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Abstract

This study in children born extremely preterm (EP; <28 weeks’ gestational age) or

extremely low birth weight (ELBW; <1,000 g) investigated whether adaptive working

memory training using Cogmed® is associated with structural and/or functional brain

changes compared with a placebo program. Ninety-one EP/ELBW children were rec-

ruited at a mean (standard deviation) age of 7.8 (0.4) years. Children were randomly

allocated to Cogmed or placebo (45-min sessions, 5 days a week over 5–7 weeks).

A subset had usable magnetic resonance imaging (MRI) data pretraining and 2 weeks

posttraining (structural, n = 48; diffusion, n = 43; task-based functional, n = 18). Statis-

tical analyses examined whether cortical morphometry, white matter microstructure

and blood oxygenation level-dependent (BOLD) signal during an n-back working

memory task changed from pretraining to posttraining in the Cogmed and placebo

groups separately. Interaction analyses between time point and group were then per-

formed. There was a significant increase in neurite density in several white matter

regions from pretraining to posttraining in both the Cogmed and placebo groups.

BOLD signal in the posterior cingulate and precuneus cortices during the n-back task

Received: 12 April 2019 Revised: 5 October 2019 Accepted: 8 October 2019

DOI: 10.1002/hbm.24832

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2019;1–13. wileyonlinelibrary.com/journal/hbm 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/237399378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-6564-0872
https://orcid.org/0000-0001-8017-5756
https://orcid.org/0000-0002-4686-6331
https://orcid.org/0000-0002-8084-8305
mailto:claire.kelly@mcri.edu.au
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hbm


increased from pretraining to posttraining in the Cogmed but not placebo group.

Evidence for group-by-time interactions for the MRI measures was weak, suggesting that

brain changes generally did not differ between Cogmed and placebo groups. Overall,

while some structural and functional MRI changes between the pretraining and post-

training period in EP/ELBW children were observed, there was little evidence of training-

induced neuroplasticity, with changes generally identified in both groups. Trial registra-

tion Australian New Zealand Clinical Trials Registry, anzctr.org.au;

ACTRN12612000124831.

K E YWORD S

Cogmed, diffusion imaging, functional imaging, magnetic resonance imaging, microstructure,

preterm birth

1 | INTRODUCTION

Children born extremely preterm (EP; <28 weeks’ gestational age) or

extremely low birth weight (ELBW; <1,000 g) are at increased risk for

general cognitive impairment (Anderson et al., 2004; Hutchinson et al.,

2013; Kerr-Wilson, Mackay, Smith, & Pell, 2012), with deficits observed

across a wide range of cognitive domains (Anderson, 2014). It has been

speculated that children born EP/ELBW have a specific vulnerability for

deficits in working memory (Anderson, 2014; Omizzolo et al., 2014),

which is the capacity to temporarily store and manipulate information.

Given working memory is a core cognitive skill, this vulnerability may

have consequences for higher-order cognitive functions that are depen-

dent on intact working memory (Mulder, Pitchford, & Marlow, 2010).

Cognitive training programs that focus on working memory, such as

the widely used adaptive working memory training program called Cog-

med®, have been associated with improved working memory function-

ing in typically developing children (Sala & Gobet, 2017) and in preterm

children (Grunewaldt, Lohaugen, Austeng, Brubakk, & Skranes, 2013;

Grunewaldt, Skranes, Brubakk, & Lahaugen, 2016; Lee, Pei, Andrew,

Kerns, & Rasmussen, 2017; Lohaugen et al., 2011). However, these

findings in preterm children were from small, nonrandomised controlled

studies. In contrast, in a recent randomised controlled trial, we reported

little benefit of Cogmed on working memory and academic outcomes

in children born EP/ELBW compared with a placebo program that did

not tax working memory (Anderson et al., 2018). This trial provided

high quality evidence that Cogmed might not be effective in improving

working memory and other related functions in children born EP/ELBW

compared with a placebo program.

Despite the lack of training-induced working memory improve-

ments in our trial (Anderson et al., 2018), it is possible that Cogmed

may induce neuroplastic changes in EP/ELBW children. Magnetic res-

onance imaging (MRI) is a powerful technique that has been shown to

be sensitive to subtle changes in brain structure and function in

preterm-born individuals, even in the absence of cognitive changes

(Froudist-Walsh et al., 2015). There have not been any studies on the

effects of Cogmed on the brain in preterm children, however, there is

some evidence that Cogmed is associated with brain structural

and functional changes in other clinical groups. In a study of children

with attention deficit hyperactivity disorder (ADHD), Cogmed was

associated with increased activation in several frontal, parietal and

temporal regions as measured using working memory task-based

functional MRI (Stevens, Gaynor, Bessette, & Pearlson, 2016).

