox 1970 

      23,200 ± 1000 29,791–25,653   

      16,500 ± 2000**     

      9250 ± 250 11,193–9777   

PILANDUK Quezon, Palawan Early Holocene to Late 
Holocene 

25,470±1000 31,530–27,725 Kress 1980, 2000 

    18,340±370 23,066–21,260   

      18,260±650 23,712–20,556   

RS 2 Quezon, Palawan Holocene 11,130±50 13,095–12,836 Reis and Garong 
2001           

Ille El Nido, Palawan Terminal Pleistocene to 
Late Holocene 

12,120±60 14,116–13,820 Lewis et al. 2008 

    9740±75; 9215±45 10,974–10,786; 10,501–10,252   

    9400±45; 9340±46 10,733–10,515; 10,473–10,419   

    8920±45; 8799±40 10,198–9905; 9951–9663   

      8155±50; 8315±50 9260–9006;9425–9280   

      5804± 38; 5769±37 6677–6494; 6662–6481   

Pasimbahan–
Magsanib 

El Nido, Palawan Early Holocene to Late 
Holocene 

9442±46 10,790–10,559 Ochoa et al. 2014 

  7793±24; 7590±25 8630 – 8538; 8421 – 8370   

      4697±25; 4333±25 5225–4645; 4970–4845   

      3401±26 3704–3573   
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The vertebrate faunal data of Ille Cave are derived from my Master’s thesis (Ochoa 

2009) and subsequent publications (Ochoa and Piper 2017; Piper et al. 2011b). The Terminal 

Pleistocene and Early Holocene layers (ca. 14,000–9,000 cal BP) are dominated by deer 

remains. Two species were identified based on the notable size distinction of teeth and post-

crania. The larger species is attributed to the genus Rusa, while the smaller species is ascribed 

to the extant Axis calamianensis, or the Calamian hog deer. The hog deer is known as a native 

inhabitant of the smaller islands of the Calamianes that are immediately north of Palawan. Deer 

are now extinct on Palawan Island itself, and they are not known from historical accounts 

about the natural history of the island. Also represented in the oldest layers of the site, but 

absent from the Middle Holocene onwards (ca. 7000 cal. BP) are the tiger (Panthera tigris) and 

a canid (Canis/Cuon). Both are also extinct. A few other extant mammals are represented in the 

Terminal Pleistocene such as the wild pig (Sus ahoenobarbus), the long-tailed macaque 

(Macaca fascicularis), and the Palawan porcupine (Hystrix pumila). Macaque remains increase 

beginning in the Early Holocene and are then fairly common throughout the rest of the 

sequence. Most of the extant small carnivore species are also represented across the Holocene 

sequence such as the common palm civet (Paradoxurus hermaphroditus), binturong (Arctictis 

binturong) and the endemic stink badger (Mydaus marchei). These Terminal Pleistocene and 

Early Holocene records of the extant taxa are important evidence of their natural distribution 

on Palawan. By the Middle Holocene to the Late Holocene, the wild pig becomes the dominant 

mammal prey. Deer remains are extremely rare, and only the smaller deer species has been 

identified. The different timing of extinctions of large mammals on Palawan is likely indicative 

of different trajectories to extinction (Ochoa and Piper 2017). I revisit the data on mammalian 

extinctions in Chapter 7. 

 

4.3.2 Pasimbahan Cave 

 

Pasimbahan-Magsanib Cave is another site in the karstic Dewil Valley, about two kilometres 

away from Ille Cave. The term ‘Pasimbahan’ roughly translates to place of worship, and there 

are some caves in the El Nido area that locals refer to as pasimbahan. These places are imbued 

with sacred meaning and ritual significance by the local Cuyonon and Tagbanua (Paz 2012). 

The cave is in the southwest face of the Istar karst formation and is about 6 km away from the 

present-day coastline.  

The archaeology of Pasimbahan Cave is described by Paz (2012) and Ochoa et al. 

(2014). It was first excavated in 2007 under the direction of Dr. Victor Paz. Six major 
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excavation units were opened, namely Trenches A, B, C, D, E and J. The deepest and oldest 

layers of the site are located in the adjacent trenches A and B. Three radiocarbon dates were 

obtained in these levels, ranging in age from 8000 to 10,500 cal BP (Ochoa et al. 2014) (Table 

4.3).  The Early Holocene layers consist mainly of hearth features, burnt limestone rocks, shell 

deposits, chert flakes and animal bones. The shell remains are dominated by terrestrial and 

freshwater species, but individual Tridacna (giant clam) valves and modified Melo bailer shells 

were also found. Overlying these deposits is an extensive shell and bone midden layer found 

across five trenches. The midden is characterised by numerous mangrove and marine taxa, 

burnt limestone rocks, wild pig bones and various other medium vertebrates. Two 14C dates 

ranging from 5200 to 4600 cal BP place these deposits in the Middle Holocene. The abundance 

of wild pig remains, marine and mangrove mollusc taxa, and associated radiocarbon dates 

agree with the Ille Cave sequence and biostratigraphy. In the northern Palawan record, it is 

evident that deer is the dominant taxon up until the Early Holocene, after which the wild pig 

becomes dominant during the Middle and Late Holocene. 

The youngest levels of the site also contain shell midden deposits and numerous 

commingled human remains. A radiocarbon date was obtained from one of these midden 

deposits. The dated material is from a wild pig maxilla fragment and produced an age of 3704–

3573 cal BP. This pig bone fragment was found in an archaeological context (context 71) where 

a hog deer (Axis) tibia fragment was identified, but the latter specimen failed to produce 

enough collagen for radiocarbon dating. Hence, the associated age of another bone from the 

same context is used as a temporal marker of deer presence.  

Analysis of the Pasimbahan Cave bone assemblage reveal the presence of many of 

Palawan's extant mammal fauna, including many of those described from Ille Cave (Ochoa et 

al. 2014). It also documents the Late Holocene presence of one locally extinct species, the 

Calamian hog deer. The latest occurrence of deer in the site is recorded from three late 

Holocene midden contexts. One of these is a shell midden deposit (context 403) in Trench J 

where Indo-Pacific glass beads and tradeware were in the same levels as a few deer remains. 

This may indicate deer presence in a temporal context within the last millennium. However, 

redeposition also characterizes the upper layers (i.e., due to hydrological activity and 

interment of human remains) and hence the dating from context 71 is retained as a more 

secure chronological marker for the Late Holocene presence of the hog deer. Whether this 

represents a marker for its last occurrence deserves further investigation.  
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4.3.3 Tarung-Tarung Cave 

 

Further explorations in Lipuun Point and Kalatagbak area of Quezon province in southern 

Palawan also yielded additional records of Holocene-age vertebrate assemblages. Reis and 

Garong (2001) conducted test pit excavations in four locations: RS1 and RS2 in Lipuun Point 

and Tarung-tarung and Merasuen Caves in Kalatagbak. A single radiocarbon date was 

retrieved from RS 2, yielding an age of 11,130 ±50 BP (13,095–12,836 cal BP). The four 

excavations yielded a relatively small faunal sample (n=753), with Tarung-Tarung Cave having 

the largest sample size (n=354). The authors identified 31 genera and 28 species of terrestrial 

vertebrates, including three previously unrecorded taxa: an owl Otus sp., the swiftlet Collocalia 

salangana, and a small shrew Crocidura sp. The study highlighted both the insular and 

continental affinities of the Palawan fauna. 

 

4.4 The Archaeology of Pilanduk Cave 

 

Pilanduk Cave is located in Magmisi (also Nǝgmisi) Peak in Quezon municipality of 

southern Palawan, with the geographic coordinates 9° 17.998' N and 118°4.698' E. In 

geographic maps, the hill is also labelled as Devel Peak. It is part of a wider carbonate formation 

called the Alfonso XIII formation that is of Late Middle Miocene age (Rehm 2006) and that 

coevals with the Tabon limestone (Aurelio and Pena 2010). Magmisi Peak is about 20 km away 

from Lipuun Point and the Tabon Cave complex. “Misi” means smile in the Pala’wan language, 

and it pertains to a wide notch on the north face near its peak, which from a distance appears 

like a smile or a grin. The formation is less than a kilometre away from the present-day coast.  

The cave is well-lit and measures about 40 m long at the overhang and about 20 m wide 

in the broadest central section (Figure 4.8). It is approximately 165 m above sea level. Iwahig 

is the local name of the area and of the major river system that currently cuts through 

surrounding agricultural fields, secondary lowland forests and mangrove forests. The Iwahig 

River finally empties into the West Philippine/South China Sea. The name pilandok/pilanduk 

is the vernacular term for the Philippine mouse-deer (Tragulus nigricans), which is an endemic 

of the small island of Balabac off the south coast of Palawan. This animal is not known to have 

a natural distribution on Palawan itself, but it is reported to have been translocated into 

southern Palawan in present times. Pilanduk is also a term used for the Calamian hog deer. 
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Figure 4.8 Magmisi Peak (top) facing west and as visible from the village road; and panoramic 
photographs of Pilanduk Cave showing the cave interior (middle, viewed from the northeast) and 
the cave mouth (bottom, viewed from inside the cave/from the west). Photographs: J. Ochoa. 
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4.4.1 Archaeological Background and Fieldwork Objectives 

 

Pilanduk cave is an important Philippine site that contains a large and well-preserved faunal 

and lithic assemblage of Late Pleistocene antiquity. The site is particularly crucial to the thesis 

because it is the only site of reportedly Last Glacial Maximum (LGM) age in the whole 

archipelago that contains a sizeable faunal assemblage. Callao Cave in northern Luzon has a 

layer with a direct date that place it into the Last Glacial Period (ca. 26,000 BP), but the 

archaeological remains from this layer are minimal. On Palawan itself, Tabon Cave is the only 

other site with direct dates that place it well into the Pleistocene, but Fox’s excavations and 

more recent investigations have not yielded a big faunal assemblage. Ille Cave in northern 

Palawan, on the other hand, reveals cultural layers that date up to the Terminal Pleistocene 

only. 

The first archaeological exploration of Pilanduk Cave was in 1962 under the auspices 

of the NMP. The first archaeological excavation was conducted in 1969-70 by a team led by 

Jonathan Kress. Kress (1980:60) reports that at the beginning of the excavation, the surface of 

the cave was partially covered by underbrush and that much of the centre had been disturbed 

by the activities of the tabon bird. Three radiocarbon dates taken from shell were reported by 

Kress (1980, 2000) that range from 25,000 to 18,000 uncal. BP (Table 4.4). Kress (2000) 

reports four Palaeolithic cultural layers from the excavations and corresponding ages for three 

of them. The deepest layer, Layer IV, was dated at 25,470 ±1000 BP. The youngest layers, 

Layers II and I, yielded dates at 18,340± 370 BP and 18,260 ±650 BP, respectively. During the 

time of Late Pleistocene occupation, the site would have been further inland because of the 

MIS-2 sea-level lowstand. GIS reconstructions place this at about 40 km distance from the coast 

(Robles et al. 2015). Kress (1980) reports that after the Late Pleistocene occupation, the site 

was rarely utilised until around 3000 years ago (or later) when it was used as a jar burial site.  
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Table 4.4 Pilandok Cave cultural chronology from Kress (1977, 2000). Radiocarbon dates are 
uncalibrated and were taken from shell taxa with unreported taxonomic designations. Layer III is said 
to be more similar in composition to Layers I and II. Calibrated ages are shown in Table 4.3. 

Layer Age/Dates* 
Dating sample number and 

material 

Jar burial layer Metal Period n/a 

Layer I 18,260 ±650 BP I-5488 on shell 

Layer II 18,340 ±370 BP I-5492 on shell 

Layer III n/a n/a 

Layer IV 25,470 ±1000 BP I-5490 on shell 

 

The archaeological materials recovered in the excavation are described by Kress in 

three separate publications: the lithics and vertebrate fauna (Kress 1977), the ceramics (Kress 

1980) and the mollusc assemblage (Kress 2000). Regarding the vertebrate fauna, there are no 

published faunal counts. Kress (1977) provides a very brief description, observing that bones 

of deer predominate in all four layers. Some wild pig, monkey, monitor lizard, porcupine and 

tortoise remains were also identified. The author interprets the abundance of deer as 

representing an economy with a relatively narrow subsistence base and specialised hunting. 

Kress (1977:39) describes the lithic assemblage in Layer IV as a flake industry 

manufactured largely from flint. The flakes vary greatly in size and proportion and retouching 

was not observed. The lithic assemblage from Layers III, II and I is also a flake industry largely 

made from flint. Nonetheless, it differs from the Layer IV industry in that there is a much 

greater uniformity in flake morphology and extensive retouch is also apparent. Kress describes 

this industry as ‘specialized’, wherein knapping techniques appear more standardised and 

tools were manufactured with specific characteristics for specialised tasks (Kress 1977:42). 

Kress (2000) also reports on the mollusc assemblage. Thirty-one species were 

identified in the assemblage, with 90% coming from freshwater and terrestrial taxa. This 

pattern is said to confirm the inland environment of the Palaeolithic levels of the sequence, 

which contrasts with the current coastal environment of the area. The author further notes 

that there is an increasing trend in abundance of total volume of molluscs. There is a 68% 

increase of material from the Layer III to Layer II and an 81% increase from Layer II to Layer 

I. Kress (2000:319) interprets this as evidence for the intensification of the use of the cave 

during this period. 
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The ceramic assemblage from Pilanduk Cave derives from the uppermost levels 

attributed to the Late Neolithic/Metal Period jar burial phase. Kress (1980) reports that a total 

of 570 sherds were collected. These were categorised into two groups, ceremonial and 

utilitarian. The large burial jars are attributed to the ceremonial ceramics. The author also 

reports the presence of three shell ornaments associated with the ceramics: a Meretrix shell 

bead, an Arca shell pendant and a worked oyster fragment. 

The radiocarbon dates from the Palaeolithic layers were taken on shell remains of 

unreported taxonomic designation. Due to the known limitations of radiocarbon dating 

technology during the 1970s, particularly as it was applied on shell, these dates are not well 

accepted in the literature. Stratigraphic details were also not published. The uncertainty in the 

dates and in the site records provide a tentative sequence for Pilanduk. Despite these 

limitations, the site has yielded an archaeological sequence that is important due to its 

attributed antiquity and the large volume of faunal and lithic material.   In view of the existing 

archaeological data deriving from the work of Kress, the new work aimed to: 

1. Provide a robust stratigraphic anchor to the existing faunal and lithic 

assemblage; 

2. Recover archaeological remains from in situ deposits, especially in light of the 

constant threat of treasure-hunting in the area; and 

3. Re-date the archaeological sequence of the cave. 

 

4.4.2 Excavation and Recording 

 

The excavation was conducted in October 2016 with a team consisting of members from the 

NMP, the local barangay of Maasin and the University of the Philippines. Actual digging days 

consisted of eleven days out of a projected three weeks of fieldwork.  

The entire cave was mapped at the beginning of the excavation to produce a cave floor 

plan (Figure 4.9). A datum point was established on a limestone block near the entrance of the 

cave, and from here a datum plane was established. An arbitrary 2 x 2 m grid map was 

constructed, and this was the basis for mapping and labelling the trenches. Natural and 

archaeological features were then plotted on the floor plan. In the absence of a full cave floor 

plan from the 1970 excavation, re-mapping enabled the team to trace the original location of 

the excavation trenches opened by Kress (2000). In total, four excavation units were opened: 

Trench 1 (N4W4) in the north area, Trench 2 (S4W2) in the outh area, and Trenches 3 (S1W3) 
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and 4 (S2W4) in the middle area where portions of the original central cave floor remained 

intact. 

A large portion of the cave has been disturbed by treasure hunting activity, especially 

the central cave floor (Figure 4.9). A visit was conducted in July 2015 to survey the site. A 

relatively new treasure hunter’s pit was observed in the north section of the cave. It also 

revealed a vertical section of intact archaeological deposits in this area, and this was the basis 

for opening Trench 1. In late 2016, another pit was found in the southwest portion of the cave, 

attesting to the continuing threat of treasure hunting. In 2016, the middle portion of the cave 

was largely covered with backfill from various diggings. These activities have largely spoiled 

and/or buried in situ deposits, and hence it was a challenge to locate such deposits. Re-

mapping the site enabled the team to reconstruct the extent and level of the original cave floor. 

Based on this reconstruction, Trenches 3 and 4 were opened. Trench 2 was opened to 

investigate in situ deposits in the south end of the cave. 

Excavation followed natural layers and features using trowels and hand-collection. 

Within thick deposits or layers, arbitrary 10-cm spits were also used. All sediments from 

trowelling and hand-collection were dry-sieved through 2-mm screens. In addition, 5-litre 

bulk samples were taken from recorded layers and features for flotation and wet-sieving. As 

mentioned in Chapter 3, a ‘single context’ recording system was used in the excavation. Soil 

layers and archaeological features were each given individual context numbers. This unique 

number is the main reference number for all materials associated with the layer or feature. A 

running inventory of contexts was logged in a ‘context inventory form’. Individual contexts 

have their own ‘single context recording form’ and all three-dimensional spatial data are 

recorded on this form. Horizontal plans and vertical profiles were recorded on the context 

recording forms. At the end of the excavation, stratigraphic profiles were drawn for all 

excavation units. All trenches were then backfilled following the protocols of the NMP. The 

archaeological materials recovered were all cleaned, bagged and accessioned using the 

inventory system of the NMP.  
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Figure 4.9 Pilanduk Cave floor plan showing location of Trenches (Tr) 1 to 4 and the estimated 
location of the trenches excavated in 1970 by Kress (2000). The central cave floor has been 
heavily disturbed by treasure-hunting activities. Mapping by M. Lara and A. Peñalosa. Digitised 
by M. Lara and J. Ochoa. 
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4.4.3 Stratigraphy and Chronology 

 

The stratigraphic sequence for Pilanduk Cave is best represented by the Trench 3 sequence, 

which shows six major layers (Table 4.5, Figure 4.10). Due to the limited time available, it was 

only in Trench 3 that the excavation went relatively deep (over 1m), and only in its southwest 

quadrant (1x1 m). The first three layers in Trench 3 are equivalent to and contemporaneous 

with several contexts uncovered in adjacent Trench 4. In the peripheral Trenches 1 and 2 only 

three layers are replicated. 

Layer I consists of loose silt deposits, backfill from treasure hunter pits and modern 

materials. The layer is observed in Trenches 3 and 4. Earthenware pottery is also found. Layer 

II consists of dark greyish brown clayey silt deposits with numerous lithics and animal 

remains. Evidence of burning across this layer is evident from the sediment, ash inclusions and 

burnt animal bones. Earthenware pottery is also observed, including large jar fragments. 

Isolated human bones were also found, which have a different preservation state from the 

animal remains. The animal remains have a dark brown to black colour (due to burning), 

whereas the human bones do not show this discolouration and retain the natural colour of 

bone. The human bones are also more heavily weathered than the animal remains. These 

differences in preservation states indicate that the human remains are not part of the midden 

deposition and derive from a different deposition event. Kress (1980, 2000) previously 

observed that the site was used as a jar burial site as evident from four large jar vessels found 

in 1970. In the 2016 excavation, a minimum of at least five large vessels was recovered, along 

with eight small vessels (De Leon 2017). The large vessels cut into the postulated Palaeolithic 

midden deposits and earthenware sherds are found in the upper levels of Layer II. These upper 

levels of Layer II correspond to context 111 in Trench 3 and contexts 122, 123 and 126 in 

Trench 4. The lower portion of Layer II has no earthenware sherds. This is represented by 

context 112 in Trench 3 and contexts 124, 125, 127, 128 and 129 in Trench 4. These contexts 

were grouped together into Layer II because of the similar sediment and artefact composition. 

The main difference would be the absence of sherds in the lower levels. In comparing contexts 

111 and 112, there appears to be more ash concentration and hearth remains in context 112 

compared to context 111, and hence the distinction among the contexts is also useful for 

segregating an upper and lower section of Layer II. 
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Table 4.5 Description of archaeological layers and associated contexts in Pilanduk Cave. A tentative correspondence with Kress’s (1977, 2000) 
chronology is proposed. 

Layer Description based on Trench 3 and 4 Sequence 
Associated Contexts 

Kress's 
chronology 

Trench 3 Trench 4 
Trench 

1 Trench 2 

I 
Topmost sediment of loose silt with modern 
materials, treasure hunter's back dirt of varying 
sediment composition, and earthenware pottery. 

110, 114, 
115 

121 

1, 2, 3, 
4, 5, 6 

100, 101 

Jar burial 
layer 

II 

Mid to dark greyish brown silty clay and clayey silt 
layers with numerous burnt bones and lithics. 
Earthenware pottery is also present, associated with 
some human remains (possible jar burials); pottery is 
intrusive and cuts into midden remains. 

111 
122, 123, 

126 
Layer I 

II 
Mid to dark greyish brown clayey silt layers with ash 
concentrations/hearth remains, numerous burnt 
bones and lithics; pottery is absent from hereon. 

112 
124, 125, 
127, 128, 
129, 130 

absent 102 Layer II 

III Mid greyish brown silt with less ash concentrations, 
numerous burnt bones and lithics. 

116, 117 
not 

reached 
absent absent Layer III 

IV Mid yellowish brown silt with limestone slabs, lesser 
animal bones and lithics. 

118 
not 

reached 
absent absent Layer IV 

V Mid yellowish brown clayey silt with small limestone 
fragments and no artefacts. 

119 
not 

reached 
absent absent n/a 

VI Limestone bedrock 
not 

reached 
not 

reached 
8 103 not known  
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In Kress’s (1977, 2000) chronology, only the Palaeolithic deposits were numbered. Kress 

(1980:60) notes that the cave was inhabited by Upper Palaeolithic hunter-gatherers, and after 

16,000 BC, it was visited rarely until the burial jars and offerings were deposited. He also notes 

that the ceramic assemblages were found at or near the surface of the site. In our 2016 

investigations, the surface of the cave was extensively disturbed such that a new layer of sediment 

has covered Kress’ Layer I. It was still observable, nonetheless, that the burial and ceremonial jars 

were in this topmost layer, and in the upper levels of Layer II. In the current chronology, Kress’s 

Layers I and II possibly correspond with the upper and lower levels of Layer II (Table 4.5). Further 

stratigraphic data (e.g. stratigraphic profile or soil descriptions) from the 1969-70 excavations are 

unavailable and so direct comparison is not possible. Kress (2000) only published a site plan and 

the radiocarbon dates. I base the correspondence of layers mainly on the description of finds that 

Kress (1977, 1980, 2000) provided. Kress reports that there are “three thick and rich Pilanduk 

Figure 4.10 Stratigraphic profile of the south wall of Trench 3 of Pilanduk Cave, which shows the 
entire excavated sequence. Numbers in the layers refer to archaeological contexts (see Table 4.5 for 
descriptions). Context 114 is a large earthenware fragment representing a jar burial context that 
intrudes into context 111. Dates shown are calibrated age ranges at 95% probability (see Table 4.6). 
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Cave components” (1977: 42) that contain several hearths and numerous animal bones and lithics. 

These “components” appear to correspond to Layers II to III (Table 4.5). 

Layer III consists of a mid-greyish brown silt with fewer ash concentrations, but still with 

numerous burnt bones and similar lithics. It is represented by contexts 116 and 117 in Trench 3.  

Layer III, and others below it, are only observed in Trench 3. Trench 4 only reached Layer II. In 

Trenches 1 and 2, the sequences were much shallower; only Layer II was observed, after which 

bedrock was already uncovered.  

Layer IV consists of a mid-yellowish brown silt with numerous limestone slabs. There is 

considerably less evidence of burning in this layer compared to the upper layers. There is also a 

lesser quantity of animal bones and lithics. Layer V is comprised of mid-yellowish brown clayey 

silt with small limestone fragments (versus the large limestone slabs in Layer IV). In the 1x1 m 

section in Trench 3, there were no artefacts found in Layer V. Layer VI is designated as the 

limestone bedrock. It was reached in Trenches 1 and 2 but not in Trenches 3 and 4. 

 

Table 4.6 Radiocarbon dates for Pilanduk Cave. Samples are all from Trench 3. Ages were calibrated using 
OxCal 4.3 and IntCal 13 and are shown at 95.4% probability (Bronk Ramsey 2017). LDP = local datum point. 
All samples are from wood charcoal. 

 

Accession 
No. 

OxA No. Species Context 
Depth 

from LDP 
(cm) 

Radiocarbon 
age (BP) 

Calibration age 
range (cal BP) 

5397 37182 Michelia sp. 112 46 16,785 ± 65 20,468–20,034 

5587 36553 Wrightia sp. 112 52 17,980 ± 70 22,004–21,540 

6210 36332 Pinus sp. 117 90 20,460 ± 90 24,995–24,301 

6255 37180 Kibatalia sp. 118 98 19,500 ± 90 23,785–23,140 

6255 37181 Kibatalia sp. 118 98 19,570 ± 80 23,875–23,295 

6257 36331 Syzygium sp. 118 103 20,120 ±90 24,440–23,933 
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New radiocarbon dates were obtained for Pilanduk Cave (Table 4.6). All samples are from 

charcoal. Macrobotanical identifications were conducted by the project archaeobotanist, Jane 

Carlos. Submitted bone and teeth dating samples did not yield sufficient collagen. All samples are 

from the Trench 3 sequence. Three contexts were dated: contexts 112, 117 and 118. Two ages are 

reported for specimen 6255, one of which is a control sample (OxA-37181). The age produced 

agrees with OxA-37180. Ages shown in Table 4.5 follow a sequence from highest to lowest depth. 

Note that specimen 6210 (OxA-36332) has a slightly older age range than specimens 6255 and 

6257. Nonetheless, the calibrated age range for specimen 6210 overlaps with specimen 6257. 

Specimen 6210 was taken from the base of context 117 (Layer III), where there might have been 

mixing of sediments and movement of charcoal remains in the interface between contexts 117 and 

118 (Figure 4.10). This date may likely represent an age for context 118 (Layer IV). 

 

Table 4.7 Trench 3 specimen counts for animal bones, lithics and shells per context from the 2016 excavation 
of Pilanduk Cave. 

 

 

 

 

 

The ages retrieved from the samples indicate two general phases of Late Pleistocene 

occupation. The ages for context 112 represent an LGM occupation at ca. 21,000-20,000 cal BP. 

The calibrated age ranges for context 112 overlap with calibrated ages of two dates published by 

Kress (2000; see Tables 4.3 and 4.4) for his Layers I and II. The second phase of occupation is 

represented by context 118 (Layer IV). The calibrated ages for context 118 (ca. 25,000–23,000 cal 

BP) are close to the uncalibrated age (ca. 25,000 BP) for one sample published by Kress (2000) for 

his Layer IV. The high quantity of faunal remains and lithics in contexts 111, 112 and 117 

compared to context 118 indicates a more intensive occupation period in the younger phase. This 

is reflected in the raw counts of archaeological finds per context in Trench 3 (Table 4.7). This 

agrees with Kress’s (2000) description of site intensification based on his analysis of the mollusc 

remains. 

Finds 
Context 

110 
Context 

111 
Context 

112 
Context 

117 
Context 

118 

Bones 710 3017 7458 3055 671 

Lithics 57 173 364 132 49 

Shells 62 304 483 406 209 
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4.5 Conclusion 

 

This chapter has presented the archaeological background for the three main study sites of the 

thesis, along with comparative sites that have published zooarchaeological analyses. Two new 

radiocarbon dates have also been presented for Minori Cave. These are direct dates on macaque 

teeth, which have implications for the age and distribution of this species on Luzon. The chapter 

has also presented new archaeological evidence for Pilanduk Cave based on the 2016 re-

excavation of the site. The results clarify the chronology and stratigraphy of the site and confirm 

its MIS-2 age. Two main occupation phases are represented in the Late Pleistocene deposits: an 

intensive occupation phase during the LGM (21,000–20,000 cal BP), and an older phase at 24,000–

23,000 cal BP. The new dates and stratigraphic evidence are in agreement with Kress’ (1977, 

2000) previous descriptions of the Palaeolithic deposits. These results demonstrate that Pilanduk 

Cave presents the largest LGM archaeological assemblage in the archipelago, which has significant 

potential for understanding the LGM human occupation of Palawan and the Philippines. The thesis 

will investigate this further through the succeeding zooarchaeological analyses. 
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Chapter 5 Late Pleistocene Fossil Vertebrates of Pilanduk 

Cave 

 

 

5.1 Introduction 

 

In this chapter, I present the analysis of the terrestrial vertebrate record of Pilanduk Cave in 

Palawan Island. The archaeological analysis presented in Chapter 4 and the faunal analysis in 

this chapter serve to provide a Late Pleistocene faunal record for Palawan that extends beyond 

the oldest archaeological levels of Ille Cave at 14,000 cal BP. As described in the previous 

chapter, the Pilanduk Cave assemblage currently represents the most substantial 

archaeological and vertebrate fossil record of the Last Glacial Maximum in the Philippines, 

dating from 25,000 to 20,000 cal BP. Cultural layers dating between 30,000 and 18,000 BP 

(MIS-2) have also been recorded in Callao Cave in Luzon Island and Bubog Rockshelter in 

Mindoro Island. However, the archaeological remains found in these other sites that date to 

this period are relatively sparse. The archaeological visibility of the LGM across the Philippine 

archipelago is affected by sea-level fluctuation. Many coastal areas across the islands, including 

Palawan, that were exposed during the LGM are presently underwater. This is identified as one 

of the reasons for the rarity of LGM sites on Palawan (Robles et al. 2015), and hence the 

confirmation of LGM dates and re-excavation of Pilanduk are significant.  The site is currently 

less than a kilometre from the coast, but it would have been 40 km inland during the periods 

of LGM occupation.  

The main body of the chapter presents the accounts of species for Pilanduk, along with 

data on systematics, ecology and previous fossil records. The focus of the analyses is on the 

extirpated taxa because confirmation of the Late Pleistocene presence of extinct species is 

crucial for our understanding of Philippine faunas. Biological data for the extant species are 

primarily derived from synopses of Philippine and Palawan mammals (Esselstyn et al. 2004; 

Heaney et al. 2010). To provide the context for the Pilanduk vertebrate assemblage, an 

overview of the island fossil record follows. 
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5.2 Palawan Island Vertebrate Fossil Record 

 

The current oldest known vertebrate fossil record for Palawan comes from Tabon Cave, 

primarily represented by Pleistocene Homo sapiens remains that range in age from 47,000 to 

16,000 BP (Détroit et al. 2004; Dizon et al. 2002). Fox (1970) reported on the presence of other 

vertebrate taxa in Tabon such as deer and pig; however, the remains were never properly 

described. Only a few of the Tabon vertebrate remains are currently found in the museum 

collections, indicating that they may have been discarded or not curated in the intervening 

decades (Corny 2008). Within the same karst complex, Fox (1970:47) also reported on the 

presence of wild pig and deer remains from nearby Guri Cave, which date to ca. 4000 BP. A re-

excavation of Guri Cave by Heng (1988) showed that deer was common in the assemblage but, 

curiously, wild pig remains were reportedly absent in the sequence, contrary to the report of 

Fox (1970). 

Reis and Garong (2004) presented a Holocene faunal sequence from four cave sites in 

southern Palawan, two of which are in the Tabon Cave complex, and another two in the 

Kalatagbak area close to where Pilanduk Cave is located. They identified 28 vertebrate species, 

including two new records for bird taxa (Otus sp. and Collocalia salangana), and a new record 

for a shrew species (Crocidura sp.) The only large mammal recorded was the Palawan bearded 

pig (Sus ahoenobarbus). According to the authors, their data highlight the more insular 

affinities of Palawan (largely because of the absence of large mammals with low dispersal 

capabilities) in comparison with Borneo. The low abundance of hunted taxa and the 

predominance of microvertebrates appear to indicate that these sites were not intensively 

occupied by humans. 

Presently, the most sizeable fossil vertebrate record for the island comes from the 

Dewil Valley of El Nido in northern Palawan. As described in Chapter 4, Ille Cave presents a 

sequence from the Terminal Pleistocene to the near present, documenting the first fossil 

records for several extinct and extant mammal and reptile taxa of the island (Ochoa 2009; 

Piper et al. 2011). Of particular interest is the first record of the tiger (Panthera tigris) on 

Palawan (Piper et al. 2008), as well as the description of two deer taxa and a canid. Nearby 

Pasimbahan Cave also presents a 10,000-year Holocene sequence, detailing taxa similar to 

those found in Ille Cave (Ochoa et al. 2014). Together, these two sites provide evidence for the 

changing composition of the island’s mammal fauna in the last 14,000 years. Three large 

mammals – tiger, rusine deer, and hog deer – were extirpated in the Holocene. As a 

consequence of diminishing deer populations, a resource switch is evident in the subsistence 
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record, with the Palawan bearded pig becoming the main large prey of humans from the Mid 

Holocenek onwards (Ochoa and Piper 2017; Piper et al. 2011). 

The cultural layers of the Ille Cave sequence only reach as far back as the Terminal 

Pleistocene, and the Tabon vertebrate remains were never properly described. As a result, 

Palawan has a limited Pleistocene faunal record. The rich fossil record of Pilanduk is a 

significant contribution that addresses this paucity, and it provides evidence for the crucial 

climatic period of the Last Glacial Maximum. 

 

5.3 Pilanduk Cave Vertebrate Fauna: An Overview 

 

A total of 8491 specimens were analysed from Pilanduk Cave, of which 7826 were from 

the 2016 re-excavation of the site (Table 5.1). The remaining 665 fragments were from an 

attempt to analyse materials from Kress’ older excavation, but very few fragments turned out 

to have sufficient stratigraphic information to make the exercise worthwhile. The analysis of 

the 2016 assemblage was focused on the Trench 3 sequence, since this unit had the 

longest/deepest excavated sequence among all trenches. Proportion of bone identified to 

taxon is at 18% for Pilanduk  

A total of seven mammalian taxa were identified, together with two reptile taxa (Table 

5.1). The Pilanduk Cave evidence currently represents the oldest dated fossil records of these 

nine identified taxa, since the Tabon vertebrate fauna was not described in detail. Bone 

accumulation is very dense and approximately equal across contexts 111, 112 and 117, 

whereas there was much less bone accumulation in context 118 (Table 5.1). Cervid remains 

dominate across all layers (Figure 5.1). In particular, the larger cervid (Rusa sp.) is the more 

abundant of the two species of deer (Section 5.4.7). The Palawan bearded pig is the next most 

abundant animal in contexts 111, 112 and 117. All other taxa occur in much smaller numbers; 

nonetheless, these confirm the Late Pleistocene (LGM) presence of these species on Palawan 

Island. This includes rare fossil finds for the tiger uncovered in contexts 111, 112 and 117 

(Section 5.4.4). Records for macaques are also found in the LGM deposits and this has 

implications for its native status on the island (Section 5.4.1). 
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5.4 Accounts of Species 

 

Species accounts for each of the identified non-volant mammal taxa follows in this 

section. The only volant mammal identified is the diadem roundleaf bat (Hipposideros 

diadema) found in context 118 (see Ochoa 2009 for morphological description of this bat 

species). Detailed treatments are specifically provided for the tiger (Panthera tigris) and deer 

(Rusa and Axis). Due to the rarity and extinct status of these fossil taxa, further analyses are 

needed in order to clarify the taxonomy and morphology of these mammals in the Palawan 

record. 

 

5.4.1 Order Primata 

Family Cercopithecidae 

Macaca fascicularis 

 

The bones of long-tailed macaque are very rare in the assemblage, numbering to only four 

specimens. Only one fragment was found in situ, a left ischium fragment from context 117. The 

Figure 5.1 Relative taxonomic abundance (%NISP) of vertebrate taxa at Pilanduk Cave across 
four major archaeological layers. NISP = number of identified specimens, c = archaeological 
context. NISP counts are in Table 5.1. 
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rest of the specimens consisted of a lower left canine fragment, a complete right astragalus and 

a right mandible fragment with no teeth. The three specimens are redeposited cranial and 

post-cranial elements found on the surface of the site. Comparing the specimens to the state of 

preservation of other specimens found in situ, the remains appear to originate from the LGM 

deposits based on their taphonomic similarities to the former, rather than from the Late 

Holocene burial deposits. The LGM bone accumulation primarily consisted of partially 

mineralised bone that were brown to dark brown in colour. They are typically only slightly 

weathered and have dark spots attributed to mineral staining (see Section 8.2). These 

attributes were observed on the three macaque surface finds. In contrast, the Late Holocene 

burial deposits consisted of moderate to highly weathered fragments that retained the natural 

colour of bone (cream/white).  The macaque is relatively rare in Pilanduk; however, this taxon 

is a relatively common and abundant intermediate mammal in the Holocene sequence of Ille 

and Pasimbahan Caves.   

Modern Philippine macaque populations are said to differ little from Bornean 

macaques (Heaney et al. 2010), and this has implications for origin and dispersal. The species 

is widespread in the Southeast Asian region and is also known to have been introduced to some 

oceanic islands of Indonesia by humans (van den Bergh et al. 2001).  On Palawan, it is 

considered a native of the island based on biogeographic and phylogenetic grounds (Esselstyn 

et al. 2004; Fooden 1995; Heaney et al. 1998).  Molecular phylogenetic data clearly signal a 

Sundaic origin, with most Philippine sequences clustering in one group (Blancher et al. 2008, 

2012; Tosi and Coke 2007). Mitochondrial DNA sequence phylogeny also shows low nucleotide 

diversity in Philippine macaque samples, suggesting a bottleneck following initial dispersal by 

Indonesian stock (Blancher et al. 2008). Because the Philippine macaque population is 

reportedly free of introgression from the rhesus monkey as compared to mainland 

(Vietnamese) M. fascicularis, the former is posited as an isolated population that had 

experienced a founding effect followed by a rapid initial expansion (Blancher et al. 2012: 605-

606; see Section 7.4.2). However, the status of Palawan macaque populations in this scenario 

is uncertain since only macaques from the oceanic Philippines appear to be represented in 

modern DNA studies (or in some cases, the island provenance of Philippine samples are 

unstated). In this light, the Pilanduk and other Palawan fossil records provide evidence in 

support of the native status of M. fascicularis on this island, documenting its relatively 

continuous LGM to Late Holocene presence (Ochoa et al. 2014; Piper et al. 2011; Reis and 

Garong 2001). It goes by several local names, including bakes and amu. 
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Table 5.1 Number of identified specimens (NISP) by layer from Pilanduk Cave excavated by NMP and JO during the 2016 field season and in 1970 by 
J. Kress. Trench 3 Layers refer to context numbers. *Locally extinct species. ** Two additional specimens of tiger were retrieved from Trench 4.  

 

 

Taxon 
  Trench 3 Layers 2016 Kress' Excavation 1970   

surface 111 112 117 118 Total 
Layer 

1 
Layer 

2 
Layer 

3 
Layer 

4 
No 

Layer 
Total 

Total 
% 

NISP 

Axis calamianensis 19 7 30 19 1 76 1    8 9 85 1.0 

Rusa sp. 80 29 53 13 13 188 10 6  7 40 63 251 3.0 

Cervid 128 163 239 266 38 834 39 8 37 5 106 195 1029 12.1 

Sus ahoenobarbus 5 14 15 28 0 62 8 3 7  11 29 91 1.1 

Panthera tigris 1 1 4 1   9**        9 0.1 

large mammal 28 979 1004 1718 266 3992 65 8 163 8 59 303 4295 50.6 

Macaca fascicularis 1    1   2     2 2 4 0.05 

Sciuridae      1 1 2        2 0.02 

Hystrix pumila     2    2        2 0.02 

intermediate mammal   3 1 5 3 12 1  1   2 14 0.2 

Hipposideros diadema       4 4        4 0.05 

Chiroptera       22 22        22 0.3 

Varanus cf. palawanensis      2   2        2 0.02 

Geoemydid   1 8 20 5 34   2  1 3 37 0.4 

Cyclemys dentata     3 2   5        5 0.1 

bird   3  3 17 23        23 0.3 

macrovertebrate   971 962 483 106 2522 3  55  1 59 2581 30.4 

microvertebrate   2     30 32             32 0.4 

  261 2173 2321 2562 506 7825 127 25 265 20 228 665 8490 100.0 
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5.4.2 Order Rodentia 

Family Sciuridae 
Sundasciurus/Hylopetes 
 

The squirrel is represented by only 2 fragments, one each from context 117 and context 

118. The identified specimens – consisting of a proximal femur fragment and mandibular fragment 

with no teeth – preclude differentiation between Sundasciurus (tree squirrel) and Hylopetes (flying 

squirrel). The presence of these obligate canopy dwellers, along with the macaque, indicates tree 

cover in the vicinity of Mt. Magngisi. Locally, squirrels are known as bising and flying squirrels as 

bia’tat and tapilak. 

 
 
 

5.4.3 Family Hystricidae 

Hystrix pumila 

 
The Palawan porcupine is represented by a mandibular fragment and an isolated molar fragment 

from context 112, representing a single individual. The porcupine is recorded from four other 

archaeological sites on the island from the Terminal Pleistocene to the Holocene: RS1 and Tarung-

Tarung Cave in southern Palawan (Reis and Garong 2004) and Ille and Pasimbahan Caves in 

northern Palawan (Ochoa and Piper 2017). Porcupines occur in lowland primary forest, as well as 

heavily disturbed secondary forest/grassland mosaic (Heaney et al. 2010). It is a nocturnal 

species, foraging primarily on the ground and feeding on plant material. It is locally known as 

durian or landak. 
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5.4.4 Order Carnivora 

Family Felidae 

Panthera tigris 

 
Nine specimens belonging to a large and robust pantherine were recovered from Pilanduk Cave 

(Figure 5.2). Measurements of all specimens are presented in Table 5.2.  The size of the fossils 

points to the largest pantherines – Panthera tigris and Panthera leo (Tables 5.3 and 5.4). From the 

Late Pleistocene to the present-day, the only recorded pantherines in Southeast Asia are the tiger 

(P. tigris) and the leopard (P. pardus). There is no modern or fossil record of the lion (P. leo) in the 

region. The current tiger taxonomy recognizes six living subspecies: Bengal tiger P. t. tigris, Amur 

tiger P. t. altaica, South China tiger P. t. amoyensis, Sumatran tiger P. t. sumatrae, Indochinese tiger 

P. t. corbetti, and Malayan tiger P. t. jacksoni (Goodrich et al. 2014; Luo et al. 2004, 2010). Based on 

historical and archaeological evidence, the tiger had a broader distribution in Island Southeast 

Asia in the past. The historic distribution of the tiger included Java and Bali; however, they both 

became extinct in the 20th century. The only living tiger population in the Sundaic Islands is the 

Sumatran tiger. The fossil record of Borneo has also produced some rare tiger material, 

particularly from Niah and Madai Caves (Harrison 1998; Piper et al. 2007). 

 
Molecular genetic data have provided numerous insights on the demographic and 

evolutionary history of modern tigers. The time to the most recent common ancestor for modern 

tigers has been estimated at 72,000-108,000 years ago (Luo et al. 2004). The phylogenetic 

placement of the South China tiger (P. t. amoyensis) is considered basal in phylogeographic 

reconstructions, and a once widespread tiger population was present from China to the Sunda 

Shelf (Driscoll et al. 2009; Luo et al. 2004; Xue et al. 2015). Subsequently, this population became 

isolated, likely due to rising sea levels during interglacial periods. A second wave of tiger 

expansion and divergence is said to have replaced much of the range of the Amur tiger on mainland 

Asia and evolved into the current recognized subspecies (Kitchener and Yamaguchi 2010). In the 

case of the Island SEA tigers,  the genetic ancestry of the Bali and Java tiger indicates that they form 

a strongly supported monophyletic clade with the Sumatran tiger that is distinct from other 

modern mainland subspecies (Xue et al. 2015). Tiger fossils have been found in paleontological 

deposits in Java dated to as old as 1.2 million years ago (van den Bergh et al. 2001). However, 

because coalescence time of modern tiger lineages is within the last 100,000 years, the modern 
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Sundaic tigers are likely not derived from these older tiger populations on Java (Kitchener and 

Yamaguchi 2010). Instead, tigers from the islands of Sumatra, Bali, and Java appear to be 

descended from a more recent population expansion during the Late Pleistocene, particularly 

when the islands were connected intermittently during periods of glacial cycles (Xue et al. 2015). 

 
 

The presence of the tiger on Palawan Island has been previously reported in Ille Cave, 

represented by only three specimens: two fragments from a Terminal Pleistocene layer and one 

from an Early Holocene layer (Ochoa and Piper 2017; Piper et al. 2008). Some scepticism was 

previously expressed by van der Geer and colleagues (2010) regarding the native presence of the 

tiger on Palawan, when the two fossils were first described from the Terminal Pleistocene levels 

(14,000 cal BP) of Ille Cave. To help clarify the issue, a detailed treatment of the fossil tiger 

identifications is provided below. The Pilanduk Cave record considerably adds to the fossil 

inventory of the tiger on Palawan and extends its spatio-temporal distribution into the LGM. Out 

of nine specimens, two complete elements were found: a refitted third metacarpal and a sub-

terminal phalanx. The other seven specimens are fragments of metapodia and phalanges. The 

metapodia are more clearly distinguishable based on the proximal articulation, and in this case, 

two specimens with proximal ends (specimens 9274 and 7365) are more easily identifiable. 

Nonetheless, upon careful examination and measurement, distal heads of the metapodia can also 

be differentiated to digit and side, based on the outline and shape of the heads and epicondyles. 

What follows is the individual description of each pantherine specimen. In the text and figures, MC 

refers to metacarpal and MT refers to metatarsal.
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Table 5.2 Inventory and measurements (in mm) of pantherine specimens from Pilanduk Cave. *Asterisk indicates that ascription to P. tigris is 
provisional due to the fragmented state of specimens and/or lack of measurable landmarks. GL= greatest length (for complete specimens only), 
MD=maximum diameter, Bp= proximal breadth (medio-lateral), Dp= proximal depth (antero-posterior), Bd = distal breadth, Dd = distal depth, Sd = 
smallest transverse diameter of diaphysis. Bd for metapodials is taken at the epicondyles. 

Bone ID Trench/Grid Context Side Portion Element GL MD BP Dp Bd Dd Sd 

9274 surface surface L complete third metacarpal 105.56  25.1 20.42 24.48 19.3 14.8 

5393 3 112 R complete sub-terminal phalanx 35.25  16.15 14.08 14.63 9.96 10.5 

7365 4 127 R proximal third metacarpal  25.1 25.02 22.15    

7366 4 127 R distal third metacarpal  35.83   19.3 18.12  
8803 S2W5 surface R distal fourth metacarpal  35.43   18.52 17.52  
5811 3 112 R distal fifth metatarsal  23.76   14.81 15.31  

5247* 3 111 \ distal proximal phalanx  14.65   12.42 8.77  
5812* 3 112 \ proximal distal phalanx  24.2      

5394* 3 112 \ proximal distal phalanx   27.38           
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Figure 5.2 Nine fossil metapodial and phalanx specimens from Pilanduk Cave referred to Panthera tigris. 
Complete specimens are shown on the right in anterior/dorsal views. Fragmented specimens are shown 
on left-hand rows in two aspects. MC = metacarpal, MT = metatarsal. All images shown at 2 cm scale. 
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5.4.4.1 Pantherine Metapodials 

 
Pilanduk-9274. This specimen is a left third metacarpal from a large and robust pantherine 

(Figure 5.3). The specimen was found amongst surface finds from treasure hunters’ back dirt to 

the east of Trench 1/Grid N4W4. The specimen is composed of two fragments that were refitted 

during sorting of surface finds from this area of the cave. The breakage was relatively fresh, and 

presumably the damage occurred during prior treasure-hunting activities in the site. The 

specimen is wholly covered in thin calcareous concretion, and the cervid bones found alongside 

it were also covered in concretion. Comparing this state of preservation to all the bones recovered 

in situ across the site, this taphonomic condition was observed on specimens found in grid N4W4 

and N3W4 in the northern section of the cave. In Trench 1 (which has the grid number N4W4) in 

particular, bones with calcareous concretion were found in contexts 5 and 6, which correspond 

to Layer I and II of the site. It is possible, then, that this specimen comes from similar levels in and 

around grid N3W4, where deep treasure hunter pits were observed (refer to Figure 4.11). 

 

 

Figure 5.3 Fossil left third metacarpal (Pilanduk-9274) referred to Panthera tigris in anterior (d), 
posterior (e), medial (f), lateral (g), proximal (h) and antero-distal (i) views. Comparisons are with the 
third metacarpals of modern Bengal tiger (a, OUMNH 3756, mirror view of R side), captive Sumatran tiger 
(b, FMNH 165401) and captive leopard (c, FMNH 54247). Refer to text for labels 1 and 2. 
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The specimen’s overall size and outline of the distal head indicates that it belongs to a 

middle-digit metapodial, while the proximal articulation clearly distinguishes it as the third 

metacarpal (MC III). Biometric comparisons with modern pantherines (Figure 5.4, Tables 5.3 and 

5.4) show that the specimen distinctly falls in the range of the tiger and is much larger than 

leopard comparatives. The specimen falls in the lower size range of tiger, indicating that it belongs 

to a smaller-sized individual compared to larger continental tigers. The largest museum reference 

individuals are Bengal and Siberian tigers, while the smallest ones are zoo specimens from 

Sumatra and Peninsular Malaysia. Pilanduk-9274 is moderately longer and has a more robust 

diaphysis compared to the Sumatran and Malaysian tiger reference. This more pronounced 

robusticity likely has to do with the individual being from the wild, as compared to the Sumatran 

and Malaysian comparatives, which are known captive individuals. 

 

Table 5.3 Summary of metapodial measurements (in mm) of Pilanduk Cave fossil and modern pantherines. 
N = number of samples of modern individuals, MC = metacarpal, MT = metatarsal, Bp = proximal breadth, 
Dp = proximal depth, Bd = distal breadth, Dd= distal depth. Breadth measurement is medio-lateral and 
depth is antero-posterior. Measurements for modern pantherines are given as ranges. *underestimated 
value due to slight damage on 5811. 

 

Element Taxon N Bp Dp 

MC III Pilanduk-9274  25.1 20.42 

 Pilanduk-7365  25.02 22.86 

 P. tigris 13 21.01-27.56 20.91-28.84 

 P. pardus 4 14.51-17.21 13.48-16.41 

  P. leo 2 21.6-28.12 22.41-26.37 

    N Bd Dd 

MC IV Pilanduk-8803  18.52 17.52 

 P. tigris 13 17.81-22.11 17.09-21.3 

 P. pardus 4 11.01-14.06 10.9-13.64 

  P. leo 2 18.85-20.37 19.65-21.74 

MT V Pilanduk-5811*  14.81* 15.31* 

 P. tigris 13 15.6-20.18 16.53-20.23 

 P. pardus 4 11.03-12.71 12.21-13.3 

  P. leo 2 17.54-18.83 18.95-20.84 
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Table 5.4 Measurements (in mm) of fossil (Pilanduk) and modern pantherine metacarpal III. GL = greatest length, Bp = proximal breadth, Dp = proximal depth, 
Bd_Ep = distal breadth at the epicondyles, Bd_Con = distal breadth at the condyles, Dd= distal depth, MinTd= minimum transverse diameter of shaft, MinAPD = 
minimum antero-posterior diameter of shaft. Measurement conventions follow von den Driesch (1976) and Hemmer et al. (2011).  
 

Museum Number Taxon Locality Side Sex GL BP Dp Bd_Ep Bd_Con Dd MinTD MinAPD 

PNM 9274 P. tigris Pilanduk L  105.56 25.1 20.42 24.48  19.3 14.8  
PNM 7365 P. tigris Pilanduk R   23.05 22.15      
PNM 7366 P. tigris Pilanduk R     19.3  18.12   
UC GCL 151 P. tigris unknown L unknown 111.17 25.37 23.5 22.88 20.31 20.12 13.81 12.81 
OUMNH 3756 P. tigris India R male 110.58 25.46 25.82 24.34 21.22 20.56 15.08 13.25 

OUMNH 14223 P. tigris Perak, Malaysia L unknown 108.64 25.85 25.99 23.15 21.45 21.26 14.18 12.59 

OUMNH 14225 P. tigris unknown L unknown 116.47 26.66 28.84 24.36 23.21 20.48 13.25 12.24 

UMZC K. 5627 P. tigris Selangor, Malaysia L female 99.11 21.01 21.07 20.16 18.05 17.52 11.97 10.6 

FMNH 159999 P.tigris altaica Zoo (Asia) L female 110.86 27.56 25.54 24.16 20.51 19.64 13.36 11.89 

FMNH 188486 P.tigris altaica Zoo L female 109.75 24.44 23.78 22.39 20.06 19.2 11.41 11.31 

FMNH 60760 P. tigris tigris Zoo - India L female 106.81 23.58 21.68 22.7 18.16 19.55 12.5 11.25 

FMNH 165401 P. tigris Zoo - Sumatra L male 97.91 24.17 22.73 20.1 17.44 18.18 9.95 9.67 

FMNH 57172 P. tigris Zoo - India R female 111.43 25.21 23.1 23.27 19.9 20 11.87 11.3 

FMNH 134496 P. tigris Zoo (Asia) L male 107.81 27.41 25.63 23.25 21.41 21.15 11.64 12.21 

FMNH 134497 P. tigris Zoo (Asia) L female 114.11 24.32 24.29 22.08 18.88 19.78 12.25 11.94 

FMNH 134607 P. tigris Zoo (Asia) L unknown 96.9 22.67 20.91 20.94 18.38 17.16 10.41 9.63 

OUMNH 14239 P. pardus unknown L unknown 68.56 16.64 13.48 13.15 11.28 12.41 8.27 7.01 

OUMNH 14235 P. pardus unknown R unknown 62.93 14.51 13.71 11.97 10.3 10.75 7.47 6.74 

FMNH 54247 P. pardus Zoo (Africa) L male 75.65 17.21 16.41 15.76 12.69 13.14 9.69 8.67 

FMNH 196089 P. pardus  Zoo (Asia) L male 77.46 16.54 15.19 14.61 12.5 13.73 8.38 8.05 

FMNH 153777 P. pardus Zoo (Africa) L female 73.97 16.2 15 13.92 12.5 13.19 8.12 7.5 

FMNH 60051 P. pardus unknown L male 74.14 15.5 14.98 13.84 11.96 12.2 7.62 7.16 

OUMNH 14200 P. leo unknown L unknown 104.96 23.96 22.41 20.12 18.23 18.73 13.71 11.69 

OUMNH 14201 P. leo unknown L male 118.53 28.12 26.37 23.18 20.72 20.51 15.36 12.48 

UCMZ K. 5463 P. leo Africa R  119.88 24.95 24.9 22.63 20.55 21.64 15.17 12.71 

UCMZ K. 5466 P. leo unknown L female 105.21 21.6 23.24 20.55 18.4 19.09 10.96 11.53 
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Although the reference sample is small, certain morphological features are noted that can 

possibly distinguish tigers, lions, and leopards. In terms of the morphology of the proximal 

articulation of the MC III, the tiger shows a more indented midline proximal articulation (#1 in 

Figure 5.3) seen in proximal and anterior view, and this indentation continues onto the antero-

proximal surface of the diaphysis (#2 in Figure 5.3). This feature is relatively shallower in two 

observed lions. There is also some observable difference in the attachment site on the lateral side 

of the MC III, which receives the proximal end of the fourth metacarpal. In the tiger, this is usually 

a deeper notch/articulation compared to the lion, because the articulating facet in the MC IV is 

relatively more bulbous in the reference tigers versus the lions. The proximal-medial articulation 

of the MC III is also more elongate and narrower in tiger versus lion references. In the referred 

specimen 9274 (and in 7365 below), these three morphological features are aligned with tiger 

morphology. Nonetheless, further comparison with additional modern individuals is necessary.  

In comparison to a leopard specimen (OUMNH 14239), the rugosity and robusticity of the 

proximal articulation are similar to those of a tiger, but the leopard is considerably smaller than 

the tiger and Pilanduk-9274 in all dimensions.  It is worth noting that the leopard comparative is 

likely from a captive individual, and captivity appears to impact size of individuals.  From 

observations of a few captive leopard and tiger reference individuals included in the study, their 

bones appear to be smaller in size and more gracile compared to wild individuals. 

 

Figure 5.4 Bivariate plot of fossil and modern pantherine (Panthera) third metacarpal 
measurements (in mm). Distal breadth is measured medio-laterally at the epicondyles. 
Measurements of Pilanduk Cave and modern comparatives are in Table 5.4. Fossil data for P. pardus 
are from Diedrich (2013). 
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Pilanduk-7365. This is a proximal fragment of a right third metacarpal (Figure 5.2). It was found 

in situ within Layer II (context 127) of Trench 4. The specimen is black in colour and charred, as 

were many of the bones found in this layer. The specimen is of a similar size as Pilanduk-9274, a 

left MC III, and the two specimens may belong to the same individual (Table 5.2). Pilanduk-9274 

may appear to have slightly bigger dimensions, with a 2-mm difference, but this is due to the 

calcareous concretion adhering to it. Pilanduk-7365 was found in the southern portion of the 

cave, whereas Pilanduk-9274 was in the northern section, approximately 12 meters away from 

Trench 4. Biometric comparison with modern pantherines place it in the size range of the tiger 

(Tables 5.3 and 5.4). 

 
Pilanduk-7366. This is a distal fragment of a right third metacarpal of a large robust felid, 

consisting of the head, epicondyles and a small portion of the distal diaphysis (Figure 5.2). It was 

found in association with Pilanduk-7365 within Layer II (context 127) of Trench 4. The specimen 

is charred and of a similar state of preservation as Pilanduk-7365.  

A note must be made on the identification of distal heads, because this is more difficult 

compared to the more readily identifiable proximal articulations. Based on observations on nine 

complete sets of modern tiger metapodia, the outlines and overall morphology of distal condyles 

do vary for each metapodium of the manus and pes. With careful comparison to complete sets of 

reference metapodia and measurement, it is possible for fragmented distal ends to be identified 

when the heads and epicondyles are present. Without complete sets, though, identification is not 

possible.  The distal heads of the metapodia have a midline (‘sagittal’) ridge separating a medial 

and lateral side of the head, and the outline and skew of the head relative to this ridge are 

particularly useful for identifying distal heads. The first step is to compare which digit a specimen 

belongs to, and then compare whether it is from the metacarpus (MC) or metatarsus (MT). Middle 

digits (Digit III and IV) have more symmetrical heads, while peripheral digits (Digit II and V) are 

more asymmetrical.  Digit I is excluded from description here because in pantherines, the pollex 

is not well-developed, while the hallux is vestigial. The morphology of the epicondyles and the 

grooves surrounding the head also allow further basis for identification and siding. The following 

traits outlined here for the fragments of distal metapodia have been checked against nine sets of 

reference metapodia from four museum collections. 

In Pilanduk-7366, the relative symmetry of the distal head (wherein the lateral and 

medial outlines of the head are rounded, wide and relatively proportional) distinguishes it as a 

middle digit (Digit III or IV) metapodial. Digit III metapodia have broader heads than digit IV, 

wherein the medio-lateral breadth at the epicondyles is greater than the dorso-plantar/antero-

posterior depth of the head. In comparison, Digit IV is narrower medio-laterally, wherein the 
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breadth and depth of the distal end are nearly equal. The specimen has a relatively broad head, 

aligning it better to the third digit. Comparing the MT III to the MC III, the MC III and the referred 

specimen have a slightly more bulbous head on the dorsal aspect versus the slightly more 

flattened head of the MT III. The distal head of the MT III also appears more symmetrical than the 

MC III and the referred specimen. The morphology of the epicondyles and the overall outline of 

the head (as viewed distally and dorsally) of the specimen also match the MC III better than the 

MT III, and also allow siding to the right side.  

 
Pilanduk-7366 is the same side as the proximal MC III specimen Pilanduk-7365, and these 

two fragments were found in the same level and have very similar taphonomic and preservation 

states.  They likely belong to one individual element. Furthermore, specimen 7366 is nearly 

identical in morphology and very close in metrical dimensions to the distal end of 9274, except 

that they are of opposite sides. Because of the similar dimensions, specimens 9274 (left MC III), 

7365 and 7366 (right MC III) may likely belong to the same individual, though it is notable that 

these two elements where found on opposite sides of the cave (9274 in the north and 7365-66 in 

the south). Biometric comparisons with modern pantherines (Tables 5.3 and 5.4, Figure 5.5) place 

specimen 7366 in the range of P. tigris instead of the smaller P. pardus. 

 

Pilanduk-8803. The specimen is a right fourth metapodial of a large robust felid, with the head, 

epicondyles and the distal end of the diaphysis (Figure 5.2). The relative symmetry of the distal 

head indicates that it is a middle digit metapodial (Digit III or IV). Compared to third digit 

metapodia, Digit IV has a narrower head relative to the midline ridge, as seen on the anterior and 

posterior (palmar) aspects. On the anterior aspect, the head also appears slightly flattened in Digit 

III and more bulbous in Digit IV. The epicondyles are also less robust in Digit IV. The specimen 

has a narrow bulbous head and less robust epicondyles, indicating it is a fourth digit metapodial. 

Comparing MT IV and MC IV, the MT IV has a more curved diaphysis and broader head as viewed 

on the dorsal aspect, whereas a flatter diaphysis and narrower head is observed in MC IV. The 

shape of the distal diaphysis and the dorsal aspect of the head of the referred specimen conform 

better with the MC IV morphology. Biometric comparisons with MC IV specimens from modern 

pantherines (Table 5.3, Figure 5.5) place the specimen in the range of P. tigris instead of the 

smaller P. pardus.  
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Pilanduk-5811. This is a distal fragment of a right fifth metatarsal with the head and epicondyles 

(Figure 5.2). The asymmetry of the head indicates a peripheral metapodial (Digit II or V). Digit II 

metapodia are generally larger in overall dimensions than Digit V and have broader heads and 

larger epicondyles. In contrast, Pilanduk-5811 is relatively narrow and has smaller epicondyles, 

aligning it better to Digit V. Comparing MC V and MT V, the MC V is generally more robust, with a 

broader head, short and stout diaphysis, and the midline ridge is more skewed from the midline 

axis. Pilanduk-5811 conforms better to an MT V morphology, with a relatively narrower head, 

and a straighter midline ridge, as viewed from the distal end. This comparison of distal end 

proportions is observed both in large continental tigers, and in smaller tiger individuals that are 

closer or smaller in size compared to the referred specimen. Once again, biometric comparisons 

with MT V specimens from modern pantherines (Table 5.3, Figure 5.5) place the specimen in the 

range of P. tigris instead of the smaller P. pardus. 

Figure 5.5 Box-and-jitter plot of pantherine (Panthera) metapodial measurements (in mm). MC 
= metacarpal, MT = metatarsal, Bp = proximal breadth, Bd = distal breadth. For Pilanduk-5811 
MT V, the measurement is underestimated due to slight damage on the specimen. 
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5.4.4.2 Pantherine Phalanges 

 
Pilanduk-5393. This is a right-sided sub-terminal (=intermediate) phalanx of a large pantherine 

(Figure 5.6). The curved and asymmetrical diaphysis, as well as the diagonally slanted distal end 

are typical of felids, as this morphology allows for the retraction of the claws attached to the 

terminal phalanx. The length and curvature of the diaphysis of the specimen indicate that it 

belongs to a middle digit (Digit III or Digit IV). Comparison with two articulated sets of tiger 

phalanges points to either the third or fourth digit of the manus, or third digit of the pes. In 

contrasting tigers and lions, the morphology of the proximal articulation is observed to be 

variable, but for some lion middle digits, the proximal articulation has a more pointed triangular 

outline compared to the tiger. This specimen has a relatively more concave outline that is 

common to many tiger specimens observed. 

