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Abstract

Hadron spectroscopy is predominantly the study of resonances that decay via the strong
interaction into a multitude of stable hadrons, such as the pion. The vast majority of
resonances decay via an intermediate hadron with non-zero intrinsic spin. In this thesis, I
will present the results of scattering calculations featuring mesons with non-zero intrinsic
spin. Before doing so, I will first give a brief introduction to QCD and review the framework
necessary to perform lattice QCD calculations in Chapters [I] and [2]

In Chapter [3] I present the first lattice calculation of pm scattering in isospin-2. Here,
pr features in dynamically-coupled *S; and ®D; partial-waves with J” = 1*. No resonance
enhancement is anticipated in the flavour exotic isospin-2 channel and as such it provides
an ideal testing ground for this first calculation. I work at heavier than physical quark
masses at the SU(3)r point where the up, down and strange quarks are mass degenerate.
Finite-volume spectra are calculated and, utilising the relationship between the discrete
energy spectrum and the infinite-volume scattering amplitudes, partial-wave amplitudes
with J < 3 and the degree of dynamical mixing between the coupled *S; and ®D; channels
are determined.

In Chapter [, I investigate pm in isospin-1 where the a; axial-vector resonance is
expected to feature. Here, I present a discussion on G-parity and Bose-symmetry at
the SU(3)r point. Working at heavier than physical quark masses, the resulting finite
volume spectrum suggests that the a; is a bound-state and that the 35,- and 3Dl—vvave,
pr scattering amplitudes are similar to those in isospin-2.

I present the first calculation of coupled 7w and 7¢ scattering in Chapter |5 where
resonant enhancement is seen experimentally in the J¥ = 17 channel. Working at a
somewhat lighter pion mass than in previous chapters, the finite-volume spectra are
determined and the scattering amplitudes are calculated. Analytically continuing the
amplitudes into the complex energy plane, a resonance pole is found, interpreted as

the analogue of the b; axial-vector, which couples dominantly to 3S;-wave 7w, with a
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much-suppressed coupling to >D;-wave 7w, and a negligible coupling to w¢.

In Chapter @, the exotic JP¢ = 17F channel is studied. These quantum numbers are
not allowed in the quark model but can be obtained, for example, through a gluonic
excitation coupled to a quark-antiquark pair. In this exploratory calculation, performed at
the SU(3)g point, the finite-volume spectra and coupled-channel scattering amplitudes are
presented. A single resonance pole is found, interpreted as the exotic m;, and couplings
to meson-meson channels, including for example mn{'P1}, 7n/{*P1} and pn{°P,}, are
calculated for the first time in lattice QCD.

In order to minimally present the contents of a unitary n-channel scattering matrix, I
introduce, in Chapter [7| an n-channel generalisation of the traditional two-channel Stapp

parameterisation.
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CHAPTER 1

Introduction

Quantum chromodynamics (QCD) is the theory of the strong interaction that confines
quarks and gluons to hadrons. The quantum field theory has a non-abelian SU(3) gauge
symmetry which gives rise to eight gauge fields, gluons, transforming in the adjoint
representation of SU(3). (Anti)quarks are charged under SU(3), transforming in the
(anti)fundamental representation and we attribute (anti)red, (anti)green and (anti)blue to
distinguish the three distinct colour charges carried. Overwhelming experimental evidence
suggests QCD is a confining theory in which observables must be colourless, meaning
eigenstates of the QCD Hamiltonian, hadrons, are forbidden to have a net colour charge.
This restricts the allowed quark and gluon constituents of hadrons — certainly a naked
quark is prohibited for example. For two quarks, hadrons can consist of a quark-antiquark
pair, a meson (qq) such as the pion. For three quarks, an antisymmetric contraction of
the colour charges yields a colour neutral state, a baryon (gqq) such as the proton, and
similarly an anti-baryon where the quarks are replaced with anti-quarks. More elaborate
combinations of larger numbers of quarks give rise to a plethora of possible hadronic states,
for example tetraquarks and pentaquarks. Furthermore, excitations of the gluonic fields
coupled with quarks gives rise to so called hybrids and in the absence of any quark fields
at all, glueballs. Although these states are allowed within the QCD framework, they do
not necessarily exist.

The vast majority of hadrons appearing in nature are unstable, resonances, and are
observed through decays via the strong interaction to, typically, a multitude of stable
hadrons in various partial-waves. Experimentally, long-lived (narrow) isolated resonances
are observed as ‘bumplike’ enhancements in the cross-sections of scattering amplitudes of
the relevant decay modes, with masses and life times related to the position and width of
the enhancement region. Short-lived (broad) resonances are much more difficult to see
from cross-sections alone.

The quark model, proposed independently by Gell-Mann |11} and Zweig [12], is a means

1
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of classifying hadrons based on their constituent quarks. This scheme offered a natural
way to group together the light hadrons that were being discovered in the 1950s and 1960s
but as more experimental evidence emerged, verifying the success of the quark model, it
became a powerful tool within its own right. The majority of resonances are accounted for
by the quark model, including broad resonances hard to detect in experiment, however,
experimental evidence suggests the existence of hadronic resonances with exotic quantum
numbers that are not accounted for — one example being the 7; resonance.
Contemporary studies of hadron spectroscopy seek to relate the spectrum of hadronic
resonances, including their decay properties, to the theory of QCD. Lattice QCD, which
considers the theory on a discretised spacetime grid of finite size and numerically calculates
correlation functions using Monte-Carlo generated gauge field configurations, has proven to
be a hugely successful approach. The discrete spectrum in a finite volume, corresponding
to a particular choice of quantum numbers, can be extracted from a matrix of correlation
functions, computed using a diverse basis of operators which resemble the hadronic system
being studied. An approach introduced by Liischer utilises the finite volume to relate
the discrete spectrum of states to infinite-volume continuum hadron-hadron scattering
amplitudes. The corresponding pole singularities and residues of the scattering amplitudes
analytically continued into the complex energy plane, give the masses, widths and couplings
of the resonances. In this thesis, I will calculate, from first principles QCD, scattering
amplitudes of hadrons with non-zero intrinsic spins before determining the pole singularities

and interpreting these as resonances.



CHAPTER 2

Background

In this chapter, we set out the background necessary to perform calculations of low-
energy observables from first principles QCD. In Section [2.1I| we give a brief discussion
of continuum QCD with particular attention to the symmetries of the theory and the
path integral formulation. The lattice QCD (LQCD) framework will be introduced
in Section 2.2 and numerical techniques required to calculate QCD observables non-
perturbatively will be given in Section [2.3] In Section [2.4] we detail the implementation of
the distillation framework, used in the computation of correlation functions, and discuss
the significant advantages it offers. In Section we explore the consequences of working
in a reduced symmetry, owing to the finite-volume and discretisation of spacetime, and give
the construction of operators respecting said symmetries. We follow up in Section [2.6] with
the techniques used to extract the discrete spectrum of states from correlation functions.
Lastly, in Section [2.7, we present the formalism necessary to calculate infinite-volume
continuum QCD scattering amplitudes from the energy eigenstates of the discretised QCD

Hamiltonian.

2.1 QCD

The QCD action can be written,

Sqcp :/ {——ZFa F““”+Z Z Z q; o ()i aﬁ(Du)zj—mf5ij5aﬁ]Qf,g($)}

4,j=1 a,=1

~~

Sa [A] Sp [Aquq]
(2.1)

where, for the gauge part of the action Sg[A], F;, = 9,A] — O, A}, — g, f“bCAZAi is the
field strength tensor, f% are SU(3) structure constants, g, is the strong coupling constant

and A}, are the gauge fields with @ = 1, ..., 8 indexing the adjoint representation of SU(3).
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4 CHAPTER 2. BACKGROUND

In the fermionic part of the action Sp[A,q,q], (v*)as are the usual Dirac-y matrices and
(Dp)ij = 6ij O, + igs AL A /2 is the gauge covariant derivative where A{; are the Gell-Mann
matrices and (7)j = 1, ..., 3 is the colour index in the (anti)fundamental representation. For
the quark fields q]{ 5> [ 1s the spinor index and f is flavour of which there are six: up, down,
strange, charm, bottom and top. my is a bare quark mass. Since we are interested in light
hadron spectroscopy, we restrict to the lightest three flavours, up, down and strange, for

the remainder of this thesis.

In QCD there are a number of global, approximate and discrete symmetries that enable
us to simultaneously diagonalise the QCD Hilbert space and label hadronic states according

to the eigenvalues of the corresponding generators. In particular, it is often convenient to
label hadrons (I¢).JF¢ following the conventions of the PDG [5].

The Poincaré group, P, which is the semi-direct product of translations and Lorentz
transformations, P = T3 x O(1,3), is a global symmetry of QCD. The irreducible
representations of the subgroup of rotations SO(3) C O(1, 3) that leave massive states

invariant are labelled by total angular momentum J.

Total isospin, I, is the result of an approximate SU(2)g flavour symmetry in which the
up and down quark masses are assumed to be identical and the quarks are indistinguishable
in strong interactions. When isospin symmetry is assumed, the up and down quarks are
collectively referred to as the ‘light” quarks. Often, a larger SU(3)p flavour symmetry,
extending the approximate indistinguishability of the up and down quarks to include the
strange, is assumed — this is badly broken in reality. Isospin alone is not sufficient to
label the irreducible flavour representations of SU(3)r, owing to the two distinct Casimir
invariants, and we will discuss SU(3)r flavour symmetry in more detail in Chapters
and [6l

Regarding the discrete symmetries, P labels parity and C corresponds to the charge-
conjugation parity, defined for neutral hadrons. For hadrons with hypercharge zero but
z-component of isospin I, # 0, the C-parity operator can be augmented through a prior
rotation of m about the y-component of isospin to give the G-parity operator, G = Cetmly,
This gives a multiplicative quantum number, G, that is conserved in strong interactions,

assuming isospin is a good symmetry[]

'Hypercharge, Y, is defined as Y = 2(Q — I,) where Q is the electric charge.



2.1. QCD )

In the path integral formulation of QCD, correlation functions are given by,

/ D O ¢ 8Sqen[Ad.d]

Z: /D[A]D[q_’ q]eiSQCD[Avq:(I] (22)

where Z is the partition function, D[A] and D[q, q| are the gauge and fermion integration
measures respectively and O is some gauge-invariant operator, in general consisting of
fermion and gauge fields. Typically, an operator is constructed that respects the symmetries

JPC quantum numbers and

of QCD in order to interpolate hadronic states of specific (1)
subsequently calculate their properties. As QCD is asymptotically free at high energies,
techniques in perturbation theory enable the calculation of these correlation functions
to some order in g,. However, at the low-energies relevant for hadron spectroscopy,
perturbation theory breaks down due to the large coupling constant. One very successful
non-perturbative approach in computing correlation functions is lattice QCD, where, by
performing a Wick rotation in time ¢t — —it and regularising the theory on a discrete
finite grid of Euclidean spacetime points, the path integral can be calculated numerically.

The Euclidean action is given by,

Stop = /d4${ ZFa Fa”V+Z Z Z 0o (@) () ap (D) iy + mybijdaglal () }

f 4,j=1 a,f=1

SE (4] SE[ 4:4]

S

(2.3)
where v are Euclidean y-matrices, i.e. 74 = (vi)" and {74, 7%} = 26,,. It follows that

the Euclidean correlation functions are given by,

A777

Zp = /D[A]'D[(j, Q]efsQCD (434 (2.4)

For brevity, we drop the ‘E’ label as we will only consider the Euclidean action and

correlation functions for the remainder of this work.
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2.2 Lattice QCD

The purpose of LQCD is to provide a framework in which to calculate QCD numerically
in a manner in which finite-volume and discretisation effects are under control and, in
the limit that the discretisation spacing is taken to zero and the volume of the lattice
taken to infinity, infinite-volume continuum QCD is recovered. In this section, we will
present the general approach for discretising the QCD action, considering separately
the fermionic Sp[A, ¥, ] and gauge Sg[A] actions, before discussing in more detail the
specific improvements and adaptations relevant for generating the gauge fields used in our
calculations.

To begin, we define an isotropic hypercubic grid of Euclidean spacetime points ¥,
Z:{x:an|n€ZL/as XZL/aS XZL/(ZS XZT/at} (25)

where a = as = a; is the lattice spacing, equal in the spatial a, and temporal a; directions,
and where L and T are the spatial and temporal extents respectively. Elements x € ¥ are
referred to as lattice sites and the edges which connect neighbouring sites are referred to

as lattice links.

2.2.1 Discretising the Fermion Action

Consider first Sp[A,7),9]. Restricting the fermion fields to the lattice sites, the O(a?)

discretised partial derivative is given by,

) = L 00D~ bl — i)

where i is a unit vector in the direction p. In the action, this gives rise to terms that are

(2.6)

not gauge invariant, for example under a gauge transformation, the term v (x)y(x + afi)
becomes ¥ (x)Qf (2)Q(z + afi)(z + ajt) where Q(x) € SU(3) and Qf (2)Q(y) # 1 for x # y
in general.

To reinstate gauge invariance, link variables, U,(x), are introduced, directed along the
links from site  to x 4+ afi. Link variables orientated in the opposite direction from
site © + afi to = are defined through the hermitian conjugate, U_,(x + afi) = U, ()"

Formulated in this way, defining the gauge transformation on U, (x) as,

Un(2) Q@)U ()2 (@ + ajt) (2.7)
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the action can be augmented to recover gauge invariance by appropriately inserting ordered
products of U, () between fermion fields to connect the sites, for instance ¢ (x)U,(z)y(z +
aji) pertaining to the example above.

Link variables are in fact fundamentally related to the gauge fields in the continuum.
They obey the same transformation properties as the continuum gauge transporter, the
Wilson line, and as such are interpreted as the gauge transporters on the lattice. The
relation with the gauge fields A,(x) is given by U,(z) = exp(iagsA,(x)).

Taking the fermionic part of the QCD action from the expression in Eq. 2.3 and
discretising according to the constructions given above, appropriately inserting the link

variables to preserve gauge invariance, the discretised fermion action reads,

SelU 0, ] =a*> " > 3" (@)[(7)ap(V )i + mpbisaplth] 5(x)

2€Y fel{ud,s} ij=1 a,B=1

where

(Vo) = 5 (Un(a)yt sl + i) = Ul — a0l (o — a)  (28)

and where the [ d*z has been replaced by the sum a*Y". Expanding the link variables in
powers a, it is straightforward to show that Sg[U, ¥, v] = Sp[A, 1, ¥] + O(a?).

A fundamental problem that arises from this naive discretisation of the fermion action
in Eq. is ‘fermion doubling’. This can be seen most easily in the inversion of the free
discretised Dirac operator that appears in the fermion propagator. In momentum space,

this is given by [13],

mel —ia~t > A#sin(pua)
"V, +mp)H(p) = a
(7 B f) (p> 30 + g2 Z“ sin2 (p”a)

(2.9)

and as a — 0, (7v*V,, +my)~'(p) has the correct pole at p* = —m7. However, shifting
the momenta within the Brillouin zone, p, — p, + Z i, gives an additional pole for each
unique translation to the vertices of the hypercube, bringing the total number to sixteen.

There are many modifications to the action one could choose to ameliorate the problem
of fermion doublers and we introduce a Wilson term, resembling a second order gauge-
covariant derivative, that adjusts the mass of the doublers to O(1/a). In the continuum

limit, these become infinitely massive and decouple from the theory. This modifies Eq.
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giving the Wilson fermion action,

a
SCTRTRYD DI DI S {E I AN S SN
z€Y fef{u,d,s} i,j=1 7 g
(Wa)ij
where

(At (2) = %(Umwf (v +af) + Up(w — ap)lv] (z — aft) = 20](x)).  (2.10)

Spinor indices have been dropped for brevity. Correcting for the fermion doublers by
adding the Wilson term reintroduces discretisation errors at O(a) thus SY[U, v, ] =

SelA, ¥, ¢] + O(a).

2.2.2 Discretising the Gauge Action

Now we are in a position to consider Sg[A]. The cyclic property of the trace ensures that
the trace of any closed Wilson line, i.e. a Wilson loop, is gauge-invariant. Within the
lattice framework, Wilson loops are expressed as an ordered finite product of link variables
that form a closed boundary to some surface, the simplest being the plaquette consisting

of four link variables bounding a planar square,
U () = U (2)U,(z + aft)U,(x + ad) U, (x)". (2.11)

Combining the product of exponentials using the Baker-Campbell-Hausdorff (BCH) for-
mula, U, (z) = explia®gsF,,(x) + O(a®)] and hence,

=0 Z Z Re trl — U, (2)]

6;; —tr[l+ U, (x UT J(x)] — %tr[ij(I) —|—UL/(;U)]
=§sz~w U (2)) (I = U ()]

_a4222[4 o (z) + O(a?) (2.12)
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The Wilson fermion action and gauge action, given above, have discretisation errors
at O(a) and O(a?). In the following sections, we present a summary of the Symanzik
improvement program [14] which we use to systematically improve the discretisation errors
to O(a?) and O(a?) respectively.

Furthermore, we ultimately work with anisotropic lattices, where the temporal lattice
spacing is finer than the spatial one, a; < as. This improves the resolution of time-dependent
correlation functions that encode the energies of the finite-volume QCD Hamiltonian, while
avoiding the large computational cost of a lattice finer in all directions. The modifications
to the Symanzik improved fermionic and gauge action for an anisotropic lattice are also
detailed below.

2.2.3 Symanzik-Improved Anisotropic Wilson Fermion Action

The Symanzik improvement scheme offers a systematic way of introducing irrelevant
operators into the lattice action that remove the undesirable discretisation artefacts to
some order. Sheikholeslami and Wohlert [15] showed for the Wilson fermion action that
O(a) and O(a?) improvement, restricted to on-shell quantities such as hadron masses and
scattering amplitudes, can be achieved by appropriately adding irrelevant operators with
mass dimension-5 and 6 respectively.

For the Wilson fermion action in Eq. [2.10} the O(a) discretisation errors can be removed
by adding a single dimension-5 operator, referred to as the ‘clover termf] of the form,

—5Csw Yo F w, to the fermion action. Explicitly,

i) = — = (Quu(z) — QL (1))

2a
AQu (x ) Uu(2)Us (2 + ap)Ul(x + av) U (x)
U (2)Ul(x — afi + a0)UJ(x — api)U,(x — ajd)
—i—UT(.T ap)Ul(z — afi — ad)U, (v — afi — ad)U,(x — abd)
+Ul(x — ad)U (x—az?)UAx%—aﬂ—aﬁ)U;(x) (2.13)

2The layout of the link variables resembles a four-leaf clover.
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where Q ,, = Q},. To obtain the correct O(a) improvement, Sheikholeslami and Wohlert [15]
showed Csw = 1. For O(a?) improvement, there are significantly more dimension-6 ir-
relevant operators required which introduce next-to-nearest neighbour interactions and
feature fermionic contact terms that are considerably more complicated to incorporate in

numerical calculations. The resulting O(a) Symanzik improved Wilson fermion action is,

1mpr F U w w = a4 Z Z Z wf )U + mfdlj ZUHV(FMV)ij]w;(x)'

z€X fe{u,d,s} i,j=1 u>1/

(2.14)

For an anisotropic lattice, the fermionic action is given by splitting the isotropic action

into spatial and temporal components as follows |16],

7; QZJ Z Z Z¢f {Ut% Wt)’bj ?;SZVS(WS)U + 1503

zed fe{u,d,s} ,j=1

s 6 s>s'
(2.15)
where hats denote dimensionless quantities, ¢ = a‘j/ zw, YL = aﬁ/ Qw, v, = = a,W,, @u =

a,V, Au = aiAM, F w = aya, k), and where £ is the desired renormahsed anisotropy,
€ = as/ay.

In order to determine coefficients vy, vs, Cly and Cyy to recover O(a) improvement,
the method of vs-tuning or v-tuning is employed |16]. For the lattice actions used in
this thesis, vs-tuning is used in which v; = 1 and the clover parameters are found to be
Céw = vs and Clyy = (v, + %)

As a final modification, three-dimensional stout-smeared [17] and tadpole-improved [1§]
gauge links are incorporated into the fermion action. Stout-smearing suppresses the mixing
with high energy gluon modes in an analytic fashion by repeatedly smoothening the
gauge fields using perpendicular staples, products of three link variables connecting sites x
and x + afi. Importantly, the stout-smearing is restricted to the spatial staples, with no
smearing in time, ensuring the transfer matrix remains physical. Tadpole improvement is
a procedure that removes UV divergences that can appear in the gauge links by dividing

out the mean field value @, U,(x) — U,(x)/4, (no sum on u). The tilde denotes that



2.2. LATTICE QCD 11

the links are stout-smeared as described above. The choice we take for 4, is to set @; = 1,
a good estimate when a; < as/2 [19], and calculate @, by taking the fourth root of the
spatial plaquette [19] finding @; = 0.9267 [20,221].

Empirical evidence suggests that the ratio u;/us provides a tree-level estimate of the
renormalisation of the anisotropy [16], thus by defining & = w60 and then stout-smearing

the tadpole improved gauge-links, the resulting fermion action can be written,

YZ QZJ Z Z Z wf |:f>/t Wt 1] 6 Z’YS s 1] +ﬁ’tmf52j

zeX fe{u,d,s} ,j=1

RTHREES SARES Jh o2

Us 5>

(2.16)

consistent with Eq. (8) in Ref. [20], where the bare fermion anisotropy is defined as
vr = &o/vs and the bare gauge anisotropy v, = &. The tuning of the parameters v, and
7, is given in Ref. [20] and is such that the renormalised gauge and fermion anisotropies,
&g ~ & ~ 3.5. We will show explicit calculations of ; in later chapters using the relativistic
dispersion relation for stable hadrons.

By systematically constructing the anisotropic fermion action in this way, it is straight-
forward to see that in the limit that a; — a,, where §, = £ = v, = 1, the isotropic action

given in Eq. is recovered.

2.2.4 Symanzik-Improved Anisotropic Gauge Action

The gauge action given in Eq. has discretisation errors of O(a?). Following a similar
approach to the fermion action, the Symanzik improvement program adds irrelevant
operators of dimension-6 to correct the O(a?) errors at tree-level where the dimension-6
operators are configurations of Wilson loops with 6 link variables. Liischer and Weisz
characterise all such operators in Fig. 1b-1d of Ref. [22] and derive a set of constraints on
the tree-level coefficients that must be satisfied to attain O(a?) improvement — see Eq. (37)
and (38) of Ref. [22]. In addition, to ensure the classical vacuum U, (x) =1 for all x, p is
indeed the true vacuum, Sg[U] > 0 for all gauge configurations U and this gives further

constraints on the coefficients in the form of inequalities as discussed in Appendix A of
Ref. [22].
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One convenient choice of coefficients that we adopt, yielding O(a*) improvement and

maintaining positivity of Sg[U], gives the action,

5 1 1
SalU] =833 (gpw(a:) = 5 Ruw() = ERw(ac)) (2.17)
€Y pu<v
where P, () = Re tr(1 — Uy, (x)) and R, (z) = Re tr(1 — R, (z)) with R, (z) denoting
1 x 2 planar rectangular Wilson loops.
Moving to an anisotropic lattice, we again repeat the action in the temporal and spatial

components, analogous to the fermion action. Transcribed from Eq. (84) in Ref. [19], this

gives,
1 51 11 11
13 _ -t 2 L ) S / 1t
5 1 1 1 1 1
+ 50; (gu?u?PSt(x) - Ewnst(ﬁﬂ) — E@Rm(m))]

(2.18)

where the coefficients are chosen such that this action has discretisation errors at O(a?, af).
The gauge links have been tadpole-improved (but not stout-smeared) and the tadpole
factors, calculated in Ref. [20], are u; = 1 and u; = 0.7336. The two-length rectangular
Wilson loops in time modify the transfer matrix making it non-hermitian, leading to
problems in the spectral decomposition of two-point correlations functions [23|. This is
potentially problematic when we using the variational method, discussed later, to extract
energies as the sum of decaying exponentials.

To circumvent this and recover a physical transfer matrix, these length-two temporal
Wilson loops in time are removed from the action and the coefficients slightly modified to

ensure O(a?) improvement, resulting in [20],

1 51 11 11
Sé[U] = BZ |:g Z (gu_gpss/(x) - Eu_gRss’(x) - EU_SRSIS(:E))

TEX s<s’

4 1 1 1
+ o Z (qu—u?Pst(x) - EUTZL?Rts(I>>:| : (2.19)

This action has discretisation errors of O(al, a?), which is reasonable when a; < as, the

case for the anisotropic lattices we use.
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2.3 Numerical Simulation

Having appropriately discretised the QCD action, the correlation function given in Eq.

becomes,

/HdU Hd¢f d¢f O[U, ¥, )] o~ SEU P -SG (U]

i, f

/ HdU ) [T 20! (@) dqpf ¢~ SEUBI=SGIU] (2.20)

haf @
where for clarity, colour (7), spin («) and flavour (f) indices have been written explicitly,
(x) labels the spacetime sites and dU is the Haar measure on SU(3).
The fermionic integral can be performed analytically observing that the discretised
fermion action is a quadratic form in v, 1,

S0 =303 0 D (@MU () (221)

o

zy j o ofB f.f aﬁ
I

where M[U] is the matrix in spacetime, colour, spin and (diagonal) in flavour, corresponding

to the expression in Eq. [2.16, Grassmannian integration gives,
/ [ dndippe "V = det M[U] (2.22)

where the bold index r = (z,4, o, f) is a multi-index for spacetime, colour, spin and flavour
and the sums and indices in the exponential have been suppressed for brevity. Introducing

products of the form 1,1, in the integral,
/ 1 dvrdisr ntpme MV = det MIUT (M[U] ™) m (2.23)

results in quark propagators (M[U]™")nm.
After integrating out the fermionic degrees of freedom, the correlation and partition

functions become,

_ % / [ U, (x) det M{U) eSS O, f(M~[U])]

= /HdUu(x) det M[U] e~SGIU] (2.24)
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respectively, where f(M ~'[U]) denotes some function of fermionic propagators. An example
for a two-point correlation function is given in Eq. in Section [2.4]

The gauge action we constructed is positive for all gauge configurations, as discussed in
Section [2.2.4] and as such the integrands in Eq. are peaked around configurations
maximising exp{—Sé[U |}, i.e. U =1, and exponentially suppressed for configurations
away from the identity. We can exploit this exponential weight factor to numerically
approximate the integrals using Monte Carlo integration through importance sampling. We

calculate the average of the observable O[U, f(M~'[U])] on a set of gauge configurations
Negs
{Un}n 2t

(0) = Njfgs S o, f(Ml[Un])]JrO( ;f ) (2.95)

by drawing U, from the probability distribution P[U] with density,
[T, dU(x) det M[U]e=SclV)
- [1,., dU,(x) det M[U]e~SclV)

One can systematically improve the statistical precision of LQCD calculations by increasing

dP[U]

(2.26)

the number of independent gauge configurations in the sample. We will give the explicit
Neggs used when discussing the computational details in the relevant chapters. The

statistical error on (O) is calculated using jackknife resampling,

N 1 chgs

2 cfgs — A 2

— s 0, — (O 2.27
7= e L (0= (0 (2.27)

where O; = ﬁ Z;V:flgl 4; OlU;, f(M~{U;])]. All statistical uncertainties are calculated

through jackknife resampling unless otherwise stated.

Suitable sets of gauge field configurations for use in this thesis have been constructed using
a Rational Hybrid Monte Carlo (RHMC) algorithm, by the Hadron Spectrum Collaboration,
for Ny = 3 and Ny = 2 + 1 flavours of dynamical quarks. The implementations are given

in Refs. [20] and [21] respectively.

2.4 Distillation Smearing

The primary aim of hadron spectroscopy is to study the low-energy degrees of freedom

within QCD. Extracting the low-lying energies from correlation functions computed using
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hadron operators built directly from the fermion fields is difficult, as the correlation
function has significant contributions from many excited states. By first smearing the
fermion fields on each time-slice, a technique widely used within LQCD calculations in
which some linear operator is first applied to the fermion fields with the effect of suppressing
the high-energy modes, the calculation of the low-lying spectrum is significantly improved
as the asymptotic behaviour of the correlation functions is realised at earlier times.

A commonly used smearing technique, preserving all the symmetries of the lattice, is
the Jacobi smearing method [24], in which the gauge-covariant Laplacian is iteratively
applied to the fermion fields. The Jacobi smearing operator can be written [25],

o (t) = (1 + @)% (2.28)

Ng

where o > 0 and n, > 0 are tunable parameters and the lattice gauge-covariant Laplacian
is ,
— Vay(t) = 600y — D (Ui, a0z 5.5+ UN (& = J, Dardz_; 5) (2.29)
j=1
where the multi-index & = (&, a) runs over space and colour and U;(Z, t),; are the stout-
smeared, tadpole-improved gauge links discussed in Section [2.2.3
In the limit that n, — oo, the Jacobi smearing operator in Eq. becomes J, () =
exp(aV?(t)). As V2,(t) is negative semi-definite, it is clear that the smearing operator
exponentially suppresses the high-energy modes. As such, an approximation to the smearing
operator can be made by forming an eigenvector representation of Vi,y (t), truncated to
the lowest few eigenmodes, {fg(nk) (t)}n>s and ordered by magnitude of eigenvalue [25].
The subspace spanned by these lowest modes is referred to as the distillation space with
rank Nyees. The distillation operator, Oy, (t), projecting the spatial and colour degrees of

freedom of the fermion fields into distillation space is,

N

Oy (t) = YW (0EPT(1). (2.30)

k=1

No smearing in time ensures quarks are localised on a single time-slice as necessary for the

variational analysis of correlation functions (see Section [2.6]).
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In this thesis, all correlation functions are computed within the distillation framework.
There are many advantages of utilising distillation smearing and we now provide an
example to illustrate some of these.

Consider a two-point correlation function computed on a single gauge configuration,
constructed from a fermion bilinear creation operator (¢T'%)! at time tg. and annihilated
at later time ¢. Furthermore, the operator is projected onto zero-momentum at both

source and sink, giving

Oty toe) = O _{OTVHE ) - Y {ITU (G tare)) - (2.31)

Integrating out the fermion fields according to Eq. [2.23, we find,

C(t, tsrc) = _{ Fl}g@src)MJz ( SIe)H )Fz'w( )M;: (t, tsrc) }

Bp .
Conr:gcted
+{ FLg(tm)Mgi(tm, tm)}{Fgg(t)Mgé(u ) (2:32)

—
disconnected

where the trace is over space and colour (x) and spin («). After projecting the quark

fields into distillation space, the two-point correlation function becomes,

C(t, tsrc)dist = _{ (I)Lq (tsrc)Tqr (tsrca t)q)rs (t)Tsp (t, tsrc) }

N af Bp pPo oo
connvected
+ { (I)Lqﬁ (tsrc)Tgp (tsrm tsrc) } {@pqﬁ(t)Tgp (t7 t) } (233)

[\ J/

'
disconnected

where

Z &P, (D (1) (2.34)

04,3

are referred to as elementals and

t tsrc ZfT t tsrc)f( )(tsrc) (235)
045

as perambulators and the trace is now over the much smaller distillation space (p) and

spin («). These elementals and perambulators can be stored on disk and reused for

subsequent calculations.
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U

tSI‘C t tSI‘C t

(a) Connected, C(t, tsc) (b) Disconnected, D(t, tsc)

Figure 2.1: Quark propagation relevant for the two-point correlation function constructed
using a fermion bilinear operator, ¥ T, at source and sink. Shown separately are the

‘connected’” and ‘disconnected’ diagrams.

Constructing the perambulators requires inversions of the Dirac matrix. The connected
contributions, corresponding to Wick contractions that feature quark propagation from
tse to t and vice-versa, as shown in Figure [2.1a] with definite momentum projection at
both source and sink require the inverse of the Dirac matrix, M~ (ty.,t). We compute the
‘backwards’ propagator, M (¢, ty.) using ys-hermiticity of the propagators, M ~1(t, ty.) =
Y5{M 1 (tse, t)}1v5. The disconnected contributions, Wick contractions that feature no
quark propagation between source and sink as shown in Figure require the evaluation
of M~ (tge, tae) and M~1(¢,t). In our implementation, in order to maximise the signal-to-
noise of the disconnected contributions, D(t, tg.), for a given time separation, ¢ — tg., we
average over all source time slices for the entire temporal extent of the lattice [26], i.e.

1 N¢—1
~ > Dt +t tae + 1)

t =0
where Ny = T'/a;. The connected contributions, C(¢, ts.), are less noisy and are averaged,
typically, over a smaller number of time-sources, Nig.s, equispaced around the lattice.rf]
Together, the connected and disconnected contributions necessitate the computation of
all-to-all propagators, i.e. the full inverse of the Dirac matrix.
Operationally, computing correlation functions featuring disconnected contributions in

distillation space significantly reduces the computational costs. For a typical moderate sized

3We give the Niges used in the calculations in the following chapters.
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lattice used in this thesis, inverting the full Dirac matrix results in M = (L/ay)?> x N.x N, =
203 x 3 x 4 ~ 10° inversions per time-slice compared with Nyes X Ny = 128 x 4 < M
inversions required in distillation space, as we need only to invert off the lowest Nyecs
vectors.

Previous calculations have set a benchmark for the rank, Ny, of the distillation space
sufficient to reliably extract the low-lying spectrum on a given lattice volume, see Figure 3
of Ref. |25]. It is also shown in Figure 5 of the same reference that the rank of the
distillation space scales like the spatial volume. We use these observations to choose an
appropriate Ny for each lattice volume in our calculations and give this rank explicitly

in the following chapters.

2.5 Symmetries of the Lattice

Performing calculations in a finite-volume on a discrete grid of points breaks the Poincaré
symmetry of the infinite-volume continuum. In particular, for an anisotropic lattice with
a cubic spatial volume and periodic boundary conditions, the subgroup 72 x O(3) C P of
spatial translations, rotations and reflections is broken to that of 7,3, x O} [27] where
7,2, is the group of discrete translational symmetries and O} is the double cover of
the octahedral group. In this work, we will consider only integer-spin, as relevant for
mesons, and restrict to the single cover Oy. The spatially periodic boundary conditions
quantise the momenta, restricting it to values P = (21/L)(n,, ny,n,) where n; € Z. We
use a shorthand notation when labelling momenta in which the 27 /L factor is omitted,
e.g. P = [ng,ny,n.] or [ngnyn.].

For lattice frames at non-zero overall momenta, P #+ 0, the octahedral group is further
broken to the little groups of symmetries, i.e. subgroups of O, denoted LG(ﬁ), that
preserve the momentum P. For |P|2 < 4, the little groups LG(P) C Oy, are the point
groups, C,,: cyclic groups of order n with the inclusion of n reflection planes containing
the principal axis of rotationE]

The infinite-volume irreducible representations, irreps, of O(3), labelled (JP , m) where
m is the projection of J along the z-axis, are not irreps of Oy, of which there are a finite

number [8]. Subsequently, the infinite tower of irreps (J P m) are distributed across the

4In the case of Of , point groups C,,, are replaced with Dic,: dicyclic groups of order 4n.
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finite number of irreps of Oy, which we label (AP , ,u) with A the irrep and p the row
within that irrep[]

For lattice frames in-flight, in which the hadronic system has non-zero overall momentum
with respect to the lattice, parity is no longer a good quantum number and continuum
irreps, labelled (J, )\) where the helicity A is the projection of angular momentum along ﬁ,
are distributed across the finite number of irreps, 13A, of LG(ﬁ). The reduced symmetry
and mixing of parities in these in-flight systems leads to a distribution pattern in J that
is typically more dense than for irreps at rest.

The distribution of total angular momentum J amongst the lattice irreps is commonly
referred to as subduction. The subduction coefficients, XT, are defined as the inner

product of lattice and continuum states,
Syt = (J,m|A, ) (2.36)

and are used to give the linear combination of continuum states that transform irreducibly
on the lattice, i.e. [A,p) =>" SXZ‘ |J,m). Acting on lattice states by elements of Oy, or
the relevant little group of symmetries LG(P) for non-zero momentum, simply mixes the
rows of the irrep, much like SO(3) rotations mix the z-components of spin, m, or helicities,
A, in the infinite-volume continuum.