Another study of children with neurofibromatosis type 1 found that

Cogmed was associated with decreases in measures of resting-state

functional MRI activity in small clusters in the cerebellum, thalamus and

superior frontal sulcus, and also, with increases in activity in a small cluster

in the occipital fusiform gyrus (Yoncheva et al., 2017). However, these pre-

vious studies were not randomised controlled trials, which, along with sta-

tistical analyses of group-by-time interactions, are considered the gold-

standard for detecting training-specific effects on the brain (Metzler-

Baddeley, Caeyenberghs, Foley, & Jones, 2016b; Thomas & Baker, 2013).

The only study of children to employ a randomised controlled design

and group-by-time interaction analysis used magnetoencephalography

(MEG), and reported enhanced brain activity and connectivity between

frontoparietal, lateral occipital and inferior temporal cortices in typically

developing 8- to 11-year-olds following Cogmed compared with placebo

training (Astle, Barnes, Baker, Colclough, &Woolrich, 2015; Barnes, Nobre,

Woolrich, Baker, &Astle, 2016).While not directly comparablewith studies

in children, there have also been some studies in adults that suggest Cog-

med is associated with improved measures of white matter microstructure

and connectivity (Caeyenberghs, Metzler-Baddeley, Foley, & Jones, 2016;

Metzler-Baddeley et al., 2017), and increased and decreased brain activity

measured using task-based functional MRI in various cortical regions

(Brehmer et al., 2011; Olesen, Westerberg, & Klingberg, 2004). Another

study using a different type of working memory training to Cogmed found

this training was associated with decreased frontal–parietal brain activity

on task-based functional MRI in children born very preterm (<32 weeks) at

7–12 years of age (Everts, Murner-Lavanchy, Schroth, & Steinlin, 2017).

Additional studies using randomised controlled designs and group-by-time

interaction analyses are therefore needed to understand the effects of

Cogmed on the brain in children, including those born EP/ELBW.

Studies using multimodal MRI are needed given the wider literature

suggests working memory training may be associated with changes in
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both brain structure and function (Buschkuehl, Jaeggi, & Jonides, 2012;

Constantinidis & Klingberg, 2016; Everts et al., 2017; Metzler-Baddeley

et al., 2016b). Neural mechanisms for training-induced changes may

include grey matter changes like neurogenesis and synaptogenesis, and

white matter changes like increases in axon density, diameter and mye-

lination, which may influence structural MRI measures of cortical thick-

ness, area or volume and diffusion MRI measures of white matter

microstructure, respectively (Zatorre, Fields, & Johansen-Berg, 2012).

The most common diffusion MRI measures are from the diffusion ten-

sor imaging (DTI) model (Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro,

1996). More advanced models have been developed including neurite

orientation dispersion and density imaging (NODDI) and multi-

compartment microscopic diffusion imaging based on the spherical

mean technique (SMT), both of which measure axon density, but SMT

also factors out influences from fibre crossings (Kaden, Kelm, Carson,

Does, & Alexander, 2016; Zhang, Schneider, Wheeler-Kingshott, &

Alexander, 2012). Thus, NODDI and SMT may provide more specific

measures of training-induced neuroplasticity than DTI alone.

The aim of the current study was to explore whether working

memory training using Cogmed is associated with changes in brain

cortical morphometry, white matter microstructure or blood oxygena-

tion level-dependent (BOLD) signal during an n-back working memory

task in children born EP/ELBW, compared with a placebo program.

We hypothesised that Cogmed would be associated with greater

changes in brain structural and functional MRI measures compared

with the placebo program. As reviewed above, previous studies out-

side the EP/ELBW population have reported that working memory

training is associated with both increases and decreases in measures

of brain structure and function in various brain regions, dependent on

the population studied, type of training and brain region analysed

(Brehmer et al., 2011; Buschkuehl et al., 2012; Caeyenberghs et al.,

2016; Constantinidis & Klingberg, 2016; Everts et al., 2017; Metzler-

Baddeley et al., 2016b; Metzler-Baddeley et al., 2017; Olesen et al.,

2004; Stevens et al., 2016; Yoncheva et al., 2017). Therefore, we have

not made specific hypotheses about the direction of possible brain

changes following Cogmed training in EP/ELBW children. Addition-

ally, given the lack of previous research in EP/ELBW children, we have

not made hypotheses about the location of possible brain changes fol-

lowing Cogmed; rather we used a whole-brain, exploratory approach.