 
 

Figure 5.6 Fossil sub-terminal phalanx (Pilanduk-5393) referred to Panthera tigris in dorsal (a), 
plantar (b), and proximal (c) views. 
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Figure 5.7 Bivariate plot of Pilanduk Cave fossil and modern pantherine phalanx measurements (in 
mm): a) sub-terminal phalanx, b) proximal phalanx. For each modern reference individual, the 
largest and smallest phalanges among available digits were measured to show the size range 
(greatest length). For P. tigris, certain elements could be distinguished between the manus and the 
pes based on labels, and in such cases, the largest and smallest specimens were each measured for 
the manus and pes. For most other individuals, differentiation was not possible because specimens 
were not labelled accordingly, and in such cases, the largest and smallest specimens among available 
digits are represented here. 
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Biometric comparison (Figure 5.7; Table 5.5) shows that the referred specimen falls in 

the range for tiger middle digit measurements and is well beyond leopard measurements. Based 

on two available sets of articulated hand and feet specimens of modern tigers, the largest of tiger 

digits is Digit III and the smallest is Digit V. Comparing the manus with the pes in individual sets, 

Digit III of the manus is larger than that Digit III of the pes, while Digit V of the manus is larger 

than Digit V of the pes.  

 
As shown in Figure 5.7, the smallest phalanges (Digits V and II) of tiger can overlap in 

greatest length dimensions with the largest phalanges (middle digits) of leopard (Digits III or IV). 

However, the diaphyses and widths of tiger phalanges are much more robust than leopards, and 

so these dimensions do not overlap. Moreover, the morphology of the peripheral digits (Digits V 

and II) is very different from the morphology of middle digits, and so a tiger peripheral digit can 

be differentiated from leopard middle digits based on gross morphology. The referred specimen 

falls in the lower end of the size range for middle digit (=largest phalanges) measurements (Table 

5.5). Based on this, we can infer that it belongs to a small- to medium-sized tiger individual. This 

follows a similar size pattern observed for the complete third metacarpal (Pilanduk-9274). 

 
 
Pilanduk-5247. This is a distal end of a proximal phalanx of a large carnivore (Figure 5.2). The 

morphology fits a large pantherine, but taken in isolation, the fragmented distal portion of the 

tiger phalanx have some similarities to a large ursid (Ursus). The proximal outline is better for 

morphological discrimination, but it is absent on the specimen. Nonetheless, there are no known 

large ursids of this size in SEA; the only known ursid in the region is the sun bear, Helarctos 

malayanus, which is a much smaller carnivore compared to the tiger, and the smallest of extant 

bears. Comparative metrics with modern pantherines indicate that it overlaps in size with the 

smallest phalanges (=peripheral digits) from reference sets of tiger phalanges (Figure 5.7). The 

specific overlap is with a Sumatran tiger Digit V of the pes. For this specimen, ascription to P. tigris 

is provisional. 
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Table 5.5 Measurements (in mm) of pantherine intermediate (sub-terminal) phalanges.  GL = greatest 
length, Bp = proximal breadth, Dp = proximal depth, Bd = distal breadth, Sd= smallest transverse diameter 
of diaphysis; M = manus, P = Pes. Largest and smallest specimens for manus and pes of each individual were 
measured whenever possible. 

Museum Number Taxon Locality Digit GL BP Dp Bd Dd Sd 

PNM 5393  P. tigris Pilanduk   35.25 16.15 14.08 14.63 9.96 10.5 

OUMNH 3756 P. tigris unknown Manus III 43.72 17.78 16.5 17.18 11.65 11.18 

    Manus V 33.81 16.88 14.38 16.38 11.34 11.66 

    Pes III 39.33 18.29 15.8 17.22 11.07 11.18 

        Pes V 30.97 15.32 13.88 14.12 9.85 12.04 

OUMNH 14223 P. tigris  
Malaysia 

largest 38.88 16.54 16.32 16.34 11.69 11.86 

      smallest 31.51 16.23 15.42 16.29 11.67 11.61 

OUMNH 14225 P. tigris unknown largest 44.42 18.98 17.94 17.88 12.92 10.32 

  14225     smallest 34.33 18.51 16.64 16.92 12.47 12.14 

UC GCL 151 P. tigris  largest 44.73 17.66 15.76 16.86 12.3 10.43 

  151     smallest 32.33 16.31 14.31 15.71 10.93 10.64 

UMZC K. 5627 P tigris Malaysia  \ 28.45 14.17 13.38 14.3 9.98 10.48 

FMNH 159999 P. tigris 
altaica 

Zoo largest 42.81 17.88 16.11 17.34 12.83 9.05 

      smallest 27.71 14.71 13.53 13.55 11.17 9.43 

FMNH 188486 P. tigris 
altaica 

Zoo largest 39.53 16.51 15.42 16.57 11.4 8.19 

      smallest 26.75 14.69 12.51 13.08 10.64 9.2 

FMNH 60760 P. tigris 
tigris 

Zoo: 
India 

largest 41.94 16.63 14.44 15.4 10.64 9.08 

    smallest 29.24 13.23 11.98 11.7 9.08 9.02 

FMNH 165401 P. tigris Zoo: 
Sumatra 

M largest 36.14 16.13 14.04 15.28 10.94 7.64 

   M smallest 28.83 14.59 13.48 14.29 9.97 9.16 

    P largest 32.98 15.54 13.34 13.92 9.88 9.46 

        P smallest 27.45 13.53 12.24 13.52 9.84 9.03 

FMNH 31153 P. tigris India largest 46.52 20 18.11 18.92 12.88 10.88 

        smallest 32.06 15.85 14.77 15.31 11.55 11.42 

FMNH 57172 P. tigris Zoo: 
India 

largest 41.49 17.07 14.42 15.68 11.17 8.63 

      smallest 29.65 15.94 13.18 13.34 10.38 9.8 

FMNH 134496 P tigris Zoo M largest 42.76 16.77 16.53 16.54 12.12 8.71 

    M smallest 33.41 16 15.19 14.65 11.55 10.46 

    P largest 38.55 17 15.87 15.33 11.21 9.39 

        P smallest 31.68 14.71 13.75 13.67 9.94 9.04 

FMNH 134497 P. tigris Zoo M largest 43.87 16.34 15.13 15.55 11.16 8.28 

    M smallest 32.95 14.57 13.86 13.99 10.48 9.44 

    P largest 39.22 16.27 14.61 14.43 9.88 8.85 

        P smallest 30.34 13.41 12.24 12.37 9.61 9.69 

FMNH 134607 P. tigris Zoo M largest 36.75 15.42 14.36 14.18 11.71 7.53 

    M smallest 29.12 14.1 12.86 12.6 10.62 7.62 

    P largest 31.81 14.59 13.48 12.92 10.68 7.65 

        P smallest 27.4 13.51 12.2 12.02 10.76 7.69 

OUMNH 14239 P. pardus \ largest 28.82 10.59 9.54 10.31 7.81 6.1 

  14239     smallest 21.72 10.17 8.92 8.82 6.77 7.73 
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Table 5.5 continued. Measurements (in mm) of pantherine intermediate phalanges.   

 
Museum Number Taxon Locality Digit GL BP Dp Bd Dd Sd 

 14235 P. pardus \ largest 26.1 9.74 9.05 9.43 6.77 5.16 

  14235     smallest 18.53 10.1 9.39 9.03 6.6 5.61 

UMZC K.5845 P. pardus  P largest 24.03 9.45 8.77 8.74 5.9 5.54 

        P smallest 18.34 8.81 7.79 7.78 6.03 6.24 

FMNH 54247 P. pardus Zoo M largest 30.17 12.2 11.88 11.21 8.71 6.91 

    M smallest 23 11.3 11.29 10.02 8.12 7.11 

    P largest 27.22 11.85 11.49 10.81 7.6 7.55 

        P smallest 22.34 10.66 11 10.16 7.71 7.89 

FMNH 196089 P. pardus 
orientalis 

Zoo largest 32.46 11.21 11.2 11.1 7.98 5.5 

      smallest 24.14 10.66 10.47 9.61 7.78 6.22 

FMNH 153777 P. pardus Zoo: 
Africa 

M largest 31.88 10.78 9.84 10.55 8.2 5.9 

   M smallest 25.86 10.03 9.48 9.45 7.71 6.02 

    P largest 29 11.01 10.03 10.47 7.87 6.35 

        P smallest 24.59 9.84 9.43 9.36 7.72 6.5 

FMNH 60051 P. pardus Zoo M largest 31.25 11.24 10.5 11.26 8.04 4.84 

    M smallest 24.16 10.48 10.05 9.76 7.63 5.74 

    P largest 28.71 11.88 10.68 11.04 7.71 6 

        P smallest 22.94 10.4 9.9 9.27 7.27 6.3 

OUMNH 14200 P.leo \ largest 33.86 15.48 15.24 14.95 9.6 10.27 

 14200   smallest 29.07 16.01 15.24 14.94 10.47 11.44 

UCMZ K. 5466 P. leo Zoo largest 37.19 15.6 14.94 15.67 10.76 9.37 

  K. 5466     smallest 28.46 14.43 13.26 13.71 10.86 10.15 

 

 

Pilanduk-5812 and Pilanduk-5394.  Two proximal fragments of the terminal phalanx were also 

identified, belonging to a large pantherine (Figure 5.2). The fragments consist of the proximal 

articulation, but the external bone surrounding the sheath for the claw is not present. They are 

identifiable as belonging to a large felid and distinguishable from Ursus, based on the morphology 

of the proximal articulation. Ursus has a medial ridge, which is absent in Panthera. The placement 

of foramina on the proximal end are also different for both genera. The specimens are relatively 

large compared to P. pardus; however, due to the damage on the specimens, there are no 

measurable landmarks. Hence, the ascription of these two specimens to P. tigris is provisional. 

 
Based on morphological, biometric and biogeographic data presented above, six 

specimens are clearly ascribable to the largest known extant pantherine in Southeast Asia, 

Panthera tigris. Three other phalanx specimens are only provisionally ascribed to the tiger, based 

on their fragmented state and lack of measurable landmarks. The Pilanduk pantherine specimens 

described here provide further evidence for the presence of the tiger on Palawan. The minimum 
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number of individuals (MNI) is one, based on the size, preservation and provenance of the 

pantherine specimens. All the tiger specimens found in situ come from the 22,000–20,000-year 

old layer of the site (Layer 2).  Morphometric comparisons with modern tigers indicate that the 

Pilanduk tiger is smaller than Bengal and Siberian tigers, but larger than two reference 

individuals of captive Malayan and Sumatran tigers. As will be described in Chapter 8, three of 

the pantherine specimens bear butchery marks. This may raise the question of whether tiger 

animal parts were being transported across long distances from other places in Southeast Asia. 

Another line of evidence in support of the living presence of the tiger on the island has to do with 

evidence for carnivore gnawing on-site. Although there is minimal evidence for gnawing across 

the assemblage, three deer specimens bear clear evidence for large carnivore gnawing. Two of 

these fragments – a proximal femur and a proximal tibia – bear canine punctures from a large 

carnivore. The size of the canine punctures indicates that these come from a large carnivore in 

the size range of a tiger. The taphonomic marks indicate that there were living tigers in the 

landscape that scavenged, albeit rarely, on human refuse in the cave. 

 
 

5.4.5 Order Cetartiodactyla 

Family Cervidae 
 
Cervids represent the most abundant taxon in the Pilanduk Cave assemblage. Currently, deer are 

extinct on the main island of Palawan itself and the exact timing of extinction is unknown. A small 

population of hog deer (Axis calamianensis) is presently restricted to the smaller islands north of 

Palawan, the Calamianes. In previous work on Ille and Pasimbahan Caves in northern Palawan, 

we differentiated two deer taxa, distinguished primarily on size (Ochoa et al. 2014; Piper et al. 

2011). In the case of the Pilanduk assemblage, a similar pattern is observed, wherein a smaller 

cervid is attributable to the extant hog deer (Axis), and a larger cervid taxon (Rusa) is also present. 

The Pilanduk cervid remains provide further evidence for the fossil deer of Palawan, both 

expanding the sample size and producing better-preserved skeletal remains. Rusa and Axis are 

also distinguishable based on antler morphology. The Pilanduk Cave assemblage allows the first 

antler morphological descriptions based on well-preserved antler remains, which other sites on 

the island have not yielded any to date. 

Three cervid taxa are native to the Philippine archipelago: Axis calamianensis (Calamian 

hog deer) of the Palawan faunal region, Rusa marianna (Philippine brown deer) of the Luzon and 

Mindanao regions, and Rusa alfredi (Visayan spotted deer) of the Negros-Panay region (Table 5.6; 

Heaney et al. 2010). All three are endemic and restricted within each faunal region.  
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Table 5.6 Body size, distribution and habitat of extant hog deer (Axis) and sambar deer (Rusa) in the 
Philippines and Southeast Asia. Data come from the FMNH Synopsis of Philippine Mammals 
(archive.fieldmuseum.org/philippine_mammals/), Ultimate Ungulate website (ultimateungulate.com), and 
Animal Diversity Web (animaldiversity.org). 

Species 
Adult 

weight 
(kg) 

Head and 
body length 

(cm) 
Modern Distribution Habitat 

Axis 
calamianensis 

23-40 100-115 
Calamianes Islands only 
(north of Palawan Is.) 

grasslands, open forest, 
mixed forest 

Axis porcinus 30-50 125-135 
India and Southeast 
Asia 

dense forest, floodplains 
and wet grasslands 

Axis kuhlii 50-60 140 Bawean Island only 
primary and secondary 
forest and grassy clearings 

Rusa 
marianna 

40-96 100-170 
Luzon, Mindanao, Leyte 
Islands 

primary and secondary 
forest and grassy clearings 

Rusa alfredi 36-59 128 
Negros and Panay 
Islands 

primary and secondary 
forest and grassy clearings 

Rusa 
timorensis 

50-115 142-185 Indonesian Islands 
deciduous forest, forest 
edges, grasslands 

Rusa unicolor 109-260 162-246 
Inda, Pakistan, 
Southeast Asia, South 
China 

primary and secondary 
forest, scrub forest 

 

 

 

5.4.6 Axis calamianensis 

 
Remains of a small-sized cervid are attributed to Axis (=Hyelaphus) calamianensis, the Calamian 

hog deer. It is a small brown deer with a stocky build and short legs that is found in grasslands 

and patches of open forest in the small islands of Culion, Busuanga and Calauit off the north coast 

of Palawan. It is the smallest of the three native Philippine deer and is also the smallest of extant 

Southeast Asian hog deer (Table 5.6).  One local name is pilanduk/pilandoc (a general term for 

deer), which the cave site is named after. Together with the Bawean deer (A. kuhlii) and 

Indochinese hog deer (A. porcinus), the three Southeast Asian hog deer constitute a separate clade 

referred to as subgenus Hyelaphus (Meijaard and Groves 2004, Pitra et al. 2004) that is 

phylogenetically distinct from the chital (Axis axis). The first fossil description of this cervid comes 

from Ille Cave (Ochoa 2009; Piper et al. 2011), and subsequently from Pasimbahan Cave (Ochoa 

et al. 2014), primarily distinguished through size of dental remains. In Tabon Cave, Fox (1970:39) 

noted that the deer found in this cave was of a small form based on the antlers recovered and 

suggested that it was related to the Calamian deer. 
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Antler morphology provides a reliable way to differentiate cervid genera. At least seven 

antler fragments show traits that align with Axis (Figure 5.8). Compared to Rusa, Axis antlers are 

smoother, slenderer and have shallower gutters. The Axis antler is lyrate in shape with a high 

pedicle, and the beam of modern Axis (=Hyelaphus) has a particular inward curvature that 

contrasts with observed modern Philippine Rusa specimens. 

 
Dental and post-cranial measurements of cervid remains from Pilanduk separate into two 

different-sized groups, the smaller of which is attributed to Axis (Tables 5.7 and 5.8). Axis and 

Rusa may be separated using tooth morphology, with Axis having generally higher-crowned and 

narrower teeth than Rusa relative to their size (Figure 5.9). Additional traits are outlined by 

Moigne et al. (2004) and Amano (2017). However, the traits listed (i.e., stylids, back fossa) were 

observed on both taxa from Pilanduk Cave. Size is still the main differentiating trait for the dental 

remains. The small-sized cervid teeth from Pilanduk Cave overlap with or are smaller in 

dimensions than modern A. calamianensis (Figure 5.10). 

 
A similar pattern is observed for post-cranial remains. Certain post-cranial 

measurements (e.g., tibia and metacarpal) fall below the dimensions recorded for A. porcinus 

elements. Note that there are no available museum references for post-cranial remains for A. 

calamianensis and R. alfredi due to the rarity of these taxa. It is known, though, that A. 

calamianensis has a smaller body size and weight than A. porcinus (Table 5.6). Hence, the 

measurements of elements that fall in the lowest end of the biometric range and that are smaller 

than A. porcinus can be attributable to A. calamianensis (Table 5.8). 
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Figure 5.8 Comparison of Rusa and Axis antler fragments from Pilanduk Cave. Beam fragment 
(Pilanduk-4502U) referred to Axis calamianensis (1), with corresponding detail inset (2). 
Specimens (3) to (11) are all referred to Rusa: (3) to (7) are beam fragments, with corresponding 
detail inset (4); (8) to (11) are pedicle and coronet fragments. Modern comparatives in anterior 
views are: A) Axis calamianensis FMNH 62808, and B) Rusa marianna from Mindanao Island FMNH 
56431. All shown at 5 cm scale except for (2) and (4). 
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Figure 5.9 Comparison of fossil Rusa and Axis mandibular dentition from Pilanduk Cave in labial (L 
column) and occlusal (R column) views. a) 4500A - Rusa,  b) 4500B - Rusa, c) MCZ 14227 - R. 
marianna from Luzon, d) 4500H - Axis calamianensis,  e) 4500C - A. calamianensis, f) FMNH 62808 - 
A. calamianensis. All specimens are of the right side except for (a). Comparative modern specimens 
are (c) and (f). 
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Maxillary
Source/ 

Specimen 
Taxon Locality P4 Length P4 Width M1 Length

M1 Anterior 

width

M1 Posterior 

width
M2 Length

M2 Anterior 

width

M2 Posterior 

width
M3 Length

M3 Anterior 

width

M3 Posterior 

width
FMNH Axis calamianensis Calamianes 7.36 - 8.61 (3) 9.15 - 11.15 (3) 11.02 - 13.26 (6) 10.5 - 12.93 (6) 10.72 - 13.42 (6) 13.3 - 14.84 (4) 11.45 - 12.68 (4) 11.78 - 13.3 (4) 15.08- 15.12 (2) 11.54 - 12.5 (2) 10.3 - 11.32 (2)

MCZ Axis porcinus India 8.6-9.2 (3) 11.3 -12.4 (4) 10.5 - 11.5 (3) 12.8-14.5 (3) 13.7-14.9 (3) 14.1-14.9 (2) 16.2-16.8 (2) 15.6-15.9 (2) \ \ \

FMNH Rusa alfredi Negros 9.05 - 10.7 (3) 12.36 - 12.9 (3) 11.5 - 14.38 (5) 13.3 - 14.2 (5) 13.04 - 14.26 (5) 13.5 - 17.3 (4) 15.04 - 15.72 (4) 14.1 - 15.51 (3) 15.25 - 16.37 (3) 13.98 - 15.16 (3) 14.34 - 14.66 (2)

FMNH Rusa marianna Mindanao 7.7 - 9.27 (5) 10.72 - 11.91 (5) 10.28 - 12.39 (8) 12.49 - 13.8 (8) 11.8 - 14.34 (8) 11.63 - 14.58 (7) 13.32 - 15.09 (8) 13.1 - 14.78 (7) 13.17 - 15.67 (7) 12.9 - 14.38 (7) 11.46 - 13.57 (5)

FMNH Rusa marianna Luzon 9.03 - 11.17 (6) 13.4 - 15.2 (6) 12.4 - 15.12 (10) 13.75 - 17.03 (10) 13.95 - 17.04 (9) 15.06 - 18.28 (10) 15.84 - 18.66 (9) 15.3 - 18.68 (8) 16.12 - 18.3 (7) 16.8 - 17.94 (5) 15.3 - 16.89 (5)

FMNH Rusa unicolor SEA 12.34 -13.76 (3) 15.99 - 17.56 (3) 15.59 - 17.24 (4) 19.72 - 21.42 (4) 19.62 - 21.18 (4) 19.74 - 21.13 (4) 22.56 - 23.08 (4) 22.17 - 22.8 (4) 21.2 - 22.43 (3) 20.02 - 22.49 (3) 20.57 - 21.31 (2)

FMNH Muntiacus muntjak Borneo 6.34 - 7.86 (3) 9.03 - 9.95 (3) 8.4 - 9.68 (4) 10.22 - 12.23 (4) 10.61 - 12.02 (4) 9.15 - 10.62 (3) 11.33 - 13.06 (3) 11.0 - 12.76 (3) 9.97 - 10.88 (3) 10.98 - 12.62 (3) 9.88 - 11.88 (3)

17512 Rusa sp. Ille Cave 16.96 14.75 14.36

17827 Rusa sp. Ille Cave 16.38 17.3 14.71

20044 Rusa sp. Ille Cave 14.42 16.21 16.53

20046 Rusa sp. Ille Cave 16.18 16.4 14.23

5742 Axis calamianensis Pilanduk 11.33 11.15 11.56 13.13 14.34 13.87

9276e Rusa sp. Pilanduk 8.78 13.45 12.43

9276n Rusa sp. Pilanduk 9.96 12.73

4032 Rusa sp. Pilanduk 10.84 13.25

137 Rusa sp. Pilanduk 11.25 15.12 14.87

129 Rusa sp. Pilanduk 13.85 \ \ 17.03 18.08 16.47

7945c Rusa sp. Pilanduk 13.74 12.17 14.7

8004b Rusa sp. Pilanduk 14.24 14.01 \

8004c Rusa sp. Pilanduk 13.68 14.44 13.1

6216 Rusa sp. Pilanduk 15.39 \ \

7945b Rusa sp. Pilanduk 16.98 16.67 16.72

8062a Rusa sp. Pilanduk 18.03 18.22 18.1

8062b Rusa sp. Pilanduk 16.93 18.98 18.72

7945a Rusa sp. Pilanduk 16.81 18.03 15.85

9276f Rusa sp. Pilanduk 16.48 17.72 16.86

Table 5.7 Maxillary and mandibular tooth measurements (in mm) of Pilanduk cervids compared with archaeological (Ille Cave) and modern Axis and Rusa comparative 
species. All measurements are cervical (taken above cementum/enamel junction). Anterior width = width of anterior cusp, Posterior width = width of posterior cusp. For 
modern reference, (N) refers to number of individuals. FMNH measurements were taken with PJ Piper. 

 

Figure 5.10 Bivariate plot of Axis and Rusa dental measurements (in mm) from archaeological (Pilanduk Cave and Ille Cave) and modern reference specimens. Above: 
mandibular m2 cervical length vs mandibular m2 width of anterior cusp. Below: mandibular m3 cervical length vs mandibular m3 width of anterior cusp. Extant cervid 
specimens are from the FMNH and MCZ. Comparatives from the FMNH and some Ille Cave specimens were measured with PJ Piper.Table 5.8 Maxillary and mandibular tooth 
measurements (in mm) of Pilanduk cervids compared with archaeological (Ille Cave) and modern Axis and Rusa comparative species. All measurements are cervical (taken 
above cementum/enamel junction). Anterior width = width of anterior cusp, Posterior width = width of posterior cusp. For modern reference, (N) refers to number of 
individuals. FMNH measurements were taken with PJ Piper. 

 

Figure 5.11 Bivariate plot of Axis and Rusa dental measurements (in mm) from archaeological (Pilanduk Cave and Ille Cave) and modern reference specimens. Above: 
mandibular m2 cervical length vs mandibular m2 width of anterior cusp. Below: mandibular m3 cervical length vs mandibular m3 width of anterior cusp. Extant cervid 
specimens are from the FMNH and MCZ. Comparatives from the FMNH and some Ille Cave specimens were measured with PJ Piper. Note how the Pilanduk specimens 
separate into two different size groups.Table 5.9 Maxillary and mandibular tooth measurements (in mm) of Pilanduk cervids compared with archaeological (Ille Cave) and 
modern Axis and Rusa comparative species. All measurements are cervical (taken above cementum/enamel junction). Anterior width = width of anterior cusp, Posterior 
width = width of posterior cusp. For modern reference, (N) refers to number of individuals. FMNH measurements were taken with PJ Piper. 

 

Figure 5.12 Bivariate plot of Axis and Rusa dental measurements (in mm) from archaeological (Pilanduk Cave and Ille Cave) and modern reference specimens. Above: 
mandibular m2 cervical length vs mandibular m2 width of anterior cusp. Below: mandibular m3 cervical length vs mandibular m3 width of anterior cusp. Extant cervid 
specimens are from the FMNH and MCZ. Comparatives from the FMNH and some Ille Cave specimens were measured with PJ Piper.Table 5.10 Maxillary and mandibular 
tooth measurements (in mm) of Pilanduk cervids compared with archaeological (Ille Cave) and modern Axis and Rusa comparative species. All measurements are cervical 
(taken above cementum/enamel junction). Anterior width = width of anterior cusp, Posterior width = width of posterior cusp. For modern reference, (N) refers to number 
of individuals. FMNH measurements were taken with PJ Piper. 

 

Figure 5.13 Bivariate plot of Axis and Rusa dental measurements (in mm) from archaeological (Pilanduk Cave and Ille Cave) and modern reference specimens. Above: 
mandibular m2 cervical length vs mandibular m2 width of anterior cusp. Below: mandibular m3 cervical length vs mandibular m3 width of anterior cusp. Extant cervid 
specimens are from the FMNH and MCZ. Comparatives from the FMNH and some Ille Cave specimens were measured with PJ Piper. Note how the Pilanduk specimens 
separate into two different size groups. 

 

 

Figure 5.14 Bivariate plot of deer astragali measurements (in mm) from archaeological (Pilanduk Cave and Ille Cave) and modern reference specimens. Measurement of 
greatest length of lateral side and distal breadth follows von den Driesch’s (1978) GLl and Bd.Figure 5.15 Bivariate plot of Axis and Rusa dental measurements (in mm) from 
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Table 5.7 continued. Measurements (in mm) of cervid mandibular molars.

Source/ 

Specimen 

No. Taxon Locality M1 Length

M1 Anterior 

width

M1 Posterior 

width M2 Length

M2 Anterior 

width

M2 Posterior 

width M3 Length

M3 Anterior 

width

M3 Width of 

middle cusp

M3 Posterior 

width

FMNH Axis calamianensis Calamianes 9.82 - 11.93 (6) 7.35 - 8.02 (6) 7.15 - 8.52 (6) 14.06 - 14.76 (4) 8.04 - 9.79 (4) 7.3 - 8.88 (4) 18.26 - 19.78 (2) 8.77 - 10.6 (2) 7.7 - 10.62 (2) 3.72 (1)

MCZ Axis porcinus India 11.6-11.7 (2) 7.9-8.1 (2) 8.2-8.7 (2) 13.6 (1) 9.8 (1) 9.5 (1) \ \ \ \

FMNH Rusa alfredi Negros 11.22 - 13. 78 (5) 8.45 - 9.5 (5) 8.77 - 10.47 (5) 14.25 - 16.48 (4) 10.14 - 11.38 (3) 10.43 - 11.32 (3) 20.49 - 20.9 (3) 9.78 - 11.04 (3) 10.17 - 11.24 (3) 5.49 - 5.88 (3)

FMNH Rusa marianna Mindanao 10.24 - 12.96 (8) 7.76 - 8.7 (8) 8.5 - 9.44 (8) 12.34 - 14.53 (8) 9 - 9.82 (8) 8.91 - 10.32 (8) 18.03 - 20.27 (7) 8.57 - 9.8 (7) 7.82 - 8.96 (7) 4.92 - 5.34 (5)

FMNH Rusa marianna Luzon 12.8 - 15.24 (8) 9.6 - 10.97 (7) 10.46 - 11.6 (8) 15.8 - 18.34 (8) 11.05 - 13.18 (8) 11.12 - 12.46 (8) 23.3 - 25.28 (5) 11.4 - 12.77 (6) 10.52 - 12.94 (5) 5.86 - 7.46 (5)

FMNH Rusa unicolor SEA 16.65 - 18.33 (3) 12.81 - 13.27 (4) 12.52 - 13.88 (3) 19.46 - 20.93 (2) 14.74 - 15.32 (3) 14.24 - 15.09 (3) 28.28 - 28. 86 (2) 14.9 - 14.95 (2) 13.53 - 14.42 (2) 8.56 - 8.74 (2)

FMNH Muntiacus muntjak Borneo 9.32 - 9.77 (4) 6.67 - 7.04 (4) 6.9 - 7.72 (4) 10.05 - 11.0 (3) 7.97 - 8.56 (3) 8.11 - 8.28 (3) 14.64 - 15.2 (3) 7.65 - 8.15 (3) 7.23 - 7.78 (3) 4.41 - 4.76 (3)

18599 Axis calamianensis Ille Cave 19.5 na na na

20058 Axis calamianensis Ille Cave 10.98

18438 Axis calamianensis Ille Cave 20.65 8.54 7.67 7.02

2086 Rusa sp. Ille Cave 13.04 10.3 10.96 16.35 12.14 11.84 27.63 12.74 11.78 7.55

818 Rusa sp. Ille Cave 18.1 11.5 11.7

1862 Rusa sp. Ille Cave 22.88 12.06 11.36 5.99

2084 Rusa sp. Ille Cave 24.15 12.2 10.97 6.81

18549 Rusa sp. Ille Cave 24.18 11.32 9.96 na

9276c Axis calamianensis Pilanduk 10.45 7.85 8.39 12.83 8.8 \ 16.12 \ 7.31 3.36

5415 Axis calamianensis Pilanduk 11.04 7.61 7.82

9276d Axis calamianensis Pilanduk 9.85 \ 8.13 12.9 9.01 8.47 16.66 8.98 7.96 3.47

9276h Axis calamianensis Pilanduk 9.9 7.53 8.59 12.93 8.94 8.43 17.95 9 8.6 4.21

4807 Axis calamianensis Pilanduk 9.13 7.41 8.11 11.6 8.68 8.78 17.91 \ \ 5.15

6162 Axis calamianensis Pilanduk 11.01 7.4 7.56 12.92 8.65 7.44

9276j Axis calamianensis Pilanduk 17.63 9.16 8.28 4.77

462 Axis calamianensis Pilanduk 17.65 \ \ \

1976 Rusa sp. Pilanduk (erupting) 10.07 10.41

9276a Rusa sp. Pilanduk 13.78 10.9 11.23 16.63 12.79 12.41 \ 12.27 \ \

4555c Rusa sp. Pilanduk 14.74 9.63 10.34

5114 Rusa sp. Pilanduk 15.9 \ 12.06

8004a Rusa sp. Pilanduk 17.61 10.88 10.46

9276b Rusa sp. Pilanduk 16.95 12.18 11.93 22.74 12.4 10.73 6.14

9276i Rusa sp. Pilanduk 23.03 11.45 10.29 5.53

5248 Rusa sp. Pilanduk 23.37 11.14 10.7 6.39

Mandibular
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5.4.7 Rusa sp. 

 
Remains of a large-sized cervid in the Pilanduk Cave assemblage is attributed to the genus Rusa. 

There are presently no living sambar deer in the Palawan faunal region. Among the living Rusa, 

the Visayan species, R. alfredi, is the smallest in body size and most restricted in its present-day 

range within Negros and Panay. The other taxon, R. marianna, has a broader modern distribution, 

with a recorded historical translocation to the Mariannas Islands. Within its native range in the 

oceanic Philippines, R. marianna has substantial variation in size and pelage across the Luzon and 

Mindanao faunal regions (Heaney et al. 2010). Hence, further systematic study is needed for this 

species. A recent phylogenetic study of R. marianna from Luzon and Rota (Mariannas) and R. 

alfredi indicates that they form a monophyletic clade and are sister taxon to the other Southeast 

Asian rusine deer, R. timorensis and R. unicolor (Heckeberg et al. 2016). In the modern 

comparative measurements assembled for this study, Luzon and Guam individuals have larger 

tooth and post-cranial dimensions compared to Mindanao samples (Tables 5.7 and 5.8). Instead, 

R. marianna from Mindanao overlaps in dental dimensions with R. alfredi. 

 
Since rusine deer are not presently known in the modern fauna of the Palawan region, 

verification of their presence is important. The Pilanduk Cave antler remains confirm the 

identification of Rusa in the Palawan fossil record (Figure 5.8). It was first identified in Ille Cave 

based on measurements of dental and post-cranial remains (Ochoa 2009; Piper et al. 2011), but 

there were no suitably well-preserved antlers from this site. In Pilanduk, numerous large antler 

fragments conform to the morphology of Southeast Asian Rusa. In contrast to Axis antlers, Rusa 

antlers are generally more robust, have rugose beams and tines, defined gutters, heavy pearling 

and often shorter pedicles relative to overall size (see Figure 5.7.4). Both Axis and Rusa have lyrate 

beams, but their curvature is different. Note in Figure 5.8 how the Rusa beam is more vertically 

straight compared to the Axis beam, which has a more pronounced outward/lateral curve. Note 

also the rugosity of the Rusa beam fragments compared to Axis. A conservative estimate of at least 

48 antler fragments from across the sequence can be assigned to Rusa.  
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Figure 5.10 Bivariate plot of Axis and Rusa dental measurements (in mm) from archaeological 
(Pilanduk Cave and Ille Cave) and modern reference specimens. Above: mandibular m2 cervical length 
vs mandibular m2 width of anterior cusp. Below: mandibular m3 cervical length vs mandibular m3 
width of anterior cusp. Extant cervid specimens are from the FMNH and MCZ. Comparatives from the 
FMNH and some Ille Cave specimens were measured with PJ Piper. Note how the Pilanduk specimens 
separate into two different size groups. 
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As mentioned above, cervid tooth measurements separate into two size groups, the larger 

of which overlaps in size with the extant R. marianna of Luzon and Guam (Figures 5.9 and 5.10, 

Table 5.7). For post-cranial measurements, most cervids in the assemblage overlap in size with 

extant R. marianna and there are relatively few small-sized elements (Table 5.8). This is to be 

expected because the assemblage is dominated by the larger cervid taxon. The majority of bones 

designated as ‘large mammal’ are also in the size range of the larger cervid. Note that in the small 

sample of limb measurements, all the R. marianna individuals measured are female (Table 5.8). 

For humeri, radii and femora measurements, all the measurable specimens are assignable to 

Rusa, and certain Pilanduk Cave specimens exceed the comparative sample range, possibly 

indicating sexual dimorphism. On the other hand, the spread of astragalus, metacarpal and tibia 

measurements possibly indicates interspecific variation between Axis and Rusa, as certain values 

overlap with or fall below the recorded size of A. porcinus (Figure 5.11). For astragali in particular, 

some small-sized specimens were verified to belong to adult individuals because they were found 

articulated in situ with a fused calcaneus, or adjacent to a fused calcaneus to which they could be 

aptly refitted. 

 

 

Figure 5.11 Bivariate plot of deer astragali measurements (in mm) from archaeological (Pilanduk 
Cave and Ille Cave) and modern reference specimens. Measurement of greatest length of lateral 
side and distal breadth follows von den Driesch’s (1978) GLl and Bd. 
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Although the Rusa fossils overlap in dimensions with R. marianna, designation to this 

species cannot be easily given. Based on modern biogeographic distributions, Luzon and Palawan 

do not share artiodactyl taxa, and many other non-volant mammal taxa are not shared. For 

instance, among pig taxa, each major faunal region in the Philippines possesses its own endemic 

pig, which are not shared with other faunal regions. Phylogenetic studies on native Philippine 

pigs (Lucchini et al. 2005) show that there are five endemic species within the archipelago. 

Following these observed patterns, it is possible that the Rusa cervid in the Palawan record may 

represent a distinct species restricted to the Palawan faunal region. However, further 

morphological study is needed to differentiate dental and post-cranial remains, since the existing 

literature only focuses on cranial traits (Meijaard and Groves 2004). Such work is presently 

hampered by the rarity of comparative specimens for these Philippine taxa, and so ancient DNA 

or proteomics may be alternative options that can clarify the taxonomic and phylogenetic 

placement of the fossil rusine deer of Palawan. 

 

5.4.8 Family Suidae 

Sus ahoenobarbus 

 
 
The Palawan bearded pig is the only extant artiodactyl on the main island of Palawan. In the 

Pilanduk Cave assemblage, it occurs in very small proportions across the sequence and accounts 

for only 6% of the identified taxa in the assemblage. Other confirmed fossil records of the bearded 

pig come from several other sites in northern Palawan (Ochoa et al. 2014; Piper et al. 2011) and 

southern Palawan (Reis and Garong 2001). In the Mid to Late Holocene record of the Dewil Valley 

in El Nido, the bearded pig is the most abundant prey animal, and deer is very scarce (Ochoa and 

Piper 2017). Presently, they are observed from sea level to 1500 m above sea level in a variety of 

forest habitats (Esselstyn et al. 2004). The wild pig is locally called babuy or bjak. 

 

 

 

 

 



 

123 
 

Taxon/Element Locality Specimen No. Sex Humerus (Bt) Humerus (Bd) Radius (Bp) Radio-ulna (Bd) Femur (DC) Tibia (Bd) Metacarpal (Bp) Metatarsal (Bp)
Axis porcinus India FMNH-27447 M 30.72 32.85 31.67 \ \ 24.53 \ \
Axis porcinus India MCZ-37003 F 25.8 29.7 27.4 \ 19.8 \ 21.4 21
Axis porcinus India FMNH-65802 F 32.74 34.61 \ 30.96 \ 31.29 \ \
Rusa marianna Luzon MCZ-14227 F 34.4 39.9 36.8 33.1 23.3 30.9 \ \
Rusa marianna Luzon USNM-49706 F 38.16 40.91 38.41 34.02 24.4 33.66 27.4 27
Rusa marianna Mindanao FMNH-61007 F 29.03 31.92 28.85 23.1 18.9 29.94 \ \
Rusa marianna Guam FMNH-186613 F 34.06 39.62 34.6 28.54 24.19 28.1 \ \
Rusa unicolor Borneo USNM-151861 M 52.79 55.1 49.65 42.22 33.1 44.23 35.81 34.1
Rusa unicolor Borneo MCZ-7282 M 47.8 55.6 51.5 47 33.7 44 36.6 34.8
Rusa unicolor Borneo USNM-151859 F 55.7 57.06 55.03 46.5 36.46 48.9 40.13 38.95
Rusa unicolor India MCZ-1381 M 56.4 66.2 63.7 53.9 40.7 55.1 43.1 39.5
Rusa unicolor India FMNH-27455 M 61.31 67.28 63 56.1 43.52 60.18 \

distal humerus Pilanduk 4503e 31.64 33.28

distal humerus Pilanduk 4503d 35.57 38.18

distal humerus Pilanduk 4503c 39.94 41.9

distal humerus Pilanduk 4503b 40.33 46.57

distal humerus Pilanduk 4503a 46.57 40.33

proximal radius Pilanduk 5369 28.58

proximal radius Pilanduk 4505f 28.74

proximal radius Pilanduk 5502 28.95

proximal radius Pilanduk 4505e 29.43

proximal radius Pilanduk 5740 33.95

proximal radius Pilanduk 3905 34.32

proximal radius Pilanduk 4505c 34.48

proximal radius Pilanduk 4505d 34.66

proximal radius Pilanduk 4505b 36.44

proximal radius Pilanduk 4505a 36.8

distal radius Pilanduk 1790 26.5

distal radius Pilanduk 1966 27.3

distal radius Pilanduk 4505h 27.23

distal radius Pilanduk 4505g 31.8

Table 5.8 Measurements (in mm) of cervid post-cranial elements from Pilanduk and modern comparative species. Pilanduk measurements in bold font indicate 
overlap with extant R. marianna (with +/- 1 mm of the sample range). Measurements shaded in grey are smaller than A. porcinus. Bt= breadth of trochlea, Bd=breadth 
of distal end, Bp=breadth of proximal end, DC= depth of caput of femur (after von den Driesch 1978). Breadth measurements are taken medio-laterally. 

 

Table 5.23 Measurements (in mm) of cervid post-cranial elements from Pilanduk and modern comparative species. Pilanduk measurements in bold font indicate 
overlap with extant R. marianna (with +/- 1 mm of the sample range). Measurements shaded in grey are smaller than A. porcinus. Bt= breadth of trochlea, Bd=breadth 
of distal end, Bp=breadth of proximal end, DC= depth of caput of femur (after von den Driesch 1978). Breadth measurements are taken medio-laterally. 

 

Figure 5.33 Relative taxonomic abundance (%NISP) of vertebrate taxa in Squares 27 and 37 of Minori Cave. NISP = number of identified specimens. NISP counts per 
layer are in Table 8.25.Table 5.24 Measurements (in mm) of cervid post-cranial elements from Pilanduk and modern comparative species. Pilanduk measurements 
in bold font indicate overlap with extant R. marianna (with +/- 1 mm of the sample range). Measurements shaded in grey are smaller than A. porcinus. Bt= breadth 
of trochlea, Bd=breadth of distal end, Bp=breadth of proximal end, DC= depth of caput of femur (after von den Driesch 1978). Breadth measurements are taken 
medio-laterally. 

 

Table 5.25 Measurements (in mm) of cervid post-cranial elements from Pilanduk and modern comparative species. Pilanduk measurements in bold font indicate 
overlap with extant R. marianna (with +/- 1 mm of the sample range). Measurements shaded in grey are smaller than A. porcinus. Bt= breadth of trochlea, Bd=breadth 
of distal end, Bp=breadth of proximal end, DC= depth of caput of femur (after von den Driesch 1978). Breadth measurements are taken medio-laterally. 

 

Figure 5.34 Relative taxonomic abundance (%NISP) of vertebrate taxa in Squares 27 and 37 of Minori Cave. NISP = number of identified specimens. NISP counts per 
layer are in Table 8.25. 

Table 5.26 Measurements (in mm) of cervid post-cranial elements from Pilanduk and modern comparative species. Pilanduk measurements in bold font indicate 
overlap with extant R. marianna (with +/- 1 mm of the sample range). Measurements shaded in grey are smaller than A. porcinus. Bt= breadth of trochlea, Bd=breadth 
of distal end, Bp=breadth of proximal end, DC= depth of caput of femur (after von den Driesch 1978). Breadth measurements are taken medio-laterally. 

 

Table 5.27 Measurements (in mm) of cervid post-cranial elements from Pilanduk and modern comparative species. Pilanduk measurements in bold font indicate 
overlap with extant R. marianna (with +/- 1 mm of the sample range). Measurements shaded in grey are smaller than A. porcinus. Bt= breadth of trochlea, Bd=breadth 
of distal end, Bp=breadth of proximal end, DC= depth of caput of femur (after von den Driesch 1978). Breadth measurements are taken medio-laterally. 

 

Figure 5.35 Relative taxonomic abundance (%NISP) of vertebrate taxa in Squares 27 and 37 of Minori Cave. NISP = number of identified specimens. NISP counts per 
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Table 5.8 continued.  Measurements (in mm) of cervid post-cranial elements. 

 

Element Locality Specimen No. Humerus (Bt) Humerus (Bd) Radius (Bp) Radio-ulna (Bd) Femur (DC) Tibia (Bd) Metacarpal (Bp) Metatarsal (Bp)

proximal femur Pilanduk 4514b 21.03

proximal femur Pilanduk 4514a 22.19

proximal femur Pilanduk 3900 25.82

proximal femur Pilanduk 4514d 28.72

proximal femur Pilanduk 4514e

distal tibia Pilanduk 1721 22.41

distal tibia Pilanduk 4513c 21.15

distal tibia Pilanduk 4513b 23.58

distal tibia Pilanduk 4513d 27.34

distal tibia Pilanduk 1792 27.48

distal tibia Pilanduk 4513a 27.77

distal tibia Pilanduk 1761 27.9

proximal metacarpal Pilanduk 6216 19.1

proximal metacarpal Pilanduk 5806c 19.62

proximal metacarpal Pilanduk 5371b 23.4

proximal metacarpal Pilanduk 5371a 25.8

proximal metacarpal Pilanduk 6011 26.1

proximal metacarpal Pilanduk 5464 26.47

proximal metacarpal Pilanduk 4508e 30.33

proximal metacarpal Pilanduk 4508f 30.9

proximal metacarpal Pilanduk 5806a 31.7

proximal metatarsal Pilanduk 5371d 21.51

proximal metatarsal Pilanduk 4509i 26.5

proximal metatarsal Pilanduk 4509g 27.32
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5.5 Conclusion 

This chapter has presented the fossil mammal identifications from Pilanduk Cave. The records 

of three extirpated large mammals – Panthera tigris, Rusa sp. and Axis calamianensis have been 

provided in detail. All identifications from the site currently represent the oldest confirmed 

fossils records for the seven identified taxa, dating to 25,000-20,000 years ago. In the case of 

the deer, differentiation of antler morphology confirms the taxonomic diagnoses for the two 

cervid taxa.  

The identification and biometric analysis of nine pantherine fossils from Pilanduk Cave 

add greatly to the sparse inventory of tiger fossils from Palawan. The LGM presence of this 

species, as well as that of the macaque, support the hypothesis of their natural distribution on 

Palawan Island.  We have previously argued for the tiger’s native presence on the island based 

on initial evidence from Ille Cave in northern Palawan (Ochoa 2009; Ochoa and Piper 2017; 

Piper et al. 2008). A total of three phalanx specimens were identified in Ille Cave. The Pilanduk 

record lends further information regarding its past distribution, this time from a southerly 

geographic location and from an older period. The two oldest specimens described from Ille 

Cave are of Terminal Pleistocene age, ca. 14,000 BP, while another specimen derived from an 

Early Holocene layer. The Late Pleistocene presence of the tiger on Palawan runs parallel with 

the fossil presence of the tiger on Borneo (Piper et al. 2007), and this may likely be the 

population source of Palawan tigers. Based on GIS and bathymetric reconstructions, Palawan 

was likely not connected to Borneo during the LGM; however, only a short sea crossing of 

roughly 4.5 km would have been required during MIS 2 (Robles et al. 2015). In comparison, 

the present-day distance between the two islands is 140 km. Previous reconstructions, though, 

suggest a land connection (Sathiamurthy and Voris 2006). Tigers are known swimmers that 

can make sea-crossings and hence a landbridge between Borneo and Palawan would not have 

been necessary for colonisation, and the presence of this large carnivore on Palawan does not 

imply that a landbridge was present during MIS 2. In fact, all known fossil and extant large 

mammals (tiger, deer and pig) of the Palawan faunal region are capable of sea-crossings. 

The Pilanduk Cave assemblage is not very speciose and is dominated by one taxon 

(Rusa sp.). This contrasts with the Holocene fossil assemblages of Ille and Pasimbahan Caves, 

which contain more macrovertebrate and microverterbate taxa. The diversity and abundance 

of taxa in Pilanduk Cave noticeably differ from these two sites. These features, along with 

palaeoecological, biogeographic and taphonomic issues, will be discussed further in Chapters 

7 and 8. 
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Chapter 6 Holocene Archaeofaunas of Luzon Island 

 

6.1 Introduction 

 

In this chapter, I present the palaeozoological reconstruction of two terrestrial vertebrate cave 

assemblages in Luzon, with the primary aim of describing and examining the Late Quaternary 

history of the mammalian faunal community of the island. As presented here, the fossil record 

of Minori and Musang Caves provides evidence for the nature and composition of mammalian 

faunal communities in northeastern Luzon in the last 10,000 years. As discussed in Chapter 4, 

the two sites present Holocene sequences, containing two major cultural layers. The deeper 

aceramic layer contains flake assemblages and faunal remains that are older than 4000 BP. For 

Musang Cave, Thiel (1990) presented two 14C dates that are of Terminal Pleistocene age (ca. 

10,000 BC). Although the dates are not secure, they provide an indication that the aceramic 

levels of Musang are at least of Early Holocene age or slightly older.  The younger cultural 

layers contain a similar flake assemblage, but with the addition of earthenware pottery that 

are younger than 4000 BP. 

Accounts of species are presented here for Minori and Musang Caves, which include 

descriptions on systematics, morphology, distribution and ecology for each taxon. Biological 

data for the extant species are primarily derived from the most recent synopsis The Mammals 

of Luzon Island (Heaney et al. 2016). The fossil accounts focus on the non-volant mammalian 

taxa, since the assemblages consist primarily of mammalian remains. In the species accounts, 

native taxa are described first, followed by introduced/non-native taxa. In-depth accounts are 

provided for the Muridae due to the discovery of previously unknown and undescribed taxa. 

To provide the necessary background for these two assemblages, an overview of the Luzon 

faunal record follows. 

 

6.2 The Vertebrate Fossil Record of Luzon 

 

The fossil record of Luzon is primarily represented by sites from the Cagayan Valley. Early 

studies dealt with extinct megafauna (Beyer 1956; Koenigswald 1956). The fossils are often 

found redeposited within the alluvial plains of the valley and have not been securely dated but 
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have been proposed to be of Middle Pleistocene age. Some of the fossil remains are said to be 

associated with ‘Cabalwanian’ pebble tools (Koenigswald 1958), but these associations are not 

well-established due to post-depositional processes in these alluvial settings.  De Vos and 

Bautista (2001) previously examined the taxonomy of these fossil finds, identifying Stegodon 

luzonensis, Rhinoceros philippinensis, Elephas sp., a small bovid, a suid, a giant tortoise, and a 

crocodile. In the island of Cebu, bovid remains were found in 1958 in a mining tunnel and are 

of unknown age. These were described and assigned as Bubalus cebuensis, a diminutive buffalo 

that is smaller than the extant tamaraw (B. mindorensis) of Mindoro Island (Croft et al. 2006). 

Unidentified bovid remains are also found in some Luzon sites, and possibly represent a 

congener (coming from the same genus) of B. cebuensis and B. mindorensis. 

Most recently, the hypothesis pertaining to the association of stone tools and Middle 

Pleistocene megafauna in Cagayan has been revisited and bolstered by the discovery of 

securely dated rhinoceros (R. philippinensis) remains found in association with stone tools (T. 

Ingicco et al. 2018). These were found in Kalinga site, which is located in neighboring Kalinga 

Province, although the geographic area still forms a contiguous part of the Cagayan Valley.  

Dating of the rhinoceros was done using electron spin resonance on tooth enamel and yielded 

an age of 709 ± 68 ka. The rhinoceros remains belong to a near-complete individual showing 

evidence of butchery-related cut marks and percussion marks. Associated with the articulated 

animal bones are 57 stone tools.  These findings now represent the oldest evidence of hominin 

activity in the Philippine archipelago. Within the same vicinity, a novel species of fossil suid, 

Celebechoerus cagayanensis, was also diagnosed on the basis of an upper left canine found 

among surface remains (Thomas Ingicco et al. 2016). 

The rest of the known fossil assemblages on Luzon date from the Late Pleistocene to 

the Holocene. The 67,000-year old sequence of Callao Cave provides the only Late Pleistocene 

record to date (Mijares et al. 2010). The deepest levels showed evidence of a human third 

metatarsal found with deer (Rusa marianna) and wild pig (Sus philippensis) bones. Two fossil 

murids (Batomys sp. and Apomys microdon) were also identified in these levels, providing the 

first description of fossil rodents on the island (Heaney et al. 2011). The Callao faunal sequence 

will be discussed further in the next chapter. 

For the Holocene, an important and well-described assemblage comes from 

Nagsabaran open site in the Cagayan River Valley. Deer and wild pig remains dominate the 

assemblage, but the earliest identifications of three introduced domesticates are documented. 

These include the earliest record for domestic Sus scrofa in the Philippines, dated to 4000 cal. 

BP (Piper et al. 2009). In the Late Neolithic/Metal Period levels, the domestic water buffalo 

(Bubalus bubalis) and the domestic dog (Canis lupus familiaris) were also identified (Amano et 
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al. 2013). Another site where B. bubalis has been identified is in Pintu/Busibus rockshelter. 

This site is located in the province of Nueva Vizcaya, also in northeastern Luzon. The site is 

near the Ngilinan River, a tributary of the Cagayan River. It was excavated in the 1960s and has 

tentative 14C dates ranging from 4000 to 2000 BP. Mudar (1997) analysed the fauna, observing 

that deer is the most dominant taxa, followed by wild pig. Macaque remains were also 

identified in the same levels where the water buffalo occurs. 

Holocene assemblages are further represented in the other cave sites in the Callao 

formation, including the two sites described here. In the case of Musang Cave, Thiel (1990) 

provided her identifications of the large mammal fauna in her analysis of finds from the site. 

This was limited to deer, wild pig and human remains. For majority of other sites in the Callao 

area, there are only unpublished manuscripts from the National Museum of the Philippines 

(NMP), with some of them giving preliminary descriptions of faunal composition. Such is the 

case for Minori Cave, where the vertebrate fauna for Chamber D was first analysed by De Vera 

(De Vera-Alba 1990) and the molluscan fauna by Bautista (1982). In her reports, De Vera noted 

that the lack of comparative material limited the number of specimens that could be identified 

to genus and species (Table 6.1). She also presented bone frequencies by arbitrary 

archaeological levels but was not able to segregate by cultural layers due to the lack of 

stratigraphic data at the time of her writing. 

The research generated here for Minori and Musang Caves offers a re-analysis of these 

remains, producing additional genus- and species-level identifications. These include 

previously unidentified extant and extinct native taxa, as well domesticated and translocated 

non-native species. In the case of Musang, my analysis also includes some corrections for 

misidentified specimens. The following sections provide details of these determinations, which 

are based on morphological and morphometric analyses and comparisons with available 

modern references. The relevant ecological and systematic information is also summarised for 

the various taxa in order to provide the necessary basis for the discussion on biogeographic 

patterns and environmental changes in the next chapter. 
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Table 6.1 Specimen counts per taxa and excavated square in Minori Cave (Chamber D only) provided by 
De Vera-Alba. Column labels refer to the squares/excavation units. Adapted from Table 3 in De Vera-
Alba (1990:5). 

 

 

 

6.3 The Minori Cave Vertebrate Fauna: An Overview 

 

A total of 1935 bone fragments were analysed from Minori Cave, coming primarily from two 

squares from the 1981-82 excavations (Table 6.2). The two squares represent the two main 

chambers of the cave: Square 27 for Chamber D, and Square 37 for Chamber A. These two 

squares were chosen because each has the greatest number of remains among all squares in 

the chambers and cover the known archaeological sequence for the site. Compared to the other 

squares, these two squares also had more archival archaeological records in the NMP and so it 

has been possible to some degree to reconstruct the provenance of the finds. The proportion 

of bone identified at the genus level comprises 20% for Minori Cave out of the total number of 

fragments (TNF) in the site.  

 

 

  

 Taxon 27 40 41 44 50 57 58 Total 

Cervus sp. 194 39 2 19 20 1 5 280 

Sus sp. 54 13 2 2 12 3 10 96 

Rodentia 106 25 \ 193 139 13 287 763 

Squamata 15 \ \ \ \ \ \ 15 

Carnivora 6 1 1 1 5 \ \ 14 

Macaca sp. 2 1 1 2 7 2 \ 15 

Bats 3 \ \ \ 3 \ 3 9 

Aves 2 3 \ 1 2 \ \ 8 

Fish  1 \ \ \ \ \ \ 1 

 383 82 6 218 188 19 305 1201 
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Table 6.2 Number of identified specimens (NISP) in Minori Cave per square (Sq.) and chamber (Ch.). 
Counts for other squares (apart from the two main squares) are grouped together. *Extinct taxon. 

Taxon 
Sq. 
27 

Ch. D 
other 

Total 
Ch. D 

Sq. 
37 

Ch. A 
other 

Total 
Ch. A 

TOTAL 
NISP 

%NISP 

Rusa marianna 135 3 138 165 53 218 356 18.4 

Sus philippensis 104 4 108 39 15 54 162 8.4 

large mammal 956  956 138 1 139 1095 56.6 

Phloeomys pallidus  1 1     1 0.1 

Crateromys sp.* 2  2     2 0.1 

Carpomys undescr. sp.* 6  6     6 0.3 

Bullimus/Rattus sp. 2  2     2 0.1 

Phloeomyin 33  33     33 1.7 

Murid 13 2 15 2  2 17 0.9 

Paradoxurus 
philippinensis 

     2 2 2 0.1 

Canis lupus familiaris 2  2 1  1 3 0.2 

Macaca fascicularis 4 20 24 14 15 29 53 2.7 

intermediate 
mammal 

8  8 6 4 10 18 0.9 

Microchiroptera 1  1     1 0.1 

small mammal 10  10 2    10 0.5 

Varanus sp. 3  3     3 0.2 

Turtle 1  1 1  1 2 0.1 

Snake 8  8 1  1 9 0.5 

Fish 1  1     1 0.1 

Bird 2  2 1 1 2 4 0.2 

macrovertebrate 82  82 41  41 123 6.4 

microvertebrate 31   31 1   1 32 1.7 

  1404 30 1434 412 91 501 1935 100 
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A total of nine mammal species and two reptile taxa have been identified in the Minori 

Cave assemblage (Table 6.2). Of the nine mammal taxa, six are native species (Rusa marianna, 

Sus philippensis and four murid species) and three are non-native species (Macaca fascicularis, 

Paradoxurus philippinensis and Canis lupus familiaris). Of the native taxa, two species are novel 

endemic cloud rat species that are now extinct (Carpomys and Crateromys). Large mammals 

dominate the sequence (Figure 6.1, Table 6.2). In the aceramic layer, the native deer is the 

dominant taxon, whereas in the ceramic-bearing layer, pigs slightly outnumber deer. In the 

ceramic-bearing layers, the three introduced taxa appear (macaque, palm civet and domestic 

dog). Remains of turtles, monitor lizard and snakes also appear in small numbers across the 

sequence. 

 

 

 

 

 

Figure 6.1 Relative taxonomic abundance (%NISP) of vertebrate taxa in Squares 27 and 37 of 
Minori Cave. NISP = number of identified specimens. NISP counts per layer are in Table 8.25. 
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6.4 Minori Cave Accounts of Species 

 

Species accounts for the non-volant mammal taxa of Minori Cave follows in this section. 

Detailed treatments are specifically provided for novel and extinct murid species discovered 

in the assemblage. 

 

6.4.1 Order Cetartiodactyla 

Family Cervidae 
Rusa marianna 

 

Measurements of dental specimens indicate that the deer remains in the assemblage are 

attributable to the Philippine brown deer, Rusa marianna, the extant cervid on Luzon (Table 

6.3). Tooth specimens from Minori and Musang Caves overlap in dimensions with those of 

living R. marianna of Luzon (Figure 6.2). They also overlap in dimensions with archaeological 

specimens from two other Luzon sites, Callao Cave and Nagsabaran. All the Luzon specimens 

(modern and archaeological) generally separate from the other extant deer populations from 

other Philippine islands, although the sample size for the latter are small because of the rarity 

of these taxa. Rusa alfredi, a dwarfed sambar species, is restricted to the Negros-Panay faunal 

region, while Axis calamianensis, is the native hog deer of the Palawan faunal region discussed 

in the previous chapter. Both species are smaller than the Luzon deer and are single-island 

endemics of their own faunal regions.  
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The Philippine brown deer (or Philippine sambar) is the most abundant taxon in the 

assemblage and is found across the sequence. It is generally common in archaeological 

assemblages in Luzon, and considered the major prey species along with the wild pig. Rusa 

marianna is presently widespread across the Luzon, Mindoro and Mindanao faunal regions, 

but historical extirpations on smaller islands have been observed (MacKinnon et al. 2015). The 

brown deer is noted as the largest living deer in the Philippines and its habitat ranges from sea 

level to 2900 m (Heaney et al. 2016). It is a forest species that can be found foraging in grassy 

clearings. It varies in size and pelage across its range and further investigation of systematic 

relationships is needed. Note that in Figure 6.2, most of the sample of R. marianna from 

Mindanao are relatively smaller than the Luzon population, and instead the former overlap in 

size with the smaller deer species of Negros and Palawan.  

Figure 6.2 Bivariate plot of cervid mandibular m2 measurements (in mm) from Minori and Musang 
Caves compared with modern and archaeological specimens. Data for Callao Cave is from Piper et al. 
2007 and data for Nagsabaran site is from Amano 2013. Modern comparatives of Philippine cervids 
are all from the FMNH and were measured with PJ Piper. 
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Table 6.3 Maxillary and mandibular molar measurements (in mm) of Minori and Musang cervids compared with extant cervid species. All measurements are 
cervical (taken above cementum/enamel junction). Anterior width = width of anterior cusp, Posterior width = width of posterior cusp. For modern reference, 
(N) refers to number of individuals. FMNH measurements were taken with PJ Piper. 

 

Figure 6.3 Carpomys cusp pattern diagram of the left maxillary and left mandibular toothrows using Miller’s (1912) terminology.Table 6.4 Maxillary and 
mandibular molar measurements (in mm) of Minori and Musang cervids compared with extant cervid species. All measurements are cervical (taken above 
cementum/enamel junction). Anterior width = width of anterior cusp, Posterior width = width of posterior cusp. For modern reference, (N) refers to number of 
individuals. FMNH measurements were taken with PJ Piper. 

 

Figure 6.4 Carpomys cusp pattern diagram of the left maxillary and left mandibular toothrows using Miller’s (1912) terminology.Table 6.5 Maxillary and 
mandibular molar measurements (in mm) of Minori and Musang cervids compared with extant cervid species. All measurements are cervical (taken above 
cementum/enamel junction). Anterior width = width of anterior cusp, Posterior width = width of posterior cusp. For modern reference, (N) refers to number of 
individuals. FMNH measurements were taken with PJ Piper. 

 

Figure 6.5 Carpomys cusp pattern diagram of the left maxillary and left mandibular toothrows using Miller’s (1912) terminology.Table 6.6 Maxillary and 
mandibular molar measurements (in mm) of Minori and Musang cervids compared with extant cervid species. All measurements are cervical (taken above 
cementum/enamel junction). Anterior width = width of anterior cusp, Posterior width = width of posterior cusp. For modern reference, (N) refers to number of 
individuals. FMNH measurements were taken with PJ Piper. 

 

Figure 6.6 Carpomys cusp pattern diagram of the left maxillary and left mandibular toothrows using Miller’s (1912) terminology. 

 

Figure 6.7 Fossil material referred to Carpomys: Minori-15997 (a-b), Minori-16481 (c), Minori-16825 (d), Minori-16447 (e), Musang-101 (f), Minori-16951 (g), 
Minori-16301 (h-i). (a-e) are maxillary specimens (f-i) are mandibular specimens. All are occlusal views except for b (labial) and i (lingual).Figure 6.8 Carpomys 
cusp pattern diagram of the left maxillary and left mandibular toothrows using Miller’s (1912) terminology. 

