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addition, I would like to thank Raúl Briceño, Max Hansen, Mike Peardon, Ron Horgan,
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Abstract

Hadron spectroscopy is predominantly the study of resonances that decay via the strong

interaction into a multitude of stable hadrons, such as the pion. The vast majority of

resonances decay via an intermediate hadron with non-zero intrinsic spin. In this thesis, I

will present the results of scattering calculations featuring mesons with non-zero intrinsic

spin. Before doing so, I will first give a brief introduction to QCD and review the framework

necessary to perform lattice QCD calculations in Chapters 1 and 2.

In Chapter 3, I present the first lattice calculation of ρπ scattering in isospin-2. Here,

ρπ features in dynamically-coupled 3S1 and 3D1 partial-waves with JP = 1+. No resonance

enhancement is anticipated in the flavour exotic isospin-2 channel and as such it provides

an ideal testing ground for this first calculation. I work at heavier than physical quark

masses at the SU(3)F point where the up, down and strange quarks are mass degenerate.

Finite-volume spectra are calculated and, utilising the relationship between the discrete

energy spectrum and the infinite-volume scattering amplitudes, partial-wave amplitudes

with J ≤ 3 and the degree of dynamical mixing between the coupled 3S1 and 3D1 channels

are determined.

In Chapter 4, I investigate ρπ in isospin-1 where the a1 axial-vector resonance is

expected to feature. Here, I present a discussion on G-parity and Bose-symmetry at

the SU(3)F point. Working at heavier than physical quark masses, the resulting finite

volume spectrum suggests that the a1 is a bound-state and that the 3S1- and 3D1-wave,

ρπ scattering amplitudes are similar to those in isospin-2.

I present the first calculation of coupled πω and πφ scattering in Chapter 5 where

resonant enhancement is seen experimentally in the JP = 1+ channel. Working at a

somewhat lighter pion mass than in previous chapters, the finite-volume spectra are

determined and the scattering amplitudes are calculated. Analytically continuing the

amplitudes into the complex energy plane, a resonance pole is found, interpreted as

the analogue of the b1 axial-vector, which couples dominantly to 3S1-wave πω, with a
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much-suppressed coupling to 3D1-wave πω, and a negligible coupling to πφ.

In Chapter 6, the exotic JPC = 1−+ channel is studied. These quantum numbers are

not allowed in the quark model but can be obtained, for example, through a gluonic

excitation coupled to a quark-antiquark pair. In this exploratory calculation, performed at

the SU(3)F point, the finite-volume spectra and coupled-channel scattering amplitudes are

presented. A single resonance pole is found, interpreted as the exotic π1, and couplings

to meson-meson channels, including for example πη{1P 1}, πη′{1P 1} and ρπ{3P 1}, are

calculated for the first time in lattice QCD.

In order to minimally present the contents of a unitary n-channel scattering matrix, I

introduce, in Chapter 7, an n-channel generalisation of the traditional two-channel Stapp

parameterisation.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the theory of the strong interaction that confines

quarks and gluons to hadrons. The quantum field theory has a non-abelian SU(3) gauge

symmetry which gives rise to eight gauge fields, gluons, transforming in the adjoint

representation of SU(3). (Anti)quarks are charged under SU(3), transforming in the

(anti)fundamental representation and we attribute (anti)red, (anti)green and (anti)blue to

distinguish the three distinct colour charges carried. Overwhelming experimental evidence

suggests QCD is a confining theory in which observables must be colourless, meaning

eigenstates of the QCD Hamiltonian, hadrons, are forbidden to have a net colour charge.

This restricts the allowed quark and gluon constituents of hadrons – certainly a naked

quark is prohibited for example. For two quarks, hadrons can consist of a quark-antiquark

pair, a meson (qq̄) such as the pion. For three quarks, an antisymmetric contraction of

the colour charges yields a colour neutral state, a baryon (qqq) such as the proton, and

similarly an anti-baryon where the quarks are replaced with anti-quarks. More elaborate

combinations of larger numbers of quarks give rise to a plethora of possible hadronic states,

for example tetraquarks and pentaquarks. Furthermore, excitations of the gluonic fields

coupled with quarks gives rise to so called hybrids and in the absence of any quark fields

at all, glueballs. Although these states are allowed within the QCD framework, they do

not necessarily exist.

The vast majority of hadrons appearing in nature are unstable, resonances, and are

observed through decays via the strong interaction to, typically, a multitude of stable

hadrons in various partial-waves. Experimentally, long-lived (narrow) isolated resonances

are observed as ‘bumplike’ enhancements in the cross-sections of scattering amplitudes of

the relevant decay modes, with masses and life times related to the position and width of

the enhancement region. Short-lived (broad) resonances are much more difficult to see

from cross-sections alone.

The quark model, proposed independently by Gell-Mann [11] and Zweig [12], is a means

1
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of classifying hadrons based on their constituent quarks. This scheme offered a natural

way to group together the light hadrons that were being discovered in the 1950s and 1960s

but as more experimental evidence emerged, verifying the success of the quark model, it

became a powerful tool within its own right. The majority of resonances are accounted for

by the quark model, including broad resonances hard to detect in experiment, however,

experimental evidence suggests the existence of hadronic resonances with exotic quantum

numbers that are not accounted for – one example being the π1 resonance.

Contemporary studies of hadron spectroscopy seek to relate the spectrum of hadronic

resonances, including their decay properties, to the theory of QCD. Lattice QCD, which

considers the theory on a discretised spacetime grid of finite size and numerically calculates

correlation functions using Monte-Carlo generated gauge field configurations, has proven to

be a hugely successful approach. The discrete spectrum in a finite volume, corresponding

to a particular choice of quantum numbers, can be extracted from a matrix of correlation

functions, computed using a diverse basis of operators which resemble the hadronic system

being studied. An approach introduced by Lüscher utilises the finite volume to relate

the discrete spectrum of states to infinite-volume continuum hadron-hadron scattering

amplitudes. The corresponding pole singularities and residues of the scattering amplitudes

analytically continued into the complex energy plane, give the masses, widths and couplings

of the resonances. In this thesis, I will calculate, from first principles QCD, scattering

amplitudes of hadrons with non-zero intrinsic spins before determining the pole singularities

and interpreting these as resonances.



Chapter 2

Background

In this chapter, we set out the background necessary to perform calculations of low-

energy observables from first principles QCD. In Section 2.1, we give a brief discussion

of continuum QCD with particular attention to the symmetries of the theory and the

path integral formulation. The lattice QCD (LQCD) framework will be introduced

in Section 2.2, and numerical techniques required to calculate QCD observables non-

perturbatively will be given in Section 2.3. In Section 2.4, we detail the implementation of

the distillation framework, used in the computation of correlation functions, and discuss

the significant advantages it offers. In Section 2.5, we explore the consequences of working

in a reduced symmetry, owing to the finite-volume and discretisation of spacetime, and give

the construction of operators respecting said symmetries. We follow up in Section 2.6, with

the techniques used to extract the discrete spectrum of states from correlation functions.

Lastly, in Section 2.7, we present the formalism necessary to calculate infinite-volume

continuum QCD scattering amplitudes from the energy eigenstates of the discretised QCD

Hamiltonian.

2.1 QCD

The QCD action can be written,

SQCD =

∫
d4x

{
−1

4

8∑
a=1

FaµνF
aµν

︸ ︷︷ ︸
SG[A]

+
∑
f

3∑
i,j=1

4∑
α,β=1

q̄fi,α(x)[i(γµ)αβ(Dµ)ij −mfδijδαβ]qfj,β(x)︸ ︷︷ ︸
SF [A,q̄,q]

}

(2.1)

where, for the gauge part of the action SG[A], Faµν = ∂µAa
ν − ∂νAa

µ − gsfabcAb
µAc

ν is the

field strength tensor, fabc are SU(3) structure constants, gs is the strong coupling constant

and Aa
µ are the gauge fields with a = 1, ..., 8 indexing the adjoint representation of SU(3).

3
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In the fermionic part of the action SF [A, q̄, q], (γµ)αβ are the usual Dirac-γ matrices and

(Dµ)ij = δij ∂µ + igsA
a
µλ

a
ij/2 is the gauge covariant derivative where λaij are the Gell-Mann

matrices and (i)j = 1, ..., 3 is the colour index in the (anti)fundamental representation. For

the quark fields qfj,β, β is the spinor index and f is flavour of which there are six: up, down,

strange, charm, bottom and top. mf is a bare quark mass. Since we are interested in light

hadron spectroscopy, we restrict to the lightest three flavours, up, down and strange, for

the remainder of this thesis.

In QCD there are a number of global, approximate and discrete symmetries that enable

us to simultaneously diagonalise the QCD Hilbert space and label hadronic states according

to the eigenvalues of the corresponding generators. In particular, it is often convenient to

label hadrons (IG)JPC , following the conventions of the PDG [5].

The Poincaré group, P, which is the semi-direct product of translations and Lorentz

transformations, P = T 1,3 o O(1, 3), is a global symmetry of QCD. The irreducible

representations of the subgroup of rotations SO(3) ⊂ O(1, 3) that leave massive states

invariant are labelled by total angular momentum J .

Total isospin, I, is the result of an approximate SU(2)F flavour symmetry in which the

up and down quark masses are assumed to be identical and the quarks are indistinguishable

in strong interactions. When isospin symmetry is assumed, the up and down quarks are

collectively referred to as the ‘light’ quarks. Often, a larger SU(3)F flavour symmetry,

extending the approximate indistinguishability of the up and down quarks to include the

strange, is assumed – this is badly broken in reality. Isospin alone is not sufficient to

label the irreducible flavour representations of SU(3)F, owing to the two distinct Casimir

invariants, and we will discuss SU(3)F flavour symmetry in more detail in Chapters 3, 4

and 6.

Regarding the discrete symmetries, P labels parity and C corresponds to the charge-

conjugation parity, defined for neutral hadrons. For hadrons with hypercharge zero but

z-component of isospin Iz 6= 0, the C-parity operator can be augmented through a prior

rotation of π about the y-component of isospin to give the G-parity operator, Ĝ = ĈeiπÎy .

This gives a multiplicative quantum number, G, that is conserved in strong interactions,

assuming isospin is a good symmetry.1

1Hypercharge, Y , is defined as Y = 2(Q− Iz) where Q is the electric charge.



2.1. QCD 5

In the path integral formulation of QCD, correlation functions are given by,

〈O〉 =
1

Z

∫
D[A]D[q̄, q]O e iSQCD[A,q̄,q]

Z =

∫
D[A]D[q̄, q]e iSQCD[A,q̄,q] (2.2)

where Z is the partition function, D[A] and D[q̄, q] are the gauge and fermion integration

measures respectively and O is some gauge-invariant operator, in general consisting of

fermion and gauge fields. Typically, an operator is constructed that respects the symmetries

of QCD in order to interpolate hadronic states of specific (IG)JPC quantum numbers and

subsequently calculate their properties. As QCD is asymptotically free at high energies,

techniques in perturbation theory enable the calculation of these correlation functions

to some order in gs. However, at the low-energies relevant for hadron spectroscopy,

perturbation theory breaks down due to the large coupling constant. One very successful

non-perturbative approach in computing correlation functions is lattice QCD, where, by

performing a Wick rotation in time t → −it and regularising the theory on a discrete

finite grid of Euclidean spacetime points, the path integral can be calculated numerically.

The Euclidean action is given by,

SE
QCD =

∫
d4x
{ 1

4

8∑
a=1

FaµνF
aµν

︸ ︷︷ ︸
SE
G[A]

+
∑
f

3∑
i,j=1

4∑
α,β=1

q̄fi,α(x)[(γµE)αβ(Dµ)ij +mfδijδαβ]qfj,β(x)︸ ︷︷ ︸
SE
F [A,q̄,q]

}

(2.3)

where γE are Euclidean γ-matrices, i.e. γµE = (γµE)† and {γµE, γνE} = 2δµν . It follows that

the Euclidean correlation functions are given by,

〈O〉E =
1

ZE

∫
D[A]D[q̄, q]OE e

−SE
QCD [A,q̄,q]

ZE =

∫
D[A]D[q̄, q]e−SE

QCD [A,q̄,q]. (2.4)

For brevity, we drop the ‘E’ label as we will only consider the Euclidean action and

correlation functions for the remainder of this work.
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2.2 Lattice QCD

The purpose of LQCD is to provide a framework in which to calculate QCD numerically

in a manner in which finite-volume and discretisation effects are under control and, in

the limit that the discretisation spacing is taken to zero and the volume of the lattice

taken to infinity, infinite-volume continuum QCD is recovered. In this section, we will

present the general approach for discretising the QCD action, considering separately

the fermionic SF[A, ψ̄, ψ] and gauge SG[A] actions, before discussing in more detail the

specific improvements and adaptations relevant for generating the gauge fields used in our

calculations.

To begin, we define an isotropic hypercubic grid of Euclidean spacetime points Σ,

Σ = {x = an |n ∈ ZL/as × ZL/as × ZL/as × ZT/at} (2.5)

where a = as = at is the lattice spacing, equal in the spatial as and temporal at directions,

and where L and T are the spatial and temporal extents respectively. Elements x ∈ Σ are

referred to as lattice sites and the edges which connect neighbouring sites are referred to

as lattice links.

2.2.1 Discretising the Fermion Action

Consider first SF[A, ψ̄, ψ]. Restricting the fermion fields to the lattice sites, the O(a2)

discretised partial derivative is given by,

∂µψ(x) =
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a
(2.6)

where µ̂ is a unit vector in the direction µ. In the action, this gives rise to terms that are

not gauge invariant, for example under a gauge transformation, the term ψ̄(x)ψ(x+ aµ̂)

becomes ψ̄(x)Ω†(x)Ω(x+ aµ̂)ψ(x+ aµ̂) where Ω(x) ∈ SU(3) and Ω†(x)Ω(y) 6= I for x 6= y

in general.