2 | METHODS

2.1 | Participants

This study used data collected as part of the ‘Improving Memory in a

Preterm Randomised Intervention Trial’ (IMPRINT) study (Anderson

et al., 2018; Pascoe et al., 2013). The trial was nested within a geo-

graphical cohort of children born EP/ELBW in the state of Victoria,

Australia in 2005 (n = 221) (Doyle et al., 2010). Children in the geo-

graphical cohort were eligible to participate in the trial if they

attended their scheduled 7-year follow-up, were attending main-

stream schooling, and did not have a severe neurosensory impairment

that affected their capacity to complete the training. Of the

172 children who attended the follow-up, 91 children were recruited

and randomised to either the Cogmed working memory training pro-

gram or a control program (placebo; Anderson et al., 2018). Of the

91 children recruited, 60 had MRI pretraining (Cogmed: n = 30; pla-

cebo: n = 30), of which 57 also had MRI posttraining (Cogmed: n = 28;

placebo: n = 29). Of the 57 participants scanned at both time points,

all had structural MRI, 56 had diffusion MRI and 29 had task-based

functional MRI (Figure 1). The trial was approved by the relevant

Human Research and Ethics Committees, and written consent was

obtained from the primary caregiver of participating children.

2.2 | Working memory training

Children participated in Cogmed (RM version), a computerised working

memory training program that involves practicing a number of working

memory activities (forward and backward span tasks) for 45 min, 5 days

a week for 5–7 weeks at home. The minimum number of training ses-

sions to be defined as compliant is 20. In the Cogmed program, the dif-

ficulty level of each activity increased adaptively with the child's

performance. The placebo program involved the same activities as in

the Cogmed program, except the difficulty level of the working memory

activities was nonadaptive and remained low. The placebo program

hence controlled for the experience of sitting in front of a computer

and engaging in tasks. Further details are provided in our previous pub-

lications (Anderson et al., 2018; Pascoe et al., 2013).

2.3 | Magnetic resonance imaging

MRI was performed once pretraining and again within 2 weeks post-

training using a 3 Tesla Siemens Magnetom Trio, Tim system with a

32-channel head coil, at The Melbourne Children's Campus, Parkville,

Australia.

T1-weighted images were acquired with ultrafast magnetisation-

prepared rapid gradient-echo (MPRAGE) sequences. The sequence

parameters were as follows: repetition time (TR) = 1,900 ms; echo time

(TE) = 2.27 ms; flip angle = 9�; field of view (FOV) = 210 × 210 mm;

matrix size = 256 × 256; sagittal slices; slice thickness = 0.85 mm; in-

plane resolution = 0.82 mm2.

Two diffusion-weighted echo planar imaging MRI sequences were

acquired. The first sequence, referred to as ‘b1000’, was acquired with

b-values of 1,000 s/mm2, 30 gradient directions, 6 b-value = 0 s/mm2

images, TR = 7,293 ms, TE = 87 ms, FOV = 225 × 225 mm, matrix = 98

× 98, 2.3 mm axial slices and in-plane resolution = 2.3 mm2. The second

sequence, referred to as ‘b3000’, was acquired with b-values of

3,000 s/mm2, 45 gradient directions, 5 b-value = 0 s/mm2 images,

TR = 8,500 ms, TE = 112 ms, FOV = 225 × 225 mm, matrix size = 98

× 98, 2.3 mm axial slices and in-plane resolution = 2.3 mm2. Along with

the diffusion images, a single pair of b = 0 s/mm2 images were acquired

with reversed phase-encode blips, resulting in their distortions going in

opposite directions (anterior–posterior and posterior–anterior).

Participants performed an n-back functional MRI task (Owen,

McMillan, Laird, & Bullmore, 2005). The task took 6.5 min, consisting

of: (a) crosshair viewing (20 s); (b) zero-back condition (180 s), in
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which children pressed a button when the letter X was shown; and

(c) one-back condition (180 s), in which children pressed a button

when the same letter was shown consecutively. Functional MRI paral-

lel imaging technique (iPAT, factor 2) echo planar imaging sequences

with prospective acquisition correction (PACE) were acquired while

participants completed the task. The acquisition parameters were:

TR = 2,400 ms; TE = 40 ms; flip angle = 90�; FOV = 210 × 210 mm;

matrix size = 64 × 64; axial slices; slice thickness = 3.3 mm; in-plane

resolution = 3.3 mm2.

2.4 | Structural image processing

T1-weighted images were processed using the FreeSurfer image analy-

sis suite, version 5.3.0 (Fischl, 2012). Each participant's pial and white

matter surfaces were visually checked and manually edited as required.

Some participants were excluded if either their pretraining or post-

training FreeSurfer output was of poor quality. Of the 57 participants

who had structural MRI pretraining and posttraining, nine participants

were excluded, mostly due to movement artefact (n = 7), but also due

to artefact from dental braces (n = 1) and structural abnormality

(enlarged ventricles) that affected surface reconstruction and regional

segmentation (n = 1; Figure 1). For each participant, native vertex-wise

data were resampled into a common space (an ‘fsaverage’ surface tem-

plate provided by FreeSurfer; Fischl, Sereno, Tootell, & Dale, 1999),

ensuring between-participant vertex correspondence.