 

Figure 6.9 Fossil material referred to Carpomys: Minori-15997 (a-b), Minori-16481 (c), Minori-16825 (d), Minori-16447 (e), Musang-101 (f), Minori-16951 (g), 
Minori-16301 (h-i). (a-e) are maxillary specimens (f-i) are mandibular specimens. All are occlusal views except for b (labial) and i (lingual).Figure 6.10 Carpomys 
cusp pattern diagram of the left maxillary and left mandibular toothrows using Miller’s (1912) terminology.Table 6.7 Maxillary and mandibular molar 
measurements (in mm) of Minori and Musang cervids compared with extant cervid species. All measurements are cervical (taken above cementum/enamel 

Maxillary

Source/ 

Specimen No.
Taxon Locality P4 Length P4 Width M1 Length M1 Anterior width M1 Posterior width M2 Length M2 Anterior width M2 Posterior width M3 Length M3 Anterior width

FMNH Axis calamianensis Calamianes 7.36 - 8.61 (3) 9.15 - 11.15 (3) 11.02 - 13.26 (6) 10.5 - 12.93 (6) 10.72 - 13.42 (6) 13.3 - 14.84 (4) 11.45 - 12.68 (4) 11.78 - 13.3 (4) 15.08- 15.12 (2) 11.54 - 12.5 (2)

MCZ Axis porcinus India 8.6-9.2 (3) 11.3 -12.4 (4) 10.5 - 11.5 (3) 12.8-14.5 (3) 13.7-14.9 (3) 14.1-14.9 (2) 16.2-16.8 (2) 15.6-15.9 (2) \ \

FMNH Rusa alfredi Negros 9.05 - 10.7 (3) 12.36 - 12.9 (3) 11.5 - 14.38 (5) 13.3 - 14.2 (5) 13.04 - 14.26 (5) 13.5 - 17.3 (4) 15.04 - 15.72 (4) 14.1 - 15.51 (3) 15.25 - 16.37 (3) 13.98 - 15.16 (3)

FMNH Rusa marianna Mindanao 7.7 - 9.27 (5) 10.72 - 11.91 (5) 10.28 - 12.39 (8) 12.49 - 13.8 (8) 11.8 - 14.34 (8) 11.63 - 14.58 (7) 13.32 - 15.09 (8) 13.1 - 14.78 (7) 13.17 - 15.67 (7) 12.9 - 14.38 (7)

FMNH Rusa marianna Luzon 9.03 - 11.17 (6) 13.4 - 15.2 (6) 12.4 - 15.12 (10) 13.75 - 17.03 (10) 13.95 - 17.04 (9) 15.06 - 18.28 (10) 15.84 - 18.66 (9) 15.3 - 18.68 (8) 16.12 - 18.3 (7) 16.8 - 17.94 (5)

FMNH Rusa unicolor SEA 12.34 -13.76 (3) 15.99 - 17.56 (3) 15.59 - 17.24 (4) 19.72 - 21.42 (4) 19.62 - 21.18 (4) 19.74 - 21.13 (4) 22.56 - 23.08 (4) 22.17 - 22.8 (4) 21.2 - 22.43 (3) 20.02 - 22.49 (3)

FMNH Muntiacus muntjak Borneo 6.34 - 7.86 (3) 9.03 - 9.95 (3) 8.4 - 9.68 (4) 10.22 - 12.23 (4) 10.61 - 12.02 (4) 9.15 - 10.62 (3) 11.33 - 13.06 (3) 11.0 - 12.76 (3) 9.97 - 10.88 (3) 10.98 - 12.62 (3)

2895 Rusa marianna Minori Ch. A 15.67 17.15 \

8502 Rusa marianna Minori Ch. A 14.82 16.04 15.7

1050 Rusa marianna Minori Ch. A 15.44 16.29 17

127 Rusa marianna Minori Ch. A 15.65 14.96 16.76 16.63 18.04 17.06

40 Rusa marianna Minori Ch. A 16.32 17.66 16.09

6061 Rusa marianna Minori Ch. A 16.17 16.13 15.72

8716 Rusa marianna Minori Ch. A 17.06 16.63 15.22

3144 Rusa marianna Minori Ch. A 15.42 15.03 14.76 16.96 15.57 15.77

962 Rusa marianna Minori Ch. A 13.81 15.96 15.45

488 Rusa marianna Minori Ch. A 14.48 15.69 15.6

632 Rusa marianna Minori Ch. A 16.11 17.97 17.74

4775 Rusa marianna Minori Ch. A 13.18 \ \

4734 Rusa marianna Minori Ch. A 14.4 15.64 \

3716 Rusa marianna Minori Ch. A 16.21 \ \

2815 Rusa marianna Minori Ch. A 17.5 18.81

3148 Rusa marianna Minori Ch. A 16.45 \ 17.15

73 Rusa marianna Minori Ch. A 17.55 18.69

3660 Rusa marianna Minori Ch. A 17.44 17.46

3664 Rusa marianna Minori Ch. A 16.4 17.19 16.97

269 Rusa marianna Minori Ch. A 15.88 16 17.07

3524 Rusa marianna Minori Ch. A 15.33 17.15 17.12

3276 Rusa marianna Minori Ch. A 16.04 16.16 15.74

3765 Rusa marianna Minori Ch. A 18.88 19.22 19.82

6193 Rusa marianna Minori Ch. A 16.62 17.57 18.05
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Table 6.3 continued.  Maxillary and mandibular molar measurements (in mm) of Minori and Musang cervids.

Maxillary

Source/ 

Specimen No.
Taxon Locality P4 Length P4 Width M1 Length M1 Anterior width M1 Posterior width M2 Length M2 Anterior width M2 Posterior width M3 Length M3 Anterior width M3 Posterior width

8155 Rusa marianna Minori Ch. A 13.39 15.09 14.37

4533 Rusa marianna Minori Ch. A 14.84 14.91 14.84

3550 Rusa marianna Minori Ch. A 16.45 17.63 16.75

2661 Rusa marianna Minori Ch. A 16.89 15.19 14.39

3152 Rusa marianna Minori Ch. A 16.29 17.29 17.15

3321 Rusa marianna Minori Ch. A \ 15.17 14.25

2536 Rusa marianna Minori Ch. A 16.31 17.25 15.35

3693 Rusa marianna Minori Ch. A 17.27 17.54 14.08

4421 Rusa marianna Minori Ch. A 13.69 12.45 12.6

182 Rusa marianna Minori Ch. A 13.2 15.93 15.51

2465 Rusa marianna Minori Ch. A 13.47 15.59 15.74

16732 Rusa marianna Minori Ch. D 13.1 16 15.9

9348 Rusa marianna Minori Ch. D 14.2 16.4 16

72 Rusa marianna Musang 15.6 16.17 15.91

1 Rusa marianna Musang 13.64 12.87 13.13

1 Rusa marianna Musang 15.26 17.26 \

74 Rusa marianna Musang 16.24 17.43 17.14

3 Rusa marianna Musang 10.36 13.05

75 Rusa marianna Musang 17.14 14.82 15.87

771 Rusa marianna Musang 17.69 15.51 17.1

594 Rusa marianna Musang 17.54 15.64 15.08

702 Rusa marianna Musang 16.17 17.03 17.93

596 Rusa marianna Musang 14.98 14.2 14.46

910 Rusa marianna Musang 14.46 14.44 14.97

10968 Rusa marianna Musang 14.43 15.73 14.42

197 Rusa marianna Musang 10.25 12.16

7071 Rusa marianna Musang 16.05 15.46 14.02

701 Rusa marianna Musang 17.16 17.01 14.73

4369 Rusa marianna Musang 15.61 \ 14.54

57 Rusa marianna Musang 10 12.2

60 Rusa marianna Musang 15.6 16.7 16.5
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Table 6.3 continued.  Maxillary and mandibular molar measurements (in mm) of Minori and Musang cervids. 

 

Mandibular

Source/ 

Specimen No. Taxon Locality M1 Length M1 Anterior width M1 Posterior width M2 Length M2 Anterior width M2 Posterior width M3 Length

M3 Anterior 

width

M3 Width of middle 

cusp

M3 Posterior 

width

FMNH Axis calamianensis Calamianes 9.82 - 11.93 (6) 7.35 - 8.02 (6) 7.15 - 8.52 (6) 14.06 - 14.76 (4) 8.04 - 9.79 (4) 7.3 - 8.88 (4) 18.26 - 19.78 (2) 8.77 - 10.6 (2) 7.7 - 10.62 (2) 3.72 (1)

MCZ Axis porcinus India 11.6-11.7 (2) 7.9-8.1 (2) 8.2-8.7 (2) 13.6 (1) 9.8 (1) 9.5 (1) \ \ \ \

FMNH Rusa alfredi Negros 11.22 - 13. 78 (5) 8.45 - 9.5 (5) 8.77 - 10.47 (5) 14.25 - 16.48 (4) 10.14 - 11.38 (3) 10.43 - 11.32 (3) 20.49 - 20.9 (3) 9.78 - 11.04 (3) 10.17 - 11.24 (3) 5.49 - 5.88 (3)

FMNH Rusa marianna Mindanao 10.24 - 12.96 (8) 7.76 - 8.7 (8) 8.5 - 9.44 (8) 12.34 - 14.53 (8) 9 - 9.82 (8) 8.91 - 10.32 (8) 18.03 - 20.27 (7) 8.57 - 9.8 (7) 7.82 - 8.96 (7) 4.92 - 5.34 (5)

FMNH Rusa marianna Luzon 12.8 - 15.24 (8) 9.6 - 10.97 (7) 10.46 - 11.6 (8) 15.8 - 18.34 (8) 11.05 - 13.18 (8) 11.12 - 12.46 (8) 23.3 - 25.28 (5) 11.4 - 12.77 (6) 10.52 - 12.94 (5) 5.86 - 7.46 (5)

FMNH Rusa unicolor SEA 16.65 - 18.33 (3) 12.81 - 13.27 (4) 12.52 - 13.88 (3) 19.46 - 20.93 (2) 14.74 - 15.32 (3) 14.24 - 15.09 (3) 28.28 - 28. 86 (2) 14.9 - 14.95 (2) 13.53 - 14.42 (2) 8.56 - 8.74 (2)

FMNH Muntiacus muntjak Borneo 9.32 - 9.77 (4) 6.67 - 7.04 (4) 6.9 - 7.72 (4) 10.05 - 11.0 (3) 7.97 - 8.56 (3) 8.11 - 8.28 (3) 14.64 - 15.2 (3) 7.65 - 8.15 (3) 7.23 - 7.78 (3) 4.41 - 4.76 (3)

4188 Rusa marianna Minori Ch. A 16.57 11.39 \

2041 Rusa marianna Minori Ch. A 16.61 11.97 12.3

2534 Rusa marianna Minori Ch. A \ 11.89 \

7744 Rusa marianna Minori Ch. A 14.76 10 11.53

698 Rusa marianna Minori Ch. A \ 12.85 10.86 \

106 Rusa marianna Minori Ch. A 14.72 9.57 10.26

2988 Rusa marianna Minori Ch. A 16.77 11.25 10.97

228 Rusa marianna Minori Ch. A 16.42 11.71 10.8

2714 Rusa marianna Minori Ch. A 15.2 9.75 10.23

6194 Rusa marianna Minori Ch. A

4602 Rusa marianna Minori Ch. A 16.2 11.19 11.15

2212 Rusa marianna Minori Ch. A 15.17 9.96 10.08

840 Rusa marianna Minori Ch. A 23.27 11.45 10.63 6.02

4636 Rusa marianna Minori Ch. A

4658 Rusa marianna Minori Ch. A 24.85 11.24 11.2 6.44

229 Rusa marianna Minori Ch. A 15.76 10 9.85

6014 Rusa marianna Minori Ch. A 22.7 10.95 10.04 6.07

2545 Rusa marianna Minori Ch. A \ 9.81 10.72

6054 Rusa marianna Minori Ch. A 15.5 10.53 10.76

3432 Rusa marianna Minori Ch. A 13.87 10.42 10.78

490 Rusa marianna Minori Ch. A 22.7 12.74 11.29 7.1

2716 Rusa marianna Minori Ch. A 13.93 10.54 10.1

8000 Rusa marianna Minori Ch. A 22.71 11.12 9.99 5.63

225 Rusa marianna Minori Ch. A 17.9 11.89 12.38

940 Rusa marianna Minori Ch. A 14.37 10.26 10.84

6006 Rusa marianna Minori Ch. A

6010 Rusa marianna Minori Ch. A 22.25 11.93 10.92 6.5

6010 Rusa marianna Minori Ch. A 15.2 10.28 11

2291 Rusa marianna Minori Ch. A 16.34 11.11 11.24
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Table 6.3 continued.  Maxillary and mandibular molar measurements (in mm) of Minori and Musang cervids. 

 
Mandibular

Source/ 

Specimen No. Taxon Locality M1 Length M1 Anterior width M1 Posterior width M2 Length M2 Anterior width M2 Posterior width M3 Length

M3 Anterior 

width

M3 Width of middle 

cusp

M3 Posterior 

width

2045 Rusa marianna Minori Ch. A 23.32 11.08 10.77 5.5

2987 Rusa marianna Minori Ch. A 23.33 \ 9.98 5.11

7385 Rusa marianna Minori Ch. A 17.47 12.36 11.65

3151 Rusa marianna Minori Ch. A 16.39 12.42 12.31

3751 Rusa marianna Minori Ch. A

3746 Rusa marianna Minori Ch. A

3743 Rusa marianna Minori Ch. A

3400 Rusa marianna Minori Ch. A

2139 Rusa marianna Minori Ch. A

9626 Rusa marianna Minori Ch. D 15.69 10.11 10.5

9620 Rusa marianna Minori Ch. D 17.71 11.61 11.87

9624 Rusa marianna Minori Ch. D

16161 Rusa marianna Minori Ch. D 20.8 11.2 9.9 5.3

16990 Rusa marianna Minori Ch. D

16733 Rusa marianna Minori Ch. D 15 9.9 10.1

1 Rusa marianna Musang \ \ 11.22 6.28

1 Rusa marianna Musang 17.34 11.46 11.81

74 Rusa marianna Musang 23.15 12.12 11.03 \

74 Rusa marianna Musang 18.23 10.63 10.69

74 Rusa marianna Musang 15.68 10.23 10.4

62 Rusa marianna Musang

73 Rusa marianna Musang 16.25 11.31 10.35

3 Rusa marianna Musang

58 Rusa marianna Musang 18.11 10.52 10.34 4.12

75 Rusa marianna Musang 14.41 10.34 10.05 16.1 10.43 10.31

75 Rusa marianna Musang 16.88 11.53 11.96

64 Rusa marianna Musang 14.76 9.92   

113 Rusa marianna Musang 14.7 10.63 9.87

110 Rusa marianna Musang 15.29 9.92 10.59

595 Rusa marianna Musang 24.33 11.64 10.4 6.81

20102 Rusa marianna Musang 13.25 9.13 9.21

6900 Rusa marianna Musang 23.9 10.97 10.84 6.39

6314 Rusa marianna Musang 23.38 10.98 10.74 6.99

17129 Rusa marianna Musang 22.49 11.6 10.31 6.11

10665 Rusa marianna Musang 21.25 10.96 9.61 5.45

57 Rusa marianna Musang 16 11.8 11.5

57 Rusa marianna Musang 16.6 11.8 11.1

57 Rusa marianna Musang

55 Rusa marianna Musang 13.3 9.7 10.2



 

139 
 

6.4.2 Family Suidae 
Sus philippensis 

 

The remains of pigs in the assemblage are attributed to the extant wild pig on Luzon Island, 

Sus philippensis. The Philippine warty pig is notably smaller than the introduced domestic Sus 

scrofa, and the Minori Cave teeth and postcranial remains are all relatively small (see Table 

6.13 and Figure 6.15 under S. scrofa discussion in Musang Cave section). This smaller body size 

is characteristic of all the extant wild pig species in the Philippine archipelago, a phenomenon 

that follows the Island Rule (Foster’s rule). There is no identified record of the domestic pig on 

Minori Cave, but there is a record described below for Musang Cave. The Philippine warty pig 

occurs in the Luzon and Mindanao faunal regions. Its range is from sea level to at least 2800 m 

elevation in nearly all terrestrial habitats. 

 

6.4.3 Order Rodentia 
Family Muridae 
Tribe Phloeomyini 
 
Four murid taxa were identified in the Minori Cave assemblage. Of these, three are ascribed to 

the tribe Phloeomyini (sensu Lecompte et al. 2008; Musser and Carleton 2005). Five genera are 

currently known from this endemic clade, and three of these – Carpomys, Crateromys and 

Phloeomys – were identified in the two assemblages. All fossil identifications are based on 

dental morphology, following the molar cusp terminology of Miller (1912) (Fig 6.2).  

The Phloeomyini consist of arboreal and mostly herbivorous species native to the 

oceanic Philippines that are referred to as cloud rats, tree rats and tree mice. Twelve species 

are currently known in Luzon. Within the Phloeomyini, the ‘Crateromys group’ (= Phloeomyini 

minus Phloeomys; after Musser and Heaney 1992) consists of four genera: Batomys, Carpomys, 

Crateromys and Musseromys. All of these genera are represented in the modern fauna of Luzon 

Island. Musser and Heaney (1992: 61-65) describe several shared derived traits in the molar 

morphology of the Crateromys group that distinguish them from other murid taxa: 

1. a large discrete cusp t7 on each upper molar, which has an anterolingual orientation 

relative to central cusp t8 and forms a significant part of the lingual occlusal surface  

2. a reduced or absent t9 in the labial margin of each upper molar 

3. a large anteroconid forms the anterior one-third of each lower first molar 
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Identified cloud rat (Carpomys and Crateromys) fossil specimens possess these 

synapomorphies and further description and data are provided below to distinguish among 

the members within the Crateromys group. 

 

6.4.4 Carpomys undescr. sp. 

 

Carpomys is represented in Minori Cave by four maxillary specimens and two mandibular 

specimens, belonging to at least four individuals (Figure 6.4 and Table 6.5). An additional 

mandibular specimen was identified in Musang Cave (Musang-101). Carpomys are currently 

represented by two living species: C. melanurus (greater dwarf cloud rat) and C. phaeurus 

(lesser dwarf cloud rat). Both are limited in distribution to the Central Cordillera range of 

northern Luzon, particularly in mossy forest at 2100 to 2500 m. Like other cloud rats, dwarf 

cloud rats are so named because they inhabit montane rainforest and are largely or entirely 

arboreal. The ascription ‘Carpomys’ is due to the short and broad hind foot (Thomas 1895). 

The fossil specimens display the synapomorphies in molar morphology detailed above 

that distinguish the Crateromys group. The specimens are in the size range of the living 

Crateromys schadenbergi, but they have a brachyodont structure that contrasts with the 

hypsodont Cr. schadenbergi. The dental morphology of the four genera of the Crateromys group 

were compared with the fossils using comparative collections in the BMNH and FMNH. The 

BMNH collection includes the holotype for Carpomys melanurus and Carpomys phaeurus. The 

lamellate cusp pattern observed in the fossils (Figure 6.3) closely follows the morphology of 

the living Carpomys, as well as the members of the closely related Musseromys. The fossils and 

the extant Carpomys are observed to be distinctive from Crateromys and Batomys based on the 

following dental traits: 
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Figure 6.3 Carpomys cusp pattern diagram of the left maxillary and left mandibular toothrows 
using Miller’s (1912) terminology. 

Figure 6.4 Fossil material referred to Carpomys: Minori-15997 (a-b), Minori-16481 (c), Minori-
16825 (d), Minori-16447 (e), Musang-101 (f), Minori-16951 (g), Minori-16301 (h-i). (a-e) are 
maxillary specimens (f-i) are mandibular specimens. All are occlusal views except for b (labial) 
and i (lingual). 



142 
 

 

1. General upper molar shape. Carpomys have more elongate and narrower laminae in 

the upper molars, versus more angular and arcuate (or chevronate) in Crateromys and 

Batomys. The mesial cusps t2/t5/t8 are very broad in Crateromys. In Batomys, the 

mesial cusps are relatively intermediate in width – less broad than Crateromys, but still 

broader compared to Carpomys. In contrast, upper molars of Carpomys have an 

elongate form and narrow mesial cusps. Among the phloeomyins, the lopho-bunodont 

cusps of Carpomys are intermediate between the less lamellate Batomys and the 

lophodont Phloeomys (see molar topography classification in Lazzari et al. 2015). 

2. Number of laminae in molars. Carpomys species possess an extra row of cusps or 

laminae in upper and lower first molars. Describing the holotype, Oldfield Thomas 

(1895) notes: “Teeth somewhat as in Mus, but upper molars each with an additional 

posterior lamina.”  

a. There are four rows of laminae in upper and lower first molars in Carpomys, 

versus three rows in Crateromys and Batomys. Thomas (1898: 406) once again 

notes: “The last molar is normal, so that the laminar formula is 4-3-2.” In 

contrast, the laminar formula for Crateromys and Batomys is 3-2-2. 

b. In the upper m1, the fourth row is the elongate and well-developed posterior 

cingulum. 

c. In the lower m1, the ‘additional’ row is the first lamina, the bicuspid 

anterocentral. In Crateromys and Batomys (and most other murid genera) the 

anterocentral has only one cusp that is fused with anterolabial and 

anterolingual cusp into a more typical triangular anteroconid (see below).  

d. The extra laminae are also present in maxillary second and third molars 

because of the elongate and well-developed posterior cingulum. Carpomys is 

distinctive among the Crateromys group in having a laminar posterior cingulum 

in all upper molars (see Figure 34 in Musser and Heaney 1992).  

3. Distinct morphology of the anteroconid. Among various Southeast Asian taxa, the 

phloeomyin anteroconid is distinctive in having an expanded anterocentral cusp that 

forms the anterior half of a cordate anteroconid (Aplin and Helgen 2010; Musser and 

Heaney 1992). Within this form, Carpomys is distinctive in having a bicuspid 

anterocentral subdivided in two equal units (Figure 6.3; see also Figure 35 and 64D in 

Musser and Heaney 1992).  This form produces an anteroconid with two distinct 

laminae: the bicuspid anterocentral lamina and the fused anterolabial and 

anterolingual lamina. In contrast, the anterocentral is more typically a single cuspid in 
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other phloeomyins (hence its name), and it is fused to the second lamina in a more 

typical cordate/triangular-shaped anteroconid such as that found in Batomys and 

Crateromys.  Thomas (1898:406) describes: “In the lower jaw, m1 has an additional 

lamina in front, and both it and m2 have well-marked posterior supplementary cusps, 

while the last-named has in addition an antero-external one.” This expanded form of 

the anterocentral is particularly observable in Minori Cave specimens 16961 and 

16301 (Figure 6.4 f and h).  

4. Laminar posterior cingulum in all upper molars. An elongate posterior cingulum is 

present in the upper molars, forming the ‘additional lamina’ of Carpomys, which is 

absent in Crateromys and the Luzon Batomys. A short, rounded/oblong posterior 

cingulum is present in Batomys salomonseni, a Mindanao Island Batomys, but this 

posterior cingulum appears more reduced and is only in M1-2. This form of the laminar 

posterior cingulum is labelled as a “posteroloph” by Aplin and Helgen (2010: 56) as 

they describe it for the Timor Coryphomys, noting that it is a singular trait shared with 

Carpomys and not found in other phloeomyins. This posteroloph also creates a 

deepened ‘‘posterior fossette’’ between the posterior cingulum and cusp t9 (Aplin and 

Helgen 2010). A substantial posterior cingulum to the rear of M3 is also a further 

specialization not observed in the other phloemyins. 

5. Anterior labial cusp in lower m2 and m3. A well-developed anterior labial cusp 

(‘antero-external’ as labelled in Thomas 1898) is present in the lower m2 and m3 of 

Carpomys but is absent in Crateromys and greatly reduced or entirely absent in 

Batomys.  

6. Width of teeth. Carpomys has relatively wide teeth compared to Crateromys and 

Batomys. In the upper and lower m2 and m3, the width of each tooth exceeds its length. 

This is also observed in the fossils but is not observed in Crateromys. In fossil and 

extant Luzon Batomys, the length often exceeds the width, or is nearly equal. 

 

6.4.4.1 Comparison of Carpomys and Musseromys 

 

The most closely related taxon to Carpomys is Musseromys, sharing a last common ancestor 

about 4 million years ago (Heaney et al. 2009; Lawrence R. Heaney et al. 2014). The fossil and 

extant Carpomys were compared with M. gulantang (holotype FMNH 178405), M. inopinatus 

(holotype FMNH 193838, FMNH 193840 and FMNH 214333), M. anacuao (FMNH 209523), 

and M. beneficus (FMNH 198857). Carpomys and Musseromys have extremely similar cusp 

patterns on upper and lower molars, such that the six traits outlined above also apply to 
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Musseromys. The main difference is that Musseromys is significantly smaller in all dimensions 

compared to Carpomys. A few traits were observed that align the fossil dentition with 

Carpomys, rather than Musseromys (Table 6.4). These are: 

1. Lower m1 morphology. The second lamina (anterolabial + anterolingual) and third 

lamina (protoconid + metaconid) are more transversely oriented in Musseromys versus 

the bicuspidate and more arcuate form in Carpomys and the fossils. In Musseromys, only 

the fourth lamina (hypoconid + ectoconid) is clearly arcuate/chevron-

shaped/chevronate. Furthermore, the anteroconid in the fossils and in two C. phaeurus 

individuals (including the heavily worn holotype BMNH 95.8.2.14) appear to have a 

different form. In these specimens, there appears to be a midline ridge (or narrow 

peninsula) connecting the anterocentral lamina to the second lamina. 

2. Lower m3 morphology. In the lower m3, the anterior and posterior laminae have 

differing shapes in Carpomys and Musseromys. Musseromys species often have two 

transverse lophs in the m3. This contrasts with Carpomys individuals, which usually 

have a chevron-shaped anterior lamina and a more irregular shape (‘W’ shape) in the 

posterior lamina in some individuals (Figure 6.4 and Table 6.4). Another variation in 

the m3 morphology for Carpomys is a chevron-shaped anterior loph with a transverse 

posterior loph. Four fossils align with the Carpomys morphology (Minori-175565, 

62291, 16301 and Musang 76-M-101) with a chevron-shaped anterior lamina and a 

‘W’ occlusal pattern on the posterior lamina.  The slightly worn specimen Minori-

16301 (and see below Musang 76-M-101), shows that in the lower m3, an additional 

mesial cusplet is present between the anterior and posterior lophs. When worn down, 

the cusplet fuses with the posterior lamina and produces this ‘W’ pattern. The sample 

sizes are small for Musseromys, but the individuals available display transverse lophs 

in both lophs of the lower m3. 

3. Upper M3 morphology. A well-developed posterior cingulum (pc) is observed on the 

upper m3 of the extant Carpomys and on a single fossil specimen with an M3 (Minori-

15997). In Musseromys, it appears greatly reduced or absent altogether.  
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6.4.4.2 Carpomys and Musseromys Morphometrics 

 

Measurements of fossil and comparative Carpomys and Musseromys specimens are presented 

in Table 6.5.  Description of the method for taking Carpomys tooth measurements is provided 

in Appendix. The fossils are all substantially larger than the extant Carpomys and Musseromys 

species, greatly exceeding all length and width measurements of the living taxa (Figures 6.5 

and 6.6). The specimens compared here encompass a broad size range of the cloud rat 

spectrum. On the one hand, the extant Musseromys (Philippine tree mouse) are the smallest 

known members of the cloud rats (Heaney et al. 2016). The body mass range for the four 

Musseromys species is 15 – 22 grams only, and their tooth dimensions are only 20-30% of the 

fossil measurements. The body mass range of the two living Carpomys (dwarf cloud rats) are 

123 – 165 grams, and the tooth dimensions for both species are only 30-60% of the fossil 

dimensions. In the case of the fossils, the tooth measurements are closer to the size range of 

the living Crateromys schadenbergi, which has a body mass range 10x (1.35 – 1.5 kilograms) 

that of C. melanurus, the larger of the two Carpomys species. Within the fossil sample, five out 

six maxillary specimens are in a similar size range. One maxillary specimen, Minori-16447, 

appears to be relatively smaller than the other specimens. 

 
On the basis of overall morphology and tooth measurements, the fossils represent a 

considerably larger-bodied version of the living Carpomys.  The two extant Carpomys inhabit 

high-elevation mossy forest from ca. 2100 m in the Central Cordilleras, a separate mountain 

range that is on the opposite side (west) of the Cagayan River. The Callao system, on the other 

hand, is on the foothills of the Sierra Madre range. These two mountain ranges are known to 

be discrete sub-centres of endemism due to their complex geological histories and they 

harbour their own sets of endemic small mammals. Carpomys is not presently known in the 

Sierra Madre range; only Musseromys and Phloeomys are presently known in this mountain 

range. The extant Carpomys spp. are also not known to inhabit lowland forest habitats, which 

have characterized the environs of northern Luzon during the Holocene (see Stevenson et al. 

2010). Holocene diminution in size for the living Carpomys is also unlikely to account for the 

size variation because of the great difference in size and because the fossil species persist into 

the Late Holocene.  



146 
 

 

 

Musang

C. 

melanurus

C. 

phaeurus

M. 

gulantang

M. 

inopinatus

M. 

anacuao

M. 

beneficus
16825 16481 16447 15997 16951 16301 101

n=4 n=5 n=1 n=3 n=1 n=1 max max max max mand mand mand

LOWER M1

arcuate  to chevron-

shaped second 

lamina 

4 5 transverse
transverse = 

3
transverse transverse \ \ \ \ + + +

chevron-shaped 

third lamina 
4 5 transverse

transverse = 

1; arcuate = 

2

arcuate transverse \ \ \ \ + + +

mid-line enamel ridge 

inside the anteroconid 

(between anterocentral 

and second lamina)

0 2 0 0 0 0 \ \ \ \ M + +

LOWER M3

chevron-shaped/ 

arcuate anterior 

lamina

4
2 

(transverse 

=3)

transverse
transverse = 

3
HW transverse \ \ \ \ + + +

W-shaped occlusal 

pattern of posterior 

lamina

2 

(transverse 

= 2)

5 transverse
transverse = 

3
HW transverse \ \ \ \ + + +

UPPER M3

well-developed  & 

elongate posterior 

cingulum

3 5 reduced 0 HW 0 M M M + \ \ \

Carpomys Musseromys Minori

Traits as observed in 
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Table 6.4 Summary of fossil traits compared with Carpomys and Musseromys. Traits listed are the state observed in the fossil specimens from Minori 
and Musang Caves. Counts indicate the number of modern individuals that display traits; otherwise, the opposite or alternative condition is listed. 
Mand = mandible, max= maxilla, M = missing tooth in specimen, HW = heavily worn, + = present. 

 

Figure 6.26 Fossil maxilla referred to Carpomys compared with extant taxa. L-R: Minori-15997, Carpomys melanurus holotype (BMNH 95.82.12), 
Carpomys phaeurus holotype (BMNH 95.82.14) and Musseromys inopinatus (FMNH 193838). All images are occlusal views of the left side.Table 6.19 
Summary of fossil traits compared with Carpomys and Musseromys. Traits listed are the state observed in the fossil specimens from Minori and Musang 
Caves. Counts indicate the number of modern individuals that display traits; otherwise, the opposite or alternative condition is listed. Mand = mandible, 
max= maxilla, M = missing tooth in specimen, HW = heavily worn, + = present. 

 

Figure 6.27 Fossil maxilla referred to Carpomys compared with extant taxa. L-R: Minori-15997, Carpomys melanurus holotype (BMNH 95.82.12), 
Carpomys phaeurus holotype (BMNH 95.82.14) and Musseromys inopinatus (FMNH 193838). All images are occlusal views of the left side.Table 6.20 
Summary of fossil traits compared with Carpomys and Musseromys. Traits listed are the state observed in the fossil specimens from Minori and Musang 
Caves. Counts indicate the number of modern individuals that display traits; otherwise, the opposite or alternative condition is listed. Mand = mandible, 
max= maxilla, M = missing tooth in specimen, HW = heavily worn, + = present. 

 

Figure 6.28 Fossil maxilla referred to Carpomys compared with extant taxa. L-R: Minori-15997, Carpomys melanurus holotype (BMNH 95.82.12), 
Carpomys phaeurus holotype (BMNH 95.82.14) and Musseromys inopinatus (FMNH 193838). All images are occlusal views of the left side.Table 6.21 
Summary of fossil traits compared with Carpomys and Musseromys. Traits listed are the state observed in the fossil specimens from Minori and Musang 
Caves. Counts indicate the number of modern individuals that display traits; otherwise, the opposite or alternative condition is listed. Mand = mandible, 
max= maxilla, M = missing tooth in specimen, HW = heavily worn, + = present. 

 

Figure 6.29 Fossil maxilla referred to Carpomys compared with extant taxa. L-R: Minori-15997, Carpomys melanurus holotype (BMNH 95.82.12), 
Carpomys phaeurus holotype (BMNH 95.82.14) and Musseromys inopinatus (FMNH 193838). All images are occlusal views of the left side. 

 

 

Figure 6.30 Fossil maxilla referred to Carpomys compared with extant taxa. L-R: Minori-15997, Carpomys melanurus holotype (BMNH 95.82.12), 
Carpomys phaeurus holotype (BMNH 95.82.14) and Musseromys inopinatus (FMNH 193838). All images are occlusal views of the left side. 

 

 

Figure 6.31 Fossil maxilla referred to Carpomys compared with extant taxa. L-R: Minori-15997, Carpomys melanurus holotype (BMNH 95.82.12), 



 

147 
 

 

The evidence suggests that the Minori fossils are ascribable to an undescribed novel 

species of Carpomys, representing a vastly larger species. It possibly had broader ecological 

tolerances than the living montane members of this genus, or it may have been particularly 

adapted to lowland forest environments. Of the living cloud rats on Luzon, there is a possible 

analogue in the two giant cloud rat species of Phloeomys, which tolerates a wide range of habitats 

from sea level to upper montane environments.  

 

Figure 6.5 Fossil maxilla referred to Carpomys compared with extant taxa. L-R: Minori-15997, 
Carpomys melanurus holotype (BMNH 95.82.12), Carpomys phaeurus holotype (BMNH 95.82.14) 
and Musseromys inopinatus (FMNH 193838). All images are occlusal views of the left side.  
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Figure 6.6 Bivariate plot of Carpomys dental measurements (in mm): A) maxillary M1-2 crown 
length vs maxillary m1 width of extant Carpomys, Musseromys and four Minori specimens; and 
B) maxillary M1-3 crown length vs maxillary m1 width which includes all known Musseromys 
spp. All measurements in are by the author except for upper M1-3 crown length measurements 
for Musseromys spp. in (B), which are from Heaney et al. (2009, 2014). Reference specimens are 
from the FMNH and the BMNH and measurements for extant taxa include the holotypes for the 
respective species. 
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Table 6.34 Measurements (in mm) of maxillary and mandibular molars of fossil Carpomys from Minori and Musang Caves, extant Carpomys and extant 
Musseromys. L = length, W = width, SD= standard deviation given for samples of 3 and more. *crown length measurement taken at the occlusal surface; 
** crown length measurement taken immediately above the cementum-enamel junction. 

 

    
M1-M3 L 
occlusal* 

M1-M3 L 
cervical** 

M1L M1W M2L M2W M3L M3W 

maxillary                   

Minori-16825    4.97 4.21 4.03 4.01   

Minori-16481    5.12 4.49 4.14 4.29   

Minori-15997  13.81 14.52 5.84 4.72 4.76 4.56 3.99 3.74 

Minori-16447    4.52 3.5 3.82 3.39   

Fossil summary 
(n=4) 

mean   5.11 4.23 4.19 4.06   

SD     0.55 0.53 0.40 0.50     

C. phaeurus mean 5.86 6.18 2.50 2.09 1.81 2.00 1.57 1.73 

(n=5) SD 0.21 0.09 0.16 0.10 0.12 0.06 0.11 0.04 

  range 5.62-6.12 6.09-6.31 6.09-6.31 1.66-1.95 1.66-1.95 1.93-2.08 1.43-1.71 1.69-1.78 

C. melanurus mean 8.18 8.57 3.47 2.85 2.70 2.80 2.19 2.25 

(n=3) SD 0.23 0.23 0.09 0.10 0.08 0.12 0.14 0.05 

  range 7.92-8.28 8.33-8.79 8.33-8.79 2.62-2.77 2.62-2.77 2.68-2.91 2.05-2.33 2.2-2.29 

M. inopinatus 
FMNH 193838 

 3.12 3.28 1.37 1.04 0.87 1.02 0.73 0.82 

M. anacuao 
FMNH 209523 

  3.00 3.09 1.45 1.01 0.87 0.97 0.67 0.69 
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Table 6.5 continued. Measurements (in mm) of maxillary and mandibular molars of fossil Carpomys from Minori and Musang Caves. 

    
M1-M3 L 
occlusal* 

M1-M3 L 
cervical** 

M1L M1W M2L M2W M3L M3W 

mandibular                   

Minori-16951  \ \ \ \ 4.33 4.46 3.49 3.9 

Minori-16301  13.24 14.55 5.97 3.84 4.22 4.09 2.77 3.71 

Musang-101   13.71 14.03 6.36 4.31 4.05 4.17 2.92 3.8 

Fossil summary 
(n=3) 

mean 13.48 14.29 6.17 4.08 4.20 4.24 3.06 3.80 

SD         0.14 0.19 0.38 0.10 

C. phaeurus mean 6.50 2.88 2.04 1.90 2.00 1.39 1.65 1.42 

n=5 SD 0.13 0.05 0.10 0.10 0.12 0.10 0.07 0.13 

  range 6.07-6.58 6.3-6.64 2.8-2.94 1.89-2.13 1.73-1.98 1.83-2.15 1.29-1.51 1.55-1.71 

C. melanurus mean 8.41 9.14 3.77 2.84 2.66 2.73 1.97 2.25 

n=3 SD 0.23 0.06 0.08 0.12 0.08 0.11 0.20 0.08 

  range 8.25-8.67 9.11-9.21 3.69-3.85 2.7-2.94 2.6-2.75 2.62-2.83 1.75-2.15 2.16-2.28 

M. inopinatus 
FMNH 193838 

 3.23 3.31 1.51 0.99 0.95 1 0.8 0.8 

M. anacuao 
FMNH 209523 

  3.25 3.26 1.47 0.97 0.91 1 0.7 0.83 
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6.4.5 Crateromys sp. 

 

In overall appearance, two mandibular specimens (Minori -17018 and -16692) align in 

morphology with the Crateromys group, with its large, high-crowned, and chevron-shaped molar 

lophs (Figure 6.7). As mentioned above, a distinguishing feature of the Crateromys group is the 

large anteroconid of the lower m1 that is composed of a well-developed anterocentral cusp fused 

with anterolabial and anterolingual cusps. In comparison to Carpomys, the specimens have more 

arcuate, bicuspidate lophs akin to Crateromys, whereas Carpomys molar lophs are less arcuate. 

The lower m1 morphology is also very different. The anterocentral is composed of one cusp, such 

as is typical for Crateromys and Batomys, as opposed to bicuspid in Carpomys. In the specimens, 

the anterocentral is narrow and fused with the anterolabial and anterolingual cusps, expressing a 

large triangular anteroconid with a hollow core. The m2 and m3 do not possess an anterolabial 

cusp, as they do in Carpomys. The posterior cingula in the m1 and m2 are narrowly triangular, 

whereas these are much more elongate in Carpomys.   

 

Figure 6.760 Mandibular specimens referred to Crateromys in occlusal view: Minori-17018 (c) and 
Minori-16692 (d). Modern reference is the Luzon native Cr. schadenbergi (b, FMNH 62294), with a 
diagram (a) of the cuspidation pattern of the m1-m3 adapted from Reyes et al. (2017). 
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The general features of the fossils align with Crateromys but it is necessary to compare 

them to the closely related Batomys. The specimens are markedly larger and more hyposodont 

compared to the Callao fossil Batomys (Heaney et al. 2011) and to the extant B. granti and B. 

dentatus. The m1 and m2 occlusal configurations are quite similar between the two genera, and 

the difference is mainly in size and height of the crowns. Only the m3 morphology in Minori-17018 

(only one specimen has an m3) appears to differ with Batomys and align with Crateromys. The m3 

anterior and posterior lophs are more arcuate in Crateromys and the specimen. In the Luzon 

Batomys spp., the anterior loph is not as arcuate and in some extant specimens are transversely 

oriented (Musser et al. 1998). The posterior loph is also more indented and chevron-shaped in 

Crateromys, as opposed to the transverse elongate loph in B. granti and fossil Batomys. This 

appears to be the case because there is sometimes a posterior cingulum on the m3 in Crateromys 

that has not been observed in any of the Batomys material. The trait, however, is variable and is 

absent in Minori-17018 and in several extant Cr. schadenbergi specimens (absent in all 7 BMNH 

specimens; present in 3 out 6 FMNH specimens). 

 

Figure 6.8 Bivariate plot of Crateromys and Batomys dental measurements (in mm) in 
comparison to fossil Crateromys Minori-17018. See Table 6.6 for data sources for modern and 
archaeological comparative material. 
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Table 6.6 Measurements (in mm) of mandibular molars of fossil Crateromys, extant Crateromys, extant Batomys and fossil Batomys from 
Callao Cave. L= length; W= width. Measurement parameters follow Heaney et al. (2011), except for cervical M1-3 crown length, which is 
taken above the cementum-enamel junction. Comparative data are from the ff. sources: C. heaneyi (Gonzales and Kennedy 1996); C. 
australis and C. paulus (Musser et al. 1985); fossil C. paulus (Reyes et al. 2017); fossil Batomys (Heaney et al. 2011). 

Mandibular 

  

M1-M2 L 
occlusal 

M1-M3 L 
occlusal 

M1-M3 L 
cervical 

M1L M1W  M2L M2W M3L M3W 

Minori-17018  9.12 13.05 13.40 5.47 3.78 3.57 3.67 3.49 3.52 

Minori-16692  8.78 \ \ 4.79 3.39 3.89 3.46 \ \ 

C. schadenbergi mean 10.79 15.52 15.88 6.04 3.77 4.70 4.05 4.35 3.91 

(n=13) SD 0.28 0.79 0.68 0.22 0.30 0.24 0.36 0.63 0.56 

  range 10.24-11.3 14.06-17.07 14.35-17.17 
5.58-
6.51 

3.08-
4.13 

4.16-
4.98 

3.31-
4.53 

3.18-
5.29 

2.44-
4.37 

C. heaneyi mean \ 12.90 \ \ 4.10 \ \ \ \ 

(n=2) range \ 
12.57 - 
13.27 

\ \ 
4.03-
4.08 

\ \ \ \ 

C. australis (n=1)   \ 13.20 \ \ 3.20 \ \ \ \ 

C. paulus (n=1)   \ 11.90 \ \ 3.10 \ \ \ \ 

C. paulus fossils mean 8.30 11.90 \ 4.90 3.40 3.60 3.40 3.60 3.20 

(n=96) SD 0.43 0.48 \ 0.33 0.23 0.19 0.23 0.23 0.21 

  range 7.7-9.4 11-12.4 \ 3.7-5.6 3-4.1 3.2-4 2.9-4.2 2.9-4.2 2.9-3.7 

B. granti mean 6.24 8.40 8.46 3.80 2.50 2.50 2.47 2.21 2.20 

(n=6) SD \ \ 0.11 0.20 0.14 0.14 0.14 0.15 0.15 

  range 6.15-6.32 8.06-8.83 8.38-8.53 
3.58-
4.02 

2.33-
2.71 

2.25-
2.65 

2.3-2.64 
2.04-
2.46 

2.06-
2.47 

B. dentatus   \ 9.32 \ 3.72 2.50 2.76 2.73 2.74 2.70 

Callao Batomys-7554 \ 10.48 \ 4.33 2.93 3.12 3.18 2.76 2.71 

Callao Batomys-7573 \ \ \ 4.35 2.74 3.14 3.02 \ \ 

Callao Batomys sp. mean \ \ \ 4.34 2.84 3.13 3.10 2.76 2.71 
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Based on overall morphological features of the dentition, the two Minori Cave mandibular 

specimens are ascribed to the genus Crateromys. The fossils are intermediate in size and 

hypsodonty between Cr. schadenbergi and the two previously described Batomys fossils from 

Callao Cave. The specimens are smaller than the identified large fossil Carpomys and the extant Cr. 

schadenbergi (Table 6.6). The size difference against Cr. schadenbergi is apparent based on tooth 

lengths and size of the mandibular ramus.  On the other hand, they are notably larger than all 

known Luzon Batomys species: the Callao fossil Batomys, B. granti and B. dentatus (Figures 6.7 and 

6.8). Based on these observations, it is possible that a novel fossil species is represented by the 

Minori Cave fossils because of its relatively smaller dimensions and possible different or broader 

habitat tolerance compared to the living Luzon species, Cr. schadenbergi.  The latter is currently 

only known from the Central Cordilleras, occurring from about 2000 to 2740 m elevation in mossy 

or pine forest. These are environments that have not so far been recorded in lowland 

environments of northern Luzon in the Holocene (Stevenson et al. 2010). Comparison with 

measurements in published literature indicates that the Minori Cave specimens overlap in size 

with Cr. heaneyi (Panay Island cloudrunner) and Cr. australis (Dinagat Island cloud rat). These two 

living species are known as single-island endemics of their respective islands and so it is uncertain 

whether the Luzon fossils can be ascribed to either. To ascertain species designation, further 

morphological comparison is needed with the other extant Crateromys species across the oceanic 

Philippines: Cr. australis, Cr. heaneyi and Cr. paulus (Ilin Island cloud rat). At the time of writing, 

access to modern specimens of these rare cloud rat species has not been possible, as they are 

housed in different museums overseas.  

 

6.4.6 Phloeomys pallidus 

 

A fragmented maxillary specimen (Minori-5707) with a complete toothrow is ascribed to 

Phloeomys (Figure 6.9). The specimen comes from Sq. 50 of Chamber D. It was found broken into 

three fragments and refitted. The teeth of the giant cloud rat are highly distinctive and unique, not 

only among the Phloeomyini or cloud rats, but among the Murinae. The specimen has high, 
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lophodont molars consisting of thick, wide transverse plates without cuspidation, a morphology 

consistent with the traits of Phloeomys (Musser and Heaney 1992: 57-58).  

 

 

Phloeomys is the largest of extant Philippine murids and also the largest within the living 

members of the subfamily Murinae (Heaney et al. 2016). They are highly arboreal and are found 

from sea level to about 2300 m elevation. Two living species are known. P. pallidus is widespread 

in north and central Luzon, while P. cumingi is widespread in southern Luzon. They overlap in 

distribution in central Luzon, namely in the southern Sierra Madre and Mingan Mountains (ibid.). 

One modern specimen (NM Osteo 880) of P. pallidus is housed in the National Museum 

Zooarchaeology section, and it has a provenance record from the Peñablanca area. Two individuals 

Figure 6.9 Maxillary specimen (Minori-5707) referred to Phloeomys pallidus in occlusal (a) and 
labial (c) views in comparison with modern specimen BMNH 97.52.20 (b). 
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at the BMNH also have a provenance record in the northeastern tip of Cagayan province. Both 

records indicate that P. pallidus is or was present in the wider vicinity of Callao. P. pallidus is 

generally larger than P. cumingi, but the two overlap in size. The Minori Cave specimen is from a 

relatively small individual, and possibly represents a small P. pallidus (Figure 6.10 and Table 6.7). 

The smaller dimensions are likely affected by the damage on the specimen and refitting. On the 

basis of tooth morphology and known distribution of the extant species, the Minori Cave specimen 

is ascribed to Phloeomys pallidus, the northern Luzon cloud rat. 

 

 

 

 

 

 

Figure 6.10 Bivariate scatterplot of modern Phloeomys maxillary measurements (in mm) 
with the single Minori specimen. 
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Table 6.7 Measurements (in mm) of Minori Phloeomys maxillary molars and extant Phloeomys. 

    M1-M2 L 
occlusal 

M1-M3 L 
occlusal 

M1-M3 L 
cervical 

M1L M1W  M2L M2W M3L M3W 
maxillary   

Minori-5707   11.55 16.35 17.45 6.39 4.67 4.07 4.68 4.12 4.58 

P. pallidus mean 11.96 17.23 18.69 6.78 5.57 4.59 5.85 4.54 5.07 

(n=7) SD 0.42 0.33 0.50 0.38 0.33 0.35 0.17 0.37 0.25 

  range 11.2-12.39 16.8-17.75 17.98-19.22 6.3-7.43 5.07-5.97 4-5.07 5.64-6.17 3.9-5.07 4.66-5.37 

P. cumingi mean 11.87 16.66 18.05 6.54 5.35 4.58 5.56 4.23 4.93 

(n=3) SD 0.28 0.44 0.52 0.32 0.37 0.37 0.30 0.19 0.38 

  range 11.55-12.05 16.15-16.95 17.47-18.48 6.21-6.84 4.95-5.69 4.16-4.85 5.31-5.9 4.01-4.35 4.58-5.33 

P. pallidus 97.5.2.19 12.39 17.75 19.22 7.43 5.97 5.07 6.17 5.07 5.15 

P. pallidus 94.6.20.2 12.18 17.61 19.04 6.85 5.73 4.56 5.96 4.62 5.26 

P. pallidus 97.5.2.20 12.23 17 18.48 6.83 5.37 4.48 5.72 4.29 4.66 

P. pallidus 97.3.1.8 11.97 17.18 18.1 6.5 5.63 4.96 5.86 4.81 4.85 

P. pallidus 97.3.1.7 12.17 17.14 17.98 7.02 5.66 4.64 5.8 4.49 5.37 

P. pallidus 53.8.29.24 11.6 17.16 19.08 6.55 5.07 4.44 5.64 4.57 5.22 

P. pallidus NM Osteo 880 11.2 16.8 18.9 6.3 5.2 4 5.8 3.9 5 

P. cumingi 55.12.26.200 12.05 16.95 17.47 6.84 5.42 4.85 5.48 4.35 4.88 

P. cumingi 55.12.24.141 12 16.88 18.48 6.56 5.69 4.72 5.9 4.32 5.33 

P. cumingi 42.2.15.236 11.55 16.15 18.21 6.21 4.95 4.16 5.31 4.01 4.58 
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6.4.7 Bullimus/Rattus spp. 

 

Two mandibular specimens (Minori-15419 and -15998) represent one or two murid species 

belonging to a group of Philippine rats generally labelled as ‘New Endemics’. A similar specimen 

(Musang I5a-1) is found in Musang Cave and described separately. Based on size and tooth 

morphology, two candidate species are possible: Bullimus luzonicus and Rattus everetti (see 

Figure 6.14 in Musang Cave Section). Both are forest rats that are common in low to medium 

elevations across a variety of habitats. Bullimus luzonicus is a Luzon endemic, whereas R. everetti 

is a Philippine endemic that is widespread across the archipelago. R. everetti is more closely 

related to the endemic members of the genera Limnomys and Tarsomys than to the members of 

the genus Rattus, and future phylogenetic work might place R. everetti in a different genus 

(Heaney et al. 2016a; Jansa et al. 2006). Bullimus luzonicus is generally the larger of the two, but 

they overlap in size. 

The mandibular molar morphology of the two species is extremely similar and variation 

detected is based on size (Figure 6.14 and Table 6.8). As expected, tooth measurements of modern 

B. luzonicus are larger. In the very small sample of comparative metrics, one specimen (Minori-

15419) groups with R. everetti. The other specimen (Minori-15419) slightly exceeds the 

dimensions of B. luzonicus samples, but this is due to the heavy wear on the specimen. The two 

specimens may represent the two species, respectively. Alternatively, both specimens may 

represent variable size range in B. luzonicus as this species has a larger body size range than R. 

everetti. Larger comparative samples may resolve species assignation in the future. 
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Table 6.8 Measurements (in mm) of Minori and Musang mandibular rodent molar specimens, extant Bullimus luzonicus and extant Rattus everetti. 

Source/   
Taxon 

  M1-M2 L 
occlusal 

M1-M3 L 
occlusal 

M1-M3 L 
cervical 

M1L M1W  M2L M2W M3L M3W 
Site   

Minori Bullimus luzonicus 15998 6.9 9.8 9.5 3.99 2.94 2.78 2.96 2.96 2.36 

Minori Bullimus/Rattus sp. 15419 6.37 \ \ 3.57 2.24 2.57 2.5 \ \ 

Musang Bullimus luzonicus I5a-1 6.41 8.79 10.13 3.68 2.88 2.86 3.25 1.95 2.71 

BMNH Bullimus luzonicus 95.8.2.7 6.63 8.81 9.32 3.77 2.65 2.76 2.8 2.03 2.52 

BMNH Bullimus luzonicus 97.5.2.22 6.7 8.79 10.27 3.75 2.83 2.87 2.95 1.92 2.48 

BMNH Rattus everetti 77.10.6.20 6.29 8.32 8.91 3.71 2.05 2.45 2.18 1.75 2.03 

BMNH Rattus everetti 97.5.2.21 6.15 8.54 8.73 3.57 2.21 2.53 2.36 2.37 2.28 

BMNH Rattus everetti 95.8.2.8 6.26 8.51 8.86 3.56 2.24 2.56 2.44 2.18 2.33 

BMNH Rattus everetti 95.8.2.9 6.16 8.27 8.45 3.58 2.25 2.5 2.47 2.26 2.2 
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6.4.8 Order Primata 

Family Cercopithecidae 
Macaca fascicularis 

 

A medium-sized primate identified in the assemblage is ascribed to Macaca fascicularis based on 

tooth and post-cranial morphology and dental measurements. The long-tailed macaque is the 

only known non-human primate on Luzon. They are obligate canopy dwellers found from sea 

level to montane forest. Fooden (1991) previously observed that dorsal pelage colour is one 

primary basis for differentiating Philippine subspecies. M. f. fascicularis is the lighter-coloured 

variant in the oceanic Philippines while M. f. philippinensis is the darker-coloured variant on 

Palawan Island. Tooth measurements (Figure 6.11; Table 6.9) indicate that the Minori Cave 

specimens overlap in measurements with both modern-day Luzon and Palawan macaques. 

Dental morphology or metrics do not appear to separate the two island populations.  

 

 

  

Figure 6.11 Bivariate plot of Macaca fascicularis mandibular second molar measurements (in mm) 
from Minori Cave and museum specimens. Anterior width refers to the anterior cusp of the molar.  
Luzon and Palawan reference specimens are from the FMNH and were measured together with PJ 
Piper. 
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Table 6.35 Maxillary and mandibular molar measurements (in mm) of Minori and Musang macaques compared with modern Macaca fascicularis in Luzon and 
Palawan. Wa = width of anterior cusp, Wp = width of posterior cusp. FMNH comparative measurements were taken with PJ Piper. 

 

Figure 6.61 Molar specimens referred to Paradoxurus from Minori Cave. Minori-8039 is an upper right M1 (a-b, occlusal and distal views). Minori-635 is a lower left 
m1 (c-d, occlusal and lingual views).Table 6.36 Maxillary and mandibular molar measurements (in mm) of Minori and Musang macaques compared with modern 
Macaca fascicularis in Luzon and Palawan. Wa = width of anterior cusp, Wp = width of posterior cusp. FMNH comparative measurements were taken with PJ Piper. 
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Table 6.9 continued. Maxillary and mandibular molar measurements (in mm) of Minori and Musang macaques. 

 

Site Bone ID

Square/ 

Locality Element Side P4L P4W M1L M1Wa M1Wp M2L M2Wa M2Wp M3L M3Wa M3Wp

mandibular

FMNH 62275 Luzon 6.88 5.03 5.22 7.79 5.91 5.77 9.33 5.83 5.6

FMNH 62276 Luzon 6.35 5.14 5.25 7.42 5.99 5.96 9.56 6 5.27

FMNH 62274 Luzon 6.03 4.82 5.12 7.16 5.62 5.36 8.59 5.49 5.03

FMNH 62273 Luzon 6.54 5.01 5.3 7.35 5.75 5.76 8.71 5.77 5.65

FMNH 62901 Palawan 6.76 5.13 4.88 7.32 5.93 5.47 9.19 5.65 5.24

FMNH 62914 Palawan 6.52 5.06 5.07 7.49 5.84 5.59 \ \ \

FMNH 62913 Palawan 6.53 5.13 5.25 7.76 6.42 6.17 8.82 6.22 5.89

FMNH 62902 Palawan 7.01 5.16 5.31 8.15 6.47 6.29 9.93 6.05 5.74

FMNH 62905 Palawan 6.59 5.25 5.57 7.65 6.68 6.35 9.98 6.79 5.95

FMNH 62907 Palawan 6.36 5.22 5.31 7.38 6.12 5.87 8.81 6.07 5.77

FMNH 62908 Palawan 6.43 5.15 5.07 7.49 6.11 5.86 9.28 6.05 5.73

Minori Ch A 4191 30 p4 R 5.3 4.2

Minori Ch A 4253 30 p4 L 5.3 4

Minori Ch A 4127 30 p4 R 5.1 3.8

Minori Ch A 10077 50 p4 5.4 4.3

Minori Ch D 6003 58 m1 R 6.6 5.3 5.6

Minori Ch D 5765 50 m1 R 5.68 5.08 4.61

Minori Ch A 4065 30 m2 R 7.4 6.2 5.5

Minori Ch A 4258 30 m2 L 7.6 6.1 6

Minori Ch A 8503 7 m2 R 7.2 6 5.8

Minori Ch A 2296 37 m2 L 7.2 5.9 5.51

Minori Ch A 8242 7 m2 L 7.1 5.4 5.6

Minori Ch D 11057 27 m2 L 7.6 5.8 5.5

Minori Ch D 6184 58 m2 L 7.4 5.8 5.5

Minori Ch D 12394 57 m2 R 7.32 5.81 5.49
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In contrast to Palawan, where its native presence has been postulated (Piper et al. 2011), 

M. fascicularis has been recently proposed as a non-native species on Luzon and the oceanic 

Philippines on the basis of molecular phylogenetic data (Heaney et al. 2016). Philippine 

populations are said to differ little from Bornean populations, suggesting a possible recent 

introduction from the latter. For a long time prior to this, the macaque was considered by 

zoologists as a species native to the entire Philippine archipelago. In the Minori Cave sequence, 

all macaque remains are only found in the upper ceramic-bearing levels of the site. Their context 

will be discussed further in Chapter 7. 

 

6.4.9 Order Carnivora 
Family Canidae 
Canis lupus familiaris 

 

The dog, an introduced domesticate, is represented by three specimens in Minori Cave. These 

consist of a lower incisor (Minori-9733) and an upper third premolar (Minori-9069) from Sq. 27 

and another lower incisor (Minori-2081) from Sq. 37. There are no known native canids in the 

oceanic Philippines, and only the domestic dog is encountered in the archaeological record. The 

dog remains are associated with the upper levels of the ceramic-bearing cultural layer in the site, 

which also contain other introduced taxa such as the macaque.  

The antiquity of dog introduction in the Philippines is poorly known. Dog remains from 

the Nagsabaran site of the Cagayan Valley represent the oldest dated material, deriving from 

layers dating to ca. 500 cal BC (Amano et al. 2013). Of particular interest was a singular dog burial 

that was interred in the same area where human burials were found. Several bones found in the 

middens had dog-gnawing marks. Some fishing gorges found in the site were also fashioned out 

of dog canines (Piper et al. 2009). In Callao Cave, a left third metacarpal of a dog was found, 

possibly associated with layers dated to 1650 - 1470 cal BC (Mijares 2007).  In Ille Cave in 

Palawan, dog remains are associated with ‘Metal Period’ pottery, but the layers or bones have not 

been directly dated (Ochoa 2009). A domestic dog cranial fragment was also identified in the Late 

Holocene levels of Pasimbahan Cave, also in Palawan. The layer in which it was found may be as 

old as 3704-3573 cal. BP (Ochoa et al. 2014), which is close to the possible age of the Callao Cave 

dog bone. 
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6.4.10 Family Viverridae 
Paradoxurus philippinensis 

 

The palm civet is represented by only two specimens: a right upper M1 (Minori-8039, Chamber 

A, Square. 7) and a left lower m1 (Minori-635, Chamber A, Square 32) (Figure 6.12). Both 

specimens were found in the upper cultural layer in their respective squares, which are ceramic-

bearing layers. Macaque remains were also found in the same levels as the palm civet teeth. 

 

 

 

Extant populations in the Philippines are ascribed as a distinct species Paradoxurus 

philippinensis based on recent genetic and morphological studies of Asian palm civets (Heaney et 

al. 2016a; Patou et al. 2010; Veron et al. 2015). The species is distributed across Borneo, 

Philippines and Mentawai, with Borneo posited as an evolutionary centre of origin for the clade. 

Within this clade, two groups were identified: ‘Philippines’ and ‘Borneo + Philippines’ (Patou et 

al. 2010). Luzon individuals grouped with Borneo and Palawan haplotypes. The lack of genetic 

divergence for Luzon and other oceanic Philippine populations from Borneo suggests recent 

human introduction (Veron et al. 2015). In contrast, Palawan individuals possessed three 

different haplotypes, one of them being more distant from the two and were found in both groups. 

This suggests one instance of natural dispersal and possibly another instance of human-mediated 

introduction in Palawan.  On the basis of these studies, it is now hypothesized that the common 

Figure 6.62 Molar specimens referred to Paradoxurus from Minori Cave. Minori-8039 is an 
upper right M1 (a-b, occlusal and distal views). Minori-635 is a lower left m1 (c-d, occlusal 
and lingual views). 
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palm civet has been naturalized on Luzon, occurring in agricultural and forested areas from sea 

level up to 2400 m (Heaney et al. 2016). They are mostly nocturnal and partly arboreal, feeding 

both on the ground and in trees. 

 

6.5 The Musang Cave Vertebrate Fauna: An Overview 

 

A total of 1163 bone fragments were analysed from Musang Cave, coming primarily from G4 

trench (Table 6.10). All materials are from Barbara Thiel’s 1976-77 excavations. The proportion 

of bone identified at the genus level comprises 27% for Musang Cave out of the total number of 

fragments (TNF) in the site.  

A note has to be made regarding the differences in bone fragment counts in this study 

compared to Thiel’s (1990) large mammal identifications (Table 6.11). Thiel only published 

counts for large mammals and records of other taxa are unavailable. There is a large discrepancy 

in the bone counts due to assemblage loss in the period after Thiel’s analysis. The preserved 

assemblage in the existing storage facility in the NMP only accounts for 22% of the large mammal 

category.  