To reinstate gauge invariance, link variables, Uµ(x), are introduced, directed along the

links from site x to x + aµ̂. Link variables orientated in the opposite direction from

site x + aµ̂ to x are defined through the hermitian conjugate, U−µ(x + aµ̂) = Uµ(x)†.

Formulated in this way, defining the gauge transformation on Uµ(x) as,

Uµ(x)→ Ω(x)Uµ(x)Ω†(x+ aµ̂) (2.7)
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the action can be augmented to recover gauge invariance by appropriately inserting ordered

products of Uµ(x) between fermion fields to connect the sites, for instance ψ̄(x)Uµ(x)ψ(x+

aµ̂) pertaining to the example above.

Link variables are in fact fundamentally related to the gauge fields in the continuum.

They obey the same transformation properties as the continuum gauge transporter, the

Wilson line, and as such are interpreted as the gauge transporters on the lattice. The

relation with the gauge fields Aµ(x) is given by Uµ(x) = exp(iagsAµ(x)).

Taking the fermionic part of the QCD action from the expression in Eq. 2.3, and

discretising according to the constructions given above, appropriately inserting the link

variables to preserve gauge invariance, the discretised fermion action reads,

SF[U, ψ̄, ψ] = a4
∑
x∈Σ

∑
f∈{u,d,s}

3∑
i,j=1

4∑
α,β=1

ψ̄fi,α(x)[(γµ)αβ(∇µ)ij +mfδijδαβ]ψfj,β(x)

where

(∇µ)ijψ
f
j,β(x) =

1

2a

(
Uµ(x)ijψ

f
j,β(x+ aµ̂)− Uµ(x− aµ̂)†ijψ

f
j,β(x− aµ̂)

)
(2.8)

and where the
∫
d4x has been replaced by the sum a4

∑
. Expanding the link variables in

powers a, it is straightforward to show that SF[U, ψ̄, ψ] = SF[A, ψ̄, ψ] +O(a2).

A fundamental problem that arises from this näıve discretisation of the fermion action

in Eq. 2.8 is ‘fermion doubling’. This can be seen most easily in the inversion of the free

discretised Dirac operator that appears in the fermion propagator. In momentum space,

this is given by [13],

(γµ∇µ +mf )
−1(p) =

mfI− ia−1
∑

µ γ
µ sin(pµa)

m2
f + a−2

∑
µ sin2(pµa)

(2.9)

and as a → 0, (γµ∇µ + mf)
−1(p) has the correct pole at p2 = −m2

f . However, shifting

the momenta within the Brillouin zone, pµ → pµ + π
a
µ̂, gives an additional pole for each

unique translation to the vertices of the hypercube, bringing the total number to sixteen.

There are many modifications to the action one could choose to ameliorate the problem

of fermion doublers and we introduce a Wilson term, resembling a second order gauge-

covariant derivative, that adjusts the mass of the doublers to O(1/a). In the continuum

limit, these become infinitely massive and decouple from the theory. This modifies Eq. 2.8
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giving the Wilson fermion action,

SW
F [U, ψ̄, ψ] = a4

∑
x∈Σ

∑
f∈{u,d,s}

3∑
i,j=1

ψ̄fi (x)[γµ {(∇µ)ij −
a

2
γµ(∆µ)ij}︸ ︷︷ ︸

(Wµ)ij

+mfδij]ψ
f
j (x)

where

(∆µ)ijψ
f
j (x) =

1

a2

(
Uµ(x)ijψ

f
j (x+ aµ̂) + Uµ(x− aµ̂)†ijψ

f
j (x− aµ̂)− 2ψfi (x)

)
. (2.10)

Spinor indices have been dropped for brevity. Correcting for the fermion doublers by

adding the Wilson term reintroduces discretisation errors at O(a) thus SW
F [U, ψ̄, ψ] =

SF[A, ψ̄, ψ] +O(a).

2.2.2 Discretising the Gauge Action

Now we are in a position to consider SG[A]. The cyclic property of the trace ensures that

the trace of any closed Wilson line, i.e. a Wilson loop, is gauge-invariant. Within the

lattice framework, Wilson loops are expressed as an ordered finite product of link variables

that form a closed boundary to some surface, the simplest being the plaquette consisting

of four link variables bounding a planar square,

Uµν(x) = Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)†Uν(x)†. (2.11)

Combining the product of exponentials using the Baker-Campbell-Hausdorff (BCH) for-

mula, Uµν(x) = exp[ia2gsFµν(x) +O(a3)] and hence,

SG[U ] = β
∑
x∈Σ

∑
µ<ν

Re tr[I− Uµν(x)]

=
β

2

∑
x∈Σ

∑
µ,ν

1

2
tr[I + Uµν(x)U †µν(x)]− 1

2
tr[Uµν(x) + U †µν(x)]

=
β

4

∑
x∈Σ

∑
µ,ν

tr[(I− Uµν(x))(I− Uµν(x))†]

= a4
∑
x∈Σ

∑
µ,ν

8∑
a=1

[
1

4
F a
µν(x)F a

µν(x) +O(a2)

]
(2.12)

where β = 2/g2
s and SG[U ] = SG[A] +O(a2).
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The Wilson fermion action and gauge action, given above, have discretisation errors

at O(a) and O(a2). In the following sections, we present a summary of the Symanzik

improvement program [14] which we use to systematically improve the discretisation errors

to O(a2) and O(a4) respectively.

Furthermore, we ultimately work with anisotropic lattices, where the temporal lattice

spacing is finer than the spatial one, at < as. This improves the resolution of time-dependent

correlation functions that encode the energies of the finite-volume QCD Hamiltonian, while

avoiding the large computational cost of a lattice finer in all directions. The modifications

to the Symanzik improved fermionic and gauge action for an anisotropic lattice are also

detailed below.

2.2.3 Symanzik-Improved Anisotropic Wilson Fermion Action

The Symanzik improvement scheme offers a systematic way of introducing irrelevant

operators into the lattice action that remove the undesirable discretisation artefacts to

some order. Sheikholeslami and Wohlert [15] showed for the Wilson fermion action that

O(a) and O(a2) improvement, restricted to on-shell quantities such as hadron masses and

scattering amplitudes, can be achieved by appropriately adding irrelevant operators with

mass dimension-5 and 6 respectively.

For the Wilson fermion action in Eq. 2.10, the O(a) discretisation errors can be removed

by adding a single dimension-5 operator, referred to as the ‘clover term’2, of the form,

−a
2
CSW ψ̄σµνFµνψ, to the fermion action. Explicitly,

Fµν(x) =− i

2a2
(Qµν(x)−Q†µν(x))

4Qµν(x) =Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x)

+Uν(x)U †µ(x− aµ̂+ aν̂)U †ν(x− aµ̂)Uµ(x− aµ̂)

+U †µ(x− aµ̂)U †ν(x− aµ̂− aν̂)Uµ(x− aµ̂− aν̂)Uν(x− aν̂)

+U †ν(x− aν̂)Uµ(x− aν̂)Uν(x+ aµ̂− aν̂)U †µ(x) (2.13)

2The layout of the link variables resembles a four-leaf clover.
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whereQµν = Q†νµ. To obtain the correctO(a) improvement, Sheikholeslami and Wohlert [15]

showed CSW = 1. For O(a2) improvement, there are significantly more dimension-6 ir-

relevant operators required which introduce next-to-nearest neighbour interactions and

feature fermionic contact terms that are considerably more complicated to incorporate in

numerical calculations. The resulting O(a) Symanzik improved Wilson fermion action is,

SW
impr. F[U, ψ̄, ψ] = a4

∑
x∈Σ

∑
f∈{u,d,s}

3∑
i,j=1

ψ̄fi (x)[γµ(Wµ)ij +mfδij −
a

2

∑
µ>ν

σµν(Fµν)ij]ψ
f
j (x).

(2.14)

For an anisotropic lattice, the fermionic action is given by splitting the isotropic action

into spatial and temporal components as follows [16],

SξF[U, ˆ̄ψ, ψ̂] =
∑
x∈Σ

∑
f∈{u,d,s}

3∑
i,j=1

ˆ̄ψfi (x)

[
vtγt(Ŵt)ij +

vs
ξ

∑
s

γs(Ŵs)ij + m̂fδij

− 1

2

(
Ct

SW

∑
s

σts(F̂ts)ij +
Cs

SW

ξ

∑
s>s′

σss′(F̂ss′)ij

)]
ψ̂fj (x)

(2.15)

where hats denote dimensionless quantities, ψ̂ = a
3/2
s ψ, ˆ̄ψ = a

3/2
s ψ̄, Ŵµ = aµWµ, ∇̂µ =

aµ∇µ, ∆̂µ = a2
µ∆µ, F̂µν = aµaνFµν and where ξ is the desired renormalised anisotropy,

ξ = as/at.

In order to determine coefficients vt, vs, C
t
SW and Cs

SW to recover O(a) improvement,

the method of vs-tuning or vt-tuning is employed [16]. For the lattice actions used in

this thesis, vs-tuning is used in which vt = 1 and the clover parameters are found to be

Cs
SW = vs and Ct

SW = 1
2
(vs + 1

ξ
).

As a final modification, three-dimensional stout-smeared [17] and tadpole-improved [18]

gauge links are incorporated into the fermion action. Stout-smearing suppresses the mixing

with high energy gluon modes in an analytic fashion by repeatedly smoothening the

gauge fields using perpendicular staples, products of three link variables connecting sites x

and x+ aµ̂. Importantly, the stout-smearing is restricted to the spatial staples, with no

smearing in time, ensuring the transfer matrix remains physical. Tadpole improvement is

a procedure that removes UV divergences that can appear in the gauge links by dividing

out the mean field value ũµ, Ũµ(x) → Ũµ(x)/ũµ (no sum on µ). The tilde denotes that
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the links are stout-smeared as described above. The choice we take for ũµ is to set ũt = 1,

a good estimate when at ≤ as/2 [19], and calculate ũs by taking the fourth root of the

spatial plaquette [19] finding ũs = 0.9267 [20,21].

Empirical evidence suggests that the ratio ut/us provides a tree-level estimate of the

renormalisation of the anisotropy [16], thus by defining ξ = ut
us
ξ0 and then stout-smearing

the tadpole improved gauge-links, the resulting fermion action can be written,

SξF[U, ˆ̄ψ, ψ̂] =
∑
x∈Σ

∑
f∈{u,d,s}

3∑
i,j=1

ˆ̄ψfi (x)
1

ũt

[
γt(Ŵt)ij +

vs
ξ0

∑
s

γs(Ŵs)ij + ũtm̂fδij

− 1

2

(
1

2

(
vs +

1

ξ

)
1

ũ2
sũt

∑
s

σts(F̂ts)ij +
vs
ξ0

1

ũ3
s

∑
s>s′

σss′(F̂ss′)ij

)]
ψ̂fj (x)

(2.16)

consistent with Eq. (8) in Ref. [20], where the bare fermion anisotropy is defined as

γf = ξ0/vs and the bare gauge anisotropy γg = ξ0. The tuning of the parameters γf and

γg is given in Ref. [20] and is such that the renormalised gauge and fermion anisotropies,

ξg ≈ ξf ∼ 3.5. We will show explicit calculations of ξf in later chapters using the relativistic

dispersion relation for stable hadrons.

By systematically constructing the anisotropic fermion action in this way, it is straight-

forward to see that in the limit that at → as, where ξ0 = ξ = vs = 1, the isotropic action

given in Eq. 2.14 is recovered.

2.2.4 Symanzik-Improved Anisotropic Gauge Action

The gauge action given in Eq. 2.12 has discretisation errors of O(a2). Following a similar

approach to the fermion action, the Symanzik improvement program adds irrelevant

operators of dimension-6 to correct the O(a2) errors at tree-level where the dimension-6

operators are configurations of Wilson loops with 6 link variables. Lüscher and Weisz

characterise all such operators in Fig. 1b-1d of Ref. [22] and derive a set of constraints on

the tree-level coefficients that must be satisfied to attain O(a2) improvement – see Eq. (37)

and (38) of Ref. [22]. In addition, to ensure the classical vacuum Uµ(x) = I for all x, µ is

indeed the true vacuum, SG[U ] > 0 for all gauge configurations U and this gives further

constraints on the coefficients in the form of inequalities as discussed in Appendix A of

Ref. [22].
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One convenient choice of coefficients that we adopt, yielding O(a2) improvement and

maintaining positivity of SG[U ], gives the action,

SG[U ] = β
∑
x∈Σ

∑
µ<ν

(
5

3
Pµν(x)− 1

12
Rµν(x)− 1

12
Rνµ(x)

)
(2.17)

where Pµν(x) = Re tr(1− Uµν(x)) and Rµν(x) = Re tr(1−Rµν(x)) with Rµν(x) denoting

1× 2 planar rectangular Wilson loops.

Moving to an anisotropic lattice, we again repeat the action in the temporal and spatial

components, analogous to the fermion action. Transcribed from Eq. (84) in Ref. [19], this

gives,

SξG[U ] = β
∑
x∈Σ

[
1

ξ0

∑
s<s′

(
5

3

1

u4
s

Pss′(x)− 1

12

1

u6
s

Rss′(x)− 1

12

1

u6
s

Rs′s(x)

)
+ ξ0

∑
s

(
5

3

1

u2
su

2
t

Pst(x)− 1

12

1

u2
su

4
t

Rst(x)− 1

12

1

u4
su

2
t

Rts(x)

)]
(2.18)

where the coefficients are chosen such that this action has discretisation errors at O(a4
s, a

4
t ).

The gauge links have been tadpole-improved (but not stout-smeared) and the tadpole

factors, calculated in Ref. [20], are ut = 1 and us = 0.7336. The two-length rectangular

Wilson loops in time modify the transfer matrix making it non-hermitian, leading to

problems in the spectral decomposition of two-point correlations functions [23]. This is

potentially problematic when we using the variational method, discussed later, to extract

energies as the sum of decaying exponentials.