2.5 | Diffusion image processing

The two diffusion sequences (b1000 and b3000) were preprocessed

independently using the following pipeline: (a) denoising (Veraart

et al., 2016); (b) correction for movement and eddy current-induced

geometric distortions, and magnetic susceptibility-induced geometric

distortions, using the Functional MRI of the Brain (FMRIB) Software

Library's (FSL's) ‘topup’ and ‘eddy’ tools from version 5.0.9

(Andersson, Skare, & Ashburner, 2003; Andersson & Sotiropoulos,

2016); and (c) brain extraction using FSL's Brain Extraction Tool (Smith,

2002). The DTI model was fitted to the b1000 sequence using the

weighted linear least squares method (FSL's ‘dtifit’). Prior to fitting the

NODDI model (Zhang et al., 2012) and the SMT model (Kaden et al.,

2016), additional preprocessing was required: (a) the first b = 0 s/mm2

image of the b3000 sequence was linearly registered to the first

b = 0 s/mm2 image of the b1000 sequence using FSL's Linear Image

F IGURE 1 Participant flow chart. This figure shows the number of children who were enrolled into the trial and randomised to either
Cogmed or placebo, and of those, the number who had usable scans at both pretraining and posttraining time points and were thus included in
the current analysis. MRI, magnetic resonance imaging; TBSS, tract-based spatial statistics
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Registration tool (FLIRT; Jenkinson, Bannister, Brady, & Smith, 2002;

Jenkinson & Smith, 2001), and this registration was applied to the

remaining b3000 volumes to bring them into b1000 space; (b) each

sequence was separately normalised by its b0 images to attempt to

account for the different TE parameter values between the sequences;

and (c) the b1000 and b3000 sequences were merged together. The

NODDI model (Zhang et al., 2012) and the SMT model (Kaden et al.,

2016) were then fitted to the combined b1000 and b3000 images. We

visually checked the diffusion images and reconstructed scalar maps.

Of the 56 participants who had diffusion MRI, 10 participants were

excluded due to motion artefact in either their first or second time

point diffusion images and 1 participant was excluded due to artefacts

generated by dental braces (Figure 1).

The DTI, NODDI and SMT data were then processed using a com-

bination of DTI ToolKit (DTI-TK; version 2.3.1) tools and FSL tools. We

followed documented steps (http://dti-tk.sourceforge.net/pmwiki/

pmwiki.php?n=Documentation.TBSS) to integrate DTI-TK's tensor-

based registration and study-specific template into FSL's tract-based

spatial statistics (TBSS) pipeline, as recommended in previous publica-

tions as the state-of-the-art method for voxel-wise analysis of diffusion

tensor data (Bach et al., 2014). First, FSL's ‘dtifit’ outputs were

converted into DTI-TK's single volume nifti-tensor format. Then, DTI-

TK was used for tensor-based registration of all the participants’ vol-

umes to a study-specific template (Zhang, Yushkevich, Alexander, &

Gee, 2006). From the spatially normalised volumes, we generated high-

resolution (1 mm3) fractional anisotropy (FA), axial diffusivity (AD),

radial diffusivity (RD) and mean diffusivity (MD) images using DTI-TK,

and a mean FA image using FSL. We then used FSL's TBSS tools (Smith

et al., 2006) to generate a FA skeleton (threshold 0.2). Maximal FA

values within close proximity to the skeleton, assumed to be the centre

of the white matter bundle, were projected onto the skeleton. The AD,

RD and MD images were also projected onto the mean FA skeleton

using the same projection method. The scalar maps from NODDI

(neurite orientation dispersion and density) and SMT (neurite density

and intrinsic diffusivity) were normalised to the study-specific template

using the transformations calculated during the tensor-based registra-

tion. The normalised NODDI and SMT maps were then projected onto

the mean FA skeleton using the original distance maps from the FA

projection. This was similar to a previously published method (Timmers

et al., 2015). We visually checked all of the registrations of the scalar

maps to the population-specific template, and excluded one participant

with poor registration caused by enlarged ventricles.