I reserve some scepticism over Thiel’s counts. During the identification process, I 

observed that some human bones were labelled as pig bones. Certain bones with ‘pig’ labels also 

consisted of undiagnostic specimens such as small rib and shaft fragments, which I would 

personally not ascribe down to genus or species because of insufficient distinguishing features 

that differentiate pig and deer. In my own counts, I place such fragments in the ‘medium 

artiodactyl’ category. In the remaining assemblage, pig bones are outnumbered by deer bones 

with a 1:2.6 ratio. This appears contrary to Thiel’s claim that over 98% of the bone assemblage is 

from wild pig (Thiel 1990:73). Note that in the total NISP for R. marianna in Table 6.11, the 

current counts (N=169) outnumber Thiel’s overall deer bone counts (N=116) even though the 

current assemblage size is only a fraction of Thiel’s assemblage size. Thiel also curiously made no 

mention of bovid remains, which would have stood out in the assemblage based on their size. 

Based on these observations, I would argue that Thiel’s counts for pig bones are overestimated. 

If assemblage loss was random (versus certain taxa deliberately chosen and separated from the 

current assemblage), then it may be arguable that deer is the more abundant taxa than the wild 

pig. 
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Table 6.370 Number of identified specimens (NISP) per excavated square (columns) in Musang Cave.  

 

Taxon G4 
G5 

se1m 
G5 

wcen1m 
F3 

se1m 
F6 

F6 
east 
half 

G7 
nw1m 

Total 
NISP 

% 
NISP 

Rusa marianna 102 18 22 4 17 3 3 169 14.5 

Sus philippensis 51 4 4 2  1 2 64 5.5 

Sus scrofa 2        2 0.2 

Bubalus bubalis 2 2       4 0.3 

Bos/Bubalus  4       4 0.3 

large mammal I/ 
medium artiodactyl 516 50 8 5 13 17 10 619 53.2 

large mammal II/ 
large artiodactyl 1 6       7 0.6 

Carpomys undescr. sp. 1        1 0.1 

Bullimus luzonicus 1        1 0.1 

Phloeomyin 3 1       4 0.3 

Murid 9        9 0.8 

Macaca fascicularis 5        5 0.4 

intermediate mammal 4 6 1      11 0.9 

small mammal 4        4 0.3 

Varanus sp. 6 1 1      8 0.7 

Turtle 3 4       7 0.6 

Snake 7 1   6    14 1.2 

Fish 28 14    11   53 4.6 

Bird 6        6 0.5 

macrovertebrate 92 17 5 2 25 5 14 160 13.8 

microvertebrate 3 2 2   4     11 0.9 

  846 130 43 13 65 37 29 1163 100.0 
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Table 6.11 Comparison of large mammal counts from this study with bone counts from Thiel (1990: Table 
1). Total NISP refers to counts from all trenches including G4. 

Taxon 
G4 Trench Total NISP 

Thiel Ochoa Thiel Ochoa 

Rusa marianna 77 102 116 169 

Sus philippensis 3101 51 3826 64 

Homo sapiens 73 8 78 23 

bovid \ 1 \ 7 

medium artiodactyl \ 516 \ 619 

large artiodactyl \ 1 \ 6 

Total 3251 679 4020 888 

 

 

 

 

 

 

Figure 6.63 Relative taxonomic abundance (%NISP) of vertebrate taxa in Squares G4 and 
G5se1m of Musang Cave. NISP = number of identified specimens. NISP counts per layer are 
in Table 8.25 (Version 2). 
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A total of seven mammal species and two reptile taxa have been identified in the Musang 

Cave assemblage (Table 6.10). Of the mammal taxa, four are native species (Rusa marianna, Sus 

philippensis and two murid species) and three are non-native species (Macaca fascicularis, Sus 

scrofa and Bubalus bubalis). All the native species are shared with Minori Cave. However, for the 

non-native species, only the macaque is shared between Musang and Minori Caves. Large 

mammals dominate the Musang Cave assemblage (Figure 6.13, Table 6.10). In the aceramic 

layers, the native deer significantly outnumber pigs, whereas in the ceramic-bearing layers, the 

abundance of pigs increases (see Sections 6.6.4 and 8.5.2 for further discussion). Two species of 

endemic murids appear in the Musang record, one cloud rat (Carpomys) and the Luzon forest rat 

(Bullimus luzonicus). Regarding the introduced taxa (long-tailed macaque, domestic pig and 

domestic water buffalo), there is uncertainty with the stratigraphic provenance of these species 

and whether they can be clearly assigned to ceramic-bearing layers in the Musang sequence (see 

Sections 6.6.3 and 8.5.2). Turtle, monitor lizard, snake, bird and fish remains appear in small 

numbers in the assemblage.  

 

6.6 Musang Cave Accounts of Species 

 

Species accounts for the mammal taxa of Musang Cave follows in this section. The 

systematic, morphological and relevant ecological data for most of the taxa identified in Musang 

Cave have been outlined in the Minori Cave accounts of species and are not repeated here. Basic 

specimen descriptions are given for murids and macaques, as well as domestic taxa not found in 

Minori: Sus scrofa and Bubalus bubalis.  

 

6.6.1 Order Rodentia 

Family Muridae 
Carpomys undescr. sp. 

One phloeomyin (cloud rat) mandibular specimen was identified in the Musang Cave assemblage, 

76-M-101 (Figure 6.4e). Based on the traits outlined among the Minori murids in Section 6.3, the 

specimen is ascribable to the genus Carpomys. The specimen has a complete toothrow, and tooth 

measurements are in the same range as the Minori Cave Carpomys specimens (Table 6.5). It is 

therefore ascribable to the same Carpomys taxon in the Minori Cave assemblage. 
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6.6.2 Bullimus luzonicus 

 

One small murid mandibular specimen (G4-15a-1) from Musang Cave is ascribed to Bullimus 

luzonicus. As mentioned above, the tooth morphology of B. luzonicus and Rattus everetti is quite 

similar, and the distinction made here is based on size difference (Figure 6.14) between the two 

species. The Musang Cave specimen exceeds tooth dimensions of measured R. everetti and groups 

with B. luzonicus instead (Table 6.8), and on this basis, the specimen is ascribed to the latter. 

 

 

 

 

 

  

Figure 6.64 Bivariate plot of mandibular molar measurements (in mm) of murid fossils 
from Musang and Minori Caves, Bullimus luzonicus and Rattus everetti. 
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6.6.3 Order Primata 

Family Cercopithecidae 
Macaca fascicularis 

 

Among the introduced intermediate-sized mammals described in Minori Cave, only the macaque 

has been identified in Musang Cave. Five post-cranial specimens are attributed to this primate 

recorded from G4 trench (Table 6.12). The specimens were found in three different layers. In the 

case of specimen 69e, it comes from Layer I4, which contains ceramics.  The other four specimens 

are from Layers I4a and I7a, which are described by Thiel as aceramic portions of G4 trench. 

However, as discussed in Chapter 4, the stratigraphic integrity of layers I4a to I7a as aceramic 

levels is questionable and unverifiable, since in these same levels, pottery appears in the 

northwest portion of the trench. There is observed mixing of bones in Layer I4a, as evidenced by 

different states of preservation in bones that are bagged and labelled together as coming from the 

same layers. Several bone fragments appear to be of younger age than others based on their 

appearance. Butchery marks on certain elements are possibly derived from metal implements. 

Archaeological layers in Musang Cave that can be more confidently categorised as non-ceramic 

are from Layers 8 to 12 only. On the basis of these observations, it cannot be said for certain that 

the macaque remains are from an aceramic period.  

 

Table 6.38 Macaque remains identified in Musang Cave. 

 

 

 

 

 

  

Trench Bone ID Layer Element 

G4 69e I4 humerus 

G4 103a I4a clavicle 

G4 103b I4a clavicle 

G4 73a I7a femur 

G4 73b I7a femur 
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6.6.4 Order Cetartiodactyla 
Family Suidae 
Sus scrofa 

 

The suid remains from Musang Cave are predominantly from the extant endemic species, Sus 

philippensis. The exception, however, comes from two molar specimens that can be attributed to 

the introduced domestic, Sus scrofa. In contrast to mainland Asia, S. scrofa is not native to the 

islands of Southeast Asia and is recognized to have been introduced in the Late Holocene. Two 

specimens (69a and 69b) are referred to the domestic pig, consisting of a mandibular m3 and a 

maxillary M2 from Layer I4 of G4 trench. Layer I4 is a pottery-bearing layer that also contains one 

macaque specimen. Measurements of post-canine teeth specimens from Musang and Minori 

Caves are shown in Table 6.13. Species-level differentiation of teeth is based mainly on 

morphometrics. However, for the m3, it is also possible to distinguish S. scrofa based on the cusp 

pattern. Compared to endemic Wallacean pigs, S. scrofa has a more complex talonid in the lower 

m3, possessing an additional distal cusp (heptaconid) and a distinct segregation of the pentaconid 

and the hexaconid (Amano et al. 2013; Cucchi et al. 2008). The complex talonid in S. scrofa 

accounts for the greater length in the m3 compared to the reduced talonid in Wallacean and 

Philippine native pigs (Figure 6.15). 

 

Figure 6.65 Comparison of mandibular m3 specimens of wild and domestic pigs from Musang 
Cave. Cusp pattern diagram is from Cucchi et al. (2008). Musang-69a (left) is ascribed to domestic 
Sus scrofa and Musang-69c (right) is ascribed to S. philippensis. Note that the heptaconid is present 
in Musang 69a but it has been damaged. 
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Apart from the third molar, cusp morphology of other molars and premolars do not 

appear to distinguish the various Southeast Asian pigs. Measurements are instead used and the 

data used here is from a large set of modern comparatives from Ingicco et al. (2017). This study 

successfully demonstrated the biometric differentiation of endemic Philippine pigs from 

domestic S. scrofa through linear metrics of post-canine teeth. Their statistical comparisons (one-

way ANOVA) show that specific dimensions of tooth elements can confidently separate the 

domestic pig from Philippine wild pigs. The Luzon endemic, S. philippensis, easily separates from 

S. scrofa in their analysis. Measurements from the two dental elements of large-sized suids found 

in Musang Cave are among the most reliable metrics that enable differentiation. These are the 

length and mesial width of the upper M2 and length and distal width of the lower M3. In fact, in 

their one-way ANOVA pairwise comparison for differentiating S. scrofa and S. philippensis, all 

other length and width measurements from P4 to M3 produced highly significant p-values 

(Ingicco et al. 2017 Table S2). This indicates that the lengths and widths of the post-canine teeth 

can all be effectively used to separate the two suid species on Luzon, which is not always the case 

for other endemic suids from other Philippine islands (especially in the case of Palawan).  

The oldest identification of the domestic pig in the Philippines and Island SEA comes from 

Nagsabaran site in northern Luzon. A premolar of S. scrofa from the site has a direct date of 3940 

±40 BP or 4500–4200 cal. BP (Piper et al. 2009). The suid remains from Nagsabaran clearly 

separate into two populations, with one being distinctly smaller than the other. The smaller-sized 

individuals were attributed to the wild pig and the larger individuals to the domestic pig. This 

identification was confirmed by the study of Ingicco and colleagues (2017). Similar to the case of 

Nagsabaran site, the combined suid dental measurements of Musang and Minori separate into 

two different populations of small (=wild) and large (=domestic) pigs (Figure 6.16). The two 

referred specimens (69a and 69b) represent larger individuals that group closer to modern and 

Nagsabaran S. scrofa comparatives. The other population consist of elements belonging to smaller 

individuals that group with modern S. philippensis comparatives. Ingicco et al. (2017:781) further 

observed that most of the archaeological S. scrofa they identified from Nagsabaran fall towards 

the lower range of size variation compared to modern S. scrofa. This size diminution has 

apparently been observed in other prehistoric domestic pig populations and appears to be a 

feature of selective breeding in managed pig populations. The Musang Cave specimens also fall in 

this lower size range, similar to the Nagsabaran domestic pigs.  
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Figure 6.66 Bivariate plot of archaeological and modern suid teeth measurements (in mm) showing 
the distinction between wild Sus philippensis from domestic Sus scrofa. Above: maxillary M2; Below: 
mandibular m3. Data for modern Sus species are from Ingicco et al. 2016. Data for Nagsabaran site 
are from Piper et al. (2009) and Amano (2013). Musang specimens 69a and 69b are ascribed to S. 
scrofa. 



174 
 

Table 6.39 Measurements (in mm) of Sus maxillary and mandibular post-canine teeth from Musang and Minori Caves. L = length, W = width, Wa = width of anterior 
cusp, Wp = width of posterior cusp, Wm = width of middle cusp. 

Maxillary Number P4 L P4 W M1 L M1 Wa M1 Wp M2 L M2 Wa M2 Wp M3 L M3 Wa M3 Wm M3 Wp 

Musang 69a      22.62 17.85 17.48     
Musang 9902         24.7 16.14 14.2 8.1 

Minori 40      18.13 11.84 13.64     
Minori 9222   15.7 11.25 11.49 \ 13.05 12.27     
Minori 9627         20.4 14.38 11.81 6.47 

Minori 9133 10.4 12.46           
Minori 10274 10.6 12.21           
Minori 9221      18.81 13.58 14.28     
Minori 9005   13.9 \ \        
Minori 9130         25.5 15.36 13.25 9.26 

Minori 9358   14.3 10.6 11.1        
Minori 9348   13.6 11.2 11.4 16.5 14.1 13.6     

Mandibular                           

Musang 69b         32.7 14.46 14.3 \ 

Musang 69c         25.3 13.11 11.7 9.34 

Musang 7996   17 10.33 11.16        
Minori 2023      16.39 \ 13.39     
Minori 6010         22.9 13.84 11.93 8 

Minori 3323   15.2 8.79 8.94        
Minori 2868 11.9 8.95 13.9 \ \        
Minori 3760 12.5 9.02           
Minori 2138   13.1 8.42 8.93        
Minori 2024         27.2 13.18 12.31 10.29 

Minori 3529         \ \ \ 11.05 

Minori 9625 12 9.62           
Minori 15966     \ \ 8.8               
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6.6.5 Family Bovidae 
Bubalus bubalis 

 

Four phalanx specimens of a large bovid were retrieved from Musang Cave (Figure 6.17). Based 

on the size and robusticity of the specimens, they are ascribable to the domestic water buffalo or 

carabao, Bubalus bubalis (Table 6.14). The Musang Cave bovid specimens exceed the size of 

modern comparatives of the endemic tamaraw of Mindoro Island (B. mindorensis) and of 

domestic cows (Bos taurus). Instead, the Musang material are comparable in size to modern B. 

bubalis and to archaeological B. bubalis specimens from Nagsabaran site. This site provided the 

first evidence for the Late Neolithic introduction of this species to the Philippines, at ca. 500 cal 

BC (Amano et al. 2013). Domestic carabao remains were also reported by Mudar (1997) in the 

pottery-bearing levels of Pintu Rock shelter. 

Figure 6.167 Musang bovid specimens (R side of each paired photo) ascribed to Bubalus 
bubalis compared with modern B. bubalis (NMP-1048, L side of each paired photo): 76-M-
G4a abaxial fragment of proximal phalanx (that is longitudinally split) in abaxial (a) and 
plantar (b) views; 76-M-93 distal fragment of proximal phalanx in dorsal (c) and abaxial 
(d) views; 76-M-94 complete intermediate phalanx in dorsal (e) and plantar (f) views. 
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Table 6.140 Measurements (in mm) of phalanges of Musang Cave bovids, modern domestic bovids and the native Bubalus mindorensis. GL = greatest length, GL abaxial, 

greatest length of abaxial side, Bp = proximal breadth, Dp = proximal depth, Bd = distal breadth, Dd= distal depth. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Specimen No. Taxon Locality/Source Description GL 
GL 

abaxial 
Bp Dp Bd Dd 

Proximal Phalanx                 

76-M-93 Bubalus bubalis Musang distal phalanx \   \ \ 33.89 24.56 

76-M-G4a Bubalus bubalis Musang 
longitudinally 
split, abaxial side   62.5   38.04     

II-1996-Z13-
2009-414 

Bubalus bubalis Nagsabaran  70.4  32  33  

 (archaeological)  70.6  31.9  34.3  
        70.4   32   33.7   

NMP-1048 Bubalus bubalis modern   55.6 34.18 32.73 31.13 23.5 

     55.47 33.95 33.75 32.27 24.93 

          59.73 33 35.4 29.26 23.02 

MCZ-29773 Bubalus mindorensis modern  54.1   24.2 25.5 22.7 17.3 

        51.5   25.8 24.3 24.7 16.8 

MCZ-29772 Bubalus mindorensis modern  50.3   27.4 25.3 25.9 18 

        53.6   24.9 26.2 24.3 17.1 
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Table 6.14 continued. Measurements (in mm) of phalanges of Musang Cave bovids, modern domestic bovids and the native Bubalus mindorensis.   

Number Taxon Locality/Source Description GL 
GL 

abaxial 
Bp Dp Bd Dd 

Intermediate Phalanx                 

76-M-94 Bubalus bubalis Musang complete 49.5   37.82 40.85 28.68 31.83 

NMP-1048 Bubalus bubalis modern  46.11  32.44 33.83 26.9 28.61 

    41.65  35.89 33.98 29.3 30.6 

        44.45   32.74 33.62 26.53 28.63 

ASP Bubalus bubalis modern  47.86  32.39  27.03  

    47.72  32.44  27.24  
        47.84   32.41   27.29   

ASP Bos taurus modern   37.89   24.08   19.94   

    37.74  24.06  19.95  
        37.73   24.15   19.96   

MCZ-29773 Bubalus mindorensis modern  40.8   24.5 26.2 19.4 21.5 

        40.4   24.7 26.5 20.5 22.3 

MCZ-29772 Bubalus mindorensis modern  40.7   25.7 27 20.4 22.8 

        42   25.1 28 20.7 21.2 

FMNH-18817 Bubalus mindorensis modern   41.2   27.7 28 22.6 23.7 

        42.8   26.5 27.1 20.9 22.3 



178 
 

 

6.7 Conclusion 

 

This chapter has presented the taxonomic identifications for Minori and Musang Caves of Luzon 

Island. The morphological analyses provide evidence for new fossil records of previously 

unknown cloud rat taxa in northeastern Luzon. Identifications of introduced species are also 

documented. These include the domestic dog, pig, and water buffalo, as well as naturalised 

‘ethnospecies’ such as the macaque and palm civet. Differentiation of the domestic pig from the 

Philippine warty pig was accomplished with the application of the method proposed by Ingicco 

et al. (2017). Both sets of identifications of endemic and introduced taxa have implications for 

understanding the modern mammalian fauna of Luzon. The species accounts lay the empirical 

foundations for examining questions on biodiversity, biogeography and faunal change that will 

be tackled in the next chapter. 

 

 

 

 

 

 



 

179 
 

 

Chapter 7 Island Biodiversity and Palaeoecological Changes 
in the Late Quaternary Record of the Philippines 

 

 

7.1 Introduction  

 

In this chapter, I investigate the timing and nature of faunal changes in the Philippines from 

the Late Pleistocene to the Holocene. This relates to the first research question of the thesis. 

Firstly, it must be demonstrated that changes did occur. The three assemblages described in 

Chapters 5 and 6 provide an opportunity to identify such changes, examine their nature, and 

gauge possible human impacts on the faunas of Luzon and Palawan. In this chapter, I expand 

the discussion on assemblage structure by presenting measures of taxonomic diversity and 

comparisons of the two island faunas. Combining these with data from other published 

sources, I provide a first attempt to construct Late Quaternary biostratigraphic sequences for 

the Philippines. These sequences facilitate the investigation of faunal changes through time. 

The changes occur against a backdrop of climatic and environmental fluctuations during the 

Pleistocene-Holocene transition, as well as possible anthropogenic impacts across the 

Holocene. As paralleled in many other cases across the globe, the Holocene disappearance of 

taxa occurs without replacement, which in turn implicates anthropogenic impacts. On this 

matter, I explore the hypothesis of a human extinction filter (Balmford 1996)  in the Holocene 

as it applies to the Philippine fauna.  

 

7.2 Species Diversity: An Overview 

 

One of the most basic question in studies of biological diversity involves the question of ‘How 

many species?’. Whereas taxonomic inventories of modern faunas may be well-known in many 

places, particularly in the case of mammals, many regions still require studies. Such is the case 

for many tropical islands of the Indo-Pacific region. This is particularly important for the 

tropics, which are known to harbour the most diverse and speciose habitats in the globe 

(Lomolino et al. 2016; Myers 1988). 

A common characterization of oceanic island faunas is to describe them as 

depauperate, unbalanced and disharmonic because of the absence or low diversity of certain 
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taxonomic groups such as the Carnivora, Primates and Cetartiodactyla (Flannery 1995; 

Lomolino et al. 2016; Morwood 2014; van der Geer et al. 2010). This assumption is partly 

rooted in received wisdom drawn from MacArthur and Wilson’s (1967) influential equilibrium 

theory of island biogeography, which describes the one-way, downstream flow of colonists 

from species-rich continents.  However, islands do vary greatly across the globe due to their 

dynamic evolutionary and geological histories, and unbalanced island faunas do not 

necessarily mean that these islands are species poor. Recent neobiological studies in tropical 

oceanic islands in Southeast Asia show unsuspected high levels of diversity and endemism 

than previously known. Such is the case for the large Philippine islands of Luzon and Mindanao 

and the Indonesian island of Sulawesi (Achmadi et al. 2013; Heaney et al. 2016; Rowe et al. 

2016). As described in Chapter 2, the Philippines (as a country) is cited as possibly having the 

highest rate of endemism of a terrestrial region per square area in the world (Catibog-Sinha 

and Heaney 2006; Heaney et al. 2016a). Nearly two decades of systematic surveys on several 

mountain ranges across Luzon have doubled the number of Luzon mammal species known to 

science. Compared with 28 species known during the period of 1880-1999, another 28 species 

have been discovered during the period of 2000-2014 (Heaney et al. 2016b).  Shown in this 

light, palaeozoological analysis of the fossil vertebrates of the archipelago is necessary in terms 

of understanding the history and modern assembly of this remarkable fauna. Apart from the 

discovery of tiger remains on Palawan Island (Ochoa 2009; Piper et al. 2008), the 

archaeofaunal record of the archipelago continues to produce surprises, as has been shown in 

Chapter 6 for the Luzon fauna. 

 

7.2.1 Taxonomic Structure of Faunal Assemblages 

 

Measures of taxonomic diversity for faunal assemblages in Luzon and Palawan are 

presented in Table 7.1 and provide an overview of the taxonomic structure of archaeofaunas. 

Description of measures are in Section 3.5. Counts are grouped into two ways: (A) for non-

volant mammals only and B) for all terrestrial vertebrates (mammals, birds and reptiles).  Both 

sets of measures exclude domesticated species. Comparative data for Palawan are derived 

from Ille, Pasimbahan and Tarung-tarung Cave sites (Ochoa 2009; Ochoa et al. 2014; Reis and 

Garong 2001, respectively). For Luzon, comparative data come from Callao Cave, Pintu 

Rockshelter and Nagsabaran site (Piper and Mijares 2007, Mudar 1997, Amano et al. 2013, 

respectively). The sites are also differentiated in broad temporal groups, as Late Pleistocene 

(LP) and Holocene (H). The taxonomic measures used are NTAXA for species richness, the 

Shannon-Weiner index (H) for taxonomic heterogeneity, Shannon index of evenness (e), and 
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Simpson’s D and its reciprocal (1/D) for dominance. Further use of these taxonomic indices as 

it pertains to subsistence strategies is discussed in Chapter 8. Note though that due to the 

relative nature of these indices, values are comparable only among each other. There are no 

given thresholds to assess the strength of the difference between values and the indices are 

meaningful only relative to the sites included in the analysis. In addition, because the data is 

based on an ordinal scale value (NISP), the indices must also be considered as ordinal scale 

values (Lyman 2008). Keeping in mind these limitations, the indices remain instructive for 

providing a comparative and general overview of taxonomic structure among several sites that 

contain a variety of taxa. 

Based on NTAXA for Palawan Island, the two Late Pleistocene assemblages (Pilanduk 

and LP levels of Ille Cave) are less speciose than the Holocene assemblages, particularly when 

all terrestrial vertebrate taxa are considered (Table 7.1 Palawan B). One possible reason for 

decreased diversity has to do with forest contraction during the MIS-2 stage that is recorded 

during this period on Palawan Island (Bird et al. 2007; Wurster et al. 2010; and see Section 

7.4.1). Even though the LP faunas are not very speciose, they do contribute to the Late 

Quaternary record of Palawan biodiversity through the documentation of four extinct large 

mammals (tiger, rusine deer, hog deer and possible native dhole) that are only known from 

the fossil record. 

 In the Holocene, Ille and Tarung-tarung Caves have the highest number of species 

(NTAXA), and this has partly to do with the combination of natural and anthropogenic 

accumulation agents. The natural death assemblages of microvertebrate taxa in both sites 

increase the documented diversity, compared to the other sites which are predominantly 

human-accumulated.  The Shannon indices (H) also show, as expected, that the llle and Tarung-

tarung cave assemblages are the most diverse, particularly when all vertebrates are taken into 

account. The evenness index (e) shows that all the Palawan assemblages are uneven, with one 

taxon dominating each assemblage. Simpson’s index and its reciprocal (1/D) show that the 

most uneven assemblages are the Late Pleistocene assemblages of Pilanduk Cave and ‘Ille LP’, 

as well as Holocene Pasimbahan Cave. In the case of Pilanduk and ‘Ille LP’, deer dominates the 

assemblages. In the case of Holocene Ille and Pasimbahan Cave, wild pig dominates. In the case 

of Tarung-tarung Cave, the macaque is the dominant taxon. These data have implications for 

temporal trends and subsistence practices, which are further considered and illustrated in 

Chapter 8.  
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Table 7.1 Measures of taxonomic diversity and composition for Palawan and Luzon archaeofaunas. 
NTAXA = number of taxa, NISP = number of identified specimens, H = Shannon-Weiner index, D = 
Simpson’s index, 1/D = reciprocal of Simpson’s index, e = Shannon index of evenness. Measures have 
been calculated in two sets for both islands using non-volant mammals only (A) and all terrestrial 
vertebrates (B). Temporal periods: LP = Late Pleistocene; Hol = Holocene. See Appendix B for NISP 
counts per site. 

Palawan (A) NTAXA NISP H D 1/D e 

Pilanduk LP 7 446 1.15 0.40 2.53 0.45 

Ille LP 8 326 0.54 0.78 1.28 0.21 

Ille H 19 916 1.38 0.42 2.41 0.21 

Pasimbahan H 9 720 1.00 0.50 2.01 0.30 

Tarung-tarung H 10 138 0.87 0.65 1.53 0.24 

Palawan (B) NTAXA NISP H D 1/D e 

Pilanduk LP 10 457 1.26 0.38 2.65 0.35 

Ille LP 9 333 0.63 0.75 1.33 0.21 

Ille H 29 1271 1.95 0.24 4.08 0.24 

Pasimbahan H 14 835 1.33 0.39 2.59 0.27 

Tarung-tarung H 32 218 2.10 0.28 3.55 0.26 

       

Luzon (A) NTAXA NISP H D 1/D e 

Callao LP 5 151 0.37 0.85 1.18 0.29 

Minori H 8 583 1.00 0.46 2.18 0.34 

Musang H 5 240 0.73 0.57 1.76 0.41 

Nagsabaran H 2 932 0.63 0.57 1.77 0.94 

Pintu H 3 287 0.78 0.48 2.07 0.73 

Luzon (B) NTAXA NISP H D 1/D e 

Callao LP 5 151 0.37 0.85 1.18 0.29 

Minori H 8 583 1.00 0.46 2.18 0.34 

Musang H 6 248 0.84 0.53 1.88 0.39 

Nagsabaran H 6 937 0.66 0.56 1.79 0.32 

Pintu H 4 292 0.86 0.47 2.14 0.59 

 

 

Among the Luzon assemblages, Minori Cave has the most diverse fauna based on 

NTAXA and H. The Late Pleistocene assemblage of Callao is the most uneven based on the 

evenness index (e) and 1/D. In the Holocene, species richness appears to increase compared 

to the Late Pleistocene due to the presence of macaque and/or palm civet in these assemblages. 

It has been observed that in some depauperate oceanic islands, translocated species have 

tended to increase diversity in faunal communities, while palaeohistoric extinctions have had 

the impact of decreased diversity in modern faunas, further highlighting that such islands are 

species-poor (van der Geer et al. 2017; see Section 7.4.2 and 7.4.3). However, as a 
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megadiversity island, these do not aptly fit the case for Luzon. The newly described extinct 

murid taxa further add to the documented high diversity and endemism on the island. 

 

 

 

Figure 7.1 Linear model between species richness (NTAXA) and sample size (NISP) in 12 faunal assemblages 
from Luzon and Palawan (see Table 7.1. r = Pearson correlation coefficient. Data for sites (1, 3-5) are from 
Reis and Garong (2001), (2) Ille Cave from Ochoa (2009), (7) Pintu Rockshelter from Mudar (1997), (8) 
Pasimbahan Cave from Ochoa et al. (2014), (10) Callao Cave from Mijares and Piper (2007), and (11) 
Nagsabaran from Amano et al. (2013). Symbology denotes two sets of categories: by temporal period and by 
analyst that conducted the study. Filled shapes are Holocene sites, while unfilled shapes are Late Pleistocene 
sites. Sites denoted by circles were analysed by this author, triangles by Reis and Garong (2001) and squares 
are by other analysts.  
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7.2.2 Sample Size Effects 

 

Is sample size driving measures of taxonomic diversity? A linear regression analysis was 

conducted to investigate sample size effects in twelve published faunal assemblages in Luzon 

and Palawan (Figure 7.1). Regression analysis allows detection of possible sample size effects 

on taxonomic diversity among independent samples of different size (Lyman 2008). NTAXA 

was computed in two ways: 1) for all terrestrial vertebrates, and 2) for non-volant mammals 

(NVM) only. In this estimation of taxonomic abundance, the target analytical unit is the 

identified assemblage, which forms a subset of the original death assemblage or 

thanatocoenose (see Lyman 2008). Faunal assemblages for both islands were all aggregated in 

one analysis due to the small number of published data available.  Symbology in Figure 7.1 

denotes two sets of categories: by temporal period and by analyst that conducted the study. 

Filled shapes are Holocene sites, while unfilled shapes are Pleistocene sites. The exception is 

Ille which has a Holocene sequence and a Terminal Pleistocene layer. Among twelve sites 

identified and pooled, five sites were analysed by this author, which are denoted by circles in 

the graph. Four sites were analysed by Reis and Garong (2001) (denoted by triangles), and 

three other sites were analysed by three different authors (denoted by squares). The spread 

of the points in the graph shows that inter-observer variation among analysts appears to have 

relatively minimal effect on sample size and richness.  

The well-known species-area relationship predicts that richness increases with larger 

size (Arrhenius 1921; Lomolino 2000; Lomolino et al. 2016; McGuinness 1984; Rosenzweig 

1995). On a log-log scale, the species-area relationship predicts a positive linear correlation. 

The linear regression analyses for all terrestrial vertebrates and for non-volant mammals both 

yielded non-significant correlations (Figure 7.1). This indicates that sample size is not 

significantly driving species richness, and that there are factors other than sample size 

influencing richness across the sites. Three sites (Nagsabaran, Pilanduk and Callao) show low 

diversity (NTAXA) despite relatively high sample size (NISP). Note that in this small sample, 

two sites are from the Late Pleistocene (Callao and Pilanduk). Linear regressions for Holocene 

sites only also yielded non-significant correlations (ten sites only, log-transformed, best-fit line 

for NVM: r = 0.441, p = 0.202). Linear regression analyses for when Ille site is split into 

Holocene and Pleistocene levels also produced non-significant correlations (13 assemblages, 

log-transformed, best-fit line for NVM: r = 0.322, p = 0.282). Caution is employed nonetheless, 

as the small number of available sample sites used here limits the inferences that can be drawn 

from the analyses. 
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A rarefaction analysis for non-volant mammals was also conducted for each island 

fauna (Figure 7.2). Rarefaction is a well-known tool in ecology and it allows two or more 

samples of different sizes to be compared as if they were the same size by reducing (‘rarefy’) 

the larger samples to a common small size (Lyman 2008). Calculations and plots were made 

using PAST and verified with Holland’s (2003) Analytic Rarefaction program. In the case of the 

Palawan faunal assemblages, Pilanduk Cave is the outlier, falling well below expected values 

for NTAXA in relation to NISP. In the three Palawan sites of Pilanduk, Pasimbahan and Ille 

Caves, recovery methods were fairly similar in resolution, and yet many mammal taxa are 

absent from Pilanduk Cave. In contrast, Ille Cave is particularly speciose relative to the other 

sites. All of the Pilanduk Cave taxa are also found in Ille Cave. Both sites were analysed by this 

author, and so the variation in NTAXA and species identification is not just an artefact of inter-

observer variation.  In the case of Luzon, the largest outlier is the Late Holocene site of 

Nagsabaran, which has the highest sample size (NISP) but the lowest number of taxa.   

There are also additional caveats to the sample size trends. As predominantly human-

accumulated, a comparison of taxa present or absent in the different island assemblages is 

instructive not only about human subsistence patterns but also about community structure of 

the native fauna. In comparing the two islands, the archaeofaunas show that the Palawan 

assemblages are more diverse than the Luzon assemblages. A big contributor to the species 

diversity observed on Palawan is the intermediate-sized mammals, and many of these species 

do not have native congeners/conspecifics in Luzon. Outside of the Rodentia, at least ten 

mammalian genera are not present in Luzon, and six of these are carnivore taxa. Hence, these 

taxa are absent not because of the sample sizes, but because they are not native to and do not 

exist on Luzon. Instead, much of the renowned species diversity on Luzon lies in the Muridae 

(See Section 7.3.2). Because of their small size and ecology (see Heaney et al. 2016a), many 

endemic members of the murid clade do not as commonly get incorporated into human-

accumulated cave assemblages and have not been recovered in these cave contexts (see 

Andrews 1990 for small mammal accumulations). In the Late Pleistocene levels of Callao, two 

murid genera are described by Heaney et al. (2011). More murid taxa are being described at 

present from additional excavated material that will add to the species richness in Callao 

(Heaney 2017 pers. comm.). Interestingly, the murid taxa encountered in the Holocene 

assemblages of Musang and Minori Caves belong to the cloud rat clade. Based on their large 

size and modern-day records (see Heaney et al. 2016a), giant cloud rats are typically preyed 

upon by humans. Other micromammal taxa are less represented in these human-accumulated 

assemblages. 
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Figure 7.2 Rarefaction analysis for Palawan and Luzon island faunas using PAST and verified 
with Holland’s (2003) Analytical Rarefaction program. Solid lines represent expected values 
and dashed lines show 95% confidence intervals. 
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7.3 Late Quaternary Faunal Sequences 

 

Palaeoecological and palaeozoological records are necessary for understanding the native 

composition, ecological structure and evolution of present-day faunal communities. Combined 

with the data presented in this thesis, fossil discoveries and radiometric dates published in the 

last decade now allow for an initial biostratigraphy to be constructed for the mammal faunas 

of two faunal regions of the Philippines. These faunal sequences provide a baseline to examine 

patterns of faunal assembly, diversity and extinction in the archipelago during the Late 

Quaternary. 

 

7.3.1 Palawan Faunal Sequence 

 

The faunal sequence for the mammals of Palawan Island presented here draws from records 

of four known vertebrate assemblages (Figure 7.3). Pilanduk and Tarung-tarung Caves 

represent the southern portion of the island, while Ille and Pasimbahan Caves cover the 

northern Palawan record. Pilanduk Cave provides a record for MIS-2, and Ille Cave provides a 

record at ca. 14,000 BP (Terminal Pleistocene). As shown in Figure 7.3, the Holocene records 

of Ille and Pasimbahan can be differentiated into Early, Mid and Late Holocene, and these are 

partitioned accordingly. In contrast, stratigraphic data for the Holocene sequence of Tarung-

tarung Cave are not available and hence, it is unpartitioned. The oldest vertebrate fossils are 

those of Homo sapiens remains from Tabon Cave, which range in age from 50,000–16,000 years 

ago. Tabon Cave was not included in this synthesis, however, because none of the other 

vertebrates were described. The presence of Homo sapiens is deduced for Pilanduk and Ille 

Caves, based on the presence of stone tools and other artefacts, taphonomic evidence (see 

Chapter 8), and the data from Tabon Cave (see Chapter 4). No other species of human is known 

on Palawan Island during this period. As shown in the Palawan fossil faunal sequence, most of 

the extant non-volant mammals of the island have been identified in the fossil record. The 

exceptions include Tupaia palawanensis, Haeromys pusillus and three other montane taxa 

(Sundasciurus rabori, Palawanomys furvus and Palawanosorex muscorum). The absence of 

montane taxa is explicable since all fossil assemblages are from lowland localities.  

The continental affinities of Palawan’s extant fauna have long been recognized by 

biologists (Dickerson 1928; Esselstyn et al. 2004; Heaney 1986). Palawan is considered as a 

part of the Sunda Shelf both in terms of its geology and biogeography, as represented in 

Huxley’s modification of Wallace’s Line (Huxley 1868). Palawan shows relatively high 
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endemism and high diversity for an island fauna. This is related to its proximity to Borneo, 

which is the main continental source of its fauna. A maximal interpretation of bathymetric data 

indicates that a narrow Middle Pleistocene land-bridge connection may have possibly 

connected Borneo and Palawan, but an LGM connection was likely not present (Robles et al. 

2015). During the LGM, the nearest distance between the two landmasses is estimated at 

around 4.5km. This palaeogeographic record coincides with the degree of species endemism 

observed on Palawan, wherein it shares many genera with Borneo but there has been sufficient 

divergence that Palawan taxa are attributed as separate species. In the fossil records collated 

here, nearly all genera identified are shared with Borneo and the Sunda Shelf. On the other 

hand, more recent phylogenetic studies have drawn attention to certain oceanic affinities of 

Palawan’s fauna, particularly based on reptile and amphibian taxa (Brown and Guttman 

2002b; Evans et al. 2003). Most Palawan taxa are indeed shared with Borneo, but there are a 

few lineages that are exclusively shared with the oceanic Philippines and Sulawesi (Esselstyn 

et al. 2010). Palawan endemism is partially attributed to Pleistocene sea-level high-stands 

separating the island from Borneo during interglacial periods (Heaney 1985, 1986). It has also 

been observed that for certain Palawan vertebrate lineages, the divergence pre-dates the 

Pleistocene and that there was also invasion of taxa from the oceanic Philippines (Oliveros and 

Moyle 2010; den Tex et al. 2010). These imply that such divergences occurred much further 

back in geological time and that these occurrences lend some oceanic affinities to the Palawan 

herpetofauna (Esselstyn et al. 2010). Nonetheless, the non-volant mammal components 

reinforce Palawan’s Sundaic affinities (Esselstyn et al. 2004). The degree of endemism on 

Palawan can be linked to the question of a land bridge connection to Borneo and how long 

since Palawan has been isolated from Borneo (Piper et al 2011), which palaeogeographic 

reconstructions suggest is the Middle Pleistocene (Robles et al. 2015). Given these mix of 

attributes, Esselstyn et al. (2010:2054) have previously suggested to view Palawan as a filter 

zone which has played multiple biogeographic roles, including a young and old extension of 

the Sunda Shelf. 

As described in Chapter 5, Palawan’s terrestrial vertebrate fossil record only reaches 

as far back as ca. 50,000 years ago. In terms of its geological history (see Chapter 2), this is a 

period when Palawan was already part of the Sunda Shelf and is considered a Sundaic 

peninsula. The extinct fossil species described here (Panthera tigris, Rusa sp., Axis 

calamianensis) all belong to genera that are shared with Borneo, Java and the Asian mainland. 

These records lend further support to Palawan’s Sundaic affinities. In the case of the tiger, its 

presence runs parallel with fossil and historical records showing that it is/was present on all 

other large Sundaic Islands (Borneo, Java, Bali and Sumatra). In Borneo, it is only represented 
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by Holocene fossil records from two sites (Harrison 1998; Piper et al. 2007). To date, available 

fossil records show that the tiger did not cross east of Huxley’s or Wallace’s Lines. Molecular 

phylogenetic data suggest that the basal South China tiger is the likely source population of 

living tigers, including those of the Sundaic islands (i.e., Java, Bali and Sumatra), and that 

divergence estimates indicate that this was a Late Pleistocene occurrence, as recent as 

108,000–72,000 years ago (Luo et al. 2004; Xue et al. 2015). One implication of this is that, 

although there are Early and Middle Pleistocene records of Panthera on Java, the current 

genetic evidence suggests that they are not the direct ancestors of the modern tigers of Java. 

For Borneo and Palawan, although there are no phylogenetic data available, it is likely that the 

tiger populations that were present in these two islands derive from the same dispersal event 

across the Sunda region.   

In the case of artiodactyl taxa, the lineages on Palawan are old ones representing pre-

Pleistocene colonization. Phylogenetic reconstruction of suid species of the Philippines 

indicates that they are all ancient taxa that diverged from other SEA pigs during the Pliocene 

(Lucchini et al. 2005). In this reconstruction, the Palawan bearded pig (Sus ahoenobarbus) 

groups with other Philippine pigs. Furthermore, the basal position of the Palawan pig in the 

phylogenetic model in relation to other Philippine pigs implies that the colonization occurred 

via Palawan. In the case of rusine deer, divergence estimates are not yet available. Available 

molecular data support a Philippine Rusa clade that is separate from R. unicolor (mainland SEA 

and Borneo) and R. timorensis (Java and Bali) clade (Heckeberg et al. 2016). In the case of Axis 

(=Hylelaphus) calamianensis, molecular phylogenetic data are, to date, unavailable and its 

relationship to other SEA deer remains unclear. 

The fossil evidence across the island clearly shows that deer are part of the natural 

ecological community of Palawan Island. Additional records for deer come from Tabon and 

Guri Caves, as observed by Fox (1970) and Heng (1998), respectively. However, it is not known 

what taxon these deer belong to as no further studies were made on the bones from these two 

sites. The work from Ille and Pilanduk Caves has previously demonstrated that two species are 

represented (Rusa sp. and Axis calamianensis). Based on their contemporaneous occurrence in 

several archaeological layers in both sites, the range of the two deer species possibly 

overlapped. From what is currently known of the modern and Late Pleistocene fossil records, 

all other faunal regions in the Philippines support only one endemic deer per region. Palawan 

is thus unique in harbouring two deer species in the Late Quaternary. Each faunal region also 

possesses one endemic pig each. In contrast, Luzon and Cebu Islands appear to harbour their 

own extinct buffalo (Bubalus spp.), similar to the extant tamaraw (Bubalus mindorensis) of 

Mindoro. To date, native bovids have not been found in the Palawan fossil record. 
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Figure 7.3 Late Quaternary faunal sequence for non-volant mammals of Palawan Island. Data are derived from four cave assemblages. Shaded areas denote 
presence of taxa. Native taxa are listed before non-native species (*). M-LH = Middle to Late Holocene, EH = Early Holocene, TP = Terminal Pleistocene, LGM 
= Last Glacial Maximum, N = northern Palawan, S = southern Palawan, † = extinct on Palawan Island, †? = possibly extinct but taxonomic designation is 
uncertain between Canis and Cuon. Data for Tarung-tarung Cave are from Reis and Garong (2001) but data for further subdivision of Holocene levels in this 
site are not available. The presence of Homo sapiens in the Late Pleistocene is inferred from the Tabon Cave record. 



 

191 
 

 

As its name denotes, the Calamian hog deer is presently considered endemic to the Calamianes, 

a group of small islands north of Palawan. The fossil data drawn from two sites clearly show 

that it was also once part of the main Palawan Island. For the hog deer, this is unsurprising, 

given that during sea-level low-stands, the smaller islands surrounding the main island all 

joined to form the Pleistocene aggregate called ‘Greater Palawan’. Nonetheless, this finding has 

significance for the conservation of this species, which is listed as Endangered in the IUCN 

database. Its known habitat is currently restricted to its modern range in the small northerly 

islands of Calamian, Calauit and Busuanga. It is continuously threatened by habitat loss due to 

human land conversion and hunting pressure. Based on the previous fossil evidence presented 

from Ille Cave regarding the presence of Axis calamianensis (Piper et al. 2011), reintroduction 

to the main island of Palawan is now considered by assessors to be a possible means to reduce 

extinction risk of the Calamian hog deer (Widmann and Lastica 2015). 

 

7.3.2 Luzon Faunal Sequence 

 

The known fossil records of Luzon provide a faunal sequence that extends from the Middle 

Pleistocene to the Holocene (Figure 7.4). The recent discovery and radiometric dating of 

rhinoceros remains in the Cagayan Valley have provided a chronostratigraphic anchor for 

megafaunal remains found in this area. The dating is 709,000 BP (T. Ingicco et al. 2018), placing 

it in the early stage of the Middle Pleistocene. This record is used as a tentative proxy for the 

megafaunal record of the Cagayan Valley. Other megafaunal remains purported to be of Middle 

Pleistocene age have been recovered in the Cagayan Valley in previous decades, but their 

stratigraphic associations and dating remain uncertain. These include remains of extinct 

Elephas, Rhinoceros and Stegodon. Similar megafaunal finds are also found in undated localities 

in Luzon, such as Rizal and Pangasinan provinces. In this faunal sequence, these are also 

tentatively assigned to the Middle Pleistocene. I refer the reader to de Vos and Bautista (2003) 

and van der Geer and colleagues (2010) for details on the provenance and taxonomy of the 

Middle Pleistocene taxa. 

For the Late Pleistocene, Callao Cave provides an assemblage dated to 67,000–52,000 

BP and is the only site in the archipelago with dates of this age (Mijares et al. 2010). For the 

Holocene, four sites are collated and divided into Late and Early Holocene. With my own data 

on Minori and Musang Caves, I add data for Nagsabaran site from Amano et al. (2013) and 

Pintu Rockshelter from Mudar (1997). Within these sites, archaeological layers with pottery, 
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metal artefacts and known trade items are assigned to the Late Holocene. Aceramic levels are 

assigned to the Early Holocene. On Luzon, the earliest appearance of pottery and introduction 

of the domestic pig is dated at ca. 4500–4000 BP (Hung 2005; Mijares 2005; Piper et al. 2009). 

Much like the fauna of other oceanic islands of Southeast Asia, the mammal fauna of 

Luzon is unbalanced, with numerous bats and non-volant small mammal taxa, but very few 

intermediate and large species. There are no native carnivores, but among other vertebrates, 

top predators include the Philippine eagle (Pithecophaga jefferyi), monitor lizard (Varanus 

spp.), and python (Python reticulatus). Nonetheless, Luzon Island is known as a hotspot for 

diversity and endemicity (see Chapter 2). Of the non-volant mammals, a total of 56 extant 

species are currently recognised (Heaney et al. 2016a). Half of these taxa only became known 

to science in the last two decades, indicating a very high rate of species discovery (Heaney et 

al. 2016b). In contrast to Palawan, which is adjacent to a continental faunal source, much of 

the diversity on Luzon is derived from speciation and in situ diversification, particularly within 

the Muridae (Heaney et al. 2016a). The living members of the Muridae on Luzon currently 

number 47 described species, displaying a wide variety of ecological and morphological 

specialisations. Two geologically old murid clades are recognized: the ‘cloud rat’ clade 

(=Phloeomyini) and the ‘earthworm mice’ clade (=Chrotomyini) (Fabre et al. 2015; Musser and 

Heaney 1992; Rowsey et al. 2018). The ancestors of these clades colonized Luzon ca. 14 and 7 

million years ago, respectively. They are collectively referred to as ‘Old Endemics’ because they 

colonized the archipelago earlier in geological time and have diversified within the 

archipelago. Apart from these two endemic clades, four additional colonisations have taken 

place in the last five million years. The members of this group are referred to as ‘New Endemics’ 

(Heaney et al. 2016a; Musser and Heaney 1992).  
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Figure 7.4 Late Quaternary faunal sequence for non-volant mammals of Luzon Island. Data derive from five assemblages. Shaded areas 
denote presence of taxa. Native taxa are listed before non-native species (*). MP = Middle Pleistocene, † = extinct on Luzon Island, ? = 
uncertain status. See text for data sources for each locality. 
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The current Middle Pleistocene record consists of large mammals that include endemic 

forms of Elephas, Stegodon, Rhinoceros, Bubalus and Celebochoerus. There are no murid fossils 

from this period, although based on the genetic phylogeny of Philippine murids, relatives of 

Old Endemic and New Endemic taxa would also have been part of the Middle Pleistocene fauna. 

Megafaunal extinctions occurred on Luzon, as is recorded in many parts of the world. However, 

the timing of this faunal turnover on the island is unknown. Whether megafauna persisted into 

the Late Pleistocene remains a question. The relationship of the Middle Pleistocene cervid, suid 

and bovid remains to Late Pleistocene and Holocene taxa is also unclear. Bovid remains were 

found in the Late Pleistocene levels of Callao, but species designation was not possible due to 

the fragmentary state of the remains (Mijares et al. 2010). It is possible that the bovid 

represented in Callao maybe congeneric/conspecific to the Middle Pleistocene bovid found in 

the Cagayan Valley. Apart from the extant deer and pig, this bovid record represents the latest 

dated occurrence of the Middle Pleistocene megafauna. 

In the case of the genus Homo, Middle Pleistocene human fossils have not been found, 

but an inferred human presence is postulated based on stone tools and animal butchery marks 

on bones found in the Kalinga rhinoceros site (Ingicco et al. 2018). The Callao human 

metatarsal fossil dated to 67,000 BP was ascribed to the genus Homo (Mijares et al. 2010). 

Nonetheless, the fossil represents a diminutive individual, akin to the case of Homo floresiensis 

on the oceanic island of Flores. As mentioned previously, additional fossil remains were found 

in the same layers, which have now been described and ascribed to a new human species, 

Homo luzonensis (Détroit et al. 2019). 

Among the living native mammal species, only five (Figure 7.4: Rusa, Sus, Phloeomys, 

Bullimus, Apomys) have reported fossil records. These records also occur within the known 

geographic distribution of these living species. Of the cloud rat clade, five species have been 

identified in the fossil record, three of which are previously unknown extinct/extirpated taxa 

(undescribed species of Carpomys, Crateromys and Batomys). Of the Chrotomyines and ‘New 

Endemics’, only one species of each (Apomys microdon and Bullimus luzonicus, respectively) 

has so far been reported in the fossil record. Clearly, the diversity of the small mammal fauna 

is underrepresented in the fossil record, and the bias has partly to do with the fact that the 

latter derive from human-accumulated assemblages in cave settings. These assemblages are 

biased towards human prey species that belong to larger-bodied taxa and to species living in 

the lowlands. Of the Muridae, the large-bodied cloud rats are better represented compared to 

other smaller-bodied murids. 

As described in Chapter 6, the fossil records of Minori, Musang and Callao Caves have 

produced records of three extinct species belonging to the cloud rat clade. A previously 
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unknown Batomys sp. was described in Callao Cave (Heaney et al. 2011), which is slightly 

larger than the living Batomy granti. The latter is a montane species only known to occur today 

above 1300 m elevation and only in the Central Cordillera mountain range. The Callao Cave 

complex is located at the western foothills of a separate mountain range, the Northern Sierra 

Madre. These two mountain ranges comprise separate ‘sky islands’ or distinct areas of 

endemism within Luzon. Biologists now currently recognize eight centers of local endemism 

within this single island, and they all harbour local endemics not found elsewhere (Heaney et 

al. 2016b).  

This current pattern of diversity and endemism is attributed to the geological history 

and topographic complexity of Luzon (Hall 2013; Heaney et al. 2016a). Although it is well 

beyond the time scale covered by this research, it is worth reviewing in brief the geological 

background that has set the distinct evolutionary stage of Luzon (see Chapter 2). The oldest 

geological unit of the island which existed above sea level is the Central Cordillera, emerging 

as a set of scattered islands during the Miocene. The Central Cordillera was the only portion of 

Luzon that had a substantial highland area from the period of 15 to 7 million years ago. This 

coincides with the modern molecular phylogenetics of the oldest murid clades on Luzon, which 

originated in the Central Cordillera. The Northern Sierra Madre coalesced around 5 million 

years ago and much of the other areas of Luzon would join together mostly within the last three 

million years. As a caveat, the Luzon faunal sequence represented in the fossil record actually 

only covers a limited geographic coverage, i.e. the Northern Sierra Madre and Cagayan region 

in the northeastern part of the island. This means that most other local centres of endemism 

(seven out of eight) have not been sampled in the fossil record, and future studies will 

hopefully remedy this. 

Because of its geological age and complexity, the Central Cordillera harbours the most 

biodiversity among all centers of endemism on Luzon, containing all known genera of the cloud 

rats and earthworm mice (Heaney et al 2016a). These include the extant Crateromys 

schadenebergi and two species of Carpomys. The two extinct fossil cloud rat species identified 

in the Holocene record of Minori and Musang Caves belong to these two genera. The presence 

of the two species in the Peñablanca area of Cagayan is notable for several reasons. First, the 

three living congeners are only known to presently inhabit the Central Cordillera, which is a 

separate area of endemism from the Northern Sierra Madre range. It has been previously noted 

that the Sierra Madre region has less non-volant mammal diversity compared to the Central 

Cordillera (Balete et al. 2011). The only living members of the cloud rat clade presently found 

in the Sierra Madre belong to Phloeomys and Musseromys.  The Holocene archaeological record 

of the Peñablanca area can now confirm that all five genera of the Luzon cloud rat clade 
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(Phloeomys, Crateromys, Carpomys, Batomys and Musseromys) that are present in the Central 

Cordillera are also found in the Cagayan and Sierra Madre region. 

Secondly, all three living species of Carpomys and Crateromys are montane taxa 

inhabiting mossy forest at 2000 m elevation and above. In fact, of the twelve living species of 

cloud rats on Luzon, nine species occur above 1400 m elevation. The three living lowland cloud 

rats consist of two species of Phloeomys, which are the largest of all cloud rats. The other 

lowland species is Musseromys gulantang, an inhabitant of Mt. Banahao in the Southern Sierra 

Madre, which is another separate area of endemism. The Callao limestone formation (where 

Minori and Musang Caves are located) has an elevation range below 600 m and is characterized 

by karstic lowland forest. Most of the cave sites lie below 300 m elevation. As discussed in 

Chapter 5, there are no known climatic events or records of environmental change on Luzon 

that would have lowered habitat elevational gradients to such an extent during the Late 

Holocene. Hence, taking these biogeographic and ecological considerations into account, the 

extinct fossil records of Batomys, Crateromys and Carpomys in the Callao formation are 

significant because they extend the known distribution of the three genera not only beyond 

the Central Cordillera, but also beyond montane forest into lowland environments. Among 

living cloud rats, ecological parallels do exist: two Phloeomys species and the three Crateromys 

species of Ilin, Dinagat and Panay Islands are elevational generalists, and all occur in lowland 

forests. 

Furthermore, the presence of three fossil species in the lowland environs of Callao 

indicate previously unknown lowland diversity for Luzon small mammals. It also draws 

attention to the exercise of estimation of species richness in island biogeography, which is 

largely based on data from extant biotas. Various authors have already observed that many 

modern faunas are heavily transformed faunas impacted by humans (Helmus et al. 2014; 

Steadman 2006; Zalasiewicz et al. 2011). The last two decades of modern biological surveys in 

the Philippines have produced exceptionally large numbers of new species discoveries 

(Heaney et al. 2016b). This is said to be unsuspected because mammals are typically viewed 

as well-described groups compared to other classes of organisms. It appears that the Holocene 

vertebrate record is revealing added numbers to previously unsuspected biodiversity in the 

archipelago. Another important aspect of species richness relates to distribution of taxa along 

elevational gradients. Among Philippine small mammals, a curvilinear pattern of increasing 

species richness is observed as elevation increases, such that relative abundance rises by a 

factor from two to ten from the lowlands to 1500–2200 meters above sea level (Heaney 2001). 

The peak in species richness of non-volant small mammals is said to occur at the transition 

from montane to mossy forest, which is also the likely point where rainfall peaks (Heaney 
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2001). The description of three extinct fossil species inhabiting the lowlands of Cagayan adds 

to the inventory of lowland species on Luzon, and this raises the question of whether lowland 

small mammal diversity is masked by an extinction filter. This extinction phenomenon is 

further discussed in Section 7.4. Lowland faunas appear to be the most heavily impacted by 

human activities and the invasive species that humans have introduced. On the other hand, the 

karstic environment of the Callao formation may also harbour additional and unknown 

diversity that requires further investigation. This is evidenced by the discovery of an unnamed 

member of the genus Apomys found in recent field surveys in the karsts near Callao Cave 

(Heaney et al. 2016a). 

 

7.3.3 Body Mass Estimation of Fossil Murids 

 

Body size difference is one of the main criteria that distinguishes extinct murid taxa identified 

in the Luzon record from the living congeners. These size differences among the extinct taxa 

further substantiate the remarkable repertoire of morphological niches with the Phloeomyini. 

Members of the Phloeomyini range in size from 2.7 kg for the largest cloud rat Phloeomys, to 

15 g for the tree mice of the genus Musseromys.  

Body mass of fossil murids was estimated based on toothrow lengths using regression 

equations by Hopkins (2008) and Freudenthal and Martín-Suárez (2013) (Table 7.2). 

Calculations were also made for extant species for which body mass is known in order to test 

for accuracy of estimations. Body mass range is based on data provided by Heaney and 

colleagues (2016a) for each species. For Musseromys, actual body mass for each individual is 

available and provided separately for each specimen. Hopkin’s method allows estimation from 

mandibular toothrow lengths, and two equations are provided: one for larger murids (<5kg) 

and another for smaller murids (<500g). Both were used according to the size of the living 

murids measured. For fossil specimens, the equation for <500g murids were used for Bullimus 

and the rest of the fossil murids fall in the <5 kg category. For Freudenthal and Martín-Suárez’ 

method, equations were available for mandibular (inferior) and maxillary (superior) 

toothrows. Using their method, regression equations for the ‘Muridae’ and for ‘All Rodents’ 

were both calculated, as shown in Table 7.2.  

When actual body mass and estimated body mass of living species are compared, both 

sets of methods significantly underestimate the body weight of the large phloeomyines 

(Crateromys and Phloeomys) (Table 7.2 and Figure 7.5). Hopkins’ equations show the lowest 

values, while the ‘All Rodents’ equation from Freudenthal and Martín-Suárez (2013) provides 
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the largest values. Note that known body mass records of modern specimens derive from 

taxonomic descriptions of living taxa (Heaney et al. 2016a) and do not correspond to individual 

museum specimens measured.   Regardless, there are large discrepancies between the known 

body mass of living Philippine murids drawn from existing data in the literature compared to 

the results for the regression estimates. This has implications for the body size estimation of 

the two large fossil cloud rats, Carpomys undescr. sp. and Crateromys sp. Comparing the 

toothrow lengths of the fossil Carpomys to the living species, the former falls in the lower range 

of the living Crateromys schadenbergi. Hence, it is possible that the fossil Carpomys may also 

fall in the body weight range of C. schadenbergi. The lowest end of this range is recorded at 

1350 g, while the calculated body mass estimates range only from 684-1045 g. A possible 

solution (for future work) is to gather body weight data for the Phloeomyini and calculate 

regression equations tailored according to this endemic murid clade. Hopkins’ equations have 

been used to estimate body size of fossil rodents from Sumba and Timor Islands (Indonesia) 

(Turvey et al. 2017). The results for Luzon put into question whether such calculations also 

underestimate body size for Wallacean rodents. 

Despite these discrepancies in body mass estimation, the extinct fossil murids provide 

evidence for further morphological specialization within the Phloeomyini. The difference in 

size of the fossil Carpomys from the living Carpomys is particularly remarkable (see Chapter 

6). Among the living species that have existing molecular phylogenetic and divergence 

estimates, such discrepancy in size between taxa of similar dental morphology appears to 

warrant differentiation at the genus level. Such is the case for Carpomys (120-165 g) and 

Musseromys (15-22 g), which have similar tooth morphologies. This is also the case for 

Crateromys (1350-1550 g) and Batomys (182-226g). The size difference between the living 

Carpomys and the extinct fossil Carpomys runs parallel to the size difference between living 

members of Crateromys and Batomys on Luzon. 
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Hopkins 2008

body mass (g) body mass (g)

Fossil Muridae equation All rodents equation

Minori 16301 mandible Carpomys undescr sp. 14.55 755.5 868.8 1045.9

Musang 101 mandible Carpomys undescr sp. 14.03 684.4 791.7 947.2

Minori 17018 mandible Crateromys 13.4 604.1 704.1 835.9

Heaney et al. 2011 7554 mandible Batomys sp. 10.21 288.7 351.7 398.7

Minori 15998 mandible Bullimus/Rattus 9.5 235.9 292.6 327.6

Musang I5a-1 mandible Bullimus luzonicus 10.13 280.6 344.7 390.2

Minori 15997 maxilla Carpomys undescr sp. 14.52 N/A 919.4 1035.9

Minori 5707 maxilla Phloeomys pallidus 17.45 N/A 1512.5 1719.5

Modern known body mass

FMNH and BMNH mandible Crateromys schadenbergi 14.35-17.17 (13) 1350-1550* 727.7-1184.6 789.6-1325.8 838.6-1641.7

FMNH and BMNH mandible Carpomys melanurus 9.11-9.21 (3) 165* 211.8-218.2 262.9-270.3 292.3-302.2

FMNH and BMNH mandible Carpomys phaeurus 6.3-6.64 (5) 123* 77.8-89.7 102.5-117.3 107.1-123.5

BMNH mandible Batomys granti 8.38-8.53 (2) 182-226* 168.8 -177.2 212.4-222.2 232.8-244.3

BMNH maxilla Phloeomys pallidus 17.98-19.22 (6) 2200-2700* N/A 1491.4-1768.3 1867.3-2244.3

FMNH 193839 mandible Musseromys inopinatus 3.31 19.5 13.7 19.8 17.6

FMNH 209523 mandible M. anacuao 3.26 17 13.1 19.1 16.9

Heaney et al. 2014 1933839 maxilla M. inopinatus 3.37 19.5 N/A 17.6 18.5

Heaney et al. 2014 209523 maxilla M. anacuao 3.09 17 N/A 13.9 14.5

Heaney et al. 2014 178405 maxilla M. gulantang 3.23 15.5 N/A 15.7 16.4

Heaney et al. 2014 193840 maxilla M. inopinatus 3.43 17 N/A 18.5 19.4

Heaney et al. 2014 198714 maxilla M. beneficus 3.26 22 N/A 16.1 16.9

Heaney et al. 2014 198857 maxilla M. beneficus 3.35 22 N/A 17.3 18.2

Heaney et al. 2014 209522 maxilla M. anacuao 3.1 21 N/A 14.0 14.7

body mass (g)

Freudenthal and Martinez-Suarez 2013
Site/Source Bone ID TaxonElement M1-3 TRL (mm) 

Table 7.2 Body mass estimation of Luzon fossil and extant murids using equations from Hopkins (2008) and Freudenthal and Martinez-Suarez (2013). Estimations 
for modern murids with known body mass are provided to compare with the results of regression equations. *Indicates data from Heaney et al. 2016a. (N) indicates 
number of modern specimens under toothrow lengths (TRL). Note the large differences between the estimations using different equations, and the differences 
between the estimations and known body mass for living taxa (modern). 