To construct two-particle states that transform irreducibly, appropriate linear combina-
tions of products of single-particle states are required. For continuum states, these linear
combinations are given through SO(3) Clebsch-Gordan coefficients C(...) for J; ® Jo — J,

Sy J
[Jom)y =Y c( b >|J1,m1)|J2,m2> (2.37)
ma m

m1,ma ma

whereas for lattice states at rest,

A A A
A= <C< ul : , > A, 1) Az, pio) (2.38)
1

11, 12 H2

where C(...) are lattice Clebsch-Gordan coefficients for Ay ® Ay — A [28]. The subduction
coeflicients and lattice Clebsch-Gordan coeflicients we use in this thesis follow from the

conventions set out in Refs. [10,29,130].

5The rows, u, are analogous to the z-component of angular momentum, m.
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Having established the relationship between the irreducible representations of O(3) and
Oy, it is straightforward to construct operators that transform irreducibly on the lattice.
For a continuum operator, O‘]’m(ﬁ, t), with definite quantum numbers, constructed on
timeslice t and projected onto definite momentum ]3, the lattice operator, transforming

irreducibly under the symmetry of the lattice grid and boundary, O™#(Pt), is given by,

O™ (P 1) Zs OMm(Pt). (2.39)

where m is replaced by helicity A for p #+ 0. We will discuss in detail the operator

constructions in the subsequent chapters.

2.6 Extracting Energies and Spin Identification

In order to robustly determine the discrete finite-volume energy eigenstates in each irrep,

we first compute a large matrix of two-point correlation functions,
Cy(t) = (0]04(1)O}(0)]0) , (2.40)

by employing a diverse basis of operators O;, subduced into the relevant lattice irrep and
constructed with the desired quantum numbers. The spectral decomposition, obtained by
inserting a complete set of eigenstates of the finite-volume QCD Hamiltonian |n}, is given

as the sum of decaying exponentials,

Cist) = 5 (01O (n[O]]0) e (2.41)

where E, is the energy of the n'" eigenstate and (n|O!|0) = Z" are operator-state matrix
elements, commonly referred to as overlap factors. As discussed in Section continuum
spins mix within lattice irreps and as such one cannot rigorously identify the spins of
finite-volume eigenstates. However, if rotational symmetry is restored, lattice operators
recover the continuum operator from which they were subduced. In this sense, for a lattice
close to restoring rotational symmetry, lattice operators are expected to have relatively
large operator-state overlaps onto the eigenstates with continuum spins from which they
were subduced [29]. We will make use of these operator-state overlap factors in the

following chapters.
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We extract the spectra in each irrep by applying the variational method [31], which

solves the generalised eigenvalue problem,

Cii (£) 0 () = Malt, o) Cij(to) v (8) (2.42)

J
and we determine the energy levels F, in each irrep by fitting principal correlators \,(t,to)

to the form,
Malt,to) = (1 — A,) e Prlt=to) 1 A e Enlt=to), (2.43)

The constants A, and E| soak up any residual excited state contamination and ¢ty is
appropriately chosen such that both C(ty) is saturated by the lowest dim(C') eigenstates
and signal-to-noise is sufficiently large to extract E, from A,(¢, 1) [32]. The advantage of
working on an anisotropic lattice becomes clear here: a finer temporal spacing improves
the resolution of the principal correlators and enables efficient disentangling of excited

state energies.

By construction, v (£)C;; (to)v}(t) = Omn for all ¢ and the operator-state overlap factors
relate to the eigenvectors via Z3}(t) = oM (£)Cy; (to)eP /2. Tn practice there is little

variation in Z(t), and subsequently v(¢), as a function of time for reasonable ¢ > ¢y. By
choosing a suitable reference timeslice, t; > to, in which C'(¢) is optimally reconstructed
for dim C' states via Eq. , we construct a variationally optimised operator, )}, efficient
at interpolating the n'® eigenstate in the spectrum and given by Qf = 3>, v(t;) O!. These
are used extensively as the building blocks of multi-meson operators as we will discuss in
the following chapters.

Although Z!(tz) is perfectly suitable to quote as an operator-state overlaps factor, in
practice, we fit Z!(t) to both a constant form, Z!(t) = A}, and to a constant plus a

decaying exponential in time of the form,
ZM(t) = A" + BPe Citmt0), (2.44)

where B! and C} soak up residual excited state contamination. We take A} of the form
that provides the best fit as the value of Z!'(¢).

2.7 Scattering Formalism

Within the lattice QCD framework, the periodic finite-volume means there are no free

asymptotic states that are required in order to define a scattering system. Furthermore,
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any finite-volume eigenstate appears as a pole of the correlation function at a real value of
energy, however, in the infinite-volume continuum any pole above the first multi-particle
threshold is necessarily a resonance and must appear at complex energies. As such, above
the first multi-particle threshold, there is no direct relation between energy eigenstates
of the finite-volume QCD Hamiltonian and infinite-volume continuum states. This is
commonly attributed to Maiani and Testa’s no-go theorem [33].

Seminal work by Liischer [34-36] in the mid 1980’s, pre-dating the work of Maiani and
Testa, related the infinite-volume scattering amplitudes of two identical scalar particles to
finite-volume energy levels through a quantisation condition that has since been extended
by many others [37-45] to accommodate the most general two particle scattering systems.
We describe the formalism below.

It is instructive to begin by introducing the t-matrix for general two-to-two scattering
processes, related to the unitary symmetric S-matrix via § = 1+ 2i,/p-t-,/p. Unitarity
ensures conservation of probability and time-reversal invariance forces S to be symmetric.
Here, p is a matrix of phase-space factors that we will return to later. The t-matrix can
be expressed as a function of the standard three Mandelstam variables ¢(s, ¢, u) where
conservation of momentum imposes the relation s +t 4+ u = Z?Zl m? with m; o and mg 4
masses of the initial and final states respectively. For scattering particles with zero intrinsic
spin, we can partial-wave project in the s-channel the components ¢4(s,t,u), where a,b

label hadron-hadron channel, by expanding in a basis of Legendre polynomials P(z),

t(s) = %/1 dx Py(x)taw(s, t(z), u(z)) (2.45)

where ¢, (s) is the scattering amplitude in partial-wave £ and z = cos(0ap)em With (64p)cm the
scattering angle in the cm-frame. In this case, as the scattering particles have zero intrinsic
spin, ¢ and total angular momenta .J coincide and as such orbital angular momentum is
conserved in the interaction. In general, non-zero intrinsic spin S allows partial-waves of
different ¢ to mix: for example, a vector-pseudoscalar pair such as pm appears in JX = 1%
in either a 39;- or *D;-wave. We express t in the canonical £S basis with components
tesimaes'gmn(S) = 07 0mmtesarsn(s). In this basis p is a diagonal matrix of phase-space
factors with components,

2 kL)
mal!S'J'm'b — 6 /5 1 5 1 5mm/ 5(1 = 246
PeSJma 'S J'm’b 000887 0. b \/g ( )
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and the cm-frame momentum k<% for hadron-hadron channel a is given by,

1
ko) = (s —

cm 2\/5(

(my” +my”)?)% (s = (m)” —my”)?)%. (247)

The quantisation condition relating infinite-volume scattering amplitudes to the finite-
volume spectrum in a periodic L x L X L box is best summarised by Eq. 22 of Ref. [44].

For the most general two-particle scattering systems, it can be written in the £S5 basis as

et [14+ip-t-(1+iM)] =0, (2.48)
where (M) B — 167t and (5GV) el _ 1éﬂ (1 —|—ZM) relates this equation to the

notation of Ref. [44] and 1 represents dyp 055 0757 O Oap.  The matrix of functions

encapsulating the kinematics in a finite-volume is

_ / S J v s J
M s ima, 008" 7ms = Oap0ss Z C ( >C ( / / )

m£7m/g,ms my Mg M m, mg m

(4m)*? 4 (a) *
X Z [k:gﬁ,)]@‘l Cg,fng([k ] L) dS2 }/Emg}/@mg}/f’

szf

(2.49)

where M is diagonal in intrinsic spin S and hadron-hadron channel a. The volume

dependence is encoded in the functions szg(kgw L) which are defined as follows,

g (Ko L) = \/E<2—7r)é Z} o, {1 (k“”L) } Zinldia?] =Y [71 Yom, (7)

~L3\ L s = 77]2—:826“
(2.50)

where the sum is over the elements of the set Pz = {7 € R* |7 = 47! (m — aii) }, n is an

integer triplet and 7 is the normalised vector 77 = %ﬁ The scale factor a = % [1 + M]
reflects the asymmetry for unequal masses of scattering particles. 4~1 denotes the Lorentz
boost to the centre of momentum frame with '@ = v 1Z + &1, where 7 = Epp/Eem
and 7 and ¥, are the components of 7 parallel and perpendicular respectively to the

total momentum P.

The product [dQ Y, Y7 Ye/m;, can be written as a product of SO(3) Clebsch-Gordan

Km[ Uy
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coefficients,

. me |20+ 1)(20 +1)
VA [dQ nglY'ZmYe,m2 =(—1) é\/ ,

20+1

/ i / i
Y A A B (251)
000 my —my 1My

which gives a much more numerically tractable form with obvious symmetries that can be
readily exploited.

The quantisation condition for a given lattice irrep can be obtained by subducing the
(J,m) components into the irrep A, in the manner described in Section For non-zero
momentum, this can be implemented by first rotating to a helicity basis, and then using
the helicity-based subduction coefficients presented in Table II of [10]. The subduction of
M takes the form,

—— 7, A % 2V
MZSJna,Z’S’J’n/b 5A,A’5u,u Z SJ)\ D ) MESJma 05" J'm'b SJA ,D /)\’(R) (2'52)
m’ )\’

where R is the rotation, given explicitly in Table VI of [10], which takes the m quantisation
axis into the direction of 77. The subduction coefficients include the embedding index n, in
the case that a partial-wave can appear more than once in an irrep. This will be discussed
in more detail in the later chapters. Finally, we arrive at the subduced quantisation

condition,

det [L4ip-t-(1+iM™)] =0, (2.53)

where 1 represents dp 055 077 Onns Oap, and where the interpretation of multiple embeddings
is that if a partial-wave appears N times in irrep A, the t-matrix for that partial-wave

appears identically as N block diagonal entries in ¢.

In order to calculate the scattering amplitudes using this quantisation condition, we
take the finite-volume energy levels computed in irrep A and use them to determine the
behaviour of ¢ as a function of energy. As a simple example, take elastic scattering,

where a single hadron-hadron channel appears in a single partial-wave. Unitarity of the
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S-matrix means the t-matrix, a complex scalar function, can be expressed in terms of a

real energy-dependent phase-shift d(s), where

1 1

t(s) = Lei‘s(s) sind(s) = () oot 0(s) — 1"

p(s)

(2.54)

We can subsequently invert Eq. with the definition of ¢(s) given above, and obtain
a one-to-one relation between s and d(s). This is used to calculate a discrete set of
phase-shift points: one point at each determined finite-volume energy level in irrep A,
below the inelastic threshold.

To interpolate t(s) in the entire energy region of interest, we take a suitable parame-
terisation of ¢(s) and, using Eq. , calculate the spectrum in each irrep A. We then
vary the parameters until the resulting finite-volume spectrum optimally agrees with the
lattice computed energies by minimising an appropriate x?. As a test of robustness, we
then repeat this procedure for many different forms of parameterisation. This approach
generalises to inelastic scattering where a one-to-one relation between finite-volume energy
levels and infinite-volume scattering amplitudes does not exist and we must parameterise
the energy dependence of the t-matrix.

The implementation and methodology will be described in much greater detail and
developed throughout this thesis in the relevant sections. We will discuss, for example,
the forms of the parameterisations, systematic tests of robustness and analysis of the

amplitudes in the relevant chapters.



CHAPTER 3

Scattering of pm in isospin-2 at
my ~ 700 MeV

Hadron spectroscopy is predominantly the investigation of resonances which decay strongly
into hadrons, such as the pion, which are stable under the strong interaction. Many
resonances which decay into multi-hadron final states do so through intermediate states
featuring resonances of non-zero intrinsic spin. For example, the J7¢ = 1*+ axial-vector
a1(1260) meson dominantly decays into a wrm final state through p(770)7, where the
vector p(770) decays into . Similarly, its C-parity counter-part, the JF¢ = 17 b;(1235),
features dominant decays into mw7m final states with an intermediate w(782)m. Once
an intermediate hadron has non-zero intrinsic spin, it becomes possible for more than
one partial-wave to be present for a given J* through the coupling of the orbital angular
momentum ¢ to the intrinsic spin S. For example, in the case of both the JF = 1t
axial-vectors, a; decaying to pm and b; decaying to wm, the p and w have intrinsic spin
S = 1 and both S and D-waves can contribute. Indeed it is possible to measure the
relative decay amplitudes [46,47].

While significant progress has been made studying meson-meson scattering using lattice
QCD [48], calculations have not before accounted for the effects of dynamically-coupled
partial-waves when processes feature scattering hadrons with non-zero intrinsic spinE]

An attempt was made in nucleon-nucleon scattering in the spin-triplet channel which has
the same partial-wave decomposition as pm scattering, and a closely related quantisation

condition in ﬁnite—volumeE] A non-relativistic quantisation condition for NN was presented

1Some recent work [49], which has considered vector-pseudoscalar scattering in the light sector, makes
brief comment on the possibility of contributions from dynamically-coupled partial-waves, but does not
incorporate this in the analysis.

2There is a slightly smaller symmetry in pm owing to the unequal masses of the p and the 7 — altering

the a in Eq.

26
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in Ref. [50], and an attempt to determine the *S;/°>D;-wave mixing appeared in Ref. [51].

In this chapter, we report on the first calculation of the energy dependence of partial-wave
scattering amplitudes for pm in isospin-2, including the coupled S and D-wave system
with J¥ = 1*. In this exploratory study, we work with heavier-than-physical light quarks,
so the p becomes stable against decay to wm. Specifically, we work at the SU(3)r flavour
symmetric point with three degenerate flavours of quark (u,d,s) tuned to have mass
approximately equal to the physical strange quark mass, giving a pion mass ~ 700 MeV.
In this way we are justified in considering elastic pm scattering provided we stay below
the mnm threshold.ﬁ Furthermore, the exotic isospin considered hereﬂ leads us to expect
that the pm scattering amplitudes will be non-resonant and, based upon isospin-2 77
scattering [28|, they are likely to be relatively weak. A study of pm scattering within a
non-relativistic quark model [61] found weak, mainly repulsive scattering, with the 39,
phase-shift being largest, but not exceeding —35°, and a rather small mixing between
the 35, and D, partial-waves. As such, pm scattering in isospin-2 makes for an ideal
testing ground for which to develop the analysis tools and intuition for vector-pseudoscalar
scattering in a lattice calculation.

The suspected weakness of the pm interactions in isospin-2 will likely lead to small
energy shifts in the finite-volume spectrum with respect to the ‘non-interacting’ energies
expected were p and 7 to have no residual hadron-hadron interactions. It is therefore vital
that the spectra be accurately and reliably calculated. This can be achieved by employing
a large basis of interpolating operators, O;, constructed with the quantum numbers of
isospin-2 pm, in order to compute a matrix of correlation functions and solve a generalised
eigenvalue problem, as discussed in Section [2.6] to reliably extract the energy spectrum.

Specifically, for the case of vector-pseudoscalar scattering, the total intrinsic spin S =1
can couple with the orbital angular momentum ¢ to give three distinct total angular
momenta J for ¢ > 1. In the absence of interactions, this gives rise to many degenerate
energy levels — these may only be split slightly in the interacting case or not at all. A
large operator basis containing appropriate operator structures is essential in order to

disentangle these near-degenerate states.

3No suitably mature formalism and practical implementation for relating finite-volume spectra to
three-body scattering amplitudes yet exists, but see [52H60] for progress.
4A hadron of total isospin-2 must contain at least four light quarks and no substantial experimental

evidence suggests such a resonant four-quark state exists in this energy range.
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We utilise the relevant symmetries of the finite volume when calculating correlation
functions, as discussed in Section [2.5 which allows us to identify which partial-waves
are contributing to each energy level. In a limited number of cases, an energy level is
dominantly affected by a single partial-wave, elastic scattering, and here a value of the
phase-shift for that partial-wave, at that energy, can be determined via a one-to-one
mapping. More generally, an energy level is affected by multiple partial-waves and a
more sophisticated analysis technique is required — the energy dependence of partial-wave
amplitudes is parameterised and multiple energy levels are considered simultaneously.
This approach is similar to that used in coupled-channel scattering [4,62-64]. Significant
constraints on scattering amplitudes come from spectra computed for systems with overall
non-zero momentum with respect to the lattice, and indeed we find that the sign of
the off-diagonal coupling between S-wave and D-wave can only be obtained from such
‘in-flight” cases. We begin by examining the features of vector-pseudoscalar scattering in

an infinite volume.

3.1 Vector-Pseudoscalar Scattering

In this section, we discuss the features of a scattering process that involves one or more
hadrons with non-zero intrinsic spin. We explore the consequences for hadron-hadron
scattering in an infinite volume and distinguish these from features that are purely a
consequence of the finite volume. The results are illustrated through a discussion of

vector-pseudoscalar scattering.

3.1.1 Infinite Volume

In an infinite-volume continuum, total angular momentum J is a good quantum number
and can be constructed by taking a tensor product of the orbital angular momentum ¢ with
the total intrinsic spin S (itself constructed via a tensor product of the intrinsic spins of
the two scattering hadrons), i.e. f® S = |( — S| ® ... ® (+ S. Parity, P, is another good
quantum number and is given by P = nm2(—1)%, where 7, and 7, are the intrinsic parities

of the hadrons. It follows that, in some cases, hadron-hadron states with a particular J*
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can be formed from multiple £S combinations[]

For the case of vector-pseudoscalar scattering, S = 1, and thus, for £ > 1, J can take one
of a triplet of values J = {¢ —1,¢, ¢+ 1}. The intrinsic parities of vector and pseudoscalar
mesons are each negative and it follows that each J” in the sequence, 1+, 27, 3%, ..., can
be formed from two distinct £S5 combinations. In spectroscopic notation, 214, these are
{331, °D1}, {PPs, °Fy}, {*Ds, G}, ... and the pattern continues indefinitely. For these J*
values, even though the scattering process may only have a single hadron-hadron channel
kinematically open, there are two partial-wave channels which can couple dynamically.
For example, considering J = 17, the t-matrix, introduced in Section , can be written

as,

t(*S1]°D1) t(*D4|°Dy)
1 [ cos(2

€
 2ip |i sin(2€)

_ [t@slr 1) (%] Dy)
)

)exp [2i0sg,] —1  isin(2€) exp [i(dag, + d3p,)]
e

3.1
xp [i(dsg, + d3p,)]  cos(2€) exp [2idsp, ] — 1 ’ (3.1)

where p(Eem) = 2ken/Eem is the phase-space factor and the second line presents the
common Stapp-parameterisation [65] in terms of two phase-shifts, dsg, (Ecm), 03p, (Fem),
and a mixing-angle, é(F.n ), describing the dynamical coupling between the two channelsﬁ
The symmetric nature of the t-matrix resulting from the time-reversal symmetry of QCD
is seen explicitly.

This parameterisation automatically respects coupled-channel unitarity, expressed in
this context as Im [t~ (*(;|*¢;)] = —pdw for energies above the threshold, where the
phase-space is the same for both the 3S; and D, Channels. Within the ¢S basis, it
can be shown through the partial-wave expansion in Eq. that, in the absence of

5The choice of the £S basis as opposed to, say, a helicity basis is one made for later convenience: it has
the advantage that the threshold behaviour of £S5 basis states is given in terms of the value of £.

6The sign of the off-diagonal entries, and hence the sign of €, is physically relevant and impacts the
spin and angular dependence of the scattering amplitudes. This is in contrast to the case where different
hadronic channels are coupled — there the sign cannot be measured and it is usual to parameterise in
terms of an inelasticity parameter which discards this sign information.

"When there are additional coupled channels featuring different scattering hadrons, p(FEem) is diagonal
in the channel space but no longer proportional to the identity as k¢, depends on the scattering hadron

masses.
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any resonant enhancements, the threshold behaviour of the t-matrix elements is simply

P o (kem) T

3.1.2 Finite Volume

We perform calculations in a finite periodic cubic volume and this causes there to be
‘mixing’ between partial-waves of distinct J¥. We summarise the subduction of low-lying
partial-waves for a vector-pseudoscalar system at P =0 in Table . The subduction is
controlled only by values of J¥, but recall that in some cases multiple */; constructions can
give the same J?. The table distinguishes these two possible types of ‘mixing’. For systems
with non-zero overall momentum ]3, the partial-wave subductions for a vector-pseudoscalar
system are presented in Tables [3.5] - in Appendix [B.A]

In order to determine infinite-volume scattering amplitudes, we calculate finite-volume
energy levels and utilise the quantisation condition, given in Eq. [2.53] which relates the
two quantities. If, in a certain energy region, only one partial-wave has a non-negligible

value, the relation takes the commonly-used form,

cot §(Eem) = —cot ¢(Eem, L) , (3.2)

where cot ¢(Ecm, L) = —M(Ecm, L) is a complex function, encoding the kinematical and
symmetry-breaking effects of the finite volume. In this case, each finite-volume energy
level can be used to determine the value of the partial-wave phase-shift at that particular
energy. In the case of vector-pseudoscalar scattering, an example might be the rest-frame
E* irrep at energies near threshold. Here the >D, wave is expected to be much larger than
the 2G4 wave, or any wave of still higher ¢, owing to the effect of the centrifugal barrier
which ensures that t(*Dy|*Ds) ~ (kem)? > t(*G42G4) ~ (kem)®. If multiple energy levels
can be obtained, from calculations on one or more volumes at rest and in-flight, repeated
use of Eq. will yield the energy-dependence of the phase-shift. A demonstration of this
can be seen in 77 isospin-1 scattering in 'P;-wave — see Figure 10 in Ref. [30).

Where multiple partial-waves are present, but still only a single hadron-hadron channel
is kinematically accessible, the quantisation condition for a given irrep is the determinant
of a matrix equation. This encodes both the dynamical mixing of partial-waves (present
even in an infinite volume), through ¢, and the ‘mixing’ of partial-waves due to the finite

volume, through M. For example, in the rest-frame T;' irrep, considering the partial-wave
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At AT AS T Et s
3
[
3D1
JH() 2+ (°Dy) 2+ (°Dy)
3 3 3
3+ D3 3+ D3 3+ D3
3G3 5G3 3G3
4t (°Gy) 45 PGy At (PGy) 4T (PGy)
A~ A7 Ay T E- T,
0~ (°Py)
1= (°Py)
- 3P2 - 3P2
J=(%5) 3p, 3F,
37 (°Fs) 37 (°Fs) 37 (°Fs)
3F 3p 3p 3p
4 4 s 4 A 4 A 4
3H4 3H4 3H4 3H4

Table 3.1: Subduction of partial-waves, *;, for J < 4 into the irreps, A”, of the
octahedral group, Oy, relevant for systems overall at rest. The notation J¥(*;) denotes
the partial-wave content for a given J¥, with multiple *; entries indicating partial-waves

which mix dynamically. This table is derived from Table 2 of [§].

content with ¢ < 2, we have dynamical mixing between the 35; and 3D;-waves with
JP = 1%. The J¥ = 3% wave D3 ‘mixes’ with 1 only because of the reduced symmetry

of the finite volume. The t-matrix is,

t(351)%91)  t(3S1°Dy) 0
t= t(351|3D1) t(3D1|3D1) 0 3 (33)
0 0 t(*Ds|*Ds)
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where the off-diagonal contributions dynamically couple *S; and *D;. The non-vanishing
elements of M in this 3 x 3 space ensure that all three waves contribute to the finite-volume
spectrum. To accommodate additional partial-waves this t-matrix is augmented by
inserting diagonal blocks of JF, where off-diagonal degrees of freedom within each block
allow dynamical mixing between partial-waves of common J*.

In the case of multiple partial-waves, coupled either dynamically or due to the finite
volume, each energy level provides a constraint on the t-matrix at that energy, through
Eq. , but is not sufficient to determine the multiple (energy dependent) unknowns in t.
A number of such constraints, each coming from a different finite-volume energy level, are
required to determine ¢(E,). Considering systems with overall non-zero momentum is
one way to obtain many energy levels¥ - the moving frame changes the spatial boundary
conditions, which in turn modifies the quantisation condition giving a different set of
functions in M. This is discussed in detail in Ref. [37,39,l40] and has been successfully
applied in determinations of coupled-channel t-matrices in Refs. [4],7,62-64./66]. We will
present the details of the approach, relevant to the current case of vector-pseudoscalar
scattering, in Section [3.6]

3.2 Operator Construction

To make a robust determination of the finite-volume energy spectrum in each irrep, we com-
pute an N x N matrix of two-point correlation functions using N independent interpolating
operators with appropriate quantum numbers, Cy;(t) = (0|O;(t + tgc) O]T- (tsrc)|0).

In order to investigate meson-meson scattering, we need to construct an appropriate
set of operator structures which overlap strongly onto the eigenstates of QCD in a finite
volume with the quantum numbers of the meson-meson scattering problem. Operators
which resemble meson-meson states, constructed as products of operators which resemble
single mesons of definite momentum, prove to be very effective — see e.g. Figure 6 of Ref. [4].
We describe how to construct these meson-meson operators in the sections to follow, with
a particular focus, relevant to this calculation, on operators that respect SU(3)g flavour

symmetry and which resemble vector-pseudoscalar states.

80ne could also use energy levels calculated on elongated lattices and/or lattices with twisted boundary

conditions to provide additional independent constraints [44].
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3.2.1 Single-Meson Operators in SU(3)r Flavour Representa-

tions

Following Refs. [10,29], we construct single-meson operators from fermion bilinears. These
have a spin and spatial structure built from Dirac v-matrices and gauge-covariant deriva-
tives, are projected onto overall momentum p, and have a flavour structure that transforms

in a particular SU(3)r multiplet. Explicitly, the construction is,

Ot (5, t) = Zeiﬁ-f Z CSU(B)( 3 3 F ) G, (Z,1) Ty qu, (T, 1) . (3.4)
vy, vy VU

Here T'; denotes a product of y-matrices and up to 3 gauge-covariant derivatives acting in
position, colour and Dirac spin-space on time-slice t. The constructions are engineered
to have definite continuum J¥ and m where, for 5 = 0, m is the projection of J along
the z-axis and, for p # 0, m is replaced by the helicity, A\ — see Ref. [10]. This is done
by taking a circular basis of vector-like v-matrices, I';, and gauge-covariant derivatives,
ﬁi = 52 - Bi, expressed in the Cartesian basis as,

Fﬂ::FE(Fx:Flry) Dilz:FE(Dx:FZDy)
— =

These spin-1 derivatives and Dirac y-matrices are then combined using SO(3) Clebsch-
Gordan coefficients, to give I' with definite J© and m. For example, a single derivative

operator coupled to a spin-1 product of y-matrices is given by,

r- % c( b )rmfﬁm, (3.6)

m1,ma My Mg M

and similarly for a two derivative operator, we first couple the derivatives to some total

angular momentum, Jp, and then couple this with the y-matrices to acquire our desired

(J,m),
1 1 1
ro oy c( Jp J)c( I )rmﬁm;ﬁmg. 57)

mi,ma m; mp m mg M3 Mp
m3,mp

The quark fields, ¢,(Z,t), corresponding to the up, down and strange quarks (u,d, s), are
in the 3 multiplet of SU(3)y, illustrated in Figure [3.1 The elements can be uniquely
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Figure 3.1: (Left): quark content of flavour irrep 3. (Right): anti-quark content of 3.

labelled by v = (I,Y, I,), where we recall I is the isospin, Y is the hypercharge and I, is
the z-component of isospin. The Cgys)(...) are SU(3)r Clebsch-Gordan coefficients and we
follow the conventions given in De Swart [67]. The sum over SU(3)r components projects

the quark-bilinear onto a definite SU(3) flavour multiplet F', which can be either 1 or 8.

These operators of definite J* and m are subduced into the appropriate lattice irreps
of Oy, or LG(p) as discussed in Section [2.5] The subduction does not impact the flavour
representation and the result is an operator, (’)*%’f/(ﬁ, t) = 3. S OTIJ,T(ﬁ, t), in a
particular irrep. As an example, consider a pseudoscalar SU(3)r singlet, FF = 1, v =

(0,0,0), T, = 5 and 5 = 0. Subducing gives the lattice operator,

AT 1 _ 7 _
(’)Tl 0.00) = \/ig(u%u + dysd + 5758) .

3.2.2 Two-Meson Operators in SU(3)r Flavour Representations

Operators which resemble a pair of mesons can be constructed from a product of two
single-meson operators. We follow the approach presented in Refs. [28,|30] and in this

section concentrate on constructing operators in definite SU(3)g multiplets. Writing out
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the flavour structure explicitly, the meson-meson operator takes the form,

1|p1 F, F p A ]7 A ﬁ A
OTFV<§2[[PI;2}2; pl?) ZCSU@)( v > > (C( AL [P2]As [pre]
Y1, V2 1 K1, 12 /J/Q /"L
Arp A R
X Z QTFilljl QTF?:;(]?Q)a (38)
Pze{pz}*

P1+P2=p12

where the optimised operator QT (ﬁz) interpolates a meson of momentum p; in the F;
flavour multiplet with Component v;. The lattice Clebsch-Gordan coefficients, C(...), are
required to couple irreps [p1]A; & [pa] A2 — [P12]A, and the momentum sum runs over all
momenta related to p; by an allowed lattice rotation, p; € {p;}*, such that p) + ps = pia —
see Ref. [28] for details.

Since single-meson operators are restricted to the SU(3)r octet, 8, and singlet, 1,
meson-meson operators are restricted to the 27,10, 10, 8 and 1 multiplets. In this work,
we will perform calculations with exact SU(3)r symmetry and focus on pm scattering in
isospin-2, which lies in the 27 multiplet. We are at liberty to choose any component of
the 27 multiplet when we calculate the energy spectra, as they are all equivalent, and we
choose v = (2,0,2). The SU(3)r Clebsch-Gordan coefficients in Eq. ensure that the
relevant meson-meson operators come from products of single-meson operators with flavour
structure F' = 8 and v = (1,0, 1). The meson content for the pseudoscalar and vector octets
is shown in Figure 3.2l As G-parity is negative, there are no pseudoscalar-pseudoscalar or

vector-vector channels which can mix with isospin-2 prr.

As a simple example, consider the meson-meson operator transforming in T}, row 2,
constructed from optimised operators transforming in 7, and A] according to Eq. .
The Clebsch-Gordan coefficients give,

T2 T2 ATAT L
0271(2,0 2) = qu 0,1) Qsa 0,1)
— (p") (), (3.9)

where the corresponding SU(2)g flavour mesons are given explicitly in the last equality for

clarity.
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Figure 3.2: Meson content of the J” = 0~ pseudoscalar octet (left) and the JZ =1~
vector octet (right). Orange corresponds to I = 1, green to I = 1/2 and blue to [ = 0.

The basis of meson-meson operators used to form the matrix C;;(t) can be constructed
po|, where directions of the momenta
are summed over in Eq. subject to p; + py = P. There is a close association be-

using different magnitudes of momentumﬂ ‘ 171!,

tween the finite-volume energy-levels when mesons have no meson-meson interactions,

E,EQI) = \/m% + |p1]? + \/mfJ + |pa|?, which we refer to as ‘non-interacting’ energies, and
these operators. Earlier studies have found that meson-meson operators, which closely
resemble the non-interacting states in the energy range of interest, are efficient at inter-
polating the corresponding finite-volume energies [28,30]. This suggests that, if we are
interested in only a certain energy range, operators which correspond to a non-interacting
energy which lies far above this energy region do not need to be included in the basis.
When a single-meson operator for a vector meson has non-zero momentum, the reduced
symmetry of the lattice means that the different helicity components subduce into NV,
different irreps of LG(p7). Each of these vector operators can be combined, via Eq.
with a pseudoscalar operator transforming in some irrep of LG(p3), to form a set of

linearly-independent vector-pseudoscalar operators at some overall momentum P in some

9Strictly speaking, this should be {7;}* as indicated in Eq. rather than magnitude, but for |p]? < 9,
{p:}* is uniquely identified by its magnitude.
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irrep A. Furthermore, each vector operator when combined with a pseudoscalar operator
may appear numerous times within a single irrep, e.g. [001]Ey ® [011] Ay — 2 X [001] Ex,
and form multiple linearly-independent vector-pseudoscalar operators. We refer to this
number as the multiplicity (which could be zero). Together, this means that there can
be many linearly-independent vector-pseudoscalar operators, transforming within some
irrep A, which correspond to the same non-interacting energy and we denote the total
number of such operators as Ny,. It is important to emphasise that Ny, is the sum
of the multiplicities for each of the N\ vector operators combined with the appropriate

pseudoscalar operator.

For example, consider vector-pseudoscalar operators overall at rest, P= 6, in the T,
irrep, which we write as [000]7;". The operator corresponding to lowest non-interacting
energy features a vector meson at rest (in the 77 irrep) coupled to a pseudoscalar at rest
(in the Ay irrep). In this case, Ny = 1, and there is only one operator corresponding to
the one way of coupling [000]7; ® [000]A] — [000]T} (M, = 1). Of course, there are

still three equivalent rows of the T irrep.

On the other hand, for a vector meson with momentum p" = [001], the helicity 0
and £1 components subduce into the [001]A; and [001]Es irreps respectively (N, = 2).
Combining the vector with a pseudoscalar so that the vector-pseudoscalar operator is

overall at rest, there are two linearly independent operators transforming in [000]7;" from
001]A4; ® [001] Ay — [000]75" and [001] s @ [001]As — [000]T5 (N = 2).

If the vector meson has momentum p' = [011], the three helicities subduce into three
different irreps, [011]A;, [011]B; and [011]By (N) = 3). When combined appropriately
with the pseudoscalar, this gives three linearly-independent vector-pseudoscalar operators
transforming in [000]7}" from [011]A; ® [011] Ay — [000]7;F, [011]B; ® [011] Ay — [000]T;F
and [011] By ® [011] Ay — [000]T;" ( Ny, = 3).

While we have illustrated how multiple meson-meson operators with the same associated
non-interacting energies can arise by considering a vector-pseudoscalar operator overall at
rest, this situation also occurs when there is an overall non-zero momentum. For example,
with P = [001], [001]A; ® [011]A5 — [001] E5 and [001]Fy @ [011]A; — 2 X [001] Ey giving
Ny =2 and Ny, = 3 (as [001]E; ® [011]As into [001]Es has a multiplicity of two). In
all cases, the non-interacting meson-meson spectrum will feature degeneracies: for each

non-interacting energy, the degeneracy is equal to Ny, of the corresponding meson-meson
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operator. As one might anticipate, failing to include all the Nj;, meson-meson operators
at each corresponding non-interacting energy in a given energy region can lead to an
incomplete spectrum. This is demonstrated clearly in Figure 8 of [68] and will be crucial

in the scattering calculations in the later chapters.

3.3 Computational Details

Calculations of correlation functions were performed on two anisotropic lattices of volumes
(L/as)® x (T/a;) = 20° x 128 and 243 x 128, with spatial lattice spacing as ~ 0.12 fm and
temporal lattice spacing a; = a,/& ~ (4.7GeV) ™! where & ~ 3.5 is the anisotropy. L and
T are the spatial and temporal extents of the lattice respectively. We use gauge fields
generated from the improved anisotropic gauge and fermion actions in Section with
Ny = 3 degenerate flavours of dynamical quarks [20]. The quark masses are tuned to
approximately equal to the physical strange quark mass, giving exact SU(3)g symmetry.
The flavour octet of pseudoscalars is found to have a mass ~ 700 MeV, while the vector octet
has a mass ~ 1020 MeV. With these heavy masses, exponentially suppressed finite-volume
and temporal effects are negligible as m,L 2 10 and m,T 2 18.

Correlation functions are computed in a distillation space of rank N.s. Statistical
precision is increased by averaging correlation functions over a number, Ny, of inde-
pendent time-sources, ... To reduce statistical correlations between the energy levels for
different moving frames, we averaged over a different set of time-sources for each non-zero
momentum. The rank of the distillation space, number of gauge configurations, Negs, and
number of time-sources used for the computations of p, m and pm correlation functions, on
each lattice, are shown in Table

When quoting results in physical units, we set the scale using the (2-baryon mass.
From the value obtained on a lattice of spatial volume (L/a,)® x (T'/a;) = 163 x 128,
a;mE™ = 0.3593(7) [69], and the experimental mass, mqg" = 1672.45(29) MeV [5], we

obtain the inverse temporal spacing via a; ' = mg™ /a;mat | giving a; ' = 4655 MeV.