2.6 | Task-based functional image processing

Functional images were processed using the Functional MRI Expert Anal-

ysis Tool (FEAT) version 6 from FSL version 5.0.6 (different to the

FSL version used for diffusion processing as the functional analysis

was undertaken first). The images underwent brain extraction using

BET (Smith, 2002), motion correction using a FLIRT based algorithm

(MCFLIRT; Jenkinson et al., 2002), temporal filtering with a 100 s high

pass filter to remove low drifts, and spatial smoothing with a Gaussian

kernel with a full width at half maximum (FWHM) of 5 mm. Functional

images were registered to the T1 images using boundary-based registra-

tion (Greve & Fischl, 2009) and then the T1 images were nonlinearly reg-

istered to the MNI152 atlas. All affine transforms (motion correction,

functional to T1 space and T1 space to MNI152 space) were composed

and functional images were resliced into MNI152 atlas space using spline

interpolation. Of the 29 participants who had task-based functional MRI

pretraining and posttraining, we excluded 3 participants because they did

not have the total number of volumes, 7 participants because they had

motion artefact and 1 participant because they had artefact from dental

braces.

For the first level analysis (Woolrich, Ripley, Brady, & Smith, 2001),

we used FSL's method for general linear modelling, FMRIB's improved

linear model (FILM). Three contrasts of interest were generated: zero-

back task versus crosshair viewing, one-back task versus crosshair

viewing and one-back task versus zero-back task. We used an event-

related design convolved with the gamma function, and we applied

temporal filtering and the temporal derivative. The rigid-body motion

parameter estimates were added as an additional confounding variable.

We also used FILM's prewhitening for removal of temporal autocorrela-

tions. The first level statistical images were thresholded using cluster

thresholding, with Z > 2.3 and p < .05, family-wise error rate-corrected.

2.7 | Statistical analyses

Statistical analyses were performed using the following methods.

• Cortical morphometry: Vertex-wise statistical analysis of left and

right hemisphere cortical thickness, area and volume was per-

formed using the paired analysis stream in FreeSurfer (https://

surfer.nmr.mgh.harvard.edu/fswiki/PairedAnalysis). Per-vertex

posttraining minus pretraining differences were computed for each

measure. Data were smoothed using a geodesic Gaussian kernel

with a FWHM of 10 mm. General linear modelling was employed.

• White matter microstructure: Voxel-wise statistical analysis of the

skeletonised diffusion images (FA, AD, RD, MD from DTI, neurite

density and orientation dispersion from NODDI and neurite den-

sity and intrinsic diffusivity from SMT) was performed using gen-

eral linear modelling and nonparametric permutation testing with the

FSL ‘Randomise’ tool (Winkler, Ridgway, Webster, Smith, & Nichols,

2014). For all tests, 5,000 permutations were performed and

threshold-free cluster enhancement (TFCE) was applied. To perform

paired analyses, we calculated the difference between the pretraining

and posttraining skeletonised diffusion values for each participant.

• Task-based functional MRI: For the second level (group level) analy-

sis (Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004), we

used FMRIB's local analysis of mixed effects (FLAME).

First, as a descriptive analysis only and to enable comparison with

previous studies that did not include placebo groups, we examined

whether there were differences between the pretraining and post-

training data for the Cogmed and placebo groups separately. To do

this, we performed the following analyses.
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• Cortical morphometry and white matter microstructure: We tested

whether the mean paired difference for each measure differed

from zero using one-sample t-tests.

• Task-based functional MRI: We created a general linear model

design to conduct a paired t test between the pretraining and post-

training measurements in the Cogmed and placebo groups

separately.

Second, as the inferential analysis, to investigate possible training-

specific effects (whether any changes in the data from pretraining to

posttraining differed between the Cogmed and placebo groups), we

performed the following analyses.

• Cortical morphometry and white matter microstructure: We tested

whether the mean paired difference for each measure differed

between the Cogmed and placebo groups using two-sample t tests.

• Task-based functional MRI: We performed group-by-time interactions

by creating a ‘2-group, 2-levels per subject’ general linear model design

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#ANOVA:_2-

factors_2-levels).

For all data, two separate secondary analyses were performed:

(a) including age difference between pretraining and posttraining

scans as a covariate in all the general linear models; (b) excluding the

participants who completed less than 20 training sessions from the

inferential analysis, to investigate whether training-specific neuro-

plastic changes could be influenced by lack of compliance to the mini-

mum recommended 20 training sessions.

Multiple comparison correction was performed as follows.

• Cortical morphometry: Correction for vertex-wise multiple comparisons

was performed using a cluster-wise (Monte Carlo simulation) method,

with a cluster-forming threshold of p < .0001, adjusting for the two

hemispheres and two signs (positive and negative tests), and a cluster-

wise threshold of p < .05 (Hagler Jr., Saygin, & Sereno, 2006).

• White matter microstructure: Results were considered significant at

p < .05 following correction to control the family-wise error rate

across all skeleton voxels. To obtain the coordinates in standard space

of significant clusters, we registered the study-specific template to

the MNI152 1 mm3 T1 image using FLIRT, and applied this registra-

tion to the significant clusters to bring them into MNI space.