To circumvent this and recover a physical transfer matrix, these length-two temporal

Wilson loops in time are removed from the action and the coefficients slightly modified to

ensure O(a4
s) improvement, resulting in [20],

SξG[U ] = β
∑
x∈Σ

[
1

ξ0

∑
s<s′

(
5

3

1

u4
s

Pss′(x)− 1

12

1

u6
s

Rss′(x)− 1

12

1

u6
s

Rs′s(x)

)
+ ξ0

∑
s

(
4

3

1

u2
su

2
t

Pst(x)− 1

12

1

u4
su

2
t

Rts(x)

)]
. (2.19)

This action has discretisation errors of O(a4
s, a

2
t ), which is reasonable when at � as, the

case for the anisotropic lattices we use.
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2.3 Numerical Simulation

Having appropriately discretised the QCD action, the correlation function given in Eq. 2.4

becomes,

〈O〉 =
1

Z

∫ ∏
x,µ

dUµ(x)
∏
i,α,f

dψ̄fi
α
(x)dψfi

α
(x)O[U, ψ̄, ψ] e−SξF[U,ψ̄,ψ]−SξG[U ]

Z =

∫ ∏
x,µ

dUµ(x)
∏
i,α,f

dψ̄fi
α
(x)dψfi

α
(x) e−SξF[U,ψ̄,ψ]−SξG[U ] (2.20)

where for clarity, colour (i), spin (α) and flavour (f) indices have been written explicitly,

(x) labels the spacetime sites and dU is the Haar measure on SU(3).

The fermionic integral can be performed analytically observing that the discretised

fermion action is a quadratic form in ψ̄, ψ,

SξF[U, ψ̄, ψ] =
∑
x,y

∑
i,j

∑
α,β

∑
f,f ′

ψ̄fi
α
(x)M [U ] x,y

i,j
α,β
f,f ′

ψf
′

j
β

(y) (2.21)

where M [U ] is the matrix in spacetime, colour, spin and (diagonal) in flavour, corresponding

to the expression in Eq. 2.16. Grassmannian integration gives,∫ ∏
r

dψ̄rdψre
−ψ̄M [U ]ψ = det

r
M [U ] (2.22)

where the bold index r = (x, i, α, f) is a multi-index for spacetime, colour, spin and flavour

and the sums and indices in the exponential have been suppressed for brevity. Introducing

products of the form ψnψ̄m in the integral,∫ ∏
r

dψ̄rdψr ψnψ̄me
−ψ̄M [U ]ψ = det

r
M [U ] (M [U ]−1)nm (2.23)

results in quark propagators (M [U ]−1)nm.

After integrating out the fermionic degrees of freedom, the correlation and partition

functions become,

〈O〉 =
1

Z

∫ ∏
x,µ

dUµ(x) detM [U ] e−SξG[U ]O[U, f(M−1[U ])]

Z =

∫ ∏
x,µ

dUµ(x) detM [U ] e−SξG[U ] (2.24)
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respectively, where f(M−1[U ]) denotes some function of fermionic propagators. An example

for a two-point correlation function is given in Eq. 2.32 in Section 2.4.

The gauge action we constructed is positive for all gauge configurations, as discussed in

Section 2.2.4, and as such the integrands in Eq. 2.24 are peaked around configurations

maximising exp{−SξG[U ]}, i.e. U = I, and exponentially suppressed for configurations

away from the identity. We can exploit this exponential weight factor to numerically

approximate the integrals using Monte Carlo integration through importance sampling. We

calculate the average of the observable O[U, f(M−1[U ])] on a set of gauge configurations

{Un}
Ncfgs

n=1 ,

〈O〉 =
1

Ncfgs

Ncfgs∑
n=1

O[Un, f(M−1[Un])] +O

(
1√
Ncfgs

)
(2.25)

by drawing Un from the probability distribution P [U ] with density,

dP [U ] =

∏
x,µ dUµ(x) detM [U ]e−S

ξ
G[U ]∫ ∏

x,µ dUµ(x) detM [U ]e−S
ξ
G[U ]

(2.26)

One can systematically improve the statistical precision of LQCD calculations by increasing

the number of independent gauge configurations in the sample. We will give the explicit

Ncfgs used when discussing the computational details in the relevant chapters. The

statistical error on 〈O〉 is calculated using jackknife resampling,

σ2 =
Ncfgs − 1

Ncfgs

Ncfgs∑
i=1

(Ôi − 〈O〉)2 (2.27)

where Ôi = 1
Ncfgs−1

∑Ncfgs

j=1,i 6=j O[Uj, f(M−1[Uj])]. All statistical uncertainties are calculated

through jackknife resampling unless otherwise stated.

Suitable sets of gauge field configurations for use in this thesis have been constructed using

a Rational Hybrid Monte Carlo (RHMC) algorithm, by the Hadron Spectrum Collaboration,

for Nf = 3 and Nf = 2 + 1 flavours of dynamical quarks. The implementations are given

in Refs. [20] and [21] respectively.

2.4 Distillation Smearing

The primary aim of hadron spectroscopy is to study the low-energy degrees of freedom

within QCD. Extracting the low-lying energies from correlation functions computed using
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hadron operators built directly from the fermion fields is difficult, as the correlation

function has significant contributions from many excited states. By first smearing the

fermion fields on each time-slice, a technique widely used within LQCD calculations in

which some linear operator is first applied to the fermion fields with the effect of suppressing

the high-energy modes, the calculation of the low-lying spectrum is significantly improved

as the asymptotic behaviour of the correlation functions is realised at earlier times.

A commonly used smearing technique, preserving all the symmetries of the lattice, is

the Jacobi smearing method [24], in which the gauge-covariant Laplacian is iteratively

applied to the fermion fields. The Jacobi smearing operator can be written [25],

Jσ,nσ(t) =

(
1 +

σ∇2(t)

nσ

)nσ
(2.28)

where σ ≥ 0 and nσ > 0 are tunable parameters and the lattice gauge-covariant Laplacian

is

−∇2
xy(t) = 6δxy −

3∑
j=1

(
Ũj(~x, t)abδ~x+ĵ,~y + Ũ †j (~x− ĵ, t)abδ~x−ĵ,~y

)
(2.29)

where the multi-index x = (~x, a) runs over space and colour and Ũj(~x, t)ab are the stout-

smeared, tadpole-improved gauge links discussed in Section 2.2.3.

In the limit that nσ →∞, the Jacobi smearing operator in Eq. 2.28 becomes Jσ,nσ(t) =

exp(σ∇2(t)). As ∇2
xy(t) is negative semi-definite, it is clear that the smearing operator

exponentially suppresses the high-energy modes. As such, an approximation to the smearing

operator can be made by forming an eigenvector representation of ∇2
xy(t), truncated to

the lowest few eigenmodes, {ξ(k)
x (t)}Nvecs

k=1 and ordered by magnitude of eigenvalue [25].

The subspace spanned by these lowest modes is referred to as the distillation space with

rank Nvecs. The distillation operator, �xy(t), projecting the spatial and colour degrees of

freedom of the fermion fields into distillation space is,

�xy(t) =
N∑
k=1

ξ(k)
x (t)ξ(k)†

y (t). (2.30)

No smearing in time ensures quarks are localised on a single time-slice as necessary for the

variational analysis of correlation functions (see Section 2.6).
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In this thesis, all correlation functions are computed within the distillation framework.

There are many advantages of utilising distillation smearing and we now provide an

example to illustrate some of these.

Consider a two-point correlation function computed on a single gauge configuration,

constructed from a fermion bilinear creation operator (ψ̄Γψ)† at time tsrc and annihilated

at later time t. Furthermore, the operator is projected onto zero-momentum at both

source and sink, giving

C(t, tsrc) = 〈
∑
~x

{ψ̄Γψ}(~x, t) ·
∑
~y

{ψ̄Γψ}†(~y, tsrc)〉 . (2.31)

Integrating out the fermion fields according to Eq. 2.23, we find,

C(t, tsrc) = −
{

Γ†xy
αβ

(tsrc)M
−1
yz
βρ

(tsrc, t)Γzw
ρσ

(t)M−1
wx
σα

(t, tsrc)︸ ︷︷ ︸
connected

}
+
{

Γ†xy
αβ

(tsrc)M
−1
yx
βα

(tsrc, tsrc)
}{

Γxy
αβ

(t)M−1
yx
βα

(t, t)︸ ︷︷ ︸
disconnected

}
(2.32)

where the trace is over space and colour (x) and spin (α). After projecting the quark

fields into distillation space, the two-point correlation function becomes,

C(t, tsrc)dist = −
{

Φ†
pq
αβ

(tsrc)τqr
βρ

(tsrc, t)Φrs
ρσ

(t)τ sp
σα

(t, tsrc)︸ ︷︷ ︸
connected

}

+
{

Φ†
pq
αβ

(tsrc)τ qp
βα

(tsrc, tsrc)
}{

Φpq
αβ

(t)τ qp
βα

(t, t)︸ ︷︷ ︸
disconnected

}
(2.33)

where

Φpq
αβ

(t) =
∑
x,y

ξ† (p)
x (t)Γxy

αβ

(t)ξ(q)
y (t) (2.34)

are referred to as elementals and

τpq
αβ

(t, tsrc) =
∑
x,y

ξ† (p)
x (t)M−1

xy
αβ

(t, tsrc)ξ
(q)
y (tsrc) (2.35)

as perambulators and the trace is now over the much smaller distillation space (p) and

spin (α). These elementals and perambulators can be stored on disk and reused for

subsequent calculations.



2.4. DISTILLATION SMEARING 17

(a) Connected, C(t, tsrc) (b) Disconnected, D(t, tsrc)

Figure 2.1: Quark propagation relevant for the two-point correlation function constructed

using a fermion bilinear operator, ψ̄Γψ, at source and sink. Shown separately are the

‘connected’ and ‘disconnected’ diagrams.

Constructing the perambulators requires inversions of the Dirac matrix. The connected

contributions, corresponding to Wick contractions that feature quark propagation from

tsrc to t and vice-versa, as shown in Figure 2.1a, with definite momentum projection at

both source and sink require the inverse of the Dirac matrix, M−1(tsrc, t). We compute the

‘backwards’ propagator, M−1(t, tsrc) using γ5-hermiticity of the propagators, M−1(t, tsrc) =

γ5{M−1(tsrc, t)}†γ5. The disconnected contributions, Wick contractions that feature no

quark propagation between source and sink as shown in Figure 2.1b, require the evaluation

of M−1(tsrc, tsrc) and M−1(t, t). In our implementation, in order to maximise the signal-to-

noise of the disconnected contributions, D(t, tsrc), for a given time separation, t− tsrc, we

average over all source time slices for the entire temporal extent of the lattice [26], i.e.

1

Nt

Nt−1∑
t′=0

D(t+ t′, tsrc + t′)

where Nt = T/at. The connected contributions, C(t, tsrc), are less noisy and are averaged,

typically, over a smaller number of time-sources, Ntsrcs, equispaced around the lattice.3

Together, the connected and disconnected contributions necessitate the computation of

all-to-all propagators, i.e. the full inverse of the Dirac matrix.

Operationally, computing correlation functions featuring disconnected contributions in

distillation space significantly reduces the computational costs. For a typical moderate sized

3We give the Ntsrcs used in the calculations in the following chapters.
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lattice used in this thesis, inverting the full Dirac matrix results in M = (L/as)
3×Nc×Ns =

203 × 3 × 4 ∼ 105 inversions per time-slice compared with Nvecs × Ns = 128 × 4 � M

inversions required in distillation space, as we need only to invert off the lowest Nvecs

vectors.

Previous calculations have set a benchmark for the rank, Nvecs, of the distillation space

sufficient to reliably extract the low-lying spectrum on a given lattice volume, see Figure 3

of Ref. [25]. It is also shown in Figure 5 of the same reference that the rank of the

distillation space scales like the spatial volume. We use these observations to choose an

appropriate Nvecs for each lattice volume in our calculations and give this rank explicitly

in the following chapters.

2.5 Symmetries of the Lattice

Performing calculations in a finite-volume on a discrete grid of points breaks the Poincaré

symmetry of the infinite-volume continuum. In particular, for an anisotropic lattice with

a cubic spatial volume and periodic boundary conditions, the subgroup T 3 o O(3) ⊂ P of

spatial translations, rotations and reflections is broken to that of T 3
latt o OD

h [27] where

T 3
latt is the group of discrete translational symmetries and OD

h is the double cover of

the octahedral group. In this work, we will consider only integer-spin, as relevant for

mesons, and restrict to the single cover Oh. The spatially periodic boundary conditions

quantise the momenta, restricting it to values ~P = (2π/L)(nx, ny, nz) where ni ∈ Z. We

use a shorthand notation when labelling momenta in which the 2π/L factor is omitted,

e.g. ~P = [nx, ny, nz] or [nxnynz].

For lattice frames at non-zero overall momenta, ~P 6= ~0, the octahedral group is further

broken to the little groups of symmetries, i.e. subgroups of Oh denoted LG(~P ), that

preserve the momentum ~P . For |~P |2 ≤ 4, the little groups LG(~P ) ⊂ Oh are the point

groups, Cnv: cyclic groups of order n with the inclusion of n reflection planes containing

the principal axis of rotation.4

The infinite-volume irreducible representations, irreps, of O(3), labelled
(
JP ,m

)
where

m is the projection of J along the z-axis, are not irreps of Oh, of which there are a finite

number [8]. Subsequently, the infinite tower of irreps
(
JP ,m

)
are distributed across the

4In the case of OD
h , point groups Cnv are replaced with Dicn: dicyclic groups of order 4n.
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finite number of irreps of Oh, which we label
(
ΛP , µ

)
with Λ the irrep and µ the row

within that irrep.5

For lattice frames in-flight, in which the hadronic system has non-zero overall momentum

with respect to the lattice, parity is no longer a good quantum number and continuum

irreps, labelled
(
J, λ
)

where the helicity λ is the projection of angular momentum along ~P ,

are distributed across the finite number of irreps, ~PΛ, of LG(~P ). The reduced symmetry

and mixing of parities in these in-flight systems leads to a distribution pattern in J that

is typically more dense than for irreps at rest.