3.4. DISPERSION RELATION 39

(L/as)3 X (T/at) ‘ Nvecs chgs Ntsrcs (L/as)3 X (T/at) ‘ Nvecs chgs Ntsrcs
20% x 128 128 197 8 20% x 128 128 502 1-3
243 x 128 160 499 1 243 x 128 160 607 1-3

Table 3.2: Number of distillation vectors (Nyecs), gauge configurations (Ngs) and
time-sources (Nig.es) used to compute correlation functions on the two lattice volumes, as
described in the text, for (left) p and 7 correlation functions (F' = 8) and (right) pr

correlation functions (F' = 27).

3.4 Dispersion Relation

In order to study pm scattering, we must compute the momentum dependence of the
relevant stable mesons’ energies and check that they satisfy the relativistic dispersion
relations by determining the anisotropy, £ = as/a;. The relativistic dispersion relation for

a stable hadron is, up to discretisation effects,

1/ 27 \?
2 _ 2 ~12
(a:E7)" = (aym)” + & (L/as> 7", (3.10)
where m is the mass of the hadron and Fj; is its energy with momentum p' = %ﬁ Differences

between the values of £ measured from different hadrons are due to discretisation, finite-
volume and temporal effects, with the latter two expected to be negligible given the values
of m,L and m,T. The energies of the ground-state flavour octet vector and pseudoscalar
mesons, hereafter referred to as p and 7, with momentum |7i|> < 4 were calculated from
a variational analysis of matrices of correlation functions involving bases of single-meson
operators. The analyses also gave the optimised operators for interpolating the p and
7w with the various momenta. These are used in the construction of vector-pseudoscalar
operators, as discussed in Section [3.2]

The extracted energies are shown in Figure |3.3| along with the results of fits using
Eq. 3.10, For the p, the energies of the different helicity components were calculated
independently from each relevant irrep of LG(p), e.g. at p'= [001] the A = 0 energies were
calculated from the [001]A; irrep and |A| = 1 from [001]F;. From the figure, it can be
seen that the £ values extracted from the 7 and the [A\| = 1 p are in reasonable agreement,
but the value from the A = 0 p differs from the 7 at the 2% level['?] This discrepancy is

10The energy splitting between different helicity components of the vector can be seen for calculations
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dominated by discretisation effects and we propagate a conservative estimate of systematic
uncertainty by using a value of £ = 3.486(43), derived by considering the smallest and
largest values within one standard deviation of the mean from the fits in Figure[3.3] As the
meson-meson interactions in isospin-2 prm scattering are weak and the corresponding energy
shifts small, the uncertainty on £ is found to be the largest source of systematic uncertainty
on the scattering amplitudes. On the contrary, should interactions be more significant the
relative contribution of the uncertainty on the anisotropy to the total uncertainty on the

amplitudes ought to be smaller and indeed this is seen later in Chapter

on a 16% x 128 lattice with the same lattice action in previous works — see Figures 12 and 13 in Ref. [10]
and Figure 4 in Ref. |70].
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Eopr = 3.463(6)
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Figure 3.3: Upper panel: Momentum dependence of the m and p energies where both
|A| = 0,1 helicity components of the p are considered. The statistical errors on the
energies are smaller than the points. Lines and numerical values show results of fits to
determine £ using Eq. Lower panel: points show the effective

1/2
momentum-dependent ¢ obtained via [(LQ/’;S)QWP/ <(atEﬁ)2 - (atm)zﬂ , with the two

volumes (L/as = 20,24) and the different mesons offset slightly for clarity. The orange

line and band indicate, respectively, the value and uncertainty on £ we use when

investigating pm scattering as described in the text.
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3.5 Finite-Volume Spectra

To determine finite-volume energy spectra for isospin-2 pm, matrices of correlation functions
were calculated, using bases of meson-meson operators as outlined in Section [3.2] for all
irreps P A where ‘]3 ‘2 < 4(%”)2. Table shows the operators used in the T} irrep at
rest and the A, irreps in-flight (operator lists for the other irreps are shown in Tables
- of Appendix — note the multiple linearly-independent operators appearing
at many of the non-interacting energies as discussed in Section [3.2] For each irrep, the
finite-volume spectrum was extracted by application of the variational method. As an
example, in Figure we show the lowest eight principal correlators for the T} irrep in
Figure |3.4] along with the corresponding spectrum and operator-state matrix elements,
Z" = (n|O(0)|0). From the figure, it can be seen that the matrix of correlation functions
is nearly block diagonal in the momentum-based operator construction with respect to
operators with the same E,;, and that different linear combinations of the multiple
meson-meson operators, corresponding to the same F,,;, are distinguishing the Ny, nearly

degenerate energy levels.

In Figures and [3.7, we show the volume dependence of the extracted energies for
all irreps at rest and A, irreps in-flight. Spectra for other in-flight irreps can be found
in Figure [3.13]in Appendix [3.C] Figure illustrates the dense distribution of energy
levels, typical of the reduced symmetry for in-flight irreps, and the multiple energy levels
which would be degenerate in the absence of interactions. Nevertheless, it can be seen
that all the energy levels can be extracted with good statistical precision. Since we choose
to restrict our two-meson operators to be constructed from only single-meson operators
with momentum |7i|*> < 4, we will only extract scattering amplitudes for a;Ee, < 0.41,
below the non-interacting energy corresponding to the lowest excluded operator.E No
other meson-meson scattering channels have thresholds below the w7 threshold which
opens at a;F.,, = 0.443.

Some qualitative expectations for the behaviour of scattering amplitudes can be inferred
from the spectra presented in Figures and [3.7. For example, we expect the lowest

energy-level in both the £~ and 7}, irreps to have a dominant contribution from the 3P,y-

" The lowest-lying excluded operator, across all irreps and volumes, is Plo12]To-10], Which corresponds

to a non-interacting energy of a;Ec, = 0.4124 on the lattice with L/as = 24.
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Table 3.3: Meson-meson operators in the 27 of SU(3)r flavour, ordered by increasing
non-interacting energy (see Section , for various irreps P A. The operators, pg Ty,
are constructed from optimised p and 7 operators with momentum types p; and ps
respectively. Different momentum directions are summed over as in Eq. . {Nin}
denotes the number of linearly-independent meson-meson operators at the corresponding
non-interacting energy when there is more than one. All operators with corresponding
non-interacting energies a;Fey < 0.455 for L/a, = 24 are displayed. Those in grey italic

were not included in the operator basis.

wave, see Table |3.1, owing to the centrifugal barrier suppressing the higher partial-waves
appearing in these irreps. These energy-levels are found just below the corresponding
non-interacting energies suggesting the *Py-wave is weakly attractive. Across all irreps,
there are clearly no large departures from the non-interacting spectra, the number of
energy levels is the same as the number expected in the absence of interactions, and no
energy levels lie systematically below the pm threshold. These observations likely indicate
the absence of narrow resonances or bound-states, and suggest that only a relatively weak
interaction is present. In order to get a quantitative understanding we proceed to calculate

the scattering amplitudes.
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Figure 3.4: Principal correlators, \,(t,ty = 9), plotted as et )\ (¢, t,), from a
variational analysis of the [000]7}" irrep on the lattice with L/a, = 24. Curves show the
results of fits described in Section The horizontal axes are in units of ¢/a,.
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Figure 3.5: Left: finite-volume energy levels in the [000]T}" irrep on the lattice with
L/as = 24. Dashed lines indicate the location of non-interacting energies. Right:
histograms showing the corresponding operator-state overlaps, Z* = (n|0!(0)]0), for the
operators ordered as in Table [3.3] The colours reflect the non-interacting energies
associated with each operator. The overlaps are normalised such that the largest value for

a given operator across all energy levels is equal to one.
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Figure 3.6: Energy spectra in irreps at rest. Black and grey points, slightly displaced in

L/ag for clarity, show the extracted energy levels below and above a;FE, = 0.41

respectively. Errorbars reflect the statistical uncertainties. Points in grey are not used in

the subsequent analysis in Section [3.6] Dashed lines show the pr and 7w thresholds.

Solid red curves indicate non-interacting meson-meson energies, labelled with their

degeneracies.
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Figure 3.7: As Figure but for A, irreps with P # 0. Dashed red curves indicate

non-interacting meson-meson energies corresponding to operators not included in the

basis. Errors on the points show the statistical uncertainty added in quadrature to the

systematic uncertainty from the uncertainty placed on &.
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3.6 Scattering Amplitudes

The general relationship between infinite-volume scattering amplitudes and finite-volume
energy levels is presented in Section and specific details for vector-pseudoscalar scatter-
ing are discussed in Section [3.1] In the case that no partial-waves are coupled dynamically,
the t-matrix is diagonal in ¢ and infinite-volume scattering in each partial-wave, */;, can
be described by a single real-valued energy-dependent parameter called the phase-shift,
03, (Fem). This appears in the scattering t-matrix as . ¢n = % expli ds; | sin(ds,, ). Recall
that in an irrep where just a single partial-wave makes a non-negligible contribution, the
quantisation condition reduces to the form shown in Eq. — this can be evaluated to

give a phase-shift point, ds,, (Ec(ﬁ)), at each finite-volume energy level, B

Formally, the infinite number of partial-waves which subduce into the irrep A appear
in the quantisation condition. Even though the angular-momentum barrier suppresses
the contributions of partial-waves of higher ¢ at low energies, for vector-pseudoscalar
scattering multiple partial-waves with the same threshold behaviour can appear in a
single irrep. For example, the *P; and P, partial-waves both appear in [011] A;. This
prevents the use of a one-to-one mapping between energy levels and phase-shift points of
the type given in Eq. [3.2] Furthermore, when two partial-waves are dynamically coupled,
the scattering t-matrix is no longer diagonal in ¢ and is described by three real energy-
dependent parameters.m These can be expressed as two phase-shifts and an angle, as in
Eq. B.I In this case, again, there is no one-to-one mapping between energy levels and
phase-shift points.

The approach we take to determine scattering amplitudes when the energy spectrum
is dependent on more than a single energy-dependent scattering parameter, is to, as in
Refs. [4,[7,28]62-64.|66, 71|, parameterise the energy-dependence of the t-matrix. In this
way, for any given set of parameter values, a finite-volume spectrum is calculated in
each irrep by solving Eq. [2.53] We follow the approach of Ref. [64] where this calculated

12Given the constraints from unitarity of the S-matrix and the time-reversal symmetry of QCD.
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spectrum is compared to the computed lattice spectrum using the following x? [30],

Ca) =Y > > [Een(L; PAyn)—ER(L; PAsn; {a;})] 71 (L; PA,n; P'A )
L paPrar nw
X [Eon(L; PPN W) — BP2(L; PN 0 {ai})]
(3.11)

where EPa(L; PA;n; {a;}) is the n™ energy-level satisfying Eq. for a t-matrix param-
eterised by {a;}. The data covariance matrix, C, gives the correlations between energy
levels on the same lattice volume. By minimising the x? with respect to the free parameters
{a;}, the best description of the spectrum may be obtained. The sensitivity to the choice
of scattering-amplitude parameterisation can be tested by using a variety of different
parameterisations.

In the case of a single partial-wave, not dynamically coupled to any others, a convenient

parameterisation of,

1 Ecn/2

t(Eem) = o exp{7 05, (Eem) } sin{0s, (Eem) } = Fom 00U {8y (Bom)} — ihem (3.12)
is the effective range expansion,
1 1 .
2041 _ o313 2 4
ke cot{ds, (Eem)} = OO + 5 r(%%) K2y + O(kdn) (3.13)

where the constants a(*;]*;) and 7(*(;|*¢;) are respectively the scattering length and
effective range of the partial-wave *;, and the threshold behaviour of the amplitude,
controlled by the value of ¢, is explicitly included by construction.

For partial-waves of equal J? but different ¢ that can couple dynamically, the K-matrix
formalism is a useful way of expressing the unitarity of the S-matrix in terms of a real
symmetric matrix, K (S)H The inverse of the K-matrix is related to the inverse of the

t-matrix by,

1 1

[t_1<8)}£J,K’J = m [K_l(s)} s, m + O I(S) , (314)

where we recall s = E2_ . The powers of k¢, ensure the correct behaviour at threshold.

Unitarity of the S-matrix is guaranteed provided that Im I(s) = —p(s) for energies

13Previous lattice QCD calculations [4,62,64] have demonstrated the effectiveness of the K-matrix

formalism in describing many resonant and non-resonant features of coupled-channel scattering.



50 CHAPTER 3. SCATTERING OF pr IN ISOSPIN-2 AT M, ~ 700 MEV

above the vector-pseudoscalar threshold and ImI(s) = 0 below threshold. The real
part of I(s) is arbitrary. A simple choice we take is I(s) = —ip(s). An alternative
which utilises the analytic properties of the amplitude, known as the Chew-Mandelstam
prescription |72], constructs Re I(s) using a dispersive integral of p(s). The implementation
of this prescription used here mirrors that in Ref. [64], and we choose to subtract such
that Re (s = (mx +m,)?) = 0. A discussion of the Chew-Mandelstam phase-space is
given in Appendix [3.D]

The K-matrix can handle the case relevant to the finite volume where different J%
values, which are uncoupled in an infinite volume, become coupled in the determinant of
Eq. This is achieved by forming a block-diagonal matrix out of the K-matrices for
each J. For example, the t-matrix described in Eq. will feature the K-matrix,

K(*S1]°51)(s) K (*S1°D1)(s) 0
K= |K(S1|’D1)(s) K(*Dyi|?D1)(s) 0 (3.15)
0 0 K(®Ds|>D3)(s)

where K (*(;>¢",,)(s) = Ky y(s) is aveal function of s. A simple choice of parameterisation

for the K-matrix is to express each element as a finite-order polynomial in s,

N(Ls|%))
3
Kpes(s)= Y et s", (3.16)
n>0
where the coefficients ¢, (*(;|’¢;) are real parameters. Other forms are explored in later

chapters.

3.6.1 Uncoupled P-wave Scattering

As discussed, when only a single partial-wave makes a non-negligible contribution, the
finite-volume quantisation condition reduces to a one-to-one mapping from finite-volume
energy levels to phase-shift values at those energies. For isospin-2 pm scattering, we
initially assume that the 3Py, ®P;, 3P, partial-waves dominate respectively the [000] AT,
T, (E~,T; ) irreps at low energy, proposing that the F-wave contributions can be
neglected (see Table for the partial-waves subduced into these irreps). Using the energy
levels presented in Figure [3.6] we obtain two phase-shift points from each irrep. These

are shown in Figure 3.8 where the inner errorbars show the statistical uncertainty on
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Ecwm and dsp,(Ecm), while the outer errorbars on dsp,(Ecm) also include a conservative
estimate of the systematic error which was obtained by varying the hadron masses and,
more importantly, the anisotropy within their uncertainties. We find the largest systematic
variations occur when a;m,, a;m, are large and & is small, and Vice—versaﬁ consistent
with the observation that this causes the largest changes in the non-interacting energies,
Eqi.

To interpolate the scattering amplitudes in the energy range being considered, we
parameterise the energy dependence of the t-matrix using an effective range expansion,
Eq. 3.13 truncated at the scattering length, k255! cot(ds, ) = a(*(,*;)~", and minimise a

cm

x? with respect to a(®*(;|*¢;). We fit independently for each partial-wave obtaining,

a(®Po’Py) = (—21 4 53 £ 145) - @} X?/Ngot = 0.37/(2 — 1) = 0.37
a(®P1’P1) = (133 £ 49 £ 172) - a} X?/Naot = 0.20/(2 — 1) = 0.20
a(®Py?Py) = (+273 £ 58 + 184) - a? X?/Ngot = 6.57/(4 — 1) = 2.19, (3.17)

where again the first error reflects the statistical uncertainty and the second error is an
estimate of the systematic uncertainty.

The energy dependencies of the phase-shifts corresponding to these scattering-length
descriptions are displayed in Figure [3.8 It is clear that the systematic uncertainties are
dominating the uncertainties — this is a consequence of the relatively large uncertainty
assigned to & E coupled with the rather weak interaction in this scattering channel which

leads to small shifts of energies from their non-interacting values.

3.6.2 Coupled S, P, D-wave Scattering

In general, irreps feature a number of non-negligible partial-waves contributing to every
energy level in the spectra and there is no longer a one-to-one mapping between energies and
scattering amplitudes. To use the information from the energy levels across all the irreps,
we perform a global analysis of the finite-volume spectra presented in Figures and
.13 Each energy level provides a constraint on a combination of partial-wave amplitudes

at that energy. To do this, as described above, we parameterise the energy-dependence of

MFor arm,, agm, small and ¢ large we find a compatible order of magnitude of variation in the
parameters but of opposite sign. We therefore quote the systematic error as symmetric about the mean.

15Because of the slightly different ¢ obtained from the helicity 0 and 41 components of the p.
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co(®*S1351) = —1.614+0.07+0.79 [ 100 —098 004 011 002 002 003 002 006 008 0.0 |
a(®Si’S1) = (4.75£0.44 £ 5.37) - a? 100 —0.11 —0.05 —0.01 —0.01 —0.02 —0.01 —0.05 —0.01 —0.05
co(®*S11°D1) = (~5.28 £ 0.55 + 0.51) - a? 100 009 001 003 004 002 026 —0.03 022
co(®*Po?Py) = (—5.98 £ 0.61 4 4.70) - a? 100 010 011 014 016 002 026 077
co(®Pi’Py) = (-33.6+£1.7+17.7)-a? 100 —095 004 001 002 006 008
a(®PiPPy) = (150 + 11 £ 128) - a? 100 001 004 001 004 010
co(®*Pyl?Py) = (83.4+1.5+£40.7) - a? 100 —092 0.04 008 0.14
c1(®Pof*Py) = (—459 £ 9+ 277) - a} 100 003 009 0.10
co(®D1’Dy) = (=56 £15+31) - a} 100 046 —0.09
co(®Dy)?Dy) = (=102 £ 12 4 60) - a? 100 0.06
co(®Ds|?Ds) = (—49+15+84) - a! 1.00

Table 3.4: A reference fit as described in the text with x?/Ngos = 1.42. The first
uncertainty in each case is statistical and the second is an estimate of the systematic
uncertainty as described in the text. Correlations between the K-matrix parameters are

displayed on the right. Parameters not shown were fixed to zero.

the block-diagonal t-matrix and vary the parameters to give the best description of the
finite-volume spectra by minimising the x? given in Eq. We allow for non-negligible
pm isospin-2 amplitudes in the 357, 2Py, *P1, Py, ®D1, ®D4 and ®Dj3 partial-waves, including
the dynamical couplings between the 39, and ®D; waves and the 3P, and 3F waves.

A number of polynomial parameterisations of the K-matrix were considered and one
example giving a good description of the 141 energy levels below a;E.,, = 0.41 is provided
by the fit shown in Table where a K-matrix parameterisation with 11 parameters was
used. There are linear plus constant terms in K (351[35,), K(*P1|*P;1) and K (*Py|*P5),
and constant terms for all other relevant K (%,[*)) except K (*P5|>Fy) = 0. The table also
gives statistical uncertainties, estimates of systematic uncertainties from varying a;m.,
aym, and &, and correlations between the parameters. We refer to this parameterisation

and set of fit values as the reference amplitude.

Presented in Figures (3.9 and are the finite-volume spectra determined on each irrep
by solving Eq. for the reference amplitude. The lattice computed energies, previously
plotted in Figures [3.6] and [3.7], are also shown on the figure and we observe very good
agreement between the two sets of energy levels (as expected from the x?). The reference
amplitude successfully predicts the location of levels which were not used to constrain

the parameterisation (grey points), but a couple of features should be noted. Firstly, in
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Figure some levels are apparently missed by the scattering parameterisation in the the
E=, T and T, irreps around a;E., = 0.42. The presence of these levels relies upon the
inclusion of F-wave scattering amplitudes, which are neglected in the reference amplitude.
Secondly, in Figure m the A, irreps with P = [011] and P = [002] appear to have energy
levels missing in the lattice QCD calculation around a;F.,, = 0.425 and a;Fc, = 0.415
respectively. This is expected because the corresponding vector-pseudoscalar operators
were not included in the bases used (see Section — Table and Figure .

A wide range of possible parameterisations that allow non-zero values for all constants
cn (305107 provided ¢ + ¢ + 2n < 4 were considered. This ensures the K-matrix has
parameter freedom in all terms up to order afm Table in Appendix shows a
selection of these fits along with the corresponding x?/Ng.f. Parameterisations without
freedom in the K (3S;|°D;)(s) polynomial are not able to give a good description of the
finite-volume spectra, a point we return to in Section m However, a K (°P5|*F5)(s) term
does not appear to be required — this is consistent with expectations that the dynamical
mixing between P, and *F, is suppressed by the angular momentum barrier at these
relatively low energies just above threshold.

K-matrix parameterisations which include pole terms, efficient at describing resonant
behaviour and bound states, did not give a good description of the finite-volume spectra
and we do not include such parameterisations in Table [3.12] This is consistent with our
qualitative observations on the spectra in Section [3.5]

For all the parameterisations in Table with x?/Ngot < 1.5, Figure shows
the two phase-shifts and mixing-angle in the Stapp parameterisation, Eq. [3.1] for the
dynamically-coupled 35, and *D; partial-waves, and the phase-shifts for the *Py, *P,
3P,, 3D, and 2Ds partial-waves. It can be seen that the scattering amplitudes are robust
under parameterisation variations and the phase-shifts are consistent within statistical
uncertainties. As expected, the systematic uncertainty on each parameterisation is largely
due to £ and hence discretisation effects dominate the uncertainties.

We conclude that pr in isospin-2 is weakly repulsive in 3S;. The other phase-shifts
are consistent with zero within the systematic uncertainties, though there are hints of
weak attraction in P, and weak repulsion in *Py, ®P; and ®D;. The dynamical mixing

between the 35, and *D;-waves is small but significantly non-zero within the systematic

16Including terms with higher powers of a; did not significantly improve the quality of fit.
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uncertainties and across all parameterisations. In the following section we investigate in

more detail how the spectra depend on the mixing angle €.

3.6.3 Constraints on the S, — °D; Mixing-Angle

To demonstrate that the 3S; — ®D; mixing angle, €, is being robustly constrained in
the energy range considered, we investigate which energy levels are providing the most
stringent constraints on it. If we neglect ¢ > 4, the quantisation conditions for irreps at
rest admitting 3594, ®D;-waves are independent of the sign of €, whereas the quantisation
conditions for irreps in-flight depend on the sign of €. This means that for spatially periodic
boundary conditions in a cubic box, ignoring contributions from ¢ > 4, in-flight irreps
must be considered in order to uniquely determine € from finite-volume Spectra.lﬂ
Figure shows finite-volume spectra in the [000] 7" irrep and the PA, irreps, P #* 0,
as a function of the K-matrix parameter, co(®S;|>D;), along with the corresponding
phase-shifts dsq,, dsp, and mixing angle Eﬁ The reference parameterisation in Table
has been used, varying co(®S;|°D;) while keeping all other parameters fixed. The symmetry
of the finite-volume spectrum in [000] 7} about co(*S1[>D1) = 0 illustrates the expected
sign independence at rest. For the Ay irreps in-flight, the finite-volume spectra are clearly
asymmetric about cy(3S1|°D;) = 0 and energy levels have a varying degree of dependence
on €. Furthermore, the phase-shifts vary only within their systematic uncertainties for
—20 < ¢(*S1]?D1) < 20, in stark contrast to €. This suggests that the constraints placed
on ¢o(*S1|*>D1) by the finite-volume spectra are the most significant in determining € and
Figure|3.12]illustrates the numerous energy levels in the region a;E., < 0.41 which provide
these constraints, e.g. the splitting between the 4" and 5 energy levels in the [002] A,
irrep is strongly dependent on cy(3S;]°D;) in the small range we consider. Other irreps
in-flight admitting the dynamically coupled 3S; and ®D; partial-waves provide additional
constraints on co(*S1|°D;) and subsequently €. We conclude that these finite-volume

calculations robustly determine the magnitude and sign of €.

ITIf contributions of partial-waves with ¢ > 4 are included for irreps overall at rest, then in general the
finite-volume spectra are no longer independent of the sign of €.

8The relations in Eq. and Eq. can be manipulated to show that the sign of co(*S1[°D1) is
dependent on the sign of € whereas the phase-shifts are independent of the sign of 00(35 1|3D1).
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Figure 3.8: Phase-shifts for the Py, Py and ®P, partial-waves. The points are as

described in the text. Inner bands reflect the statistical uncertainties on the phase-shifts
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bars/error bands also include systematic uncertainties.
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Figure 3.11: Phase-shifts for partial-waves, (;, and 3S; — 3D; mixing angle, €, as
described in the text. Each curve corresponds to a parameterisation in Table with
X%/Ngot < 1.5. The darker inner band (typically thinner than the width of the curves)
reflects the statistical uncertainty on the reference parameterisation in Table |3.4] and the
lighter outer bands correspond to the combined statistical and systematic uncertainties on
this parameterisation. Faded regions highlight that no energy levels have been used to
constrain the phase-shifts and mixing angle when a; E.,, > 0.41. The discrete energy
levels used as constraints are shown as small dots at the bottom of the figure with the top
and bottom rows for L/as = 24 and 20 respectively. An axis reflecting energy above

threshold in physical units is displayed at the top of the figure.
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points are, as in Figure 3.6, energy levels extracted from correlation functions, plotted at
co(®S1°D1) = —5.28 the value in the reference amplitude parameterisation in Table .
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uncertainties on the black points. Orange curves show the finite-volume spectra from the
reference amplitude when co(*S1|?D;) is varied with the other parameters fixed. Lower:
935, (Fem); 03p, (Eem) and €(Eey) for the reference amplitude with a selection of values for
co(®S1]°Dy). The shaded bands shows the combined statistical and systematic

uncertainties of the reference amplitudes, i.e. when ¢(*S1|°D;) = —5.28.
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3.7 Summary

In this chapter, we have reported on the first calculation of pr scattering using lattice QCD,
focusing on the isospin-2 channel. As expected for an exotic isospin, the hadron-hadron
interactions are found to be relatively weak. The angular momentum barrier at low energy
provides a natural hierarchy in ¢, and the coupling of ¢ with the intrinsic spin of the p leads
to a number of partial-waves for a given J. The possibility of ‘spin-orbit’ forces in QCD
allows amplitudes of common ¢, but distinct J, to differ. For each of J¥ = 1%,27,3%, ...,
there are two dynamically-coupled partial-waves, and for 1t we are able to determine
the 35, and ®D; amplitudes along with the coupling between them. We are also able to

determine the scattering phase-shifts for all partial-waves of ¢ < 2.

Our results followed from application of the formalism relating scattering amplitudes in
an infinite volume to the discrete spectrum of QQCD in a finite periodic volume defined
by the lattice. We computed this spectrum in two spatial volumes in a version of QCD
where the degenerate u,d quarks are heavier than in experiment, such that they are
degenerate with the strange quark and the theory has an exact SU(3)r flavour symmetry.
The resulting theory has octet pseudoscalar mesons (such as the 7) of mass ~ 700 MeV

and stable octet vectors mesons (such as the p) of mass ~ 1020 MeV.

Spectra were obtained by variational analysis of matrices of two-point correlation
functions computed using bases of operators resembling pm. The large number of partial-
waves contributing, together with the weakness of the interactions, leads to spectra which
feature many nearly-degenerate states. The use of bases of operators featuring all relevant
‘meson-meson’ constructions in the energy region of interest leads to a robust determination,
where the nearly degenerate states are resolved in the variational solution by virtue of

their orthogonal overlap structures in the space of operators.

The spectra obtained in the two volumes, featuring 141 energy levels, were used to
constrain the energy dependence of multiple partial-waves. Amplitudes were parameterised
and the parameters adjusted so that the predicted finite-volume spectra matched the
calculated spectra, as quantified by a correlated x2. The dependence on the particular form
of parameterisations used was explored and found to be rather modest. The largest single
source of systematic uncertainty in the calculation was due to the difference in the lattice

anisotropy for the m and the various helicity components of the p. This is a relatively



3.7. SUMMARY 61

small discretisation effect, but its impact in this particular calculation is amplified by the
weakness of the interactions. This causes the finite-volume energy levels to be shifted
relatively little from their non-interacting values.

The resulting scattering amplitudes presented in Figure |3.11| show a phase-shift in the
35, channel which is clearly non-zero and repulsive. Phase-shifts for the other extracted
partial waves are found to be compatible with zero within their systematic error. The
mixing between 3S; and 2Dy in J¥ = 1%, as quantified by a mixing angle € in the Stapp
parameterisation, is determined and found to be small but significantly non-zero. We
are able to determine its sign by considering spectra where the pm has overall non-zero
momentum with respect to the lattice.

The low energy (near threshold) behaviour of the scattering amplitudes can be
summarised in terms of the corresponding scattering lengths. Using the definition,

limy,, 0 k25 cot [8,,] = a(®*¢;|*¢;)7!, we find for the reference amplitude

a(®S1*S1) = (—5.44+0.10 4 0.88) - a mxa(3S13S1) = (—0.80 £ 0.01 £ 0.13)
a(®*Po|*Py) = (=132 + 14 £ 104) - a m2 a(*Po|*Py) = (—0.43 4+ 0.05 + 0.34)
a(®P1’P1) =(-303 £ 124 114) - a m? a(®*P1]°P1) = (—0.98 £ 0.04 + 0.37)
a(®Py|*Py) = (502 4 14 £ 362) - @} m2 a(*Py]’Py) = (1.62 £0.05 4+ 1.17)
a(®Ds’Dy) = (—8950 + 1050 + 5330) - a m? a(®Dy|?Dy) = (—0.63 4+ 0.07 £ 0.38)
a(®Ds|’D3) = (—4320 £ 1310 + 7270) - a m? a(®Ds|?D3) = (—0.30 +0.09 & 0.51).

The qualitative behaviour of the 3Pj-waves is the same as that found in Section [3.6.1]
where only irreps with a single non-negligible partial wave were considered and each of
the 3P; scattering lengths given above is consistent within errors with those found in that
section.

In conclusion, we have demonstrated how scattering amplitudes involving hadrons with
non-zero spin can be computed using lattice QCD. Further applications of the approach
presented in this study include the isospin-1 pm and wn systems. In J¥ = 1%, experiments
observe low-lying resonances, the a; and b; axial-vectors respectively, both of which have
been measured to have significant coupling to both S} and *D; partial-waves [47,73]. We

will examine these two systems in the following two chapters. Furthermore, experiments

YWe do not quote a D, scattering length because t(*D1|*D1) ~ (kem)? < t(351|°D1) ~ (kem)? at

threshold and as such the contribution of € cannot be neglected, unlike in the 3S; case.
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in the charmonium sector appear to show resonant behaviour in the exotic-flavour J/v¢
channel. First attempts to determine lattice QCD spectra here have appeared [68}74], but

as yet, there has been no determination of the scattering amplitudes.

APPENDICES 1

3.A Subduction Tables

Tables and [3.7] present the subduction patterns for vector-pseudoscalar partial-

waves with ¢ < 3 for momenta of type [00n], [0nn] and [nnn] respectively for integer

n.
[00n] A Ay A, E By B,
0~ (°Po)
1+ Bl
3D1 3D1
1~ <3P1) (3P1
2+ (°D,) 2+ (3D2 2t (°D,) 2t (3D2
P 3 3p °p
T ) - °° 9 o | °?
3F2 3F2
3 3
g | P 3+ g [ P8
ey Gy " ger ey
37 (°F3) 37 (°F3) [2] 37 (°F3) - (°Fs)
Sp Sp 3Sp Sp Sp
4_ | 4 4_ | 4 4_ ) 4 4_ ) 4 4_ | 4
'H, 'H, 'H, 'H, 'H,
2] [2]

Table 3.5: Partial-wave J”(*(;) subductions for £ < 3 at P = [00n] into irreps A of the
little-group Dicy. A subscript [N] indicates that this JZ has N embeddings in the irrep A.
Partial-waves with ¢ > 3 that couple dynamically to partial-waves with ¢ < 3 are shown

in grey italic. This table is derived using the results presented in Refs. [9] and [10].
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[0nn] A Ay Ay By By
0~ (°Py)
3 3

1+ S - S

3D1 3D1

1= (°Py) 1- (3P 1= (°Py)

2* (°Dy)y,  2° (3D2 2+ (302 2% (°D,)

P (3 3p 3p

J (gj) 9— 2 9— 9— 2

°F . Fy

3 3
3+ [P 3+ g+ [P
J'C'V’)’ >(' 5 )(v 3 1‘1:/}
2] 2] (2]
—_ /(3 — 3 — (3

3 (F3)[2] 37 ( 3 F3[] 3 (F3)[2]

3p 3p ya

| 4 | 4 | 4

°H, >]]/ ’H, ’H,

+ + t [2]

2]

3]

Table 3.6: As Table | but for P =

[Onn] with little-group Dics.
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[nnn] A Ay Ay E
0~ (°Po)
3 3
e o
°Dy °D,
1= (P1) 1= (°P1)
27 (3D2) 2" (SDZ)[z]
3 3
JP(?)EJ) 9— P2 9— ( P2
3 3
Fy Fy -
3 3 3
g [ 2] e [ o
3 O,; 38 CIVJ 3 g 3
2] 2]
— /3 - (3 - (3
3 (F3)[2] 3 (F3) 3 (F3)[2]
°F °F °F
| 4 | 4 | 4
’H, 'H, "H
/ /12 /3]

Table 3.7: As Table , but for P = [nnn] with little-group Dics.

3.B Operator Bases

We show the operator basis in Tables [3.§] - for all irreps considered in Figures
and [3.13] that were not shown in Table [3.3]

000]AF  [000]E*  [000]73"  [000]A;  [000)T}

|

P[011]T[0-1-1] : P[011]77[0-1-1] P[001]7[00-1]

: £1001]) TT[00-1] : :
| | |
PRI T1-1-1] | P11 T[1-1-1] | {2} pro1mo-11] " Plo11To-1-1] | {2} prorymo-1-1)
| | |
| | |
| | |
| | |
| | |

P[001]) T[00-1]

P11 T[-1-1-1] + PA11)T[-1-1-1] Pl111]T[-1-1-1]

4 ops. 3 ops. 4 ops.

Table 3.8: As Table 3.3 but for irreps A}, Et, T, A7 and T] at P = [000].
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[000]E~  [000)Ty . [001)4,  [001]B; [001]B,

| |

Plo11]7T[0-10] : Plo11]7[0-10] : {2} Pio11]7[0-10]
|

}
| |
|
| |

P[001]7[00-1] P[001]77[00-1] 1

6 ops. | 6 ops.

{2} pio1ymo-1- | {2} pro1ymo-1- | Plo10]T[0-11] | Plo10]T[0-11] | {2} pio10mo-11)
P11 T [-1-1-1] : {2} P11 T [-1-1-1] : P11 T [-1-10] : {2} P11 T [-1-10] : Pl111)T[-1-10]
|
| P[110]T[-1-11] | {2} prigy 7y | P[110]T[-1-11]
: Plo12]T0-1-1] ‘ Plo12]T0-1-1] : {Z} P1012)T[0-1-1]
| |
|
|

Table 3.9: As Table but for irreps £~ and T, at P = [000] and Ay, By and By at

P =[001].

[001] E o [011] A4 ‘ [011] By ‘ [011] By o [111] A,

|

P[001]7T[000] P[001]77[010] P[011]77[000] P[011]7T[000] : P[011]77[100]
|

P[000]7T[001] P[111]T[-100] P[001]77[010] {2} P[001]7T[010] l P[001]7T[110]
|

{3} P011]77[0-10] {3} P110]T-101] P[000]7T[011] P[000]TT[011] : P[112])T[00-1]
|

{3} P[010]77[0-11] P[100] 7T [-111] {2} P[111]7[-100] P[111)7[-100] |

|
{3} prioTLion |

P[002]7[00-1] {3} P[110]T[-101]

{3} P111)T[-1-10]
{3} P[110)T[-1-11]

Pl012]T[00-1]

P[01-1)T[002) Plo12)T00-11 ' {2} Plo121T00-1]
{2} prooymor-
{2} pror-ymooy

{2} proo-11m012]

P100-1]TT[002] Ploo-1]1T012] P1002]T[01-1]

{3} P1012]T[0-1-1] {3} Pl-10-11T[112] Pl01-1]T[002]

Ploo-11T[012]

{)’} Pl112]T-10-1] {f} Pl112]T-10-1]

13} plozm10-11
P[002) T[11-1]
P11-1]T[002]

18} prio-nmo12)

Pl00-11T112)

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
l l
P[002]T[01-1] : {2} P[100]T[-111] : P[100]T[-111] :
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

16 ops.