 

Table 7.3 Body mass estimation of Luzon fossil and extant murids using equations from Hopkins (2008) and Freudenthal and Martinez-Suarez (2013). Estimations 
for modern murids with known body mass are provided to compare with the results of regression equations. *Indicates data from Heaney et al. 2016a. (N) indicates 
number of modern specimens under toothrow lengths (TRL). Note the large differences between the estimations using different equations, and the differences 
between the estimations and known body mass for living taxa (modern). 

 

Figure 7.5 Body mass estimations (in g) of fossil and modern cloud rats of Luzon. Body mass were estimated using the regression equations of Hopkins (2008) and 
the ‘Muridae equation’ (FMS1) and ‘All rodents equation’ (FMS2) of Freudenthal and Martinez-Suarez (2013). Known body mass of living species are indicated. See 
Table 7.2 for data and sources. Note that certain estimations for Crateromys schadenbergi and Phloeomys pallidus fall well below the known body mass of living 
species.Table 7.4 Body mass estimation of Luzon fossil and extant murids using equations from Hopkins (2008) and Freudenthal and Martinez-Suarez (2013). 
Estimations for modern murids with known body mass are provided to compare with the results of regression equations. *Indicates data from Heaney et al. 2016a. 
(N) indicates number of modern specimens under toothrow lengths (TRL). Note the large differences between the estimations using different equations, and the 
differences between the estimations and known body mass for living taxa (modern). 

 

Table 7.5 Body mass estimation of Luzon fossil and extant murids using equations from Hopkins (2008) and Freudenthal and Martinez-Suarez (2013). Estimations 
for modern murids with known body mass are provided to compare with the results of regression equations. *Indicates data from Heaney et al. 2016a. (N) indicates 
number of modern specimens under toothrow lengths (TRL). Note the large differences between the estimations using different equations, and the differences 
between the estimations and known body mass for living taxa (modern). 

 

Figure 7.6 Body mass estimations (in g) of fossil and modern cloud rats of Luzon. Body mass were estimated using the regression equations of Hopkins (2008) and 
the ‘Muridae equation’ (FMS1) and ‘All rodents equation’ (FMS2) of Freudenthal and Martinez-Suarez (2013). Known body mass of living species are indicated. See 
Table 7.2 for data and sources. Note that certain estimations for Crateromys schadenbergi and Phloeomys pallidus fall well below the known body mass of living 
species. 

 

Figure 7.7 Taphonomic workflow showing the sequential stages of the analysis.Figure 7.8 Body mass estimations (in g) of fossil and modern cloud rats of Luzon. Body 
mass were estimated using the regression equations of Hopkins (2008) and the ‘Muridae equation’ (FMS1) and ‘All rodents equation’ (FMS2) of Freudenthal and 
Martinez-Suarez (2013). Known body mass of living species are indicated. See Table 7.2 for data and sources. Note that certain estimations for Crateromys 
schadenbergi and Phloeomys pallidus fall well below the known body mass of living species. 
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7.4 Holocene Faunal Changes and Mammal Extinctions in the Philippines 

 

Understanding faunal changes and extinctions requires robust fossil records and chronologies. 

For the Philippines, there is much work needed to resolve chronologies. A few radiometric 

dates and palaeoenvironmental data are available for the Late Pleistocene and the Holocene. 

In this section, I present the extinction records of Luzon and Palawan within the broader 

palaeoecological and archaeological contexts in the Philippines and Island Southeast Asia. 

Globally, the Late Quaternary has witnessed massive levels of extinction, particularly for large-

bodied vertebrates. It has been vigorously debated whether climatic change or human impacts 

are the major cause of these events; however, it is now widely accepted that human 

involvement played its role in varying degrees in megafaunal extinctions across several parts 

of the world (Koch and Barnosky 2006; Martin and Steadman 1999; Sandom et al. 2014; 

Turvey 2009; Wroe et al. 2004).  Massive extinctions have continued into the Holocene, 

Figure 7.20 Body mass estimations (in g) of fossil and modern cloud rats of Luzon. Body mass 
were estimated using the regression equations of Hopkins (2008) and the ‘Muridae equation’ 
(FMS1) and ‘All rodents equation’ (FMS2) of Freudenthal and Martinez-Suarez (2013). Known 
body mass of living species are indicated. See Table 7.2 for data and sources. Note that certain 
estimations for Crateromys schadenbergi and Phloeomys pallidus fall well below the known body 
mass of living species. 
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occurring during an epoch with reduced climatic fluctuations. Palaeohistoric extinction events 

in the Holocene, therefore, offer the potential to investigate the varying impacts of humans in 

the last 10,000 years and understand the extent of anthropogenic extinction drivers. Here, I 

focus on specific taxa from Luzon and Palawan to investigate local extinction chronologies and 

explore factors that have influenced their demise. 

 

7.4.1 Extinct Tiger and Deer of Palawan  

 

The Palawan faunal sequence (Figure 7.3) documents the presence of three extirpated large 

mammals. The last occurrence record for the tiger is from an Early Holocene context of Ille 

Cave (context 1839 of West Mouth trench) with an associated age of ca. 11,000 cal BP (Lewis 

et al. 2008; Paz et al. 2008). The last occurrence records for the rusine deer are also from Early 

Holocene levels of Ille Cave (West Mouth contexts 1530, 1532, 1560 and 1626; East Mouth 

context 807). For the extant Calamian hog deer, the last occurrence records on the main island 

of Palawan are from the Late Holocene levels of Ille and Pasimbahan Caves. A radiocarbon age 

of 3704–3573 cal BP is associated with a Late Holocene level (context 71) from Pasimbahan 

Cave, where hog deer remains are still present in small numbers (Ochoa et al. 2014). It is 

possible that the hog deer survived much later since a midden deposit (context 403) in Trench 

J of Pasimbahan Cave contains deer remains, Indo-Pacific glass beads and ceramic tradeware. 

However, as caves in this area are used as burial sites during the Middle to Late Holocene, it is 

possible that the ceramics and beads are intrusive materials and are not associated with the 

deer remains. If associated, though, this may even indicate a much later extinction date within 

the last millennium.  

The asynchronous timing of Palawan Island extinctions signals different dynamics of 

extinction (Ochoa and Piper 2017). The apparent Early Holocene disappearance of the tiger 

and rusine deer happens against a backdrop of extensive environmental changes during the 

Pleistocene-Holocene transition. The inundation of Greater Palawan initiates after ca. 19,000 

years ago, and eventually the land area of the main island was reduced by approximately 85% 

at the end of the Pleistocene (Robles et al. 2015). Shallower areas were progressively drowned, 

leading to the loss of land connections of several island groups (Cuyo, Calamianes and 

Busuanga) to the main island. Present-day Palawan has a land area of 11,578 km2, while 

Greater Palawan had a land area of 79,440 km2. Palaeoenvironmental records from Gangub 

Cave (southern Palawan) and Makangit Cave (northern Palawan) also indicate a shift in 

vegetation communities (Bird et al. 2007; Wurster et al. 2010). Forest contraction and the 

presence of more open vegetation regimes are reported during the LGM, based on stable 
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carbon isotope composition of guano profiles in both caves. Closed forest canopy is said to 

expand again during the onset of the Holocene. More open environments were possibly 

favourable to both deer species, and the maintenance of both populations would have been 

beneficial to the tiger. Deer are typically eurytopic taxa that tolerate a wide range of 

environments and can also adapt to climatic variation through time. The extirpation of the deer 

on Palawan has long been a conundrum since all other Philippine faunal regions retain their 

endemic rusine deer populations. Smaller oceanic islands (that were separated from larger 

islands after the last glacial due to sea level rise) had deer populations up to recent historic 

times. Present-day ecological traits of the modern Calamian hog deer show that it prefers 

grassland habitats. While it was present on the main island of Palawan, rusine deer appear to 

have been intensively hunted by humans since they were the dominant prey taxon in the Late 

Pleistocene to the Early Holocene. A resource switch is evident during the Middle Holocene, 

when the Palawan bearded pig became the main prey of humans, the hog deer became very 

rare in the record, and the rusine deer is absent from the record (Ochoa 2009; Piper et al. 

2011). The rarity of Rusa deer was likely caused by the extensive reduction of habitat brought 

about by palaeogeographic changes and vegetation shifts at the end of the Pleistocene. This, 

coupled with direct predation by humans of a diminishing population, possibly drove the 

extinction of the rusine deer. Future work to test this hypothesis can focus on deer palaeodiets. 

My initial attempt to conduct microwear studies on deer teeth from Pilanduk was 

unproductive due to the scarcity of well-preserved teeth from the 2016 excavation. 

Was the reduction of land area and habitat sufficient to drive the extinction of the tiger 

on Palawan? Bali, an island of only 5780 km2, retained its tiger population until the mid-20th 

century. It also retains an autochthonous rusine deer population (Rusa timorensis renschi). 

Palawan is a larger island at over 11,000 km2 that has not retained either tiger or deer. Bali 

and its fauna are generally perceived as an extension of East Java due to the recurring 

Pleistocene land connections between the two islands. Bali’s land connection to Java was likely 

drowned by the Early Holocene, when rising sea levels reached -20 meters below present sea 

level (from an LGM level of -116 mbpsl; see Sathiamurthy and Voris 2006; Voris 2000). During 

connectivity in times of low sea-levels, savannah vegetation likely prevailed on Bali (Bird et al. 

2005; Heaney 1991). However, Bali presently has a different natural lowland environment to 

Palawan. In the former, ever-wet rainforests are confined to upper elevations of mountains 

(Flenley 1998). These differences in post-Pleistocene environments between Bali and Palawan 

likely influenced the maintenance of rusine deer and tiger populations.   Borneo is another 

island that harboured tiger populations in the past that became extinct in the Holocene (Piper 

et al. 2007). This large island also retains native deer, bovid and bearded pig population up to 
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the present, and these are prey taxa that could have supported a tiger population. Of the large 

Sundaic islands, only Palawan and Borneo lost their tiger populations prior to recent historic 

times. 

On Palawan, diminishing deer populations may have elevated the extinction risk of the 

tiger population. A possible scenario is that in the Late Pleistocene, there was a prey-enriched 

landscape populated by deer that supported tiger populations, and a prey-depleted landscape 

by the onset of the Holocene. Tigers prey on pigs and bovids, but deer appear to be the most 

important prey across its range (Mazák et al. 2011). Modern assessments indicate that the 

availability of a sufficient prey base of large ungulates is the tiger's major habitat requirement, 

in order that they may survive and reproduce (Hayward et al. 2012; Sunquist 2010) (Hayward 

et al. 2012; Sunquist and Sunquist 2002). These assessments also indicate that tigers prefer 

prey that are closer in size to their own. In the case of Palawan tigers, the rusine deer would 

be the prey closest to its size, whereas the endemic (and dwarfed) bearded pig and hog deer 

are much smaller in size that both the rusine deer and the tiger. The combination of these 

factors – decreased habitat, diminished prey base and human predation – possibly drove tiger 

extirpation on Palawan in the Early to Middle Holocene. 

The situation of the Calamian hog deer markedly differs from that of the rusine deer. 

The hog deer persists into the Late Holocene on Palawan, and at present, retains a relictual 

distribution in the Calamianes Islands.  The environments of the Dewil Valley of northern 

Palawan in the Middle to Late Holocene are described by O’Donnell (2016), who presents the 

only pollen record for Palawan Island. The >5000-year Makinit sequence shows the continuity 

of open landscapes (in the form of seasonal tropical lowland forest of an open structure) 

amidst a mosaic of riparian and mangrove communities. Within the last 2750 cal BP, the 

sequence shows evidence of patches of true closed lowland forest. The causes (anthropogenic 

or climatic) for the maintenance of open landscapes during the Middle to Late Holocene is not 

known due to problems of equifinality. Potentially, the presence of a mosaic of open and closed 

forest types would have been suitable to deer populations. The presence of open forest types 

is also said to contrast with other proxy evidence (Bird et al. 2007; Wurster et al. 2010) 

indicating the increasing presence of closed forest on Palawan during the Holocene. 

The condition of the Calamian hog deer is mirrored in the condition of the hog deer on 

Bawean Island, Axis (=Hyelaphus) kuhlii. Fossil records indicate that the Bawean hog deer was 

also present on Java (van den Bergh et al. 2001), and Bawean Island also lost its land 

connection to Java due to post-glacial sea level rise. As paralleled in many cases of extinctions 

around the globe, there is less extensive natural climatic variation recorded in the Late 

Holocene of the archipelago and environmental conditions appear broadly similar to modern 
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regimes (see Turvey 2009). Hence, it appears that anthropogenic factors are the main drivers 

of Late Holocene extinction events.  

The regional picture for large mammal extinctions in Southeast Asia depicts 

environmental factors as the main causes (Louys et al. 2007). Post-glacial sea level change 

drowned a large portion of the Sunda Shelf, and separated land connections between islands. 

The consequent loss of more open environments and other floristic changes are thought to be 

responsible for most large mammal extinctions. A broad range of large-bodied taxa became 

extinct or extirpated in the Late Quaternary (e.g. Stegodon, Hexaprotodon, Pongo, Crocuta, 

Hyaena, Palaeoloxodon, Ailuropoda, Rhinoceros, etc.). Extinction chronologies are poorly 

resolved for most of these taxa. In the case of anthropogenic impacts, it is suggested that 

humans were likely to have more direct impacts on the fauna in Island Southeast Asia than in 

the mainland (Sondaar 1987). This appears to be the case for Palawan, where environmental 

and anthropogenic impacts appear to be both implicated.  

 

7.4.2 Translocation of Non-native Species on Luzon 

 

An important Late Holocene ecological process that relates to faunal assembly and extinction 

is the translocation of non-native species. On Luzon, the taxa in question are the long-tailed 

macaque (Macaca fascicularis) and palm civets (Paradoxurus philippinensis and Viverra 

tangalunga). These species were long considered by biologists as native species of the 

archipelago (Fooden 2006; Heaney et al. 1998). More recently, they have been re-classified as 

invasive taxa that have been naturalised across the oceanic Philippines primarily based on 

morphological and molecular genetic data that indicate that Philippine populations differ little 

from those on Borneo (Heaney et al 2016a). On Palawan, these species are considered natives 

of the island based on biogeographic, phylogenetic and fossil evidence (Section 5.4.1). 

Geneticists  point to a Sunda Shelf origin for Philippine macaques (Blancher et al. 2008; 

2012; Liedigk et al. 2015; Tosi et al. 2003). Blancher et al. (2008, 2012) show that Philippine 

sequences have low genetic and nucleotide diversities and that these are encompassed by one 

sequence from Indonesia (Sunda Shelf portion). The authors say that precise dating of 

Philippines colonisation cannot be assessed from their results but suggest a colonization date 

of 110,000 years ago. A more specific study of Philippine macaques focused on comparing 

populations from Luzon and Mindanao islands that represent two subspecies in the 

Philippines, M. f. philippinensis and M. f. fascicularis, respectively (Smith et al. 2014). The 

subspecies distinction is primarily based on pelage consisting of a lighter variant (fascicularis) 
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and a darker variant (philippinensis) (Fooden 1991). The study by Smith et al. (2014) does not 

support sufficient genetic distinction to warrant sub-specific designation of regional 

populations. Both Philippine populations were most closely related to two different mtDNA 

haplotypes from Sarawak (Borneo) from which they are apparently derived. They also suggest 

that there are two independent immigration events of the macaque into the archipelago. These 

genetic studies note that the long-tailed macaque has been introduced by humans to many 

islands beyond Wallace’s Line; however, they suggest a natural colonization scenario for the 

Philippines. Blancher et al. (2012) characterise the Philippine macaque populations as an 

isolated population that experienced a founding effect followed by a probable rapid initial 

expansion of the population. Based on the current fossil evidence from Luzon, I suggest that 

this low genetic diversity, close relation to Indonesian macaque populations and founder effect 

likely derive from a Late Holocene human introduction of this species to the oceanic 

Philippines. The suggested colonisation date of 110,00 years ago (derived from baboon-

macaque divergence time) may pertain to divergence estimates in reference to the founding 

Sundaic population and not actual colonisation into the Philippine archipelago. 

As noted in Chapter 6, the common palm civet (P. philippinensis) populations of Luzon 

are genetically indistinguishable from Bornean civets. Unlike the case of long-tailed macaques, 

geneticists suggest that the low diversity among Philippine palm civets and the lack of genetic 

divergence for Luzon and other oceanic Philippine populations from Borneo indicate recent 

human introduction (Veron et al. 2015). The palm civets in Sulawesi and Lesser Sunda islands 

have also been attributed to human introductions (Patou et al. 2010). Reis and Garong (2001) 

also proposed that leopard cats (Prionailuris bengalensis) and viverrids (Paradoxurus and 

Viverra) were introduced by humans in the oceanic Philippines similar to the view proposed 

for Lombok by  Kitchener (1990). The Malay civet (Viverra tangalunga) and the leopard cat are 

also present in the oceanic Philippines, but fossil records on Luzon have not been reported or 

identified yet. Genetic data for the Philippine and Wallacean populations of Malay civet also 

suggest recent translocation (Veron et al. 2014). In the Philippines, two haplogroups for the 

common palm civet were identified, indicating at least two colonisation events. One 

haplogroup is only separated by one mutation step from a Bornean haplotype, possibly 

indicative of recent introduction. The other haplogroup is separated by three mutation steps 

from Borneon haplotypes, possibly attributable to a natural dispersal event on Palawan Island. 

In various Wallacean islands, such as Sulawesi and the Lesser Sundas, macaques and 

palm civets were introduced in the past and are recognized as translocated species or 

‘ethnotramps’ – economically and culturally favoured wild animals that humans carried 

around and introduced into other habitats (Heinsohn 2003). The proposed reason for the 
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introduction of the macaque is as a pet and food animal, whereas the palm civet may have been 

a rat catcher. It is also suggested that these translocations occurred in the latter half of the 

Holocene, with the Austronesian expansion or in later ‘protohistoric’ periods. The actual 

timing of introductions is, however, still poorly resolved and an unpacking of the Austronesian 

package is necessary. On Flores Island, macaques and palm civets appear in the faunal 

sequence during the Late Holocene in the same levels where pottery and polished stone adzes 

are found (van den Bergh et al. 2009). In Tron Bon Lei site on Alor Island (Lesser Sundas), a 

viverrid bone was identified in levels dated at ca. 3200 BP. In Matja Kuru 1 in Timor Leste, the 

palm civet has been identified and directly dated to 2741±27 BP (O’Connor 2015). A possible 

example of an earlier translocation comes also from Flores, where a single Sulawesi warty pig 

(Sus celebensis) tooth has an associated charcoal date of ca. 7000 BP (Larson et al. 2007). 

However, because this is not a direct date on the warty pig specimen, caution must be taken 

before assigning a Middle Holocene translocation. 

The current work on Minori and Musang Caves provides fossil and stratigraphic 

evidence that substantiates the process of translocation and documents the timing of 

introductions in the oceanic Philippines. Apart from anecdotal evidence implying that invasive 

taxa were part of a ‘Neolithic package’, actual evidence for translocation has not been 

demonstrated for the Philippines. The faunal sequence for Luzon (Figure 7.4) shows that 

remains of endemic species of cervids, suids and murids are present in the fossil record during 

the Mid to Early Holocene and the Late Pleistocene. In contrast, records for proposed 

translocated species indicate that they appear only during the Late Holocene. If macaques and 

civets are native on Luzon, we would expect to have Early Holocene or Pleistocene records for 

them; however, such records are absent in all reported sites (Figure 7.4). Mijares (2008) also 

reports the presence of deer and pigs in Eme and Dalan Serkot Caves, but no other large or 

intermediate mammals were reported. Both sites also lie within the Callao formation and 

range in age from ca. 7000 to 3000 BP. This absence cannot be simply attributed to low 

sampling effort or poor preservation, since smaller murid taxa are preserved in these 

assemblages. In contrast, macaque and small carnivores remains are found in the Early 

Holocene and Late Pleistocene record of Palawan Island, and they appear to be frequently 

hunted throughout the Holocene. At present, macaques and civet cats are still the frequent 

prey of human hunters on Luzon.  

The stratigraphic data presented for Minori Cave show in detail the occurrence of 

particular mammal taxa throughout the archaeological sequences (Tables 7.3 and 7.4). For 

Musang Cave, records for the stratigraphic location of macaques are in Table 6.10 (Chapter 6). 

The data for Minori Cave are reconstructed from logbook and inventory records from the 1981 
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– 1983 excavations. Detailed records were available for Square 37 and Square 27, and these 

are shown in Table 7.3. These two excavation units also had the greatest number of remains 

among all squares. Data for all Minori Cave excavation units are summarized in Table 7.4. The 

records show that native deer, pigs and murids are present throughout the sequence. They 

also indicate that macaque, palm civet and domestic dog remains only appear in pottery-

bearing levels and are not found in deeper layers. In fact, these taxa only appear in the 

uppermost levels that are no deeper than 20 cm from the surface.  

As mentioned in Chapter 3, direct 14C dates were obtained from macaque remains in 

Minori Cave. Two tooth specimens from Square 37 that had the lowest depths were chosen. 

These had the corresponding depths of -226 and -227 cm from site datum or approximately 

10-15 cm below the surface. The specimens yielded the ages of 1827–1706 cal BP (OxA-36333) 

and 305–14 cal BP (or cal CE 1762–1803; OxA-36334), respectively. The incongruence of dates 

for the two specimens of similar depths is not surprising, given the shallowness of the levels 

and the acknowledged post-depositional processes that have contributed to the mixing of finds 

in the upper levels (see Chapter 4). This is also the reason why direct dates on the targeted 

taxon were taken due to this suspected problem. Presently, these are the only two direct dates 

on archaeological macaque remains from the archipelago. 

In the case of the palm civet, only Minori Cave has secure identifications for this species. 

Two specimens of teeth were identified in Squares 7 and 32 of Chamber A (Table 7.4). The 

recorded depths for the specimens come from levels that also contained pottery. Note that 

palm civet remains were not found in Squares 27 and 37, and hence this taxon is not included 

in Table 7.3. It has not been identified or recorded in other Luzon faunal assemblages. Direct 

dating was not attempted due to the scarcity of the finds.  

The record from Musang Cave shows a similar pattern to Minori Cave. Large mammals 

are found throughout the sequence and macaques only appear in levels that had pottery as 

well. The stratigraphic record for Musang, however, is not straightforward. All the macaque 

remains were identified in Trench G4 (Table 6.10). Thiel (1990) ascribes ceramic and aceramic 

portions for similar levels, denoted by the addition of ‘a’ to the aceramic portions (e.g. I4a, I6a, 

I7a) of the trench. Bones of varying preservation states are found within these levels, which 

appear to indicate post-depositional disturbance. As described in Chapter 3, I question the 

separation of finds and levels based on certain grounds and suggest that the well-defined 

aceramic levels are only those below Layer 7a (i.e., those that are not divided into non-ceramic 

and aceramic portions).  
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Only one other Luzon site has published records for the presence of macaque and this 

is Pintu Rockshelter (Mudar 1997). Similar to Minori and Musang Caves, the macaque is only 

identified in pottery-bearing levels. Mudar did not comment that the macaque may have been 

translocated. In the same levels as the macaque, Mudar also identified remains of domestic 

carabao, Bubalus bubalis. 

The appearance of macaques and civets in the archaeological record of Luzon coincides 

with the presence of introduced domesticates. The timing of domestic introductions also bears 

weight to understanding the nature of translocations. Nagsabaran site is the only site in the 

archipelago that provides data on the varied timing of domestic introductions. Domestic pig is 

the earliest known introduced species, directly dated to 4000 cal BP (Piper et al. 2009). In the 

Late Neolithic/Metal Age layers of the same site, domestic dog, carabao and cow also appear. 

The Metal Age layers are dated to ca. 2500 cal BP (Amano et al. 2013). The Nagsabaran data 

show that the domestic pig was introduced first and the domestic dog and bovids appear 

considerably later.  It is notable that in Minori, Musang and Pintu sites, macaque and palm civet 

remains are found in the same layers where introduced domesticates have also been identified. 

It is not known though whether they were introduced at the same time as some of these 

domesticates due to uncertainties in stratigraphic associations. What is also notable from the 

data from Nagsabaran is the absence of macaque and civets, despite the excellent preservation 

in the site and the presence of other smaller vertebrates. The data are quite limited, but the 

single date of 1800 cal BP on the Minori macaque tooth raises the possibility that the 

translocated animals may have been introduced even later than other domesticates in this part 

of Luzon. This might potentially explain their absence in Nagsabaran site. Data and dating from 

other sites may clarify the timing of these introductions in the future. Initial data from on-going 

research in Munsayac Cave in southern Luzon show that macaque remains are also limited to 

pottery-bearing layers (Mijares pers. comm.). 

Where are the introduced animals from? The molecular phylogeny for modern 

populations has implications not only for understanding the non-native status of these species, 

but also for the possible directionality of ancient introductions. Initial genetic evidence for 

domestic pigs shows an instance of a possible north-to-south Taiwan connection. 

Older/traditional stocks of black domestic pigs (locally called ‘native’ pigs) in the Cordillera 

region of Luzon have genetic affinities with the Lanyu domestic pigs of Taiwan, indicating that 

this haplotype was introduced to Luzon in the past (Herrera 2010). For macaques and palm 

civets, modern haplotypes in the Philippines group mainly with Borneo and other Sunda Shelf 

populations (Blancher et al. 2008, 2012; Liedigk et al. 2015; Veron et al. 2015). Borneo is the 

likely source of introduced populations, although the role of Palawan populations in the 
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process of translocation remains unclear since the latter have not been sampled in the genetic 

studies.  

Table 7. 3 Distribution of taxa (number of identified specimens) and pottery (total number of fragments) 
per level (depth in cm from site datum) in Squares 37 and 27 of Minori Cave. Records of depth are all 
negative values. Dashed lines indicate the last occurrence of pottery. In Square 37 of Chamber A, the last 
occurrence of pottery is recorded at -241 cm. For Square 27 of Chamber D, inventory records are 
unavailable, but logbook records indicate that the last occurrence of pottery is at -112 cm. Ground 
surface for Square 37 is at 213-219 cm below datum, while that for Square 27 is not indicated in the 
records. 

Chamber A Square 37 

Depth Rusa Sus Large mammal Murid Macaca Canis Pottery 

surface to 220 5 3 3  6  30 

221-230 27 13 29  8 1 241 

231-241 9 3 4       25 

242-250 9 3 16     

251-260 25 2 30 2    

261-270 31 3 18     

271-280 19 3 18     

281-290 15  7     

291-300 4 2      

301-310 1 1      

311-320 5  2     

321-330 7  1     

331-340 3 1      

341-350        

351-360 1       

361-390        

391-400   1     

401-450   1 2         

Chamber D Square 27 

Depth Rusa Sus Large mammal Murid Macaca Canis Pottery 

surface to 80  1 10  1  inventory 
records not 
available, 

last record 
at -112 cm 

81-90 27 41 222 2 1 2 

91-100 13 23 144 8 2  

101-112 6 11 81 4     

113-120 3 4 50 \    

121-130 24 11 139 7    

131-140 21 8 134 6    

141-150 15 2 68 8    

151-160 14 3 48 10    

161-170 9 2 16 7    

171-180 3  6 4    

181-190   2     

191-200   2     
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Table 7.18 Distribution of taxa and pottery (depth in cm below site datum) across all squares in Minori 
Cave. Stratigraphic data were sourced from the NMP logbook (Log) and inventory (Inv) records of the 
1981-83 excavations of Minori Cave. Records of depth are all negative values. ^ = occurrence based on 
excavation records, * = occurrence based on NISP of selected taxa identified by the author, \ = absent, ~ 
= approximate depth, ? = no data available. Occurrence records for Macaca show the elevation ranges 
with NISP in brackets. Deepest remains refer to artefacts recorded in the trench and maximum depth 
refers to the lowest depth reached in each excavation unit. 

 Chamber A Squares 

Taxon/Entry 37 7 32 30 50 4 

data source Log, Inv Log, Inv Log Log, Inv Log Log 

local datum point 188 60 157 160 202 60 

Macaca 
219-229 

(14) 
92-100 

(4) 
185-194 

(2) 
196-204 

(5) 
248-251 

(2) 
92 (1) 

Canis 221 \ \ \ \ \ 

Paradoxurus \ 86 195 \ \ \ 

last occurrence of pottery 241 193 215 213 ? 110 

deepest bone recorded^ 449^ 202* 250* 270* 251* 178* 

deepest remains 449 202 255 315 252 ? 

maximum depth ~459 ~196 397 ~350 ? ? 

 Chamber D Squares 

Taxon/Entry 27 44 58 57 40 50 

data source Log Log Log Log Log Log 

local datum point 40 101 148 130 65 110 

Macaca 
80-94 

(4) 
149 (1) 

193-197 
(7) 

186-190 
(2) 

126-129 
(2) 

146-162 
(6) 

Canis 82, 88 \ \ \ \ \ 

Paradoxurus \ \ \ \ \ \ 

last occurrence of pottery 112 ? 239 ~190 158 below 173 

deepest bone recorded^ 212^ ? ? ? ? ? 

deepest remains ? 193 290 ~240 212 ? 

maximum depth ? ? 410 256 248 344 

 

 

7.4.3 Small Mammal Extinctions on Luzon 

 

The Holocene extinction record of Luzon differs from that of Palawan and suggests that other 

factors may be in play. Luzon retains its Late Pleistocene large mammals up to the present, and 

only small mammals are recorded to have gone extinct during the Holocene. As mentioned 

above, a turnover for the Middle Pleistocene megafauna also occurred, but the timing of these 
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changes is unknown. The latest possible occurrence of any member of the Middle Pleistocene 

megafauna is recorded in the MIS-3 layers of Callao Cave in the form of bovid remains that 

might be attributable to an endemic Bubalus. 

The recognition of and evidence for translocated species that were previously cast as 

native taxa has significant implications for understanding the faunal assembly of the terrestrial 

vertebrate fauna of Luzon and for small mammal extinctions. The remarkable endemic small 

mammal fauna of Luzon appears to have evolved without native carnivores or primates, which 

could have acted as predators or competitors for arboreal and other forest niches.  Currently, 

there are eleven non-native mammals that occur on Luzon (Heaney et al. 2016a). As discussed 

above, two of these – macaque and common palm civet – have archaeological evidence for their 

Late Holocene introduction. These two species, along with the Malay palm civet, have become 

successfully naturalised throughout the Philippines due to the fact that there are no other 

carnivores or primates known in Luzon. Macaques and civets occur both in disturbed and old-

growth forests and across elevational gradients. The introduction of palm civets has specific 

implications for predation on small mammals. Although little is known about their local 

ecology in the Philippines, the palm civets are noted to prey on smaller vertebrates, including 

murids. A single scat record for the common palm civet on Mt. Isarog on Luzon showed the 

presence of large (Phloeomys) and small (Apomys and Rattus) murids (Heaney et al. 1999). It 

is suspected that the Malay civet is more carnivorous than the common palm civet and is the 

main mammalian predator of small mammals in lowland and montane forest (Heaney et al 

2016a). There is no fossil record yet for the Malay civet on Luzon, but genetic evidence also 

suggests that it may have been a later introduction (Veron et al. 2014).The introduction of 

domestic dogs also has implications, since they can prey on small mammals and are also known 

to be used by humans to hunt forest animals. 

The timing of small mammal extinctions on Luzon is currently not known, and hence it 

is also difficult to attribute causes for extinction. In Minori and Musang Caves, last occurrence 

records cannot be pinned down due to post-depositional disturbances in the Late Holocene 

layers. Based on the evidence, we can say that these taxa occur in pottery-bearing layers. 

Nonetheless, we can explore certain archaeological and ecological patterns on Luzon and in 

Southeast Asia to address the question of extinction.  

On Luzon, biologists have observed the resiliency of the living endemic mammal fauna 

in the face of habitat disturbance and presence of non-native species (Heaney et al. 2016a; 

Rickart et al. 2011). Native murids are variably abundant in old growth forests and in disturbed 

habitats. They can also re-colonise areas that have been severely disturbed. This is true for 

ecological generalists (e.g., Crocidura grayi, Bullimus luzonicus and Rattus everretti) that 
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tolerate disturbance well, but also for certain ecological specialists (e.g. Chrotomys spp.). In 

contrast, non-native small mammals (rats and shrews) are often only abundant in human 

settlements and deforested habitats. They become much less common in secondary forests and 

are not recorded in old-growth forests. The non-natives are in fact markers of habitat 

disturbance, as these are the places where they thrive. Certain native murids (particularly the 

New Endemic rodents) appear to compete well with non-natives in disturbed habitats. 

Contrastingly, the non-natives are unable to successfully invade secondary and old growth 

forests where there are established native murid communities (Rickart et al. 2007).  

With Late Holocene extinction records of three lowland small mammals, it appears that 

this overall picture of resiliency needs to be re-assessed. The three species in question – 

Carpomys sp., Crateromys sp. and Batomys sp. – belong to the ‘Old Endemic’ cloud rat clade. The 

Old Endemics are recognized as competitively superior to the New Endemics in natural 

habitats, but it is the latter that fare better in disturbed or anthropogenic habitats (Heaney et 

al. 2016a; Rickart et al. 2011). The living members of Carpomys, Crateromys and Batomys on 

Luzon are ecological specialists presently restricted to montane habitats. In terms of 

reproduction, cloud rats are K-selected species that reportedly give birth to only one or two 

young each year (Heaney et al 2016a). It is very likely that the extinct fossil taxa were also 

slow-breeding species, and this would have contributed to their vulnerability. Their 

disappearance indicates that there were vulnerable native taxa that became recently extinct in 

the Late Holocene, and what appear to remain among the extant community are the more 

resilient taxa. 

 
This phenomenon – whereby susceptible species have long disappeared in places of 

high human population density leaving a fauna consisting of resilient species – has been 

attributed to the effects of an extinction filter (Balmford 1996). In an examination of the 

Holocene extinction record, Turvey and Fritz (2011) have observed that their global data 

patterns support this human extinction filter hypothesis. This scenario is also supported by 

evidence for the  widespread disappearance of large mammal populations from regions of high 

human population density (Cardillo et al. 2005). On Luzon, the recorded extinct taxa are all 

lowland species and human activity appear to be most concentrated in the lowlands. Many 

other Luzon mammals are either montane or elevational generalists (i.e. occurring across 

elevational gradients), including the native pig and deer (Heaney 2001; Heaney et al 2016a). 

This is one possible factor for their observed persistence up to the present day. 
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There are several classes of anthropogenic activities that impact local faunas. In this 

discussion, I focus on the introduction of non-native taxa since archaeological evidence is now 

available for this ecological process. On Luzon, the disappearance of certain small mammals 

appears to coincide with the appearance of translocated non-natives. I propose that there is a 

previously unrecognised palaeohistoric human extinction filter on Luzon. One component of 

this filter relates to predation and competition brought about by human-introduced taxa on 

Luzon in the last few thousand years. This is an ecological event on Luzon that can be 

contrasted to the Palawan case. Whereas macaques and civets are introduced taxa on Luzon, 

these taxa appear to be native to Palawan on the basis of current zooarchaeological evidence. 

The possible impacts of invasive predators and competitors have been documented in various 

Pacific islands (e.g., Pregill and Steadman 2009; Steadman 2006; Towns and Daugherty 1994). 

Among the invasives, rats and carnivores are the major culprits. The Pacific rat (Rattus exulans) 

caused the extinction of numerous bird and invertebrate taxa across east Polynesian islands 

(Liebherr and Porch 2015; Steadman 2006). Introduced rats are also implicated in the decline 

of the New Zealand herpetofauna (Towns and Daugherty 1994). Dogs and rats are also linked 

to the extinction of the moas of New Zealand (Worthy and Holdaway 2002).  

Elsewhere in Wallacea, extinction records of small mammals have also come to light in 

sites from Flores, Timor, Sumba and Alor Islands. On Flores, the Liang Bua sequence 

documents the presence of at least six endemic murid species from five genera (Locatelli et al. 

2012; H. J. Meijer et al. 2010; Musser 1981; G. D. van den Bergh et al. 2009). Two species, 

Papagomys theodorverhoeveni and Spelaeomys florensis, went extinct late during the Holocene. 

Across the Liang Bua sequence, a distinct drop in abundance of giant rats occurs in two levels 

that range in age from 4180 to 3620 BP (Locatelli et al. 2012). Within these levels, introduced 

species are identified: Rattus exulans, Hystrix javanica, Macaca fascicularis, Paradoxurus 

hermaphroditus, and Sus scrofa appear in the sequence. Prior to the introduction of these 

mammals on Flores, the giant rats were the largest Holocene mammals on the island, since the 

endemic stegodon is reported to have gone extinct in the Late Pleistocene.  

On Timor, Aplin and Helgen (2010) describe two extinct giant rats belonging to the 

genus Coryphomys that are found in various excavated sites across Timor. An additional eight 

undescribed murid taxa also went extinct on the island (Turvey 2009). These murid remains 

are said to co-occur with Neolithic artifacts, bones of animal domesticates, and bones of 

commensal murines (Rattus exulans and R. rattus).  On Sumba Island, two extinct giant murids 

have also been identified in Holocene sequences. These are Milimonggamys juliae and 

Raksasamys tikusbesar, which are both described as novel genera and species known only from 

Sumba (Turvey et al. 2017). Lastly, on Alor Island, an extinct giant murid, Alormys aplini, is 
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recorded from the LGM and Holocene levels of Tron Bon Lei rockshelter and Makpan Cave 

(Hawkins et al. 2018; Julien Louys et al. 2018b). An unusually early record of domestic dog is 

also presented in Tron Bone Lei site, dated at ca. 8000 BP. Remains of a viverrid are also 

reported in levels dated from 3600–3200 BP. It is hypothesized that the extinction of the large 

murids on Timor, Sumba and Alor Islands was brought about by increased aridity in the late 

Holocene and the introduction of metal tools that may have accelerated deforestation (Louys 

et al. 2015). The period of the earliest Neolithic introduction is said to coincide with a drier 

climate around the Indian Ocean (Locatelli et al. 2015). 

On the Philippine island of Ilin, fossil records of an endemic cloud rat, Crateromys 

paulus, were recently identified from two rockshelters (Reyes et al. 2017). The Ilin cloud rat 

was only known from a single specimen reported in 1953 and subsequently described by 

Musser and Gordon (1981) as a distinct species. Ilin Island would have been connected to the 

larger island of Mindoro during times of lower sea levels, as the water depth between the two 

islands is down to 24 meters only. The archaeological record confirms the natural presence of 

the cloud rat on Ilin, with numerous fossils derived from layers dating from 11,000 to 500 cal 

BP. The cloud rat is suspected to have become recently extinct (Pritchard 1989). 

Direct predation, introduction of exotic species and habitat transformation are the 

recognized major drivers of extinction in island ecosystems during the Holocene (Wood et al. 

2017). For the Lesser Sunda Islands, habitat transformation through deforestation is the 

hypothesized filter for human-induced extinctions of small mammals (Louys et al. 2015). In 

the case of Philippine cloud rats, available evidence for human hunting in the archaeological 

record is relatively limited. In Minori and Musang Caves, the archaeological context of large 

murids possibly suggests that they were incorporated in the cave assemblages as human prey. 

However, they are comparatively rare in Holocene sequences. Hence, evidence for intensive 

hunting of cloud rats is so far lacking. Across several sites, native deer and pigs are consistently 

the leading target prey, and these taxa are still extant. This contrasts with certain Wallacean 

islands in the Lesser Sundas, where giant rats were the largest native mammals recorded in 

the Holocene. Consequently, these would have also been the largest mammal prey that humans 

would have encountered on these islands. 

In terms of habitat transformation and habitat loss, unequivocal evidence for large-

scale anthropogenic forest disturbance is yet to be demonstrated for the Neolithic or Metal 

periods of Luzon (from ca. 4000 BP). Historical sources indicate that prior to European 

(Spanish) colonization in the 16th century, the Philippines retained about 90% of its forest 

cover (Bankoff 2007). Two Holocene palynological records are available for Luzon (See 

Chapter 2). The 7000-year record from Paoay Lake in northwestern Luzon indicates pine-
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related disturbance in sub-montane forests at ca. 5000 BP (Stevenson et al. 2010). This record 

is westward of the Central Cordillera and does not directly reflect changes in the Sierra Madre 

or Cagayan Valley where the study sites of the thesis are located. Charcoal is abundant 

throughout the Paoay record, but it spikes during this disturbance at around 6500-5000 BP. 

The other palynological record comes from Laguna de Bay, a lake in the southwest section of 

the island (Ward and Bulalacao 1999). The record indicates forest decline at around 5000 BP, 

which parallels with the Paoay record. The results from both studies are interpreted as 

climate-driven changes, possibly during a period of higher temperatures and lower rainfall in 

the mid-Holocene. For the Paoay record, it is suggested that forests appear to have slowly 

recovered in the succeeding 3000 years. It is of interest to note, though, that forest recovery is 

not observed in the Laguna de Bay record; instead, grass and charcoal concentrations increase 

after 2500 BP. There is no palynological evidence from the Cagayan region, but increased 

human presence and activity in the lowlands are evidenced from several Neolithic shell 

midden sites of the valley from ca. 4000 BP (Hung 2005; Hung et al. 2011; Mijares 2005; 

Mijares and Lewis 2009). In Nagsabaran site, intensified settlement is further observed in the 

Late Neolithic occupation layers (ca. 2500 BP), with more than 60 postholes and several 

human burials (Amano et al. 2013).  This increase in human population density in the Cagayan 

Valley is a potential extrinsic variable that affected lowland small mammal populations. 

From the archaeological record of Luzon, it is still unclear whether direct predation 

and habitat loss may have directly diminished lowland cloud rat populations. These are factors 

that need to be explored in future studies. The available evidence points to the possible impact 

of translocated macaques and palm civets, which potentially acted as predators and habitat 

competitors for naïve, slow-breeding and arboreal cloud rats. The introduction of invasive rats 

and shrews also need to be studied and stratified remains from Callao Cave may soon provide 

fossil data on these introduced small mammals (Heaney pers. comm.). 

 

7.5 Conclusion 

 

The faunal records described and assembled here provide the first biostratigraphic sequences 

for the Philippines. These sequences supply the baseline means by which we can assess faunal 

changes through time in the vertebrate fossil record of the archipelago. The changes observed 

primarily come in the form of extinctions of native taxa without replacement (vis a vis faunal 

turnover with replacement) and human-facilitated introduction of invasive species. 

Furthermore, the evidence presented here provides the first archaeological substantiation for 
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the introduction of invasive taxa into the Philippines. On the basis of current evidence from 

Late Holocene sites on Luzon, introduced taxa are not recorded before the presence of pottery 

in archaeological sequences. This indicates that macaques and palm civets were introduced in 

Luzon not earlier than the Neolithic. Direct dating on macaque teeth from Minori cave provides 

a terminus ante quem for its introduction at 1827–1706 cal BP. The archaeofaunal evidence for 

translocation is important, since for a long time, biologists studying the Philippine fauna have 

categorized the macaque and palm civets occurring in the oceanic Philippines as native taxa. 

Substantiation of translocation (i.e. which species are native and which are non-native) is also 

important in understanding the evolution and modern assembly of Philippine faunal 

communities. 

As has been shown in this chapter, the timing and trajectories of extinctions differ 

between the two faunal regions and among taxa. On Palawan, the last occurrence records of 

two extinct large mammals (tiger and Rusa deer) are in the Early Holocene. On the other hand, 

the hog deer (Axis) persists into the Late Holocene on Palawan but now only retains a relictual 

distribution in the small Calamianes Islands. On Luzon, lowland small mammal extinctions are 

identified in the Late Holocene. Early Holocene extinctions on Palawan were likely driven by 

island-wide environmental and climatic changes, possibly compounded by human predation. 

In the Late Holocene, palynological records on Luzon do not show indications of drastic 

climatic events that might have driven extinctions. Instead, it appears that a human extinction 

filter is in operation. As discussed above, the cloud rats appear to have evolved in the oceanic 

Philippines without native mammalian carnivores or arboreal primates, and this likely was an 

important factor in the evolutionary diversification of the Muridae. The introduction of non-

native viverrids and macaques would have also initiated ecological interactions to which the 

native murids were naïve. As noted above, it is suspected that civets are the main mammalian 

predator of native small mammals on Luzon (Heaney et al. 2016a). Interactions between native 

small mammals, on the one hand, and viverrids and macaques, on the other hand, have not 

been given much attention by modern biologists especially since the latter were previously 

thought of as native inhabitants. The archaeological data presented suggests that the 

introduction of such invasive taxa possibly increased extinction risk for certain vulnerable 

native small mammals with K-selected life history strategies. 
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Chapter 8 Taphonomy and Subsistence in Philippine Faunal 

Records 

 

8.1 Introduction 

 

This chapter covers the taphonomic and human subsistence data for Pilanduk, Minori and 

Musang Caves. The chapter is divided into eight sections. The methods used in the taphonomic 

analyses are described in Section 8.2. The taphonomic analyses are presented sequentially for 

each assemblage (Sections 8.3 to 8.5). These analyses aim to draw out signatures of human 

behaviour and foraging practices as reflected in the archaeofaunal assemblages. A summary of 

taphonomic results is provided in Section 8.6. In Section 8.7, the three sites are compared with 

published zooarchaeological records in Luzon and Palawan in order to assess species 

representation and vertebrate subsistence data across time. Lastly, in Section 8.8, the 

taphonomic and subsistence data are contextualised within diachronic perspectives on 

indigenous ecological knowledge systems and tropical foraging histories. 

 

8.2 Methods for Vertebrate Taphonomy 

 

The taphonomic workflow (Figure 8.1) employed here follows a combination of the 

‘multivariate taphonomy’ framework by Bar-Oz and Munro (2004) and the social 

zooarchaeology framework by Orton (2012). For each bone assemblage, a descriptive 

summary of taphonomic observations is provided, with a particular focus on bone surface 

modifications. This forms Stage 1, or the descriptive stage, as suggested by Bar-Oz and Munro 

(2004). The bone modifications are broadly categorised into two: abiotic processes and biotic 

processes. Examples of abiotic processes include weathering, water action, and mineral 

staining. Biotic processes include carnivore action, rodent gnawing and various imprints of 

human behaviour.  

The zooarchaeological counting units (NISP, MNE, MAU) used here document 

frequencies of skeletal elements found in the assemblages (see Chapter 3). These frequencies 

provide information on two basic taphonomic questions: differential prey transport and 

differential survivorship of bone. Before drawing out any interpretations on potential 

transport decisions made by human (or other) agents, an assessment of the role of bone 
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density-dependent attrition must be conducted. This form of attrition pertains to the 

degradation and loss of skeletal parts due to their structural density (Lyman 1994: 252). This 

analysis forms Stage 1 in Orton’s (2012) framework and Stage 2.2 of the analytical phase in 

Bar-Oz and Munro (2004). To this end, the method used here involves analysing the 

correlation of bone volume density values with skeletal element survivorship. Estimation of 

bone mineral density (BMD) has been conducted for certain taxa using photon densitometry 

(PD) (e.g. Lyman 1984) or quantitative computed tomography (CT) (Lam et al. 1999). CT 

scanning is currently recognised as the most accurate estimator of BMD since it can represent 

the actual external shape of a skeletal element and the internal shape of voids through 

composite three-dimensional imaging (Lam and Pearson 2004, 2005; Lam et al. 1999). In this 

study, the taxon of interest is Rusa (sambar) deer. Ideally, deer taxa from lower latitudes or 

tropical environments should be used as local proxies due to the differing ecologies of lower- 

and higher- latitude species. However, BMD studies on Asian cervids or tropical cervids have 

not yet been conducted. The survivorship analysis thus opts for data available for confamilial 

taxa. The proxy primarily used here is  BMD data for Rangifer from Lam et al. (1999). Data for 

the North American deer Odocoileus are also available from Lyman (1984); however, this PD 

study assumed a rectangular cross section for bone scan sites and consequently has less 

accuracy. The scan sites used from Lam et al. (1999) are the same as those from Lyman (1984). 

The assumption behind this type of analysis is that when skeletal part frequencies strongly 

correlate with BMD, the composition of the assemblage is influenced by density-mediated 

destruction. Bar-Oz and Munro (2004) advise that when such a correlation is found, further 

detailed taphonomic analysis should be carried out to determine the causes of attrition.  

Figure 8.1 Taphonomic workflow showing the sequential stages of the analysis.  
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Once the variable of density-mediated attrition has been assessed, the analysis moves 

to the next stage, which involves anatomical representation. This is the suggested sequence in 

Bar-Oz and Munro (2004), falling under Stage 2.3, but it forms Stage 5 in Orton’s framework. 

Stage 2 in Orton’s framework involves the analysis of peri-depositional damage. However, in 

the taphonomic workflow implemented here, this is already covered under the summary of 

taphonomic variables. Following Bar-Oz and Munro (2004), I find that there is logical 

continuity in assessing skeletal part frequencies once density-mediated attrition is assessed 

per taxon. The analysis of skeletal part frequencies across a site is one of the standard ways to 

investigate human strategies of animal food resource use. Anatomical frequencies were 

assessed using NISP, MNE, MAU and %MAU. NISP and MNE values are not corrected for 

symmetry or for how often an element occurs in the skeleton. To account for these factors, 

MAU and %MAU are useful to show which body parts are present or absent in an assemblage. 

The next stage of analysis involves breakage and fragmentation patterns. This forms 

Stage 3 in Orton’s (2012) framework and falls under Stage 2.3 in the analytical phase proposed 

by Bar-Oz and Munro (2004). Fragment size class was recorded for each specimen, which were 

typically done in 10-mm increments (i.e. < 20 mm, 20-30 mm, 30-40 mm, etc.). The mode of 

fragmentation was documented primarily using the Freshness Fracture Index devised by 

Outram (2001, 2002) for long bone fragments. This index combines methods from two 

sources. The first is bone fracture criteria initially developed by (Johnson 1985). The second 

involves criteria developed by Villa and Mahieu (1991) to look at fracture angle, fracture 

outline and fracture edge texture. The FFI uses a scoring system of 0 to 2 for each of the three 

fracture criteria: angle, texture and outline. Each long bone is scored against these set of 

criteria. The combination of scores for each criterion can give a total score ranging from 0 to 6. 

Aggregated scores from 0 to 2 would suggest a pattern of fresh breakage while scores from 5 

to 6 predominantly imply dry breakage. The method allows for taphonomic data to be 

generated from indeterminate fragments and allows for the consideration of what otherwise 

may be analytically absent specimens. 

To further document patterns related to anatomical representation and fragmentation, 

analysis of animal body-part utility indices is also conducted. This draws from the pioneering 

work of Binford (1978) of developing indices based on measurements of food tissues (meat, 

marrow, fat and grease) associated with skeletal elements of caribou and sheep. These indices 

provide models about how different subsistence strategies and transport decisions would be 

reflected in the frequencies of skeletal parts. Among other authors, Metcalfe and Jones (1988) 

scrutinized the methodology of deriving utility indices, and it is their Food Utility Index (FUI) 

for caribou that is used as a proxy in this research.  
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The last stage in the analysis replicates Stage 4 in Orton’s framework, which is the 

analysis of visible human modifications. These include modifications involved in butchery, 

cooking, and discard. Zooarchaeological investigations of anthropic modifications typically 

focus on postmortem processes of butchery. Lyman (1987: 252) defines butchery as “the 

reduction and modification of an  animal carcass into consumable parts”. Under this definition, 

Lyman also clarifies that ‘consumable’ refers to all forms of carcass products and that butchery 

incorporates a series of activities directed towards the extraction of all these consumable 

products. Butchery marks recorded include cutmarks, chop marks and impact scars, whenever 

applicable. Cutmark identification follows criteria set by Dominguez-Rodrigo et al. 2009, 

Fernandez-Jalvo and Andrews (2016), Olsen and Shipman (1988) and Shipman and Rose 

(1983). 

Heat alteration of bones is another common human modification observed in 

assemblages. Burning of bones changes their colour in gradations, from shades of brown, to 

black, grey and white. Due to the ambiguity in identifying burnt brown-coloured bones, 

recording of burnt bones was limited to bones that were coloured black, grey and white. These 

correspond to carbonised and calcined bones. Recording of colour changes on bone due to heat 

alteration follows recommendations by Fernández-Jalvo and Andrews (2016), Schmidt and 

Uhlig (2012) and Stiner et al. (1995). An estimate of the percentage of bone surface burning 

(i.e. area of burnt bone surface per specimen) was also recorded in 25% intervals. 

 

8.3 Pilanduk Cave Taphonomy 

 

The taphonomic analysis for Pilanduk Cave focuses on the Trench 3 sequence from the 2016 

excavations. Taphonomic data are aggregated and presented using the four major 

archaeological contexts in the site – contexts 111, 112, 117 and 118 (see Table 4.5). These 

contexts represent Layers II to IV. In terms of age, two charcoal samples from context 112 

yielded dates of 20,468-20,034 and 22,004-21,540 cal BP (-46 and -52 cm from LDP, 

respectively). As discussed in Chapter 4, the stratigraphic compositions of 111 and 112 are 

very similar, with both consisting of dark greyish silt, extensive inclusions of ash, burnt bones 

and chert flakes. These two contexts comprise Layer II of the site. Context 111 represents the 

upper portion of Layer II, which contains intrusive earthenware pottery, while context 112 

represents the lower portion of the layer. In context 117, one charcoal sample at the base of 

the layer yielded a 14C age determination of 24,995-24,301 cal BP ( -90 cm below LDP). 

However, in terms of its sediment and artefact composition, context 117 is actually very similar 
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to context 111 and context 112. Because the sample for context 117 was at the base of the 

layer, this date may likely represent an age for context 118 (Layer IV). The age determination 

for the context 117 sample is actually an inversion, as its range slightly exceeds the dates from 

the underlying context 118; however, the ages do overlap. Three dates are available for context 

118 and were taken at a depth of -98 to -113 cm below LDP: 23,785-23,140 cal BP, 23,875-

23,295 cal BP and 24,440-23,933 cal BP. Context 118 has a markedly different composition 

from contexts 111, 112 and 117, with much less evidence for burning based on the sediments 

and the faunal remains, as well as fewer lithic tools. 

Pilanduk Cave presents a highly fragmented but relatively well-preserved LGM 

assemblage in terms of anthropic bone surface modifications. As stated in Chapter 5, a total of 

7826 bone fragments were analysed from the 2016 excavation. Eighteen percent of the 

assemblage were identifiable to taxon (family or lower). Nearly half of the indeterminate 

fragments (2258 out of 4583 fragments) consisted of large mammal long bone shaft fragments. 

The rest consisted of indeterminate cortical and spongy bone fragments that were mostly less 

than 20mm in size. Although not identifiable to actual element, the long bone fragments still 

yielded taphonomic information regarding butchery and fracturing patterns. In the succeeding 

sections for all three cave sites, NISP (number of identified specimens) counts are used for 

counts of bone fragments that were identified to taxon and/or element, whereas TNF (total 

number of fragments) is the abbreviation used for counts that include both indeterminate and 

identified fragments. 

 

8.2.1 Abiotic Processes  

 

Bone surface modifications caused by abiotic agents appear to have relatively reduced effects 

on the bone assemblage of Pilanduk Cave (Table 8.1). Only 4.6% of the total number of bone 

fragments displayed signs of weathering. Among weathered fragments, 94% of these were 

recorded with fine lines and spalling at Stage 1 (following the scheme of Behrensmeyer 1978). 

This suggests that for the LGM layers, there was relatively minimal sub-aerial exposure before 

burial of the bones in the cave.   
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Table 8.1 Summary of taphonomic data for Pilanduk Cave, expressed as percentages of TNF (total 
number of fragments) per layer. % CaCO3 pertains to carbonate concretions and % Mn pertains to 
manganese oxide staining. % Helical refers to bone fragments with helical fractures and is computed 
based on total number of long bone fragments. See taphonomic data in Appendix C. 

Context TNF 
% 

Weathered 
% 

Abrasion 
% 

CaCO3 
% 

Mn 
% 

Gnawed 
% 

Burnt 
% 

Cutmarks 
% 

Helical 

surface 261 0 0 46.0 0.8 0 13.4 <0.5 46.2 

111 2174 12.1 8.7 <0.5 11.1 <0.5 45.8 0.7 67.4 

112 2322 3.4 2.3 <0.5 4.8 <0.5 39.9 0.6 59.5 

117 2561 0.5 0.1 <0.5 0.9 <0.5 46.2 1.5 17.0 

118 506 1.2 0 0 0.4 <0.5 27.9 0 8.1 

 

 

There is also minimal presence of carbonate concretions on the bones across the 

Trench 3 sequence. In comparison to other trenches in the cave site, there are also minimal 

concretions found in Trench 4 remains and from the 1979 excavations. These trenches are 

located in the centre and south portion of the cave. One section of the cave site does present 

bones with heavy concretions – the northern portion of the cave platform where a large 

speleothem pillar is located and surrounded by a flowstone. This is the area were the complete 

tiger metacarpal was found among redeposited surface remains.  Manganese oxide staining, in 

the form of black coloration, is also observed in a small percentage of the remains.  

The effects of sub-aerial weathering and mechanical abrasion across the Trench 3 

sequence are relatively minimal, but amongst the layers, they are most prevalent in context 

111 (Layer II). This is likely because for a long period of time after Pleistocene occupations, 

this level would have been the topmost layer of the cave platform. As described in Chapter 4, 

Layer I of the site constitutes a recently deposited level of sediment comprised of treasure 

hunters’ backfill interspersed with remains from Metal Period burial activities. 
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8.2.2 Biotic Processes 

 

The effects of biological agents, particularly humans, have left extensive evidence for bone 

surface modifications. These are mainly evident in the effects of burning and fragmentation 

patterns. The predominant surface colour of bones from these levels is medium to dark reddish 

brown, which is a possible indication of scorching. However, due to the ambiguity in recording 

heat-treated brown-coloured bones, this feature was not quantitatively recorded. Instead, 

evidence for charring and calcining was tallied. Burning is a significant process in the Pilanduk 

assemblage, especially in contexts 111, 112 and 117 (Layers II and III). Carbonized and 

calcined bones constitute 42% of the entire Pilanduk Cave assemblage. This taphonomic 

alteration is further discussed in Section 8.2.6. on human modifications. 

There is very little evidence for gnawing in the Pilanduk Cave assemblage. Only 13 

bone fragments across the sequence had signs of gnawing and carnivore tooth marks, 

accounting for only 0.16% of the analysed assemblage. Definitions for tooth marks (pits, 

punctures and furrowing) follow Binford (1981), Delaney Rivera et al. (2009), Dominguez-

Rodrigo and Piqueras (2003), Haynes (1983), and Sala and Arsuaga (2018). Pits are tooth 

marks described as circular to oval depressions resembling the shape of a tooth crown or cusp. 

When a tooth mark penetrates the cortical bone, this is categorised as a puncture. Furrows are 

broad gouges that result from gnawing action and involves the extraction or absence of 

portions of the cancellous bone tissue.  
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Figure 8.2 Deer bones from Pilanduk Cave that show evidence for large carnivore gnawing: 
Pil-5371 proximal femur in anterior (a) and posterior (b) views, with a canine pit on the 
femoral neck; Pil-5823 proximal tibia in anterior (c) and posterior (d) views, with a canine 
pit on the antero-lateral end; and Pil-5392 metatarsal shaft in anterior (e) and posterior (f) 
views. 
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In the Pilanduk assemblage, of interest are three deer bone fragments from context 

111, 112 and 117 that show distinct evidence of tooth marks and furrowing (Figure 8.2). A 

proximal femur fragment (Pil-5371; Figure 8.2 a and b) bears the following marks: a) pit on 

the anterior portion below the greater trochanter; b) furrowing on the proximal border 

resulting in the removal of the greater trochanter; c) furrowing on the posterior side below the 

neck; d) furrowing and gnawing damage on the distal-most end of the fragment that possibly 

contributed to the breakage and eventual detachment of the proximal end from the rest of the 

femoral shaft. A proximal tibia fragment (Pil-5823; Figure 8.2 c and d) bears gnawing damage 

and furrowing across the anterior portion of the epiphysis, as well as a pit on the proximo-

lateral border of the epiphysis. A metatarsal fragment (Pil-5392, Figure 8.2 e and f) bears heavy 

gnawing damage that appears to have resulted in the removal of the proximal and distal ends 

and leaving only the shaft cylinder. 

In Haynes’ (1983: 169-170) neo-taphonomic description of large felid (lion, tiger and 

jaguar) gnawing, the main damage produced by large cats on the femur consists of the biting 

off of the greater trochanter and undercut biting of the femoral head. On the tibia, the proximal 

end or tibial crest is occasionally furrowed perpendicular to the element's long axis and the 

crest may also be bitten off.  These descriptions are corroborated by the study of Parkinson et 

al. (2015) on tiger feeding and gnawing, where the greater trochanter of the femur is prone to 

destruction and the proximal end of the tibia is typically not well preserved. These descriptions 

are consistent with the gnawing damage found on the Pilanduk deer femur and tibia fragments 

described above. In certain cases, tooth mark dimensions in certain bone regions can also 

differentiate the taxon size of the carnivore, particularly for marks on long bone epiphyses 

(Delaney Rivera et al. 2009; Dominguez-Rodrigo and Piqueras 2003). At the time of secondary 

taphonomic analysis, only the femur fragment (Pil-5371) was available for measurement, 

although it was originally observed that the size of the tooth pit on the tibial fragment (Pil-

5823) was of a similar size (Table 8.2). The length (major axis) of the pit on the femur fragment 

is 6.25 mm, while its breadth (minor axis) is 4.95 mm. Dominguez-Rodrigo and Piqueras 

(2003:1389-1390) conclude that pit lengths on epiphyseal sections of bone can be used to 

reliably establish three tooth-marking groups:  

1.) marks under 4 mm are observed in all carnivores but lions,  

2.) marks between 4-6 mm are made by middle-sized and large-sized carnivores, and  

3.) marks above 6 mm are made by large carnivores.  

For pantherines, comparative measurements for epiphyseal tooth pits are available 

only for lions, which is in the same taxon size range as the tiger (Table 8.2; Delaney Rivera et 

al. 2009: Table 3; Dominguez-Rodrigo and Piqueras 2003: Table 1).  The tooth pit length 

measurement on the Pilanduk deer femur slightly exceeds 6 mm, suggesting that it was 
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potentially made by a large carnivore. On Palawan, the only candidate for a large carnivore is 

the tiger. A canid has been recorded in the Terminal Pleistocene levels of Ille Cave, which would 

represent a middle-sized carnivore. However, this species was not identified in the Pilanduk 

assemblage and hence the LGM presence of a canid on Palawan cannot be confirmed. The only 

carnivore identified in Pilanduk is the tiger. The gnawing modifications and tooth pit 

dimensions on the femur and tibia specimens described above suggest that the gnawing 

damage was made by a large carnivore in the size range of the tiger. The gnawing damage 

displayed on the deer metatarsal is more typical of canid gnawing rather than large felid 

modifications (Parkinson et al. 2015). However, given the small sample and the absence of 

canid fossils in the LGM assemblage, canid gnawing cannot be confirmed. 