• Task-based functional MRI: Results of the second level analysis

were thresholded using cluster thresholding, with Z > 2.3 and

p < .05, family-wise error-rate corrected. Regions of statistical sig-

nificance were anatomically localised using the ‘Talairach Daemon

Labels’ atlas provided within FSL (Lancaster et al., 2000).

3 | RESULTS

3.1 | Participant characteristics

After exclusions during image processing, the sample included 48 par-

ticipants with usable cortical morphometry data, 43 participants with

usable white matter microstructure data and 18 participants with

usable task-based functional data, at both pretraining and posttraining

(Figure 1).

Characteristics of the structural, diffusion and functional analysis

subsamples are reported in Table 1. Baseline characteristics (perinatal

medical data, sex, age) were similar between participants in the Cogmed

and placebo groups in each of the subsamples. The number of com-

pleted training sessions was similar between Cogmed and placebo

groups, although not all participants completed the minimum rec-

ommended 20 training sessions. As reflected by the ‘Cogmed Index

Improvement’ score, the children in the Cogmed group improved on

Cogmed training tasks from pretraining to posttraining, however there

was variability in the degree of improvement as shown by the large

standard deviations. The average improvement score for our sample is

similar to that reported in another comparable study in children (Barnes

et al., 2016). Working memory outcomes at posttraining were similar

between the Cogmed and placebo groups in each of the MRI subsam-

ples. This is in line with the findings of our wider trial (i.e., which

F IGURE 2 FreeSurfer results. (a) The cluster of vertices in the left
lateral occipital cortex in which thickness decreased significantly
(p < .05, multiple comparison corrected) between pretraining and
posttraining in the placebo group, shown in blue. (b) The cluster of
vertices that had a significant group-by-time interaction for cortical
thickness, shown in red. For each cluster, the number of vertices it
occupies and its size in mm2, are shown. The percentage refers to the
cluster's size relative to the total cortical surface area (65,416.6 mm2)
[Color figure can be viewed at wileyonlinelibrary.com]
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included all eligible participants, not just those with usable MRI data;

Anderson et al., 2018).

Characteristics were also generally similar between the partici-

pants and nonparticipants (i.e., those of the original n = 91 participants

who were enrolled in the trial but were subsequently excluded from

the MRI analyses; data not shown). However, the participants had a

slightly younger gestational age at birth than nonparticipants

(for the structural sample, mean difference 95% confidence interval,

CI, = −0.8 [−1.6, 0.04] weeks, p = .06; for the diffusion sample, mean

difference [95% CI] = −1.0 [−1.8, −0.1] weeks, p = .02; for the func-

tional sample, mean difference [95% CI] = −0.4 [−1.5, 0.7] weeks,

p = .5). Additionally, more participants included in the MRI analyses

completed the minimum recommended 20 training sessions compared

with nonparticipants (for the structural sample, 85% vs. 60%,

p = .009; for the diffusion sample, 81% vs. 67%, p = .1; for the func-

tional sample, 94% vs. 67%, p = .05).

F IGURE 3 Tract-based spatial statistics
results. Regions where neurite density based
on Neurite Orientation Dispersion and
Density Imaging (NODDI) and the Spherical

Mean Technique (SMT) increased significantly
from pretraining to posttraining in the
Cogmed and placebo groups. The number of
voxels that increased significantly over time
and their percentage of the mean fractional
anisotropy (FA) skeleton (total 68,099 voxels)
are also shown. All results are presented at
p < .05, family-wise error rate (FWE)-
corrected. p values are overlaid on the study
specific template (mean FA image). TFCE,
threshold-free cluster enhancement [Color
figure can be viewed at wileyonlinelibrary.com]
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3.2 | Cortical structure results

Most of the cortex did not increase or decrease significantly in thick-

ness, area or volume from pretraining to posttraining in the Cogmed

or placebo groups. The one exception was a small cluster in the left

lateral occipital cortex, in which thickness decreased significantly over

time in the placebo group but not in the Cogmed group (Figure 2a).

Group-by-time interactions for thickness, area and volume were gen-

erally nonsignificant, except for a similar small cluster in the left lateral

occipital cortex (Figure 2b). In this cluster, cortical thickness decreased

between pretraining and posttraining in the placebo group, but

increased slightly in the Cogmed group; the mean (standard deviation)

difference over time for the placebo group was −0.17 (0.13) mm ver-

sus 0.05 (0.10) mm for the Cogmed group.

When we adjusted for age difference between pretraining and

posttraining scans, there were no longer any significant changes over

time in either group, or group-by-time interactions, for cortical thick-

ness, area or volume.

When we excluded the participants who completed less than the

minimum recommended 20 training sessions, there remained a signifi-

cant group-by-time interaction for thickness in the left lateral occipital

cortex (228 vertices), and there remained no significant group-by-time

interactions for cortical area or volume.