Table 3.10: As Table [3.3 but for irreps B at P = [001]; Ay, B; and B, at P = [011] and

Aj at P =[111].

4 ops.
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[111]Es o [002] Ay ‘ [002] By ‘ [002] By ‘ [002] By
P[111]7[000] Plo11]70-11] Po11]70-11] {2} Po11]70-11] P[001] 7T [001]
{3} pror1 700 P[012]T[0-10] Plo12)T0-10] ' {2} plose)To-10 £[002)7[000]

{3} ppooymon P11 o {2} ppuy i PR o {3} o) To-1)

{2} pro-10y7012)

Pl112)T-1-10]

P[000]7T[111]
{ ’)} Pl112])T[00-1]

| |

| |

| |

| |

| |

| |

| |

o

: : Plo-101T[012)

o

| |
{f} P1012]T10-1] : :

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

Pl0-10]T[012) P[000] TT[002]
{))} Pl012]T[0-10]

{3} P111)7T-1-11]

[112]T[-1-10] 3} Pl112]T]-1-10]

P
P Pl110)T[-1-12]
())} P10o-101T[012]

{
{’)} Pl112)T-1-10]
{:

’)} P1110)T-1-12]

{3} P[002]) T[11-1]
{3tp [11-1]177[002]
{6} proi-nm(10e)
{3} proo-n7i12)

I I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I I
| |
| |

|
|
|
|
|
|
|
|
l
|
{
|
(11017 F1-12] 1 12} PL110)T-1-12)
|
|
|
|
|
|
|
|
|
|
|
|
|

2 ops. 3 ops. 3 ops. 9 ops.

Table 3.11: As Table but for irreps F, at P = [111] and Ay, By, By and Es at
P = [002].
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3.C Additional Spectra

We provide here the finite-volume spectra plots for irreps at non-zero momenta, not shown

in Figures [3.6 and in Figure [3.13
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Figure 3.13: As Figure 3.7/ but for all other irreps with |P|? < 4.
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3.D Chew-Mandelstam Phase-Space

The t-matrix can be conveniently expressed in terms of a real symmetric K-matrix and a
diagonal matrix I as shown in Eq. [3.14] Unitarity of the S-matrix for real s is guaranteed
provided,

—pals) if 5> sfp)

0 if s < sgﬁi

Im I,(s) =

leaving the real part of I,(s) arbitrary. Here, we have introduced an index a labelling
the hadron-hadron channel to generalise the discussion. Of course, in the context of pm
scattering presented in this chapter, there is only one channel.

A simple choice for 1,(s) immediately follows from the constraints imposed by unitary:
choosing I,(s) = —ip,(s). Although a perfectly good choice, this form of I,(s) does not
make use of the analytic properties of the amplitude. Furthermore, this choice does not
give any useful behaviour of the amplitude near thresholds or any resonant pole masses.

An alternative is constructed through the Chew-Mandelstam function [72] where the real
part is related to the imaginary part through a dispersive integral. The physical S-matrix
amplitudes are assumed to be analytic functions of complex s, and it follows from Eq.
that I,(s) are analytic functions of complex s on a domain which excludes the branch cut
originating from the square root in p,(s) at threshold, sgﬁi = (m§“) + m;a))2. Using the

Cauchy integral formula, one can write,

L(s) = —— /c gs' 15 (3.18)

271 s’ —s

where C, is the boundary of the open set U, C C where I,(s) is analytic, shown in

Figure 3.14]
By deforming the contour C, such that the boundary goes out toward infinity and

assuming /,(s) has compact support for |s| — oo, the contour integral in Eq. can be

expressed as an integral along the real axis from sgﬁz to infinity,

1 > I, (s +i€) — I,(s" —i
I,(s) = — lim ds' (s +ie) (s~ ie)
2mi =0 J (@ s —s
1 o0 . /
:——/ a5 P& (3.19)
LR
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Im (s)

Figure 3.14: A sketch of the contour C, in the complex s-plane. The conventional choice

(a)

of branch cut from s;;, = (mga) + mga))2 towards infinity along the positive real axis is

r.

shown.

where the second equality follows from the ‘Real analyticity’ [75] of £(s): t(s) = t(s*)*
and so I,(s*) = I,(s)*, giving I,(s + i€) — I,(s — i€) = 2Im [,(s + i€) = —2p4(s + i€).
This integral is however divergent and needs regularising. This can be done through a

‘subtraction’, where the regularised integral can be written as,

s — s

a N > ,Oa(S/)
I(s) = I(s\)) — Z—"thr. / ds’ (3.20)
" TS (8 =8 st

which integrated explicitly gives [64],

€a(s) + pa(5)]  &als) mE” —m” my
§a(5)—pa(s)} log—,  (3.21)

™ mga) + mga) my
where &,(s) =1 — (my +m!{)2/s.
I . o . (a)
The expression in Eq. has a residual arbitrariness in the real part of I,(s,; . ) for
(a)

which one choice we employ is to set this to zero, i.e. Rel,(s = s;;.) = 0, and we refer

I.(s) = Ia(séﬁz.) + pafj) log [

to this as ‘threshold subtraction’. Another convenient choice, when the K-matrix has a
‘pole term’ with mass parameter m, is to set I,(s\") ) such that Rel,(s = m?) = 0, which
we refer to as ‘pole subtraction’. With this choice, in the energy region around s = m?,
the t-matrix resembles a Breit-Wigner form and the mass m and Breit-Wigner mass mg

coincide [64].
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3.E Scattering Parameterisations

Table shows the different parameterisations of the K-matrix considered in the

parameterisation variation as discussed in detail in Section |3.6.2]
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72

Table 3.12: Polynomial parameterisations of the K-matrix as defined in Eq. [3.14| Each entry in the table indicates
the order of the polynomial, N (*;|*¢;), for the relevant matrix element and “” denotes a zero entry in the
K-matrix. The x?/Ngt for each fit, describing the lowest 141 energy levels, is given in the final column. The
reference fit, whose parameter values are presented in Table E is displayed in bold in the first row of this table.

Phase-space | ($11%1)  (*Dal*D1)  (Su°Dy) | CPol*Po)  (CPil*P1) | (CPal*Pa)  (CPal*Fa) | (*Del*Da)  (*Ds|*Ds) | x*/Naot

1 0 o ' 0 11 -0 0 1.42

0 0 o . 0 o . 0 - ” 0 0 2.12
- 0 0 -0 0 0 -0 0 2.73
S 0 0 o . 0 o 1 0 0o . 0 0 2.12
m 0 0 0 0 0o o1 -0 0 1.49
= 0 0 0 ” 0 1 ” 1 - ” 0 0 1.46
m 1 0 (R O -0 0 1.42
g 0 0 0 | 1 1 | 1 - | 0 0 1.46
E 0 0 0o 1 0 0 -0 0 2.13
© 0 0 o ! 0 10 -0 0 1.82
m 0 0 1 m 0 0 m 0 ; m 0 0 2.12
I 1 0 10 o ! 1 - 0 1.46
E 2 0 0 m 0 0 m 0 ; m 0 0 1.96
= 0 0 0o ' 0 1 -0 0 1.46
wm 1 0 1 m 0 1 m 1 - m 0 0 1.42

1 0 -0 11 -0 0 2.07

1 0 0o . 0 0 1+ 0 -0 0 2.05

2 0 0 0 R S0 0 1.34

CRel(s)=0| 1 0 lllﬁﬂlmllo‘ ““““ 1 llﬁlw ““““ .llmllollllo ““““ 144




CHAPTER 4

Investigation of p7 in isospin-1 at

The scattering of pm with exotic isospin-2 was found, as expected, to have weak interactions
in all partial-wave amplitudes up to the w7 threshold. Naturally, one may want to consider
p7 scattering in quantum numbers where more significant interactions are expected, e.g.
p7 in isospin-1 where an a; axial-vector resonance features. In this short chapter, we
examine the isospin-1 p7 system in the SU(3)g flavour limit and find evidence that, at this
pion mass, the a; axial-vector is a bound-state. We begin with a discussion on G-parity

and Bose-symmetry at the SU(3)g point and then present the finite-volume spectra.

4.1 G-Parity in SU(3)g

Within the SU(3)r flavour framework, the a; meson, with (I9)J7¢ = (17)1*F, forms
part of an axial-vector octet. We label the SU(3)r multiplets by the isoscalar component
and carry a subscript denoting the irrep, for example, (f1)s labels the axial-vector octet
hosting the a;. We will adopt this labelling convention from here-on-in unless otherwise
specified, so the m and p mesons belong to the (77)s (pseudoscalar) and (w)g (vector) octets
respectively and the corresponding singlets, (1), and (w)y, contain admixtures of the n, 7’
and w, ¢ mesons respectively. Unlike in the isospin-2 case, where the corresponding SU(3)g
representation 27 can be formed only from products of two-mesons in octet multiplets,
8 ® 8, the SU(3)f representation 8 and can be formed from both 8 ® 1 and 8 ® 8.

A subtlety that arises when considering the product of two SU(3)r representations, that
does not occur in SU(2)p, is the possibility of multiple embeddings within some target
flavour representation. In SU(2)g, the product of two isospins, [1®Iy = |1 —I5|®- - -® 11+ 1>,

gives a single embedding in each isospin |I; — Is|, |I; — Is| + 1,--- , I; + I,. However, in

73
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SU(3), the tensor product of two octets for example, 8 ® 8, gives rise to the two linearly
independent octet embeddings 8; and 8.
Following the conventions given in DeSwart’s [67], the SU(3)g Clebsch-Gordan coefficients

for 8 ® 8 — 8, @ 85 are symmetric and anti-symmetric in 8; and 85 respectively,

8 8 8§ 8 8 8
VW Vg UV Ve 1 UV

where §&§ = 1 and & = —1. It is useful at this point to write out the non-zero SU(3)g
Clebsch-Gordan coefficients for the two embeddings explicitly. As we are at liberty to work
with any member of the octet, we choose v = (1,Y,1,) = (1,0,1). We label the initial
octets 8, and 8 in order to distinguish them. The states |F;1,Y, I,) are then given by,

’8171a0 1 \/ |8a727 72 ‘8b727_ 72 \/ ‘Saa27_ 72 ’8117;71 %>
o [84:1,0,1) [84;0,0,0) + —= [84:0,0,0) [8; 1,0, 1) (4.2)
7 7
\/—’8a727 ) \/—‘8a727_172>’8572717%>
1
b 18,:1.0,1)(8,:1.0.0) — —— |8

These isovector components of the octets 8; and 85 have definite opposite G-parities.

’827170 1> >|8b727_17;>

a;17070> ‘8b;17071>' (43)

This can be readily seen by acting with the G-parity operator on the states |8;;1,0,1)
written above. It is convenient to consider G as C' followed by a m-rotation about the

y-component of isospin, f?, as it is then straightforward to show [76],

A Y.,
C|8a;I7Y7]z> - Oa(_1)2 ? |8a;]7 _}/7 _Iz>
RI8,; 1Y, L) = (—1)7=8,;1,Y, L)

~ Y
G|84;1,Y, L) = Cu(=1)2 8,1, -V, L), (4.4)

where C,, is the intrinsic C-parity of the neutral element of the octet, for example, C, = +1
for (n)s and C, = —1 for (w)s. It immediately follows that,

G181:1,0,1) = — C,Cy|81;1,0,1)
G182;1,0,1) = + C,C, |85;1,0,1) . (4.5)
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As an example, if 8, denotes the pseudoscalar octet (n)s (C, = +1) and 8, the vector
octet (w)s (Cp = —1), then |84;1,0, 1) will have positive G-parity and |89; 1,0, 1) negative.
In the case of 8 ® 1 — 8, the G-parity is much simpler. For v = (1,0, 1), the two-meson

state transforming in 8 is given trivially by,
8;1,0,1) =1[8,;1,0,1) [15;0,0,0) (4.6)

and the G-parity is G = —C,C}.

One could of course have chosen a different component of the octet with hypercharge
zero with which to work, for example the neutral element v = (0,0,0), and a similar
argument would follow. For the remainder of this thesis, we always consider a target
component of v = (1,0,1) and use the G-parity conventions laid out here.

These considerations are important when constructing meson-meson operators in order
to ensure they have the desired G-parity. Had we chosen different SU(3)r Clebsch-Gordan
coefficients that did not project the flavour embeddings onto definite G-parity, meson-
meson operators constructed in both octet multiplets would need to be included and
states of both G-parities would feature in the spectrum. This would significantly increase
the size of the operator basis and subsequently the computational cost. Having flavour
representations of definite symmetry also enables us to take advantage of Bose-symmetry

when considering products of identical meson octets which we discuss below.

4.2 Bose-Symmetry in SU(3)p

It is instructive to first think about Bose-symmetry in SU(2)g. For a pair of identical
mesons M; My, the total wavefunction, comprised of a product of flavour (x), spin (Q)
and spatial (R) wavefunctions, must be symmetric under the interchange M; <> M, and
this places constraints on the symmetries of each Wavefunction.E] For example, 77 in
isospin-1 is symmetric in spin (Qg), antisymmetric in isospin (xa) and therefore must
be antisymmetric in the spatial wavefunction (R,). This forbids isospin-1 77 in an even
partial-wave.

In SU(3)p, using the symmetries defined by the choice of SU(3)r Clebsch-Gordan
coefficients in Eq. 4.1} analogous restrictions can be deduced. Consider first identical

'For a product of mesons, the colour wavefunction is always symmetric.
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S =0 SR T .

8a: 3817 3D17 3D27 3D37 3G37 3G4a 3G5a s
5P1a 5P27 5P37 5F1> 5F27 5F37 5F47 5F5a

Table 4.1: Partial-wave content (¢ < 4) of multiplets 8; and 8, from a product of two

identical octets, 8, ® 8,, with intrinsic spins S,.

octets of intrinsic spin-0. Total spin S is zero and the spin wavefunction, g, is symmetric
meaning the product of flavour and spatial wavefunctions must be overall symmetric.
This leaves two possible combinations, y4R4 or xsRs. As 8; and 8 are symmetric and
anti-symmetric embeddings in flavour respectively, we deduce only partial-waves of even £
are permitted in 8; and odd ¢ in 8.

For identical octets with intrinsic spin-1, the symmetry of the spin wavefunction,
depending on the total spin of the meson-meson pair, is symmetric for S = 0,2 and
anti-symmetric for S = 1. It follows that when the spin wavefunction is symmetric, the
product of flavour and spatial wavefunctions must be totally symmetric, so either x4 R4
or YsRs, and when anti-symmetric, the same product must be totally anti-symmetric,
either xysR4 or x4 Rs. This restricts partial-waves with even S + ¢ to the multiplet 8; and
odd S + /¢ to 8s.

To summarise, for the product of two identical SU(3)g octet mesons transforming in 8;,
partial-waves are permitted where (—1)° = &;. Table summarises the partial-wave
contents of 8 and 8, for ¢ < 4.

4.3 Operator Constructions in [000]7;"

Single-meson operators transforming in the axial-vector octet (f1)s are constructed

according to Eq. . As discussed previously, we choose v = (1,0, 1), corresponding to the
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ai meson, with (I9)JP¢ = (17)17+. At rest, J© = 1* subduces into the [000]7}" irrep
and we construct a total of 8 single-meson-like operators, using up to two gauge-covariant
derivatives, as described in Section [3.2.1]

To determine a sufficient basis of meson-meson operators, it is instructive to consider
all relevant two-meson thresholds below the first three-meson threshold, (n)s(n)s(n)s, at
Een = 0.4434. We first consider two-meson thresholds formed from the product 8 ® 8 of
which there are three: (1)s(n)s, (w)s(n)s and (w)s(w)s. As in the isospin-2 study, all
meson-meson operators with corresponding non-interacting energies up to, and a modest
distance above, the cut-off are included in the operator basis for a robust determination of
the spectra.

Consider first (1)s(n)s-like operators. Using Eq. [4.5] negative G-parity constructions
appear in the 8; embedding and Bose-symmetry constraints restrict (1)s(n)s to even
partial-waves, of which only ¢ > 4 appear in [000]7}". Subsequently, there are no (17)s(n)s
operators with non-interacting energies below the cut-off and as such none are included in
the basis ]

For (w)s(w)s, negative G-parity again occurs for operators constructed in the flavour
symmetric embedding, 8;. The allowed S-waves for identical vector-vector multiplets,
shown in Table , are 1Sy and ®S, in 8; and 3S; in 85. As neither 'Sy nor %55 subduce
into [000]7;t, there are no (w)g(w)s operators at threshold. Corresponding non-interacting
energies for (w)s(w)s operators with non-zero relative momenta are above the cut-off and
such operators are excluded from the basis.

For (w)s(n)s, negative G-parity comes through the 85 embedding. No Bose-symmetry
constraints apply here as the multiplets are not identical. Meson—mesgn operators are
(10

constructed according to Eq.|3.2.2/and, as an explicit example, we give (9; constructed

from optimised operators transforming in [000]7] and [000] A7,

ir2 | L fattre otAT1 T2 tAT1
082 (1,01) — {\/6 (Qs(g,l,é) QS(%,fl,%) QS(%;I,%) QS(%,L%))
1 tTT 2 ATATL tTT 2 ATATL
+ % (QS(I,O,I) Q8(1,0,0) - Q8(1,0,0) Q8(1,0,1)
1 —0 —x0 1
— — (K"K = (K TK+T+_ AN = ()T ()] 4.7
\/6[( )(E)T — (K ) ()] \/g[(p)() (") (=] (A7)

where in the last equality we give the SU(2)r operators explicitly for reference.

2The smallest momenta required occurs at [p|? = 5 with [210] A2 ® [210] A5 — [000]77F.
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threshold at EBem
(ms(fo)r  0.3485(
(w)s(m)s  0.3632(2)
(w)s(w)s 0.4308(3)
(4)
(2)

mesons  a¢Fem
(m)s  0.1478(1)
(fo)r 0.2007(18)
(
(

(w)s  0.2154(2

)
(w)1  0.2174(3) (w)s(w)r ~ 0.4328(4

(m)s(m)s(n)s 0.4434(2

Table 4.2: (Left): relevant stable hadron masses. (Right): thresholds relevant for

multi-meson levels appearing in J¥ = 17.

The two-meson thresholds formed from the product 8 ® 1 that lie below the cutoff and
have a negative G-parity are (1)s(fo)1 and (w)s(w)1. Operators resembling both these
pairs of mesons are included in the basis.

For reference, relevant stable hadron masses and thresholds relevant for JX = 17 are
recorded in Table [£.2] The complete list of operators used to compute the matrix of
correlation functions in [000]7}" is given in Table [4.3|
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Lja, =16 | Lja, = 20 Lja, =24
8 x YT | 8 x YTy 8 x YT
(W)S[OOO]("?)S[OO()] i (w)S[OOO](n)S[OOO} (W)S[OOO]("?)S[OOO]
(f0)1[001]("7)8[00-1] | (f0)1[001}(77)8[00-1} (f0)1[001](77)8[00-1]
{2} (wW)s oy (Mspoy) | {2} (@)oo (Mot | {2} (@)sjo01 (1) 80015
(w)l[ooo](w)S[ooo] : (w)l[ooo] (w)S[OOO}
(f0)1[011]("7)8[o_1-1} {3} (w)8[011] (77)8[0-1-1]
]

{3} (W)S[Oll}(n)S[o-l-l (w)l[ooo} (w)S[ooo]
(fo)1 [111] ("7)8[_1_1-1]

{2} (w)8[111](77)8[-1-1-1]

17 ops.

;
|
|
|
|
|
|
|
l
|
: (fO)l[on] ("7)8[0-1-1]
|
|
|
|
|
|
|
|
|
:
: 20 ops.

|
|
|
|
|
|
|
|
|
|
|
T
|
1

Table 4.3: As in Table but for operators in the 8 of SU(3)r flavour transforming in
[000]T}". Meson-meson operators are ordered by increasing non-interacting energy (see
Section . The operators, MMy, are constructed from optimised M operators
with momentum types p; and ps respectively. Different momentum directions are summed
over as in Eq. . Single-meson operators are denoted ¢I'1).

4.4 Finite-Volume Spectra

Matrices of correlation functions were calculated on the lattice described in Section 3.3l In
addition, we also used a smaller volume, (L/ay)* X (T/a;) = 163 x 128 for which Nyees = 64,
Netgs = 532 and Niges = 2. The finite-volume spectra were determined using a variational
analysis and we present the energy levels in Figure [4.1]

We make some qualitative observations from the spectra. Firstly, we see an energy level
far below the lowest threshold which appears to be volume independent, characteristic of
a bound-state. This is in fact unsurprising as a previous study on these lattices of the
isovector spectrum [29] finds, using a basis of single-meson-like operators only, a ground
state in the (f1)s multiplet around the same energy.

Examining the spectra above the lowest energy level, we observe that the levels with
largest operator-state overlaps onto (w)s(n)s-like operators appear to be consistent with or

displaced a small distance above each of the non-interacting (w)g(n)s energies. Analogous
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behaviour was seen in the pr isospin-2 spectra (Figure where weak 35;-wave and
negligibly small ®D;- and *Ds-wave amplitudes were determined.

An energy level with dominant operator-state overlap onto the (w)s(w); operator
is found to be roughly consistent with threshold on each volume, indicative of weak
interaction in 3Sj-wave (w)g(w); in this energy region.

Regarding the (1)s(fo)1-like energy levels, these are found to be poorly determined
and carry large uncertainties, owing to the noisy (fo)1 with vacuum quantum numbers.
However, we find the levels are broadly consistent with the corresponding non-interacting
energies.

As a final comment, we find the next excited state in the single-meson-like spectrum
in Ref. [29] was found to be above (1)s(n)s(n)s threshold. This is consistent with our
observations in Figure that we do not observe any additional levels or resonant like

features below the three-body cutoff.
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Figure 4.1: Finite-volume spectrum for the (f;)g flavour multiplet in the [000]7}" irrep on

each lattice volume. Energy levels are coloured according to the largest operator-state

overlap factors. Black points correspond to energy levels with dominant operator-state

overlap factors onto ¢g-like operators, red are (w)s(n)s-like, blue are (1)s(fo)1-like and

green are (w)g(w)i-like. Errorbars reflect statistical uncertainties only. Points are slightly

displaced horizontally for clarity. Solid curves reflect non-interacting energies

corresponding to meson-meson operators included in the basis, as shown in Table 4.3}, and
dashed lines are thresholds.
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4.5 Summary

To conclude, the (f1)s multiplet appears to be a bound-state and interactions in the
5S1/°D1, pm partial-waves appear to be weak and similar in characteristic to the pm isospin-
2 study, with no evidence of resonant behaviour in an energy region below the three-body
cutoff. A rigorous scattering analysis would require significantly improved statistical
precision on the poorly determined (1)s(fo)1 levels and many moving frame spectra, as
in the isospin-2 study, to constrain the large number of coupled channels and partial-waves
in this scattering system. Furthermore, given that the qualitative observations suggest
amplitudes are similar in characteristic to the isospin-2 calculation, we do not pursue this
analysis further.

At a lighter pion mass, we may expect to observe resonant behaviour in isospin-1 pm.
For narrow resonances, the spectrum calculated using a basis of single-meson operators
appears to give energy levels near the corresponding resonant mass determined from an
amplitude analysis — for example the p in Ref. [30]. This makes the spectra figures in
Ref. [29], calculated using a basis of single-meson-like operators, a particularly useful
guide for identifying potentially resonant channels. As shown in Figure 14 of Ref. [29], the
pm threshold first appears to be below the a; energy on a lattice where m, ~ 391 MeV.
At this pion mass however, previous lattice calculations [30] find the p meson to be an
unstable narrow resonance and pm subsequently becomes the three-body m7wm channel.
Although significant recent progress has seen development in a quantisation condition for
three-body scattering [52(-60], the formalism has not matured to the level where we could
apply it to the a;.

As mentioned at the end of Chapter 3, the b; axial-vector, the C-parity partner of the
a1, has experimentally observed decays to 7w, dynamically-coupled in 3S;-, 3D;-wave.
At m, ~ 391 MeV the w is stable against strong decay. The negative G-parity of the w
forbids the decay to w7 and the lowest relevant threshold, w77, is closed. Considering the
qq-like spectra with b; quantum numbers, shown in Figure 15 of Ref. [29], we observe an
energy level a modest distance above mw threshold. This makes for an ideal candidate with
which to examine the effects of dynamically-coupled partial-waves in a resonant system.

With the framework and formalism in place, we proceed with a study of 7w scattering in
Chapter [5]



CHAPTER 5

A by resonance at my ~ 391 MeV

In Chapter [3, we presented a first calculation of pr scattering in isospin-2, determining
the 35— and *D;-wave J¥ = 1t amplitudes and their dynamical mixing, finding relatively
weak effects as expected in this exotic isospin channel. This was deliberately chosen
as a testing ground where resonant physics is not expected to feature and enabled the
development of the necessary tools and techniques for performing scattering calculations of
hadrons with non-zero spin. In Chapter [4] we examined pr in isospin-1 at the same heavy
pion mass and found evidence of a bound a; and weak interactions in pm. In this chapter,
we explore the scattering of a vector-pseudoscalar pair in a system where resonance physics

is expected.

The experimentally-observed b;(1235) [5] isovector with JP¢ = 1%~ is dominantly seen
through its decay to the mw final state, where the w is the lightest isoscalar vector meson
and has a very small decay width to three pions. As in the case of pm, we can have the 7
and w in a relative S, or *D;-wave — indeed, by studying the angular distribution in the
decay of the by, experiments have estimated the amplitudes of these two partial-waves [47].

JP¢ = 1%~ channel, in which

In this chapter, we will report on a study of the isovector
we expect to see a by resonance decaying to ww. In light of the discussion in the summary
of Chapter [4, we make use of Ny = 2+1 lattice configurations generated with a light-quark
mass such that the pion has a mass around 391 MeV. With this light-quark mass, the w
meson is found to have a mass around 881 MeV [26,77], and hence is stable against decay

to three pions whilst the by is expected to resonate, just above mw threshold.

To study the b; we compute matrices of correlation functions in three lattice volumes,
in a number of irreps at several overall momenta, employing a wide range of operators
resembling both single-hadron and multi-hadron structures. In addition to 7w, the m¢
channel becomes kinematically open in the energy region of interest. Although the ¢ is

heavier than the w, we find that it is also stable against decay to KK and 77w at the

83
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light-quark mass considered here. Furthermore, we pay attention to the fact that three-
body channels, 777 and mK K, which have relatively low thresholds even for m, ~ 391
MeV, can, in principle, play a role. Experimentally, three-body decays of resonances are
found to be dominated by two-body isobar resonances. For example, in a w7 final state
at relatively small total energy, the Dalitz plot will be expected to have the bulk of the
events in narrow horizontal and vertical bands around my. ~ m, and My, ~ mg, EI The
extensive use of three-meson operators, resembling 777 and 7KK, are employed in this
study.

In this calculation, we determine a large number of finite-volume energy levels in multiple
volumes and moving frames. To constrain the J© = 17 amplitudes, up to 36 energy levels,
each typically having statistical uncertainty at the tenth of a percent level, are utilised.
In addition, systematic tests exploring the role of the three-body channels are performed.
As discussed in previous chapters, the three-body scattering formalism has not reached
a maturity needed for a rigorous calculation, nevertheless we find evidence that these
three-body channels have negligible effect in this particular case involving a low-lying b,
resonance.

A previous lattice QCD study [49] of the b; limited itself to the rest-frame in one
rather small volume. By considering only two degenerate flavours of light quarks and no
strange quarks, any physics associated with the m¢ channel was disallowed. A very small
operator basis was used, such that only one usable energy level was obtained and this had
a statistical uncertainty at the percent level. Enforcing elastic 3S;—wave scattering only,
ignoring any effect from the ®D;-wave, and fixing the decay coupling of an assumed b,
resonance at a value equal to that extracted from experimental measurements, a crude
estimate of the b; mass was made in the case that the pion mass is 266 MeV. An earlier
study [78] used a different approach in which the light-quark mass was tuned such that the
by decay to mw is exactly at kinematic threshold. From the time-dependence of a single
correlation function, an estimate of the decay coupling was inferred.

It has been suggested [79] that the m¢ channel, coupled to mw, may feature a Z; resonance
analogous to the Z. enhancement that has been seen in the w.J /1 final state [80,81]. We
will find no evidence of a Z, resonance in this work.

We begin by examining the operator constructions relevant for this calculation.

IThere will also be a diagonal ‘reflection’ of the ag band due to the symmetry of exchanging the pions.



5.1. OPERATOR CONSTRUCTIONS 85

5.1 Operator Constructions

The region we study includes the opening of several multi-hadron thresholds: 7w, 7,
mrn and 7KK, and we find that this necessitates the inclusion of two-meson-like and
three-meson-like operators in our basis, as well as single-meson operators of fermion-bilinear
form which we expect to have good overlap with any bound state or relatively-narrow
resonance present. Four-meson thresholds lie beyond the energy region we consider,
and previous calculations suggest that local tetraquark-like operators have little effect
on the spectra [68,[82], so neither of these types of operators are included in the basis.
The construction of interpolating operators resembling single-meson, two-meson and

three-meson structures is discussed in the subsections which follow.

5.1.1 Single-Meson Operators

The construction of ‘single-meson-like’ operators follows the procedure detailed in Sec-
tion [3.2.1] with SU(2)p Clebsch-Gordan coefficients replacing SU(3)r in Eq. Single-
meson operators are written as YT for the remainder of this chapter.

In the construction of optimised operators for the stable w () and ¢ (QL), in each
relevant irrep, a variational analysis is performed on a matrix of correlation functions
calculated from a basis of hidden-light (uI'u + dI'd) and hidden-strange (5T's) flavour
structure, i.e. isospin-0. All relevant disconnected contributions that arise from self-
annihilations of quarks at source and sink respectively are computed but are found to be
small as shown in Figures 4 and 5 of Ref. [26]. This is consistent with the experimentally
motivated ‘OZI’ rule which postulates that diagrams with disconnected quark lines are
suppressed relative to connected ones - an implication being that ¢g pairs in isoscalar
mesons prefer not to annihilate. Within each irrep, the ground-state and first excited-state
are projected out, found to have dominant operator-state overlaps with hidden-light and
hidden-strange operators respectively, and correspond to the w and ¢ mesons.

We use the same flavour basis, but with pseudoscalar bilinear structures, for determining
the optimum 7 operator (Q;Q) in each irrep. Unlike in the vector case, there is significant
mixing between the hidden-light and hidden-strange flavour structures as is observed
through the disconnected diagrams (significant off-diagonal flavour contributions, see
Figures 2 and 3 in Ref. [26]), indicating, as is well known, that the ‘OZI’ rule does not

apply in the pseudoscalar channel.
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5.1.2 Two-Meson Operators

Our approach to constructing operators which resemble a two-meson structure has been
discussed in Section [3.2.2] where we again replace SU(3)p Clebsch-Gordan coefficients
with those for SU(2)p.

For energies below three-meson thresholds, previous calculations have suggested that
a sufficient set of operators for a reliable calculation of the spectra consists of single-
meson and two-meson operators. Recalling the discussion in Section [3.2.2] two-meson
operators OITVQ’MQ (p12) are efficient at interpolating the finite-volume energy levels near to

the associated non-interacting energies,

ES) \/m + 5|2 + \/mz + [pa]?

and truncating the two-meson operator bases when the corresponding non-interacting

energies are beyond the energy region of interest has been demonstrated to be sufficient for
a robust determination of the spectra. In this chapter, two-meson operators are written
M (5] My ) in all tables and figures, with M labelling the meson and p’ the momentum
type.

Correlation functions with MM operators at the source and/or sink feature Wick
contractions in which quarks annihilate either within an isoscalar meson or between two
mesons. Considering a basis with overall isospin-1 as relevant here, with Ml = uI'd and

MM = {7w, 7¢}, we need to evaluate diagrams whose structure is similar to those shown
in Figure 1 of [64] P

5.1.3 Three-Meson Operators

Three-meson operators, and operators with a structure resembling more than three
mesons, can be constructed by iteratively applying the two-meson operator construction.

Schematically,

Do | A ps| A D1os| A
Og/HlMQMS p123 Z Z (C( [P12] 12 [p3] 3 [p123] )OIJ{/[][\IINQAIZU( )QTAM@(;E»)

H12, 13 pra€{p12}* Hi2 K K
_p3e{ps}”
p12+p3=pi123

(5.1)

2This figure refers to MM = {7 K,nK} in isospin-1/2.
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where Og/jﬂ\l ‘fwz is a two-meson operator constructed from a product of optimised single-
meson operators. We have dropped the flavour labels here for brevity. Note that it does
not matter with which optimised single-mesons we formed the intermediate two-meson
operator, i.e. 0M1M2 (Ph2), Oi{gﬁﬂg (Pag) or OITM[I\1 ", (P13), as the tensor product is associative.
An argument for determining a sufficient set of three-meson operators, analogous to that

presented previously, would suggest calculating the corresponding non-interacting energies,

ES) = \Jmi + |Ri[2 + \fm3 + |2 + \fm3 + |52

and enforcing a similar truncation on the basis. While this approach has the advantage
of being straightforward, it pays no attention to the fact that we expect certain two-
meson pairs to feature resonating behaviour, the finite-volume analogue of the Dalitz-plot
enhancements, or that they may form bound-states.

Consider the example of w77 in isospin-2. Following the construction above, we would
be attempting to describe energy eigenstates of the m7 isospin-1 subsystem using (’)M M,
constructed using only ‘w7’-like operators. To reliably determine the isovector w7 spectra,
i.e. the p spectra, an operator basis including both 1 I't) and 77-like operators is needed
as shown in Figure 1 of Ref. [30]. An alternative approach, based upon this observation
and used in Ref. [68], utilises an optimised two-meson operator which will be a linear
combination of YT and wr-like operators. We denote such an optimised operator QE{,
where R indicates the meson with the corresponding quantum numbers, i.e. Qj) for the
example above. In general, multiple optimised operators may be relevant — Q;{v denotes
the optimal interpolating operator for the n'® excited state in the relevant meson-meson
subsystem.

Combining these operators with an optimised single-meson operator yields an alternative

set of three-meson operators, given schematically by,

Do | A s | A D3| A
OJJlrglng p123 Z Z C( [p12] 12 [pS] 3 [p123] )Qg&ﬁzuu( )QTASM?’(pg).

H12, 13 prae{pi2}* Haz Hs K
_P3e{p3}”
P12+D3=P123

(5.2)

3Lattice irreps contain more than one spin but for convenience we choose the label R corresponding to

the lightest such meson, e.g. in [000]7] we choose p.
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By design, we anticipate that these three-meson operators will efficiently interpolate

finite-volume levels in the region of an energy value,

EZ = E}f{?ﬁj (Pr2) + 4/ m3 + |p5/%, (5.3)

where Eﬁ;j (p12) are finite-volume energies calculated in the two-meson subsystem in irrep
[D12] A2, i.e. they will efficiently capture interaction in the two-meson subsystem assuming
weak residual interaction with the third meson. Calculating Eff;rl) energies, for all possible
combinations of two-meson subsystems that together with the third meson give the desired
quantum numbers, and truncating at a desired energy, provides a procedure for selecting

which of these three-meson operators to include in the basis.

To illustrate the construction presented above, consider the example of a three-meson
operator resembling 77y in the irrep [000] 7} with ¢ = 1*. We begin with the construction

shown in Eq. For py = s = p3 = 0, there is only one possible irrep,
(IG=17) (I%=17) (I€=0%)
—— N
[000]A; ® [000]A; ® [000]A; — [000]A7 ,
—_—— —— Y——

T us n

so no non-interacting w7n level, or corresponding operator, appears in [000] 7" at threshold.
If the pions are both given one unit of momentum, p; = p» = [001] and p5 = 0 (recalling

that directions of momenta p; are summed over), the product,

(I€=17) (I%=17) (I€=0") (I€=1+)
P e Ut U e N e N
[001] A, ® [001] A5 @ [000] A7 — [000]T;" @ ...
N N N —

™ s n

appears once in [000]T;" with I¢ = 1*. Following the construction outlined in Eq.

yields one operator of the form (’),T”m with corresponding non-interacting energy,

E®) =2/ m2 + (3)* +m,,.
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Now, we consider bound-states and resonances in the 77 and 77 two-meson subsystems
and construct operators according to Eq. Unlike in the previous construction, the order
in which we combine the single-meson operators does matter as the intermediate Q]% depends
on the flavour structure of the two-meson subsystem. As before, for f) = ps = 3 = 0
there is no embedding in [000] 7;". For f, = py = [001] and ps = 0, there are two possible
distinct two-meson subsystems to consider.