 

Table 8.2 Measurements (in mm) for epiphyseal tooth pit dimensions for femur specimen (Pil-5371) 
and comparative pantherine and canid data from Dominguez-Rodrigo and Piqueras 2003 (Source A) 
and Delaney Rivera et al. 2009 (Source B). N = number of specimens measured, s.d. = standard deviation.  

Element     Major axis (length) Minor axis (breadth)  

proximal femur epiphysis Pil-5371 6.25   4.95   

Comparative metrical data for tooth pits on epiphyses 

Taxon Source N Major axis Minor axis 

   mean s.d. mean s.d. 

Panthera leo A 13 6.5 1.08 4.32 0.86 

 B 5 4.94 1.71 3.95 1.58 

Canis familiaris  A 23 4.93 2.02 3.34 1.71 

Canis spp. (jackals) A 40 3.5 0.7 3.55 0.56 

Canis latrans B 10 2.76 1.18 1.86 0.905 

 

These fragments have clear evidence for carnivore-induced bone modification, 

although most of the assemblage does not show further evidence for tooth marks or other 

carnivore gnawing damage. The scarcity of gnawing occurrence indicates that tigers were not 

significant bone accumulators in the cave and nor did they scavenge substantially over human 

refuse left in the cave. The latter may be partly due to the fact that bone refuse was burned in 

situ in the cave. Porcupines also do not appear to have contributed to the bone accumulation 

given the lack of evidence for rodent gnawing. 
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8.2.3 Bone Density and Attrition 

 

Before proceeding to further analysis of anthropic modifications, evidence of density-

mediated attrition must first be assessed. Values for %MAU (= % survivorship) are plotted 

against published bone mineral density values. This method is taxon-specific, and in the 

Pilanduk Cave assemblage, the method is applicable only to the sample size of cervids. In the 

absence of bone density data for Asian or tropical deer species, the data for Rangifer and 

Odocoileus are used as proxies in this study. Both species are confamilial and represent the 

best proxies compared to using artiodactyls from lower latitudes that are non-cervids. Class D 

bone mineral density values for Rangifer from Lam et al. (1999, 2004) represent the most 

precise measures for the Cervidae. The only other published density data for cervids available 

are from the American taxa Odocoileus as published by Lyman (1984). This is potentially more 

appropriate as a proxy since it is a cervid that lives in lower latitudes compared to the 

circumpolar Rangifer. However, because the published data for Odocoileus consist of class A 

density data that have less accurate estimation of cross-sectional shape of bones, the Class D 

values for Rangifer are deemed more precise. The correlation coefficient used in the analysis 

is the non-parametric rank-order Spearman’s rho (rs). The analysis for density-mediated 

attrition was conducted two ways: using all available scan sites and using maximum density 

scan sites only. The latter refers to the maximum bone mineral density value recorded for a 

particular MAU category (see Lyman 1994:257). The analysis was conducted per context and 

with 111, 112 and 17 aggregated as one stratigraphic unit (‘combined’ in Table 8.3). When 

using class D values for Rangifer, a correlation is not observed between survivorship and bone 

mineral density in contexts 111, 112 and when all contexts are combined (Figure 8.3). In 

context 117, a moderate correlation is observed between the two variables.  When using Class 

A bone density data from Odocoileus, non-significant correlations are observed in contexts 111, 

112 and 117. When using ‘combined’ data, a weak correlation is observed (Figure 8.3). Caution 

is advised, nonetheless, when using Class A density values as proxies (Lam et al. 2004). In the 

analysis using maximum density scan sites, non-significant correlations appear across all 

categories. 
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Figure 8.3 Bone survivorship (as %MAU) versus bone mineral density values for aggregated 
counts of cervid remains in Pilanduk Cave. The density values are derived from Class D data 
for Rangifer from Lam et al. (1999) (top) and Class A data for Odocoileus from Lyman (1984) 
(bottom). The correlation coefficient Spearman’s rho (rs) is shown with the p-value (p) and 
degrees of freedom (df). See Appendix D for data. 
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Table 8.3 Correlation coefficients (Spearman’s rho, rs) between published cervid bone density values 
(Lam et al. 1999 and Lyman 1984) and % survivorship (=%MAU) for cervids in Pilanduk cave. 
‘Combined’ indicates aggregation of bone counts for contexts 111, 112 and 117. Analysis was conducted 
using all scan sites and using maximum density scan sites (see Lyman 1994: 257). See Appendix D for 
data. 

  all scan sites 

context 
Lam et al. 1999 Lyman 1984 

rs p-value rs p-value 

111 -0.114 0.501 -0.017 0.923 

112 0.018 0.906 0.137 0.354 

117 0.474 0.022 0.457 0.282 

combined 0.034 0.784 0.273 0.028 

          

  maximum density scan sites 

context 
Lam et al. 1999 Lyman 1984 

rs p-value rs p-value 

111 0.080 0.795 -0.287 0.342 

112 -0.022 0.934 0.181 0.473 

117 -0.086 0.812 0.474 0.167 

combined -0.112 0.659 0.154 0.541 

 

A note must be made regarding the taxonomic and analytical absence of elements such 

as vertebrae and ribs that are difficult to identify to taxon. This can possibly help to clarify the 

moderate correlation observed in context 117 (using Class D data from Lam et al. 1999) and in 

the ‘combined’ analysis (using Class A data from Lyman 1984). Across all levels, the % 

survivorship of low-density elements such as vertebrae and ribs is all relatively low due to the 

fact that such elements are difficult to identify to taxon, especially when fragmented. The MAU 

and %MAU values for such elements are actually underestimated. Because many of these 

specimens were not identifiable to taxon, these were not included in the bone density analysis. 

Density-mediated attrition is known to preferentially destroy these less dense, spongy axial 

elements. However, such elements are actually present in significant numbers, including in 

context 117. NISP counts are recorded for large mammal rib and vertebrae in contexts 111, 

112 and 117 (see Table 8.5). Note that they are not recorded as cervids but are under the ‘large 

mammal category’.  

Overall, cervid skeletal abundance and survivorship are not significantly affected by 

density-mediated attrition in the whole stratigraphic unit, when using Class D deer data from 

Rangifer and when using maximum density scan sites. When broken down into contexts, 

density-mediated attrition is not significantly observed in contexts 111 and 112.  In context 

117, a moderate correlation is observed, although as will be shown in the next section, 
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elements across the entire artiodactyl skeleton (including ribs and vertebrae) are also present 

in this context.  

 

8.2.4 Anatomical Representation 

 

As described in Chapters 5 and 7, cervids (n=1365) comprise the dominant taxon in Pilanduk 

Cave at 16% of total NISP. Wild pigs account for only 1% of the assemblage (n=91) and all other 

identified taxa account for less than 1%. Unidentified large mammal specimens account for 

50% of the assemblage, and these remains are predominantly in the size range of the large 

cervid, Rusa sp. The succeeding taphonomic analyses will focus on the cervids and large 

mammal remains at the site. 

Frequencies of cervid skeletal elements in contexts 111, 112 and 117 show that entire 

deer carcasses were brought into, processed, consumed and disposed of in the cave (Table 8.4, 

Figure 8.4). MNI counts show there are at least three individuals in context 111, seven 

individuals in context 112, five individuals in context 117 and at least two individuals in 

context 118.  When 111, 112 and 117 are aggregated together, an MNI of 14 is recorded based 

on astragali counts. Appendicular elements appear to be well-represented (Figure 8.4), with 

forelimbs and hindlimbs equally represented in contexts 111, 112 and 117. Axial elements 

such as vertebrae and ribs appear to be underrepresented in the NISP and MNE counts for 

cervids in Table 8.4 and in Figure 8.4. However, these elements are actually well-represented 

in the large mammal counts for these three contexts, as shown in Table 8.5. Hence, these low-

density, high meat-bearing elements are also present in the sequence.
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Table 8.4 Cervid skeletal element representation by context (111, 112, 117, 118) in Pilanduk Cave. MNE, MAU and MNI are calculated for the whole element.  

 

Element 
111 112 117 118 

NISP MNE MAU MNI NISP MNE MAU MNI NISP MNE MAU MNI NISP MNE MAU MNI 

antler   18 1 \ 1 25 1 \ 1 16 1  1 8 1 \ 1 

cranial   4   2 1   1 14   2 4   1 

maxilla   2 1 0.5 1 1 1 0.5 1 2 2 1 2 5 2 1 2 

mandible   7 3 1.5 3 11 9 4.5 5 16 7 3.5 4 1 1 0.5 1 

vertebra atlas      2 1 1 1 4 2  2 1 1  1 

 axis 2 1 1 1 2 1 1 1 1 1 1 1     

 cervical 6 4 0.9 \ 3 2    4 4        

 thoracic      2 2    4 4        

 lumbar 4 4 0.7 \ 4 4    11 11        

innominate ilium      3 2 1 1 3 2 1 2     

 ischium      1 1 0.5 1 1 1 0.5 1     

sacrum   2 2 2 2               

scapula proximal           5 5 2.5 4 1 1 0.5 1 

humerus proximal 3 

2 1 2 

2 

6 2.5 4 

2 

5 2.5 4 
 

1 0.5 1  shaft  1 5  

 distal 1 4 4 1 

radius proximal 5 

3 1.5 3 

10 

10 5 6 

5 

5 2 3 

1 

1 0.5 1  shaft 3 3 4  

 distal 1 2 3  
ulna proximal 1 

2 1 2 

11 

11 5.5 6 

3 

3 1.5 2 
 

   
 shaft   2  

 distal 2  3  
metacarpal proximal 5 

5 2.5 3 

7 

7 3.5 4 

5 

5 2.5 3 

1 

2 1 2  shaft 1 1 5 1 

  distal 1 7 1 1 
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Table 8.4 continued. 

 

Element 
111 112 117 118 

NISP MNE MAU MNI NISP MNE MAU MNI NISP MNE MAU MNI NISP MNE MAU MNI 

femur proximal 2 

3 1.5 3 

8 

5 2.5 5 

10 

10 2.5 5 

5 

3 1.5 2  shaft  2 4  

 distal 3 1 4  
tibia proximal  

3 1.5 3 

2 

9 4.5 5 

1 

6 3 3 
 

2 1 2  shaft 2 10 11 1 

 distal 3 5 1 1 

metatarsal proximal 4 

5 2.5 3 

4 

4 2 3 

4 

4 2 2 
 

   
 shaft 6 5 14  

 distal 2    

metapodial distal      7 4 \ \ 8 3 \ \     

metapodial shaft 1 1                  

patella   2 2 1 2 2 2 1 2 1 1 0.5 1     

astragalus   6 5 2.5 3 10 10 5 7 0         

calcaneus   2 2 1 2 6 5 2.5 4 2 2 1 1     

cuboid   1 1 0.5 1 5 5 2 3 3 3 1.5 2 1 1 0.5 1 

lunate   1 1 0.5 1 2 2 1 2 6 5 2.5 5     

magnum        2 2 1 1 3 3 1.5 2 1 1 0.5 1 

scaphoid   2 2 1 2 5 5 2.5 3 3 3 1.5 2     

unciform             4 4 2 3     

phalanges proximal 13 10 1.25 \ 22 17 2.125 \ 25 14 1.75   1 1 0.125 \ 

 intermediate 12 10 1.25 \ 14 8 1 \ 18 10 1.25   2 2 0.25 \ 

  distal 9 9 1.125 \ 16 16 2 \ 12 11 1.375   2 2 0.25 \ 
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Table 8.5 NISP counts for large mammal elements per context in Pilanduk Cave that are not 
identifiable to taxon. 
 

Element 111 112 117 118 Total 

cranial 41 11 69 7 128 

maxilla   1  1 

mandible 1  1  2 

vertebra 117 187 245 72 621 

rib 216 198 389 46 849 

scapula  5 16 3 24 

hum 3 2 3 2 10 

radius 1 1 5  7 

ulna    2 2 

innominate  1 2  5 

femur 4 7 2 1 14 

tibia 2 1 1  4 

diaphyses 563 583 979 133 2258 

calcaneus 1 2   3 

1st phalanx 1    1 

3rd phalanx   1     1 

 

 

Figure 8.4 Skeletal element frequencies for cervids in Pilanduk Cave shown as %MAU for each context 
(111, 112, 117 and 118). See Table 8.4 and Appendix D for data.  
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To investigate selective transport of deer body parts, %MAU are compared against a Food 

Utility Index (FUI). This method was first developed by Binford (1978) to predict animal carcass 

transport decisions and subsequently refined by other authors (e.g. Metcalfe and Jones 1988). 

The FUI (also MGUI, or modified general utility index) is a combination of meat, marrow and 

grease indices. The analysis involves tallying counts per skeletal element portion against 

published FUI values per element for a particular taxon.  The correlation between the two sets of 

values are then analysed, and a positive correlation potentially indicates transport decisions by 

human hunters.  As a proxy for the Cervidae, FUI values produced by Metcalfe and Jones (1988) 

for caribou were used and correlation coefficients are shown in Table 8.6 (See Table 8.4 and 

Appendix E for data).  There is presently no other cervid taxon available with published FUI data. 

Analysis of the two variables shows no significant correlation across contexts 111, 112 and 117. 

This indicates that differential transport of high-utility elements was not a significant factor in 

the bone accumulation across these levels. 

Table 8.6 Correlation coefficients between published Food Utility Index values for caribou (Metcalfe and 
Jones 1988) and % survivorship (= %MAU) for cervids in Pilanduk cave. See Table 8.4 and Appendix E for 
data. 

context 
Spearman’s 

rho p-value df 

111 -0.3538 0.116 17 

112 -0.1497 0.485 21 

117 0.0358 0.871 21 

 

8.2.5 Fracturing and Fragmentation 

 

Patterns of bone fragmentation and fracturing provide insights into butchery processes in the 

site. Preservation of green breakage is evident across contexts 111, 112 and 117 based on 

unweathered, uneroded and sharp fracture edges of most long bone specimens (Figure 8.5). In 

contexts 111 and 112, a large percentage of helical (=spiral) fractures is observed on long bone 

fragments (Table 8.7). In context 111, 67% of long bone specimens show helical fractures, while 

59% are observed for context 112.  In context 117, only 17% of long bone fragments retained 

helical fractures. In the deepest cultural level, context 118, the presence of helical fractures is 

even more reduced at 8%.  As described above, there is minimal evidence for carnivore gnawing. 

This suggests that the fresh fractures are more likely to be human-induced rather than due to 

carnivore ravaging. The fact that the bones are ubiquitously mixed with numerous chert flakes 

across contexts 111, 112 and 117 also implicates human action rather than other factors.  Impact 

scars were also observed on many long bones, although these were unfortunately not consistently 
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recorded during the analysis. Based on the minimal counts recorded, 2-3% of long bone 

fragments across contexts 111, 112 and 117 have impact scars. These are likely underestimations 

of actual occurrence of impact scars in these contexts. Fracture patterns and impact zones on the 

ends of long bones in Pilanduk Cave are very similar to those observed by Binford (1981) on 

bones that were derived from marrow-cracking activities (Figure 8.5). 

 

 

 

Figure 8.5  Deer bones from Pilanduk Cave showing helical fractures and butchery marks in the 
form of cutmarks (cm) and chop marks: a) Pil-5413 proximal tibia (anterior) and midshaft with cm 
(context 112); b) Pil-6232 frontal bone fragment (dorsal) with chop marks on the base of pedicle 
(context 118); c) Pil-5645 distal humerus (medial) with cm on medial side (context 112); d) Pil-
6156 distal humerus (anterior) with cm on medial side (context 117); e) Pil-5806a proximal 
metacarpal (anterior, context 112); f) Pil-5806b distal metacarpal (posterior, context 112).  
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The Freshness Fracture Index (Outram 2001; 2002) was used to further characterise 

green/fresh breakage and identify potential patterns of marrow and grease exploitation. Apart 

from the presence of helical fractures (under the fracture type criterion), fracture angle and 

fracture edge are also recorded under this method. These three criteria follow the methodological 

prescriptions of Villa and Mahieu (1991) for the assessment of fresh breakage. The FFI was 

recorded for long bone fragments in the assemblage, and FFI scores range from 0 to 6. Low FFI 

scores (0 to 2) indicate fresh fracturing, while high FFI scores (5 to 6) indicate predominantly 

post-depositional dry breakage. In contexts 111 and 112, at least 80% of long bone fragments had 

FFI scores less than or equal to 3. This potentially indicates the occurrence of fresh fracturing for 

the purpose of processing within-bone nutrients. The actual counts and proportion of FFI scores 

are shown in Table 8.8 and Figure 8.6, indicating that most scores in contexts 111 and 112 are at 

‘3’. In context 117, most FFI scores lie at ‘4’. Outram (2001) notes that mid-range FFI scores (i.e. 

3 and 4) suffers from a degree of equifinality. The FFI scores for these three contexts indicate that 

the phenomenon of fresh breakage is present, but other factors must be considered to 

substantiate marrow or grease processing in the site. 

Table 8.7 Summary of long bone fracture data in Pilanduk Cave. TNF long bone = total number of long bone 
fragments, N helical = long bone fragments with helical fractures, % helical = percentage of long bone 
fragments with helical fractures, % FFI = percentage of long bone fragments with the range of FFI scores. 

 

Context  
TNF          

long bone N helical 
% 

helical 
% FFI  
0-2 

% FFI  
3-4 

% FFI  
5-6 

surface 91 42 46.2 68.5 25.9 5.6 

111 688 464 67.4 8.5 88.7 2.8 

112 795 473 59.5 6.8 86.4 6.8 

117 1183 201 17.0 4.9 87.7 7.4 

118 221 18 8.1 0.7 93.8 5.5 

 

Table 8.8 Freshness Fracture Index scores (Outram 2001, 2002) across the Pilanduk Cave levels. 

Context 

FFI Scores 

0 1 2 3 4 5 6 

surface 9 13 15 11 3 2 1 

111 1 30 21 446 98 15 2 

112 6 26 12 473 84 41 3 

117 0 10 34 176 619 58 9 

118 0 0 1 14 122 7 1 
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Two factors to be considered for breakage patterns are burning and trampling. The 

patterns for burning, taxonomic representation and anatomical representation are very similar 

for contexts 111, 112 and 117. However, 117 differs from the other two contexts in terms of the 

lesser degree of preservation of green fractures and the higher prevalence of post-depositional 

dry breakage of bones. This can be partly attributed to this lower layer being trampled during 

later occupation represented by contexts 111 and 112, which immediately overlie context 117.  

The use of fire for burning waste and using hearths in the levels directly above context 117 would 

have also affected the bones at this level and led to further breakage. In the case of contexts 111 

and 112, it appears that bone breakage due to burning of bone/carcass waste has also affected 

the preservation of fresh fractures such that we see a predominant FFI score of 3 in both levels. 

In other words, it appears that the fresh fractures in contexts 111 and 112 related to butchery 

have been mixed with dry fractures related to burning and trampling. This same pattern is 

observed in context 117, but to a higher degree of dry breakage, since FFI scores are mostly ‘4’ 

and there is a lesser proportion of helical fractures. 

Fragmentation patterns are further shown in the division of fragment size classes (Figure 

8.7). In all levels, fragments less than 20 mm in size dominate the assemblage (size class 1). 

However, there is variation in the element composition per size class for each context. In context 

111, 73% of size class 1 consist of indeterminate cancellous bone fragments while 17% are shaft 

Figure 8.6 Bar plots of total number of fragments (TNF) for Freshness Fracture Index scores (0 to 6) in 
Pilanduk Cave. TNF counts are shown by context (111, 112, 117 and 118). See Table 8.8 for data. 
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fragments. A similar pattern is replicated in context 112 where 64% of size class 1 consist of 

indeterminate cancellous bone and 19% are long bone fragments. In both contexts, the higher 

size classes (i.e. bigger fragment size) are dominated by long bone fragments. The high proportion 

of small cancellous bone relative to long bone fragments is said to be one potential line of evidence 

for comminution of bone for grease production (Outram 2001). This interpretation can be applied 

to contexts 111 and 112. As a matter of contrast, in context 117, size class 1 consists of 33% 

indeterminate cancellous bone and 36% long bone fragments.  In context 118, size class 1 consists 

of 36% indeterminate cancellous bone and 31% long bone fragments. The low proportion of 

cancellous bone in contexts 117 and 118 does not support grease production. 

To further investigate and quantify the exploitation of within-bone nutrients, NISP:MNE 

ratios for cervids were plotted against marrow and grease utility indices (Figure 8.8, Table 8.4, 

Appendix E). The method follows a similar principle as the analysis using the FUI (see Section 

8.2.4); however, NISP:MNE ratios are used instead of MAU or %MAU. These counts are computed 

per skeletal portion and are plotted against published marrow index and grease index values 

(instead of FUI or MGUI values). In the absence of local data for Asian or tropical deer, the utility 

indices used here were those constructed by Binford (1978) for caribou, which serve as a 

confamilial proxy for the Cervidae. The assumption behind this analysis is that skeletal elements 

with high utility indices would be more fragmented and hence have a higher NISP:MNE ratio 

compared to elements with low utility (Lyman 1994: 281-282).  NISP:MNE ratios in contexts 111 

and 112 have strong positive correlations with the marrow utility index. This observation 

supports the interpretation that marrow processing was practised at these levels.  In context 117, 

Figure 8.7 Bar plots of total number of fragments (TNF) per fragment size class (in mm) in Pilanduk 
Cave. TNF counts are shown by context (111, 112, 117 and 118). See Appendix C for tabulated counts. 
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there is a weak correlation observed. In context 118, there is no correlation observed. For the 

grease utility index, a significant positive correlation was found in context 112 (rs = 0.541, p = 

0.004), but not for contexts 111 and 118. For context 117, a weak correlation is once again 

observed (rs = 0.39, p = 0.048) between the two variables. 

Another interesting pattern related to marrow processing has to do with the fracturing of 

phalanges. Breakage patterns indicate that the first and second phalanges were being broken 

deliberately (Figure 8.9). Oblique fracture angles and smooth fracture edges on phalanges suggest 

green breakage. The phalanges do not bear evidence of gnawing, and hence we can rule out 

carnivore ravaging as the reason for breakage. Table 8.9 shows the percentage of phalanges that 

have been split or fractured. Longitudinal and transverse fractures were both observed for the 

first and second phalanges. The selection of phalanges for marrow extraction may relate to the 

kind and quality of marrow found in these elements. Although the first and second phalanges 

have lesser quantities of marrow and grease, the fats found in phalanges are said to be high in 

oleic acid (Morin 2007). Binford (1978) observed that in Nunamiut practices for processing 

caribou, they tended to prefer rich white grease over yellow grease. It is the white grease that is 

rich in oleic acid, a mono-unsaturated fat. Morin (2007) has noted that phalanges have high 

proportions of oleic acid in their total fat content, although the actual amounts are marginal 

compared to other elements such as the distal radio-ulna, distal tibia and metapodia. The 

dominant composition of unsaturated fatty acids (versus saturated fatty acids) in the distal bone 

marrows (i.e., metapodia and phalanges) has been observed in other Eurasian deer species (Sugár 

Figure 8.8 Cervid NISP:MNE ratios in Pilanduk Cave plotted against caribou marrow utility index from 
Binford (1978). The correlation coefficient Spearman’s rho (rs) is shown per context with the p-values 
(p) and degrees of freedom (df). See Table 8.4 and Appendix E for data. 
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and Nagy 1992). Hence, it is possibly applicable in the case of Philippine cervids. In the case of 

Pilanduk Cave, the selection and splitting of phalanges may be related to the extraction of this 

kind of unsaturated marrow. 

 

Table 8.9 Percentages of split phalanges in contexts 111, 112 and 117 out of total NISP per context (N). 
Context 118 was omitted due to small sample size. See also specimen counts in Table 8.4. 

 

 

 

 

 

 

 

 

 

Element 111 112 117 

1st phalanx 69.2 (13) 96.2 (22) 93.1 (25) 

2nd phalanx 84.6 (12) 87.5 (14) 94.1 (18) 

3rd phalanx 11.1 (9) 6.3 (16) 8.3 (12) 

Figure 8.9 Deer phalanges from Pilanduk Cave showing transverse and longitudinal splits: a) Pil-
4511 proximal phalanges in plantar view from Kress’ excavation; b) Pil-5349 proximal (left) and 
intermediate phalanges (middle and right) in plantar view from context 111; c) Pil-5806 proximal 
and intermediate (rightmost) phalanges in transverse aspect from context 112.  
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8.2.6 Human Modifications 

 

8.2.6.1 Burning 

Frequencies of burnt bones in the entire assemblage show that 40% have evidence of charring 

and 2% have evidence of calcination (Table 8.10). Heat alteration leads to the loss of organic 

compounds and a reorganisation of inorganic material (Mayne Correia 1997; Thompson 2004; 

2005). This process significantly affected the organic composition of bones in the LGM layers, 

such that there was insufficient collagen retrieved from bone and teeth samples submitted for 

radiocarbon dating. Heat alteration is particularly extensive across contexts 111, 112 and 117 

(Layers II – IV, Table 8.10). In these levels, 40-46% of bones showed evidence of charring and 

calcination, whereas only 28% of bones in context 118 showed burning traces. Discrete 

accumulations of ash in Layer II and III, as well as a few cases of articulated burnt bones in Layer 

II, possibly indicate in situ burning of bone in these levels; however, this part of the cave may also 

been used to dump hearth remains.  Of the recorded burnt bone fragments, 80-89% of these 

exhibit evidence for burning that covers 90-100% of the external bone surface. This means that 

many bone fragments were uniformly burnt, rather than having patches of burning traces on 

bone surface. It was also observed that among these fragments, traces of charring were evident 

in the cross section and internal surface of the fragments, indicating burning occurring after 

breakage/fracturing. The presence of calcined bones, although small, indicates direct heat 

exposure (Stiner et al. 1995) in all four LGM contexts/levels. Proportions of burnt cancellous (37-

43%) and burnt compact bone (57-63%) are similar across the levels, with no preference 

showing for cancellous bone. The latter is said to be expected if the burning is due to usage of 

bones as fuel for fires (Costamagno et al. 2005). However, this was not the case in Pilanduk Cave. 

 

Table 8.10 Number and proportion of burnt bones in Pilanduk Cave. TNF refers to the total number of 
fragments per context/layer. % >40mm = percentage of burnt bones that are less than 40mm in size, % 
burnt 90% - percentage of burnt bones showing evidence of burning on 90-100% of bone surface. 

Layer Context TNF charred calcined 
total 
burnt % burnt 

% > 
40mm 

% burnt 
90% 

I surface 261 32 3 35 13.4 3.4 80.0 

II 111 2174 964 32 996 45.8 41.4 80.3 

II 112 2322 879 48 927 39.9 41.8 86.0 

III 117 2561 1117 66 1183 46.2 36.4 89.5 

IV 118 506 126 15 141 27.9 23.5 88.7 

Total   7824 3118 164 3282 41.9 37.4 85.6 

 



242 
 

Among the bones from the 1970 excavation of Kress, about 37% showed evidence for 

burning, indicating a close pattern of heat alteration with the 2016 assemblage. The squares 

excavated by Kress were in the middle of the cave platform, whereas those from the 2016 

excavation were predominantly from the south section of the cave. 

Bosch et al. (2012) outline eight models to infer the role of fire in a bone accumulation’s 

formation. Using their compiled criteria, it appears that the evidence for heat alteration in 

Pilanduk Cave assemblage follows a pattern for waste removal. Specific evidence and criteria for 

burning of waste in order to clean a living space are provided by Cain (2005). Charring and non-

charring for cancellous and compact bones show the same proportions (see Appendix C), 

indicating that there was no selection between bone types and that all bones for discarding were 

affected by fire in a similar manner. Nonetheless, the ubiquity of hearth remains across the LGM 

levels of Pilanduk Cave and evidence for burning of bone in contexts 111, 112 and 117 possibly 

indicate that bones were also used as fuel.  Fernandez and Jalvo (2016:157) suggest that bones 

associated with hearth remains provide a good fuel to keep the hearth hot for longer and with 

almost no smoke, and that this usage better explains the presence of burnt fragments in hearths 

as opposed to the simple aim of cleaning the area. 

The pattern for burning in Pilanduk Cave also possibly shows a signature for bone 

marrow procurement. Binford (1981) provides one ethnographic example from the Nunamiut for 

bone marrow extraction that involves the use of fire. Defleshed bones are exposed to fire for a 

short duration and are turned frequently to prevent charring. As Bosch et al. (2012:117) explain, 

three main factors are expected in this scenario: a high percentage of marrow-rich bones among 

the burned elements, a high fragmentation rate among the burned bones (breakage to access the 

marrow), and limited burning damage (mostly scorching and not charring). In the Pilanduk Cave 

assemblage, there is an abundance of fractured and burned marrow-rich bones and an abundance 

of small-sized fragments. The typical colour of non-charred and non-calcined bones in the site 

grades from reddish to dark brown, possibly indicating scorching. These three lines of evidence 

follow the criteria for bone marrow procurement using fire. Nonetheless, the criterion of 

scorching needs further substantiation, and the possible evidence for in situ burning and 

extensive charring does not follow bone marrow procurement. The evidence for in situ burning 

possibly relates to the overprint of waste removal or using bone as fuel; hence, it is not possible 

to clearly determine if fire was used in bone marrow processing. Other instances of the use of fire 

for consumption (e.g. roasting, grease manufacture) can also be obscured if the terminal process 

of fire use is for waste removal, and such is the case for the Pilanduk cave assemblage. 
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8.2.6.2 Butchery Marks 

 

Butchery marks in the form of cutmarks, chop marks or scraping marks are observed in less than 

2% of the bone assemblage (Figure 8.5). The recording of cutmarks ideally should include axial 

elements, but due to time constraints, the focus was on long bone fragments that were greater 

than 20mm in size. Hand lenses with up to 10x magnification and a Dinolite were primarily used. 

The relatively low incidence of cutmarks may be an artefact of analytical effort, and the 

assemblage can certainly benefit from a more intensive cutmark study in the future. 

With this caveat, cutmarks observed on bone fragments still provide clear evidence for 

human modifications in the accumulated bone assemblage (Table 8.11). As can be expected, 

nearly all cutmarks are found on deer bones, and these provide information into carcass 

processing of deer. Local ethnographic and ethnoarchaeological work on butchery practices and 

butchery marks are not yet available. In this case, Binford’s (1981) ethnoarchaeological study 

among the Nunamiut is used as a proxy comparative dataset that provides an inventory of 

cutmark placement and function. The only other published cutmark inventory coding system 

derives from the experimental butchery study of Soulier and Costamagno (2017) on red deer 

carcass processing using replicas of Middle Palaeolithic stone tools.  

The placement and configuration of cutmarks in various deer bones in Pilanduk Cave are 

consistent with butchery marks derived from the skinning, dismemberment and filleting of a 

cervid carcass based on comparisons with Binford (1981) and Soulier and Costamagno’s (2017) 

work. Regarding butchery marks on the distal tibia and the metapodia, Binford (1981) notes that 

what may be interpreted as filleting marks on these bones can possibly be marks from cleaning 

bones for marrow cracking, especially since these elements are not meaty body portions. 

Cutmarks on certain diaphyses from Pilanduk Cave may also be related to marrow processing. 

Soulier and Costamagno (2017) further caution that certain cutmarks interpreted as resulting 

from disarticulation (using Binford’s system) can also be produced during defleshing. Certain 

butchery marks on metapodia interpreted as filleting may be related to tendon removal instead. 
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Table 8.11 Summary of butchery mark data for deer and large mammals in Pilanduk Cave showing 
specimen counts for identified butchery marks for each archaeological context. The interpretation of the 
activity (skinning, dismembering or filleting) from which the marks derive is based on the placement and 
configuration of butchery marks (after Binford 1981: Table 4.04). P = proximal, D = distal, ? = uncertain. 
According to Soulier and Costamagno (2017): *may be defleshing, ^may be tendon removal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element skinning dismembering filleting 

Context 111       

P radius  1  
P metacarpal  1  
P femur   1 

D femur    

diaphysis     9? 

Context 112       

D humerus  3* 2 

P ulna  1  
P metacarpal  1  
D metacarpal 1^   

P tibia   3 

D tibia   1 

diaphysis     2? 

Context 117       

frontal 1   

parietal 1   

mandible  1  
rib  1  
D humerus  2  
P radius 1 1  
P metacarpal   1 

ilium  1  
P femur  1*  
P metatarsal    1 

diaphysis     20? 
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Of further interest are butchery marks found on three out of the nine tiger specimens in 

the assemblage (Figure 8.10). As described in Chapter 5, only tiger metapodia and phalanges were 

recovered. The main butchery marks observed are cutmarks and a few possible scrape marks 

(see notes on tiger bone taphonomy in Appendix C). Cutmarks were diagnosed as linear incisions 

that have a V-shaped cross-section, internal microstriations (Potts and Shipman 1981) and 

thinner linear marks parallel to the main incision (or ‘shoulder effect’ after Shipman and Rose 

1983). Placement, distribution and orientation (relative to long axis of the bone) of the butchery 

marks were also noted. Hertzian fracture cones (Bromage and Boyd 1984) were also used a 

criterion, but these were not found in the tiger specimens described here. Scrape marks are 

broader areas of linear marks that may have V- or U-shaped profiles; marks potentially produced 

by humans typically have some reference to muscle attachments (Fernandez-Jalvo and Andrews 

2016:27).  

The proximal third metacarpal fragment (Pilanduk-7365) presents cutmarks on the 

lateral and anterior sides of the proximal articular end (Figure 8.10 a and b). On the lateral side, 

there are two parallel cutmarks, and on the proximal side, there is one isolated cutmark. Both sets 

of cutmarks surround the bulbous proximo-lateral articulation of the metacarpal.  The right 

fourth metacarpal fragment (Pilanduk-8803) has several sets of cutmarks and a possible scrape 

mark on both the dorsal and plantar aspects of the distal shaft (Figure 8.10 c and d). The sub-

terminal phalanx (Pil-5393) has possible scrape marks along the dorsal shaft and on the plantar 

side of the distal articulation (Figure 8.10 e and f). On the plantar side, they are placed around the 

distal ligament attachment site. The possible scrape marks have a U-shaped profile and have 

internal microstriations. They appear to be irregularly spaced compared to gnawing marks. In 

contrast to trampling marks, the marks on the plantar side are placed on the protected concave 

area of the ligament attachment whereas the borders and angles of the bone do not appear to 

have damage (as to be expected if they were trampled; see Fernandez-Jalvo and Andrews 

2016:29). The placement of the butchery marks at the ends of the metapodia and on the dorsal 

and distal sections of the phalanx (where ligaments and muscle attach) suggests that these marks 

possibly derive from skinning the forefoot of a tiger, one likely objective of which is to obtain tiger 

fur. 
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Figure 8.10 Butchery marks on tiger bones from Pilanduk Cave. a) Two parallel cutmarks on the neck of 
the proximo-lateral articulation of Pil-7365 (proximal R third metacarpal fragment) seen in lateral view; 
b) Cutmark on the edge of the proximal articulation of Pil-7365 seen in anterior (dorsal) view; c) Three 
cutmarks on the anterior (dorsal) aspect of the distal shaft of Pil-8803 (distal R fourth metacarpal 
fragment) d) cutmarks (d1 and d2) and possible scrape mark (d3) on the posterior (palmar) aspect of 
Pil-8803; e) possible scrape marks on the dorsal shaft of Pil-5393 (sub-terminal phalanx); f) possible 
scrape marks on the plantar side of Pil-5393 shown in two views, plantar (f1) and medioplantar (f2). 
Scale bar in all cut mark microphotographs are 1 mm. 
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8.2.7 Summary of Taphonomic Evidence for Pilanduk Cave 

 

The combination of taphonomic evidence from Pilanduk Cave reveals an occupation record for a 

primary butchery and consumption site for deer. Artefact associations (lithics), butchery marks 

on bones, and minimal evidence for carnivore gnawing indicate that the bone accumulation is 

largely human-derived. In addition, the complete representation of skeletal elements for cervids 

and cervid-sized large mammals suggests that whole carcasses were brought into the cave as 

opposed to preferential transport of particular body parts. 

Marrow processing also appears to be an important activity on-site. As detailed above, 

the evidence derives from the combination of the following data: helical fractures on long bones, 

FFI scores, the correlation of the NISP:MNE ratio and marrow index, and splitting of phalanges. 

Taken together, these indicate strong evidence for marrow extraction in contexts 111, 112 and 

117. The evidence from impact scars and cutmarks, albeit in very small proportion, also lends 

some support to this. There is partial evidence for grease production in the form of fragmentation 

patterns and the significant correlation of NISP:MNE ratio and the grease utility index in context 

112. However, the morphological pattern of fracturing observed in the assemblage – wherein 

cancellous ends of certain high utility long bones are still left intact – is inconsistent with bone 

grease production (Morin and Soulier 2017). It may have been that grease production was 

practised to some extent in the cave, but marrow extraction was the more predominant activity. 

Body part representation (as %MAU) and its lack of correlation to the Food Utility Index 

further demonstrate that selective transport – either of low utility or high utility body parts – was 

not evident in these LGM levels. The cutmark data suggest that all stages of processing (skinning, 

dismembering and filleting) for the cervids were also conducted on-site.  This further supports 

the conclusion that entire carcasses were brought in and that consumption also occurred on site.  

Lastly, the evidence for heat alteration across contexts 111, 112, and 117 shows that the 

bones may have been used as fuel in hearths. The evidence also suggests that the eventual discard 

of food refuse involved burning of bone waste presumably to clean the cave area. Well-defined 

hearth features were not observed in Trench 3, but the heterogeneous distribution of burnt bones 

across contexts 111, 112 and 117 and the ubiquity of ash deposits indicate that areas of frequent 

hearth rebuilding occurred during this part of the occupation sequence. 
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8.4 Minori Cave Taphonomy 

 

The taphonomic data for Minori Cave focus on the two excavation units with the longest 

sequences and largest number of vertebrate remains: Square 27 (TNF = 1404) in Chamber D and 

Square 37 (TNF = 411) in Chamber A. Due to insufficient stratigraphic information on the 

specimen records, the aggregation of counts was based on the presence and absence of pottery 

(see Chapter 4). Ceramic-bearing levels are grouped together based on the deepest occurrence of 

pottery in the trench. Below these ‘cut-off’ depths, the levels are aggregated as aceramic levels. 

 

8.3.1 Abiotic Processes 

 

The Minori Cave bone assemblage displays a varied set of bone surface modifications, albeit 

observed in small proportions (Table 8.12, Appendix F). Across Squares 27 and 37, there are bone 

modifications evident from weathering in the form of fine lines (4.9% of TNF summed from both 

squares) and spalling (7.9%), abrasion (2.1%), water erosion (2.4%) and root action (1.1%). This 

indicates that there are various post-depositional and diagenetic changes that have affected the 

preservation of the animal remains. Such processes also appear to have resulted in high 

fragmentation rates and high percentages of dry fractures. Mineral staining is minimal across the 

sequence at ~3%.  

 

8.3.1.1 Weathering  

 

In Square 27, 18.6% of the total assemblage show signs of weathering, predominantly under Stage 

1. In the ceramic levels, 27.9% of bone fragments show weathering marks, compared with 15.3% 

in the aceramic levels. In Square 37, the inverse is observed: there are more weathered bones in 

the aceramic levels (32.3%) compared to the ceramic levels (4.8%). Nearly all of weathered bone 

fragments in Square 37 are in weathering stage 1. Certain bone fragments in Square 27 were in 

weathering stage 2 (n=29) and stage 3 (n=5), indicating longer surface exposure for a small 

number of bones. 
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Table 8.12 Summary of taphonomic data for Minori Cave, expressed as percentages of TNF (total number of fragments) per layer. Ceramic-bearing and aceramic 
layers are divided for each square. CaCO3 = carbonate concretions, CaCO3  ≥50% = fragments covered 50% or more of the bone surface by carbonate concretions, Mn 
= manganese oxide staining, Cm = cutmarks, Helical = long bone fragments with helical fractures. See Appendix F for taphonomic data. 

 

 

 Layer TNF % weathered % CaCO3 
% CaCO3 

≥50% % Mn 
% 

Gnawed % Burnt % Cm % Helical 

Square 27          

Ceramic  369 27.9 20.9 79.2 3.8 2.2 11.3 2.7 27.6 

Aceramic 1035 15.3 15.5 70.0 3.3 0.0 8.4 0.2 8.3 

Total 1404 18.6 16.9 73.0 3.4 0.6 9.3 0.9 12.3 

 
         

Square 37                   

Ceramic  126 4.8 7.9 60.0 0.0 0.8 0.8 5.6 48.7 

Aceramic 285 32.3 22.8 73.8 3.9 0.0 2.5 0.7 28.0 

Total 411 23.8 18.2 72.0 2.7 0.2 1.9 2.2 33.6 
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8.3.1.2 Carbonate Concretions  

 

A small percentage of Minori Cave bones have carbonate concretions: 16.9% for Square 27 and 

18.2% for Square 37. It is notable that amongst the bones with concretion, 72% of them have 

concretions covering 50% or more of the bone surface. The picture drawn here is that most of 

the bones across the sequence have no concretions, but the small proportion of bones with 

them presents heavy concretion. This indicates that precipitation of carbonates and their 

subsequent concretion to bones do not happen uniformly across the cave sequence. Instead, 

there is a patchy distribution of bones with heavy concretion found commingled with bones 

without concretion. Such a pattern may indicate small and discrete precipitation events due to 

water action within small areas of the cave. Alternatively, it might be indicative of post-

depositional disturbance and mixing of archaeological remains, wherein remains from a 

separate area of the cave where precipitation and concretion occur have become mixed with 

bones where the excavation squares are located. 

 

8.3.2 Biotic Processes 

 

Gnawing is also minimal in the Minori Cave assemblage. Only the ceramic levels of Square 27 

show minimally significant numbers at 2.2% and all are from carnivore gnawing. As previously 

noted, there are no known native carnivores on Luzon. Hence, evidence for carnivore gnawing 

is further indication of the introduction of invasive carnivores (see Chapter 7). The domestic 

dog is the likely candidate, as dog remains also appear in these upper levels, although palm 

civets are also possible bone ravagers. The absence of rodent gnawing also indicates that 

murids were not significant bone accumulators or modifiers in the site. 

 

8.3.2.1 Burning 

 

A small proportion of bones in Square 27 shows evidence of burning (Table 8.13). Roughly the 

same proportion of bones was burnt in the ceramic and aceramic levels, at 11% and 8% 

respectively. Most of these consist of charred long bone shaft (diaphysis) fragments. Although 

site reports did not indicate whether there were hearth or ash remains in any of the levels, the 
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presence of calcination in Square 27 specimens indicates the exposure to direct fire. In Square 

37, only a very few bones (n=8) displayed evidence of burning. 

 

Table 8.13 Number and proportion of burnt bones in Minori Cave. TNF refers to the total number of 
fragments per layer. 

Layer TNF charred calcined total burnt % burnt 

Square 27     

Ceramic  434 42 7 49 11.3 

Aceramic 970 55 26 81 8.4 

Total 1404 97 33 130 9.3 

      

Square 37     

Ceramic  126 1  1 0.8 

Aceramic 285 4 3 7 2.5 

Total 411 5 3 8 1.9 

 

 

8.3.3 Anatomical Representation and Survivorship 

 

In Minori Cave, the sample size of cervids in the aceramic levels of Square 27 permitted the 

analysis of survivorship (= %MAU) as related to bone mineral density (Figure 8.11; see 

Appendix D for data). All the other levels and taxa did not have sufficient sample size. The bone 

density values used in the analysis derive from Class D data for Rangifer from Lam et al. (1999) 

and Class A data for Odocoileus from Lyman (1984).  The correlation coefficients for the 

respective sets of bone density values (rs= 0.401, p= 0.047 using Lam et al. 1999; rs= 0.463, p= 

0.0197 using Lyman 1984) demonstrates a moderate correlation between the two variables. 

This indicates that density-mediated attrition has influenced the preservation of bones in the 

assemblage. The high survivorship of teeth relative to bone (Figure 8.12) also suggests 

preservation bias. Anatomical representation for both cervids and suids (Figure 8.12, Tables 

8.14 and 8.15) indicates small numbers for elements across the skeleton. Large mammal 

counts (Table 8.16) indicate that low-density elements such as cranial bones, ribs and 

vertebrae were also present. The larger proportion of identifiable teeth relative to bones can 

possibly be indicative of recovery bias (i.e., teeth were being selectively retrieved and 

recorded). However, the presence of various other specimens that include indeterminate long 

bone shaft fragments (n=951) runs contrary to this. It appears that differential preservation 
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related to structural density is the most significant factor shaping the pattern of anatomical 

representation in the assemblage. 

 

 

 

Figure 8.11 Bone survivorship (as %MAU) versus bone mineral density values for cervid remains 
in the aceramic levels of Square 27 in Minori Cave. The density values are derived from Class D 
data for Rangifer from Lam et al. (1999) (top) and from Odocoileus from Lyman (1984) (bottom). 
The correlation coefficient Spearman’s rho (rs) is shown with the p-value (p) and degrees of 
freedom (df). See Appendix D for data. 
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Table 8.14 Cervid skeletal element representation in Squares 27 and 37 of Minori Cave. NISP 
= number of identified specimens; MNE = minimum number of elements. 
 

 

 

 

 

 

 

  Square 27 Square 37 

Element 
ceramic aceramic ceramic aceramic 

NISP MNE NISP MNE NISP MNE NISP MNE 

antler       11   3     

cranial          2 2   

mandible   1 1          

m1 upper 1 1 1 1 5 5 2 2 

 lower 1 1 2 2     3 3 

m2 upper     1 1 10 10 4 4 

 lower 2 2    6 6 2 2 

m3 upper        12 12 1 1 

 lower 2 2 2 2 2 2 1 1 

incisor   4 4    3 3 7 7 

premolar   6 6 6 6 19 19 17 17 

vertebra axis 1 1          

 cervical     5 3       

innominate ilium     2 2       

humerus proximal 1 1          

radius proximal     3 2       

 shaft     1 1       

metacarpal proximal     2 2       

 shaft     2 2 2 2 3 3 

femur proximal            1 1 

 shaft 1 1 4 3       

tibia proximal     2 2       

 shaft 2 1          

 distal        1 1   

metatarsal proximal 3 3    1 1   

 shaft     2 2       

metapodial distal     1 1       

 shaft        1 1   

astragalus   1 1 1 1       

calcaneus          1 1   

phalanges proximal 1 1    3 3   

  intermediate 1 1     3 2     
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Table 8.15 Suid skeletal element representation in Squares 27 and 37 of Minori Cave. NISP = number of 
identified specimens; MNE = minimum number of elements. 

 

 

 

 

 

 

 

 

 

  Square 27 Square 37 

Element 
ceramic aceramic ceramic aceramic 

NISP MNE NISP MNE NISP MNE NISP MNE 

cranial   3 3 4 4         

mandible              1 1 

maxilla   4 4           
m1 upper 3 3           

 lower 2 2 1 1 3 3    
m2 upper 1 1        3 3 

m3 upper 3 3        1 1 

 lower            3 1 

canine   9 9 1 1 2 2 1 1 

incisor   18 17 1 1 9 8    
premolar   13 13 1 1 3 3 3 3 

dm   3 3    1 1    
dp4   1 1    2 2 1 1 

vertebra lumbar     1 1        
sacrum   1 1           
ulna proximal 1 1 3 2        
femur proximal     1 1        

 shaft     2 1        
metapodial proximal     2 2        
metapodial distal 2             
astragalus     1 1          
magnum       1 1        
phalanges proximal 2 2           
  distal 1 1             
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Table 8.16 Minori Cave NISP (number of identified specimens) counts for large mammal skeletal 
elements that were not identifiable to taxon. 

 

Element 
Square 27 Square 37  

ceramic aceramic ceramic aceramic Total 

cranial 10 9 4 2 25 

mandible    1 1 

vertebra 7 15   22 

rib 8 28 2 3 41 

scapula 4 1   5 

humerus 3 1 2 2 8 

radius    3 3 

ulna  1 1 1 3 

innominate 2 1  2 5 

femur 2 3 1  6 

tibia 3 1 1 3 8 

shafts 164 681 27 79 951 

phalanx       2 2 
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Figure 8.12 Skeletal element representation for cervids and suids in Minori Cave. NISP counts 
are segregated for the aceramic (acer) and ceramic-bearing (cer) levels of Squares 27 and 37. 
See Table 8.14 for NISP counts. 
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8.3.4 Fracturing, Fragmentation and Butchery Marks 

 

Taphonomic data on fracturing and fragmentation are derived from proportions of fracture 

types and recording of the Freshness Fracture Index for long bone fragments (Table 8.17). The 

predominance of green fractures in Pilanduk Cave contrasts with the pattern of dry bone 

breakage observed in the Minori Cave assemblage. In Square 27, less than a quarter of the 

specimens showed the presence of helical fractures. Across the sequence, most fracture types 

observed were longitudinal (n=283), transverse (n=360) or diagonal (n=130). In Square 37, 

there is a higher percentage of helical fractures in the ceramic levels (48%) and the aceramic 

levels (28%). However, there is a significantly smaller sample size for long bone fragments in 

Square 37 than in Square 27. 

In terms of FFI scores, over 75% of long bone fragments in Square 27 had FFI scores 

greater than or equal to 4. In Square 37, over 60% of the FFI scores are greater than or equal 

to 4. This pattern largely indicates dry breakage and that the assemblage has suffered from 

other forms of fragmentation apart from fresh fracturing (Outram 2001). Fragments size data 

also indicate high fragmentation (Figure 8.13). In Square 27, 48% (n=636) of the assemblage 

are in size class category 1 (≤ 20mm) and, 32% (n=431) are in category 2 (20-30 mm). In 

Square 37, 65% (n=269) of the assemblage are in size category 1. 

 

Table 8.17 Summary of long bone fracture data in the ceramic-bearing and aceramic levels of Squares 
27 and 37 in Minori Cave. TNF = total number of fragments, TNF long bone = total number of long bone 
fragments, N helical = long bone fragments with helical fractures, % helical = percentage of long bone 
fragments with helical fractures, N FFI ≥ 4 = long bone fragments with a Freshness Fracture Index (FFI) 
greater than or equal to 4, % FFI  ≥  4 = percentage of fragments with an FFI  ≥  4 among fragments for 
which FFI was recorded. 

Square 27 TNF 
TNF           

long bone 
N 

helical % helical  N FFI ≥ 4 % FFI ≥ 4 

Ceramic  434 203 56 27.58621 137 78.735632 

Aceramic 970 774 64 8.268734 170 74.889868 

Total 1404 977 120 12.2825 307 76.558603 

       

Square 37             

Ceramic  126 39 19 48.71795 23 60.526316 

Aceramic 285 107 30 28.03738 72 75.789474 

Total 411 146 49 33.56164 95 71.428571 
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Although there is a large overprint of dry breakage based on the fragmentation data, 

there is some direct evidence of human modifications. A small percentage of remains in both 

squares shows butchery marks that are predominantly in the form of cutmarks (Table 8.12). 

Cutmark diagnosis and criteria are similar to those presented in Section 8.2.6. Most of the 

bones with cutmarks are in the ceramic-bearing levels: 2.6% in Square 27 and 5.6% in Square 

37. 

In summary, the taphonomy of the Minori Cave assemblage presents a faunal record 

with a large overprint of diagenetic processes. It is a highly fragmented assemblage influenced 

by density-mediated attrition and dominated by dry breakage patterns. Nonetheless, the 

minimal incidence of gnawing and the presence of cutmarks on some bones indicate that the 

assemblage is a largely human-derived bone accumulation. The patterns of species 

representation observed in Minori Cave appear to show the most informative subsistence data 

for this site, and this will be discussed in Section 8.5. 

  

Figure 8.13 Bar plots of total number of fragments (TNF) per fragment size class (in mm) in Squares 
27 and 37 of Minori Cave. See Appendix F for fragment counts. 
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8.5 Musang Cave Taphonomy 

 

In Musang Cave, the two excavation units with the longest sequences and largest sample sizes 

are G4 (N= 845) and G5 se1m (N = 131). The sample size for G5 se1m is actually very small, 

but this is shown to compare the taphonomic observations across the levels/layers of the G4 

stratigraphic sequence. These two trenches are adjacent to each other. As noted previously, 

there appears to be some intrusive material in Levels 4 - 7, wherein ‘younger’ bone and bones 

with different preservation states are mixed with other bones. There are also several levels in 

G4 (Level 1, 3 and 4) that contain human remains. These human bones are likely intrusive since 

they have a different preservation state from the animal remains. It is not certain whether 

bovid and macaque remains in Levels 4-7 are part of the original strata or if they are also 

intrusive like the human remains. These observations have implications for how bones are 

grouped together into ceramic-bearing and aceramic levels. Because of these uncertainties, 

bones are aggregated in two ways. The first version of aggregating counts follows Thiel’s 

(1988) stratigraphic reconstruction wherein levels 4a, 5a, 6a, 7a, 8, 9 , 10 and 11 are 

considered as aceramic levels (see Tables 8.20 and 8.21). The second way of aggregating is to 

treat all finds from levels 1-7 as ceramic-bearing levels. This means that bones from Levels 4 - 

7 are grouped together with bones from Levels 4a, 5a, 6a and 7a. Only bones from Levels 8-11 

are considered aceramic in this second version.  

The small sample sizes for Musang Cave is partially due to the loss of specimens since 

the time Thiel analysed the assemblage. As mentioned, the bone counts in Thiel’s (1988: Table 

1) analysis do not match the number of bones found in museum storage. The surviving number 

of bones is greatly reduced. With these caveats and limitations in mind, the taphonomic data 

for Musang Cave are described in the following sections. 

 

8.4.1 Abiotic Processes 

 

Bone surface modifications caused by abiotic agents have varying distribution across both 

trenches (Table 8.18, Appendix G). In Level 2 of G4 trench, 84% of the specimens show signs 

of weathering, indicating that bones from these levels were exposed sub-aerially for a longer 

extent compared to the rest of the assemblage. This contrasts with specimens from Level 1, the 

topmost layer, where only 1.7% of specimens is weathered. Level 11, the deepest level, also 
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shows a notable percentage of weathered specimens, at 43%. The weathering stage for nearly 

all of these specimens is at Stage 1.   

Carbonate concretions are also present across the sequence. When concretions are 

present, they are recorded as covering ≥50% of the bone surface. The presence of these 

concretions has limited the observation of bone surface modifications on many bones. Because 

of this, the percentages shown for gnawing, manganese staining, burning and cutmarks are 

likely reduced estimates. 

 

Table 8.18 Summary of taphonomic data for Squares G4 and G5se1m of Musang Cave, expressed as 
percentages of TNF (total number of fragments) per level. Division of levels follows Thiel’s (1988) 
stratigraphy. CaCO3 = carbonate concretions, Mn = manganese oxide staining, Cm = cutmarks, Helical = 
long bone fragments with helical fractures, FFI ≤ 3 = long bone fragments with a Freshness Fracture 
Index less than or equal to 3. See taphonomic data in Appendix G.  

Layer Level TNF 
% 

weathered 
% 

CaCO3 
% 

Mn 
% 

Gnawed 
% 

Burnt % Cm 
% 

Helical 
%         

FFI ≤ 3 

G4           

II 1 299 1.7 45.5   2.0  20.3 28.7 

II 2 72 84.7 81.9  1.4   4.3 4.8 

II 3 35  48.6   31.4  3.6 23.8 

II 4 15  13.3       

II 5 1         

I 4a 116 30.2  0.9 0.9  6.0 14.9 32.2 

I 5a 15         

I 6a 21  47.6       

I 7a 149 0.7 35.6 1.3 0.7 2.7  41.7 48.9 

I 8 75 4.0 25.3 9.3  4.0  50.0 52.7 

I 9 9 22.2 11.1 11.1      

I 11 7 42.9 28.6 28.6      

no 
layer 

no 
level 39 25.6 61.5 23.1  2.6  43.8 55.6 

Total   853 14.1 37.9 2.6 0.4 0.0 0.8 25.3 34.2 

                      

G5se1m          

II 1 7 57.1      20.0 20.0 

I 4a 29  72.4     5.6 7.7 

I 5a 48  52.1   10.4  50.0 80.0 

I 6a 14  71.4     85.7 66.7 

I 7a 22 22.7 45.5     28.6 40.0 

I 8 12  25.0 8.3    12.5 33.3 

I 9 1         

Total   133 6.8 51.9 0.8       30.5 40.5 
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8.4.2 Biotic Processes 

 

On specimens where bone surfaces are not covered by concretion, a very few gnawing marks 

were observed (Table 8.18). Only three fragments across the sequence show evidence of 

gnawing and all are from carnivore gnawing. To reiterate, the presence of carnivore gnawing 

is indirect evidence for the presence of introduced carnivores, since native carnivores are not 

known in the Late Quaternary fauna of Luzon. 

A small number of bones (n=25) across the Musang Cave sequence shows evidence of 

burning (Table 8.19). The highest number of burnt fragments is in Level 3 (n=11), with seven 

fragments showing calcination. It is only at this level where calcination is observed and hence 

it is only at this level where there is indication that bones were directly exposed to fire. 

 

Table 8.19 Number and proportion of burnt bones in Squares G4 and G5se1m of Musang Cave. TNF 
refers to the total number of fragments per level. Only levels with burnt bones are presented. 

Level TNF charred calcined 
total 
burnt % burnt 

G4      

1 299 6  6 2.0 

3 35 4 7 11 31.4 

7a 149 4  4 2.7 

8 75 3  3 4.0 

no level 39 1  1 2.6 

Total 597 18 7 25 4.2 

      

G5se1m      

5a 48 5  5 10.4 

 

 

8.4.3 Anatomical Representation 

 

Anatomical representation of cervid and suid remains is shown in Tables 8.20 and 8.21, using 

NISP and MNE counts. The specimen counts in these tables are aggregated in two versions, as 

explained above. Very small sample sizes for both cervids and suid skeletal elements 

prohibited running survivorship analysis and other taphonomic analyses. Similar to the 

pattern observed in Minori Cave, isolated teeth are the most common identifiable elements in 

the assemblage. This likely attests to preservation bias wherein teeth are better preserved 
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than bone specimens due to their structural density. Large mammal counts (Table 8.22) are 

also presented, and they show that low-density elements such as ribs and vertebrae are also 

present in small numbers. Indeterminate shaft fragments have the highest counts for large 

mammal specimens. Regardless of aggregation method, cervid specimens are more abundant 

than pig specimens across the sequence. One notable effect of the aggregation method is the 

reduction of counts for the aceramic levels in the second version (Table 8.21) compared to the 

first version (Table 8.20) of bone counts. 

 

8.4.4 Fracturing, Fragmentation and Butchery 

 

Taphonomic data on fracturing and fragmentation are summarized in Table 8.23. In Level 7a 

and 8 of G4 trench, there is a higher number of specimens with helical fractures compared to 

other levels. Around 50% of the long bone fragments in Levels 7a and 8 also have FFI scores 

≤3. This indicates the possible occurrence of fresh fracturing in these two levels. According to 

Thiel’s sequence, these two levels are designated as aceramic levels. Only four other levels in 

G4 trench have a significant amount of fracturing data, Levels 1-3 and 4a. In these levels, 32% 

or less of the long bones have FFI scores ≤3, indicating that dry breakage is predominant in 

these levels rather than green fractures. Over 50% of fragments across the sequence are in size 

class 1 and 2 (0-20 and 20-30 mm) (Figure 8.14).  The observation of butchery marks was 

limited by the presence of concretions on many fragments. It was only in Level 4a that 

specimens with cutmarks were identified (n=7). Six fragments were from cervid or large 

mammal remains. One specimen was from a macaque femur shaft, with two cutmarks possibly 

produced by a metal implement. This is based on the sharp and steep V-shaped profile and 

relatively even and uniform morphology of the two marks; however, further microscopic 

analysis is needed to confirm this (see Greenfield 1999, 2013 for metal cutmark criteria). Two 

of the large mammal specimens appear to be intrusive ‘younger’ bone fragments, based on 

their colour (natural colour of fresh bone) and unweathered appearance. Therefore, these two 

fragments cannot be attributed as coming from that level. Note that in Thiel’s stratigraphy, 

Level 4a is supposedly an aceramic level.  
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Table 8.20 Cervid and suid skeletal element representation in G4 trench of Musang Cave, aggregated 
according to the stratigraphic order presented by Thiel (1988) for the division of ceramic and aceramic 
levels. NISP = number of identified specimens; MNE = minimum number of elements, \ = not applicable. 

  Cervid Suid 

Element 
G4 1-7 G4 4a-11 G4 1-7 G4 4a-11 

NISP MNE NISP MNE NISP MNE NISP MNE 

antler   5 \ 2 \ \ \ \ \ 

cranial   3 3 2 2 2 2   

mandible   4 2 4 2 2 1   

teeth   5 5 10 10       

vertebra atlas           1 1 

 axis    1 1       

 cervical 1 1          

innominate ilium    1 1       

humerus proximal           1 1 

radius proximal    1 1       

 shaft 1 1          

 distal       1 1   

ulna proximal 3 3 1 1 1 1   

metacarpal shaft 1 1 3 2       

femur proximal    1 1       

 shaft 1 1 2 2       

tibia proximal 1 1          

 shaft    2 1       

 distal    5 3       

metatarsal proximal 1 1          

 shaft    1 1       

 distal    1 1       

metapodial complete       1 1 2 2 

 proximal       1 1   

 shaft 1 1 2 2       

 distal 1 1 2 1 1 1 4 4 

astragalus      2 2 1 1   

calcaneus   1 1    2 2   

cuboid   1 1          

cuneiform         1 1   

phalanges proximal 1 1 3 3       

 intermediate 1 1    2 2 1 1 

 distal 1 1 2 2     2 2 

Total   33 26 48 39 15 14 11 11 
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Table 8.21 Cervid and suid skeletal element representation in G4 trench of Musang Cave, wherein levels 
1-7 and 4a-7a are aggregated together as ceramic-bearing levels. NISP = number of identified 
specimens; MNE = minimum number of elements, \ = not applicable. 

    Cervid Suid 

Element 
G4 1-7, 4a-7a G4 8-11 G4 1-7, 4a-7a G4 8-11 

NISP MNE NISP MNE NISP MNE NISP MNE 

antler   6 \ 1 \ \ \ \ \ 

cranial   5 5    2 2   

mandible   5 3 3 2 2 1   

teeth   5 5 10 10       

vertebra atlas            1 1 

 axis 1 1          

 cervical 1 1          

innominate ilium     1 1       

humerus proximal            1 1 

radius proximal     1 1       

 shaft 1 1          

 distal        1 1   

ulna proximal 3 3 1 1 1 1   

metacarpal shaft 1 1 3 2       

femur proximal 1 1          

 shaft 1 1 2 2       

tibia proximal 1 1          

 shaft 2 1          

 distal 3 3 2 2       

metatarsal proximal 1 1          

 shaft 1 1          

 distal 1 1          

metapodial complete        1 1 2 2 

 proximal        1 1   

 shaft 1 1 2 2       

 distal 3 3    4 4 1 1 

astragalus   3 3          

calcaneus   1 1    2 2   

cuboid   1 1          

carpal/tarsal          1 1   

phalanges proximal 2 2 2 1       

 intermediate 1 1    3 3   

 distal 2 2 1 1 2 2   

Total   53 44 29 25 20 19 5 5 
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Table 8.22 NISP (number of identified specimens) counts for large mammal elements in G4 trench of 
Musang Cave that were not identifiable to taxon. Counts are aggregated in two versions (see text), the 
first version following Thiel (1988). 