The distribution of total angular momentum J amongst the lattice irreps is commonly

referred to as subduction. The subduction coefficients, SJ,mΛ,µ , are defined as the inner

product of lattice and continuum states,

SJ,mΛ,µ = 〈J,m|Λ, µ〉 (2.36)

and are used to give the linear combination of continuum states that transform irreducibly

on the lattice, i.e. |Λ, µ〉 =
∑

m S
J,m
Λ,µ |J,m〉. Acting on lattice states by elements of Oh, or

the relevant little group of symmetries LG(~P ) for non-zero momentum, simply mixes the

rows of the irrep, much like SO(3) rotations mix the z-components of spin, m, or helicities,

λ, in the infinite-volume continuum.

To construct two-particle states that transform irreducibly, appropriate linear combina-

tions of products of single-particle states are required. For continuum states, these linear

combinations are given through SO(3) Clebsch-Gordan coefficients C(...) for J1 ⊗ J2 → J ,

|J,m〉 =
∑
m1,m2

C

(
J1 J2 J

m1 m2 m

)
|J1,m1〉 |J2,m2〉 (2.37)

whereas for lattice states at rest,

|Λ, µ〉 =
∑
µ1, µ2

C

(
Λ1 Λ2 Λ

µ1 µ2 µ

)
|Λ1, µ1〉 |Λ2, µ2〉 (2.38)

where C(...) are lattice Clebsch-Gordan coefficients for Λ1 ⊗ Λ2 → Λ [28]. The subduction

coefficients and lattice Clebsch-Gordan coefficients we use in this thesis follow from the

conventions set out in Refs. [10,29,30].

5The rows, µ, are analogous to the z-component of angular momentum, m.
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Having established the relationship between the irreducible representations of O(3) and

Oh, it is straightforward to construct operators that transform irreducibly on the lattice.

For a continuum operator, OJ,m(~P , t), with definite quantum numbers, constructed on

timeslice t and projected onto definite momentum ~P , the lattice operator, transforming

irreducibly under the symmetry of the lattice grid and boundary, O†Λµ(~P , t), is given by,

O†Λµ(~P , t) =
∑
m

SJmΛµ O†Jm(~P , t). (2.39)

where m is replaced by helicity λ for ~P 6= ~0. We will discuss in detail the operator

constructions in the subsequent chapters.

2.6 Extracting Energies and Spin Identification

In order to robustly determine the discrete finite-volume energy eigenstates in each irrep,

we first compute a large matrix of two-point correlation functions,

Cij(t) = 〈0|Oi(t)O†j(0)|0〉 , (2.40)

by employing a diverse basis of operators Oi, subduced into the relevant lattice irrep and

constructed with the desired quantum numbers. The spectral decomposition, obtained by

inserting a complete set of eigenstates of the finite-volume QCD Hamiltonian |n〉, is given

as the sum of decaying exponentials,

Cij(t) =
∑
n

1

2En

〈0|Oi|n〉 〈n|O†j |0〉 e−Ent (2.41)

where En is the energy of the nth eigenstate and 〈n|O†i |0〉 ≡ Zn
i are operator-state matrix

elements, commonly referred to as overlap factors. As discussed in Section 2.5, continuum

spins mix within lattice irreps and as such one cannot rigorously identify the spins of

finite-volume eigenstates. However, if rotational symmetry is restored, lattice operators

recover the continuum operator from which they were subduced. In this sense, for a lattice

close to restoring rotational symmetry, lattice operators are expected to have relatively

large operator-state overlaps onto the eigenstates with continuum spins from which they

were subduced [29]. We will make use of these operator-state overlap factors in the

following chapters.
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We extract the spectra in each irrep by applying the variational method [31], which

solves the generalised eigenvalue problem,

Cij(t) v
n
j (t) = λn(t, t0)Cij(t0) vnj (t) (2.42)

and we determine the energy levels En in each irrep by fitting principal correlators λn(t, t0)

to the form,

λn(t, t0) = (1− An) e
−En(t−t0) + An e

−E′n(t−t0). (2.43)

The constants An and E ′n soak up any residual excited state contamination and t0 is

appropriately chosen such that both C(t0) is saturated by the lowest dim(C) eigenstates

and signal-to-noise is sufficiently large to extract En from λn(t, t0) [32]. The advantage of

working on an anisotropic lattice becomes clear here: a finer temporal spacing improves

the resolution of the principal correlators and enables efficient disentangling of excited

state energies.

By construction, vm†i (t)Cij(t0)vnj (t) = δmn for all t and the operator-state overlap factors

relate to the eigenvectors via Zn
j (t) = vn†i (t)Cij(t0)e

Ent0/2. In practice there is little

variation in Zn
i (t), and subsequently vni (t), as a function of time for reasonable t > t0. By

choosing a suitable reference timeslice, tZ > t0, in which C(t) is optimally reconstructed

for dimC states via Eq. 2.41, we construct a variationally optimised operator, Ω†n, efficient

at interpolating the nth eigenstate in the spectrum and given by Ω†n =
∑

i v
n
i (tZ)O†i . These

are used extensively as the building blocks of multi-meson operators as we will discuss in

the following chapters.

Although Zn
i (tZ) is perfectly suitable to quote as an operator-state overlaps factor, in

practice, we fit Zn
i (t) to both a constant form, Zn

i (t) = An
i , and to a constant plus a

decaying exponential in time of the form,

Zn
i (t) = An

i +Bn
i e
−Cn

i (t−t0), (2.44)

where Bn
i and Cn

i soak up residual excited state contamination. We take An
i of the form

that provides the best fit as the value of Zn
i (t).

2.7 Scattering Formalism

Within the lattice QCD framework, the periodic finite-volume means there are no free

asymptotic states that are required in order to define a scattering system. Furthermore,
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any finite-volume eigenstate appears as a pole of the correlation function at a real value of

energy, however, in the infinite-volume continuum any pole above the first multi-particle

threshold is necessarily a resonance and must appear at complex energies. As such, above

the first multi-particle threshold, there is no direct relation between energy eigenstates

of the finite-volume QCD Hamiltonian and infinite-volume continuum states. This is

commonly attributed to Maiani and Testa’s no-go theorem [33].

Seminal work by Lüscher [34–36] in the mid 1980’s, pre-dating the work of Maiani and

Testa, related the infinite-volume scattering amplitudes of two identical scalar particles to

finite-volume energy levels through a quantisation condition that has since been extended

by many others [37–45] to accommodate the most general two particle scattering systems.

We describe the formalism below.

It is instructive to begin by introducing the t-matrix for general two-to-two scattering

processes, related to the unitary symmetric S-matrix via S = 1 + 2i
√
ρ · t · √ρ. Unitarity

ensures conservation of probability and time-reversal invariance forces S to be symmetric.

Here, ρ is a matrix of phase-space factors that we will return to later. The t-matrix can

be expressed as a function of the standard three Mandelstam variables t(s, t, u) where

conservation of momentum imposes the relation s+ t+ u =
∑4

i=1 m
2
i with m1,2 and m3,4

masses of the initial and final states respectively. For scattering particles with zero intrinsic

spin, we can partial-wave project in the s-channel the components tab(s, t, u), where a, b

label hadron-hadron channel, by expanding in a basis of Legendre polynomials P`(x),

t`ab(s) =
1

2

∫ 1

−1

dxP`(x)tab(s, t(x), u(x)) (2.45)

where t`ab(s) is the scattering amplitude in partial-wave ` and x = cos(θab)cm with (θab)cm the

scattering angle in the cm-frame. In this case, as the scattering particles have zero intrinsic

spin, ` and total angular momenta J coincide and as such orbital angular momentum is

conserved in the interaction. In general, non-zero intrinsic spin S allows partial-waves of

different ` to mix: for example, a vector-pseudoscalar pair such as ρπ appears in JP = 1+

in either a 3S1- or 3D1-wave. We express t in the canonical `S basis with components

t`SJma,`′S′J ′m′b(s) = δJJ ′δmm′t`Sa,`′S′b(s). In this basis ρ is a diagonal matrix of phase-space

factors with components,

ρ`SJma,`′S′J ′m′b = δ``′δSS′ δJJ ′ δmm′ δab
2 k

(a)
cm√
s

(2.46)
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and the cm-frame momentum k
(a)
cm for hadron-hadron channel a is given by,

k(a)
cm =

1

2
√
s

(
s− (m

(a)
1 +m

(a)
2 )2

) 1
2
(
s− (m

(a)
1 −m

(a)
2 )2

) 1
2 . (2.47)

The quantisation condition relating infinite-volume scattering amplitudes to the finite-

volume spectrum in a periodic L× L× L box is best summarised by Eq. 22 of Ref. [44].

For the most general two-particle scattering systems, it can be written in the `S basis as

det
`SJma

[
1 + iρ · t ·

(
1 + iM

)]
= 0, (2.48)

where
(
M
) [44]

= 16πt and
(
δGV

) [44]
= i

16π
ρ ·
(
1 + iM

)
relates this equation to the

notation of Ref. [44] and 1 represents δ``′ δSS′ δJJ ′ δmm′ δab. The matrix of functions

encapsulating the kinematics in a finite-volume is

M`SJma, `′S′J ′m′b = δabδSS′
∑

m`,m
′
`,mS

C

(
` S J

m` mS m

)
C

(
`′ S J ′

m′` mS m′

)

×
∑
¯̀,m̄`

(4π)3/2

[k
(a)
cm ]¯̀+1

c~n¯̀,m̄`([k
(a)
cm ]2;L)

∫
dΩ Y ∗`m`Y

∗
¯̀m̄`
Y`′m′` ,

(2.49)

where M is diagonal in intrinsic spin S and hadron-hadron channel a. The volume

dependence is encoded in the functions c~n`,m`(k
2
cm;L) which are defined as follows,

c~n`,m`(k
2
cm;L) =

√
4π

γL3

(
2π

L

)`−2

Z~n`,m`

[
1;

(
kcmL

2π

)2 ]
, Z~n`,m` [d;x2] =

∑
~r∈P~n

|~r|` Y`,m`(~r)
(|~r|2 − x2)d

,

(2.50)

where the sum is over the elements of the set P~n =
{
~r ∈ R3 |~r = γ̂−1(~m− α~n)

}
, ~m is an

integer triplet and ~n is the normalised vector ~n = L
2π
~P . The scale factor α = 1

2

[
1 +

m2
1−m2

2

s

]
reflects the asymmetry for unequal masses of scattering particles. γ̂−1 denotes the Lorentz

boost to the centre of momentum frame with γ̂−1~x ≡ γ−1~x‖ + ~x⊥, where γ = Elab/Ecm

and ~x‖ and ~x⊥ are the components of ~x parallel and perpendicular respectively to the

total momentum ~P .

The product
∫
dΩ Y ∗`m`Y

∗
¯̀m̄`
Y`′m′`

can be written as a product of SO(3) Clebsch-Gordan
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coefficients,

√
4π

∫
dΩ Y ∗`m`Y

∗
¯̀m̄`
Y`′m′` = (−1)m`

√
(2`+ 1)(2`′ + 1)

2¯̀+ 1

× C

(
`′ ` ¯̀

0 0 0

)
C

(
`′ ` ¯̀

m′` −m` m̄`

)
(2.51)

which gives a much more numerically tractable form with obvious symmetries that can be

readily exploited.

The quantisation condition for a given lattice irrep can be obtained by subducing the

(J,m) components into the irrep Λ, in the manner described in Section 2.5. For non-zero

momentum, this can be implemented by first rotating to a helicity basis, and then using

the helicity-based subduction coefficients presented in Table II of [10]. The subduction of

M takes the form,

M~n,Λ

`SJna, `′S′J ′n′b δΛ,Λ′δµ,µ′ =
∑
m,λ
m′, λ′

SJλ ∗Λµn D
(J)∗
mλ (R) M~n

`SJma, `′S′J ′m′b SJ
′λ′

Λ′µ′n′ D
(J ′)
m′λ′(R) (2.52)

where R is the rotation, given explicitly in Table VI of [10], which takes the m quantisation

axis into the direction of ~n. The subduction coefficients include the embedding index n, in

the case that a partial-wave can appear more than once in an irrep. This will be discussed

in more detail in the later chapters. Finally, we arrive at the subduced quantisation

condition,

det
`SJna

[
1 + iρ · t ·

(
1 + iM~n,Λ)]

= 0 , (2.53)

where 1 represents δ``′ δSS′ δJJ ′ δnn′ δab, and where the interpretation of multiple embeddings

is that if a partial-wave appears N times in irrep Λ, the t-matrix for that partial-wave

appears identically as N block diagonal entries in t.

In order to calculate the scattering amplitudes using this quantisation condition, we

take the finite-volume energy levels computed in irrep Λ and use them to determine the

behaviour of t as a function of energy. As a simple example, take elastic scattering,

where a single hadron-hadron channel appears in a single partial-wave. Unitarity of the
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S-matrix means the t-matrix, a complex scalar function, can be expressed in terms of a

real energy-dependent phase-shift δ(s), where

t(s) =
1

ρ(s)
eiδ(s) sin δ(s) =

1

ρ(s)

1

cot δ(s)− i
. (2.54)

We can subsequently invert Eq. 2.53, with the definition of t(s) given above, and obtain

a one-to-one relation between s and δ(s). This is used to calculate a discrete set of

phase-shift points: one point at each determined finite-volume energy level in irrep Λ,

below the inelastic threshold.

To interpolate t(s) in the entire energy region of interest, we take a suitable parame-

terisation of t(s) and, using Eq. 2.53, calculate the spectrum in each irrep Λ. We then

vary the parameters until the resulting finite-volume spectrum optimally agrees with the

lattice computed energies by minimising an appropriate χ2. As a test of robustness, we

then repeat this procedure for many different forms of parameterisation. This approach

generalises to inelastic scattering where a one-to-one relation between finite-volume energy

levels and infinite-volume scattering amplitudes does not exist and we must parameterise

the energy dependence of the t-matrix.

The implementation and methodology will be described in much greater detail and

developed throughout this thesis in the relevant sections. We will discuss, for example,

the forms of the parameterisations, systematic tests of robustness and analysis of the

amplitudes in the relevant chapters.