First, for the 77 subsystem, there are three possible flavour combinations, I¢ =
0t,1%, 2%, and three possible irreps with momentum gy, = 0, namely [000] A, [000] T} and
[000] EF. When combined with the 7, only the 77 subsystem with /¢ = 1% transforming in
[000] T} gives the desired overall flavour and irrep. This 77 subsystem contains quantum

numbers corresponding to the p and the construction is, schematically,

(S=1-)  (f=1)  (€=0%)  (S=1)
—— — —— ——
([001},42 ® [001]A2) ® [000]A; — [000]T7
—_—— —— N—_——
T T n
(1°=1)  (C=ot)  (1°=1%)
—_—— — ——
0007 ® [000]A; — [000]T5F . (5.4)
—— Ne——
P n

Calculating the E (2+1) energies amounts to determining the p-like energy eigenstates in

n.i.

[000] T} with I¢ = 17 and adding these to the 1 energy according to Eq. ,
EETY = B ([000]) +m,,

where we recall that p" denotes the n'® energy eigenstate within the irrep. In many cases,
including here, only the lowest energy two-meson state (n = 0) yields an operator below
the energy cut-off.

The second possible construction considers the 7n subsystem where there is only one
flavour combination, I = 1~, and one possible irrep, [001] A;. These quantum numbers

correspond to the ay meson. Schematically,

(16=17)  (19=07) (I6=17) (I6=17)
—N—  — e e ——
(foo1]45 @ [o00]4; ) @ Jo01]45 — fo00]7;"
——— N—— N——
™ n ™
(16=17)  (1%=17) (I9=1%)
—— — —
[001]A; ® [001] A5 — [000]T5, (5.5)
—_— =

ag T
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and, as before, we determine the Eﬁfrl)

in [001]A; with /¢ =1~ and add these to the 7 energy according to Eq. ,

(2+1) _ A 2
En; 7 = Eg([001]) + y/m2 + ().

For each Er(fjl) below some energy cut-off, we can construct operators of the form O]

via Eq. . The E;([001]) energies are an example of a case where it may be prudent
to consider multiple states (n > 0) in the two-body sector. Figure 4 of Ref. [62] shows

energies by calculating the ag-like energy eigenstates

the [001]A; spectra corresponding to the E(ﬁ)%([()()l]) energies — there are many nearby

low-lying energy levels on each volume. Following the construction given in Eq. [5.2] leads

to multiple operators of the form O} . corresponding to similar Eﬁfrl).

As an example of the large number of diagrams needed to evaluate the RM operators,
necessary to efficiently interpolate both 7mn- and 7K K-like states, we consider the case
of an agm operator at the sink and a qg-like operator at the source. Here, the optimised ag
operators are formed from a linear superposition of ¢q, 71 and KK constructions, listed
in Table |5.6| This leads to the diagrammatic components shown in Figure [5.1f which need
to be connected to the quark lines from the 7 and the source operator to form complete
Wick contractions. It follows that, even in this simple case of a by — agm correlator, we

would have diagrams with the structures shown in Figure [5.2]



5.2. LATTICE DETAILS 91

Figure 5.1: Quark propagation lines (black are light quarks, green are strange quarks)

from operator constructions featuring in an optimised ag-like operator.

G

Figure 5.2: Wick contraction topologies for by — agm. Left meson resembles the by, upper
right meson the 7 and the remaining one or two mesons the aq (only a subset of the
topologies in Figure is relevant here).

5.2 Lattice Details

Correlation functions were computed on anisotropic lattices of spatial volumes (L/as)? =
163, 20% and 243 each having temporal extent T'/a; = 128, where the temporal lattice
spacing, a;, is finer than the spatial lattice spacing, as ~ 0.12 fm, with an anisotropy
& = as/ay ~ 3.5. Gauge fields were generated from the improved gauge and fermion action

discussed in Section 2.2, with Ny = 2 + 1 flavours of dynamical quarks where the strange
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(L/as>3 X (T/at) Nvecs chgs Ntsrcs
162 x 128 64 479 8 — 32
203 x 128 128 452 - 603 4
243 x 128 160 553 4

Table 5.1: Number of distillation vectors Nyecs, gauge configurations N, and

time-sources Niges used in the computation of correlation functions.

quark is tuned to approximately its physical mass and the degenerate light quarks are such
that m, ~ 391 MeV [21]. All relevant Wick contractions were calculated without requiring
additional propagator inversions beyond the basic set of ¢y, —t and t — ¢t perambulators for
light and strange quarks, which were computed for use in previous calculations on these
lattices. The very large number of diagrams incurs only a combinatoric cost associated
with the contraction of the perambulators with the operator constructions.

Correlation functions were computed using the number of distillation vectors, gauge
configurations and time-sources shown in Table Typically, we calculated all the
elements of the matrix of correlation functions, including the transposes, C;; and Cj;,
which are related by hermiticity. In a few cases where there are a particularly large number
of diagrams contributing, we made use of hermiticity to infer C;; from the computed Cj;.

Masses of relevant stable hadrons are shown in Table , where 7, K, n) and o masses
are taken from Refs. [28], [64], [62] and [7] respectively. Using energy levels on three lattice
volumes, we determine the masses and anisotropies of the w and ¢ mesons and show the
results in Figure [5.3]

The same characteristic splitting between the |A\| = 0,1 components, as for the stable p
meson in Section [3.4] at the larger quark mass, is found, and we attribute this splitting
to discretisation effects given that m,L 2 4 and m,T 2 9, meaning the finite-volume
effects here are also small. As in Section the values of a;my,, a;my and £ used are
obtained by taking the largest variations within one standard deviation of the means
across the different helicities. This yields the masses given in Table [5.2| and an anisotropy
¢ = 3.443(48) which is consistent with the anisotropies previously determined for m, K
and 7 [28,624/64].
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meson (JT) aym threshold a; Eem
7(07)  0.06906(13) mw  0.22447(32)
K(07)  0.09698(9) arp 0.24176(26)
n(07) 0.10364(19) w¢  0.24855(25)
s(0%)  0.1316(9) 7KK 0.26302(18)
w(17)  0.15541(29) rro 0.26972(92)
7(07)  0.1641(10) mrrmw 0.27624(26)
6(17)  0.17949(21) ary 0.30222(102)

Table 5.2: Left: The masses of relevant stable hadrons with uncertainties. Right:

Relevant threshold energies with uncertainties.

<atEﬁ)2 € = 3.416(8) [*/Nur =24
€ =3AT1(6) [/Nui-21
007 + :
€ = 3.408(13) (/s ~ 25
Piaj=1 A2 € = 3.481(10) [v*/us - 17
7 Pr=0 g
0.06 + z
s ;
o
005 + 2 .
o7 WiA|=1 o
g Wa=0
0.04 g gft
A i
// &
0.03 —E/e//,
! | | | | < 9 >2|ﬁ‘2
0 0.1 0.2 0.3 0.4 L/ag

Figure 5.3: Momentum dependence of w and ¢ energies and fits to Eq.|3.10, Blue and red
lines correspond to the w meson with |A| = 0 and 1 respectively. Similarly, green and
orange lines correspond to the ¢ meson with |A| = 0 and 1. Points are shown with
statistical uncertainties and grey points show the (L/as) = 16 in-flight energies which are
not included in the fit.
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5.3 Operator Bases

In this study, we are principally interested in irreps that contain J¥ = 1*. For irreps
at rest, J' = 17 subduces only into T;". However, for in-flight irreps, different helicity
components of J¥ = 17 are subduced across multiple irreps, as shown in Tables -
For example, A = 0 and +1 subduce into A, and FEs respectively for overall momentum
P = [001]. Furthermore, at non-zero momentum, parity is no longer a good quantum
number and so many irreps contain both J* and J~, e.g. 17 and 1.

For irreps in flight, we will restrict our attention to PA,. These contain subductions of
the A = 0 part of J¥ = 1* but, because reflection parity 7 = P(—1)7 is a good quantum
number for A = 0, they do not contain J” = 17. In contrast, [001] E5 contains J© = 1~
as well as JP = 17, The latter gives comparatively lower-lying J* = 1~ levels, as seen in
Ref. [30], and so will lead to a dense spectrum of mixed J” = 1* and 1~ energy eigenstates.
Considering only PA, allows us to avoid the complication of disentangling the J = 1+
and 17 scattering amplitudes.

The relevant thresholds for the isovector sector with positive G-parity are shown in
Table 5.2l In the construction of correlation matrices we utilise two-meson operators
resembling 7w and m¢ and three-meson operators resembling 77 and 7K K. All three-
meson operators are of the form O&M corresponding to pn and agm for wmn-like operators
and aor and K*K for 7K K-like operators. As the mro—threshold also opens in our
energy region, three-meson operators resembling po and a;m were considered for inclusion.
These appear in a relative P-wave in the [000]7; and PA, irreps at values of Er(f;rl) that
lie far above mrrm—threshold. Similarly, relevant mmo non-interacting energies, El(l?’l), are
far above mrwm—threshold. Although the construction of operators resembling four-mesons
could be done analogously to the three-meson operator construction described above, we do
not include these in our basis and choose to restrict to energies below the mrrm—threshold.

The operator basis used for the [000] T} irrep on each lattice volume is presented in
Table Included are all two-meson and three-meson operators corresponding to F (Zi). and

n.

Er(ff_rl) below 7T7r7r7r—threshold The operator lists for P A, irreps with P # 0 are recorded

4The optimised operators Q;{a for p, ag and K* used in RM operator constructions are determined
independently in each relevant irrep using variational analysis with the operator bases that are presented

in Appendix

5There are no E&)

n.i.

below 4m, in [000] 7} .
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L/as =16 L/as =20 Ljas =24

T [000]%[000] T [000]W[000] T [000]%[000]
Tr[000] ¢[000] T[000] ¢[000} T000] ¢[000]
P[000]M[000] £[000]77[000] P[000]M[000]
Ko Koo, Koo Koo oo K ooy

{2} 0011wi001)

Table 5.3: [000] T} operator basis for each lattice volume, with operators ordered by
increasing F, ;. The maximum number of single-meson operators, N, is denoted by

N x 9pT'; various subsets of these were considered to obtain robust fits. The number in
braces, { Ny}, denotes the multiplicity of linearly independent two-meson operators if

this is larger than one.

in Appendix [5.A] We include, as well as all low-lying two-meson operators, also the lowest
three-meson (RM) operator in each irrep, with the intention of robustly determining the

@41 o g

spectra up to the lowest £ ", energy. Moving frames were found to be essential in

determining the sign of the off-diagonal entry in the t-matrix between dynamically-coupled
partial-waves in vector-pseudoscalar scattering, as shown in Section [3.6.3, and provide
more energy levels with which to constrain the amplitudes.

In order to estimate the strength of partial-waves with J > 2 that feature in [000] 7;" and
P Aj, on the largest volume, we also computed spectra in irreps [000] £, [000] 75", [001] B,
and [001] By, whose partial-wave content are presented in Tables and . In addition
to the vector-pseudoscalar partial-waves presented in the tables, the [001]B; and [001] By
irreps also feature pseudoscalar-pseudoscalar J* = 3~ (*F3) partial-waves: 77{'F3} and
KK/{ A 3}. The operator bases used for these irreps are presented in Appendix .

As we are considering the G-parity positive isovector sector, the neutral channels have
charge-conjugation C' = —. The contributing J”¢ includes our target 1*~ where we expect
a low-lying b; resonance, which in the quark model would be a ¢g spin-singlet in a P-wave.
The 27~ and 37~ channels are expected to resonate at a higher energy, corresponding
to the py, p3 resonances, which would be spin-triplet D-waves in the quark model. Still

higher, we might have a 3*~ resonance, bs, as a spin-singlet F-wave ¢g. In addition, we
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also have contributions from the exotic 07~ and 2%~ channels — they do not appear in the
qq quark model and previous lattice calculations [29] suggest that they may resonate in
the form of hybrid mesons at much higher energy. As such, because they do not resonate
in this energy region and feature at least a P-wave threshold suppression, it follows that
we expect all partial waves except J© = 17 to be small at low energies, and indeed we will
find this to be the case.

5.4 Finite-Volume Spectra

The finite-volume spectra, extracted from a variational analysis of the matrix of correlation
functions computed from the bases of operators given in Table [5.3] are presented in
Figure 5.4 On the largest volume (L/a;, = 24), the principal correlators illustrate the
quality of the signal extraction for each energy level and the operator-state overlap factors
reflect the contributions from operators in the basis. It can be seen from the overlap
factors that the two-meson and, in particular, the three-meson operator constructions
efficiently interpolate the associated states. In some cases, an eigenstate has a dominant
overlap with only one operator, suggesting that the state closely resembles that particular
operator structure.

Consider first the number of energy levels expected below a; Fem &~ 0.27 on each volume.
In the absence of residual meson-meson interactions, we would expect four on each lattice
volume: one at each of the two £ corresponding to mogowooo and moooPooo, Shown as solid

horizontal lines in the figure, and one at each of the Ef:rl) corresponding to ppoonooo and
KooK oo, shown as short dotted horizontal lines. Counting the number of energy levels
actually extracted, we find five, with an ‘additional’ level appearing near w¢ threshold.
This may suggest the existence of a narrow resonance, as seen in a calculation of the p [30]
and K* [83] resonances, with a mass close to m¢ threshold | On the largest volume, the
consequence of mypiwpe1 having a multiplicity of two is clear: two energy levels are found,
one very close to the non-interacting energy and one somewhat higher in energy.

In Figure [5.4] we also present an investigation of the importance of including RM

operators in the basis. The rightmost panel shows the spectrum extracted when pn and

5We will see that the proximity of the resonance to m¢ threshold is purely coincidental as hinted at by
the operator overlaps in Figure as discussed below.
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K*K operators are excluded, compared to the spectrum extracted with the full basis.
With the smaller basis, we see that typically the levels close to the pn and K*K ‘non-
interacting’ energies are no longer found. The spectrum at lower energies shows only
modest discrepancies, except on the smallest lattice volume (L/as = 16) where we might
indeed expect the finite-volume effects associated with pn and K*K to be largest. Finding
‘incorrect’ spectra due to ‘incomplete’ operator bases has been demonstrated in previous
works. One example can be seen in Figure 1 of Ref. [30] where including both ¢T'% and
mm operators is shown to be essential in order to robustly determine the p spectrum.
Figure demonstrates an analogue of this for the case of three-meson operators.

Qualitative observations about the spectrum can be ascertained from a consideration of
the operator-state overlap factors shown in Figure 5.4 The energy level just below mw
threshold on all volumes has significant overlap onto both myowogo and It operators.
This characteristic might be expected if a ¢g-like resonance lies nearby [4,130]. For the two
levels in close proximity to 7¢ threshold, one appears dominated by Ity operators with
some overlap onto 7w, pn and K*K operators, while the other is completely dominated
by mooo®o0o. Furthermore, we observe that all other levels have very small overlaps
with the moogpo00 Operator, reflecting the fact that the matrix of correlation functions is
approximately block diagonal with respect to mogoooe. This suggests that w¢ is essentially
‘decoupled’, as might be expected from the ‘OZI rule’. The states close to the pn and K*K
‘non-interacting’ energies are observed to have large overlap with pn and K*K operators
respectively. The highest two states shown, near to the mypwpor two-fold degenerate non-
interacting energy, differ somewhat in their overlaps. The level shifted up has overlap with
both the myoiweo1 and ¢TIy operators, while the other, which lies on the non-interacting
energy, has significant overlap only with the mypwgpo1 operators.

In Figure , we present the cm-frame finite-volume spectra for irreps [000] 7}~ and
P A, on the three volumes, with only those levels found below the lowest Eﬁfl) or El(l?’l)
shown. Points in grey are levels that prove to be sensitive to the presence of pn, K*K
and agm operators in the basis, or which are very close to the energy cut-off, and these
levels are excluded from the main scattering analysis in Section Although we take
a conservative approach and exclude these levels, we will find in Section that they

"Errorbars on the energy levels include estimates of systematic uncertainly coming from varying g
and fitting time ranges, and reasonable variations of the operator basis. Also included is the effect of the

uncertainty on the anisotropy which appears when we boost back from the ‘lab’ energy to the cm frame.
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are mainly well described by the scattering amplitudes, and we re-examine these levels in
Section [B.71

For irreps P A, with P # 0, the density of energy levels is much higher than in irreps
at rest — more momentum combinations for two— and three-mesons with associated Er(lzl)7
Eﬁfl) and Er(131) lying below the mmrm—threshold are possible. This can make identifying
an ‘additional’ level more challenging in these irreps. However, in the [111] Ay irrep we
can clearly see an additional energy level on each volume relative to the number expected
from counting the non-interacting two-meson energies. We also observe an ‘avoided level
crossing’ where the mygow111 non-interacting energy crosses a; Ecy, ~ 0.25, another signature
characteristic of a narrow resonance in this energy region.

In Figure , the finite-volume spectra on the L/a, = 24 lattice volume for irreps
[000] T5,F, [000] E—, [001] B; and [001] B is presented. We observe very little deviation
of the extracted energy levels from non-interacting 7w energies, suggesting that the ww
scattering amplitudes in J > 2 partial-waves are very small in this energy region. We also
find levels in [001]B; and [001] By consistent with non-interacting 77 energies and with
dominant overlaps onto 7w operators. This is in line with the results of Ref. [30] where
the mr{'F3} amplitude (J¥ = 37) was found to be consistent with zero in this energy
region. We also find a level in [001]B; consistent with the non-interacting KK energy
and with dominant overlap onto KK operators, suggesting that the opening of the K'K

threshold does not enhance the scattering in J¥ = 3.
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Figure 5.4: Left: Finite-volume spectrum in the [000]7}" irrep on three lattice volumes.
Black points give the energy levels, including statistical uncertainties, from a variational
analysis using the operator bases in Table Solid curves are two-meson non-interacting

energies, atE(2) short dashed horizontal lines are atE(2+

n.i.’ n.i.

1), and long dashed horizontal
lines show the two—, three—, and four—-meson thresholds. Multiplicities (if greater than
one) are shown as {n}. For each energy level on the largest volume, we show the principal
correlators, plotted as A,(t,to) eBn(t=t0) for ¢4 = 10 a; so that a horizontal line is observed
when a single exponential dominates. Points show \,(¢,10) and error bars correspond to
the one-sigma statistical uncertainty. Curves show fits to the form described in the text;
the curves show the fit range and grey points are not included in the fit. The histograms
show the operator-state overlap factors, Z* = (n|0!(0)|0), for each energy level on the
largest volume for the MM = 7w (dark blue), m¢ (green) and RM = pn (blue-green),
K*K (purple) operators along with a sample set of single-meson operators subduced from
JP =17 (red) and J* = 3" (orange). The overlaps are normalised such that the largest
value for any given operator across all energy levels is equal to one. Right: The spectrum
extracted when pn and K*K operators are excluded from the basis (black) compared with

the complete spectrum (grey).
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Figure 5.5: Finite-volume energy levels in the cm-frame for [000] 7;F and P A, below the
lowest E (?;rl) or E®). Black points are used in the scattering analysis in Section 5.5 while

n n.i.
grey points are excluded from the main analysis as discussed in the text. Solid curves are
two-meson non-interacting energies, a;F )

lowest Ef;’l) or B

n.1.’

short solid grey horizontal lines show the
and long dashed horizontal lines show the two—, three—, and
four-meson thresholds. Multiplicities (if greater than one) are shown as {n}. The

horizontal axes are in units of L/as.
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Figure 5.6: As Figure [5.5 but for irreps [000] 75", [000] E—, [001] B; and [001] B, on the

largest lattice volume. Dashed curves show non-interacting two-meson energies where the

corresponding operator was not included in the basis.
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5.5 Scattering Analysis

Scattering amplitudes are calculated following the procedure described in Section
utilising the general two-body formalism set out in Section 2.7, We therefore mainly
restrict our attention to the two-body channels, 7w and m¢, and in Section we estimate
the systematic effects of neglecting the three-body channels 771 and 7KK in the energy
region considered, finding them to be small.

In the case of a vector-pseudoscalar channel in J¥ = 1%, there is never rigorously elastic
scattering — as soon as the mw threshold opens, there are always two coupled partial-waves,
35, and 2D;. However, at low energies the angular momentum suppression of the D-wave
may make the system effectively elastic in S-wave and we examine this case in Section [5.5.1

Scattering with more than one partial-wave was discussed in detail in Chapter [3| and
it is straightforward to incorporate multiple hadron-hadron channels. We parameterise
the energy dependence of ¢(s) which, for more than one partial-wave and hadron-hadron
channel, can be expressed in terms of a real symmetric K-matrix, K (s), where

1 _ 1
[K 1(8)}£Ja,é’Jb

(2K)" 2K + 0o Tap(5), (5.6)

[t_l(s)}éJa,E’Jb -

is an augmented version of K (s) given in Eq. accommodating a hadron-hadron
channel index a. It follows that I,,(s) = I,(s) da is a matrix diagonal in hadron-hadron
channel where unitarity constrains the imaginary part of I,(s) in each hadron-hadron
channel. As presented in Appendix [3.D] we can take a number of different forms of I,(s),
all subject to the constraints imposed by unitarity, to diversify the parameterisations.
One parameterisation we utilise expresses the components of K~'(s) as polynomials in

87
[K_l eJa 21 Jb cha oy S" (5.7)

where ¢(™ is a real symmetric matrix. Flexibility in this form comes from varying N and
allowing parameter freedom in different combinations of cg})a o coefficients.
An alternative is to parameterise the components of K(s) directly, using a parameteri-

sation of the form,

a e
Kejapn(s) = Beral g nls + ZWJQ v 5" (5.8)
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where m is a real parameter, gys,(s) is some real polynomial in s, and 4™ is a symmetric
matrix of real parameters. These forms assume nothing about a nearby resonance or
bound state but the inclusion of a pole term can efficiently describe such behaviour where
it is present. These and similar K-matrix parameterisations have been successfully used
in previous lattice QCD calculations of three coupled-channel resonant scattering [7},62]
and the non-resonant vector-pseudoscalar scattering in Chapter (3| (Ref. [84]).

As an explicit example, one that we will make use of later, consider a K-matrix

parameterisation suitable for describing the dynamically-coupled J¥ = 1* channels
7rw{35 1}, 7rw{3D1} and 7r¢{3S 1} . One possible choice, with 7 free parameters, is,

g?rw{351} gmu{351} gﬂw{3D1} gmu{351} gﬂqb{GSl}

1
K(S) = 2 — s Irwsy) IrwfDi} giw{B’Dl} IrwPD1} Inp 351}
2
Irwpsiy Irpfsy  InwfDi} Inpfsi) 9o sy
0 ©) 0
77(761.)1{35 1w {3S1} 77rw $81},mw D1}
+ Vﬂw{ssl},ﬂwﬁDl} 0 - 0 ’ (59)
0 0 Tro sy rofsiy

where this form allows mixing between 7w and 7¢ channels only through g, ,ps,3-

To include additional partial-waves that contribute as a consequence of the finite-
volume but which do not mix in an infinite-volume, i.e. those with distinct J* as seen in
Tables and 3.7, we modify the t-matrix by including additional diagonal blocks,
each corresponding to a unique J¥ (recall the example given in Eq. .

Statistical uncertainties on the scattering parameters and parameter correlations are
determined by calculating the second derivatives of the correlated x? at its minimum. We
make a conservative estimate of systematic uncertainties on each scattering parameter
due to the uncertainties on stable hadron masses and the anisotropy by repeating the y?
minimisation fitting procedure at all the various combinations of & 4 6¢ and m; 4+ dm; ]
Unlike in the case of pm scattering in isospin-2, where the largest systematic variation in the

amplitude was observed by decreasing the hadron masses and increasing the anisotropy (and

8In principle, we should also consider 7¢ in the 3D; partial-wave; however, suppression due to the
centrifugal barrier factor, compounded with strong OZI suppression of ¢, suggests it will be negligibly
small. We will indeed find that the amplitude is consistent with zero in the energy region we consider.

9Values of the anisotropy, masses and uncertainties are given in Section
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vice-versa), the significant interactions at play here necessitate an evaluation of all possible
combinations — as it is less clear how these variations propagate the uncertainty. For
each of these minimisations, we keep the finite-volume energies, E.n,, their corresponding

uncertainties, d E.m, and correlations between energy levels fixed, where,

o 1 21 \° o2
atEcm - f(atEIabg) = (a'tElat) o 6_2([1/@ ) ‘n|

B 8f 2 ) 8f 2
Q¢ 5Ecm = J(m) (CLt 5Elat) + (a—§> 5527 (510)

and Fj,; is the energy in the lattice frame. For each scattering parameter, the largest

change in the central value is quoted as its systematic uncertainty.

5.5.1 Elastic 7w{’S,} Scattering

Below m¢ threshold, the kinematically-open hadron channels are the two-body 7ww and
three-body m7n. We expect m7n to become an important channel near the lowest Eﬁfrl)
where the p and ag resonances enhance the 77 and 71 subsystems respectively. The lowest
Eﬁfl) (and Er(f?) in each of the irreps we consider is typically much higher in energy
than the m¢ threshold. For a first analysis, we therefore ignore m7n and return to this in
Section 5.7

In this energy region only slightly above mw threshold, the centrifugal barrier suppresses
0+0

cm )

contributions of higher-partial waves, ty;p; ~ k such that we expect the *D; contribu-
tions to the coupled {*S;,D;} partial-waves to be rather small, assuming the threshold
suppression is not overridden by a resonant enhancement in *D;. Similarly, following the
discussion in Section [5.3| 7w scattering amplitudes in other partial-waves that appear in
these irreps due to the finite-volume are expected to be suppressed relative to the 3S;
amplitude and to have no significant resonant enhancement below w¢ threshold. As such,
we can attempt an elastic analysis of 7w{3S;} scattering at low energy.

We use 20 levels, all at least one standard deviation below the w¢ threshold. Specifically,
for each irrep, these correspond to the lowest level on each of the (L/as) = 16 and 20
volumes and the lowest two levels on the (L/as) = 24 Volumem shown as the black points

below 7¢ threshold in Figure [5.5] The discrete phase-shift points, calculated through the

00n the (L/ay) = 24 volume, of the two levels close to m¢ threshold, the slightly lower level is included
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one-to-one mapping described in Section [3.2] are determined and are plotted in Figure [5.7]
There is a clear trend for them to increase, as energy increases from 7w threshold, to a
value of around 90° as they approach the energy cut-off at w¢ threshold. This is indicative
of a narrow resonance with mass located somewhere near m¢ threshold.

In addition to extracting discrete phase-shift points, we also fit the spectrum using
energy-dependent parameterisations of elastic scattering. A selection of choices which
describe the finite-volume spectra well are included as grey curves in Figure with the
details of the parameterisations presented in Table [5.13] of Appendix [5.B] As an example
of a parameterisation which can describe the data, we choose as a reference amplitude,
plotted as the blue curve in Figure

2
gﬂw{351}
2 Y
m= —s

K(s) = (5.11)

using the Chew-Mandelstam prescription for 7(s) with Re I(s = m?) = 0. We find the

best fit description of the finite-volume spectrum is,

m = (0.2472 £ 0.0007 & 0.0003) - a; * 1 —0.04
Jrwpsy = (0.068 £0.009 +0.010) - a; " 1

X2/Ndof = 2105—_12 = 084,

(5.12)

where the first uncertainty is statistical and the second is systematic as discussed above,

and where the matrix shows the correlations between the parameters.

5.5.2 Dynamically-Coupled mw{’*S;}, mw{’D,} Scattering

Here we relax the assumption of negligible mu{?’Dl} contributions and perform a coupled-
channel analysis on the dynamically-coupled WW{SS 1} and mu{?’Dl} system, restricted to
the same low energy region below m¢ threshold as in Section [5.5.1 Motivated by the
apparent resonant behaviour in the mu{SS 1} phase-shift in Figure we should allow for
a resonance to have a 7rw{3D1} coupling, as this could significantly enhance the ﬂw{le}

contribution above the suppression imparted by the centrifugal barrier.

but the slightly higher level, essentially a decoupled 7¢ energy level as indicated by the histograms in
Figure is excluded.
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Figure 5.7: mu{?’S 1} clastic phase-shift assuming no *D; amplitude. The blue line shows
the reference amplitude given in Eq. with the blue bands reflecting the statistical
(inner) plus systematic (outer) uncertainty. Grey lines and bands correspond to a range
parameterisations presented in Table [5.13| of Appendix with only the statistical
uncertainties shown. The point size (small to large) of the discrete phase-shift point

encodes the lattice volume (small to large).

A choice of reference amplitude capable of describing the finite-volume spectra is the

three-parameter,

2
K(s) = 1 I fisyy w1} Jrw D} (5.13)
- S gww{?’sl} gﬂw{le} g72rw{3D1}

again using the Chew-Mandelstam prescription for I(s) with ReI(s = m?) = 0. The

resulting best-fit parameters are found to be,
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m = (0.2471 £ 0.0007 £ 0.0004) - a;*  [1 —0.04 0.00
Jrwpsy = (0.071£0.011 +0.010) - a; ' L 049
Gnwppy = (0.45£0.91£0.28) - q X

X2/Ndof = % = 087

(5.14)
The parameters m and g,,pg; are compatible with those of the reference amplitude in
Eq. and we find g,,pp to be consistent with zero within uncertainties. In Figure 5.8
we present the 7rw{3S 1} and ww{BDl} phase-shifts and the €(7rw{3S 1}|7rw{3D1}) mixing-
angle as defined in the Stapp-parameterisation [65] and given in Eq. . A number of
different K-matrix parameterisations were explored and are plotted as the grey curves
in Figure [5.8 and listed in Table [5.14] of Appendix [5.B] We observe that all descriptions
exhibit a 7Tw{351} phase-shift compatible with the behaviour seen in Section , a
mu{?’Dl} phase-shift that is very small, and a mixing-angle that is consistent with zero

within a modest uncertainty over this energy range.

5.5.3 Coupled 7w{®S,}, nw{’D,} and 7¢{3S,} Scattering

We now consider scattering amplitudes in an energy region up to the mrmm—threshold. In
this region, 7w, w7y, ¢, TKK and 7ro are all kinematically open, however, by using

only energy levels below the lowest Er(f:rl) or B

n.i.

in each irrep, and excluding any energy
levels which show significant sensitivity to the presence of pn, K*K and aom operators, we
propose that we can effectively neglect the effect of three-body channels. This provides a
total of 36 energy levels — all the black points shown in Figure [5.5

Both 7w and 7¢ are vector-pseudoscalar channels dynamically-coupled in *S; and *D;
partial-waves. However, considering the angular momentum suppression for the heavier
threshold and the lack of mixing observed in the histograms presented in Figure [5.4] we
assume that 7T¢{3D1} will have negligible impact at low energies. We will in fact show that
this is the case in Section [5.7} Subsequently, we are left with a system of three coupled
channels: mu{?’S 1}, 7rw{3D1} and 7rgz§{3S 1}. Many other partial-waves can contribute to
the finite-volume spectra as can be seen from Tables [3.1] and but, as discussed
in Section [5.3] we expect these to be negligibly small and will show this explicitly in
Section 5.7
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To parameterise the energy dependence of the three-channel t-matrix, we use K-
matrices of the form in Eq. restricted to linear expansions in g, (s) and ~(s). Many
parameterisations are used and successful fits are recorded in Table[5.15/of Appendix [5.B] It
should be noted that, while use of the K-matrix guarantees unitarity, it does not guarantee
good analytic properties. Indeed, we found that some parameterisations, which successfully
describe the finite-volume spectra, have t-matrix pole singularities at complex energies
on the physical sheet. Such poles are forbidden by causality, and these parameterisations
must be rejected as giving rise to unphysical solutions. A list of such parameterisations is
given in Table of Appendix and the resulting amplitudes are omitted from any
subsequent figures.

As a reference amplitude, the five parameter K-matrix,

1 g72rw{351} Inwsiy Jrwppyy O 77(r(2{351},m{351} 0 0
K(s) = —5— | Irws) Inwppy) Gz wtny 0f+ 0 0 0
0 0 0 0 0 77(;){55 11,7351}
(5.15)

provides a good description of the finite-volume spectra with fewest free parameters, used

with the Chew-Mandelstam prescription with Re I,(s = m?) = 0. The best-fit parameters

are,
m=(0.2465 % 0.0007 +0.0001) - a;*  [1 —0.05 0.05 —0.01 —0.23]
rogisy = (0.106 £ 0.007 £ 0.007) - a; " 1 070 —054 —0.06
Irwppy = (1.08+£0.47 +0.28) - a; 1 —0.39 —0.06

1 symopisy = 035 £0.1940.18 L 029
Y sy mopsy = 000 +0.2440.27 .

XQ/NdOf == % = 1.19.

(5.16)
No improvement in the description of the finite-volume spectra was found by including
freedom in g,4pg,y- Subsequently, we fixed this parameter to be zero in the reference

amplitude.
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There is no established method in the literature to minimally display the 6 real degrees
of freedom of the S-matrix in three-channel scattering. For the two-channel case, the
Stapp-parameterisation is minimal with regard to unitarity and reduces to single-channel
phase-shifts when the channels decouple. No generalisation to more channels that naturally
reduces to the two-channel Stapp-parameterisation appears in the literature. In Chapter [7]
we provide such a generalisation to n-channels where, if k are decoupled, the scattering
S-matrix naturally block diagonalises into an (n — k) coupled-channel block and a diagonal
block containing k& decoupled phase-shifts. This definition of phase-shift and mixing-angles
presented in Chapter [7] is used whenever we present the S-matrix for more than two

coupled-channels.

The phase-shifts and mixing-angles, explicitly defined for three coupled-channel scat-
tering in Eq. of Chapter [7] are plotted in Figure for the reference amplitude in
Eq. (coloured curves) and for other successful parameterisations listed in Table |5.15
of Appendix (grey curves). We observe that the behaviour of the 71'&){351} phase-shift
is in close agreement with the results of Section and the mu{SDl} phase-shift is once
more very small and compatible with zero. The 7rgb{3S 1} phase-shift shows a small positive
tendency indicative of a weak attraction. The mixing-angle é(rw{>S1}|rw{’D1}) is small
and positive, while the mixing angles e(mw{*S1}|7¢{S1}) and e(rw{’D:}|r¢{?51}) are
around two orders of magnitude smaller and statistically consistent with zero across all

parameterisations.

To complement the phase-shifts and mixing-angles, the same amplitudes are plotted
as Papoltesae »l? in Figure A significant bump-like enhancement in the 71'(,0{35 1} —
Ww{?’Sl} element is observed — a canonical indication for a resonance in a scattering

cross-section measurement.

In Figure [5.11] we present the finite-volume energies calculated using the reference
amplitude of Eq. [5.16] which are found to be in good agreement with the lattice computed
energies, as suggested by the small y2. Notably, for levels not included in the fits, shown
in grey, the predicted spectra on the (L/as) = 20,24 volumes appear to be mainly in
reasonable agreement, whereas on the (L/as) = 16 volume there is much more discrepancy.
This may be attributed to more significant contributions from three-meson amplitudes
on smaller volumes, further supported by the observation that there is a much larger

variation in the spectrum in the [000] 7} irrep on the smaller volume when three-meson
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like operators are removed — see Figure We re-examine these levels in Section
where we estimate the effects of the three-body channels.