3.3 | White matter microstructure results

Neurite density from both NODDI and SMT increased significantly

between pretraining and posttraining in both the Cogmed and placebo

groups (Figure 3). Regions increasing in NODDI density in the Cog-

med group included the corpus callosum, corona radiata, internal and

external capsules, cerebral peduncle, left corticospinal tract and right

thalamic white matter, while in the placebo group included the corpus

callosum and left corona radiata, internal capsule and superior longitu-

dinal fasciculus. Regions increasing in SMT density in the Cogmed

group included the corpus callosum, and in the placebo group included

the corpus callosum, corona radiata and left superior longitudinal fas-

ciculus. There were no regions where neurite density decreased sig-

nificantly in the pretraining to posttraining period in the Cogmed or

placebo groups. There was little evidence that the remaining diffusion

measures—FA, AD, RD and MD from DTI, neurite orientation disper-

sion from NODDI and intrinsic diffusivity from SMT—changed

between pretraining and posttraining in either group.

There were no significant group-by-time interactions for most

microstructure parameters, except for FA. There was one small

cluster of 20 voxels (0.03% of the mean FA skeleton; centre of

gravity = −26.9 × 3.84 × 31.6 mm; located approximately in the

left superior corona radiata) in which FA increased slightly between

pretraining and posttraining in the Cogmed group, but decreased

slightly over this period in the placebo group. Due to the small size

of this cluster relative to the size of the mean FA skeleton, these

results have not been shown.

When we adjusted for age difference between pretraining and

posttraining scans, results were similar, that is, there remained

significant increases in neurite density from pretraining to posttraining

in both groups, and there remained few group-by-time interactions

for the diffusion parameters.

When we excluded the participants who completed less than the

minimum recommended 20 training sessions, there were no signifi-

cant group-by-time interactions for any diffusion parameters.

3.4 | Functional results

BOLD signal increase during completion of the n-back task (one-back

versus zero-back) increased significantly from pretraining to post-

training in the Cogmed group, in the precuneus and posterior cingu-

late cortices, but not in the placebo group (Figure 4). However, no

significant group-by-time interactions for BOLD signal during the n-

back task were identified.

When we adjusted for age difference between pretraining and

posttraining scans, results were similar, that is, there remained signif-

icant increases in BOLD signal change during completion of the n-

back task from pretraining to posttraining in the Cogmed group, and

there remained no significant group-by-time interactions for BOLD

signal change.

When we excluded the participants who completed less than the

minimum recommended 20 training sessions, there were no signifi-

cant group-by-time interactions for BOLD signal change.

4 | DISCUSSION

The overall finding of this study is that, in general, Cogmed did not

differentially affect brain changes over time in EP/ELBW children

compared with placebo training. Indeed, there were few significant

group-by-time interaction effects observed across the MRI modalities

and measures.

F IGURE 4 Task-based functional MRI results. The regions where
the blood oxygenation level-dependent (BOLD) signal increase during
completion of the n-back task (one-back condition vs. zero-back
condition) increased significantly from pretraining to posttraining in
the Cogmed group. The number of significant voxels is shown. Results
are presented at Z-score >2.3 and p < .05, family wise error rate

corrected. The coordinates beneath the images are MNI coordinates
[Color figure can be viewed at wileyonlinelibrary.com]
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In terms of cortical morphometry, the volume, area and thickness

for most of the cortex remained stable during the pretraining to post-

training period for both the Cogmed and placebo groups. There was a

small region in the left lateral occipital cortex in which the change

in thickness from pretraining to posttraining differed significantly

between the Cogmed and placebo groups; thickness decreased

slightly in the placebo group but increased slightly in the Cogmed

group. However, this finding should be interpreted with caution given

its small spatial extent (<1% of the total cortex), and the fact that it

was no longer significant after accounting for variances in age

between participants, meaning it may reflect a type 1 error despite

vertex-wise multiple comparison correction. Additionally, the cortex is

thin and curved in the location of the significant cluster, which may

lead to errors in the placement of the pial and white matter surfaces

during FreeSurfer's preprocessing pipeline, and thus partial volume

effects may have influenced the result. Indeed, previous studies have

found small differences in FreeSurfer cortical thickness measurements

when compared with ground-truth histological or manual methods for

measuring cortical thickness of approximately 0.1–0.5 mm (Cardinale

et al., 2014; Kuperberg et al., 2003; Rosas et al., 2002; Salat et al.,

2004). This is similar to the magnitude of change over time in cortical

thickness reported in the current study. This does not necessarily

imply that the current differences in cortical thickness change over

time between groups are not real or important, because any measure-

ment error should affect both the Cogmed and placebo groups equally

(and will be reflected in the standard errors for the measurements in

both groups). However, the potential for error in cortical thickness

measurement to influence the results should be considered. While no

previous studies have examined the effects of Cogmed on cortical

morphometry in children, a study in healthy adults aged 19–40 years

examined the effects of Cogmed on cortical morphometry using simi-

lar methods to those we used (Metzler-Baddeley et al., 2016b;

Metzler-Baddeley, Caeyenberghs, Foley, & Jones, 2016a). Their

results were similar, in that on vertex-wise analysis, they found no sig-

nificant group-by-time interactions (Metzler-Baddeley et al., 2016a).