Chapter 3

Scattering of ρπ in isospin-2 at

mπ ∼ 700 MeV

Hadron spectroscopy is predominantly the investigation of resonances which decay strongly

into hadrons, such as the pion, which are stable under the strong interaction. Many

resonances which decay into multi-hadron final states do so through intermediate states

featuring resonances of non-zero intrinsic spin. For example, the JPC = 1++ axial-vector

a1(1260) meson dominantly decays into a πππ final state through ρ(770)π, where the

vector ρ(770) decays into ππ. Similarly, its C-parity counter-part, the JPC = 1+− b1(1235),

features dominant decays into ππππ final states with an intermediate ω(782)π. Once

an intermediate hadron has non-zero intrinsic spin, it becomes possible for more than

one partial-wave to be present for a given JP through the coupling of the orbital angular

momentum ` to the intrinsic spin S. For example, in the case of both the JP = 1+

axial-vectors, a1 decaying to ρπ and b1 decaying to ωπ, the ρ and ω have intrinsic spin

S = 1 and both S and D-waves can contribute. Indeed it is possible to measure the

relative decay amplitudes [46, 47].

While significant progress has been made studying meson-meson scattering using lattice

QCD [48], calculations have not before accounted for the effects of dynamically-coupled

partial-waves when processes feature scattering hadrons with non-zero intrinsic spin.1

An attempt was made in nucleon-nucleon scattering in the spin-triplet channel which has

the same partial-wave decomposition as ρπ scattering, and a closely related quantisation

condition in finite-volume.2 A non-relativistic quantisation condition for NN was presented

1Some recent work [49], which has considered vector-pseudoscalar scattering in the light sector, makes

brief comment on the possibility of contributions from dynamically-coupled partial-waves, but does not

incorporate this in the analysis.
2There is a slightly smaller symmetry in ρπ owing to the unequal masses of the ρ and the π – altering

the α in Eq. 2.50.
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in Ref. [50], and an attempt to determine the 3S1/3D1-wave mixing appeared in Ref. [51].

In this chapter, we report on the first calculation of the energy dependence of partial-wave

scattering amplitudes for ρπ in isospin-2, including the coupled S and D-wave system

with JP = 1+. In this exploratory study, we work with heavier-than-physical light quarks,

so the ρ becomes stable against decay to ππ. Specifically, we work at the SU(3)F flavour

symmetric point with three degenerate flavours of quark (u, d, s) tuned to have mass

approximately equal to the physical strange quark mass, giving a pion mass ∼ 700 MeV.

In this way we are justified in considering elastic ρπ scattering provided we stay below

the πππ threshold.3 Furthermore, the exotic isospin considered here4 leads us to expect

that the ρπ scattering amplitudes will be non-resonant and, based upon isospin-2 ππ

scattering [28], they are likely to be relatively weak. A study of ρπ scattering within a

non-relativistic quark model [61] found weak, mainly repulsive scattering, with the 3S1

phase-shift being largest, but not exceeding −35◦, and a rather small mixing between

the 3S1 and 3D1 partial-waves. As such, ρπ scattering in isospin-2 makes for an ideal

testing ground for which to develop the analysis tools and intuition for vector-pseudoscalar

scattering in a lattice calculation.

The suspected weakness of the ρπ interactions in isospin-2 will likely lead to small

energy shifts in the finite-volume spectrum with respect to the ‘non-interacting’ energies

expected were ρ and π to have no residual hadron-hadron interactions. It is therefore vital

that the spectra be accurately and reliably calculated. This can be achieved by employing

a large basis of interpolating operators, Oi, constructed with the quantum numbers of

isospin-2 ρπ, in order to compute a matrix of correlation functions and solve a generalised

eigenvalue problem, as discussed in Section 2.6, to reliably extract the energy spectrum.

Specifically, for the case of vector-pseudoscalar scattering, the total intrinsic spin S = 1

can couple with the orbital angular momentum ` to give three distinct total angular

momenta J for ` ≥ 1. In the absence of interactions, this gives rise to many degenerate

energy levels – these may only be split slightly in the interacting case or not at all. A

large operator basis containing appropriate operator structures is essential in order to

disentangle these near-degenerate states.

3No suitably mature formalism and practical implementation for relating finite-volume spectra to

three-body scattering amplitudes yet exists, but see [52–60] for progress.
4A hadron of total isospin-2 must contain at least four light quarks and no substantial experimental

evidence suggests such a resonant four-quark state exists in this energy range.
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We utilise the relevant symmetries of the finite volume when calculating correlation

functions, as discussed in Section 2.5, which allows us to identify which partial-waves

are contributing to each energy level. In a limited number of cases, an energy level is

dominantly affected by a single partial-wave, elastic scattering, and here a value of the

phase-shift for that partial-wave, at that energy, can be determined via a one-to-one

mapping. More generally, an energy level is affected by multiple partial-waves and a

more sophisticated analysis technique is required – the energy dependence of partial-wave

amplitudes is parameterised and multiple energy levels are considered simultaneously.

This approach is similar to that used in coupled-channel scattering [4, 62–64]. Significant

constraints on scattering amplitudes come from spectra computed for systems with overall

non-zero momentum with respect to the lattice, and indeed we find that the sign of

the off-diagonal coupling between S-wave and D-wave can only be obtained from such

‘in-flight’ cases. We begin by examining the features of vector-pseudoscalar scattering in

an infinite volume.

3.1 Vector-Pseudoscalar Scattering

In this section, we discuss the features of a scattering process that involves one or more

hadrons with non-zero intrinsic spin. We explore the consequences for hadron-hadron

scattering in an infinite volume and distinguish these from features that are purely a

consequence of the finite volume. The results are illustrated through a discussion of

vector-pseudoscalar scattering.

3.1.1 Infinite Volume

In an infinite-volume continuum, total angular momentum J is a good quantum number

and can be constructed by taking a tensor product of the orbital angular momentum ` with

the total intrinsic spin S (itself constructed via a tensor product of the intrinsic spins of

the two scattering hadrons), i.e. `⊗ S = |`− S| ⊕ ...⊕ `+ S. Parity, P , is another good

quantum number and is given by P = η1η2(−1)`, where η1 and η2 are the intrinsic parities

of the hadrons. It follows that, in some cases, hadron-hadron states with a particular JP
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can be formed from multiple `S combinations.5

For the case of vector-pseudoscalar scattering, S = 1, and thus, for ` ≥ 1, J can take one

of a triplet of values J = {`− 1, `, `+ 1}. The intrinsic parities of vector and pseudoscalar

mesons are each negative and it follows that each JP in the sequence, 1+, 2−, 3+, . . . , can

be formed from two distinct `S combinations. In spectroscopic notation, 2S+1`J , these are

{3S1,
3D1}, {3P 2,

3F 2}, {3D3,
3G3} , ... and the pattern continues indefinitely. For these JP

values, even though the scattering process may only have a single hadron-hadron channel

kinematically open, there are two partial-wave channels which can couple dynamically.

For example, considering JP = 1+, the t-matrix, introduced in Section 2.7, can be written

as,

t =

[
t(3S1| 3S1) t(3S1| 3D1)

t(3S1| 3D1) t(3D1| 3D1)

]

=
1

2iρ

[
cos(2ε̄) exp

[
2i δ3S1

]
− 1 i sin(2ε̄) exp

[
i(δ3S1

+ δ3D1
)
]

i sin(2ε̄) exp
[
i(δ3S1

+ δ3D1
)
]

cos(2ε̄) exp
[
2i δ3D1

]
− 1

]
, (3.1)

where ρ(Ecm) = 2kcm/Ecm is the phase-space factor and the second line presents the

common Stapp-parameterisation [65] in terms of two phase-shifts, δ3S1
(Ecm), δ3D1

(Ecm),

and a mixing-angle, ε̄(Ecm), describing the dynamical coupling between the two channels.6

The symmetric nature of the t-matrix resulting from the time-reversal symmetry of QCD

is seen explicitly.

This parameterisation automatically respects coupled-channel unitarity, expressed in

this context as Im [t−1(3`J |3`′J)] = −ρ δ``′ for energies above the threshold, where the

phase-space is the same for both the 3S1 and 3D1 channels.7 Within the `S basis, it

can be shown through the partial-wave expansion in Eq. 2.45 that, in the absence of

5The choice of the `S basis as opposed to, say, a helicity basis is one made for later convenience: it has

the advantage that the threshold behaviour of `S basis states is given in terms of the value of `.
6The sign of the off-diagonal entries, and hence the sign of ε̄, is physically relevant and impacts the

spin and angular dependence of the scattering amplitudes. This is in contrast to the case where different

hadronic channels are coupled – there the sign cannot be measured and it is usual to parameterise in

terms of an inelasticity parameter which discards this sign information.
7When there are additional coupled channels featuring different scattering hadrons, ρ(Ecm) is diagonal

in the channel space but no longer proportional to the identity as kcm depends on the scattering hadron

masses.
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any resonant enhancements, the threshold behaviour of the t-matrix elements is simply

t
(

3`J |3`′J
)
∝
(
kcm
)`+`′

.

3.1.2 Finite Volume

We perform calculations in a finite periodic cubic volume and this causes there to be

‘mixing’ between partial-waves of distinct JP . We summarise the subduction of low-lying

partial-waves for a vector-pseudoscalar system at ~P = ~0 in Table 3.1. The subduction is

controlled only by values of JP , but recall that in some cases multiple 3`J constructions can

give the same JP . The table distinguishes these two possible types of ‘mixing’. For systems

with non-zero overall momentum ~P , the partial-wave subductions for a vector-pseudoscalar

system are presented in Tables 3.5 - 3.7 in Appendix 3.A.

In order to determine infinite-volume scattering amplitudes, we calculate finite-volume

energy levels and utilise the quantisation condition, given in Eq. 2.53, which relates the

two quantities. If, in a certain energy region, only one partial-wave has a non-negligible

value, the relation takes the commonly-used form,

cot δ(Ecm) = −cotφ(Ecm, L) , (3.2)

where cotφ(Ecm, L) = −M(Ecm, L) is a complex function, encoding the kinematical and

symmetry-breaking effects of the finite volume. In this case, each finite-volume energy

level can be used to determine the value of the partial-wave phase-shift at that particular

energy. In the case of vector-pseudoscalar scattering, an example might be the rest-frame

E+ irrep at energies near threshold. Here the 3D2 wave is expected to be much larger than

the 3G4 wave, or any wave of still higher `, owing to the effect of the centrifugal barrier

which ensures that t(3D2|3D2) ∼ (kcm)4 � t(3G4|3G4) ∼ (kcm)8. If multiple energy levels

can be obtained, from calculations on one or more volumes at rest and in-flight, repeated

use of Eq. 3.2 will yield the energy-dependence of the phase-shift. A demonstration of this

can be seen in ππ isospin-1 scattering in 1P 1-wave – see Figure 10 in Ref. [30].

Where multiple partial-waves are present, but still only a single hadron-hadron channel

is kinematically accessible, the quantisation condition for a given irrep is the determinant

of a matrix equation. This encodes both the dynamical mixing of partial-waves (present

even in an infinite volume), through t, and the ‘mixing’ of partial-waves due to the finite

volume, through M. For example, in the rest-frame T+
1 irrep, considering the partial-wave
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Λ+ A+
1 A+

2 T+
1 E+ T+

2

J+(3`J)

1+

3S1

3D1


2+
(

3D2

)
2+
(

3D2

)
3+

3D3

3G3

 3+

3D3

3G3

 3+

3D3

3G3


4+
(

3G4

)
4+
(

3G4

)
4+
(

3G4

)
4+
(

3G4

)
Λ− A−1 A−2 T−1 E− T−2

J−(3`J)

0−
(

3P 0

)
1−
(

3P 1

)
2−

3P 2

3F 2

 2−

3P 2

3F 2


3−
(

3F 3

)
3−
(

3F 3

)
3−
(

3F 3

)
4−

3F 4

3H4

 4−

3F 4

3H4

 4−

3F 4

3H4

 4−

3F 4

3H4


Table 3.1: Subduction of partial-waves, 3`J , for J ≤ 4 into the irreps, ΛP , of the

octahedral group, Oh, relevant for systems overall at rest. The notation JP (3`J) denotes

the partial-wave content for a given JP , with multiple 3`J entries indicating partial-waves

which mix dynamically. This table is derived from Table 2 of [8].

content with ` ≤ 2, we have dynamical mixing between the 3S1 and 3D1-waves with

JP = 1+. The JP = 3+ wave 3D3 ‘mixes’ with 1+ only because of the reduced symmetry

of the finite volume. The t-matrix is,

t =

t(
3S1|3S1) t(3S1|3D1) 0

t(3S1|3D1) t(3D1|3D1) 0

0 0 t(3D3|3D3)

 , (3.3)



32 CHAPTER 3. SCATTERING OF ρπ IN ISOSPIN-2 AT Mπ ∼ 700 MEV

where the off-diagonal contributions dynamically couple 3S1 and 3D1. The non-vanishing

elements of M in this 3×3 space ensure that all three waves contribute to the finite-volume

spectrum. To accommodate additional partial-waves this t-matrix is augmented by

inserting diagonal blocks of JP , where off-diagonal degrees of freedom within each block

allow dynamical mixing between partial-waves of common JP .

In the case of multiple partial-waves, coupled either dynamically or due to the finite

volume, each energy level provides a constraint on the t-matrix at that energy, through

Eq. 2.53, but is not sufficient to determine the multiple (energy dependent) unknowns in t.

A number of such constraints, each coming from a different finite-volume energy level, are

required to determine t(Ecm). Considering systems with overall non-zero momentum is

one way to obtain many energy levels8 – the moving frame changes the spatial boundary

conditions, which in turn modifies the quantisation condition giving a different set of

functions in M. This is discussed in detail in Ref. [37,39,40] and has been successfully

applied in determinations of coupled-channel t-matrices in Refs. [4, 7, 62–64,66]. We will

present the details of the approach, relevant to the current case of vector-pseudoscalar

scattering, in Section 3.6.