 Thiel (1988)  Second version 

Element G4 1-7 G4 4a-11 G4 1-7, 4a-7a G4 8-11 

cranial 3   4  
mandible 1 1 3  
vertebra 12 5 16 2 

rib 17 2 27  
scapula   1 2  
hum 3 3 4 2 

radius   8 3 6 

innominate 2   3  
femur 4 2 6 1 

tibia 1 3 3 1 

shafts 234 109 368 34 

phalanx 1   1   

 

 

 

 
Figure 8.14 Bar plots of total number of fragments (TNF) per fragment size class (in mm) in G4 trench of 
Musang Cave. Counts are segregated for the aceramic and ceramic-bearing levels. See Appendix G for 
fragment counts.  
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Table 8.23 Summary of long bone fracture data in Musang Cave. TNF = total number of fragments, TNF 
long bone = total number of long bone fragments, N helical = long bone fragments with helical fractures, 
% helical = percentage of long bone fragments with helical fractures, N FFI ≤ 3 = long bone fragments 
with a Freshness Fracture Index (FFI) less than or equal to 3, % FFI ≤ 3 = percentage of fragments with 
an FFI ≤ 3 among fragments for which FFI was recorded. 

Level TNF 
TNF           

long bone 
N 

helical 
% 

helical 
N FFI ≤ 

3 
% FFI ≤ 

3 

G4       

1 299 182 37 20.3 37 28.7 

2 72 70 3 4.3 3 4.8 

3 35 28 1 3.6 5 23.8 

4 15 2 0 0 0 0 

5 1 0 0 0 0 0 

4a 116 67 10 14.9 19 32.2 

5a 15 0 0 0 0 0 

6a 21 1 0 0 0 0 

7a 149 108 45 41.7 44 48.9 

8 75 60 30 50 29 52.7 

9 9 4 0 0 0 0 

11 7 0 0 0 0 0 

no level 39 32 14 43.8 15 55.6 

Total 853 554 140 25.3 152 34.2 

       

G5se1m       

1 7 5 1 20 1 20 

4a 29 18 1 5.6 1 7.7 

5a 48 14 7 50 8 80 

6a 14 7 6 85.7 4 66.7 

7a 22 7 2 28.6 2 40 

8 12 8 1 12.5 1 33.3 

9 1 0 0 0 0 0 

Total 133 59 18 30.5 17 40.5 

 

 

The taphonomy of Musang Cave is quite similar to the Minori Cave assemblage, with 

its considerable overprint of diagenetic processes. The Musang Cave record shows a highly 

fragmented assemblage that has been significantly influenced by post-depositional dry 

breakage and assemblage loss related to trephic (curatorial) events. Nonetheless, the evidence 

for fresh fracturing in certain levels (Levels 7a and 8) and the presence of cutmarks on a small 

number of bones (Level 4a) provide indications of the anthropic origin of the bone 

accumulation.  
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8.6 Summary of Taphonomic Evidence 

 

Pilanduk Cave presents a well-preserved LGM bone assemblage for Palawan Island that shows 

many taphonomic signatures for human activities and decisions. The evidence points to 

preferential hunting and consumption of deer on the site. Anthropic taphonomic evidence 

includes fracturing, fragmentation, cut marks, skeletal part representation and extensive heat 

alteration. Minimal carnivore gnawing marks across the assemblage also indicate that humans 

were the primary accumulators of the animal remains. Data from anatomical representation 

suggest transport decisions for bringing in whole deer carcasses up into Magmisi Peak and into 

the cave (at 165 masl). The deer individuals were likely caught from the lowland vicinities of 

the Iwahig River plain. Apart from meat consumption, marrow extraction is also evident based 

on fracturing and fragmentation patterns of bones. The ubiquity of burnt bones, ash and 

charcoal across Layer II and Layer III suggest frequent hearth rebuilding across this LGM 

occupation sequence. Bone refuse may also have been incorporated into hearths to clean the 

living space.  

Minori and Musang Caves present Holocene sequences for the island of Luzon. In 

contrast to Pilanduk Cave, these two assemblages have smaller sample sizes and relatively 

poor bone preservation. Both Luzon assemblages show a large overprint of diagenetic 

processes that obscure anthropic bone modifications or that cannot be resolved due to 

equifinality. Recording protocols, post-excavation and curatorial decisions have also affected 

assemblage sizes. Nonetheless, the taphonomic evidence available points to human-derived 

bone accumulations. Based on this, further inferences can be derived from taxonomic profiles 

of the assemblages, which in turn provide meaningful insights into subsistence practices 

across time. 
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8.7 Species Representation and Vertebrate Subsistence Patterns in 

Palawan and Luzon  

 

In this section, the archaeofaunal records of Pilanduk, Minori and Musang caves are once again 

assembled and compared with published faunal records for each island. The aims are to assess 

diachronic patterns of human subsistence based on the vertebrate record and examine human 

responses to ecological changes from the LGM to the Late Holocene. The Pilanduk Cave record 

is combined with the Ille and Pasimbahan Cave sequences to present zooarchaeological data 

from the LGM to the Late Holocene. These are the only vertebrate records for Palawan that 

have sufficient taphonomic information to infer human accumulation and modification of bone 

assemblages.  For Luzon, the records of Callao Cave, Nagsabaran open site and Pintu 

Rockshelter are once again joined with those of Minori and Musang Caves. 

 

8.5.1 Subsistence Patterns on Palawan Island  

 

Palawan Island assemblages are subdivided into temporal periods and the faunal counts 

(NISP) per period are presented in Table 8.24. The Late Pleistocene is subdivided into the LGM 

of Pilanduk Cave and the Terminal Pleistocene levels of Ille Cave. The phases of the Holocene 

(Early, Middle and Late) are covered by Ille and Pasimbahan Caves (Ochoa 2009; Ochoa et al. 

2014). The relative abundances of large mammals and medium-sized vertebrates are 

illustrated in Figure 8.15. Large mammals typically dominate these assemblages, but there is 

variation recorded for deer and wild pig abundances across time. This variation relates to 

diminishing deer populations on the island and eventual local extinction. Macaques are the 

most common medium-sized vertebrate and are treated separately from the other taxa in 

Figure 8.15 due to their relative abundance. The medium-sized vertebrate category 

(Med_Vert) in these figures is an aggregation of counts for other medium-sized tropical forest 

species that include mammals (e.g. pangolin, porcupine and small carnivores) and herpetiles 

(turtles and monitor lizard). The counts for macaques and medium vertebrates are used to 

further investigate diet breadth and site use across time. 

The LGM assemblage comes from the archaeological layers of Pilanduk Cave dated to 

21,000–20,000 cal BP in Trench 3 (see also Table 5.1). These correspond to context numbers 

111, 112, and 117. The deepest layer from context 118 (ca. 25,000 cal BP) is not included in 
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the plots here due to the very small sample size for prey taxa (NISP = 58, excludes murids and 

bats). However, as recorded in Table 5.1, the rusine deer is the most abundant taxon in this 

layer and the wild pig is absent.  

In the Late Pleistocene assemblages from Pilanduk and Ille Caves, deer is the dominant 

prey (Figure 8.15). Of the two deer species, it is the Rusa cervid, the larger taxon, that is the 

most abundant in the Late Pleistocene assemblages. Although many cervid remains cannot be 

definitively separated between Rusa and Axis, most of the cervid and large mammal remains 

are actually in the size range of the Rusa deer. In contrast to other large mammal taxa, the wild 

pig is considerably smaller than the rusine deer, as it is a dwarf island endemic, and the tiger 

is notably larger than the rusine deer.  

Good surface preservation of bones and similar recovery methods across the three 

cave sites (hand-collection, sieving and flotation) indicate that low species richness in Pilanduk 

Cave is not just an artifact of preservation and archaeological recovery. Wet-sieving and 

flotation did not yield many micro- and medium-sized vertebrate remains within Layers I-IV. 

This indicates that bats did not have considerable presence during these periods of human 

occupation, and that bats were also not hunted for food. Cervid remains comprise 90% of the 

LGM assemblage. Only a very small number of macaque, squirrel and porcupine remains were 

identified. In the Terminal Pleistocene record of Ille, nearly 75% of the assemblage consist of 

deer. As referred to in Table 7.1 on the taxonomic structure of vertebrate assemblages 

(Palawan B), these two Pleistocene assemblages are less speciose than the Holocene 

assemblages on the island. Note that in the linear regression analysis in Chapter 7, it was 

shown that sample size is not significantly driving species richness, and that there are factors 

other than sample size influencing richness across the sites. One such factor is human prey 

choice. Based on comparisons with other Palawan assemblages, the LGM levels of Pilanduk 

Cave present an occupation site that was focused on large-game hunting and processing of 

deer. This is further demonstrated in Table 8.25, where NISP counts are aggregated to assess 

prey size choices. These counts vary from those in Figure 8.15 in that they combine counts 

identified to taxon with counts of elements only identified to size category (large mammal, 

medium-sized mammal and medium-sized reptile). In Pilanduk, nearly 99% of the bone 

assemblage belong to the large mammal category. The Terminal Pleistocene levels of Ille Cave 

also show a very high proportion of large mammal remains (82%) compared to other medium-

sized vertebrates. 
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Table 8.24 Number of identified specimens (NISP) in Palawan vertebrate assemblages aggregated by temporal period and archaeological site. LGM = Last Glacial 
Maximum, TP = Terminal Pleistocene, EH = Early Holocene, MH = Middle Holocene, LH = Late Holocene, † locally extinct.  

 
TAXON 

LGM TP EH MH LH 

Pilanduk Ille Ille Pasimbahan  Ille Pasimbahan  Ille Pasimbahan  

Axis calamianensis† 75         8   4 

Rusa sp.† 175               

Cervidae 796 288 43   8   3   

Sus ahoenobarbus 62 14 58 35 231 192 179 191 

Canid   2 6           

Panthera tigris† 9 2             

Prionailurus bengalensis     2   3       

Arctictis binturong         1   1   

Paradoxurus philippinensis     12   5   4   

Viverrid   1 2 5 1 9   16 

Amblonyx cinereus     1           

Herpestes brachyotis   1 1       1   

Mydaus marchei     6 4 3 2 3   

Macaca fascicularis 4 13 57 28 51 75 40 65 

Hylopetes nigripes     3   1       

Sundasciurus sp.   5 6   1       

Sciurid 1     3   1   2 

Hystrix pumila 2 1 15 2 3 5 2 6 

Manis culionensis     8 2 4   1 1 

Cyclemys dentata 5 7 14   3   3   

Cuora amboinensis   1 1           

Geoemydid 29 59 171 16 29 8 25 7 

Varanus palawensis 2 7 76 27 51 13 45 12 

Serpentes   6 46 38 39 26 39 25 

Total NISP 1160 407 528 160 434 339 346 329 
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Figure 8.15 Bar plot (a) and stacked percentage plot (b) of NISP counts for large mammals, 
macaques and medium-sized vertebrates (Med_Vert) in the Palawan record aggregated by 
temporal period. The ‘Med_Vert’ category includes terrestrial and arboreal rainforest taxa. LGM 
= Last Glacial Maximum, TP = Terminal Pleistocene, EH = Early Holocene, MH = Middle Holocene, 
LH = Late Holocene, Pil = Pilanduk, Pas = Pasimbahan. 
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In the Early Holocene, it is notable that a higher proportion for medium-sized 

vertebrates is evident in both Ille and Pasimbahan Caves (Figure 8.15). This is the only phase 

when large mammal counts notably decrease, accounting for ≤50% in the assemblages. When 

considering data in Table 8.24 and Figure 8.15 for the Early Holocene, large mammal remains 

(cervid and suid) account for 25% or less of all macrovertebrates. When considering data in 

Table 8.25, large mammals account for 26% and 50% for Ille and Pasimbahan Caves, 

respectively. There is a sharp drop in the relative abundance of deer remains during the Early 

Holocene, and the large mammal remains consist mainly of wild pig remains. In Ille Cave, the 

Early Holocene levels contain a number of human cremation burials dated to ca. 9000 cal BP 

(Lara et al. 2015; Lewis et al. 2008). In Pasimbahan Cave, similar cremation burials were also 

uncovered in later excavations of the site (M. Lara, pers. comm.). In this case, the use of these 

two cave sites during this phase appears to have been more focused on human interment 

practices rather than on large-game hunting. 

 

Table 8.25 NISP and %NISP counts for aggregated large mammal, medium mammal and reptile bone 
counts in Palawan assemblages. LGM = Last Glacial Maximum, TP = Terminal Pleistocene, EH = Early 
Holocene, MH = Middle Holocene, LH = Late Holocene, Pil = Pilanduk, Pas = Pasimbahan. 

 

Prey category 
LGM TP EH MH LH 

Pil Ille Ille Pas Ille Pas Ille Pas 

NISP 

large mammal 4843 517 166 192 350 736 336 706 

medium mammal 20 38 201 148 109 374 98 286 

reptiles 41 73 263 43 83 21 73 19 

Total NISP 4904 628 630 383 542 1131 507 1011 

% NISP 

large mammal 98.8 82.3 26.3 50.1 64.6 65.1 66.3 69.8 

medium mammal 0.4 6.1 31.9 38.6 20.1 33.1 19.3 28.3 

reptiles 0.8 11.6 41.7 11.2 15.3 1.9 14.4 1.9 

 

   

By the Mid-Holocene, the pattern of deer rarity continues. It has been previously 

observed in the Ille and Pasimbahan records that a resource shift from deer to wild pig occurs 

during the Mid-Holocene (Ochoa and Piper 2017; Ochoa et al. 2014; Figure 8.15) . In the Late 

Pleistocene, deer appears to be the preferred prey over wild pig when they were present in the 

landscape. This was first observed in the Terminal Pleistocene record of Ille Cave (Ochoa 2009; 

Philip J. Piper et al. 2011a), and is now further  corroborated by the LGM record of Pilanduk 
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Cave. It appears that the rarity and eventual demise of cervids in the Holocene prompted the 

resource switch to wild pig as the main large game.  

A similar pattern for relative abundances of wild pig and medium-sized vertebrates 

continues into the Late Holocene. Deer is exceedingly rare, and only the smaller cervid species 

(Axis) is recorded. The contribution of medium-sized vertebrates to the subsistence record is 

also of importance. They occur in much higher proportions across the Holocene compared to 

the Late Pleistocene records. These include arboreal and semi-arboreal forest taxa such as 

macaques, viverrids and squirrels. Turtles and monitor lizards are also commonly found in the 

Holocene assemblages. Post-Pleistocene ecological changes across the island may have 

prompted the broadening of the foraging repertoire to include more forest taxa. Expansion of 

closed forests is reported at the onset of the Holocene based on cave guano stable isotope 

records from Gangub and Makangit Caves (Bird et al. 2007; Wurster et al. 2010). O’Donnell 

(2016) suggests on the basis of palynological records that more open environments persisted 

in the vicinities of the Dewil Valley contrary to the isotopic records. Regardless, it is evident 

from the vertebrate record that a wider variety of forest habitats was increasingly utilised by 

human foragers at the onset of the Holocene.  

 

 

8.5.2 Subsistence Patterns on Luzon Island 

 

Faunal counts (NISP) for Luzon Island assemblages are presented in Table 8.26, wherein cave 

assemblages are subdivided into temporal periods. Callao Cave is the only Late Pleistocene 

record and the subsistence data is for Homo luzonensis. The Holocene phases of the Luzon 

record are ascribed to Homo sapiens. The Early and Middle Holocene phases are combined 

(‘EMH’) due to the paucity of radiometric dates and are represented by the aceramic levels of 

Minori and Musang Caves. The ceramic-bearing levels of both caves are assigned to the Late 

Holocene. This assignation is based on the earliest records of pottery in the Cagayan Valley 

region at ca. 4000 cal BP (Hung 2005; Mijares 2008). As discussed in previous chapters, 

Nagsabaran site and Pintu Rockshelter are both Late Holocene sites. Nagsabaran is a well-

dated site, with the earliest ceramic-bearing levels dating to ca. 4000 cal BP. The younger 

cultural layer is ascribed to the Late Neolithic/Metal Age and dated to ca. 2500 cal BP.  

The relative abundances of large mammals, murids and medium-sized mammals are 

shown in Table 8.26 and illustrated in Figures 8.16 and 8.17. The murid category combines 
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large and small murids. The large arboreal cloud rats were potentially human prey, but other 

murids are likely products of natural death occurrences. Although they might not have been 

human prey, the murid category is included to further illustrate the pattern that native murids 

and artiodactyls occur across the temporal sequence, whereas introduced taxa appear later in 

the Holocene sequence. The medium mammal (Med_Mammal) category includes only 

introduced taxa: macaques, viverrids and domestic dogs. There are no known native mammals 

of this size category in the Luzon fauna. The counts for these taxa are aggregated due to the 

small number of specimens. The murid category only includes native murids, as introduced 

rats have not been reported in these sites. 

As noted in Section 8.4, Musang Cave bone counts are aggregated in two ways. Hence, 

the plots in Figures 8.16 and 8.17 have two versions, owing to two different ways by which 

NISP counts are aggregated in Musang Cave. All other counts from the four sites are the same 

in all figures. The first version of aggregating counts follows Thiel’s (1988) stratigraphic 

reconstruction, whereas the second versions combines Levels 1-7 with Levels 4a - 7a. 

Large mammals expectedly dominate these assemblages across all periods. Once again, 

there are differences observed for deer and wild pig abundances across time. This variation is 

due to the process of introduction of domesticates. In Palawan Island, the variation was due to 

the extinction of native fauna. Deer is the dominant prey in the Late Pleistocene record of 

Callao Cave, as well as in the Early to Mid-Holocene records of Minori and Musang Caves. In 

Callao Cave, 82% of the Late Pleistocene assemblage consist of large mammal counts, 

predominantly deer. This pattern appears to parallel the Late Pleistocene record of Palawan, 

and this is of interest since two human species are involved (H. luzonensis for Luzon and H. 

sapiens for Palawan).  It appears that when cervids are present, they are the preferred human 

prey in both Luzon and Palawan Islands, for both species of human.  
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Table 8.26 Number of identified specimens (NISP) in Minori and Musang Caves aggregated by temporal 
period and archaeological site. EMH = Early to Middle Holocene, LH = Late Holocene. 

Taxon 

    Version 1 (Thiel 1988) Version 2 

EMH LH EMH LH EMH LH 

Minori Minori Musang Musang Musang Musang 

aceramic ceramic aceramic ceramic aceramic ceramic 

Rusa marianna 212 88 96 24 38 82 

Sus philippensis 45 98 20 35 3 52 

Sus scrofa       2   2 

Bubalus bubalis     3 1   4 

large mammal I 589 505 259 307 49 517 

large mammal II     10 1   11 

Phloeomys pallidus             

Crateromys sp. 2           

Carpomys undescr. sp. 6     1   1 

Bullimus/Rattus sp. 1 1 1     1 

Batomys sp.             

Apomys microdon             

phloeomyine 2   3 2   5 

murid 33 13 7 1 3 5 

Paradoxurus philippinensis             

Canis lupus familiaris   3         

Macaca fascicularis   18 4 1   5 

intermediate mammal   14 3 1   3 

Microchiroptera 1           

small mammal 9 1 1 3 1 3 

Varanus sp. 3   2 5 1 6 

turtle 1   6 1 1 6 

snake 4 5 4 4   8 

fish   1 31 11   42 

bird 2 1 3 3   6 

macrovertebrate 113 10 60 57 6 112 

microvertebrate 24 8 5   2 3 

Total 1047 766 518 460 104 874 
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Figure 8.16 Barplots of NISP counts for large mammals, medium-sized mammals (Med_Mammal), 
and native murids in the Luzon record aggregated by temporal period. (a) and (b) vary only with 
regards to Musang Cave counts. (a) shows Musang Cave bone counts aggregated following Thiel 
(1988), (b) shows Musang Cave bone counts aggregated differently by this author (see text).  
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Figure 8.17 Stacked percentage plots of NISP counts for large mammals, medium-sized 
mammals (Med_Mammal), and native murids and in the Luzon record aggregated by temporal 
period. Versions (a) and (b) vary only with regards to Musang Cave counts. (a) shows Musang 
Cave bone counts aggregated following Thiel (1988), (b) shows Musang Cave bone counts 
aggregated differently by this author (see text).  
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In the case of Musang Cave, cervid abundance contrasts with Thiel’s (1988) assertion 

that pig is the dominant taxon in the cave sequence. As noted previously in Chapter 6, this 

relates to the misidentification of certain bone fragments ascribed as pigs. These time-

averaged records may be reflective of general trends; however, future work must also look into 

possible seasonality of hunting practices in the tropics. At present, the scarcity of ecological 

data on the endemic fauna of the Philippines (e.g. reproduction, seasonal movement, antler 

shedding, etc.) set limits on speculating about seasonality patterns (see Section 8.8).  

Suid counts increase in the Late Holocene, likely due to the introduction of the domestic 

pig. In two Late Holocene sites where domestic pig is identified (Musang Cave and 

Nagsabaran), suid remains outnumber cervid remains. However, the wild pig is still more 

abundant than the domestic pig in both sites and is not replaced by the latter. Based on dental 

remains, Amano (2013:323) notes that there is one domestic pig for every three or four wild 

pigs in Nagsabaran. 

Regarding introduced taxa in Musang Cave, the patterns vary depending on the version 

of bone count aggregation. As discussed in Chapter 4, Thiel (1988) divided Levels 4 to 7 in G4 

trench into ceramic bearing sections (4, 5, 6 and 7), and non-ceramic bearing sections (4a, 5a, 

6a, and 7a). In the first version shown in Table 8.26 and illustrated in Figures 8.16b and 8.17b, 

we find that bovid and macaque remains are found in the Early to Middle Holocene levels 

(EMH). I have reservations over the Early to Mid-Holocene ascription of bovid and macaque 

remains in Musang Cave based on comparison with the well-dated and well-stratified record 

of Nagsabaran site and due to the various stratigraphic uncertainties in Musang Cave. In 

Nagsabaran, domestic bovids and dogs are only found in the Late Neolithic levels. When using 

the second version of aggregation (joining counts from 4 -7 with 4a-7a), all the introduced taxa 

in Musang are grouped with the Late Holocene levels. My own interpretation of the 

stratigraphic data is augmented by the taphonomic data, wherein in different preservation 

states up to Levels 7 and 7a indicate intrusive material or mixing of remains. In this sense, the 

macaque and bovid remains may be intrusive to 4a to 7a like the pottery, or these levels may 

all be ceramic-bearing levels (4 to 7 and 4a to 7a). 
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8.8 Subsistence Patterns in the Philippines: Historicising IEK Systems 

 

The taphonomic histories and vertebrate subsistence records presented here also 

serve as a window into ecological practices and ecological knowledge systems of past human 

groups. They provide long temporal records by which we can historicize various aspects of 

indigenous lifeways of foragers that have inhabited and continue to inhabit these landscapes. 

These subsistence histories can potentially be linked to IEK systems recorded in 

ethnohistorical and ethnographic accounts. In the following ethnographic and archaeological 

accounts presented here, the aim is to historicize IEK systems. In the ethnographic synopsis, I 

highlight aspects that can be potentially linked to the zooarchaeological data. I further relate 

such data to diachronic perspectives on the utilisation and modification of local landscapes.  

A case in point is for the modern-day Agta, which are the most documented foragers in 

Philippine ethnography. I briefly discuss the literature on the Agta here to serve as an 

introduction to the complex histories of foragers in the Philippine archipelago. Nonetheless, 

the Agta of Luzon is only one among many indigenous groups in the Philippines that 

traditionally practice foraging (among a suite of other economic strategies). On Palawan 

Island, for instance, the Batak, Tagbanua and Pala’wan groups also present important histories 

of changing economies along the foraging-farming spectrum (Eder 1987; Novellino 2007, 

2010). Furthermore, ethnographic studies among the Agta and other ethnoarchaeological 

work during the 1980s aimed at using contemporary foragers to aid reconstruction of 

prehistoric foraging societies in the Philippines (Griffin and Solheim 1988; Headland and Reid 

1989). It has been recognised that ethnographic analogy for the service of archaeology is 

fraught with difficulties; nonetheless, the economies of modern foragers do need to be taken 

into account in order to adequately model aspects of past foraging societies (e.g. Binford 2001; 

Kelly 2013).  

As briefly described in Chapter 3, Agta groups inhabit northeastern Luzon, particularly 

the forests of the Sierra Madre and the Pacific coastline. They engage in hunting, fishing and 

gathering wild foods, as well as swiddening, wage labour and commercial foraging and trading 

(Estioko and Griffin 1975; Griffin and Griffin 2000; Headland 1987; Minter 2010; Peterson 

1990; Rai 1990). The mix and scheduling of economic strategies are partly based on variability 

of seasons brought about by environmental perturbations such as typhoons, as well as influx 

of and shifting economic relations with non-Agta. The Agta live in extended family residential 

clusters, with some distinction held between communities living primarily near the coast, or 

those living inland. The latter usually live along rivers, and these waterways serve as principle 
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foci of Agta social identity (Estioko and Griffin 1975; Griffin 1984). During the wet season 

(approximately October to February in northeastern Luzon), nucleation of related people 

usually occurs (Griffin 1984). Wet-season camps usually last for several months in adjacent 

locales of a particular river year after year (Griffin 1989). During the dry season, residency 

becomes more dispersed and there is greater mobility and diversification of subsistence 

activities. River terraces in the lowland forest are said to be favoured campsites; these are 

chosen for their proximity to hunting, forest collecting, and fishing locales, as well as to 

swidden fields for those Agta groups with a heavier reliance on horticulture (Allen 1985; 

Griffin 1989). Fishing is an important dry-season activity, in both freshwater and marine 

littoral habitats. 

With regards to hunting, ethnographers document that in the 1970s and 1980s, the 

Agta considered wild pigs to be more abundant than deer, and they killed more pigs than deer 

(Griffin 1998; Headland 1991; Peterson 1990; Rai 1990). This is said to be partly for their 

preference for wild pig meat and possibly due to the environmental idiosyncracies during the 

period of ethnographic observation (Griffin 1984). Hunting is a year-round activity but is 

particularly favoured during the wet season when wild pigs have more stored fat and they can 

be stalked quietly on the wet forest floor (Griffin 1984; Minter 2010). Protein and fat from wild 

game is particularly important during the wet season, when swollen rivers are unsafe for 

fishing (Mudar 1985). In the dry season, prey often to retreat to higher elevation areas, which 

make them more difficult to track (Minter 2010). Dry season hunting is often done with dogs, 

which can stalk prey more silently. Dogs are said to be trained to drive startled game to hunters 

waiting in ambush, and hunting with dogs enable Agta to specialize in hunting and de-

emphasize cultivation (Griffin 1998). Hunting with dogs is also said to be favoured by women 

hunters (Estioko-Griffin 1981).  

An ethnoarchaeological study by Mudar (1985) on Agta hunting of wild pigs presents 

the only data of its kind so far in Philippine literature. The data is based on the collection of 

wild pig crania and mandibles from the Nanadukan Agta, which were kept by them as trophies 

of their hunting forays. The pig cranial materials were aged using tooth eruption and wear 

methods. The resulting mortality profiles indicate a bimodal pattern, wherein the youngest 

and oldest members of the wild pig population were harvested. This pattern is said to be 

reflective of active pursuit hunting, whereby the most vulnerable members of the wild pig 

population (immature and older individuals) fall prey to the Agta hunters, while many of the 

mature adults are able to escape the bows and dogs of the hunters. 

As discussed in Chapter 2, tropical rainforests have been stereotypically characterised 

as either lush paradises, on one hand, to green deserts on the other. It has long been argued 
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that most of the biomass in tropical rainforests are in plant growth, many of which are inedible 

for humans (Bailey et al 1989; Headland and Bailey 1991). Griffin (1984) has previously 

suggested that even with its dispersed resources, the rainforests of Luzon are game-rich 

environments for the Agta foragers. This may hypothetically be applicable to periods prior to 

defaunation during the Anthropocene. However, the ‘empty forest syndrome’ (Redford 1992) 

is presently observed across many regions, including the Philippines, wherein rainforests 

appear to be depleted of wildlife. Biological surveys suggest a declining trend for many native 

mammal species on Luzon and across the archipelago (Heaney et al. 1998; 2016a). There are 

limited ecological data about distribution of wild game populations traditionally hunted by 

indigenous groups in the Philippines. Ethnographic data from Agta communities suggest game 

scarcity in northern Luzon in the past few decades (Griffin and Griffin 2000; Minter 2010); 

consequently, several Agta communities in the past decade engage in fewer hunting trips due 

to lower rates of hunting success. This contrasts with previous data (Estioko and Griffin 1975; 

1981) from at least two decades before, wherein certain Agta groups had higher hunting 

success rates. The latter led Griffin (1984) to suggest the idea that the tropical rainforests of 

Luzon were game-rich habitats that could sustain foragers, even as these forests are relatively 

carbohydrate-poor. 

Socio-economic changes and increasing influx of non-Agta into traditional Agta 

territories has brought about much transformation in Agta economies. Overhunting and 

deforestation by non-Agta colonists has contributed to the game scarcity described above 

(Griffin and Griffin 2000; Headland 1991; Minter 2010). Another example of transformation 

relates to female hunting. Ethnographic work by Estioko-Griffin (1981, 1984) famously 

documented women hunters among the Cagayan Agta in the early 1980s. However, later 

studies show that women hunters were increasingly rare by 1985 (Griffin and Griffin 2000) 

and were no longer documented in later communities studied in the 2000s (Minter 2010; 

Dyble 2016). Hunting tools have also shifted, from the predominant use of bows and arrows to 

an increase in the use of shotguns in the last few decades (Griffin and Griffin 2000; Headland 

1991; Minter 2010; Rai 1990). 

 Moving back in time, historical records document forager exchange relations with 

lowland and coastal complex polities engaged in the maritime luxury goods trade by at least 

the first millennium AD (Jocano 1975; Junker 2002a; Scott 1983, 1984). Early Spanish sources 

note that lowland chiefs, whose polities were located in major river valleys and coastal areas, 

relied on foragers of the interior for forest products and raw materials such as gold ore, iron 

ore, beeswax, hardwood, animal hides and civet (see Hutterer 1974; Junker 1999, 2002b).  

Historical archaeological research in the Visayas region further support this. Based on the 
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archaeology of the Basey region of Samar Island, Hutterer (1974; 1976) has proposed a model 

of internal trade between coastal port communities and foragers and/or swiddeners living in 

the interior that had territorial access to the forest products that circulated in maritime trade.     

Such inter-ethnic exchanges are said to be related to intra-regional diversity and availability 

of forest resources. In the Tanjay region on Negros Island, archaeological data also 

demonstrate the presence of a maritime trading chiefdom in the central Philippines as early as 

the twelfth century, even though Chinese historical records make no mention of this polity 

(Junker 1999; 2002). Pottery and other artefacts traded into and found in hunter-gatherer 

camps around Tanjay document at least a millennium of exchange between foragers and 

agriculturalists. 

These archaeological data from the Visayas Islands from the first millennium to the 

onset of European contact could not resolve the ‘wild yam question’ posed by Headland (1987). 

This pertains to the issue of whether tropical rainforest foragers could live independently of 

starch staples sourced from agriculturalists.  As discussed in Chapter 2, the antiquity of 

rainforest foraging across the Indo-Pacific has been pushed back to at least 40,000 years based 

on archaeological data from Borneo, Sri Lanka and New Guinea. This puts to rest the wild yam 

question and shifts the discourse to understanding the behavioural flexibility and adaptations 

of tropical rainforest foragers from the beginnings of modern human colonisation of these 

environments. As archaeological and palaeoenvironmental data from the Philippine 

archipelago has increased this past decade, we can now add considerable time depth to the 

long-term dynamics of forager lifeways on Luzon and Palawan.  

 

8.8.1 Island-specific Adaptations and Tropical Rainforest Foraging 

 

The archaeological patterns described in Section 8.7 provide insights into tropical rainforest 

foraging practices and island-specific adaptations across time. These adaptations are likely 

reflective of the existing ecology of the area at a particular period. During the LGM, the evidence 

from Pilanduk Cave shows a focus on large game hunting and freshwater foraging in this site. 

The vertebrate assemblage is clearly dominated by deer, with only a minimal input from other 

species, whether of large taxa (like wild pigs and tiger) or medium and smaller sized taxa (such 

as macaques, monitor lizards and turtles). The predominance of deer hunting is potentially 

reflective of the more open environments posited for Palawan during the LGM (Bird et al. 2007; 

Wurster et al. 2010). The data on freshwater foraging derives from the molluscan record 
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reported by Kress (1990), wherein a large percentage of the Pilanduk shell remains come from 

freshwater and terrestrial species, rather than brackish or marine species.  

This LGM subsistence record provide insights into inland foraging strategies, since 

Pilanduk would have been around 40 km away from the coast during this period. The focus on 

large game hunting and freshwater foraging may be reflective of seasonal subsistence 

strategies of inland foragers. Alternatively, it may also reflect the strategies of foragers that 

have broader territorial ranges and that move seasonally between inland and coastal locales. 

In the Terminal Pleistocene levels of Ille Cave in northern Palawan, the predominance of deer 

among human prey species is still observed. Similar to Pilanduk, Ille Cave would have been 

further inland during the Terminal Pleistocene. 

The seasonality and scheduling of subsistence activities is difficult to assess given the 

available data and requires further consideration in future work. To date, we still do not have 

detailed ecological data for many of the endemic animals of the archipelago, including those 

for wild pigs and deer. The ethnographic data from the Agta presents some insights about 

Luzon warty pigs. Information from hunters and hunters’ kills (e.g. Griffin 1984; Mudar 1985; 

Minter 2010) indicate that wild pigs start to give birth at the end of the rainy season and into 

the middle of the dry season (Mudar 1985; Peterson 1981). However, the gestation period is 

not known. Wild pigs are also said to put on fat before the wet season. These data partly explain 

the seasonal preference for pig hunting in the wet season. In contrast to the bearded pigs of 

Borneo, which undergo large-scale population movements, seasonal migrations for Philippine 

pigs have not been reported (see Oliver 1993). 

Behavioural biological data for endemic Philippine deer species are also scarce. As a 

point of comparison, the males of the congeneric sambar (Rusa unicolor) of South and 

Southeast Asia are said to be found in various stages of antler growth throughout the year 

(Leslie 2011). Such data precludes inferring seasonality patterns using archaeological antler 

remains, as is typically done for deer species from higher latitudes. The gestation period for 

the sambar is said to be eight months, but some reports it could be longer. For the Visayan 

spotted deer (R. alfredi), it is reported that in captivity, calving occurs year-round and that 

young animals are reported to be captured in the wild at all times of the year (Blouch et al. 

1998; Cox 1987). 

Despite these limitations, some further observations may be noted regarding hunting 

practices on Palawan and Luzon across the Holocene. Some authors have remarked that broad-

spectrum foraging strategies are characteristic of the adaptive repertoire in tropical rainforest 

environments in Southeast Asia (O’Connor and Bulbeck 2014). On Luzon and Palawan, there 
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is variation observed between foraging strategies, which reflects the differing ecologies and 

distribution of resources on the two islands. On Palawan, palaeoenvironmental proxies 

suggest the expansion of closed tropical rainforests by the onset of the Holocene (Bird et al 

2007; Wurster et al. 2010). The Holocene vertebrate records from Ille and Pasimbahan Caves 

show a higher diversity of targeted species. The assemblages are still highly uneven and 

dominated by large game, but arboreal taxa (macaques and civets) and other medium-sized 

vertebrates appear in greater numbers across the Holocene sequence. This stands in contrast 

to the LGM record of Pilanduk.  

The variability in hunting strategies is also connected with the changing 

palaeogeographic configuration of Palawan Island. This shift from deer to pig hunting and the 

broadening of the prey base relates to island-wide ecological changes on Palawan during the 

Holocene.  This is evident from the palaeogeographic data discussed in Chapters 2 and 7, 

wherein much of Greater Palawan was inundated due to post-LGM sea-level rise. This led to a 

drastic decrease in exposed land area and habitat. The molluscan data also present striking 

changes in the relative abundances of particular species across time. The Late Pleistocene 

record  of Pilanduk Cave shows a predominance of  freshwater and terrestrial species (Kress 

2000). The period of occupation occurs during a time of lowered sea levels, and the coast was 

at least 40 km away from the site. The Early Holocene record of Pasimbahan Cave shows a 

similar trend of mollusc abundances (Ochoa et al. 2014). By the Middle Holocene, 

characteristic dense shell midden deposits are documented across the island. In contrast to the 

earlier shell middens, the Mid-Holocene middens consist mainly of mangrove and marine 

species. This has been observed in Ille, Pasimbahan and Sa’gung Caves (Kress 2000; Ochoa et 

al. 2014; Szabo et al. 2004). The timing of appearance of these middens is said to be related to 

the proximity of sites to mangrove areas during the Mid-Holocene sea-level high-stand and the 

stabilization and expansion of mangrove systems during this period (Robles et al. 2015). 

During the Terminal Pleistocene, Ille and Pasimbahan Caves would have been over 50km 

inland, whereas at present they are less than 5 km away from the coast. 

On Luzon, the focus on large game is reflective of the local ecology of the island, 

wherein deer and pigs form the bulk of the animal resource. There is a more limited array of 

human prey species on Luzon compared to Palawan; nonetheless, deer and pigs may have been 

sufficient to supplement the protein and nutritional needs of Holocene foragers in the Callao 

area, alongside freshwater resources. In the Minori and Musang record, fish remains are 

relatively low, but it is uncertain whether this is an artefact of preservation. Thiel (1990) also 

reports the presence of molluscs across the Musang Cave sequence, which primarily consists 
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of the freshwater snail Thiara scabra.  Along with Callao Cave, the sites are strategically located 

beside a major tributary of the Cagayan River, and T. scabra is still observed in the river today.  

There is a contrast to note between the Holocene distribution of deer remains in Minori 

and Musang Caves compared to the reported preference of the Agta for wild pig in recent 

decades. This may partly have to do with the decreasing population trend of the Philippine 

deer across its modern range. Seasonality of hunting practices and the effects of environmental 

perturbations may also be at play in the archaeological record, and this should be explored in 

future work. As described above, deer is the dominant taxon in the non-ceramic bearing layers 

in these two sites, whereas pig remains become equally abundant or more abundant than deer 

remains in the Late Holocene sites of northeastern Luzon (including for Nagsabaran and Pintu 

Rockshelter).  These archaeological records differ with ethnographic records, which shows 

that wild pig is the preferred and most hunted wild game. These diachronic records 

demonstrate the variability in hunting patterns in this part of Luzon. 

 

8.8.2 Hunting Practices and Landscape Use 

 

The zooarchaeological data can also be linked to long-term patterns of landscape use. The 

archaeological data across Palawan Island lends itself useful for such an exploration. As 

described in Section 8.3, the well-preserved bone assemblage of Pilanduk Cave shows an LGM 

record of residential cave occupation that is specialised towards hunting of large game. The 

archaeological evidence from the site allows us to explore the interpretation of it as a central 

place wherein highly valued food resources were consumed and shared. Taphonomic evidence 

shows the transport, butchery and discard of entire deer carcasses on site. This implies that 

the consumption of high-quality meaty parts occurred in the cave, and that entire animals 

would have likely been shared among several individuals. Meat of large animals is said to be 

widely shared among human foraging societies and food sharing to be integral to forager social 

interactions (see e.g. Hawkes et al. 2001; Kelly 2013). In Pilanduk Cave, the targeted deer taxon 

falls between the size range of Rusa marianna (40-96 kg) and Rusa unicolor (109-260 kg). It is 

highly likely that deer of this size range were shared among several human individuals or even 

family units.  Marrow consumption is also evident from butchery evidence and this accounts 

for an important fat and nutritional resource. Together, meat and marrow constitute high 

quality dietary sources and also likely represent highly valued resources, given the universally 

high social valuation of meat among foragers (e.g. Binford 2001; Hawkes et al. 1991; Kelly 

2013; Marlowe 2010; Minter 2010; Widlok and Tadesse 2005).   
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The ubiquitous evidence for hearth remains across the LGM sequence of Pilanduk Cave 

also draws attention to the role of cave hearths as food processing and social hubs. Fire and 

hearths have deep human evolutionary significance, providing various advantages such as 

cooked food, warmth, light and protection from predators (Brown et al. 2009; Shimelmitz et 

al. 2014: 197; Wrangham and Carmody 2010; Wrangham et al. 1999). All of these advantages 

appear applicable in the Pilanduk case, including protection against predatory tigers. Indeed, 

the strategic location of the cave and the configuration of its steep cave platform may have lent 

security advantages that accounted for its choice as residential camp. Fire was also used for 

the maintenance of the site, as is evident from the use of fire on bone discard. Stiner and 

colleagues’  (2011; see also Blasco et al. 2014) further extend the argument for ‘hearth-side 

socioeconomics’, wherein hearths provide forums for complex social manoeuvres and 

cooperation as early as the Lower Palaeolithic. Campfires are also known ethnographically as 

settings for complex social interactions among foragers, including for story-telling (e.g. Dunbar 

2014; Wiessner 2014). Recent work with the Agta of Luzon, for instance, documents the 

importance of campfire tales and their implication for evolutionary models for social 

cooperation (Smith et al. 2017). Minter (2010) also documents the centrality of game animals 

and animals in general among the Agta, and how animal tales are shared over evening 

campfires. In addition, the ubiquity of flake tools and lithic debitage across the LGM sequence 

also present Pilanduk as a site for tool manufacture. Preliminary aggregate analysis of the lithic 

remains during this phase appears to indicate the presence of all stages of the lithic 

manufacturing sequence (Manipon 2017). Although we can only speculate about the nature of 

social interactions occurring on the site, the archaeological and faunal data mark Pilanduk Cave 

(and Magmisi Peak) as an important central place in the landscape where people assembled to 

consume valuable food resources and where campfires provided a conspicuous setting for 

social interactions. Within such a setting, food resources were likely shared and the attendant 

skills involved in the processing of such resources (e.g. hunting, butchery, tool manufacture, 

etc.) may have also been performed and shared.  

Moving into the Holocene, the symbolic marking of caves and karst formations in the 

landscape has been explored by Paz (2012) for the Dewil Valley record of El Nido, northern 

Palawan. Several cave sites in this karstic valley have been used as burial grounds for millennia, 

including for highly complex cremation burials in the Early Holocene phase of Ille Cave (Lara 

et al. 2015). These human cremations at Ille represent the oldest of their kind in Southeast 

Asia. In the Mid to Late Holocene levels, flexed and extended human burials are also observed. 

These burials cut into shell and bone middens across the sequence. This shows the continuous 

and intermittent usage of Ille cave as both burial ground and campsite in the last few thousand 
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years. In modern times, Paz (2012) also notes that caves in the El Nido area are labelled by the 

local Tagbanua and Cuyonon as ‘Pasimbahan’, which roughly translates to ‘place of worship’. 

Various kinds of votive artefacts are found across the Holocene sequence in these cave sites, 

and ritual offerings have continued into modern times. In central Palawan, an outcrop called 

Linaminan (house/place of Linamin) has also produced archaeological evidence that dates 

back to the 9th-10th centuries AD and is hypothesised to have been used as a ritual space based 

on the votive artefacts on-site (Szabo et al. 2007). Linamin is a female natural deity and the site 

is perceived as a sacred space by the indigenous Pala’wan. 

 

8.8.3 Anthropogenic Modification of Environments 

 

A final example drawn here pertains to instances of landscape modification, which clearly 

involve ecological know-how and changing ecological relationships of humans to their 

environments. An example that stands out from the archaeology of the Indo-Pacific region 

relates to early vegeculture and forest management practices (Barton and Denham 2018). In 

the case of Palawan, preliminary evidence for plant management strategies is found in Ille and 

Pasimbahan Caves (Barker et al. 2011; Lewis et al. 2008; Ochoa et al. 2014). More extensive 

data are evident from the archaeology of Borneo (Barker et al. 2017) and the New Guinea 

highlands (Denham et al. 2003; Summerhayes et al. 2017).  These data demonstrate how the 

‘cultured forests’ of SEA and Oceania have long histories of human management. Within the 

faunal data presented here, an example that can be drawn for ecological modification involves 

animal translocations. 

The introduction of taxa on Luzon in the Late Holocene presents pervasive ecological 

changes that were previously not recognised. Translocation events have the impact of 

changing the local ecology and initiating trophic cascades that often leads to biodiversity loss 

(Doherty et al. 2016; Lambertini et al. 2011). As archaeological evidence from Luzon shows, 

macaques and palm civets were introduced by humans during the Late Holocene. These 

species are considered economically and culturally favoured animals and have been 

translocated widely across Wallacea (Heinsohn 2003). Although there are possible earlier 

instances of translocations across ISEA, the emerging picture seems to be that most 

translocations occurred after the earliest introductions of pottery and domestic animals (Piper 

2017). Macaques and palm civets are now naturalised across Luzon and the oceanic 

Philippines. They are viewed as native wild species by local inhabitants and are hunted up to 

the present for their meat, skins, and other body parts.  



290 
 

The introduction of non-native wild species is a form of ecological intervention that 

represents a changing logic of engagement of local inhabitants who released (whether through 

migration or trade) new animals in the landscape. Such practices appear to stand in contrast 

to past practices of local foragers that have occupied the islands prior to these translocations. 

These translocations may have partly benefited Neolithic or Late Neolithic human 

communities for the addition of wild game into the landscape that served various purposes. 

Nonetheless, as discussed in Chapter 7, these introductions have also negatively impacted 

island faunas. 

 

8.9 Conclusion 

 

This chapter has provided the taphonomic evidence for the three study sites of the research. 

Data on various biostratinomic and anthropic variables have provided taphonomic histories 

of the assemblages. The well-preserved bone assemblage of Pilanduk Cave presents various 

lines of evidence for the preferential selection and consumption of Rusa deer (large deer). 

Carnivore ravaging is very minimal, which suggests that humans were the main accumulators 

of the assemblage. Of the rare evidence for carnivore ravaging, the evidence points to tiger 

gnawing, which in turn lends further support to the hypothesis of their natural distribution on 

Palawan Island.  Butchery marks on three tiger foot bones also suggest possible skinning for 

tiger fur. The predominance of deer in Pilanduk Cave contrasts with the Holocene subsistence 

record of Ille and Pasimbahan Caves, wherein medium-sized mammals and reptiles are 

increasingly well-represented. This broadening of the prey base is possibly connected to the 

expansion of lowland rainforest at the onset of the Holocene. 

In the case of Minori and Musang Caves, the imprint of various biostratinomic and 

diagenetic processes has limited the inferences on prey processing and consumption. 

Nonetheless, species representation in these sites provide a valuable dataset to assess 

subsistence patterns across time and compare hunting practices between the two islands. 

Similar to the Palawan record, deer is the dominant prey choice in the Late Pleistocene of 

Luzon.  However, the Holocene assemblages differ between the islands. Deer is still a dominant 

prey choice on Luzon up to the Mid Holocene, whereas on Palawan, deer are increasingly rare 

by this time. Deer become extinct on Palawan, whereas deer remains extant on Luzon up to the 

present. The contribution of pig remains on Luzon is increased by the Late Holocene due to the 

incorporation of domestic pigs. However, as discussed above, domesticates do not replace wild 

taxa in the Neolithic as the base of the diet. Medium-sized mammals are abundant across the 
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Holocene sequence of Palawan, owing to their natural distribution on the island. On Luzon, 

medium-sized mammals in the form of macaques and palm civets only appear in the Late 

Holocene record, suggesting their invasive status and human introduction during this period. 

The Late Holocene record of Luzon also documents the introduction of domestic pig, dog and 

carabao. 

Lastly, this chapter has contextualised the subsistence data within long-term 

perspectives on foraging lifeways. The chapter has presented an initial attempt to link 

ethnographic and archaeological studies of Philippine foraging economies to the 

zooarchaeological analysis. This exploratory narrative has shown that taphonomic histories 

and subsistence records from Luzon and Palawan can be re-framed as aspects of IEK systems 

of human groups that have inhabited these landscapes.





 

293 
 

 

Chapter 9 Late Quaternary Biodiversity Changes and 

Human Palaeoecology in ISEA: Summary and Conclusions 

 

9.1 Introduction 

 

This concluding chapter presents a summary of the major results of the thesis and addresses 

the two research questions laid out at the beginning of this work. The first question relates to 

biodiversity changes in tropical island faunas, while the second question involves human 

ecological responses and behavioural adaptations in tropical island environments. I relate 

these discussions to broader thematic issues in archaeology, biogeography and conservation, 

as well as to new archaeological findings in ISEA. To end, some avenues for future work are 

suggested. 

 

9.2 Biodiversity Changes Across the Holocene 

 

This thesis has laid down groundwork to build robust faunal sequences and archaeological 

chronologies that document palaeoecological changes across the Late Quaternary. The 

construction of faunal sequences for the Philippines has been hampered by large gaps in 

chronologies from the Late Pleistocene to the near-present. The sequences assembled here 

were made possible by directed efforts to fill in some of the chronological gaps in the Late 

Pleistocene and Holocene. For Palawan, it was necessary to provide a Late Pleistocene faunal 

record to connect to existing Holocene assemblages. This has been realised with the re-

excavation and re-dating of Pilanduk Cave in southern Palawan. Re-dating of the 

archaeological sequence confirms two Late Pleistocene occupation phases: an older phase at 

25,000 cal BP and a younger phase at the Last Glacial Maximum (21,000-20,000 cal BP). The 

excavation yielded a well-preserved faunal assemblage. Morphological and taphonomic 

studies of the remains confirm the LGM presence of the tiger (Panthera tigris) on Palawan. The 

inventory for tiger bones total to nine specimens and taphonomic evidence also point to tiger 

gnawing on a few deer bones. The study also provides a taxonomic diagnosis for two cervid 

taxa (Rusa sp. and Axis calamianensis) based on antler and post-cranial remains. All three large 

mammals are locally extinct. 
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In the case of Luzon, it was necessary to provide well-described Holocene 

archaeofaunas that can be connected to existing Pleistocene and Late Holocene sequences. The 

Minori and Musang Cave assemblages serve to fill in the Holocene gaps and have provided 

records for several native and non-native taxa of Luzon. Included among records of native taxa 

are those for previously unknown and extinct giant cloud rat species from the genera Carpomys 

and Crateromys. Carpomys sp. represents a de novo species discovery, and the fossil Crateromys  

likely also represents a new species. These fossil discoveries add to the latest neobiological 

inventory of previously unsuspected mammalian diversity on Luzon.  The very high species 

discovery rate works towards augmenting what biologists label as the ‘Linnaean shortfall’. This 

refers to the fact that only a small fraction of species globally are known to science (Lomolino 

et al. 2016; Whittaker et al. 2005). The fossil record tends to produce records of new species, 

especially in the Pleistocene or older geological periods. Given that the modern mammalian 

fauna of Luzon is now relatively well-described (Heaney et al. 2016a), what is surprising about 

the new fossil murid records is that these taxa are of Holocene-age that persist into the Late 

Holocene. Of the four murid taxa identified in Minori and Musang Caves, two of them are 

previously unknown extinct species. 

The in situ speciation and diversification of vertebrate lineages on Luzon also weigh 

upon human evolutionary dynamics, due to the announcement of a new endemic and small-

statured human –  Homo luzonensis – from Callao Cave in Luzon (Détroit et al. 2019). Signs of 

hominin presence have been reported for the Middle Pleistocene of Luzon (Ingicco et al. 2018) 

and Flores (Brumm et al. 2010), which come in the form of lithic tools found in association with 

megafauna. Hominins were also present in Sulawesi by at least 118,000 years ago (van den 

Bergh et al. 2016). These findings show that the evolution of Homo floresiensis in ISEA was not 

just a one-off process of hominin evolution in an oceanic island. Instead, human diversification 

occurred not only in the African and Asian continents, but also in the oceanic islands of 

Southeast Asia. Investigating the evolution of H. luzonensis requires understanding its 

biogeographic context, and the faunal sequences and diagnoses of native and non-native taxa 

presented here contributes towards understanding the faunal community in which this human 

species evolved. 

The fossil records analysed and assembled here have also worked towards 

understanding the sequence and timing of biodiversity changes. As described in Chapter 7, two 

major changes and processes are observed across the Holocene:  extinctions without 

replacement and the human introduction of invasive species. On Palawan, last occurrence 

records for the tiger and rusine deer indicate Early Holocene extinction events. Last 

occurrence records for the Calamian hog deer indicate a Late Holocene extirpation event. 



 

295 
 

Currently, all known Holocene extinction records on Palawan are of large mammals. In 

contrast, Holocene extinction records for Luzon are only of small mammals, and they occur in 

the Late Holocene.  

The asynchronous timing of Holocene extinctions underlines the observations by 

Turvey and Fritz (2011) that different processes are responsible for past and present 

extinction processes. Large mammal extinctions on Palawan during the Early Holocene appear 

to be largely driven by environmental changes during the Pleistocene-Holocene transition. 

Human hunting cannot be discounted, nonetheless, as deer were evidently intensively hunted 

across the island. The eventual disappearance of the species may have been compounded by 

human hunting of a species that was becoming increasingly rare.  The case of the hog deer 

differs from the rusine deer in that the former persists into the Late Holocene. In the absence 

of evidence for extensive environmental change during this period that parallels that of the 

Pleistocene-Holocene transition, anthropogenic factors appear to be the main driver of 

extirpation for the Calamian hog deer. 

Late Holocene faunal disappearances on Luzon also appear to implicate human 

impacts. An important factor that has been discussed in this thesis is that of the introduction 

of invasive species. The Luzon record provides the first archaeological confirmation for the 

introduction of macaques and palm civets into the oceanic Philippines. This contrasts with the 

case of Palawan, where there are Late Pleistocene (for macaques) and Early Holocene (for 

civets) records for these taxa on the island. Archaeological records on Luzon indicate that both 

species are present only in ceramic-bearing archaeological levels, indicating human 

introduction not earlier than the Neolithic. A direct date on a macaque tooth from Minori Cave 

provides a minimum age for its introduction at 1827–1706 cal BP.  

In a global summary of the biogeography of extinctions of island mammals, Kouvari 

and van der Geer (2018) observe the anomalously low records of extinction for the Philippines. 

This observation calls attention to how little we know still about past extinction dynamics in 

the archipelago, and the same is true for many parts of ISEA. On Luzon, the fossil records 

presented in this thesis only cover one out of eight recognised centres of endemism (‘sky 

islands’). Each of these centres supports endemic taxa found only within its restricted area. 

According to historical records, the Cagayan Valley is one of the areas of Luzon that was heavily 

deforested during the colonial era (Bankoff 2007). Other areas that have historical records for 

high human population density are the Ilocos region and the area surrounding Manila and 

Laguna de Bay. These lowland areas were the first to be deforested in the last four centuries. 

The records of three extinct lowland species in the Cagayan area raises the question of what 

lowland species might have been previously supported by these other areas of Luzon. 
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Anthropogenic activities have been shown to profoundly impact patterns of species diversity 

on islands by rendering native assemblages depauperate and inflating species richness with 

introduced taxa (van der Geer et al. 2017). The Luzon fauna remains incredibly speciose unlike 

that of other oceanic islands around the globe. One primary reason for this is that many living 

non-volant species are montane taxa or elevational generalists (Heaney et al 2016a). The 

extinction records presented here are those of lowland species, and it is in the lowlands where 

human activities have been most intensive. The Luzon fauna is exceptionally biodiverse and 

remains so in the Anthropocene, but the extinction records of native small mammals raise the 

question of how much lowland species diversity has been reduced by the human extinction 

filter phenomenon across the Holocene. As discussed in Chapter 7, Holocene extinction records 

have also come to light in the Wallacean islands of Flores, Timor, Sumba and Alor (e.g. Aplin 

and Helgen 2010; Locatelli et al. 2015; Louys et al. 2018; Meijer et al. 2010, 2019; van den 

Bergh et al. 2009). Among the documented extinctions are various murid rats, and the 

proposed extinction drivers for these species are increased aridity and deforestation of the 

islands (Louys et al. 2018). Unlike Luzon, the faunas of these islands have not been as 

extensively surveyed by neobiologists, but it is argued that certain fossil murid species 

identified in Timor, Sumba and Alor are likely presently extinct. On Luzon, living giant cloud 

rats are well-documented, and hence the fossil cloud rats belonging to Carpomys and 

Crateromys described from Musang and Minori Caves are deemed presently extinct. 

These new extinction records lead our attention to neobiological estimations of species 

diversity. As observed by Helmus et al. (2014) and van der Geer et al. (2017), long-standing 

models of island biogeography can prove inadequate unless they take into account the impact 

of human activities on the processes of immigration, speciation and extinction. In many oceanic 

islands across the globe, species introductions appear to have artificially inflated mammalian 

richness, particularly on small islands with relatively depauperate faunas. However, on an 

exceptionally biodiverse and large oceanic island such as Luzon, eleven non-native mammal 

species are dwarfed by the current count of 56 native species (Heaney et al. 2016a). With the 

extinction records of at least three native species (Carpomys sp. and Crateromys sp. reported 

here and Batomys sp. reported by Heaney et al. 2011), the question arises whether introduced 

taxa replaced more vulnerable native taxa upon initial introduction. In this regard, species 

introduction may superficially inflate mammalian species richness in the present day, but 

invasive taxa may also be involved in an extinction filter that has reduced native species 

richness in the Late Holocene of ISEA. In Oceania, avian extinctions are relatively well-

documented, with the Holocene arrival of humans resulting in rapid biodiversity loss 

(Steadman 2006). 
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In the case of Luzon, what is of interest is the underestimation of lowland species 

richness. It has been observed in several Philippine islands that mammalian species richness 

reaches its peak in montane elevations (Heaney 2001, Heaney et al. 2016b, Hutterer et al. 

2018). However, when extinction records of lowland mammals are considered, it appears that 

lowland species richness is underestimated by models that are based solely on modern biotas.  

Moreover, the extinct cloud rats recorded for northeastern Luzon represent an 

expanded array of body sizes of cloud rats. This is further testament to the morphological and 

ecological diversity of this particular clade and to the extraordinary evolutionary laboratory 

that the Philippine archipelago represents. The two Old Endemic murid lineages – cloud rats 

(Phloeomyini) and earthworm mice (Chrotomyini) – are said to be most abundant and diverse 

at medium to high elevations (Heaney et al. 2010, 2016b). The records for extinct cloud rats in 

the Cagayan Valley indicate that there was also diversification occurring for lowland taxa. The 

clarification of the status of macaques and civet cats as non-natives also implies that the 

diversification of murids in the oceanic Philippines occurred without the presence of these 

taxa. This may partly elucidate the evolutionary radiation of the Muridae on Luzon.  

These observations also raise the issue of mammalian extinction risk in the past and 

the present. As noted in Chapter 7, the resiliency of the living endemic fauna must be re-

assessed in light of fossil extinction records. The latter suggests that there were vulnerable 

taxa that became extinct in the Late Holocene. What we can presently characterise as resilient 

taxa among lowland species are elevational generalists – i.e., species that occur across 

elevational gradients of the ‘sky islands’ of Luzon and this contributes to their survival amidst 

intensive human disturbance of lowland habitats. There is also a need to study ecological 

interactions of macaques and palm civets with endemic species and to assess whether these 

are ecologically benign or harmful. These interactions have been overlooked in the past, partly 

due to the perceived native status of macaques and palm civets. This recommendation follows 

previous suggestions that further research is required to investigate whether mammal faunas 

that have survived past extinction filters are now threatened by different anthropogenic 

threats (Turvey 2009; Turvey and Fritz 2011: 2573). 

The palaeobiological data presented in this thesis aim to contribute to conservationist 

aims to protect and preserve modern biodiversity in this recognised hotspot. Palaeobiological 

data across the globe have been increasingly refined by archaeological efforts and these have 

significant potential to inform present-day conservation decisions (Lyman 2012; 2015). In the 

biodiversity hotspots of ISEA, an important goal is to create baselines and benchmarks by 

which we can describe and model biodiversity patterns before and after the colonisation of 

humans. Both modern and fossil faunas for many of these islands remain poorly known. 
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Documentation of fossil faunas can have direct contributions to conservation assessments. For 

instance, previous data for the identification of the Calamian hog deer on Palawan Island 

(Ochoa 2009; Piper et al. 2011b) have led to conservation recommendations for its 

reintroduction to Palawan (Widmann and Lastica 2015). This  recommendation comes from a 

broader discourse regarding the potential of Pleistocene re-wilding for the conservation of 

endangered taxa (e.g. Donlan et al. 2006; Louys et al. 2014). As the thesis also shows, the fossil 

record provides direct evidence for the identification of invasive taxa versus long-term 

residents of a faunal community. Fossil records can also facilitate the identification of 

susceptible taxa, and these can have implications for understanding extinction risk in the 

present. Invasive taxa are known to be major drivers of recent extinctions and endemic island 

faunas are most vulnerable to invasive predators (Bellard et al. 2016; Doherty et al. 2016; 

Tershy et al. 2015). In this light, recent calls have been made to gradually eradicate invasive 

mammals on islands in order to protect threatened native taxa (Holmes et al. 2019).  

Taken together, the zooarchaeological records presented here provide greater insight 

into the exceptional biodiversity of the Philippine archipelago. The records for extinct taxa and 

invasive taxa have considerable implications for understanding mammalian biodiversity 

dynamics. These records also contribute pertinent data that are beneficial for conservation 

strategies. 

 

9.3 The Philippine Faunal Subsistence Record Across Time 
 

The faunal records assembled here document not only biodiversity changes in the archipelago 

but also human adaptations in the tropical island environments of ISEA. In particular, they 

provide complex detail to island-specific adaptations that humans have tailored to local 

environments and that reflect the changing ecology of the area from the Late Pleistocene to the 

Late Holocene. In the Holocene, there is also growing evidence for human environmental 

impacts on faunal communities. 

As Rabett (2012) has previously observed, previous simplistic portrayals of tropical 

hunter-gatherers have masked the complex archaeological evidence for behavioural 

variability of Homo sapiens across the region. Although the focus of this section is on 

subsistence strategies, it is worth mentioning that localised adaptations are clearly reflected 

in lithic, bone and shell technological traditions of ISEA. These are  evident, for instance, in the 

Toalean tradition of Sulawesi (Bulbeck et al. 2000; Glover 1976), scraper and side-scraper 

assemblages from East Timor (Glover 1986),  bifacially flaked points from Eastern Java 



 

299 
 

assemblages (Simanjuntak and Asikin 2004) and the bone industry at the Niah Caves of Borneo 

(Rabett 2016; Rabett and Piper 2012). Furthermore, with the recent announcement of Homo 

luzonensis (Détroit et al. 2019), our attention is drawn not only to the behavioural variability 

within our species, but to the evolutionary diversity of the genus Homo within ISEA. The 

investigation of ‘rainforest prehistories’ (Mercader 2002b) is also brought into the forefront, 

whereas previously these environments have been viewed as prehistoric backwaters. The 

presence of at least four human species now known in ISEA suggests that tropical rainforest 

and other tropical island environments appear to be part and parcel of human diversification 

and in situ speciation. Past characterisations of behavioural patterns have predominantly 

relied on descriptions of flake-based lithic traditions that are widespread in the region. One 

thing that can be surmised from this body of evidence is that lithic reduction sequences cannot 

be taken as a wholesale representation of human populations’ technological complexity 

(Rabett 2012:184). Instead, other technological and symbolic media in the form of bone 

artefacts, shell tools, and cave ‘art’ require further attention (Aubert et al. 2014; Brumm et al. 