A final comment concerns the systematic uncertainties on the scattering amplitudes
due to the uncertainty placed on the anisotropy. Unlike in the pm isospin-2 case, where
the weak nature of the interactions meant the uncertainty on the anisotropy dominated
the systematic effects, here the interactions are strong and this uncertainty contributes
relatively little. This can be seen from the relative sizes of the inner and outer bands in
Figures 5.9 and [5.10]

To summarise, the characteristic ‘bump’ we found in the scattering magnitudes in
Figure and the observed avoided level crossing in the [111]A, spectrum, seen in
Figure [5.5] suggests a resonance. To demonstrate this rigorously, we proceed to determine

the pole singularities of our scattering amplitudes.
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Figure 5.8: Upper: 7rw{35’ 1} (blue) and 7rw{3D1} (purple) phase-shifts for the reference
amplitude in Eq. with the bands reflecting the statistical (inner) plus systematic
(outer) uncertainties. In grey are parameterisations given in Table of Appendix
with only statistical uncertainties shown. Middle: As upper but for the mixing-angle,
é(rw{®S1}|mw{’D1}). Lower: Black points are the finite-volume energy levels used to
constrain the fit and orange points are the energy levels calculated using Eq. for the

reference amplitude in Eq. [5.14!
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7rgz${3S 1} (green) phase-shifts for the reference amplitude in Eq. |5.16{ and for other
parameterisations presented in Table of Appendix (grey). Middle: As upper but
for the mixing-angle €(7rw{35' 1} ]7rw{3D1}). The other mixing-angles, E(7rw{35 1}\7r¢>{35 1})
and €(mw{’D1}|r¢{?51}), are extremely small and consistent with zero for all
parameterisations and are not plotted. Lower: The energy levels used to constrain the
scattering amplitude (black) and their corresponding description by the reference

amplitude in Eq. [5.16| (orange).
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amplitude in Eq. with bands reflecting the statistical (inner) plus systematic (outer)
uncertainty. Other parameterisations presented in Table [5.15| of Appendix are in grey
with bands reflecting only the statistical uncertainties. pqpp|tra.e 7| not plotted are

significantly smaller than those shown and are consistent with zero.
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Figure 5.11: As Figure but including, as orange bands, the energy levels calculated
from the reference amplitude in Eq. using Eq. as a function L/as. The thickness
of the bands reflect the combined statistical and systematic uncertainties. The vertical
red band on the right of the figure indicates the position of the resonant pole of mp and
width I'p as determined in Section [5.6, The red horizontal line at the resonant mass is

shown in each irrep to guide the eye.
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5.6 Pole Analysis for Coupled-Channel Amplitudes

At each threshold, unitary of the S-matrix necessitates a branch point singularity and the
corresponding branch cut divides the complex s-plane into two Riemann sheets so that for
n open thresholds there are 2" sheets. Riemann sheets can be labelled by the sign of the
imaginary component of the cm-frame momentum k) in each hadron channel a and we
identify the physical sheet, where physical scattering occurs, just above real energy axis, as
having Im(kéﬁ?) > ( for all a. On the physical sheet, causality forbids complex-valued poles
and restricts any singularities to lie on the real axis below threshold — these correspond to
bound—states.m Amplitudes that permit complex-valued poles on the physical sheet give
an unacceptable description of the scattering process. Sheets with other sign combinations
are referred to as unphysical and complex-valued poles, found in complex-conjugate pairs,
on these sheets correspond to resonances.

For poles away from the real axis, we define the real and imaginary parts of the pole
singularity at s = sy as the mass mg and the width I'g of a resonance respectively, with
VS0 = mpg £ %FR. For narrow resonances, with a single dominant decay mode, this
definition of the resonance mass and width agree well with the location of the peak and
full-width at half-maximum of the ‘bump’ respectively, observed in Figure [5.10} It is
much more difficult to see resonant behaviour in strongly coupled-channel scattering or
for broader resonances, observed in the resonant ay [62] and fy 7], which do not have
the distinctive characteristic bump of a narrow resonance, however, the determined pole
singularity is free from such ambiguities.

For the three channels mw{3S;}, T7w{?*D;} and 7¢{S;} considered here, there are four
Riemann sheets owing to the two distinct hadron-hadron thresholds, 7w and w¢. The
labelling conventions are summarised in Table and agree with those in Ref. |[62]. For
physical scattering close to m¢ threshold, the lower-half plane of sheet Il and Il and the
upper-half plane of sheet IV are close to physical scattering [62]. Depending on the strength
of the couplings to the hadron-hadron channels, a resonance can appear in slightly different
positions across the sheets. A discussion is presented for the strongly coupled ag [62] where

toy amplitudes are used to illustrate this behaviour.

At complex energies close to a pole singularity at sg, the scattering ¢t-matrix can be

HReal-valued poles below threshold on unphysical sheets are referred to as virtual bound-states.
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Sheet Imky, Im#kqy

I+ -
- +
n- - .
v+ -

Table 5.4: Sheet labelling as a function of the sign of the imaginary components of k).

written in the factorised form,

Cega Co' Jb

togaegn(s ~ sg) ~ o 5
0 —

(5.17)

where the complex valued couplings ¢y, reflect the strength of the resonance coupling
to channel a{3(;}. For each coupled hadron-hadron channel, the coupling is determined
only up to a sign. This leads to a sign ambiguity here between the mw and w¢ couplings.
Conversely, the relative sign between dynamically-coupled partial-waves, in this case
mw{?S} and 7w{®D;}, can be determined due to the aforementioned unique determination
of t(mw{®S,}|mw{®D1}). We showed for the vector-pseudoscalar pm that the sign of
t(pr{*S1}|pm{®D1}) was uniquely determined using moving frame irreps in Figure [3.12
For each parameterisation successfully describing the finite-volume spectra we perform
a search across all Riemann sheets for a large complex s—rangeH and determine any pole
singularities appearing in the amplitudes and corresponding couplings by factorising the
t-matrix according to Eq. [5.17} Uncertainties on the pole and couplings in each case are
estimated by appropriately propagating through the uncertainties and correlations on the
fit parameters. For the reference amplitude given in Eq. pole singularities were found

in complex conjugate pairs on sheet Il at,
ai/so; = 0.2435(13)(10) = 20.0175(20)(19), (5.18)

where the first uncertainty is statistical and the second is systematic. A complex conjugate

pair of poles was also found on sheet Il in the same location up to the precision shown in

12We search approximately Rea;y/s € [0.21,0.28] and 2Ima+/s € [—0.2,0.2]. Any pole outside this

real energy region would not be well constrained by our data.
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Eq. [5.18 The corresponding couplings for the pole in the lower-half plane are,

arc(mw{®S1})n = 0.106(6)(6) exp[—i 7 0.078(28)(26)]
arc(mw{’D1} ) = 0.010(4)(3) exp[—i m 0.181(26)(24)], (5.19)

and c(7r<;§{35 1})“ is exactly zero, a result of the choice of reference amplitude. Considered

as a ratio we have,
‘c(ma{?’Dl})” /c(ﬂw{?’Sl})“‘ — 0.091(37)(20)

arg [c(mu{3D1})||/c(7rw{35’1})”] = —70.103(26)(24).

The fact that the poles on sheets Il and Ill are in essentially the same position is a
consequence of the m¢ channel being almost completely decoupled from the mw channel as
discussed in Section [5.4l

For each successful three-channel parameterisation, recorded in Table of Ap-
pendix [5.B] we found poles and couplings broadly consistent with those given above. We
show these in Figure |5.12] observing that the scatter over different parameterisations is
not significantly larger than the uncertainty on the reference amplitude. The calculation

of the error ellipses, presented in the figure, are detailed in Appendix
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Figure 5.12: Top: Lower half-plane sheet Il poles. Red ellipses reflect the statistical
uncertainties, oriented to account for correlations between the real and imaginary parts,
for poles from all the parameterisations shown in Table [5.15] of Appendix Black
ellipses correspond to the reference amplitude in Eq. reflecting the statistical (inner)
plus systematic (outer) uncertainties. Bottom: As top but for the corresponding
couplings, c(rw{?S1}) (blue), c(mw{’D1} )y (purple) and c(7¢{°S1} )i (green). Black
ellipses again correspond to the couplings of the reference amplitude in Eq. where
c(mp{?S1})n = 0.
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5.7 Systematic Tests

To test the robustness of the extracted scattering amplitudes and the determination of the
resonant pole and couplings, we consider three sources of potential systematic uncertainties
due to possibilities we have so far neglected. First, we examine the partial-waves that mix
as a consequence of the finite-volume, which we neglected based on observations discussed
in Section , and the 7¢{*D;} amplitude which we asserted was negligible. Second,
we examine the dependence of the energy levels on the 7w{*D;}, mw{*Py} and mw{*P,}
parameters to demonstrate that we are able to constrain these amplitudes. Third, we
make an estimate of the possible size of effects due to the neglected three-body channels

that are not currently possible to rigorously incorporate into the analysis.

5.7.1 Additional Partial-Waves

We first consider the mw{*Py} and nw{’P,} amplitudes that enter in the P A, irreps as
shown in Tables ~[B.7 Since a P-wave has less threshold suppression than a D-wave,
we might expect these waves to be at least as important as 7rw{3D1}, though they are
not expected to be resonant at such low energies. Augmenting the reference amplitude as
defined in Eq. [5.16] we allow a non-zero amplitude in the 7w{*Py} and 7w{*Ps} channels
by including a constant «-term for each in the K-matrix and for these additional channels
we set Re I,(s = (m;+m,)?) = 0 in the Chew-Mandelstam phase-space. The resulting
t-matrix is block diagonal in J reflecting the fact that this mixing is a result of the
reduced symmetry on the lattice. We fit to the same 36 energy levels as in Section [5.5.3

and, allowing all parameters to vary, find,

m = (02466 +0.0007) - a; ' 40 oo = 0794025
Irnwfsyy = (0105 + 0007) ) at_l ’yff(g{spo},ﬂw{sPo} = (—8 + 21) . CL?
Grwppy = (1124 0.46) - a; 77(F(ZJ)FP2}JW{3P2} = (-10£12) - a?
© _ 2 344
fyﬂw{351},7rw{351} =—-0.34 £0.19 X /Ndof = m = 119, (520)

where correlations between the 7T¢u{3S 1}, 7rw{3D1} and 7T¢{3S 1} parameters are compatible
with those shown in Eq. [5.16, and correlations between these and 7w{*Py} and mw{*P,}

parameters are small. We observe that the amplitudes in both 7w{*Py} and 7w{*P,} are
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consistent with zero. A similar approach allowing for 7w{*Ds} and nw{*D3} parameter
freedom finds no evidence for large amplitudes as one would expect given the larger angular
momentum suppression and lack of low-energy resonances with J©¢ = 2+~ and 3*~.

In order to investigate the possible effect of the previously excluded 7r¢{3D1}, we take
the reference amplitude in Eq. and extend it to include a constant diagonal y-term
in 7¢{°D1} in the K-matrix. Once again fitting to the 36 energy levels and allowing all
parameters to vary, we find the m¢{*D;} parameter to be consistent with zero, as expected,
with all other parameters compatible with those presented in Eq. [5.16]

5.7.2 Spectrum dependence on tw{3P}, nw{*P} and rw{’D;}

To examine how the Tw{*Fy}, nw{*P,} and 7w{’D;} amplitudes are constrained in our
analysis, we examine how the particular energy levels in the finite-volume spectra depend
upon the strength of these partial-waves. For 7rw{3D1} this is shown in Figure m
where the curves present the finite-volume energy spectrum for the reference amplitude
in Eq. , varying the value of g,,pp, while keeping all other parameters fixed. In
each irrep, we see a level near the lowest m¢ non-interacting energy which appears to
be independent of the value of g.,pp,;, as expected given the complete decoupling of
w¢ in the reference amplitude. The figure shows that most other levels have significant
dependence on g,,ep,, in particular those low down in the spectra, indicating that the
lattice computed levels are providing constraint on the 3D;-wave strength, but there are
some notable exceptions. In irreps [011] Ay and [111] Ay, there are levels observed to be
consistent with the two-fold degenerate non-interacting mw energies, which show no visible
dependence on g.,gp -

Interestingly, the position of these same levels proves to be strongly dependent on the
amplitude strength in the 7w{*Py} and 7w{*P,} partial-waves, so the lattice computed
energies allow us to confidently limit the amplitude of these P-waves to be very small
in this energy region. This is expected given the P-wave threshold suppression and
lack of JP¢ = 0%~ 2%~ resonances in this energy region. Figures and show
the analogue of Figure but for varying nw{*Py} and 7w{*P,} channel parameters
respectively. In these two cases, the reference amplitude in Eq. is modified, as
described in Section [5.7.1], to include a constant y-term in the K-matrix for channels
Tw{*Py} and mw{*Py}.
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Figure 5.13: Sensitivity of the finite-volume spectra to gr.3p,;. Lighter to darker red

curves reflect smaller to larger values of gr.(3p,} as shown in the key. The central curves
correspond to gru3p,3 = 1.08, i.e. the mean value in the reference amplitude in Eq.
The grey bands reflect the combined statistical and systematic uncertainties of Eq. [5.16]

The horizontal axes are in units of L/as.

5.7.3 Three-body channels

For the light-quark masses used in this calculation, the resonant behaviour is found to
occur between the relatively low-lying 777 threshold and the somewhat higher-lying 7 K K
threshold. As such, we might worry that these channels could have a significant impact
on the physics in this region. We previously saw that in Figure there appeared to be
deviations in the finite-volume spectra depending on whether or not three-meson operators
were included in the bases, most notably on the smallest volume. As a precaution, we

ensured that we only made use of those energy levels which lie below the lowest Er(f;’l)

value and which show no significant dependence on the presence/absence of pn, K*K
or agm operators.

In this section, we attempt to quantify the size of possible contributions from the three-
body sector on our scattering amplitudes and resonance pole by treating the scattering

system as though 77 in w7y can be completely replaced by a stable p with a fixed mass
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Figure 5.14: As Figure |5.13| but for varying 77(3)){3130} PPy
0

to vfmz{jpo},w opy = 0. The phase-shifts on the left reflect the strengths of the 7w{*Py}

amplitudes.

The central curves corresponds

aym, = 0.1509(2), (the pole mass obtained from the 77 isospin-1 scattering amplitudes
in Ref. ) and 7K in 7KK can be completely replaced by a stable K* with a;m« =
0.1648(1) (the bound-state pole mass in the K* scattering analysis presented in Ref. [66]).
In this way we augment our scattering matrix with two extra channels pn{?’Sl} and
K*K{’S1}.

This approach cannot be expected to completely describe the finite-volume spectra
because, for example, whenever the p has non-zero momentum, we expect there to be
more than one corresponding energy level, as indicated by Figure 1 in Ref. . A model
where the p is treated as a stable particle cannot capture this and will not even give the
right number of energy levels in the ‘three-body’ spectrum. However, at the light-quark
masses and lattice volumes used in this calculation, the nearest non-interacting w7 energy
in the rest-frame p spectra is much higher than a;E., = 0.1509, as shown in Figure 1
of Ref. [30], and there is effectively only one finite-volume level which lies very close to
the p resonance mass. In this case, provided we only approximate mmn-like levels where

the corresponding 7 subsystem is overall at rest, the stable p may be a reasonable first
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Figure 5.15: As Figure [5.14 but for varying 7(0)

7rw{3P2},7rwf"P2} :

approximation to the true three-body physics.

For [000]T;F, the relevant low-lying three-meson like operators are of the form pgonooo
and Ky Ko as shown in Table . We will therefore restrict our analysis to include
the 36 energy levels with which we used to constrain the amplitudes in Section [5.5.3|in
addition to the remaining energies in [000]7}" shown in Figure , giving a total of 48
levels to constrain five coupled channels. Taking the reference amplitude in Eq.
modified to include a ‘pole plus constant’ term in ,07]{35 1} and K *F{?’S 1}, we find best-fit

parameters,

m =(0.2485 = 0.0008) - a; ! 1 sy mopsy = —0-52£0.16
Grwpsy =(0.14 £0.01) - a;* s mopisy = 064 £0.17
oy =(1L.8£0.5) - a Y sy sy = —1:82£0.13
Gpmpsy =(0.0£0.1) - a;”! N reqepisy = 127 % 0.52
Ixwesy =020 £0.01) - a; " X/ Nao = % = 1.19. (5.21)

The 7rw{35 1}, 7rw{3D1} and 7r¢{35 1} parameters are in reasonable agreement with those
found for the reference amplitude in Eq. [5.16l We show in Figure the finite-volume
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Figure 5.16: As Figure but for the amplitude in Eq. . Orange bands reflect only

the statistical uncertainty on the scattering parameters. The grey bands are transcribed
from Figure m

spectra calculated through Eq. [2.53] analogous to Figure [5.11 We observe that the
dependence of the finite-volume energy levels in moving-frame irreps, lying below the
lowest Eff:rl), on the new ‘three-body’ part of the amplitude is very slight. However, there
is improved agreement in [000]7;" where the previously excluded levels, in particular on
the (L/as) = 16 volume, are now described quite well. We argue that this shows our
original selection criteria, giving the 36 energy levels across all irreps, is sound and leads

to a robust determination of the scattering t-matrix.

For this limited five coupled-channel analysis of Ww{gS 1}, 7rw{3D1}, 7r¢{ 39 1}, pn{3S 1}
and K *F{?’Sl}, utilising the generalised n-channel Stapp-parameterisation presented
in Chapter [7], the five phase-shifts and three non-zero mixing-angles are presented in
Figure . We find that seven of the mixing-angles, all featuring either 7rgz5{3S 1} and /or
pn{3S1}, are extremely small and consistent with zero. This illustrates the natural reduction
from the five-channel parameterisation to the three-channel parameterisation in the case

that two channels decouple.

As a final test of the effects of the pn{®S;} and K*K {35} channels, we find the resonance
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pole and corresponding couplings. There are 16 Riemann sheets and several ‘mirror poles’,

but the closest pole is located at,
/S0y = 0.2448(12) — £0.0215(21), (5.22)

which agrees within uncertainties with the pole position found in Section [5.6 The

corresponding couplings are,

arc(mw{3S1 ) = 0.117(7) exp[—i 7 0.084(20)]

) (
arc(mw{*D1})y = 0.016(4) exp[—i m 0.182(22)]
arc(pn{S1})n = 0.003(52)
a;c( K*K {381} = 0.166(8) exp[—i 7 0.043(12)], (5.23)

where we exclude the meaningless phase on a;c(pn{®S;}); as the magnitude is consistent
with zero and where c¢(m¢{*>S;1}) = 0 by choice of amplitude. This decoupling of the
{391} and {35} channels was evident in the corresponding mixing-angles which were
all found to be negligible and consistent with zero as discussed above. The coupling to
{35} is small but has a large uncertainty, while the coupling to K*K{35,} is larger.
We might expect the K*K coupling to be comparable to the 7w coupling because in an
‘OZI rule’ obeying framework they differ only in the flavour of ¢g pair creation needed to
allow the resonance to decay.

We conclude that although we cannot currently rigorously handle three-body contribu-
tions due to 7mn and 7K K, we do not see any evidence to suggest that they significantly

affect the results reported here.
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Figure 5.17: Upper: As in Figure but for the 7rw{351} (blue), 7rw{3D1} (purple),
m${°S1} (green), pn{*S1} (orange) and K*K{%S;} (red) phase-shifts for the reference
amplitude in Eq. .21} The faded error bands reflect the statistical uncertainty on the
scattering parameters. The pn and K*K “thresholds” are calculated using the p and K*
masses given above. Lower: As upper but for the mixing-angles é(rw{’S1}|mw{’D:})
(blue), é(rw{®S1}|K*K{?S1}) (grey) and é(rw{’D1}|K*K{?S1}) (brown). All other

mixing-angles are extremely small and consistent with zero as discussed in the text.
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5.8 Interpretation

All JP = 1% amplitude parameterisations used that prove to be capable of describing
the finite-volume spectra in the energy region we are considering, had the same char-
acteristic resonant bump in the mu{gS 1} to 7rw{3S 1} amplitude squared, with relatively
small enhancements in the diagonal Ww{ng} and 7T<z3{35' 1} elements. In the off-diagonal
amplitudes, the ww{3S 1} to mu{SDl} amplitude was found to be small but positive. The
remaining off-diagonal elements were all found to be extremely small and consistent with
zero. In each of the JP = 11 amplitudes, we found a complex conjugate pair of poles on
sheets Il and Ill, which we interpret as the effect of a single resonance.

To quote results in physical units, we choose to set the scale using the ()-baryon
mass measured on these lattices, a;mq = 0.2951 [85], and the physical Q-baryon mass,
mPY* = 1672.45(29) MeV [5]. This gives a; ' = m2™ /(aymg) = 5666 MeV and stable
hadron masses m, ~ 391 MeV, mg ~ 549 MeV, m, ~ 587 MeV, m,, ~ 881 MeV and
me ~ 1017 MeV.

Using this scale setting, we summarise the scattering amplitudes resulting from the
JP = 17 amplitude analysis in Figure , expressing all quantities in physical units.
We find a b; resonant pole of mass mgr = 1382(15) MeV and width I'r = 91(31) MeV,
where the uncertainties are a conservative estimate from a combination of statistical
and systematic uncertainties and encompass variation over different parameterisations.

Similarly, we find for the couplings,

|Crwpsy| = 564(114) MeV
|Crwppy | = 81(56) MeV,
|Cropsy| = 59(41) MeV.

In Figure [5.19] we plot the position of the pole found in this calculation compared to the
experimental by resonance, with mass my, = 1230(3) MeV and width I',, = 142(9) MeV [5],
and a lattice calculation at the SU(3)r point with m, ~ 700 MeV [29).

In the latter calculation, the b; forms part of an axial-vector octet, the (hq)s following
the notation in Chapter [3| with a mass around 1525 MeV. The pseudoscalar-vector
threshold (n)s(w)s, corresponding to ww, is at roughly 1695 MeV, and thus the b; is
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stable at this pion mass. We observe that the trajectory of the pole with varying pion
mass appears to be similar to that of the p and K* mesons shown in Ref. [4] and [83]
respectively, as may be expected for a reasonably narrow resonance.

Since we find the b; to be a narrow resonance a moderate distance above mw threshold, it
is reasonable to compute theoretical ‘branching fractions’ for its decay to ww. For channels

a{®(;} these are given by [5],

1 2
Br<R — a{3€J}> = o [cesal

Pa(mRg). (5.24)

As mentioned in Ref. [7], the sum of these partial branching fractions does not necessarily

give unity. Using this definition, we obtain,

Br(b1 — m{?’sl}) ~ 93%
Br(b — nw{’D1}) ~ 2%,

and observe the m¢{?S;} branching fraction is zero as the channel is kinematically closed
(mpr < mgy +mg).

A crude extrapolation of the couplings to the physical value of the light quark masses
comes if we assume them to be independent of the light quark masses once the threshold
behaviour is removed. This is not guaranteed, but has been observed in lattice calculations

of the p [4,86-95] and K* [83.[89,/96/-98|] couplings at various values of m,. Considering

the ratio,
Ci};}g%} Crw{34,}
Y | ()| 029

where the cm-frame momentum is evaluated at the resonance pole position, and where we

use the values presented above on the right-hand side, and the experimental b; mass to

compute kP gives a prediction of ’ciiy;, Dl}’ = 146(101) MeV. Subsequently, we obtain

an estimate for the ratio of couplings at the physical pion mass of,

phys.
mw{D1}
phys.
mw{3S1}

= 0.27(20). (5.26)

The PDG [5] reports a ratio of D-wave to S-wave amplitudes for the b; resonance of
magnitude 0.277(27), which is not computed at the complex pole position and therefore

not precisely the same quantity as we quote.
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Figure 5.18: Top: The scattering amplitudes-squared, p,pp|tesa.e 7|?, transcribed from
Figure [5.10[ with the energy axis converted to physical units. Below the amplitudes are
the energy levels used to constrain the amplitudes (black points). Bottom: The best
estimate of the resonant pole position, where uncertainties combine statistical and
systematic uncertainties with variations across parameterisations. The histograms show
the best estimate of the magnitude of each coupling with the lightly-shaded region
reflecting the combined uncertainties. The 7${3S;} coupling is an estimate of the upper
bound.
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Figure 5.19: The b; pole position for various pion masses. Blue shows the ground-state
mass of the axial-vector octet from a lattice calculation with m, ~ 700 MeV 4], red
shows the estimate from this work with m, ~ 391 MeV and black is the experimentally

determined mass and width of the b; resonance [5].
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5.9 Summary

In this chapter we have presented, for the first time in lattice QCD, a calculation of
coupled mw, m¢ scattering. Analysis of the obtained finite-volume spectra allowed us to
calculate the scattering amplitudes, including the effects of dynamically-coupled 7Tw{?S;}
and mw{3D;} and resolve the mixing-angle between these two channels. A clear b
resonance was observed, visible as a rapid increase in the mu{gS 1} phase-shift through
90° or correspondingly as a bump in the magnitude of the mu{?’S 1} — mu{3S 1} t-matrix
element. More rigorously, we found pole singularities on unphysical Riemann sheets
relatively close to the real energy axis with couplings that are large for the mu{?’S 1} final
state, significantly smaller for mu{ng} and compatible with zero for m¢. The mass and
width of the b; resonance found in this calculation, with light-quark masses such that
m, ~ 391 MeV, appear to be compatible with a smooth interpolation between a stable

state for much larger quark mass, and the experimental resonance at lower quark mass.

We have demonstrated the effectiveness of three-meson operators, constructed by utilising
earlier calculations of meson-meson scattering channels [30,(62,/66], in interpolating energy
levels closely associated with isobar enhancements in the three-meson system. For the
first time in a lattice calculation, we have demonstrated how a failure to incorporate such
operators into the basis leads to incorrect finite-volume spectra. We explored the role of
three-body channels in the scattering system, circumventing the current lack of a complete
three-body formalism by treating the p and K* as stable in a limited study, and found

they had a negligible effect in this particular case of a low-lying b; resonance.

In performing this systematic test, we performed for the first time in a lattice QCD cal-
culation a five coupled-channel scattering analysis, 7rw{3S 1}, mu{?’Dl}, 7rgz${35 1}, pn{3S 1},
K *7{ 58 1}, presenting the phase-shifts and mixing-angles using a parameterisation that
extends that of the conventional two-channel Stapp-parameterisation to accommodate any

number of channels.

Furthermore, observations were made of how particular finite-volume energy levels
depend upon the various partial-waves which ‘mix’ due to the cubic nature of the lattice
boundary and also upon the strength of the ®D;-wave coupling to the resonance pole —
both demonstrating our ability to constrain the amplitudes as claimed and as a useful

reference for future calculations.
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As expected, no I¢ = 1% resonances are observed with a mass comparable to the b;
in JP = 07,2~ channels. Notably, no resonating behaviour is observed in the largely
decoupled m¢ channel, suggesting the absence of a Z; which might be proposed as an
analogue of the Z, seen in m.J /1.

This work has advanced lattice techniques for studying coupled-channel scattering
involving hadrons with non-zero spin and operators which effectively interpolate three
hadrons. Looking forward, once a three-hadron scattering formalism is practical to use, a
future calculation would enable the rigorous determination of the 77n and 7K K scattering
amplitudes. Furthermore, utilising such a formalism would allow the calculation of the
G-parity-negative axial-vector, the a;, which would make for an interesting comparison.
Moving on from the simplest low-lying resonances, and as the light-quark mass approaches
its physical value, it becomes more important to reliably determine such three-hadron

scattering processes.
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APPENDICES 1

5.A Operator Tables

We present here tables of operators as referred to in the text.

L/as=16  L/as =20 L/as =24

26 x YTy 26 x YTy 12 x YT

Plooo], T,
3 X mmw 2 X

Sx YTy 18 x ¢TI 18 x YTy

Ploo1], A;
4 X 4 x 4 x
27 x YTy 2T x YTy 27 x YT

Plo11], Ay
3 X 7w 3 X 3 X
Sx YTy 21 x YT 21 x YTy

Pl111], Ay
3 X nw 3 X 7w 3 X 7w

Table 5.5: Single-meson and two-meson operators used to compute optimised p operators
in the [000)7; irrep and PA; irreps at various overall momenta on the three volumes.

Momentum labels on the 7n’s that form the 77 operators are omitted for brevity.
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L/as =16 L/as =20

14 x YTy 14 x YTy
@o[001], A, 4 x mn 4 x

2x KK 2x KK

Kooz OxTw 16xyTy 9Ty
8x YTy 16 x Y'Y 8 x YT’
K[BOH Ay
’ 2x K 6 x TK
8x gT 26 x Ty
K[T)n} A
3x K 6 x TK
8 x YT 9 x YT 9 x YTy
K[*ln} A
’ 4dxaK 4xaK

Table 5.7: As Table but for optimised K* operators.
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L/as =16 L/as =20 Ljas =24
12 x YT 12 x YT 12 x YT
T [000]%[001] T [000]%[001] T [000]%[001]
Tr000] ¢[001] T[001]%[000] T[001]%[000]
P[001]7[000] T[000] P[001] T[000] P[001]

Q0[001] TT[000] Ploo1]M[000] Pio01]M000]
T001)W[000] @p[001) " [000] K011 000)

K [?)01} K [000] K, [BOH K [000] /)fum} M[000]
P[000]77[001] P[000]71[001]
T001]P[000] T001] P[000]

Koo Koo

{2}“ 001]W[011]
{Q}W[mljw[omj

Table 5.8: As in Table but for irrep [001]As. For operators O]};M, the superscript n on
R" denotes the n'® excited state when n > 1. All p and K* operators transform in

[000]7; at 7= 0 and all p, ay and K* operators transform in I3A1 for 7' # 0. Operators
shown in gray correspond to Ef;rl) greater than the Er(121+ ) or E of operators that have

not been included in the basis.
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L/as =16 L/as =20 L/as =24
21 x YT 21 x YT 21 x YT
T[000]W[011] T[000]W[011] T000]W[011]
7T[000]<Z5[011] T'1000] ¢[011] {2}7[001100[001]
P[011]77j000] {2}7[001100[001] TT[000] ¢[011]
K, [T)ll} K [000] Plo11]M[000] T [011]%[000]
{2}7T [001]W[001] ap[011]7[000] Pio11]7[000]
Q0[011]) T[000] A ]f [000]
T011]%[000]
Table 5.9: As in Table |5.8 but for irrep [011]As.
L/as =16 L/as =20 L/as =24
15 x YT 15 x YT 15 x YT
T000]W[111] T000]W[111] T[000]W[111]
77[000]¢[111] 7T[000]¢[111} T000] ¢[111]
priypooo]  {2}mpoywpr {2} o wiony
K[m] K[OOO] puiMooo] 12} o11wWioon]
{2} o wiony) K[*lll}f([oom P[111)7000]
T111]W[000] Q0[111])T[000] T[111)%[000]
{2} mo1wioo K; llll] [000]

Table 5.10: As in Table |5.8 but for irrep [111]As.
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L/as =16 L/as =20 Ljas =24

T[001]W[001] T[001]W[001] T[001]W[001]
Pioo1]Moo1] Ploo1]7oo1] T[000]W[002]
K E'E)Ol] K, [001] T [000]W[002] Ploo1]Mo01]
T [000]%[002] Tr[o01] ¢[001] T[001] ¢[001]

Toon@ooy Koo Koo K00 Koo,

/)[lou 171[001] a0[001]) 7[001] T[000] P[002]

Table 5.11: As in Table [5.8| but for irrep [002]As.

[000] 75" [000] E~ [001] B, [001] By
14 x YTy 12 x YT 9 x YTy 9 x YT

T[001]W[001] T[001)W[001] T011])[001] T111]7[011]
KioiKpor) {2} m001)wpor]
TooWiot1] {2} 7o11)Woo]

T011)W[001]

Table 5.12: As Table [5.8| for irreps [000]Z5", [000]E, [001] B, and [001]B, on the
(L/as) = 24 lattice.
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5.B Scattering Parameterisations

We present here tables of scattering parameterisations as referred to in Section [5.5

Parameterisation Further Restrictions Npars 2 /Naot
Breit-Wigner - 2 0.84
Effective Range
L 1o — 2 0.86
ke cot(0) = a™" + 5rkZ,
— 4 0.80
K=_4% 1704405 40=g 3 0.76
I(s) = —ip(s) 70 =0,4/1 =0 2 0.84
70 = 3 0.75
- 4 0.80
K=_4— 4404405 0= 3 076
CM Re{lI(s =s"™) =0} ~© =0,7M =0 2 0.84
7O =0 3 0.76
— 4 0.80
K — mgis + 4O 4 (g A =0 3 0.76
CM Re{l(s =m?) =0} ~9 =0,y =0 2 0.84
7O =0 3 0.76
K_l = C(O) + C(I)S
, — 2 0.84
I(s) = —ip(s)
K1oco g
— 2 0.84

CM Re{I(s = s'') = 0}

Table 5.13: Parameterisations of elastic 7w{®S;} scattering amplitudes with Ny, free
parameters. Fits used 20 energy levels below m¢ threshold, as described in the text. The
reference amplitude, Eq. is in bold. ‘CM’ denotes that the Chew-Mandelstam
prescription was employed with subtraction at energy m or at threshold

s = (m, + my)?. Otherwise, we set I(s) = —ip(s).
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Parameterisation Further Restrictions Phase-space Npars X2 /Ngot

0) 1 (0) (1) (0) _ (1 _ =
P GM,E + mmavamx v 6+ 90 76S) Irpi3s,) = &EWEML =0 Ia(s) ipa(s) 1.18
LJa,l’ Jb m2 _s QSV -0 CM Wmmh;m = va = 8. 5 1.19
AU F AV s h et CM Re{I. thr 1.19
eJaer 7o ¥ Vega,engm Qﬂuﬁwmi%iwmi =0 Re{la(s = s5'") = 0} :
(0,1) _ Vo o =0
where Yro{3D1}, rw{3Dy} — O \\Ao\uﬁmﬁ,\ \MME \\\\\\\\\\\\\\\ P el
1 — — a(s) = — .
Qm.hmm:;ﬁwm: =0 Ino (351} = Imu(3sy = ° (6) = ~ita(s)
i O -0 CM Re{lq(s = m?) = 0} 6 1.22
\v\ﬁ.Eﬁum Yo rw{3Dy} =0 mw{3S1}, mp{351}
th ! +B . =0 CM Re{I,(s = sth™) = 0} 1.22
N =5 mw {251}, mo {351}
ﬂﬁﬁw,wufﬂ.%ﬁw,wuv ’ \\w\\\\\\\\\\\\\\\\\\\\\\\\\\.\ \\\\\\\\\\\\\\\\\\\
(0,1) _ mﬁ ) = I.(s) = —ipa(s) 1.27
Vo301 ), 7 (351} — O Tw {351}
1 ! (0 -0 CM Re{I,(s = m?) = 0} 7 1.27
@Emu =0, xmev%m:;%m: b
TW 1 1 _ a — gthr) — 1.27
GO Vreo(381}, rwo(251} = ° OM Re{lo(s = 53™) = 0}
3 2 e i i i
mo{3S1} Ry )
hence 19 — 9 = 10 free real-parameters. 970351} — CM Re{lq(s = m?) = 0} 7 1.24
0
QmeﬁmeTﬂﬁwmi =0 CM Re{la(s = s§™) = 0} 1.24
CTmeCsy,meron T .
0 1
mmﬂ%w*wml H,&?wﬁwml =0 CM Re{la(s = m?) = 0} 6 1.20
)\Mm»wﬁw.w:,ﬂﬂﬁwm: =0 CM Re{la(s = mer =0} 1.20
CTmeesgmeeon 70 _____
g© =g Y —0 la(s) = —ipa(s) 1.35
Te(®D1} T Tre{381) T Tmw{31} CM Re{l,(s = m?) = 0} 6 1.35
P q = O
Trot2s1} mo{351) CM Re{L(s = st) = 0} 1.32
\\O \\\\\\ O\\\\\\\\\\\\\\\\\\\\.\ \\\\\\\\\\\\\\\\\\\
mm%wmc: = mmmmm: =0 Ia(s) = —ipa(s) 6 1.35
J\M_.ch?m:qﬂiwm: =0 CM Re{la(s = m?) = 0} 1.35
Mmesymesy =0
0) _ _ _ Ta(s) = —ipa(s 1.31
Inw (301} = Ins (351} = Imw(ssyy = O (8) = ~ipale)
)\Cv -0 CM Re{ly(s = m?) =0} 5 1.31
Tw{3S1}, Tw{351}
(0) 0 CM Re{I,(s = sth™) = 0} 1.28

Vrw{381}, np{381} —

Table 5.15: Parameterisations of coupled 7w{3S1}, mw{3D;} and m¢{3S;} scattering amplitudes. Fits used 36 energy
levels below mrmm threshold, as described in the text. Displayed in bold is the reference amplitude of Eq. [5.16] ‘CM’
denotes that the Chew-Mandelstam prescription was employed with subtraction at energy m or at threshold st

where s = (m!” + m{*)2. Otherwise, we set I,(s) = —ipa(s).
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5.C Error Ellipses

The error ellipses plotted in Figure [5.12| show the one standard deviation confidence
intervals for the correlated real and imaginary parts of the pole locations and corresponding
couplings. In this appendix, we present the details of how these ellipses are determined.