3.2 Operator Construction

To make a robust determination of the finite-volume energy spectrum in each irrep, we com-

pute an N×N matrix of two-point correlation functions using N independent interpolating

operators with appropriate quantum numbers, Cij(t) =
〈
0
∣∣Oi(t+ tsrc)O†j(tsrc)

∣∣0〉.
In order to investigate meson-meson scattering, we need to construct an appropriate

set of operator structures which overlap strongly onto the eigenstates of QCD in a finite

volume with the quantum numbers of the meson-meson scattering problem. Operators

which resemble meson-meson states, constructed as products of operators which resemble

single mesons of definite momentum, prove to be very effective – see e.g. Figure 6 of Ref. [4].

We describe how to construct these meson-meson operators in the sections to follow, with

a particular focus, relevant to this calculation, on operators that respect SU(3)F flavour

symmetry and which resemble vector-pseudoscalar states.

8One could also use energy levels calculated on elongated lattices and/or lattices with twisted boundary

conditions to provide additional independent constraints [44].
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3.2.1 Single-Meson Operators in SU(3)F Flavour Representa-

tions

Following Refs. [10,29], we construct single-meson operators from fermion bilinears. These

have a spin and spatial structure built from Dirac γ-matrices and gauge-covariant deriva-

tives, are projected onto overall momentum ~p, and have a flavour structure that transforms

in a particular SU(3)F multiplet. Explicitly, the construction is,

O†JmF ν (~p, t) =
∑
~x

ei~p·~x
∑
ν1, ν2

CSU(3)

(
3̄ 3 F

ν1 ν2 ν

)
q̄ν1(~x, t) Γt qν2(~x, t) . (3.4)

Here Γt denotes a product of γ-matrices and up to 3 gauge-covariant derivatives acting in

position, colour and Dirac spin-space on time-slice t. The constructions are engineered

to have definite continuum JP and m where, for ~p = ~0, m is the projection of J along

the z-axis and, for ~p 6= ~0, m is replaced by the helicity, λ – see Ref. [10]. This is done

by taking a circular basis of vector-like γ-matrices, Γi, and gauge-covariant derivatives,
←→
D i ≡

←−
D i −

−→
D i, expressed in the Cartesian basis as,

Γ±1 = ∓ i√
2

(
Γx ∓ iΓy

) ←→
D ±1 = ∓ i√

2

(←→
D x ∓ i

←→
D y

)
Γ0 = iΓz

←→
D 0 = i

←→
D z. (3.5)

These spin-1 derivatives and Dirac γ-matrices are then combined using SO(3) Clebsch-

Gordan coefficients, to give Γ with definite JP and m. For example, a single derivative

operator coupled to a spin-1 product of γ-matrices is given by,

Γ =
∑
m1,m2

C

(
1 1 J

m1 m2 m

)
Γm1

←→
D m2 , (3.6)

and similarly for a two derivative operator, we first couple the derivatives to some total

angular momentum, JD, and then couple this with the γ-matrices to acquire our desired

(J,m),

Γ =
∑
m1,m2
m3,mD

C

(
1 JD J

m1 mD m

)
C

(
1 1 JD

m2 m3 mD

)
Γm1

←→
D m2

←→
D m3 . (3.7)

The quark fields, qν(~x, t), corresponding to the up, down and strange quarks (u, d, s), are

in the 3 multiplet of SU(3)F, illustrated in Figure 3.1. The elements can be uniquely
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Figure 3.1: (Left): quark content of flavour irrep 3. (Right): anti-quark content of 3̄.

labelled by ν = (I, Y, Iz), where we recall I is the isospin, Y is the hypercharge and Iz is

the z-component of isospin. The CSU(3)(...) are SU(3)F Clebsch-Gordan coefficients and we

follow the conventions given in De Swart [67]. The sum over SU(3)F components projects

the quark-bilinear onto a definite SU(3)F flavour multiplet F , which can be either 1 or 8.

These operators of definite JP and m are subduced into the appropriate lattice irreps

of Oh or LG(~p) as discussed in Section 2.5. The subduction does not impact the flavour

representation and the result is an operator, O†ΛµF ν(~p, t) =
∑

m SJmΛµ O†
Jm
F ν (~p, t), in a

particular irrep. As an example, consider a pseudoscalar SU(3)F singlet, F = 1, ν =

(0, 0, 0), Γt = γ5 and ~p = ~0. Subducing gives the lattice operator,

O†A
−
1 1

1 (0,0,0) = 1√
3
(ūγ5u+ d̄γ5d+ s̄γ5s) .

3.2.2 Two-Meson Operators in SU(3)F Flavour Representations

Operators which resemble a pair of mesons can be constructed from a product of two

single-meson operators. We follow the approach presented in Refs. [28, 30] and in this

section concentrate on constructing operators in definite SU(3)F multiplets. Writing out
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the flavour structure explicitly, the meson-meson operator takes the form,

O†ΛµF ν
(
F1[~p1]Λ1

F2[~p2]Λ2

∣∣∣~p12

)
=
∑
ν1, ν2

CSU(3)

(
F1 F2 F

ν1 ν2 ν

) ∑
µ1, µ2

C

(
[~p1]Λ1 [~p2]Λ2 [~p12]Λ

µ1 µ2 µ

)
×

∑
~pi∈{~pi}∗
~p1+~p2=~p12

Ω†
Λ1µ1
F1ν1

(~p1) Ω†
Λ2µ2
F2ν2

(~p2), (3.8)

where the optimised operator Ω†
Λiµi
Fiνi

(~pi) interpolates a meson of momentum ~pi in the Fi

flavour multiplet with component νi. The lattice Clebsch-Gordan coefficients, C(...), are

required to couple irreps [~p1]Λ1 ⊗ [~p2]Λ2 → [~p12]Λ, and the momentum sum runs over all

momenta related to ~pi by an allowed lattice rotation, ~pi ∈ {~pi}∗, such that ~p1 + ~p2 = ~p12 –

see Ref. [28] for details.

Since single-meson operators are restricted to the SU(3)F octet, 8, and singlet, 1,

meson-meson operators are restricted to the 27,10,10,8 and 1 multiplets. In this work,

we will perform calculations with exact SU(3)F symmetry and focus on ρπ scattering in

isospin-2, which lies in the 27 multiplet. We are at liberty to choose any component of

the 27 multiplet when we calculate the energy spectra, as they are all equivalent, and we

choose ν = (2, 0, 2). The SU(3)F Clebsch-Gordan coefficients in Eq. 3.8 ensure that the

relevant meson-meson operators come from products of single-meson operators with flavour

structure F = 8 and ν = (1, 0, 1). The meson content for the pseudoscalar and vector octets

is shown in Figure 3.2. As G-parity is negative, there are no pseudoscalar-pseudoscalar or

vector-vector channels which can mix with isospin-2 ρπ.

As a simple example, consider the meson-meson operator transforming in T+
1 , row 2,

constructed from optimised operators transforming in T−1 and A−1 according to Eq. 3.8.

The Clebsch-Gordan coefficients give,

O†T
+
1 2

27 (2,0,2) = Ω
†T−1 2

8(1,0,1) Ω
†A−1 1

8(1,0,1)

= (ρ+)†(π+)†, (3.9)

where the corresponding SU(2)F flavour mesons are given explicitly in the last equality for

clarity.
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Figure 3.2: Meson content of the JP = 0− pseudoscalar octet (left) and the JP = 1−

vector octet (right). Orange corresponds to I = 1, green to I = 1/2 and blue to I = 0.

The basis of meson-meson operators used to form the matrix Cij(t) can be constructed

using different magnitudes of momentum,9
∣∣~p1

∣∣, ∣∣~p2

∣∣, where directions of the momenta

are summed over in Eq. 3.8 subject to ~p1 + ~p2 = ~P . There is a close association be-

tween the finite-volume energy-levels when mesons have no meson-meson interactions,

E
(2)
n.i. =

√
m2
π + |~p1|2 +

√
m2
ρ + |~p2|2, which we refer to as ‘non-interacting’ energies, and

these operators. Earlier studies have found that meson-meson operators, which closely

resemble the non-interacting states in the energy range of interest, are efficient at inter-

polating the corresponding finite-volume energies [28, 30]. This suggests that, if we are

interested in only a certain energy range, operators which correspond to a non-interacting

energy which lies far above this energy region do not need to be included in the basis.

When a single-meson operator for a vector meson has non-zero momentum, the reduced

symmetry of the lattice means that the different helicity components subduce into Nλ

different irreps of LG(~p1). Each of these vector operators can be combined, via Eq. 3.8,

with a pseudoscalar operator transforming in some irrep of LG(~p2), to form a set of

linearly-independent vector-pseudoscalar operators at some overall momentum ~P in some

9Strictly speaking, this should be {~pi}∗ as indicated in Eq. 3.8, rather than magnitude, but for |~p|2 < 9,

{~pi}∗ is uniquely identified by its magnitude.
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irrep Λ. Furthermore, each vector operator when combined with a pseudoscalar operator

may appear numerous times within a single irrep, e.g. [001]E2 ⊗ [011]A2 → 2× [001]E2,

and form multiple linearly-independent vector-pseudoscalar operators. We refer to this

number as the multiplicity (which could be zero). Together, this means that there can

be many linearly-independent vector-pseudoscalar operators, transforming within some

irrep Λ, which correspond to the same non-interacting energy and we denote the total

number of such operators as Nlin. It is important to emphasise that Nlin is the sum

of the multiplicities for each of the Nλ vector operators combined with the appropriate

pseudoscalar operator.

For example, consider vector-pseudoscalar operators overall at rest, ~P = ~0, in the T+
1

irrep, which we write as [000]T+
1 . The operator corresponding to lowest non-interacting

energy features a vector meson at rest (in the T−1 irrep) coupled to a pseudoscalar at rest

(in the A−1 irrep). In this case, Nλ = 1, and there is only one operator corresponding to

the one way of coupling [000]T−1 ⊗ [000]A−1 → [000]T+
1 (Nlin = 1). Of course, there are

still three equivalent rows of the T1 irrep.

On the other hand, for a vector meson with momentum ~p = [001], the helicity 0

and ±1 components subduce into the [001]A1 and [001]E2 irreps respectively (Nλ = 2).

Combining the vector with a pseudoscalar so that the vector-pseudoscalar operator is

overall at rest, there are two linearly independent operators transforming in [000]T+
1 from

[001]A1 ⊗ [001]A2 → [000]T+
1 and [001]E2 ⊗ [001]A2 → [000]T+

1 (Nlin = 2).

If the vector meson has momentum ~p = [011], the three helicities subduce into three

different irreps, [011]A1, [011]B1 and [011]B2 (Nλ = 3). When combined appropriately

with the pseudoscalar, this gives three linearly-independent vector-pseudoscalar operators

transforming in [000]T+
1 from [011]A1 ⊗ [011]A2 → [000]T+

1 , [011]B1 ⊗ [011]A2 → [000]T+
1

and [011]B2 ⊗ [011]A2 → [000]T+
1 (Nlin = 3).

While we have illustrated how multiple meson-meson operators with the same associated

non-interacting energies can arise by considering a vector-pseudoscalar operator overall at

rest, this situation also occurs when there is an overall non-zero momentum. For example,

with ~P = [001], [001]A1 ⊗ [011]A2 → [001]E2 and [001]E2 ⊗ [011]A2 → 2× [001]E2 giving

Nλ = 2 and Nlin = 3 (as [001]E2 ⊗ [011]A2 into [001]E2 has a multiplicity of two). In

all cases, the non-interacting meson-meson spectrum will feature degeneracies: for each

non-interacting energy, the degeneracy is equal to Nlin of the corresponding meson-meson
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operator. As one might anticipate, failing to include all the Nlin meson-meson operators

at each corresponding non-interacting energy in a given energy region can lead to an

incomplete spectrum. This is demonstrated clearly in Figure 8 of [68] and will be crucial

in the scattering calculations in the later chapters.

3.3 Computational Details

Calculations of correlation functions were performed on two anisotropic lattices of volumes

(L/as)
3 × (T/at) = 203 × 128 and 243 × 128, with spatial lattice spacing as ∼ 0.12 fm and

temporal lattice spacing at = as/ξ ∼ (4.7 GeV)−1 where ξ ∼ 3.5 is the anisotropy. L and

T are the spatial and temporal extents of the lattice respectively. We use gauge fields

generated from the improved anisotropic gauge and fermion actions in Section 2.2 with

Nf = 3 degenerate flavours of dynamical quarks [20]. The quark masses are tuned to

approximately equal to the physical strange quark mass, giving exact SU(3)F symmetry.

The flavour octet of pseudoscalars is found to have a mass∼ 700 MeV, while the vector octet

has a mass ∼ 1020 MeV. With these heavy masses, exponentially suppressed finite-volume

and temporal effects are negligible as mπL & 10 and mπT & 18.

Correlation functions are computed in a distillation space of rank Nvecs. Statistical

precision is increased by averaging correlation functions over a number, Ntsrcs, of inde-

pendent time-sources, tsrc. To reduce statistical correlations between the energy levels for

different moving frames, we averaged over a different set of time-sources for each non-zero

momentum. The rank of the distillation space, number of gauge configurations, Ncfgs, and

number of time-sources used for the computations of ρ, π and ρπ correlation functions, on

each lattice, are shown in Table 3.2.

When quoting results in physical units, we set the scale using the Ω-baryon mass.

From the value obtained on a lattice of spatial volume (L/as)
3 × (T/at) = 163 × 128,

atm
latt.
Ω = 0.3593(7) [69], and the experimental mass, mexp.

Ω = 1672.45(29) MeV [5], we

obtain the inverse temporal spacing via a−1
t = mexp.

Ω /atm
latt.
Ω , giving a−1

t = 4655 MeV.
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(L/as)
3 × (T/at) Nvecs Ncfgs Ntsrcs

203 × 128 128 197 8

243 × 128 160 499 1

(L/as)
3 × (T/at) Nvecs Ncfgs Ntsrcs

203 × 128 128 502 1-3

243 × 128 160 607 1-3

Table 3.2: Number of distillation vectors (Nvecs), gauge configurations (Ncfgs) and

time-sources (Ntsrcs) used to compute correlation functions on the two lattice volumes, as

described in the text, for (left) ρ and π correlation functions (F = 8) and (right) ρπ

correlation functions (F = 27).