2017; O’Connor et al. 2014; Szabo et al. 2007). In this regard, the growing tropical subsistence 

record of the region is now providing a wealth of evidence for human behavioural variability 

from the Late Pleistocene to the Holocene. It is within this context that I summarise the 

evidence from Philippine vertebrate faunas. 

 

9.3.1 Foraging Patterns and Human Environmental Impacts  
 

The synthesis of archaeofaunal records from various Philippine sites documents particular 

aspects of foraging lifeways – in this case, that of hunting patterns and procurement of 

vertebrate resources across time (Figure 9.1). Deer is central to many human cultures (Baker 

et al. 2015), and this pattern is replicated in the Philippine faunal record. Deer appears to be a 

consistent resource that humans relied on in the archipelago across time. More generally, large 

herbivores appear to be a regular subsistence target of hominin populations in Southeast Asia 

from its earliest occupation (Rabett 2017).   On both islands of Luzon and Palawan, deer is the 

largest human prey in the Late Pleistocene. It is worth noting here the available large game on 

both islands to show a picture of varying local ecology. On Palawan, the tiger would have been 

the largest wild animal in the landscape in the last 21,000 years followed by the rusine deer, 

whereas on Luzon, deer would have been the largest vertebrate after the extinction of the 

Middle Pleistocene megafauna. This contrasts with other Sundaic islands and the Southeast 

Asian Mainland that have a wider variety of large mammals, and with some Wallacean islands 

where giant rats would have been the largest mammal that Holocene human inhabitants would 
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have encountered. It must be noted, though, that the Late Pleistocene record for Callao Cave 

(Figure 9.1) now represents subsistence behaviour for Homo luzonensis, and not H. sapiens. 

During this period from 67,000–50,000 BP, at least one member of the Middle Pleistocene 

megafauna was still extant, a large bovid possibly similar to the tamaraw (Bubalus 

mindorensis) of Mindoro Island. There is no evidence yet on the timing of extinctions of the 

Luzon megafauna, but the identification for H. luzonensis raises the question of possible long-

term impacts of a different kind of human on the faunal community of Luzon. The presence of 

H. sapiens on Luzon is surmised for the Holocene based on proxy evidence from Palawan and 

other islands in ISEA, although human remains have not been reported from the MIS-2 or the 

Early Holocene assemblages of Luzon. In the case of Palawan, H. sapiens fossils are recorded 

from the Late Pleistocene levels of Tabon Cave (Détroit et al. 2004) and Early Holocene levels 

of Ille Cave (Lara et al. 2015). 

 

 

 

Figure 9.1 Summary of human prey distribution (as %NISP) in Luzon and Palawan across time. Lz = 
Luzon assemblage, Pl = Palawan assemblage. Temporal markers: LP = Late Pleistocene, LGM = Last 
Glacial Maximum, TP = Terminal Pleistocene, EMH = Early to Mid Holocene (for Luzon), EH = Early 
Holocene (for Palawan), MH = Mid Holocene, LH = Late Holocene. Sites: Pil = Pilanduk, Min = Minori, 
Mus = Musang, Pas = Pasimbahan, Nag = Nagsabaran, Pin = Pintu. Pilanduk, Ille and Pasimbahan are 
from Palawan Island, whereas the rest are from Luzon. Med_Vert = medium sized vertebrates 
(includes mammals and reptiles), Exotic = non-native taxa.  
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 The LGM levels (~21,000 cal BP) of Pilanduk Cave present an occupation site that was 

focused on large-game hunting and consumption of deer. The predominance of deer and the 

low abundance of other forest species may be in support of postulated drier and more open 

environments on the island during the Last Glacial Period (Bird et al. 2007; Wurster et al. 

2010).   A similar pattern continues into the Terminal Pleistocene (14,000 cal BP) record of Ille 

Cave, where deer is still the dominant taxon and other rainforest taxa are more limited.  In 

other parts of Southeast Asia, a reduction in the faunal base is also evident in some sites during 

the Terminal Pleistocene (Rabett 2012), as well as site abandonment in arid locales during the 

LGM (O’Connor and Bulbeck 2014).  

At the onset of the Holocene, a broadening of the vertebrate resource base is evident 

in the Palawan record, with the incorporation of various arboreal, semi-arboreal and other 

medium-sized vertebrates. This appears to be consistent with the broad-spectrum tropical 

forest subsistence observed in other parts of SEA. In sites where there is palaeoenvironmental 

evidence for the presence of tropical rainforests, there appears to be a broad range of taxa and 

habitats that humans utilised. The earliest evidence for tropical rainforest reliance in South 

(Sri Lanka) and Southeast Asia (Sumatra and Borneo) shows utilisation of a broad range of 

rainforest taxa, with local variations on the targeting of small and large game, as well as 

mollusc and aquatic resources (Barker and Farr 2016; Roberts et al. 2015; Wedage et al. 2019; 

Westaway et al. 2017). The pattern observed on Palawan partly chimes with the evidence from 

Song Terus and Braholo Cave in Java (Amano et al. 2015). A reliance on taxa adapted to open 

environments is observed during the LGM, and a subsequent reliance on arboreal and semi-

arboreal taxa becomes evident at the onset of the Holocene. 

By the Mid Holocene, a resource switch for large game is also observed in Palawan 

where the wild pig becomes the main large prey instead of deer (Ochoa and Piper 2017). This 

is in response to the scarcity and eventual extirpation of deer on the island. As discussed in 

Chapter 7, this phenomenon is related to island-wide environmental and palaeogeographic 

changes related to sea-level rise, inundation of land area, and vegetation shifts indicating the 

expansion of tropical rainforests (Piper et al. 2011, Robles et al. 2015). This appears to be a 

relatively rare pre-Neolithic record in the region wherein a resource switch involves the local 

extinction of previously intensively hunted native fauna. By the Late Holocene, evidence for 

extinctions increase across the Indo-Pacific. 

The Luzon record presents a different pattern. Here, deer is the dominant prey in the 

Late Pleistocene record of Callao (Mijares et al. 2011) and this continues into the Holocene. 

Note that the reliance on deer as an animal staple is evident for both H. luzonensis and H. 

sapiens. By the Late Holocene, pig remains appear to increase (Figure 9.1). Pig counts are 
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mainly attributed to the wild pig but are also augmented by the introduction of domestic pig. 

As noted previously, domestic pigs and other domestic taxa do not replace wild taxa in the 

subsistence base even by the Late Neolithic (Amano et al. 2013).  Ethnographic records among 

the Agta of Luzon also show the continued importance of large wild game (Estioko-Griffin and 

Griffin 1981; Griffin 2013; Peterson 1990). Deer were regularly hunted by Agta inhabiting 

certain locales where it was still abundant. Certain Agta groups also show seasonal preference 

for deer during the drier months of the year and for wild pig during the wet season.  

On Luzon, evidence for the introduction of non-native mammals is also evident during 

the Late Holocene. This contrasts with the Palawan record, in which macaques and civets are 

interpreted as native inhabitants. The introduction of exotic taxa can be contextualised within 

the broader picture of the introduction of Neolithic artefacts and animal translocations in the 

region. From ca. 4500-4000 cal BP, earthenware pottery is recorded in the Batanes Islands and 

in northern Luzon (Bellwood and Dizon 2013; Hung 2005). On Philippine and Wallacean sites, 

the introduction of non-native species has been typically or incidentally lumped into the 

Austronesian ‘Neolithic package’. This is largely due to the lack of chronological resolution in 

the Late Holocene, such that the timing of these introductions for different taxa is unknown. 

The data presented for Luzon indicate that the timing and directionality of introductions vary. 

The Nagsabaran site provides radiometric dates for these events. Among animal domesticates, 

the domestic pig was introduced earliest at 4000 cal BP, possibly contemporaneous with the 

introduction of pottery (Hung 2005; Piper et al. 2009). In the same site, domestic dogs and 

bovids were introduced over a millennium later (Amano et al. 2013).  

The introduction of macaques and palm civets outside of their native range across the 

Wallacean region is hypothesized to be due to release for wild game hunting and for pest rat 

control, respectively (Heinsohn 2003). These are instances of landscape and ecological 

interventions and human impacts during the Late Holocene that have been rarely documented 

in earlier periods in SEA. Macaques and viverrids are native to Sundaic islands such as Borneo, 

Palawan, Java and Sumatra, as well as mainland SEA. As discussed in Chapter 7, current genetic 

data suggest that the likely population source of modern macaques and palm civets in the 

oceanic Philippines is Borneo. This implies a south-to-north route for the introduction of these 

taxa into the Philippines. This contrasts with the north-to-south route posited for the Neolithic 

introduction of pottery and domestic pig from Taiwan to the northern Philippines (Bellwood 

2004; Mijares 2005; Piper et al. 2009). An earlier instance of animal introductions with an 

eastward trajectory involves the ‘Pacific Clade’ of domestic pigs.  It has been suggested that the 

translocation of  these domesticated pigs into Island SEA  and Oceania passed through Sumatra 

and Java, reaching the Lesser Sunda Chain between 4000 BP and 3500 BP (Cucchi et al. 2008; 
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Dobney et al. 2008; Piper et al. 2009). The emergent picture is that of variable timing and 

trajectories for translocations of different taxa and complex circulation of artefact types across 

the region. 

Invasive taxa are related to loss of native species in the Late Holocene. In modern times, 

defaunation constitutes a major driver of global environmental change, with over 300 

terrestrial vertebrate species recorded to have gone extinct globally since CE 1500 (Dirzo et 

al. 2014; Turvey 2009). Ecologists have also referred to this as the ‘empty forest syndrome’ 

(Redford 1992). As discussed in Chapter 7, there is a growing archaeological record for 

anthropogenic biodiversity loss during the Late Holocene in ISEA and new extinction records 

are coming to light (e.g. Louys et al. 2018; Meijer et al. 2019). This trend points towards an 

earlier wave of anthropogenic extinctions across ISEA prior to the Anthropocene and 

demonstrates one of the pervasive and long-standing impacts of modern humans in these 

island environments. The human extinction filter phenomenon must be further appraised in 

the context of long-term hominin presence in the oceanic Philippines. The announcement of 

the endemic human Homo luzonensis (Detroit et al. 2019) and the proxy record for human 

presence in the Middle Pleistocene of Luzon (Ingicco et al. 2018) indicates that 

humans/hominins were present on Luzon for at least 700,000 years from present. Apart from 

hunting megafauna, we do not yet have evidence for the magnitude of environmental impact 

of H. luzonensis and this is an avenue requiring consideration in the future. In the case of 

modern humans, the archaeological record for the Philippines now provides initial evidence 

for the direct and indirect means by which defaunation has occurred across the Holocene. 

 

9.3.2 Subsistence Records and IEK Systems 

 

The subsistence data documented by zooarchaeological records also reflect indigenous 

ecological knowledge (IEK) systems of local human populations. Typically, data on human 

behavioural ecology or subsistence may be seen as an end in themselves. However, these data 

and other forms of archaeological data can also be viewed as components of indigenous 

knowledge forms. These knowledge systems are partly manifested in the diachronic record of 

procurement of local resources, of which the zooarchaeological record has much to contribute. 

Although there are inherent ontological problems with translating and interpreting indigenous 

knowledge, archaeological methodologies do provide practicable means by which we can 

attempt to uncover local knowledge systems in the past. As narrated in the previous section, 

these records provide long temporal views by which we can contextualise local adaptations 
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and historicize indigenous lifeways. Recalling the discussion in Chapter 3, indigenous 

translates to katutubo in Filipino, and the root word tubo translates to ‘root’ or ‘to be rooted 

in’. I underscore here that the historicizing is rooted to place; hence, the emphasis on local 

adaptations and local environments in these tropical islands.  Place and landscape present a 

shared local context for past and present human societies, and in turn, this context provides 

continuity and connection by which we can attempt to comprehend indigenous ecological 

knowledge systems across time. This exploration does not intend to present a monolithic 

notion of indigeneity or a static view of place (or environments), but instead recognises that 

places and human populations change. Investigating these transformations is crucial to our 

understanding of the dynamic ecology and diverse lifeways of human groups across time. The 

Southeast Asian subsistence and technological record presents a wide array of localised 

strategies and practices from which examples can be drawn. In Niah Caves of Borneo, for 

instance, Piper and Rabett (2016) suggest that the butchery patterns for different arboreal 

species of primates and viverrids may be indicative of ethno-taxonomic categorisations 

different from modern scientific Linnaean categories. In Braholo Cave of Java, Amano et al. 

(2015) document hunting and butchery strategies of arboreal species at the onset of the 

Holocene, which intuit the intimate knowledge of forest habitats by human hunters and their 

manufacture of projectile technologies. 

The zooarchaeological data presented in this thesis allow us to assess localised 

strategies embedded in past IEK systems through examining foraging practices at specific 

locales and specific points in time. In this thesis, I have attempted to re-frame the data within 

this narrative and I summarise these here. As noted above, we are presented with island-

specific adaptations on Palawan and Luzon, which reflect the differing ecologies of the islands 

and the hunting practices tailored to variable ecological settings from the Late Pleistocene to 

the Late Holocene. Admittedly, these time-averaged faunal assemblages only afford us 

palimpsests; however, they do present valuable means by which we can add considerable time 

depth to studies of indigenous foraging lifeways. 

On Palawan, resource acquisition in an inland setting is documented by the LGM levels 

of Pilanduk Cave, where there is a specialised focus on deer hunting. The specialisation 

observed in this site is reflective of its LGM location and ecology, wherein the cave was at least 

40 km away from the coast and environmental proxies suggest a more open environment 

during this period. In the Holocene, there is much change and contrast recorded. As discussed, 

the vertebrate and molluscan data from Ille and Pasimbahan Caves indicate the acquisition of 

a broader range of terrestrial, arboreal, freshwater and marine taxa. These previously inland 

sites have been transformed into near-coastal sites by the Mid Holocene. Note that Ille has a 
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Terminal Pleistocene layer that parallels the Pilanduk record of specialised deer hunting. 

Across the Holocene, the assemblages are still dominated by the largest prey species available, 

but there is also a considerable diversity of taxa observed. As reviewed above, the large game 

focus shifts from deer to wild pig during the Mid Holocene, when the deer becomes 

increasingly rare and subsequently extinct. Climatic proxies on Palawan for the Holocene 

suggest the expansion of closed rainforest, and in this sense, we can attribute these records to 

the growing archaeological record of tropical rainforest foraging histories.  

The Holocene record of Minori and Musang Caves in northeastern Luzon show long 

records of inland riverine occupation by foragers. The on-site subsistence base consisted of 

terrestrial and freshwater resources gathered in and around the Pinacanauan river. On Luzon, 

there is a more limited array of human prey species compared to Palawan, and in the 

vertebrate fauna analysed, the hunting focus detected is expectedly on deer and wild pigs. Late 

Holocene additions include the domestic pig and the introduced macaque, but the prey base 

still largely consists of the two native species. As noted in the previous chapter, deer exceeds 

pig relative abundances in the non-ceramic levels of the two cave sites, whereas pig remains 

become equally or more abundant in Neolithic and later periods. These faunal records contrast 

with ethnographic accounts of Agta foragers that inhabit northeastern Luzon, wherein wild pig 

is reportedly the preferred and most hunted wild game. The present-day focus on wild pig may 

partially have to do with diminishing deer populations. 

All the cave sites analysed are situated near major rivers or tributaries. 

Ethnographically, it is known that such waterways are important not just for its resources; 

their significance extends to being principle foci of social identity for foragers (Griffin 1985, 

Minter 2010, Rai 1982).  In this sense, these landscape features are important for investigating 

not just resource acquisition but also ancient social networks. As explored in the previous 

chapter, the symbolic marking of karsts and caves in Palawan is another example of how 

particular features in the landscape were potentially socially significant to past foraging 

communities. This follows the work of Paz (2012), who has documented the use of caves in 

northern Palawan (some of which are today labelled as ‘Pasimbahan’ or place of worship) as 

burial grounds and sites of votive offerings across the Holocene. To this we can add the 

potential significance of Pilanduk Cave and Magmisi Peak to local foragers during its period of 

occupation. In Pilanduk, the zooarchaeological data suggests that highly-valued food resources 

were likely shared within the foraging group(s) and the attendant skills involved in the 

processing of such resources (e.g. hunting, butchery, tool manufacture, etc.) may have also 

been performed and shared.  
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As has also been shown in the thesis, archaeofaunal records provide data to investigate 

how human societies are affected by and adapt to regional environmental and biodiversity 

changes. On Palawan, the conspicuous example pertains to diminishing populations of a highly 

valued animal resource (deer). This may have posed ecological challenges to local populations, 

along with a suite of environmental changes that include vegetation shifts and rapid sea level 

rise occurring during the Pleistocene-Holocene transition. As we also go further back in time 

on Palawan, we are presented with an ecological landscape that has no present-day analogue 

on the Philippine archipelago, and wherein much of the large mammal guild of the island has 

become extinct.  The presence of the tiger on Palawan would also likely have been of 

importance to local inhabitants; human ecological interactions within a landscape that 

possessed a large top carnivore would have been variably different from that where it was 

absent. Where tigers naturally occur, they typically are held in awe or fear, and form part of 

local lore and animistic beliefs (e.g. Beggiora 2012; Wessing 1993, 1995). Vestiges of local tiger 

lore in the Philippines may be glimpsed in modern Austronesian languages and cognate sets. 

In Malay, the word for tiger is harimau and the Proto-Malayo-Western-Polynesian 

reconstruction for wild feline is *qari-maquŋ (Blust and Trussel 2016). In Philippine languages, 

there appears to be no native word for the tiger; instead the Spanish loan word tigre is used. 

However, the term halimaw is used to refer to a ferocious beast or mythical monster. This term 

may have been a loan word from Malay, but it may also allude to the previous presence of this 

iconic creature on Palawan.  

Lastly, the faunal records show evidence for ecological modification of forests 

involving animal translocations. The regional literature on ‘cultured forests’ have focused on 

management of plant resources (e.g Barker et al. 2017; Summerhayes et al. 2017). Less 

attention has been appointed to the manipulation of environments using invasive wild taxa, 

and the possible impacts introduced animals have had on island faunas. After their Late 

Holocene introduction into the oceanic Philippines, macaques and civets have been fully 

naturalised across the archipelago. Local inhabitants recognise them as native species, and 

until fairly recently, biologists did so as well. Translocation of exotic animals are forms of 

ecological interventions that potentially reflect a changing logic of engagement of people to 

their environment.   

As such, the diachronic records presented here demonstrate not only long-term and 

localised ecological engagements of foragers to their changing environments, but also show 

how such societies can instigate pervasive impacts on local habitats. These records hopefully 

lend some further nuance to otherwise stereotypical and highly politicized depictions of 

indigenous communities as ‘noble green primitives’ or wasteful agents of overkill. The subject 
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of aboriginal conservation is highly contested and complex, and at present goes beyond the 

scope of this short discussion. What must be noted, nonetheless, is that the understanding, 

goals and lived experiences of conservation and environmentalism vary across cultures, 

including that as defined by Western environmentalism (Berkes et al. 2000; Perez 2018; 

Redford and Stearman 1993; Roberts et al. 1995). Archaeological records show that human 

societies have greatly impacted local biotas and transformed landscapes across time, including 

those in tropical rainforests. However, it must be noted that there is no singular indigenous 

identity that can be imposed on any region, since human populations change and adapt 

through time. From what we know of contemporary indigenous communities, there is much 

variation in the transmission and distribution of traditional ecological knowledge within and 

across groups (e.g. Camacho et al. 2012; Fernández-Llamazares et al. 2015; Ruddle 1993). As 

such, monothetic ascriptions of ‘conservationist’ or ‘anti-environmentalist’ can be gross 

simplifications. At present, defaunation and biodiversity loss directly impact the lives of 

modern hunter-gatherers and various indigenous communities (Fernández-Llamazares et al. 

2017; Minter 2010; Nasi et al. 2011; Virtanen 2017). Whereas ancient human populations have 

instigated defaunation and extinction processes, the pace of biodiversity loss has markedly 

increased during the Anthropocene (Dirzo et al. 2014; Ellis 2011). In the face of rapid and 

expansive global environmental change brought about by industrialisation and urbanisation, 

indigenous forms of ecological stewardship remain an invaluable resource for social-ecological 

resilience and repositories of adaptive management (Gómez-Baggethun et al. 2013; 

Fernández-Llamazares et al. 2015; Reyes-García and Pyhälä 2017). In this sense, 

archaeological records of foraging lifeways add to the understanding of  long-term dynamics 

among people, plants, animals, and landscapes (e.g. Barker et al. 2017; Hayashida 2005; 

Heckenberger and Neves 2009). These archaeological contributions are important for 

chronicling indigenous practices of ecological stewardship, which are borne of multi-

generational (or even millennial-scale) ecological engagements in local landscapes. In turn, 

these IEK systems are necessary to conserve the remaining and persisting components of 

global biodiversity. 

 

9.4 Concluding Statements and Future Work 

 

The results presented in this thesis have both drawn from new field explorations and from 

studying old museum collections. Both sets of investigations have yielded novel and surprising 

fossil discoveries. Looking at two neighbouring islands in the Philippine archipelago, one might 

expect that they would yield similar patterns that tell a general story for this part of Southeast 
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Asia. Yet, the tale of these two islands chronicle distinctive narratives based on each island’s 

unique ecology and shifting environments across the Late Pleistocene and Holocene. On the 

one hand, these dissimilar patterns exemplify the differences between Sundaic faunas and the 

oceanic faunas of Southeast Asia. On the other hand, they also document the variation in human 

adaptations and impacts in these highly biodiverse and shifting tropical environments. 

The work portrayed here has pieced together new and old faunal studies to build 

biostratigraphic sequences and long-term subsistence records. Unexpectedly, gaps do remain, 

and further chronological resolution is necessary to specify the timing of colonisation, 

extinction and other biogeographic processes. The recent announcement of Homo luzonensis 

from Callao Cave has opened new frontiers in Philippine archaeology. More broadly, the 

ground-breaking endeavours documenting Pleistocene humans in the tropical oceanic islands 

of SEA have thrust the region into the evolutionary limelight. Whether one is wary or in favour 

of species-splitting, the evidence from ISEA certainly underscores the morphological and 

behavioural variability of human populations across the Late Quaternary. The evidence also 

points to tropical rainforest and other tropical island environments to be part and parcel of 

human diversification and adaptation. The findings also raise new questions, such as that of 

the timing of modern human occupation in the oceanic Philippines and Wallacean islands.  

The records presented here scratch at the surface of Holocene extinction processes in 

ISEA. Extinction chronologies must be further refined by direct dating on targeted taxa. Given 

the highly biodiverse and endemic nature of Philippine faunas, the Luzon record also hints at 

the likelihood that more unknown and possibly extinct lowland taxa await discovery across 

the archipelago. The extinct giant cloud rats reported here require proper systematic 

description, and this will be done during publication. Associated post-cranial remains of giant 

murids also require further study, and these can shed further light on the morphology and 

ecology of these enigmatic creatures. The significance of these findings highlights how 

biogeography and conservation biology can greatly benefit from synergistic efforts combining 

neobiology and palaeobiology. 

Lastly, the thesis has taken some initial steps towards linking archaeological 

knowledge and indigenous ecological knowledge systems within local settings. This initial 

attempt has utilised familiar methods in the zooarchaeology toolkit to explore this relatively 

under-reported theme in Southeast Asian archaeology. This dataset can be further enriched by 

further taphonomic analyses, particularly on the well-preserved Pilanduk Cave assemblage. 

Further work on mortality profiles of hunted species would also provide data on seasonality 

and scheduling of hunting activities.  The work can also be much improved by incorporating 

additional ethnographic and ethnoarchaeological data. More importantly, this endeavour 
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requires the incorporation of indigenous interpretations through more inclusive and 

participatory collaborations with local community members. This contrasts with the current 

mainstream practice of top-down implementation of archaeological projects and extraction of 

archaeological data. Language translation is also essential, and these acts of translation can 

potentially enrich interpretation both ways. With respect to indigenous discourses, Southeast 

Asian and Philippine archaeology can hopefully break new ground, not just in heritage studies 

and public archaeology, but also in theory, praxis and methodology. 
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Appendix A Description of Tooth Measurements for Carpomys and 

Musseromys  

Maxillary 

1. M1-2 crown length occlusal: crown length taken on the occlusal surface along the 

midline, from the anterior edge of the M1 t2 to the posterior edge of the M2 posterior 

cingulum 

2. M1-3 crown length occlusal: crown taken on the occlusal surface along the midline, from 

the anterior edge of the M1 t2 to the posterior edge of the M3 posterior cingulum 

3. M1-3 crown length cervical: crown length taken along the midline on the cervical margin 

of the tooth enamel (above the cementum-enamel junction), from the anterior rim of the 

M1 to the posterior edge of the M3 posterior cingulum 

4. M1 length: greatest length taken on the occlusal surface from the anterior edge of t2 to 

the posterior edge of the posterior cingulum 

5. M1 width: taken on the occlusal surface from the lingual edge of t4 to labial edge of t9 

6. M2 length: greatest length taken on the occlusal surface from the anterior edge of t1 to 

the posterior edge of the posterior cingulum 

7. M2 width: taken on the occlusal surface on the anterior loph (from t4 to t6) 

8. M3 length: greatest length taken on the occlusal surface from the anterior edge of t1 to 

the posterior edge of the posterior cingulum 

9. M3 width: taken on the occlusal surface on the anterior loph (from t4 to t6) 

Mandibular 

1. m1-2 crown length occlusal: crown length taken on the occlusal surface along the 

midline, from the anterior edge of the m1 anteroconid to the posterior edge of the m2 

posterior cingulum 

2. m1-3 crown length occlusal: crown taken on the occlusal surface along the midline, 

from the anterior edge of the m1 anteroconid to the posterior edge of the m3 

posterior cingulum 

3. m1-3 crown length cervical: crown length taken along the midline on the cervical 

margin of the tooth enamel (above the cementum-enamel junction), from the anterior 

rim of the m1 anteroconid to the posterior edge of m3 posterior cingulum 

4. m1 length: greatest length taken on the occlusal surface along the midline from the 

anterior edge of the m1 anteroconid to the posterior edge of the posterior cingulum 

5. m1 width: taken on the occlusal surface of the posterior loph (from the hypoconid to 

the ectoconid) 

6. m2 length: greatest length taken on the occlusal surface from the anterior edge of the 

anterolabial cusp to the posterior edge of the posterior cingulum 

7. m2 width: taken on the occlusal surface on the anterior loph (from the protoconid to 

the metaconid) 

8. m3 length: greatest length taken on the occlusal surface along the midline from the 

anterior edge of the first loph (protoconid to the metaconid) to the posterior edge of 

the posterior cingulum 
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Appendix B NISP Counts for Diversity Measures 
 

NISP counts for Palawan Island Assemblages 

Taxon Pilanduk 

Ille 
Terminal 

Pleistocene 
Ille 

Holocene Pasimbahan 
Tarung-
tarung 

Axis calamianensis 85  5 14  
Rusa sp. 251 288 57   
Sus ahoenobarbus 91 14 560 476 10 
Cuon/Canis  2 6   
Canis lupus familiaris   1   
Panthera tigris 9 2    
Prionailurus bengalensis   5   
Arctictis binturong   2   
Paradoxurus/Viverra   24 26  
Aonyx cinereus   2  1 
Herpestes brachyurus  1 2 2  
Mydaus marchei   14 6  
Macaca fascicularis 6 13 173 174 111 
Crocidura batakorum   1   
Crocidura palawensis     3 
Manis culionensis   14 3  
Sundamys muelleri   11   
Rattus tiomanicus   1  2 
Maxomys panglima     3 
Chiropodomys 
calamianensis     2 
Hystrix pumila 2 1 26 14 3 
Hylopetes nigripes   5  1 
Sundasciurus sp. 2 5 7 5 2 
Cynopterus brachyotis   26  1 
Pteropus sp.   1 2  
Hipposideros diadema 4  91 1 9 
Hipposideros ater   1   
Rhinolophus creaghi   13  2 
Myotis macrotarsus   1   
Emballonura alecto     2 
Megaderma spasma     23 
Eonyteris spelea   1  2 
Cyclemys dentata 5  27 3  
Cuora amboinensis   2 5  
Varanus salvator 2 7 192 104 3 
Bufo sp.     1 
Microhylidae sp.     2 
Rana sp.     1 
Bronchocela sp.     1 
Scincinidae sp.     15 
Naja naja     1 
Elapidae     1 
Collocalia esculenta     4 
Timaliidae sp.     1 
Zoothera dauma     2 
Sylviidae sp.     5 
Hypothymis azurea     1 
Motacilla sp.     1 
Dicaeum sp.     1 
Zosterops extinct         1 

Total 457 333 1271 835 218 
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Appendix B continued: NISP Counts for Diversity Measures 

NISP counts for Luzon Island Assemblages 

 

Taxon Callao Minori Musang Nagsabaran Pintu 

Rusa marianna 139 356 169 298 157 
Sus philippensis 7 162 64 634 123 
Bovid sp. 2     
Bos/Bubalus    8 32 4 
Paradoxurus philippinensis  2    
Macaca fascicularis  51 5  7 
Phloeomys pallidus  2    
Crateromys undescr. sp.  2    
Carpomys undescr. sp.  6 1   
Bullimus/Rattus sp.  2 1   
Batomys sp. 2     
Apomys microdon 1     
Varanus   8 1  
Dogania subplana    2  
Pelochelys cantorii    1  
Python reticulata     5 
Ardeidae sp.        1   

Total 151 583 256 969 296 

      
 

NISP = number of identified specimens 

Sources: 

Comparative data for Palawan are derived from Ille, Pasimbahan and Tarung-tarung Cave 

sites (Ochoa 2009; Ochoa et al. 2014; Reis and Garong 2001, respectively).  

For Luzon, comparative data come from Callao Cave, Pintu Rockshelter and Nagsabaran site 

(Piper and Mijares 2007, Mudar 1997, Amano et al. 2013, respectively). 
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Appendix C Pilanduk Cave Taphonomy 
 

Counts are expressed as TNF (total number of fragments) 

Percentages are expressed as TNF (taphonomic imprint)/ TNF per layer, unless otherwise 

indicated 

 

Weathering and abrasion 

Context TNF 
TNF with 

weathering 
% 

Weathered 

TNF 
with 

abrasion 
% 

abrasion 

surface 261 0 0 0 0 

111 2174 263 12.1 190 8.7 

112 2322 80 3.4 54 2.3 

117 2561 12 0.5 3 0.1 

118 506 6 1.2 0 0 

Total 7824 361 4.6 247 3.2 

 

Carbonate concretion 

Context TNF 
TNF with 

concretion 
% 

concretion 

surface 261 120 46.0 

111 2174 1 0.0 

112 2322 2 0.1 

117 2561 3 0.1 

118 506 0 0 

Total 7824 126 1.6 

 

Mineral staining 

Context TNF 
TNF with Mineral 

staining 
% Mineral 

staining 

surface 261 2 0.8 

111 2174 241 11.1 

112 2322 111 4.8 

117 2561 24 0.9 

118 506 2 0.4 

Total 7824 380 4.9 
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Appendix C continued: Pilanduk Cave Taphonomy 

 

Gnawing 

Context TNF 
TNF with 
gnawing  

% 
gnawing 

surface 261 0 0 

111 2174 5 0.23 

112 2322 4 0.17 

117 2561 3 0.12 

118 506 1 0.20 

Total 7824 13 0.17 

 

 

Burning 

Context TNF charred calcined 
total 
burnt % burnt >40mm 

% > 
40mm 

burnt 
90-

100% 

% 
burnt 

90-
100% 

surface 261 32 3 35 13.4 9 3.4 28 80.0 

111 2174 964 32 996 45.8 900 41.4 800 80.3 

112 2322 879 48 927 39.9 970 41.8 797 86.0 

117 2561 1117 66 1183 46.2 931 36.4 1059 89.5 

118 506 126 15 141 27.9 119 23.5 125 88.7 

 7824 3118 164 3282 41.9 2929 37.4 2809 85.6 

 

total burnt = charred and calcined fragments 

>40 mm = fragments >40 mm in size 

burnt 90-100% = fragments with bone surface showing near-complete to complete charring 

and/or calcination 

% burnt 90-100% = percentage of burnt fragments (total burnt) showing near-complete to 

complete charring and/or calcination 

 

Proportions of burning for spongy and compact bone 

Layer 

burnt unburnt 

spongy  compact   spongy  compact  
TNF % TNF % TNF % TNF % 

111 207 38.0 338 62.0 187 32.6 386 67.4 

112 220 43.5 286 56.5 196 25.4 577 74.6 

117 352 37.8 579 62.2 388 36.2 683 63.8 

118 42 38.5 67 61.5 92 35.2 169 64.8 
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Appendix C continued: Pilanduk Cave Taphonomy 

 

Cutmarks 

Context TNF 
TNF with 
cutmarks 

% 
cutmarks 

surface 261 1 0.4 

111 2174 15 0.7 

112 2322 14 0.6 

117 2561 38 1.5 

118 506 0 0 

Total 7824 68 0.9 

 

 

Helical fractures 

Context 

TNF          
long 
bone 

TNF 
helical 

% 
helical 

surface 91 42 46.2 

111 688 464 67.4 

112 795 473 59.5 

117 1183 201 17.0 

118 221 18 8.1 

Total 2978 1198 1.7 
 

TNF long bone = total number of long bone fragments 
TNF helical = total number of long bone fragments showing helical fractures  
 

 

Fracture outline  

Counts pertain to number of long bone fragments displaying each fracture type (specimens 

can display more than one type). Definitions of bone fracture outlines follow Outram 2002. 

Context Helical Longitudinal Transverse Diagonal Columnar 

111 61 79 52 8 5 

112 57 75 52 13 2 

117 62 148 118 25 2 

118 16 28 25 6 2 

Total 196 330 247 52 11 
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Freshness Fracture Index Scores 

Following methodology by Outram (2001, 2002) 

FFI scores are taken for long bone fragments only 

 

Context 
FFI Scores   

0 1 2 3 4 5 6 

surface 9 13 15 11 3 2 1 

111 1 30 21 446 98 15 2 

112 6 26 12 473 84 41 3 

117 0 10 34 176 619 58 9 

118     1 14 122 7 1 

Total 16 79 83 1120 926 123 16 

 

 

Fragment size classes 

Context 0-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100+ 

surface 1 12 29 42 57 34 39 8 10 15 

111 1244 394 298 177 22 14 8 7 0 4 

112 1425 385 252 169 53 6 12 6 2 10 

117 1392 500 308 241 74 21 9 7 3 3 

118 287 60 36 34 6 4 3 1 1 1 

Size classes in mm. 

 

Notes on tiger bone taphonomy 

All nine tiger bones were casted by the National Museum Archaeology Division. The casting 

process has left traces on the bones that should be distinguished from butchery and and other 

taphonomic marks. These traces include: red marks/lines, white powder (used in casting) and 

peeling of the cortical bone. Peeling of the bone surface has affected the morphology of certain 

butchery marks, particularly on Pil-5393 (subterminal phalanx), wherein possible scrape 

marks appear shallower because some of the bone surface has been removed and damaged by 

casting. These were observed by the author because the specimens were inspected under a 

microscope before and after casting.  
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Appendix D Bone Mineral Density Data 

scan site Rangifer Odocoileus 
Pilanduk cervid -

combined 

Lam et al. 1999 Lyman 1994 MAU %MAU 

SP1 1.01 0.36 5 41.7 
SP2 1.04 0.49 2 16.7 
SP3 0.73 0.23 0.5 4.2 
SP4 1.01 0.34 0.5 4.2 
HU1 0.26 0.24 4 33.3 
HU2 0.44 0.25 1 8.3 
HU3 1.12 0.53 1 8.3 
HU4 1.08 0.63 4 33.3 
HU5 0.48 0.39 5 41.7 
RA1 0.53 0.42 12 100.0 
RA2 1.08 0.62 3 25.0 
RA3 1.09 0.68 2 16.7 
RA4 0.97 0.38 0.5 4.2 
RA5 0.49 0.43 4.5 37.5 
MC1 0.92 0.56 10 83.3 
MC2 1.08 0.69 7 58.3 
MC3 1.1 0.72 3.5 29.2 
MC4 1.01 0.58 2 16.7 
MC5 0.48 0.49 6.5 54.2 
MC6 0.68 0.51 5 41.7 
FE1 0.39 0.41 7 58.3 
FE2 0.52 0.36 1.5 12.5 
FE3 0.74 0.33 4 33.3 
FE4 1.15 0.57 4 33.3 
FE5 0.61 0.37 2 16.7 
FE6 0.32 0.28 4 33.3 
FE7 0.3 \ 0.5 4.2 
TI1 0.35 0.3 4.5 37.5 
TI2 1.01 0.32 6 50.0 
TI3 1.13 0.74 6.5 54.2 
TI4 1.12 0.51 3.5 29.2 
TI5 0.73 0.5 5 41.7 

MR1 0.9 0.55 5.5 45.8 
MR2 1.1 0.65 4.5 37.5 
MR3 1.08 0.74 12 100.0 
MR4 1.08 0.57 1 8.3 
MR5 0.41 0.46 4 33.3 
MR6 0.59 0.5 4.5 37.5 
CA1 0.52 0.41 3 25.0 
CA2 0.94 0.64 3 25.0 
CA3 0.66 0.57 4 33.3 
CA4 0.73 0.33 2 16.7 
AS1 0.68 0.47 10 83.3 
AS2 0.7 0.62 8.5 70.8 
P11 0.48 0.36 4.125 34.4 
P12 0.92 0.42 5.875 49.0 
P13 0.71 0.57 3.625 30.2 
P21 0.61 0.28 3.125 26.0 
P22 0.72 0.25 2.625 21.9 
P31 0.48 0.25 4.125 34.4 
DN1 0.65 0.55 2.5 20.8 
DN2 1.05 0.57 3 25.0 
DN4 1.06 0.57 8 66.7 
DN5 1.05 0.57 2.5 20.8 
DN6 0.84 0.31 2.5 20.8 
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Appendix D continued: Bone Mineral Density Data 

 

 
scan site 

Rangifer Odocoileus 
Pilanduk cervid-

combined 

Lam et al. 1999 Lyman 1994 MAU %MAU 

         
DN7 1.01 0.36 3.5 29.2 
AT1 0.47 0.13 4 33.3 
AT2 0.42 0.15 4 33.3 
AT3 0.49 0.26 4 33.3 
AX1 0.62 0.16 5 41.7 
CE1 0.45 0.19 2 16.7 
TH1 0.38 0.24 1 8.3 
TH2 0.53 0.27 1 8.3 
LU1 0.49 0.29 2.3 19.4 
LU3 0.51 0.29 0.167 1.4 
SC1 0.37 0.19 3 25.0 
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Appendix D continued: Bone Mineral Density Data 

 

scan 
site 

Rangifer Odocoileus 
Pilanduk cervid 

context 111 context 112 context 117 

Lam et al. 
1999 

Lyman 
1994 MAU %MAU MAU %MAU MAU %MAU 

SP1 1.01 0.36 0.5 14.3 2 40.0 2 66.7 
SP2 1.04 0.49 0 0.0 0.5 10.0 0 0.0 
SP3 0.73 0.23 0 0.0 0.5 10.0 0 0.0 
SP4 1.01 0.34 0 0.0 0 0.0 0 0.0 
HU1 0.26 0.24 2 57.1 1 20.0 1 33.3 
HU2 0.44 0.25 0 0.0 0.5 10.0 0 0.0 
HU3 1.12 0.53 0 0.0 0 0.0 0 0.0 
HU4 1.08 0.63 0 0.0 0.5 10.0 0 0.0 
HU5 0.48 0.39 0.5 14.3 1.5 30.0 1.5 50.0 
RA1 0.53 0.42 3 85.7 5 100.0 2 66.7 
RA2 1.08 0.62 0.5 14.3 1 20.0 0 0.0 
RA3 1.09 0.68 0 0.0 0 0.0 0 0.0 
RA4 0.97 0.38 0 0.0 0.5 10.0 0 0.0 
RA5 0.49 0.43 1.5 42.9 1.5 30.0 1 33.3 
UL1 0.49 0.3 0 0.0 2.5 50.0 0 0.0 
UL2 0.84 0.45 0.5 14.3 4.5 90.0 0 0.0 
UL3 0 0.44 1 28.6 0 0.0 0 0.0 
UL4 0 0 0 0.0 0 0.0 0 0.0 
MC1 0.92 0.56 2 57.1 3.5 70.0 2.5 83.3 
MC2 1.08 0.69 0.5 14.3 0 0.0 0 0.0 
MC3 1.1 0.72 0.5 14.3 0 0.0 0 0.0 
MC4 1.01 0.58 0 0.0 0 0.0 0 0.0 
MC5 0.48 0.49 0 0.0 0 0.0 0 0.0 
MC6 0.68 0.51 0 0.0 0.5 10.0 0.5 16.7 
AC1 0.39 0.27 0 0.0 0.5 10.0 1 33.3 
IL1 0.52 0.2 0 0.0 0 0.0 0 0.0 
IL2 0.74 0.49 0 0.0 1 20.0 0 0.0 

PU1 1.15 0.46 0 0.0 0 0.0 0 0.0 
IS1 0.61 0.41 0 0.0 0 0.0 0 0.0 
FE1 0.39 0.41 1 28.6 3 60.0 2 66.7 
FE2 0.52 0.36 0.5 14.3 0.5 10.0 0 0.0 
FE3 0.74 0.33 0 0.0 1.5 30.0 0 0.0 
FE4 1.15 0.57 0.5 14.3 0.5 10.0 0 0.0 
FE5 0.61 0.37 0 0.0 0.5 10.0 0 0.0 
FE6 0.32 0.28 0.5 14.3 1 20.0 1.5 50.0 
FE7 0.3 0 0 0.0 0 0.0 0 0.0 
TI1 0.35 0.3 1 28.6 1.5 30.0 0 0.0 
TI2 1.01 0.32 0 0.0 4.5 90.0 3 100.0 
TI3 1.13 0.74 2.5 71.4 1 20.0 0 0.0 
TI4 1.12 0.51 1 28.6 0 0.0 0 0.0 
TI5 0.73 0.5 1.5 42.9 3.5 70.0 0.5 16.7 

MR1 0.9 0.55 1.5 42.9 1.5 30.0 1.5 50.0 
MR2 1.1 0.65 2.5 71.4 1.5 30.0 0 0.0 
MR3 1.08 0.74 0 0.0 1 20.0 0 0.0 
MR4 1.08 0.57 0 0.0 0 0.0 0 0.0 
MR5 0.41 0.46 1 28.6 0 0.0 0 0.0 
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Appendix D continued: Bone Mineral Density Data 

 

scan 
site 

Rangifer Odocoileus 
Pilanduk cervid 

context 111 context 112 context 117 

Lam et al. 
1999 

Lyman 
1994 MAU %MAU MAU %MAU MAU %MAU 

MR6 0.59 0.5 0.5 14.3 0 0.0 0 0.0 
CA1 0.52 0.41 0 0.0 1.5 30.0 1 33.3 
CA2 0.94 0.64 0.5 14.3 1 20.0 0 0.0 
CA3 0.66 0.57 0 0.0 1 20.0 0 0.0 
CA4 0.73 0.33 0.5 14.3 0 0.0 0 0.0 
AS1 0.68 0.47 3.5 100.0 5 100.0 0 0.0 
AS2 0.7 0.62 0 0.0 0 0.0 0 0.0 
P11 0.48 0.36 0.875 25.0 1.875 37.5 0 0.0 
P12 0.92 0.42 0 0.0 0 0.0 0 0.0 
P13 0.71 0.57 0.625 17.9 1.125 22.5 2.25 75.0 
P21 0.61 0.28 1.125 32.1 0.875 17.5 1.25 41.7 
P22 0.72 0.25 0.5 14.3 1.125 22.5 0 0.0 
P31 0.48 0.25 1.125 32.1 2 40.0 1.125 37.5 
DN1 0.65 0.55  0.0 1.5 30.0 0 0.0 
DN2 1.05 0.57 0.5 14.3 0 0.0 0 0.0 
DN3 1.07 0.55 0 0.0 0 0.0 0 0.0 
DN4 1.06 0.57 2 57.1 3.5 70.0 3 100.0 
DN5 1.05 0.57 0 0.0 0 0.0 0 0.0 
DN6 0.84 0.31 1 28.6 0 0.0 0 0.0 
DN7 1.01 0.36 0.5 14.3 0.5 10.0 0 0.0 
DN8 0.99 0.61 0 0.0 0 0.0 0 0.0 
AT1 0.47 0.13 0 0.0 2 40.0 1 33.3 
AT2 0.42 0.15 0 0.0  0.0 0 0.0 
AT3 0.49 0.26 0 0.0 2 40.0 0 0.0 
AX1 0.62 0.16 2 57.1  0.0 1 33.3 
AX2 0.42 0.1 0 0.0  0.0 0 0.0 
AX3 0.42 0.16 0 0.0  0.0 0 0.0 
CE1 0.45 0.19 0.57143 16.3 0.42857 8.6 0.14286 4.8 
CE2 0.43 0.15 0 0.0  0.0 0 0.0 
TH1 0.38 0.24 0 0.0 0.15385 3.1 0.61538 20.5 
TH2 0.53 0.27 0 0.0  0.0 0 0.0 
LU1 0.49 0.29 0.66667 19.0 0.66667 13.3 0.83333 27.8 
LU2 0.45 0.3 0 0.0  0.0 0 0.0 
LU3 0.51 0.29 0 0.0  0.0 0 0.0 
SC1 0.37 0.19 0 0.0 1 20.0 0 0.0 
SC2 0.4 0.16 0 0.0  0.0 0 0.0 
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Appendix D continued: Bone Mineral Density Data 

 

scan 
site 

Rangifer Odocoileus 

Minori Square 27 
Cervids, aceramic 

levels 

Lam et al. 
1999 

Lyman 
1994 

MAU %MAU 

RA1 0.53 0.42 1.00 66.7 

RA3 1.09 0.68 0.50 33.3 

MC1 0.92 0.56 1.00 66.7 

MC3 1.1 0.72 1.00 66.7 

MC6 0.68 0.51 0.50 33.3 

FE4 1.15 0.57 1.00 66.7 

FE5 0.61 0.37 1.00 66.7 

TI1 0.35 0.3 0.50 33.3 

TI2 1.01 0.32 0.50 33.3 

MR1 0.9 0.55 0.50 33.3 

MR3 1.08 0.74 1.50 100.0 

CA1 0.52 0.41 0.50 33.3 

CA2 0.94 0.64 0.50 33.3 

AS1 0.68 0.47 0.50 33.3 

P11 0.48 0.36 0.13 8.3 

P12 0.92 0.42 0.13 8.3 

P13 0.71 0.57 0.13 8.3 

P21 0.61 0.28 0.13 8.3 

P22 0.72 0.25 0.25 16.7 

P31 0.48 0.25 0.13 8.3 

DN1 0.65 0.55 0.50 33.3 

DN3 1.07 0.55 1.00 66.7 

DN7 1.01 0.36 0.50 33.3 

CE1 0.45 0.19 0.14 9.5 

CE2 0.43 0.15 0.57 38.1 
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Appendix E Food Utility Index (FUI) Data 
 

Metcalfe and Jones 1988 Pilanduk Context 111 

element caribou FUI MAU %MAU 

scapula 44.7 0.5 14.3 

P hum 44.7 2 57.1 

D hum 36.8 0.5 14.3 

P rad 25.8 3 85.7 

D rad 20.2 1.5 42.9 

P mc 9 2 57.1 

P fem 100 1 28.6 

D fem 100 0.5 14.3 

P tib 62.8 1 28.6 

D tib 44.1 1.5 42.9 

P mt 19.5 2.5 71.4 

D mt 15.4 1 28.6 

calc 27.7 0.5 14.3 

astr 27.7 3.5 100.0 

phal 1 8.6 0.88 25.0 

phal 2 8.6 1.125 32.1 

phal 3 8.6 1.125 32.1 

mand 31.1 2 57.1 

axis 10.2 2 57.1 

cervical 37.1 0.57 16.3 

lumbar 33.2 0.67 19.0 
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Appendix E continued: Food Utility Index (FUI) Data 

 

Metcalfe and Jones 1988 Pilanduk Context 112 

element caribou FUI MAU %MAU 

scapula 44.7 2.0 40.0 

P hum 44.7 1.0 20.0 

D hum 36.8 1.5 30.0 

P rad 25.8 5.0 100.0 

D rad 20.2 1.5 30.0 

P mc 9 3.5 70.0 

D mc 7.1 0.5 10.0 

innominate 49.3 0.5 10.0 

P fem 100 3.0 60.0 

D fem 100 1.0 20.0 

P tib 62.8 4.5 90.0 

D tib 44.1 3.5 70.0 

P mt 19.5 1.5 30.0 

calc 27.7 1.5 30.0 

astr 27.7 5.0 100.0 

phal 1 8.6 1.9 37.5 

phal 2 8.6 1.1 22.5 

phal 3 8.6 2.0 40.0 

mand 31.1 3.5 70.0 

atlas 10.2 2.0 40.0 

cervical 37.1 0.4 8.6 

thoracic 47.3 0.2 3.1 

lumbar 33.2 0.7 13.3 

sternum 66.6 1.0 20.0 
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Appendix E continued: Food Utility Index (FUI) Data 

 

Metcalfe and Jones 1988 Pilanduk Context 117 

element caribou FUI MAU %MAU 

scapula 44.7 2 66.7 

P hum 44.7 1 33.3 

D hum 36.8 1.5 50.0 

P rad 25.8 2 66.7 

D rad 20.2 1 33.3 

P mc 9 2.5 83.3 

D mc 7.1 0.5 16.7 

innominate 49.3 1 33.3 

P fem 100 2 66.7 

D fem 100 1.5 50.0 

P tib 62.8 3 100.0 

D tib 44.1 0.5 16.7 

P mt 19.5 1.5 50.0 

calc 27.7 1 33.3 

phal 1 8.6 2.25 75.0 

phal 2 8.6 1.25 41.7 

phal 3 8.6 1.125 37.5 

mand 31.1 3 100.0 

atlas 10.2 1 33.3 

axis 10.2 1 33.3 

cervical 37.1 0.14 4.8 

thoracic 47.3 0.62 20.5 

lumbar 33.2 0.83 27.8 
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Appendix E continued: Food Utility Index (FUI) Data 

Marrow and grease indices for caribou (Binford 1978).  

   Pilanduk NISP:MNE ratios for cervids per context 

element marrow grease 111 112 117 118 

mandible 5.74 12.51 2 1.57 2.67 1 

atlas 1 13.11 0 1 1 0 

axis 1 12.93 1 1 1 0 

cervical 1 17.46 1.25 1 1 0 

thoracic 1 12.26 0 1 1 0 

lumbar 1 14.82 1 1 1 0 

sternum 1 26 0 1 0 0 

scapula 6.4 7.69 1 2 1.25 1 

P hum 29.69 75.46 1.25 3.5 6 0 

D hum 28.33 27.84 5 2.3 4 1 

P rad 43.64 37.56 1.67 1.8 3 1 

D rad 66.11 32.7 3.33 6 6 0 

P mc 61.68 16.71 2 1.43 2 3 

D mc 67.08 42.47 0 1.25 1.43 0 

pelvis 7.85 29.26 0 1.5 2.5 0 

P fem 33.51 26.9 3 2.5 4.25 3 

D fem 49.41 100 6 7.5 5.67 0 

P tib 43.78 69.37 6 2.3 2.33 0 

D tib 92.9 26.05 4 3 7 1.5 

astr 1 32.47 1.43 1.2 0 0 

calc 21.19 46.96 0 2.3 1 1 

P mt 81.74 17.88 3 3 6.3 0 

D mt 100 43.13 6 1.125 2.71 0 

1st phal 30 33.27 1.43 1.73 1.39 1.5 

2nd phal 22.15 24.77 1.86 1.78 1.8 1 

3rd phal 1 13.59 1 1 1.22 1 
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Appendix F Minori Cave Taphonomy 
 

Counts are expressed as TNF (total number of fragments). 
Percentages are expressed as TNF (taphonomic imprint)/ TNF per layer, unless otherwise 
indicated. 
Archaeological layers are categorised as ceramic or aceramic. 
 

Weathering and abrasion 

Square/ 
Layer TNF 

TNF 
weathering  

% 
Weathered 

TNF 
abrasion 

% 
abrasion 

Square 27      

Ceramic  369 103 27.9 8 2.2 

Aceramic 1035 158 15.3 31 3.0 

Total 1404 261 18.6 39 2.8 

      

Square 37      

Ceramic  126 6 4.8 0 0 

Aceramic 285 92 32.3 0 0 

Total 411 98 23.8 0 0 

 

 

Carbonate concretion 

 

Square/ 
Layer TNF 

TNF with 
concretion 

% 
concretion 

TNF 
concretion 

≥50% 

% 
concretion 

≥50% 

Square 
27      

Ceramic  369 77 20.9 61 79.2 

Aceramic 1035 160 15.5 112 70 

Total 1404 237 16.9 173 73.0 

      
Square 

37      

Ceramic  126 10 7.9 6 60 

Aceramic 285 65 22.8 48 73.8 

Total 411 75 18.2 54 72 

 

TNF concretion ≥50% = fragments with bone surface covered 50% or more by carbonate 

concretions 

% concretion ≥50% = TNF concretion ≥50%/ TNF with concretion * 100  
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Appendix F continued: Minori Cave Taphonomy 

 

Mineral staining 

Square/ 
Layer TNF 

TNF with 
mineral 
staining 

% 
mineral 
staining 

Square 
27    

Ceramic  369 14 3.8 

Aceramic 1035 34 3.3 

Total 1404 48 3.4 

    
Square 

37    

Ceramic  126 0 0 

Aceramic 285 11 3.9 

Total 411 11 2.7 

 

Gnawing 

 

Square/ 
Layer TNF 

TNF with 
gnawing  

% 
gnawing 

Square 
27    

Ceramic  369 8 2.2 

Aceramic 1035 0 0 

Total 1404 8 0.6 

    
Square 

37    

Ceramic  126 1 0.8 

Aceramic 285 0 0 

Total 411 1 0.2 
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Appendix F continued: Minori Cave Taphonomy 

Burning 

Square/ 
Layer TNF charred calcined 

total 
burnt % burnt 

Square 27      

Ceramic  434 42 7 49 11.3 

Aceramic 970 55 26 81 8.4 

Total 1404 97 33 130 9.3 
      

Square 37      

Ceramic  126 1 0 1 0.8 

Aceramic 285 4 3  0 

Total 411 5 3 1 0.2 

total burnt = charred and calcined fragments 

 

Cutmarks 

Square/ Layer TNF 
TNF with 
cutmarks 

% 
cutmarks 

Square 27    

Ceramic  369 10 2.7 

Aceramic 1035 2 0.2 

Total 1404 12 0.9 
    

Square 37    

Ceramic  126 7 5.6 

Aceramic 285 2 0.7 

Total 411 9 2.2 

 

Helical fractures 

Square/ 
Layer TNF 

TNF long 
bone 

TNF 
helical % helical  

Square 27     

Ceramic  434 203 56 27.6 

Aceramic 970 774 64 8.3 

Total 1404 977 120 12.3 

     

Square 37     

Ceramic  126 39 19 48.7 

Aceramic 285 107 30 28.0 

Total 411 146 49 33.6 

 
TNF long bone = total number of long bone fragments 
TNF helical = total number of long bone fragments showing helical fractures 
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Appendix F continued: Minori Cave Taphonomy 

Freshness Fracture Index Scores 

Following methodology by Outram (2001, 2002) 

FFI scores are taken for long bone fragments only 

 

 FFI Scores   

Square 27 0 1 2 3 4 5 6 

Ceramic  1 7 29 24 27 86 174 

Aceramic 1 3 53 40 45 85 227 

Total 2 10 82 64 72 171 401 

        

Square 37        

Ceramic  1 3 11 12 8 3 38 

Aceramic 0 2 21 23 15 34 95 

Total 1 5 32 35 23 37 133 

 

 

Fragment size classes 

Square 0-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 100+ 

Sq 27 636 431 174 55 27 8 1 0 1 

Sq 37 269 62 38 23 9 2 3 0 0 

size classes in mm. 
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Appendix G Musang Cave Taphonomy 
 

Counts are expressed as TNF (total number of fragments). 
Percentages are expressed as TNF (taphonomic imprint)/ TNF per layer, unless otherwise 
indicated. 
 

Weathering 

 

Square G4 

Level TNF 
TNF 

weathering  
% 

Weathered 

1 299 5 1.7 

2 72 61 84.7 

3 35 0 0 

4 15 0 0 

5 1 0 0 

6 0 0 0 

7 0 0 0 

4a 116 35 30.2 

5a 15 0 0 

6a 21 0 0 

7a 149 1 0.7 

8 75 3 4 

9 9 2 22.2 

11 7 3 42.9 

no level 39 10 25.6 

Total 853 120 14.1 
 

 

Square G5se1m 

Level TNF 
TNF 

weathering  
% 

Weathered 

1 7 4 57.1 

4a 29 0 0 

5a 48 0 0 

6a 14 0 0 

7a 22 5 22.7 

8 12 0 0 

9 1 0 0 

Total 133 9 6.8 
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Appendix G continued: Musang Cave Taphonomy 

 

Carbonate concretion 

Square G4 

Level TNF 
TNF with 

concretion 
% 

concretion 

TNF 
concretion 

≥50% 

% 
concretion 

≥50% 

1 299 136 45.5 66 48.5 

2 72 59 81.9 11 18.6 

3 35 17 48.6 17 100 

4 15 2 13.3 2 100 

5 1 0 0 0 0 

4a 116 0 0 0 0 

5a 15 0 0 0 0 

6a 21 10 47.6 0 0 

7a 149 53 35.6 51 96.2 

8 75 19 25.3 19 100 

9 9 1 11.1 1 100 

11 7 2 28.6 0 0 

no level 39 24 61.5 23 95.8 

Total 853 323 37.9 190 58.8 

 

 

Square G5se1m 

Level TNF 
TNF with 

concretion 
% 

concretion 

TNF 
concretion 

≥50% 

% 
concretion 

≥50% 

1 7 0 0 0 0 

4a 29 21 72.4 20 95.2 

5a 48 25 52.1 25 100 

6a 14 10 71.4 8 80 

7a 22 10 45.5 10 100 

8 12 3 25 2 66.7 

9 1 0 0 0 0 

Total 133 69 51.9 65 94.2 

 

 

TNF concretion ≥50% = fragments with bone surface covered 50% or more by carbonate 

concretions 

% concretion ≥50% = TNF concretion ≥50%/ TNF with concretion * 100 

 

  



 

365 
 

Appendix G continued: Musang Cave Taphonomy 

 

Mineral staining 

Square G4 

Level TNF 

TNF with 
mineral 
staining 

% 
mineral 
staining 

1 299 0 0 

2 72 0 0 

3 35 0 0 

4 15 0 0 

5 1 0 0 

4a 116 1 0.9 

5a 15 0 0 

6a 21 0 0 

7a 149 2 1.3 

8 75 7 9.3 

9 9 1 11.1 

11 7 2 28.6 

no level 39 9 23.1 

Total 853 22 2.6 

 

Square G5se1m 

Level TNF 

TNF with 
mineral 
staining 

% 
mineral 
staining 

1 7 0 0 

4a 29 0 0 

5a 48 0 0 

6a 14 0 0 

7a 22 0 0 

8 12 1 8.3 

9 1 0 0 

Total 133 1 0.8 

 

Gnawing* 

Levels TNF 
TNF with 
gnawing 

2 72 1 

4 15 1 

7a 149 1 

11 7 1 

*Only four fragments in Square G4 had traces of gnawing in the whole Musang assemblage. 

All were from carnivore gnawing. 
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Appendix G continued: Musang Cave Taphonomy 

 

Burning 

 

Level TNF charred calcined 
total 
burnt % burnt 

G4      

1 299 6  6 2.0 

3 35 4 7 11 31.4 

7a 149 4  4 2.7 

8 75 3  3 4.0 

no level 39 1  1 2.6 

Total 597 18 7 25 4.2 

      

G5se1m      

5a 48 5   5 10.4 

 

total burnt = charred and calcined fragments 

 

 

Cutmarks* 

Square G4 

Level TNF 
TNF with 
cutmarks 

% 
cutmarks 

4a 116 7 6.03 
 

*Only seven fragments in Level 4a in Square G4 were found with cutmarks. The low 

incidence/invisibility of cutmarks has partly to do with the high incidence of carbonate 

concretions that cover bone surfaces. 
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Appendix G continued: Musang Cave Taphonomy 

Helical fractures 

Square G4 

Level TNF 
TNF long 

bone 
TNF 

helical 
% 

helical 

1 299 182 37 20.3 

2 72 70 3 4.3 

3 35 28 1 3.6 

4 15 2  0 

5 1 0  0 

4a 116 67 10 14.9 

5a 15 0  0 

6a 21 1  0 

7a 149 108 45 41.7 

8 75 60 30 50 

9 9 4  0 

11 7 0  0 

no level 39 32 14 43.8 

Total 853 554 140 25.3 

 

 

Square G5se1m 

Level TNF 
TNF long 

bone 
TNF 

helical 
% 

helical 

1 7 5 1 20 

4a 29 18 1 5.6 

5a 48 14 7 50 

6a 14 7 6 85.7 

7a 22 7 2 28.6 

8 12 8 1 12.5 

9 1 0 0 0 

Total 133 59 18 30.5 

 

TNF long bone = total number of long bone fragments 
TNF helical = total number of long bone fragments showing helical fractures 
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Appendix G continued: Musang Cave Taphonomy 

Freshness Fracture Index Scores 

Following methodology by Outram (2001, 2002) 
FFI scores are taken for long bone fragments only 
 
Square G4 

 FFI Scores   

Level 0 1 2 3 4 5 6 

1  1 1 35 18 72 2 

2    3 14 44 1 

3    5  16  
4     1   

5        

4a  1 1 17 2 8 30 

5a        

6a        

7a  4 2 38 18 25 3 

8  1 2 26 17 8 1 

9     1   

11        

Total   7 6 124 71 173 37 

 

 

Square G5se1m 

 FFI Scores   

Level 0 1 2 3 4 5 6 

1   1   4  
4a    1  10 2 

5a   2 6 2   

6a  1  3 2   

7a    2 1 2  
8    1  2  
9        

Total   1 3 13 5 18 2 

 

Fragment size classes 

Layer 0-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100+ 

ceramic 145 114 107 62 18 5 1 1 0 0 

aceramic 106 89 90 63 23 8 4 0 0 1 

Size classes in mm. 
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