Consider two normally distributed random variables X; ~ N (0,0%,), i = 1,2 with
covariance matrix C = cov]X;, X;| = E[(X; — E[X}])(X; — E[X,])]. The equation of an

ellipse is given by the quadratic form,
x'Clx = s, (5.27)

where @ = (21, z3) and s > 0 is the scale. As C is a real (positive semi-definite) symmetric

matrix, a rotation diagonalises the quadratic form,
T Az’ = s, (5.28)

where A = diag()\l_l,)\gl) with A\; > Xy >0 eigenvalue of C and x = Qz’ with
() = (v1, v2) the orthogonal matrix of eigenvectors. The resulting ellipse is tilted, with the

major axis rotated to align with the eigenvector corresponding to the largest eigenvalue.

roN 2 N
(\%) + (ji_z) =s. (5.29)
In this basis, X} ~ N(0, )\;) are independent normal distributions and as such the left
hand side of Eq. represents the sum of squared standard normal distributions hence
giving a x? probability distribution for the scale, s ~ x?(2). For the usual one standard
deviation (68%) confidence interval, we seck k such that P(s < k) = 0.68, finding k = 2.28.

This gives the one standard deviation error ellipse,

(\%)2 + (%)2 = 2.28. (5.30)

In the basis of X;, the error ellipse has major axis length 24/2.28\;, the minor axis has
length 2+/2.28\5 and angle the major axis makes with the horizontal is @ = arctan (v1)2

(vi)1
As Xy, X, represent the real and imaginary parts respectively of the poles or couplings,

Explicitly written,

they do not have mean zero in general and we simply translate the ellipse to (px,, fix, ),

giving X; ~ N (ux,,0x,), with covariance matrix C as before.

131f \; = 0, the ellipse is not well-defined.



CHAPTER 6

A 7 exotic resonance at

In the quark model, only a subset of all possible J¢ are attainable from a quark-antiquark
pair. The total intrinsic spin S is either 0 or 1 and therefore, coupled with orbital angular
momentum ¢, the total angular momentum J € {|¢ — 1|, ¢, ¢+ 1}. It follows that parity is
given by P = (—1)*! and charge conjugation C' = (—1)*** for flavourless mesons. These
quantum numbers define the non-exotic sequence, i.e. 0~ 07T, 17—, 1t~ 17+ ... and
other quantum numbers not permitted within this framework form the exotic sequenceﬂ
0F=,07—,17",2%~, .. .. These are attainable, for example, by coupling the quark-antiquark
pair with excited gluonic degrees of freedom, a hybrid meson, or additional quark-antiquark
pairs, such as a tetraquark.

Several experiments have reported an isovector 1~ state, the 7, ranging in mass from
1.4 — 2 GeV, however there are experimental and interpretational issues surrounding each
of them — in particular the existence of two states, the m;(1400) and 7 (1600), is contested.
A comprehensive summary of the theoretical and experimental status is presented in
Ref. [99].

A recent reanalysis of the 71" data measured at COMPASS [100] was carried out using
coupled-channel amplitudes that enforce the unitarity and analyticity of the S-matrix [6].
The pole singularities were calculated by analytically continuing the amplitudes into the
complex s-plane and a single 1~ pole, with mass ~ 1564 MeV and width ~ 492 MeV,
was unambiguously determined, with no evidence for a second pole that could be identified
with another m; resonance.

Lattice QCD calculations have also found evidence for a single isovector 1= state in

this energy region. A fairly recent calculation determines the isovector spectrum [29] for a

!Not to be confused with the flavour exotics, such as pm in isospin-2.
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JPC multiplets, at four pion masses, the lightest being m, ~ 391 MeV

number of exotic
(computed on the same lattices as those used in Chapter [5) and heaviest m, ~ 700 MeV
(computed on the same lattices as those used in Chapters |3|and . In each case, evidence of
a single isovector 1~ state in an energy region around ~ 2 GeV was found. Although this
lattice calculation utilises a large, diverse basis of hybrid-like fermion bilinear operators to
determine the spectra, no operators resembling multi-hadron states are incorporated and as
such the spectra is not robust. Furthermore, many two-hadron thresholds are kinematically
open in a region much lower than the observed m; like state and to rigorously calculate
the m necessitates the determination of pole singularities of the scattering amplitudes. It

is to this problem we turn here.

Once more we make use of the Ny = 3 lattices used in Chapters [3| and [] with m, ~
700 MeV. Throughout this chapter, we use the notation for SU(3)r multiplets set out in
Chapter [4, where we recall that flavour multiplets are labelled by the isospin-0 component.
As such, the relevant flavour octets are labelled as follows: pseudoscalar (n)s, vector (w)s,
scalar (fo)s, axial-vectors (f1)s and (hq)s, tensor (f2)s. The SU(2)r components of the
pseudoscalar and vector octets are presented in Figure |3.2| and the others, listed above, in
Figure of Appendix [6.A] We remind the reader that for the corresponding flavour
singlets, the subscript 8 is replaced with 1. For the exotic octet featuring the isovector

17" meson, we label the octet (7q)s rather than (n,)s for clarity.

The manifestation of SU(3)r significantly reduces the number of relevant two-meson
channels. As we are at liberty to pick any component of (71)s, we choose v = (1,0, 1),
which has a negative G-parity. Therefore, when combining two flavour octet mesons into
a single octet, 8 ® 8 — 81 @ 8, only one of these two possible flavour embeddings has
an isovector component with negative G-parity, as discussed in Section [4.1} Furthermore,
Bose-symmetry restricts the allowed partial-wave configurations of two identical mesons.
This plays an important role here, as, for example, two identical pseudoscalar octets,
(n)s(n)s, are forbidden 'Pj-wave and similarly, identical vector octets, (w)g(w)s, are

forbidden in 'P;- and °Pj-wave (but are permitted in *P;-wave).

Despite these restrictions, there remain a large number of two-meson channels trans-
forming in (7r1)s. Those relevant, appearing in the energy range we consider, include
a single pseudoscalar-pseudoscalar (1)s(1n)1{'P1} channel, a single vector-pseudoscalar

channel, (w)g(n)s{*P1} and two axial-vector-pseudoscalar channels, (f1)s(n)s{>S1} and



6.1. COMPUTATIONAL DETAILS 145

(h1)s(n)s{?S1}. Furthermore, two vector-vector thresholds open, (w)g(w)s and (w)g(w)1,
resulting in four vector-vector channels, (w)g(w)s{*P1}, (w)s(w)1{'P1}, (w)s(w)1{*P1}
and (w)g(w)1{°P1}, completing an eight coupled-channel system.

Unphysically heavy pions help circumvent the need to incorporate three-meson scattering
amplitudes. At rest, we will find all Er(f;_rl) and Er(lgl) energies on these lattices are above the
energy region of interest. For moving-frames, the Er(f;rl) and EI(ISI) energies are lower-lying,
found to be near the anticipated resonant region. Moreover, the parity mixing at non-zero
momentum means low-lying resonances, such as the (fz2)s, will also feature, significantly
complicating this scattering calculation of the (7r1)s. In this study, we therefore restrict
to rest-frame spectra only.

At a lighter pion mass, away from the SU(3)f point, the two-meson channels separate
into their distinguishable SU(2)r components. For the relevant two-meson channels listed
above, recalling that we take the v = (1,0,1) component of the (71)s, these are as
follows: pseudoscalar-pseudoscalar (n)g(n)1 — 70, 7', vector-pseudoscalar (w)g(n)s —
prt, K*K, vector-vector (w)s(w)s — pw, pp, K*K and (w)s(w)1 — pw, po, axial-vector-
pseudoscalar (f1)s(1n)s — a1, ey, fim, fim, K1 K and (hy1)sg(n)s — bim, KiK. We will

discuss couplings in these SU(2)r channels when we interpret the results.

6.1 Computational Details

Calculations of correlation functions were performed on four anisotropic lattices. In
addition to the (L/as)® x (T/a;) = 20° x 128 and 24% x 128 lattices used in Chapter
and (L/as)® x (T/a;) = 16° x 128 used in Chapter i} we also make use of a smaller
volumes, (L/a,)? x (T/a;) = 123 x 96, generated from the same action. On all volumes,
exponentially suppressed finite-volume and temporal effects remain negligible with m,L 2 6
and m,T 2 14 on the smallest volume.

Correlation functions were computed using the number of distillation vectors, gauge
configurations and time-sources shown in Table [6.1] As in previous calculations, we
typically compute all the elements of the matrix of correlation functions, however, in a
few cases we made use of hermiticity to infer Cj; from the computed Cj;.

To ensure all relevant two-meson operators are included in the basis, we examine the

location of all two-body thresholds by first determining all stable hadron masses. In
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(L/as)® X (T/ar) | Nyees Netgs  Nisres
123 x 96 48 219 24
163 x 128 64 529
202 x 128 128 501
243 x 128 160 607

Table 6.1: Number of distillation vectors (Nyecs), gauge configurations (Negs) and
time-sources (Niges) used to compute the (7r1)g correlation functions on each lattice

volume, as described in the text.

addition to the stable pseudoscalar (n)s and vector (w)g octets, we consider the scalar,
axial-vector and tensor octets. Both axial-vector octets are stable, the (f1)s appearing
far below (w)s(n)s threshold as shown in Figure [4.1] in Section [4.4] For the tensor octet,
the (1)s(mn)s threshold lies far below the calculated ‘qq’ mass, as shown in Figure 13 of
Ref. [26], and as such the tensor is unstable. Regarding the scalar octet, the determined
‘qq’ mass is found to coincide with the (1)s(7)s threshold. For the purposes of this study,
we shall be conservative and treat the scalar octet as unstable.

Paired with each octet is a corresponding SU(3)r singlet. The pseudoscalar singlet is
found to be much heavier than its octet counterpart. The vector, axial-vector and tensor
singlets are all approximately degeneratd’] with the corresponding octet masses, shown
in Figure 13 of Ref. [26], and as a result the axial-vector singlets are also stable. The
tensor singlet, as is the case for the tensor octet, is unstable and decays in D-wave to
(m)s(n)s. The scalar singlet with vacuum quantum numbers is found to be much lower in
mass relative to the octet and is stable.

To summarise, we present the stable hadron masses in Table 6.2l Also shown are
the relevant multi-hadron thresholds transforming in the (7r1)s multiplet where we have
truncated at the (f1)1(n)s threshold. This is a moderate distance above the anticipated
resonant region of a;FE., ~ 0.46, guided by the exotic ‘qq’ spectrum in Figure 13 of
Ref. |26].

For the scattering calculation of the hybrid (71)s, two-meson operators featuring (n)s,

(w)s, (n)1 and (w)1 at non-zero overall momentum are required. We check the momentum

2The (f1)s and (f1)1 are slightly split with the singlet marginally heavier.



6.1. COMPUTATIONAL DETAILS 147

octet  arEem singlet  a;Eem threshold arEem
(m)s 0.1478(1) | (m): 0.2017(11) (M)s(n)1  0.3495(11)
(w)s 0.2154(2) | (w)1 0.2174(3) (w)s(n)s 0.3632(2)
(f1)s 0.3203(6) | (fo)r 0.2007(18) (w)s(w)s 0.4308(3)
(h1)s 0.3272(6) | (f1)1 0.3364(14) (w)s(w)1 0.4324(7)
(hi)1  0.3288(17) (ms(m)s(n)s 0.4434(2)
(fi)s(n)s  0.4681(6)
(h1)s(m)s 0.4750(6)
(f1)1(m)s  0.4842(14)

Table 6.2: (Left): relevant stable hadron masses. (Right): multi-hadron thresholds
relevant for J© =1~ up to a;Eem ~ 0.485.

dependence of the (n); and (w); energies satisfy the relativistic dispersion relation and
give a consistent value of the anisotropy compared to the value obtained in Section for
the (n)s and (w)s mesons.

The energies of the ground-state (17); and (w); mesons were calculated from a variational
analysis of matrices of correlation functions involving bases of flavour singlet single-meson
operators. The analyses also gave the optimised operators for interpolating the (n); and
(w)1 with the various momenta used in the construction of two-meson operators. The fits
to the dispersion relation given in Eq. for (n); and (w); are shown in Figure We
used energies on two volumes, L/as = 20,24, to constrain the fits. For the (7)1, energies
calculated in lattice irreps with |p]? < 4 were used. Regarding the (w);, we used energies
calculated in lattice irreps with |p]? < 4 on the larger volume and |p]?> < 2 on the smaller ]

We find the anisotropies for the helicity |\| = 0,1 components of the (w); are comparable
to those found for (w)s and similarly the anisotropy calculated for the (7)), agrees with that
of (n)s. We therefore take as the value of the anisotropy, £ = 3.486(43), the determined
value used in Chapter [3] for the remainder of this work.

3(w)1 energies computed on the L/as = 20 volume used Neggs = 197.
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2
(CLtEﬁ)
Sy, :_3.470(16)
X*/Naot = 0.4]
E(w)r,_, = 3-534(19)
0.08 L R

Einys = 3.441(15)
[x*/Naot = 1.6

0.07 L
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Figure 6.1: Momentum dependence of the (1)1 energies and energies of the |A\| =0, 1

helicity components of the (w);. Points show the energies used to constrain the fits, as
discussed in the text, with the errorbars reflecting the statistical uncertainties. Lines and

numerical values show results of fits to determine ¢ using Eq. [3.10]

6.2 Operator Bases

At rest, J¥ = 17 subduces into the [000]7} irrep and the energy region we consider
includes the opening of several multi-hadron thresholds. This necessitates the inclusion
of a large number of two-meson-like operators in the basis, however, we will show that
three-meson-like operators are expected to interpolate levels above the energy cut-off and
are subsequently not included. A large number of single-meson-like operators transforming
in (71)s are incorporated, resembling hybrid mesons. Four-meson thresholds lie beyond
the energy region we consider and previous calculations [68,82] suggest local tetraquark-like

operators have negligible effect on the spectrum, so neither of these types of operators are
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included in the basis.

6.2.1 Single-Meson Operators

Single-meson operators transforming in (7r7)g are constructed according to Eq. Notably,
there are no single-meson operators formed simply from a product of v-matrices in a
fermion bilinear that have the appropriate quantum numbers. Within the operator
constructions, gluonic degrees of freedom enter through covariant derivatives. For example,
the JP¢ = 1=* fermion bilinear hybrid operator, ¢TI, constructed using the commutator

of two-derivatives, is given by,

1 1 1 1 1 1

mi,ms mpy mp m mo M3 Mp

m3,mp
which is proportional to the field strength tensor. For the [000]7} irrep in the (7r1)s
flavour multiplet, we construct all possible single-meson-like hybrid operators using up to
three gauge-covariant derivatives. This gives a total of 18 operators with continuum spins
of J=1,3 or 4.

6.2.2 Two-Meson Operators

The construction of operators resembling a pair of mesons follows the approach detailed
in Chapter [3} To ensure all relevant two-meson operators are included in the bases, we
calculate the non-interacting energies for each two-meson threshold listed in Table [6.2]
We include the corresponding two-meson operators for all those non-interacting energies
below a;FEcyn = 0.485. We present the final operator basis used for the [000] 77 irrep on
each lattice volume in Table [6.3]

6.2.3 Three-Meson Operators

Included in Table[6.2] are three-body thresholds below (f1)1(n)s, for which the only one

is (n)s(n)s(n)s. We consider any E® or Er(f;rl) appearing below the energy cut-off,

n.i.
analogous to the exercise done in Chapter bl ensuring that all relevant operators are

included in the basis in order to determine a robust spectra.
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L/as =12 L/as =16 L/as =20 L/as =24

18 x YT 18 x YT 18 x YT 18 x YT

(M)8j001 (77)1[001] (M)8j001 (77)1[001] (M)8j001 (77)1[001 (m)s 001] (77)1[001
(f1)8(000 (77)8[000] (w)8j001 (77)8[001] (w)8j001 (77)8[001 (w)s 001] (77)8[001

(w)s 001 () 8001

[001]
[000]
(h1)8[000} (77)8[000]
[001]
(f1)1 [000] (77)8[000]

[001]

[001]
(f1)8[000} (77)8[000]
(h1)8[000} (77)8[0001

("7)8[011} (77)1[011]
(f1)1 [000] (77)8[0001
(w)8[001} (‘-‘-’)8[001]
{4} (W)S[om] (w)1 [001]
{2}(‘-")8[011} (77)8[011]

[001]

[001]
("7)8[011} (77)1[011
{2}(‘*’)8[011} (77)8[011
(‘-")8[001} (w)8[001
{4} (W)S[om] (w)1 (001
(41)81000) (1) 8000
(77)8[111} (77)1[111
(h1)8[000} (77)8[000
(W)S[m} (77)8[111
(f1)1 [000] (77)8[000
[002] (77)8[002

[ ]

[ ]
("7)8[011] (77)1[011}
{2}(‘*’)8[011] (77)8[011}
("7)8[111] (77)1[111}
(‘-")8[111] (77)8[111]
(W)S[oou (w)8[001]
{4} (W)S[om] (w)1 [001]
("7)8[002] (77)1[002}
(f1)8[0001 (77)8[000]
(h1)8[000] (77)8[000}
(‘-")8[002] (77)8[002]
(f1)1 [000] (77)8[000}

Table 6.3: [000] 77 operator basis for each lattice volume, with two-meson operators

ordered by increasing F, ;. As in table[5.3] the maximum number of single-meson

operators, N, is denoted by N x ¢TI and various subsets of these were considered to
obtain robust fits. The number in braces, { Ny}, denotes the multiplicity of linearly

independent two-meson operators if this is larger than one.

At threshold, each (m)s meson is at zero momenta, analogous to the 7mn case in
Section [5.1.3, and the product of [000]A] irreps does not appear in [000]7; . Considering
various combinations of pj, ps and p3, we find the lowest Er(lgl) appearing in [000]7},

corresponds to the following product,

[011] A5  [001] Ay @ [001] A5 — 2 x [000]T & . .., (6.2)
—_—— Y= = ——

(m)s (m)s (n)s (71)s

where the two embeddings in [000]7] arise from two distinct ways of combining the
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momenta shown below [

[001]E2 ® [001]142 — [OOO]Tf, (6.3)
—_——— —— N —
(ms(M)s (n)s (71)s
and
[011]142 &® [Oll]Bl — [OOO]T{. (6.4)
—_—— —— e —
(n)s (ms(n)s (71)s

For the lattice volumes in this study, the corresponding EI(ISI) is far above the energy cut-off
— on the largest volume Er(l?’l) = 0.5152.

Regarding the Er(ffl) energies, we consider the finite-volume spectra in the (1)s(n)s
subsystem appearing in [001]FE, and [011]B;. The lowest-lying energy in each case
corresponds to the stable (f1)s state with E., ~ 0.32 and thus any excitations must
appear at a cm-energy greater than this. As such, we can immediately infer a conservative

lower bound of E(QJrl

n.i.

) ~ 0.495 using the largest volume, beyond the energy cut-off of

a;Eey = 0.485. Subsequently, no three-meson operators are included in the basis.

6.3 Finite-Volume Spectra

The finite-volume spectrum on each lattice volume was calculated using a variational
analysis of the matrix of correlation functions computed using the operator basis given in
Table The extracted energies are presented in Figure[6.2] On the smallest and largest
volumes (L/as = 12 and 24) we also present the operator-state overlap factors.

The quality of the principal correlator fits on all volumes was good for the vast majority
of the levels, as reflected in the small statistical uncertainties in Figure [6.2] and we show
the principal correlator fits on the L/a, = 24 volume in Figures[6.3]—[6.5 as an illustration.
Little systematic variation was observed on all volumes under a reasonable range of t
values with two notable exceptions.

The first is a noisy energy level on the L/as = 20 volume at a;Fcy, ~ 0.48, found to

have large operator-state overlap onto the (f;)s(n)s-like operator. A large systematic

4We are not considering here multiple flavour embeddings that could arise in the product of three
SU(3)r octets.
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uncertainty was added to reflect the variation for different choices of 3. The second is
a level on the L/a, = 24 volume close to the (17)sjgy (1) 190y non-interacting energy,
found with significant operator-state overlap onto the associated operator — shown in the
histogram labelled ‘N in Figure [6.2] The corresponding principal correlator shown in
Figure appears to have residual excited-state contamination. This was refitted for a
number of different t-ranges and a systematic error was added reflecting this — the final
value being a;Fey = 0.4640(57).

Before we proceed to a scattering analysis, we make some qualitative observations on the
spectra shown in Figure [6.2 Consider first the number of energy levels expected on each
volume, beginning with the largest, L/as = 24. In the absence of any residual meson-meson
interactions, we would expect one level at each corresponding meson-meson non-interacting
energies, with the appropriate number of degenerate levels where the multiplicity is greater
than one. This results in seventeen levels. We find however a total of eighteen, with an
‘extra level’, labelled ‘M’, appearing in the cluster of energies at a;E., ~ 0.46. This
extra level can be clearly seen on the L/a, = 16 and 20 volumes, away from any nearby
non-interacting energies, also around a;Ecy, ~ 0.46. On the smallest volume, L/a, = 12,
the shifts from the non-interacting energies are more pronounced but a total of siz levels
are found, compared with the five anticipated in the non-interacting regime. Collectively,
these observations are similar to those made in the b; study in Chapter [3], albeit on a
spectra far more dense with more coupled channels. Nevertheless, this suggests that a

narrow resonance is present.

The operator-state overlap factors shown for the smallest and largest volumes in Fig-
ure[6.2) allow us to make further qualitative observations. For the largest volume, the lowest
siz levels, ‘A—F’, are all consistent with the corresponding non-interacting energies and
have dominant overlap with the associated operators, either (17)s(n)1- or (w)s(n)s-like,
with negligible overlap onto any others. This suggests no resonant behaviour in this energy

region and fairly weak interactions.

Around a¢Ecm ~ 0.45, a level (‘G’) consistent with the non-interacting (w)s(y1,(m)sp111)
energy is seen with dominant overlap onto the (w)s(;1,(7)s(11,) operator but also with
moderate mixing with hybrid gg-like operators. Above this, five vector-vector levels can be
clearly identified, “H—L’, of which modest mixing with the hybrid single-meson operators

is seen for a couple. Located on the top of this cluster is a level with dominant overlap
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onto the hybrid fermion bilinear operators — ‘M’. A large amount of mixing is seen with
(1) 1000 (1) 81000) 20 (S1) 8000 (17)8(000) @nd also with the (w)s(17)s-like operators, peaked
at the (w)s(1,(M)s[y;;) momenta combination. One might expect this given the level
observed to have dominant overlap onto (w)s(;,1(17)s11;) also had significant contributions
from qg-like operators. A small amount of mixing is seen with the other two-meson
operators. Next highest in energy is the refitted level, ‘A7, dominated by (n) 8[002](17)1[002]
with small overlap across all other operators.

Above the (f1)s(m)s threshold are four levels, the lowest three, ‘O-Q’; showing vary-
ing mixtures of (w)s[o00 ()8 10027 (P1)80001 (M)81000): (F1)81000) (11)8[00g) and the hybrid ¢,
suggesting significant interactions between these channels around this energy region. The
final level (“R’) is consistent with the (f1)1(n)s threshold and appears decoupled, with
dominant overlap onto (f1)1(g90(1)s 000 20 negligible overlap for all other operators.

As a comparison, we examine the operator-state overlap factors on the smallest volume.
Here, we expect any interactions to yield more pronounced shifts in the energy spectra
away from the corresponding non-interacting energiesE] This appears to be the case and
all levels show a large amount of mixing in the overlaps factors, with the exception of
(f1)1(000 (M) 8(00g) Which again appears to be totally decoupled.

The (f1)1(n)s threshold is taken as a cut-off and all levels below a;F., = 0.48 are
utilised in the scattering analysis (the black points in Figure . In addition, the black
level just above the (f1)1(n)s threshold on the L/a, = 12 is included — anticipated to
provide good constraints on mixing with the (f1)s(7)s and (h1)s(7)s channels, as evident

from the operator-state overlaps.lﬂ

5A consequence of the smaller polynomial-suppressed volume factors, relative to the largest lattice,
appearing in the quantisation condition.

6Since (f1)1(n)s appears to be totally decoupled, we include this level above (f1)1(n)s-threshold.
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Figure 6.2: Finite-volume spectrum in the [000]7} irrep on four lattice volumes. Points

give the energy levels, including statistical uncertainties, from a variational analysis using

the operator bases in Table with black points used in the scattering analysis in

Section [6.4] Solid curves are two-meson non-interacting energies and dashed horizontal

lines show the two— and three—meson thresholds. Multiplicities (if greater than one) are

shown as {n}. For each energy level on the largest and smallest volume, we present

histograms showing the operator-state overlap factors, as in Figure for the
MM = (n)s(n)1 (dark blue), (w)s(n)s (red), (w)s(w)s (orange), (w)s(w)1 (green),
(f1)s(n)s (light blue), (h1)s(n)s (purple) and (f1)1(n)s (brown) operators along with a

sample set of single-meson hybrid operators subduced from J¥ =1~

(pink).
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Figure 6.3: Principal correlators, A\,(t,ty = 7), plotted as et )\ (¢, t,), from a
variational analysis of the [000]7} irrep on the lattice with L/as; = 24. Curves show the
results of fits described in Section The horizontal axes are in units of t/a;. The
lettering corresponds to the lettering in Figure .
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6.4 Scattering Analysis

In this section, we present the results of the scattering analysis, following the procedure
described in Section [3.6], and once again use the general two-body formalism set out in
Section .71

Recalling the discussion in the introduction, we analyse eight coupled J¥ = 1~ channels.
We have a single pseudoscalar-pseudoscalar channel, (n)s(n)1{'P1}, and three (axial)-
vector-pseudoscalar channels: (w)g(1)s{’P1}, (F1)s(1)s{’S1} and (h1)s(n)s{>S:}. In
addition to these vector-pseudoscalar like channels, where only one total intrinsic spin of
S =1 is possible, we also incorporate vector-vector channels. The three distinct spin-spin
combinations, S = 0, 1,2, give rise here to three dynamically-coupled J¥ = 1~ partial-
waves, namely (w)g(w)1{'P1}, (w)s(w)1{’P1} and (w)g(w)1{°P1}, distinguished by the
‘spin-spin’ couplings. Bose-symmetry forbids the same three partial-wave configurations
for the (w)s(w)s meson-meson channel — only the *P;-wave is non-vanishing.

As well as the eight J¥ = 1~ coupled-channels, we must also incorporate a further two
JP = 37 channels that mix in [000]7} due to the reduced symmetry of the lattice. The first
is (w)s(n)s{’F3}, contributing at the next leading order in threshold suppression at the
two-fold degenerate (w)sg;1(7)s[p;;) nOD-interacting energy. Second is the (w)s(w)1{°P3}
channel, contributing at the four-fold degenerate (w)s|g9y(w)1g0;) nOD-interacting energy.

Before presenting the results of the scattering analysis, we make an important observation
having utilised the rest-frame spectra only. The quantisation condition subduced in the
[000]77 irrep is invariant under the interchange of the (w)g(w)i1{'P1}, (w)s(w)1{*P1}
and (w)g(w)1{°P1} t-matrix scattering parameters. Therefore, as these amplitudes cannot
be uniquely determined, we refer to them collectively as (w)g(w)1{*P;} for subsequent

phase-shifts, mixing-angles and resonant couplings. A proof of this observation is presented

in Appendix

In order to parameterise the energy dependence of the ten-channel t-matrix, we use
a K-matrix formulation, recalling the relationship between the t-matrix and K-matrix
given in Eq. . This is block diagonal with respect to J© and we write,

K(s)-(Kl_(S) 0 ) (6.5)
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For the eight-by-eight K- (s) matrix, hosting the J* = 1~ amplitudes, we adopt the
‘pole + constant’ form of parameterisation,

K, ()= 26 0 (6.6)

m2 — s 1—
where g2(s) is the matrix with components gsssq(s)gsie (), recalling a,b are hadron
(0)
1=
of freedom in this form and we make two further reasonable restrictions. First, shown

channel labels, and ;" is a real constant symmetric matrix. There are many degrees

to be sufficient in the b; analysis in Chapter , we take gsea(s) to be constant. The
second follows from observations of the finite-volume spectra in Figure [6.2] Energy levels
with dominant operator-state overlap factors onto vector-vector channels appear very near
the corresponding non-interacting energies and have small operator-state overlap factors

with all other operators. We anticipate that these are weakly coupled and, as such, block

(0)

diagonalise the constant v, =" matrix with respect to the vector-vector channels,

© 7(0) nVV. 0
0 _

and allow parameter freedom in the diagonal components only of the four-by-four vector-
(0) VV.
1=

block, '7?1) "VV- Note that mixing amongst the vector-vector channels and between other

JP =17 channels is still permitted through the matrix of couplings, g2(s).

vector block, ~ . We impose no restrictions on the four-by-four non vector-vector

We utilise three phase-space prescriptions: simple phase-space, where I1-,(s) = —ipa(s),
and the Chew-Mandelstam phase-space, with Re I1-,(s = m?) =0 or Re I,-,(s = sqr.) =
0.

Regarding the two-by-two matrix of J” = 3~ amplitudes, we set Kz (s) = 'yég) where,

7(0) 0
'Yé(l) _ ( (w)s(Ms{’F3}, (w)s(n)s{*F3} O ) _ (6.8)
0 V(@)s(@)a{PPa}. (@)s(@)a Ps)
No exotic JP¢ = 37+ resonances are expected in this energy region and we will show that
a constant matrix of this form proves to be sufficient to describe the spectra. We use a
Chew-Mandelstam prescription with Re I3-,(s = Stn.) = 0 in all parameterisations.

We find parameterisations of the form given in Eq. [6.5] subject to these additional

reasonable constraints discussed above, feature 25 independent free parameters and are

sufficiently flexible to test the robustness of the scattering amplitudes.
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Scattering amplitudes are determined following the procedure detailed in the previous
chapters. We fit many parameterisations to the 38 energy levels shown as black points in
Figure and record successful fits, with x?/Ngor < 1.2, in Table of Appendix

Analogous to the scattering analysis in the previous two chapters, we choose a reference
amplitude, representative of all other parameterisations. Here, we take the reference

©) With freedom in each of the eight diagonal

parameterisation to be diagonal in - -
components and take all but g(,)4(w),{1r,} 34 J(w)g(w)1 {5,y 10 be non-zero in g%, giving
a total of seventeen free parameters. The Chew-Mandelstam prescription with pole
subtraction, Re I;-,(s = m?) = 0, is taken for K- (s). This parameterisation is shown in

bold in Table and the resulting fit to the lattice data yields the following parameters,

m = (0.4622 £ 0.0028 + 0.0005) - @, () 1y = (~1.9+1243.0) - a
Imys(my 11y} = (040 £ 0.13 £ 0.10) N ey = (65124 4.8) - a?
Iw)sms(tpr)y = (040 £0.12 £ 0.02) Y amatisyy = (—2:2% 114 1.0)
Iosmssyy = (031 £0.13£0.10) - a Vs amagsyy = (03 1.040.2)
Inays(mstisyy = (—0.2940.21 & 0.09) ca;! Y ey = (29 £43 £ 41) o
I(w)s(@)s () = (—0.23 +0.15 £ 0.02) Y ongipy = (12 £ 13£7) - af
sy ray = (020 +0.25 +0.04) Vi = (92 £68+£5.7) - af

Y aonppy = (12 £ 13£7) - af
1O eagirag =(—340 £ 130 £ 270) - af 10 nipy = (BT£0625.4) - a
15.1

X /Naot = =0.72, (6.9)

38 — 17

where the first uncertainty is statistical and the second reflects the systematic uncertainties
obtained from considering variations in the stable hadron masses and anisotropy. The
systematic uncertainties we quote are calculated as the largest shift on the central values of
each parameter, taken from successful fits of the scattering amplitudes where the anisotropy
and stable hadron masses are varied by +1c[] The correlation matrix for the reference
amplitude scattering parameters is given in Table in Appendix [6.C]

“We vary all the stable hadron masses in the same way, i.e. all +1c or all —1o.
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The J¥ = 1~ phase-shifts, presented using the 8-channel Stapp-parameterisation (de-
tailed in Chapter [7)), and the two J¥ = 3~ phase-shifts are plotted in Figures — .
The solid coloured curves and error bands show the reference amplitude and all other
successful parameterisations, listed in Table [6.5] are shown as dashed coloured curves with

grey error bands.

We are not able to uniquely determine the sign of the off-diagonal elements of the
t-matrix between the dynamically-coupled 'P;-, ®P;- and °P;- (w)g(w); in the rest frame
irrep. This is because the M-matrix is diagonal, as shown in Appendix , and the
determinant is subsequently independent on the sign of these off-diagonal t-matrix terms.
In addition, all other off-diagonal t-matrix components also have a sign ambiguity, as each

hadron channel can be rephased independently, subject to the S-matrix being symmetric.

Because of this, all the mixing-angles are presented as sign-independent inelasticities,
defined as cos 2€;;. With this definition, an inelasticity of unity means no mixing, and of
zero means maximally mixed. The J = 1~ inelasticities are displayed in Figures|[6.8-[6.10]

The JP = 3~ amplitudes have a mixing-angle fixed to be zero in all parameterisations.

For all parameterisations presented in Table [6.5] the phase-shifts and inelasticities are in
very good agreement. The statistical and combined statistical and systematic uncertainties
of the reference amplitude are shown as the inner and outer coloured bands respectively, in
each of the figures. We see the systematic uncertainty on each phase-shift and inelasticity

is roughly comparable to the size of statistical uncertainties.

We make some qualitative observations from Figures — [6.10l  Firstly, the
(1)s(n)1{'P1} phase-shift has a sharp rise through 90° at a;,F., ~ 0.46, characteris-
tic of a narrow resonance located in this region. The (w)s(n)s{’P1} phase-shift turns
very sharply around this energy and the (1)s(1)1{'P1}|(w)s(n)s{’P1} inelasticity ap-
proaches zero. This would suggest a resonance strongly coupled to both (1)s(n)1{*P1} and
(w)s(n)s{*P1}. The large uncertainties in the reference amplitude for the (1)s(n)1{'P1}
and (w)g(n)s{’P1} phase-shifts at a;E.n, ~ 0.46, are an artefact of the phase-shifts be-
coming extremely steep in this neighbourhood. Therefore, a small change in a;FE.,, around
a;Eerm ~ 0.46 gives a large change in the S-matrix and as such these phase-shifts have large
uncertainties here. Other parameterisations, with less steep phase-shifts in this energy

region, can be seen that do not exhibit this behaviour.

Phase-shifts in the vector-vector channels, (w)s(w)s{*P;} and (w)s(w)1{*P}, are
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relatively small and appear to be consistent with zero within uncertainty. Similarly,
inelasticities with respect to any vector-vector channel are found to be near unity, al-
though non-trivial behaviour around a;F., ~ 0.46 in the inelasticities with respect to
both (1)s(n)1{'P1} and (w)s(n)s{*P1} suggests some sensitivity to the resonance-like
behaviour.

The phase-shifts of the axial-vector-pseudoscalar channels, (fi)s(n)s{*S:1} and
(h1)s(n)s{®S1}, appear to turn on rapidly at threshold, as do the inelasticities featuring
either of these channels. This behaviour in the inelasticities is somewhat unsurprising
given the operator-state overlap factors shown in Figure [6.2] which show a large degree of
mixing between operators corresponding to these channels — in particular on the L/as = 12
lattice.

Finally, we comment on the J© = 3= amplitudes presented in Figure . These appear
to be very small in the energy range, with no signs of any resonant enhancement, as
expected in this low-energy region.

To demonstrate the quality of the scattering amplitudes at reproducing the lattice
spectra, in Figure [6.11] we present the finite-volume spectrum calculated using the
reference amplitude. For the lattice computed spectrum on each volume, a single energy
level with dominant operator-state overlap onto the (f;)1(n)s operator has been removed
for clarity in the figure — for example the level labelled ‘R’ in Figure[6.2] Such levels will not
be interpolated by our reference amplitude as it does not incorporate the (f1)1(n)s{®S1}
channel (this was anticipated to be largely decoupled as discussed in Section . We
observe excellent agreement between each lattice computed energy used as a constraint and
those obtained from the reference amplitude. In addition, levels coloured grey, that were
excluded from the analysis, are seen to be very well described. Avoided level crossings,
characteristic of a narrow resonance, can be clearly seen in an energy region centred around
a;Fem ~ 0.46.

To summarise, the observed sharp increase in the (1)g(n)1{'P1} phase-shift and en-
hancements in a number of inelasticities around a;F.,, ~ 0.46, in addition to the ‘extra
level” seen in the finite-volume spectra, strongly suggests the presence of a resonance.
We proceed to determine the pole singularities of our scattering amplitudes in order to

calculate any such resonances rigorously.
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Figure 6.6: Upper: (1)s(n)1{'P:} (dark blue) and (w)g(n)s{*P1} (red) phase-shifts.