3.4 Dispersion Relation

In order to study ρπ scattering, we must compute the momentum dependence of the

relevant stable mesons’ energies and check that they satisfy the relativistic dispersion

relations by determining the anisotropy, ξ ≡ as/at. The relativistic dispersion relation for

a stable hadron is, up to discretisation effects,

(atE~n)2 = (atm)2 +
1

ξ2

(
2π

L/as

)2

|~n|2 , (3.10)

wherem is the mass of the hadron and E~n is its energy with momentum ~p = 2π
L
~n. Differences

between the values of ξ measured from different hadrons are due to discretisation, finite-

volume and temporal effects, with the latter two expected to be negligible given the values

of mπL and mπT . The energies of the ground-state flavour octet vector and pseudoscalar

mesons, hereafter referred to as ρ and π, with momentum |~n|2 ≤ 4 were calculated from

a variational analysis of matrices of correlation functions involving bases of single-meson

operators. The analyses also gave the optimised operators for interpolating the ρ and

π with the various momenta. These are used in the construction of vector-pseudoscalar

operators, as discussed in Section 3.2.

The extracted energies are shown in Figure 3.3 along with the results of fits using

Eq. 3.10. For the ρ, the energies of the different helicity components were calculated

independently from each relevant irrep of LG(~p), e.g. at ~p = [001] the λ = 0 energies were

calculated from the [001]A1 irrep and |λ| = 1 from [001]E2. From the figure, it can be

seen that the ξ values extracted from the π and the |λ| = 1 ρ are in reasonable agreement,

but the value from the λ = 0 ρ differs from the π at the 2% level.10 This discrepancy is

10The energy splitting between different helicity components of the vector can be seen for calculations
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dominated by discretisation effects and we propagate a conservative estimate of systematic

uncertainty by using a value of ξ = 3.486(43), derived by considering the smallest and

largest values within one standard deviation of the mean from the fits in Figure 3.3. As the

meson-meson interactions in isospin-2 ρπ scattering are weak and the corresponding energy

shifts small, the uncertainty on ξ is found to be the largest source of systematic uncertainty

on the scattering amplitudes. On the contrary, should interactions be more significant the

relative contribution of the uncertainty on the anisotropy to the total uncertainty on the

amplitudes ought to be smaller and indeed this is seen later in Chapter 5.

on a 163 × 128 lattice with the same lattice action in previous works – see Figures 12 and 13 in Ref. [10]

and Figure 4 in Ref. [70].
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Figure 3.3: Upper panel: Momentum dependence of the π and ρ energies where both

|λ| = 0, 1 helicity components of the ρ are considered. The statistical errors on the

energies are smaller than the points. Lines and numerical values show results of fits to

determine ξ using Eq. 3.10. Lower panel: points show the effective

momentum-dependent ξ obtained via
[(

2π
L/as

)2∣∣~n∣∣2/((atE~n)2 − (atm)2
)]1/2

, with the two

volumes (L/as = 20, 24) and the different mesons offset slightly for clarity. The orange

line and band indicate, respectively, the value and uncertainty on ξ we use when

investigating ρπ scattering as described in the text.
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3.5 Finite-Volume Spectra

To determine finite-volume energy spectra for isospin-2 ρπ, matrices of correlation functions

were calculated, using bases of meson-meson operators as outlined in Section 3.2, for all

irreps ~P Λ where
∣∣~P ∣∣2 ≤ 4

(
2π
L

)2
. Table 3.3 shows the operators used in the T+

1 irrep at

rest and the A2 irreps in-flight (operator lists for the other irreps are shown in Tables 3.8

- 3.11 of Appendix 3.B) – note the multiple linearly-independent operators appearing

at many of the non-interacting energies as discussed in Section 3.2. For each irrep, the

finite-volume spectrum was extracted by application of the variational method. As an

example, in Figure 3.5, we show the lowest eight principal correlators for the T+
1 irrep in

Figure 3.4 along with the corresponding spectrum and operator-state matrix elements,

Zn
i ≡ 〈n|O

†
i (0)|0〉. From the figure, it can be seen that the matrix of correlation functions

is nearly block diagonal in the momentum-based operator construction with respect to

operators with the same En.i, and that different linear combinations of the multiple

meson-meson operators, corresponding to the same En.i, are distinguishing the Nlin nearly

degenerate energy levels.

In Figures 3.6 and 3.7, we show the volume dependence of the extracted energies for

all irreps at rest and A2 irreps in-flight. Spectra for other in-flight irreps can be found

in Figure 3.13 in Appendix 3.C. Figure 3.7 illustrates the dense distribution of energy

levels, typical of the reduced symmetry for in-flight irreps, and the multiple energy levels

which would be degenerate in the absence of interactions. Nevertheless, it can be seen

that all the energy levels can be extracted with good statistical precision. Since we choose

to restrict our two-meson operators to be constructed from only single-meson operators

with momentum |~n|2 ≤ 4, we will only extract scattering amplitudes for atEcm ≤ 0.41,

below the non-interacting energy corresponding to the lowest excluded operator.11 No

other meson-meson scattering channels have thresholds below the πππ threshold which

opens at atEcm = 0.443.

Some qualitative expectations for the behaviour of scattering amplitudes can be inferred

from the spectra presented in Figures 3.6 and 3.7. For example, we expect the lowest

energy-level in both the E− and T−2 irreps to have a dominant contribution from the 3P 2-

11The lowest-lying excluded operator, across all irreps and volumes, is ρ[012]π[0-10], which corresponds

to a non-interacting energy of atEcm = 0.4124 on the lattice with L/as = 24.
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[000]T+
1 [001]A2 [011]A2 [111]A2 [002]A2

ρ[000]π[000] ρ[001]π[000] ρ[011]π[000] ρ[111]π[000] ρ[001]π[001]

{2} ρ[001]π[00-1] ρ[000]π[001] {2} ρ[001]π[010] {2} ρ[011]π[100] ρ[002]π[000]

{3} ρ[011]π[0-1-1] {2} ρ[011]π[0-10] ρ[000]π[011] {2} ρ[100]π[011] {2} ρ[011]π[0-11]

{2} ρ[111]π[-1-1-1] {2} ρ[010]π[0-11] {2} ρ[111]π[-100] ρ[000]π[111] ρ[000]π[002]

ρ[002]π[00-1] {3} ρ[110]π[-101] {2} ρ[112 ]π[00 -1 ] {2} ρ[012 ]π[0 -10 ]

{2} ρ[111]π[-1-10] {2} ρ[100]π[-111] {3} ρ[012 ]π[10 -1 ] {2} ρ[111]π[-1-11]

{2} ρ[110]π[-1-11] {2} ρ[012 ]π[00 -1 ] {2} ρ[002]π[11-1] {2} ρ[010 ]π[0 -12 ]

ρ[00-1]π[002] {2} ρ[002]π[01-1] {2} ρ[11-1]π[002] {2} ρ[112 ]π[-1 -10 ]

{2} ρ[012 ]π[0 -1 -1 ] {2} ρ[01-1]π[002] {3} ρ[01 -1 ]π[102 ] {2} ρ[-1 -10 ]π[112 ]

{2} ρ[00 -1 ]π[012 ] {2} ρ[00 -1 ]π[112 ]

{3} ρ[112 ]π[-10 -1 ]

8 ops. 12 ops. 15 ops. 10 ops. 7 ops.

Table 3.3: Meson-meson operators in the 27 of SU(3)F flavour, ordered by increasing

non-interacting energy (see Section 3.2.2), for various irreps ~P Λ. The operators, ρ~p1π~p2 ,

are constructed from optimised ρ and π operators with momentum types ~p1 and ~p2

respectively. Different momentum directions are summed over as in Eq. 3.8. {Nlin}
denotes the number of linearly-independent meson-meson operators at the corresponding

non-interacting energy when there is more than one. All operators with corresponding

non-interacting energies atEcm ≤ 0.455 for L/as = 24 are displayed. Those in grey italic

were not included in the operator basis.

wave, see Table 3.1, owing to the centrifugal barrier suppressing the higher partial-waves

appearing in these irreps. These energy-levels are found just below the corresponding

non-interacting energies suggesting the 3P 2-wave is weakly attractive. Across all irreps,

there are clearly no large departures from the non-interacting spectra, the number of

energy levels is the same as the number expected in the absence of interactions, and no

energy levels lie systematically below the ρπ threshold. These observations likely indicate

the absence of narrow resonances or bound-states, and suggest that only a relatively weak

interaction is present. In order to get a quantitative understanding we proceed to calculate

the scattering amplitudes.
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Figure 3.4: Principal correlators, λn(t, t0 = 9), plotted as eEn(t−t0)λn(t, t0), from a

variational analysis of the [000]T+
1 irrep on the lattice with L/as = 24. Curves show the

results of fits described in Section 2.6. The horizontal axes are in units of t/at.
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0.42
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0.46

Figure 3.5: Left: finite-volume energy levels in the [000]T+
1 irrep on the lattice with

L/as = 24. Dashed lines indicate the location of non-interacting energies. Right:

histograms showing the corresponding operator-state overlaps, Zn
i = 〈n|O†i (0)|0〉, for the

operators ordered as in Table 3.3. The colours reflect the non-interacting energies

associated with each operator. The overlaps are normalised such that the largest value for

a given operator across all energy levels is equal to one.
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Figure 3.6: Energy spectra in irreps at rest. Black and grey points, slightly displaced in

L/as for clarity, show the extracted energy levels below and above atEcm = 0.41

respectively. Errorbars reflect the statistical uncertainties. Points in grey are not used in

the subsequent analysis in Section 3.6. Dashed lines show the ρπ and πππ thresholds.

Solid red curves indicate non-interacting meson-meson energies, labelled with their

degeneracies.
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Figure 3.7: As Figure 3.6 but for A2 irreps with ~P 6= ~0. Dashed red curves indicate

non-interacting meson-meson energies corresponding to operators not included in the

basis. Errors on the points show the statistical uncertainty added in quadrature to the

systematic uncertainty from the uncertainty placed on ξ.
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3.6 Scattering Amplitudes

The general relationship between infinite-volume scattering amplitudes and finite-volume

energy levels is presented in Section 2.7 and specific details for vector-pseudoscalar scatter-

ing are discussed in Section 3.1. In the case that no partial-waves are coupled dynamically,

the t-matrix is diagonal in ` and infinite-volume scattering in each partial-wave, 3`J , can

be described by a single real-valued energy-dependent parameter called the phase-shift,

δ3`J (Ecm). This appears in the scattering t-matrix as t`Jn,`Jn = 1
ρ

exp[i δ3`J ] sin(δ3`J ). Recall

that in an irrep where just a single partial-wave makes a non-negligible contribution, the

quantisation condition reduces to the form shown in Eq. 3.2 – this can be evaluated to

give a phase-shift point, δ3`J
(
E

(k)
cm

)
, at each finite-volume energy level, E

(k)
cm .

Formally, the infinite number of partial-waves which subduce into the irrep Λ appear

in the quantisation condition. Even though the angular-momentum barrier suppresses

the contributions of partial-waves of higher ` at low energies, for vector-pseudoscalar

scattering multiple partial-waves with the same threshold behaviour can appear in a

single irrep. For example, the 3P 1 and 3P 2 partial-waves both appear in [011]A1. This

prevents the use of a one-to-one mapping between energy levels and phase-shift points of

the type given in Eq. 3.2. Furthermore, when two partial-waves are dynamically coupled,

the scattering t-matrix is no longer diagonal in ` and is described by three real energy-

dependent parameters.12 These can be expressed as two phase-shifts and an angle, as in

Eq. 3.1. In this case, again, there is no one-to-one mapping between energy levels and

phase-shift points.

The approach we take to determine scattering amplitudes when the energy spectrum

is dependent on more than a single energy-dependent scattering parameter, is to, as in

Refs. [4, 7, 28,62–64,66,71], parameterise the energy-dependence of the t-matrix. In this

way, for any given set of parameter values, a finite-volume spectrum is calculated in

each irrep by solving Eq. 2.53. We follow the approach of Ref. [64] where this calculated

12Given the constraints from unitarity of the S-matrix and the time-reversal symmetry of QCD.
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spectrum is compared to the computed lattice spectrum using the following χ2 [30],

χ2({ai}) =
∑
L

∑
~PΛ, ~P ′Λ′

∑
n,n′

[
Ecm(L; ~PΛ; n)−Epar.

cm (L; ~PΛ; n; {ai})
]
C−1(L; ~PΛ, n; ~P ′Λ′, n′)

×
[
Ecm(L; ~P ′Λ′; n′)− Epar.

cm (L; ~P ′Λ′; n′; {ai})
]

(3.11)

where Epar.
cm (L; ~PΛ; n; {ai}) is the nth energy-level satisfying Eq. 2.53 for a t-matrix param-

eterised by {ai}. The data covariance matrix, C , gives the correlations between energy

levels on the same lattice volume. By minimising the χ2 with respect to the free parameters

{ai}, the best description of the spectrum may be obtained. The sensitivity to the choice

of scattering-amplitude parameterisation can be tested by using a variety of different

parameterisations.

In the case of a single partial-wave, not dynamically coupled to any others, a convenient

parameterisation of,

t(Ecm) =
1

ρ(Ecm)
exp{i δ3`J (Ecm)} sin{δ3`J (Ecm)} =

Ecm/2

kcm cot{δ3`J (Ecm)} − ikcm
, (3.12)

is the effective range expansion,

k2`+1
cm cot{δ3`J (Ecm)} =

1

a(3`J |3`J)
+

1

2
r(3`J |3`J) k2

cm +O
(
k4
cm

)
, (3.13)

where the constants a(3`J |3`J) and r(3`J |3`J) are respectively the scattering length and

effective range of the partial-wave 3`J , and the threshold behaviour of the amplitude,

controlled by the value of `, is explicitly included by construction.