On analysis of parcellated regions of interest, they found that the

thickness of the right caudal middle frontal and right pars opercularis,

and volume of the left pallidum, displayed small increases in the Cog-

med group and small decreases in the placebo group from pretraining

to posttraining, but these group-by-time interactions did not survive

multiple-comparison correction (Metzler-Baddeley et al., 2016b).

We found few significant training-specific changes in white matter

microstructure, although both groups showed relatively widespread

increases in neurite density. This may reflect typical white matter devel-

opment (Genc, Malpas, Holland, Beare, & Silk, 2017; Mah, Geeraert, &

Lebel, 2017). Without a placebo group, the increase in neurite density in

the Cogmed group may have been incorrectly interpreted as training-

induced neuroplasticity, reinforcing the strength of a randomised con-

trolled design.

There were no significant group-by-time interactions for brain

activation during completion of the n-back working memory task.

Our only finding was increased activation during the task from pre-

training to posttraining in the Cogmed group only, consistent with

previous studies that found changes in brain activity following

Cogmed in children (Stevens et al., 2016; Yoncheva et al., 2017).

However, unlike our study, these previous studies did not include

placebo groups, and therefore could not determine if changes in

brain activation were specific to Cogmed or reflected typical

development. Our lack of evidence for group-by-time interactions

suggests that Cogmed does not have training-specific effects on

brain activity in response to the n-back task, which is different to

the working memory training activities (forward and backward

span tasks) performed during Cogmed.

Our study is strengthened by the use of a population-based sample

and randomised controlled design, including an active control group. A

limitation is that our structural, microstructural and functional MRI ana-

lyses all depend on accurate registration to a template. Specific to

TBSS, while we attempted to improve the standard TBSS pipeline by

performing tensor-based registration, our TBSS results must be inter-

preted with the known limitations of the skeletonisation step in mind,

that is, that it introduces a spatial heterogeneity and orientational

dependency of the statistical sensitivity, and has limited ability for ana-

tomical localisation (Bach et al., 2014; Edden & Jones, 2011; Van Hecke

et al., 2010). The number of participants with usable MRI data in our

study was similar to or larger than in other related studies (Barnes et al.,

2016; Metzler-Baddeley et al., 2016b; Stevens et al., 2016; Yoncheva

et al., 2017). However, our task-based functional MRI analysis was

based on a small sample, which yielded low power to detect training-

specific effects. Another limitation is that not all participants completed

the minimum recommended number of training sessions, raising the

possibility that these children may not have completed enough training

to induce neural changes. However, secondary analyses excluding

these participants revealed similar results to the original analyses. This

indicates that lack of compliance with the training program did not

explain the lack of training-induced neuroplastic changes.

Based on the same trial, we previously observed little benefit of

Cogmed on working memory and academic outcomes in children born

EP/ELBW (Anderson et al., 2018). When we performed a similar anal-

ysis of working memory outcomes in the Cogmed compared with the

placebo participants for the MRI subsamples, we also found little dif-

ference in working memory performance between groups. Hence,

overall, while we speculated that MRI may be sensitive for detecting

subtle neuroplastic changes even in the absence of cognitive improve-

ments, it appears that the results in the current study are consistent

with our previous report (Anderson et al., 2018), and that in our trial,

lack of training-induced cognitive improvements and lack of neuro-

plastic changes occurred simultaneously. The lack of training-induced

cognitive improvements in the wider trial (Anderson et al., 2018) could

have limited our power to detect neuroplastic changes.

5 | CONCLUSIONS

While we found some structural and functional brain changes between

the pretraining and posttraining period in our sample of children born

EP/ELBW who undertook Cogmed training, we found little evidence of
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training-induced neuroplasticity, with similar changes generally identi-

fied in both the Cogmed and placebo groups. This study is based on a

population of EP/ELBW children, and therefore cannot be generalised

to other populations. Further research is needed using larger scale

randomised controlled trials in different clinical populations to deter-

mine whether working memory training programs like Cogmed are ben-

eficial and associated with training-induced neuroplasticity. Based on

the available evidence and converging findings from the current study

and our previous study (Anderson et al., 2018), there is currently insuf-

ficient evidence that Cogmed is effective in improving working memory

and brain structure and function in EP/ELBW children compared with a

placebo program.
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