Lower:

(w)s(w)s{*P1} (orange) and (w)sg(w)1{*P1} (green) phase-shifts. The solid

curves show the reference amplitude given in Eq. [6.9) with the coloured bands reflecting

the statistical (inner) plus systematic (outer) uncertainty. Dashed curves and grey bands
correspond to all successful parameterisations presented in Table of Appendix

with only the statistical uncertainties shown.
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solid curves show the inelasticities for all parameterisations presented in Table in
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6.5 Pole Analysis

In Section we discussed pole singularities in coupled-channel scattering amplitudes.
Here, we have siz distinct hadron-hadron thresholds opening in the energy region considered
and therefore a total of 64 Riemann sheets. We will label the sheets by the sign of the
imaginary part of the momentum in the six channels, ordered according to increasing
threshold energies, ((7)s(1)1, (w)s(n)s, (w)s(w)s, (w)s(w)1, (f1)8(n)s, (h1)s(n)s). For
a relatively narrow resonance pole located at a;FE.m ~ 0.46, the Riemann sheet closest
to physical scattering would have a negative imaginary component of cm-momenta in
the (17)s(m)1, (w)s(N)s, (w)s(w)s and (w)s(w), channels and a positive imaginary
component in (f1)s(n)s and (h1)s(n)s, i.e. (—,—, —, —,+,+). For convenience we shall
refer to this as sheet Il. Sheet | corresponds to positive imaginary components for all

cm-momenta, (+,+,+,+, +,+), referred to as the physical sheet.

For each parameterisation successfully describing the finite-volume spectra, tabulated in
Table we perform a search on all 64 Riemann sheets for a large complex s-rangd?| and
determine any pole singularities and corresponding couplings appearing in the amplitudes
by factorising the t-matrix as discussed in Section [5.6l As we cannot uniquely determine
the sign in the t-matrix for each coupled hadron-hadron channel, and cannot distinguish
the (w)g(w)1 J& =1~ amplitudes in this study, as discussed in the previous section, there

is a sign ambiguity on each of the couplings.

For the reference amplitude given in Eq. [6.9] a single complex conjugate pair of pole

singularities was found on sheet |l at complex energy,
ag+/50;, = 0.4607(26)(4) + %0.0144(54)(34), (6.10)

where the first uncertainty is statistical and the second is systematic from varying the

hadron masses and anisotropy, as described previously. The corresponding couplings for

8We search approximately Rea;+/s € [0.35,0.49] and 2Ima;+/s € [-0.1,0.1]. Any pole outside this

real energy region would not be well constrained by our data.
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the lower-half plane pole are,

arc((1)s(m)1{"P1})n = 0.076(19)(16) exp[—i 7 0.044(20)(46)]
ase((w)s(m)s{*P1})in = 0.066(14)(1) exp[—i 7 0.106(28)(71)]
arc((w)s(w)s{®P1} )i = 0.025(16)(3) exp[—i m 0.028(31)(25)]
ac((w)s (@)1 {XP1 1) = 0.021(25)(5) exp|—i 7 0.013(34)(27)]
arc((F1)s(n)s{?S1} )i = 0.212(38)(30) exp|i 7 0.046(31)(15)]
ac((hy)s(m)s {351} )1 = 0.188(81)(33) exp[—i m 0.002(24) (24)], (6.11)

where again, the first error is statistical and the second is systematic. In addition,
‘mirror poles’ were robustly determined on several unphysical sheets, (—, +, 4+, £, +,+),
found at positions similar to that given in Eq. with small shifts due to the small
couplings to these channels [7]. Mirror poles on several sheets with a negative imaginary
component of cm-frame momentum in (f;)s(7n)s or (h1)s(n)s were poorly determined
and varied significantly in location relative to the sheet Il pole, owing to the relatively
large uncertainties on the large couplings in these channels. We found no poles on sheet
[, in particular no complex valued poles which indicates good causal behaviour of the
reference amplitude in this energy region.

For every parameterisation listed in Table [6.5, we found a single complex conjugate
pair of pole singularities on sheet |lI, compatible with the pair found for the reference
amplitude, and a similar distribution of mirror poles on other unphysical sheets. The
lower-half plane sheet Il pole singularities, closest to the region of physical scattering,
are shown in Figure We observe a well determined pole in each case with excellent
agreement across all parameterisations.

Figure [6.13] shows the couplings for all parameterisations in Table [6.5] We observe little
variation in the ()s(n)1{'P1}, (@)s(M)s{’P1}, (w)s(w)s{’P1} and (w)s(w):{*P1}
couplings, with more substantial spread seen in (f1)s(n)s{*S1} and (h1)s(1)s{>S1}. This
is to be expected given fewer energy levels used to constrain the amplitude around the
(f1)s(n)s and (hq1)s(m)s thresholds.

The (7)s(n)1{'P1} and (w)s(n)s{*P1} couplings are seen to be very well determined
and non-zero on all parameterisations. The (w)s(w)s{*P1} and (w)s(w)1{*P1} are
comparatively much smaller and show hints of being non-zero, however, we find them

roughly consistent with zero. The (f1)s(n)s and (hq)s(n)s couplings appear to be large,



2 - Im(a¢/s)

6.5. POLE ANALYSIS 171

& &
\% \%
» W
0535 037 0.39 0.41

-0.01 F
-0.02 F
-0.03 F
-0.04 |
-0.05 |

Figure 6.12: Lower half-plane sheet |l poles. The black point corresponds to the reference
amplitude in Eq. with errorbars reflecting the combined statistical and systematic
uncertainties. Grey points, with errorbars reflecting the statistical uncertainties,
correspond to poles from all the parameterisations shown in Table of Appendix .

however, they are poorly determined.
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Figure 6.13: Couplings of the sheet Il poles, shown in Figure m to hadron-hadron

channels. The black points corresponds to the couplings from the reference amplitude in

Eq. [6.9, with errorbars reflecting the combined statistical and systematic uncertainties.

Coloured points, with errorbars reflect the statistical uncertainties, are the couplings from
all the parameterisations shown in Table [6.5] of Appendix .
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6.6 Interpretation

For every amplitude parameterisation that was capable of describing the finite-volume
spectra, we found in the J¥ = 1~ amplitudes, a pair of complex conjugate poles, located
on sheet Il, and corresponding mirror poles on other unphysical sheets, which we interpret
as a single resonance.

Using the scale setting procedure detailed in Section where a; ! = 4655 MeV, we
summarise the results of the scattering analysis, expressing all quantities in physical units.
We find a (7r1)s resonant pole with mass mgr = 2148(33) MeV and width I'r = 95(69) MeV
where the single uncertainty quoted is a conservative estimate from a combination of
statistical and systematic uncertainties and encompasses variation over the range of

parameterisations. Similarly, we find for the couplings,

(s (m 1Py = 470(177) MeV

Cloratmeriny] = 300(133) MeV

[C@)s@)spiy| = 158(90) MeV

Clorator¥py| = 191(132) MeV

|C(£)a(mai®siy] = 841(486) MeV

|Chn)amysisiy] = 936(555) MeV, (6.12)

and present these best estimates in Figure |6.14]

As a comparison, we plot the m; hybrid resonance pole found in the reanalysis [6]
of the COMPASS 71" data [100], along with the resonance pole found in this study,
where m, ~ 700 MeV, in Figure [6.15] We can see at the physical light-quark mass, the
resonance is broader and lighter than that found at the unphysically heavy light-quark
mass — behaviour that we have observed in the b; (Figure [5.19)), and has been shown for
the p [4] and K* [83].

For the p and K* resonances, the couplings to 7 and 7K respectively appear to be
independent of m, once the appropriate phase-space factors have been removed. Assuming
similar behaviour for the 71, we can extrapolate the couplings presented in Eq. to the
physical light-quark mass.

We determine the couplings to each SU(2)g channel by weighting the SU(3)r coupling
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Figure 6.14: Points are the best estimates of each coupling — (7)s(n)1{'P1} (dark blue),

(w)s(M)s{*P1} (red), (w)s(w)s{’P1} (orange), (w)s(w)1{*P1} (green),
(f1)s(1)s{3S1} (light blue), (h1)s(n)s{*S1} (purple) — where the error bars reflect a
combination of statistical and systematic uncertainties and encompass variation over the

range of parameterisations.

by the appropriate SU(3)r Clebsch-Gordan coefficients,

2
SU(2) | SU®B) F, F, 8,
C(Ml)II(M2)I2{QS+1€J}| - ‘C(Ml)pl(Mz)F2{25+lzJ}| Z [CSU(E})( ) ] . (613)

Y1.Ya 141 1%5) 14

Lyl

Recall v = (1,Y,1,) = (1,0,1) and that i = 1,2 depending on which embedding gives a
negative G-parity. As SU(2)r flavour irreps are labelled by total isospin, we sum over the
different hypercharges and z-components of isospin for a given total isospin and normalise
such that the sum squared of the magnitudes of the SU(2)r couplings gives the magnitude
squared SU(3)g coupling.

The isoscalar components of the SU(3)r multiplets are an admixture of two SU(2)p

mesons. As such, the SU(2)r couplings that feature isoscalar components of the SU(3)r
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Figure 6.15: The m; pole. Pink shows the estimate from this work with m, ~ 700 MeV

and black is the experimentally determined mass and width of the m; resonance [6].

multiplets, via non-vanishing Clebsch-Gordan coefficients in Eq. [6.13] are appropriately
splitﬂ between the two SU(2)r mesons. For example, for the isoscalar components of the
octet and singlet pseudoscalars, (n)s and (7)1, we use an octet-singlet basis mixing angle
of §p = —10° [26], such that the isoscalar elements of the SU(3)r pseudoscalar octet and

singlet, expressed in terms of SU(2)r states, n and 7/, are given by,

(17)8;0,0,0) = cos(6p) |n) +sin(@p) 1)
(1)1;0,0,0) = —sin(0p) ) + cos(0p) 1), (6.14)

and therefore, the couplings to the pseudoscalar-pseudoscalar channels are,

su@ | . SU(3)
|Cwn{lP1}} = sin(0p) |C(n>s(n)1{lpl}‘

SU(3)

SU(2)
} (n)s(n)1{1P1}|' (6.15)

Cm;'{lpl}} = cos(fp) |c

This of course preserves the property that the sum squared magnitude of the SU(2)g

couplings gives the squared magnitude SU(3)r coupling. For the isoscalar components of

9Experiments have determined the admixtures for a number of isoscalar mesons.
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the octet and singlet axial-vectors, (f1)s and (f1)1, we replace n and 1’ in Eq. with
f1 and f] respectivelym and take #p = —34° [26]. Similarly, for the isoscalar octet and
singlet vectors, (w)s and (w)1, we replace  and 7’ in Eq. with w and ¢ respectively
and set 0p = —52° [26].

Lastly, phase-space factors are removed by scaling the SU(2)r couplings by the ratio of
cm-frame momentum, evaluated at the resonance pole position at each pion mass,

phys k,phys 4

iy, (25, 2510y = [0t a2, 50105y ||

(6.16)

As an explicit example, consider (w)g(n)s{*P1}. The SU(2)r two-meson flavour content

was given in Eq. which we transcribe below for brevity,

%( K B - [B°) [K*)) + %( P 1) — %) 7).

Following Eqs. and [6.16} the physical 7, couplings to pr{*P,} and K*K{*P,} are

given by,
hys
[ongep| = \/7‘6(“’)8(77)8{3&}‘

| py | = \C |
K{3P1} (w)s(m)s{°P1}

Note that no isoscalar elements of the SU(3)r featured in this example.

|(w)8(n)8; 17 07 1> =

kphys

phys

(6.17)

We present the couplings to each SU(2)r meson-meson channel in Table . Here, the
uncertainties reflect those on the couplings in Eq. together with the uncertainties on
the masses and widths of the resonant poles, propagated through the ratio of cm-frame

momentaﬂ Masses of the mesons at the physical light-quark limit were taken from the
PDG [5] and masses at the SU(3)r point with m, ~ 700 MeV were taken from Table

10We take the f; and f] to correspond to the experimentally observed f;(1285) and f;(1420) respec-
tively [5].

1We take the physical m; mass and width to be m%hys' = 1564 + 110 MeV and F%hys' =492 + 156 MeV
respectively [6].
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SU(B)F SU(Z)F phys.
MM {®10,;} MM {25+1¢,} |CM1M2{ZS+1€J}| f MV
) m{'P1} 81(32)
(m)s(n)1{ P1} 7T77/{1P1} 343(140)
X pr{®P} 227(105)
(w)s(n)s{"P1} K*F{Spl} 124(59)
pw{*P1} 71(44)
(W)S(w)8{3pl} P¢{3P1} 106(64)
K*K {*P,} 166(100)
y pw{*P;} 179(132)
(W)s(w)1{"P1} p¢{3pl} 163(119)
ain{3S,} 371(214)
' {°S1} 65(38)
(f1)s(n)s{’S1} fim{"S1} 314(181)
fin{39.} 207(120)
K\ K{*S,} 652(376)
. bi{S1} 763(453)
(h1)8(77)8{ Sl} KlK{351} 540(320)

Table 6.4: Couplings extrapolated to the physical quark mass limit, as described in the

text.

6.7 Summary

In this chapter we have presented, for the first time in lattice QCD, a calculation of the m
resonance from coupled-channel scattering. Furthermore, this is the first time vector-vector
channels have been incorporated in a lattice QCD scattering calculation.

Utilising the rest-frame finite-volume spectra, scattering amplitudes in (n)s(n)1{'P:1},
(@)s(Ms{’P1}, (W)s(w)s{’P1}, (W)s(w)1{*P1}, (f1)s(m)s{’S1} and (h1)s(n)s{’S1}
were determined for a range of parameterisations. In addition, we found small

(w)s(n)s{*F3} and (w)g(w)1{°P3} scattering amplitudes, with no evidence of resonant
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enhancement in the exotic JP¢ = 37+ sector at this energy range.

By analytically continuing the scattering amplitudes into the complex energy plane,
we unambiguously found a single resonance pole with mass mgr = 2148(33), relatively
close to the real energy axis with width I'p = 95(69), that we interpreted as the m;
resonance. Of particular note, we found no evidence of a second resonance pole in this
energy region. Couplings to (n)s(n)1{'P1} and (w)s(n)s{*P1} were robustly deter-
mined, found to be non-zero and comparable in magnitude, while (w)g(w)s{*P1} and
(w)g(w)1{*P1} couplings were smaller and consistent with zero. Hints of large cou-
plings to both (£1)s(1)s{>S1} and (h1)s(1)s{>S1} were observed but these were poorly
determined.

For the first time in a lattice QCD calculation, we performed an eight coupled-channel
scattering analysis, presenting the phase-shifts and mixing-angles through the eight-channel
generalised Stapp-parameterisation.

This work has demonstrated the advances and capabilities of lattice calculations for
studying many coupled-channel systems and in particular, in a system where large ex-
perimental efforts towards calculating the lightest exotic meson are being undertaken.
It would be desirable to pin down more precisely the couplings to the (f1)s(1)s{°S1}
and (h1)s(n)s{>S1}, featuring the by7 and fi7 channels which have been seen experimen-
tally and appear in this calculation to show hints of large couplings. Looking forward,
once a three-hadron scattering formalism is practical to use, finite-volume spectra from
moving-frame irreps could be incorporated into the analysis as additional constraints,
and moreover, a calculation of the m; at a lighter pion mass would make for an excellent

comparison.

APPENDICES 1

6.A SU(3)r Octet Multiplets

For reference, we present the SU(2)r contents of the SU(3)r scalar, axial-vector and tensor

octets in Figure |6.16]



6.A. SU(3)rp OCTET MULTIPLETS

179
K" Y =1 Y=1
_ + I - + L
a ag —> a ar —>
=-1" L =1 I, =-1 AL =1
K™ o] ic° Y = -1 K )} Rl | vy=-1
I, =-1/2 I, =1/2 I, =-1/2 I, =1/2
(a) (17)0*F (fo)s octet (b) (17)1%F (f1)s octet
Y
K" vy=1
L,
by a az
I, =-1 I=1 I, =-1 X L =1
Ky o R ) y=-1 Ko™ e K°) vy=-1
I, =-1/2 I, =1/2 I, =-1/2 I =1/2

(c) (1)1~ (hq)s octet (d) (17)27F (f2)s octet

Figure 6.16: SU(2)r flavour content of the scalar, axial-vector and tensor octets. The

(I¢)JPC quantum numbers for the isovector elements are given in the sub-captions.
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6.B Indistinguishable (w)g(w); Amplitudes

The quantisation condition subduced into the [000]7} irrep cannot distinguish between
the three J© = 17 vector-vector (w)g(w)i-channels. The scattering parameters within
the t-matrix, parameterising the 'P;-, 2P;- and °Py-waves, can be freely interchanged
while leaving the determinant invariant. As such, we cannot uniquely determine these
amplitudes here and must incorporate moving frames in the analysis if we are to make
such a distinction. We show this invariance by examining symmetries of the quantisation
condition below.
For convenience, we transcribe the quantisation condition subduced into [000]7},

) —~—0,T
ot [Lipt- (1)) =0

and take the second row of the irrep[”] It follows from Eq. that as the only non-zero

subduction coefficient is trivially S}O_ , = 1, the quantisation condition can be equivalently
1

written in the [£SJma) basis as,

et [1+ip-t-(1+iM)] =0,

where M is at momentum zero and has components given in Eq. . It is this matrix
we examine now.

From Eq. , it is immediate that M is diagonal in intrinsic spin and thus no mixing
between the three P-wave vector-vector channels given above can feature in M. We
therefore look at the diagonal components in each of these channels. It is useful here to
make observation about the Z-functions and integral of the product of spherical harmonics
expressed in Eqgs. [2.50] and respectively.

At zero momentum, Zj;,, = 0 whenever m, ¢ 4Z, (¢ 27 and £,m, = 2,0 and the first
few non-zero Zp;, are Zoo, Zy and Zy4. For ¢ > 4, it is immediate from Eq. [2.51] that
JdQ Yy, Y Y1m; = 0 as the Clebsch-Gordan coefficients,

mZZT?Lg
11 ¢
C =0
000

12Tt does not matter which row we consider, however the second row gives more symmetric Clebsch-

Gordan coefficients which will be useful later.
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For { = m = 0, it follows from Eq.[2.51| that [dQ Yf:WYO’BYlm2
Eq. [2.49, that,

_ 1 S J 1 S J 47 3
Misima, 187 ma = Z C ( )C ( > (k(a)) 0870([k§5,;)]2;[1)5m2m2

/ /
meml,msg my Mg M m, Mmsg m

ms —mg mg m —mgs mg m k) e
47

= S () oSS L),

cm

= 5mgm2 and hence, from

As the only non-zero subduction coefficient for J = 3 in the second row of 7} is trivially
S;O_Q =1, we find that the matrix M is invariant under permutations of all the P-wave
(w)s(w)q-channels.

The matrix of phase-space factors p is also invariant under such permutations. The
t-matrix however forbids mixing between J = 1 and J = 3 and subsequently, in general,
we cannot interchange the “P; and °Pj scattering parameters. Nevertheless, for any t-
matrix, interchanging the 'Py, 3Py and °P; scattering parameters will leave the determinant
invariant and therefore, using the [000]7} energy levels as constraints, we cannot distinguish

the 'P;-, *P;- and °P-wave (w)g(w)1 scattering amplitudes.

6.C Scattering Parameterisations

We present the table of scattering parameterisations that successfully described the finite-
volume spectra, as discussed in the text, in Table [6.5] The correlations between the
scattering parameters of the reference amplitude (the first parameterisation shown in bold
in Table are presented in Table Entries in the table with a dash ‘-’ in the x? /Naot

column correspond to parameterisations that failed to converge to a minimum.
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Table 6.5: Parameterisations of the K-matrix, as described in the text. Each check-mark ‘v’ in the table indicates

freedom in that scattering parameter and a dash ‘-’ denotes a zero entry in the K-matrix. The x?/Nyot for each fit,

describing the 38 energy levels, is given in the final column for different phase-space prescriptions: Chew-Mandelstam

(CM) with threshold (thr.) or pole (pole) subtraction or the simple phase-space, ‘I(s) = —ip(s)’. The reference fit,

whose parameter values are presented in Eq. [6.9] is displayed in bold in the first ‘row’ of this table, i.e. the first block

of four rows divided by horizontal dashed lines.
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CHAPTER 7

Generalised Stapp-parameterisation

There is no established method in the literature to minimally display the S-matrix in three
or more channel scattering. An approach that is often taken involves plotting the real and
imaginary parts of each of the elements, however, this contains redundancies as it does not
account for the constraints provided by unitarity. Plotting the magnitudes via p,p, ’tab‘Q
has the advantage of being closely related to a differential cross-section, but discards
important phase information. For the two channel case, the Stapp-parameterisation [65]
is minimal with regard to unitarity and reduces to single-channel phase-shifts when the
channels decouple. No generalisation to more channels, that naturally reduces to the
two-channel Stapp parameterisation, appears in the literature. In this chapter, we provide
such a generalisation to n-channels, preserving the notion of n phase-shifts and n(n —1)/2
mixing-angles.

We begin by defining the exponential map from the Lie Algebra LU(n) to the Lie Group
U(n) as,

Exp: LU(n) — U(n)
X — exp(iX). (7.1)

With this definition, a basis for LU(n) is given by the set of n?, n X n Hermitian matrices.
A convenient choice are the sets {A;|1 <i<n}, {01 <i<j<n}and {U;ll<i<
j < n} where,

(Aj)ap =0ia0ip  (nO sum on 7) (7.2)
(©4))ab =0iajp + djadin, (i < j) (7.3)
(V)b =10ia0jp — 1040 (i < J). (7.4)

In order to construct a general n X n symmetric unitary matrix S, we exponentiate the
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subset of n(n + 1)/2 symmetric matrices, {A;, ©;;}, and take S = BBT where,

B =exp(id1A1) exp(id2As)... exp(id,A,,)
X exp(ién_ln@n_ln)... exp(z’Elg@lg). (75)

Here BT denotes the matrix transpose of B and {d;, €.} are a set of n(n + 1)/2 real
parameters.

With this choice, for two channels, d;, d5 and €5 are exactly the Stapp phase-shifts and
mixing-angle of Ref. [65]. If instead we take S = BB, where,

B = exp(i&n_ln\lln_ln)... exp(z’@lg\llu)
x exp(i0y A1) exp(idyAy)... exp(id, A,,) (7.6)

we obtain a parameterisation similar to that of Blatt and Biedenharn [101] where § are
the eigen-phaseshifts and 6 are some mixing-angles.

We use the indexing €;; and ©;; to conveniently label the angle and matrix respectively
that miz channels ¢ and j. By construction, this parameterisation gives a symmetric
unitary matrix with n(n + 1)/2 independent free parameters and provides a natural

n-channel extension of the two-channel Stapp parameterisation.

As an example of this construction, for two-channels, the basis defined above gives the

matrices,

It follows that setting n = 2 in Eq. [7.5 gives,

g ( cos(2€12) €21 isin(26),) ei(‘51+52)>

isin(2€12) €i(51+52) COS<2€12) €2i62

which is precisely the Stapp-parameterisation.
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The generalised three-channel Stapp-parameterisation has 6 free real-parameters (three
phase-shifts and three mixing-angles) and is obtained by taking n = 3 in Eq. . Fixing

€13 = 0 and €3 = 0 reduces to the two-channel Stapp-parameterisation in channels 1 and

2, and leaves a single phase-shift in the channel 3. An analogous reduction applies for

other appropriate combinations of mixing-angles taken to be zero. Explicitly, the elements

of the S-matrix are,

where

2 2 210
S11 = (X12 Cig — 813) et

Sia = c13(i01903 — S13503(1 + x12)) €112

Si3 =ci3 (iC23513(1 + X12) — 012323) e'(o1+0s)

2 2 2 2 2 . 210
522 = <X12 Cos + X12 813853 — Ci3S53 — 22012813823623) e~

S23 = (0'12813 (Sgs — C§3> + Z.C%3023823(1 + Xlz))@i(62+53)

2 2 2 2 2 . 2i6
Ss3 = (013023 — X12513C23 — X12523 — 22012513323023) e

X12 = c08(2€12), c13 = cos(€13), C23 = cos(€a3)

012 = sin(2€12), S13 = Sin(€13>, S93 = Sin(ggg).

These conventions mean that 6; = %arg(SH), which is in agreement with Refs. [7,62,63]

where the ‘phase-shifts’, v;, are defined as i; = %arg S;i. However, we see for d, and 5

there are corrections to the phase due to the imaginary components o< g15513523¢C23 in

the expressions for Sy and Ss3, given in Eq. [7.8 For a very weakly mixed channel these

corrections are very small and §; ~ v; for i = 2, 3.

We make a note here that determining {J;, €5} directly from some S-matrix is much less

trivial than in determining eigen-phaseshifts and mixing-angles by diagonalising S. The

relationship between {0;, €.} and {0;,6,;} is highly non-linear and related through the
BCH formula, invoked when equating S = BBT = BB for B and B defined in Eq.
and Eq. respectively. The method we use to determine {d;, €} is detailed below.
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7.1 Determination of {¢;,€;.}

In order to determine the phase-shifts and mixing-angles as a function of cm-frame
energy, we solve S(0;, €jx; Eem) = S™(Eem) for 6;(Eem) and €j5x(Fem) where S (Fyy) is
an S-matrix calculated from the energy dependent scattering amplitudes — for example
the reference amplitudes presented in the previous chapters. The approach we take
here is to construct a differential equation at each E, in the space of 0;(F.yn) and
€ji(Ecm) with a fixed point corresponding to the phase-shifts and mixing-angles that give
S(6iy €k; Bem) = S (Eem). We implement an Euler flow to solve for this fixed point to
some specified tolerance. The construction is given below.
Define f(d;, €jx; Eem) to be the Frobenius norm of the difference of S and Slat.

F (0, &k Bem) = |18 (05, € Eem) — S (Eem)[fro (7.9)

where ||a;||tro. = 1/ i |a;j|? is the sum over the modulus squared of each matrix element.
By construction, f(6;, €jx; Ecm) is a positive semi-definite function, attaining its minimum
when S(6;,€1; Fem) = S (Een). The partial derivative with respect to 6;(Eem) and
€k (Eem) 1s,

oS,
ggi( (E. ZQR (8% 2(Eem); Bem) % (S5(®; Eer) = St (Eem)) ), (7.10)

where x(Ecy) denotes the vector of phase-shifts and mixing-angles, {0;(Ecm), €x(Ecm)},
and X, denotes element-wise matrix multiplication.

To obtain the fixed point, and hence the phase-shift and mixing-angles, the parameters
x are updated at each iteration by,

nt+l) _ w(n) —h af

( )
r EOR

where h is some constant step size and the fixed point is given in the limit n — oco. In

practice, we terminate when both,
HS<CE(N+1)§ Eem) — Slat'(Ecm)Hfro. - ||S(:12( Eem) — S'(E, (Eem)!ltro.
HS(m(N)a Ecm) - Slat'(Ecm)Hfro.
e > [|S(x™); Eew) — 5™ (Eem)|fro. » (7.11)
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where the first condition ensures convergence of the flow and the second gives ) ~ ()
for € small.

We propagate parameter errors and correlations in the scattering amplitudes onto
x™)(E.,) by first generating an ensemble of scattering parameter values according to
a multivariate Gaussian distribution defined by the parameter covariance matrix. This
ensemble is propagated under jackknife to calculate an ensemble of ™) (E.,) and the
corresponding means and uncertainties are determined.

As a final comment we point out a useful property of the above construction. The
parameters 6;(Eem), €jx(Eem) are continuous functions of E, and as such, the solution
xW )(Ecm) to Eq. provides an excellent set of priors at energy F.n + AFE.m, provided

AFE., is sufficiently small, speeding up the rate of convergence.

7.2 Properties of S(d;,€;1)

This S-matrix parameterisation has a number of elegant properties. Firstly, ordering the
kinematic thresholds by increasing energy, we see that below the N*' threshold, for real
Ecn, the symmetric S-matrix has components S,; = S;, = 6,; for n > N and therefore
0n(Eem) = €in(Eem) = 0 for all n > N and all i. As the N*® threshold opens, the phase-shift
On(Eem) and N — 1 mixing-angles €y (FEqy) for 1 <7 < N —1 ‘turn on’. In this sense, at
each kinematic threshold, the parameterisation naturally extends to accommodate the
additional channel(s).E] Furthermore, if €y(Fqy) = 0 for all 1 <i¢ < N — 1 in a region
above the N*"-threshold, we see that this channel decouples and the parameterisation
appears to be block diagonal with an (N — 1) x (N — 1)-block and a single decoupled
phase-shift dy(Fem). We observed this in the five coupled-channel b; study in Section

where two-channels decoupled, illustrated clearly in Figure [5.17]

7.3 Examples

In this section, we apply the parameterisation to the scattering amplitudes determined for
the three coupled S-wave pseudoscalar-pseudoscalar system, featuring the fy resonance [7].

We will compare the phase-shifts with those reported in the aforementioned reference and

'Multiple channels if more than one partial-wave features at a single kinematic threshold.
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examine any differences. In each of these calculations, the phase-shifts were defined as
the overall phase of the diagonal elements of the S-matrix, 1; = %arg Sii. We will also
present the mixing-angles through inelasticities, cos 2€, as there is a sign ambiguity in
each of the off-diagonal S-matrix elements. This arises from a freedom to rephase the
hadron states, subject to the S-matrix being symmetric, and means in this case the sign is
unphysical. ‘Inelasticities’, 1;, were defined as the magnitudes of the diagonal components
of the S-matrix, n; = [Si/, in Ref. [7]. Below the third coupled-channel threshold, the
single inelasticity cos 2€19 is equivalent to |Si1| = |Sae| however, above this threshold, there

is no meaningful comparison and as such we only plot cos 2€;;.

7.3.1 f,

The f, features in a three coupled-channel system of 77w, KK and nn with vacuum
quantum numbers, i.e. (I9)JP¢ = (07)0**. In brief, the results of Ref. [7] show a
somewhat decoupled 11 channel and strongly coupled 77 and KK. In Figure we
present the phase-shifts d; and diagonal phases ;.

The figure shows that the phase-shifts and diagonal phases agree below the nn-threshold
— expected since these are equivalent in this energy region. Above nn-threshold, small
deviations between d; 3 and 1,3 can be seen due to the differences in the phase of the
diagonal entriesﬂ of the S-matrix, coming from the term o 1012513523¢03 in Eq. . As
the nn is found to be approximately decoupled in Ref. |7], the difference between the
phase-shifts and diagonal phases is expected to be modest since the term o< 1012513523¢23
will be suppressed for small mixing-angles.

Presented in Figure are the three inelasticities. We find a large deviation away
from unity in the inelasticity between 77| K K compared to K K |nn and wr|nn. The 7r|nn
inelasticity is shown to be consistent with zero outside the energy range 0.21 < a;Ec < 0.23
and within this interval, the difference from unity is found to be modest. This observation
is manifest in the behaviour of the phase-shifts and diagonal phases in Figure[7.1] In the
energy range 0.21 < a;Ee S 0.23, small discrepancies between 65 and )9 3 are observed

however, outside this interval they are consistent, as 012513893¢23 = 0 for €;3 = 0.

2Recall that d; is identical to ¢, by construction — see Eq.
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Figure 7.1: Phase-shifts, §; (solid curves), and diagonal phases, 1; (dashed curves), for the
reference parameterisation quoted in Ref. [7] — w7 (blue), KK (red), nn (green). Coloured

bands reflect the uncertainties §; while the grey bands give the uncertainties on ;.
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Figure 7.2: Inelasticities, cos 2¢;;, for the reference parameterisation quoted in Ref. || -

7| KK (orange), 7x|nn (blue), KK |nn (purple). Coloured bands reflect the uncertainties

on the reference amplitude.
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7.4 Summary

The parameterisation presented in this chapter is a natural n-channel extension of the
two-channel Stapp-parameterisation [65], minimally displaying the n(n + 1)/2 degrees
of freedom of an n x n symmetric unitary matrix. In the case that k-channels decouple,
the parameterisation block diagonalises, with an (n — k) x (n — k) block, governing the
remaining coupled (n — k)-channels, and the k-block a diagonal matrix of phases.

We have presented a method for calculating the phase-shifts and mixing-angles and have
presented the results for the three coupled-channel scattering systems featuring the fj.

As a final comment, this parameterisation allows relative sign information between
dynamically-coupled partial-waves to be captured in the mixing-angles, unlike the pqpp|tas|*
magnitude squared where such information is discarded, vital for scattering calculations of

hadrons with non-zero intrinsic spin.
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Conclusion

Over the course of my PhD, my ambition was to perform scattering calculations of hadrons
with non-zero intrinsic spin from first principles QCD. Here, I summarise how that goal
was achieved.

In Chapter [3] T presented the first lattice calculation of pm scattering in isospin-2. I
showed how a non-zero intrinsic spin leads to dynamically-coupled partial-waves and
gave an overview on how the finite-volume energy spectra can be used to determine the
scattering amplitudes. A basis of vector-pseudoscalar operators resembling isospin-2 pr-like
states was constructed at the SU(3)r point. Furthermore, a discussion on how multiple
linearly independent vector-pseudoscalar operators can appear at a single non-interacting
energy and the importance of including all such operators was discussed. Using an
anisotropic lattice, large matrices of two-point correlation functions were computed within
the distillation framework, and the energy spectra for pm in isospin-2 were determined
from a variational analysis. I utilised the Liischer quantisation condition to determine all
S-, P- and D-wave amplitudes from a global analysis of a large number of finite-volume
energies. For the first time in a lattice QCD calculation, the mixing-angle, governing
the dynamical mixing between the 3S; and ®D; partial-waves, was determined and the
dependence of the finite-volume spectra on the mixing-angle was given.

In Chapter[4] I examined pr in isospin-1. A comprehensive discussion of the manifestation
of Bose-symmetry and G-parity at the SU(3)r point was presented and appropriate bases
of single-meson and two-meson operators constructed. I gave a qualitative discussion of
the rest-frame spectra and concluded that the a; axial-vector meson appeared to feature
as a bound-state.

The b, axial-vector, with opposite charge-conjugation to the a;, decays dominantly
into the mw vector-pseudoscalar channel, dynamically coupled in 35;- and 3D;-wave. At
light-quark masses resulting in a pion mass ~ 391 MeV, the w meson is stable against

strong decay to wwm and a first lattice QCD calculation of coupled 7w and 7¢ scattering,
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incorporating dynamically-coupled 35;- and ®D;-waves in 7w, was presented in Chapter
Single-, two- and three-meson operators were constructed and finite-volume spectra were
determined via a variational analysis of matrices of two-point correlation functions. Utilising
the relationship between the discrete spectrum of finite-volume energies and infinite-volume
scattering amplitudes, I found a narrow axial-vector resonance (JF¢ = 1*7), the analogue
of the b; meson, with mass mp ~ 1380 MeV and width I'g &~ 91 MeV. The resonance was
found to couple dominantly to S-wave ww, with a much-suppressed coupling to D-wave
mw, and a negligible coupling to m¢ consistent with the ‘OZI rule’.

Chapter [0] was dedicated to a first lattice QCD scattering calculation of the exotic
JPC = 17F sector. To circumvent the need for a three-body scattering formalism, I
once again worked at a heavy pion mass ~ 700 MeV. At this pion mass, the exotic
m; was anticipated to resonate in an energy region featuring eight coupled channels:
one pseudoscalar-pseudoscalar, one vector-pseudoscalar, two axial-vector-pseudoscalar
and four vector-vector. Finite-volume spectra were calculated in the rest-frame so that
the conservation of parity ensured potentially troublesome low-lying ag- and as-like
resonances and contributions from three-body channels were circumvented. A coupled-
channel scattering analysis was performed and a single resonance pole was robustly
determined, which I interpreted as the exotic m; resonance. Correspondingly, the couplings
to all coupled channels were calculated and extrapolated to the physical light-quark mass
limit.

The calculations in this thesis demonstrate the capability lattice QCD has in determining
the rich spectrum of hadronic resonances. The techniques developed will enable first
principles calculations in channels featuring the exotic ‘X, Y, Z’ states in the charm and
bottom sectors, the vast majority strongly decaying via hadrons with non-zero intrinsic
spins. Furthermore, these techniques combined with a fully mature three-body formalism
will enable rigorous first principles calculations of hadrons such as the a; meson, which has
a dominant decay to the dynamically-coupled 3S;- and ®D;-wave pr where the unstable p
decays to mm. The recent progress in both the formalism and tools, required for rigorous
calculations of scattering amplitudes and resonances from lattice QCD, makes for an

exciting future in hadron spectroscopy.
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