For partial-waves of equal JP but different ` that can couple dynamically, the K-matrix

formalism is a useful way of expressing the unitarity of the S-matrix in terms of a real

symmetric matrix, K(s).13 The inverse of the K-matrix is related to the inverse of the

t-matrix by, [
t−1(s)

]
`J,`′J

=
1

(2kcm)`
[
K−1(s)

]
`J,`′J

1

(2kcm)`′
+ δ``′ I(s) , (3.14)

where we recall s = E2
cm. The powers of kcm ensure the correct behaviour at threshold.

Unitarity of the S-matrix is guaranteed provided that Im I(s) = −ρ(s) for energies

13Previous lattice QCD calculations [4, 62, 64] have demonstrated the effectiveness of the K-matrix

formalism in describing many resonant and non-resonant features of coupled-channel scattering.
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above the vector-pseudoscalar threshold and Im I(s) = 0 below threshold. The real

part of I(s) is arbitrary. A simple choice we take is I(s) = −iρ(s). An alternative

which utilises the analytic properties of the amplitude, known as the Chew-Mandelstam

prescription [72], constructs Re I(s) using a dispersive integral of ρ(s). The implementation

of this prescription used here mirrors that in Ref. [64], and we choose to subtract such

that Re I(s = (mπ + mρ)
2) = 0. A discussion of the Chew-Mandelstam phase-space is

given in Appendix 3.D.

The K-matrix can handle the case relevant to the finite volume where different JP

values, which are uncoupled in an infinite volume, become coupled in the determinant of

Eq. 2.53. This is achieved by forming a block-diagonal matrix out of the K-matrices for

each J . For example, the t-matrix described in Eq. 3.3 will feature the K-matrix,

K =

K(3S1|3S1)(s) K(3S1|3D1)(s) 0

K(3S1|3D1)(s) K(3D1|3D1)(s) 0

0 0 K(3D3|3D3)(s)

 (3.15)

whereK(3`J |3`′J ′)(s) ≡ K`J,`′J ′(s) is a real function of s. A simple choice of parameterisation

for the K-matrix is to express each element as a finite-order polynomial in s,

K`J,`′J(s) =

N(3`J |3`′J )∑
n≥0

cn(3`J |3`′J) sn, (3.16)

where the coefficients cn(3`J |3`′J) are real parameters. Other forms are explored in later

chapters.

3.6.1 Uncoupled P -wave Scattering

As discussed, when only a single partial-wave makes a non-negligible contribution, the

finite-volume quantisation condition reduces to a one-to-one mapping from finite-volume

energy levels to phase-shift values at those energies. For isospin-2 ρπ scattering, we

initially assume that the 3P 0, 3P 1, 3P 2 partial-waves dominate respectively the [000]A−1 ,

T−1 , (E−, T−2 ) irreps at low energy, proposing that the F -wave contributions can be

neglected (see Table 3.1 for the partial-waves subduced into these irreps). Using the energy

levels presented in Figure 3.6, we obtain two phase-shift points from each irrep. These

are shown in Figure 3.8 where the inner errorbars show the statistical uncertainty on
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Ecm and δ3PJ (Ecm), while the outer errorbars on δ3PJ (Ecm) also include a conservative

estimate of the systematic error which was obtained by varying the hadron masses and,

more importantly, the anisotropy within their uncertainties. We find the largest systematic

variations occur when atmρ, atmπ are large and ξ is small, and vice-versa,14 consistent

with the observation that this causes the largest changes in the non-interacting energies,

En.i..

To interpolate the scattering amplitudes in the energy range being considered, we

parameterise the energy dependence of the t-matrix using an effective range expansion,

Eq. 3.13, truncated at the scattering length, k2`+1
cm cot(δ3`J ) = a(3`J |3`J)−1, and minimise a

χ2 with respect to a(3`J |3`J). We fit independently for each partial-wave obtaining,

a(3P 0|3P 0) = (−21± 53± 145) · a3
t χ2/Ndof = 0.37/(2− 1) = 0.37

a(3P 1|3P 1) = (−133± 49± 172) · a3
t χ2/Ndof = 0.20/(2− 1) = 0.20

a(3P 2|3P 2) = (+273± 58± 184) · a3
t χ2/Ndof = 6.57/(4− 1) = 2.19, (3.17)

where again the first error reflects the statistical uncertainty and the second error is an

estimate of the systematic uncertainty.

The energy dependencies of the phase-shifts corresponding to these scattering-length

descriptions are displayed in Figure 3.8. It is clear that the systematic uncertainties are

dominating the uncertainties – this is a consequence of the relatively large uncertainty

assigned to ξ,15 coupled with the rather weak interaction in this scattering channel which

leads to small shifts of energies from their non-interacting values.

3.6.2 Coupled S, P,D-wave Scattering

In general, irreps feature a number of non-negligible partial-waves contributing to every

energy level in the spectra and there is no longer a one-to-one mapping between energies and

scattering amplitudes. To use the information from the energy levels across all the irreps,

we perform a global analysis of the finite-volume spectra presented in Figures 3.6, 3.7 and

3.13. Each energy level provides a constraint on a combination of partial-wave amplitudes

at that energy. To do this, as described above, we parameterise the energy-dependence of

14For atmρ, atmπ small and ξ large we find a compatible order of magnitude of variation in the

parameters but of opposite sign. We therefore quote the systematic error as symmetric about the mean.
15Because of the slightly different ξ obtained from the helicity 0 and ±1 components of the ρ.
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c0(3S1|3S1) = −1.61± 0.07± 0.79

c1(3S1|3S1) = (4.75± 0.44± 5.37) · a2
t

c0(3S1|3D1) = (−5.28± 0.55± 0.51) · a2
t

c0(3P 0|3P 0) = (−5.98± 0.61± 4.70) · a2
t

c0(3P 1|3P 1) = (−33.6± 1.7± 17.7) · a2
t

c1(3P 1|3P 1) = (150± 11± 128) · a4
t

c0(3P 2|3P 2) = (83.4± 1.5± 40.7) · a2
t

c1(3P 2|3P 2) = (−459± 9± 277) · a4
t

c0(3D1|3D1) = (−56± 15± 31) · a4
t

c0(3D2|3D2) = (−102± 12± 60) · a4
t

c0(3D3|3D3) = (−49± 15± 84) · a4
t



1.00 −0.98 0.04 0.11 0.02 0.02 0.03 0.02 0.06 0.08 0.10

1.00 −0.11 −0.05 −0.01 −0.01 −0.02 −0.01 −0.05 −0.01 −0.05

1.00 0.09 0.01 0.03 0.04 0.02 0.26 −0.03 0.22

1.00 0.10 0.11 0.14 0.16 0.02 0.26 0.77

1.00 −0.95 0.04 0.01 0.02 0.06 0.08

1.00 0.01 0.04 0.01 0.04 0.10

1.00 −0.92 0.04 0.08 0.14

1.00 0.03 0.09 0.10

1.00 0.46 −0.09

1.00 0.06

1.00


Table 3.4: A reference fit as described in the text with χ2/Ndof = 1.42. The first

uncertainty in each case is statistical and the second is an estimate of the systematic

uncertainty as described in the text. Correlations between the K-matrix parameters are

displayed on the right. Parameters not shown were fixed to zero.

the block-diagonal t-matrix and vary the parameters to give the best description of the

finite-volume spectra by minimising the χ2 given in Eq. 3.11. We allow for non-negligible

ρπ isospin-2 amplitudes in the 3S1, 3P 0, 3P 1, 3P 2, 3D1, 3D2 and 3D3 partial-waves, including

the dynamical couplings between the 3S1 and 3D1 waves and the 3P 2 and 3F 2 waves.

A number of polynomial parameterisations of the K-matrix were considered and one

example giving a good description of the 141 energy levels below atEcm = 0.41 is provided

by the fit shown in Table 3.4 where a K-matrix parameterisation with 11 parameters was

used. There are linear plus constant terms in K(3S1|3S1), K(3P 1|3P 1) and K(3P 2|3P 2),

and constant terms for all other relevant K(3`J |3`′J) except K(3P 2|3F 2) = 0. The table also

gives statistical uncertainties, estimates of systematic uncertainties from varying atmπ,

atmρ and ξ, and correlations between the parameters. We refer to this parameterisation

and set of fit values as the reference amplitude.

Presented in Figures 3.9 and 3.10 are the finite-volume spectra determined on each irrep

by solving Eq. 2.53 for the reference amplitude. The lattice computed energies, previously

plotted in Figures 3.6 and 3.7, are also shown on the figure and we observe very good

agreement between the two sets of energy levels (as expected from the χ2). The reference

amplitude successfully predicts the location of levels which were not used to constrain

the parameterisation (grey points), but a couple of features should be noted. Firstly, in
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Figure 3.9 some levels are apparently missed by the scattering parameterisation in the the

E−, T−1 and T−2 irreps around atEcm = 0.42. The presence of these levels relies upon the

inclusion of F -wave scattering amplitudes, which are neglected in the reference amplitude.

Secondly, in Figure 3.10 the A2 irreps with ~P = [011] and ~P = [002] appear to have energy

levels missing in the lattice QCD calculation around atEcm = 0.425 and atEcm = 0.415

respectively. This is expected because the corresponding vector-pseudoscalar operators

were not included in the bases used (see Section 3.5 – Table 3.3 and Figure 3.7).

A wide range of possible parameterisations that allow non-zero values for all constants

cn(3`J |3`′J) provided ` + `′ + 2n ≤ 4 were considered. This ensures the K-matrix has

parameter freedom in all terms up to order a4
t .

16 Table 3.12 in Appendix 3.12 shows a

selection of these fits along with the corresponding χ2/Ndof. Parameterisations without

freedom in the K(3S1|3D1)(s) polynomial are not able to give a good description of the

finite-volume spectra, a point we return to in Section 3.6.3. However, a K(3P 2|3F 2)(s) term

does not appear to be required – this is consistent with expectations that the dynamical

mixing between 3P 2 and 3F 2 is suppressed by the angular momentum barrier at these

relatively low energies just above threshold.

K-matrix parameterisations which include pole terms, efficient at describing resonant

behaviour and bound states, did not give a good description of the finite-volume spectra

and we do not include such parameterisations in Table 3.12. This is consistent with our

qualitative observations on the spectra in Section 3.5.

For all the parameterisations in Table 3.12 with χ2/Ndof ≤ 1.5, Figure 3.11 shows

the two phase-shifts and mixing-angle in the Stapp parameterisation, Eq. 3.1, for the

dynamically-coupled 3S1 and 3D1 partial-waves, and the phase-shifts for the 3P 0,
3P 1,

3P 2, 3D2 and 3D3 partial-waves. It can be seen that the scattering amplitudes are robust

under parameterisation variations and the phase-shifts are consistent within statistical

uncertainties. As expected, the systematic uncertainty on each parameterisation is largely

due to ξ and hence discretisation effects dominate the uncertainties.

We conclude that ρπ in isospin-2 is weakly repulsive in 3S1. The other phase-shifts

are consistent with zero within the systematic uncertainties, though there are hints of

weak attraction in 3P 2 and weak repulsion in 3P 0,
3P 1 and 3DJ . The dynamical mixing

between the 3S1 and 3D1-waves is small but significantly non-zero within the systematic

16Including terms with higher powers of at did not significantly improve the quality of fit.



54 CHAPTER 3. SCATTERING OF ρπ IN ISOSPIN-2 AT Mπ ∼ 700 MEV

uncertainties and across all parameterisations. In the following section we investigate in

more detail how the spectra depend on the mixing angle ε̄.

3.6.3 Constraints on the 3S1 – 3D1 Mixing-Angle

To demonstrate that the 3S1 – 3D1 mixing angle, ε̄, is being robustly constrained in

the energy range considered, we investigate which energy levels are providing the most

stringent constraints on it. If we neglect ` ≥ 4, the quantisation conditions for irreps at

rest admitting 3S1, 3D1-waves are independent of the sign of ε̄, whereas the quantisation

conditions for irreps in-flight depend on the sign of ε̄. This means that for spatially periodic

boundary conditions in a cubic box, ignoring contributions from ` ≥ 4, in-flight irreps

must be considered in order to uniquely determine ε̄ from finite-volume spectra.17

Figure 3.12 shows finite-volume spectra in the [000]T+
1 irrep and the ~PA2 irreps, ~P 6= ~0,

as a function of the K-matrix parameter, c0(
3S1|3D1), along with the corresponding

phase-shifts δ3S1
, δ3D1

and mixing angle ε̄.18 The reference parameterisation in Table 3.4

has been used, varying c0(3S1|3D1) while keeping all other parameters fixed. The symmetry

of the finite-volume spectrum in [000]T+
1 about c0(3S1|3D1) = 0 illustrates the expected

sign independence at rest. For the A2 irreps in-flight, the finite-volume spectra are clearly

asymmetric about c0(3S1|3D1) = 0 and energy levels have a varying degree of dependence

on ε̄. Furthermore, the phase-shifts vary only within their systematic uncertainties for

−20 ≤ c0(3S1|3D1) ≤ 20, in stark contrast to ε̄. This suggests that the constraints placed

on c0(3S1|3D1) by the finite-volume spectra are the most significant in determining ε̄ and

Figure 3.12 illustrates the numerous energy levels in the region atEcm ≤ 0.41 which provide

these constraints, e.g. the splitting between the 4th and 5th energy levels in the [002]A2

irrep is strongly dependent on c0(
3S1|3D1) in the small range we consider. Other irreps

in-flight admitting the dynamically coupled 3S1 and 3D1 partial-waves provide additional

constraints on c0(
3S1|3D1) and subsequently ε̄. We conclude that these finite-volume

calculations robustly determine the magnitude and sign of ε̄.

17If contributions of partial-waves with ` ≥ 4 are included for irreps overall at rest, then in general the

finite-volume spectra are no longer independent of the sign of ε̄.
18The relations in Eq. 3.1 and Eq. 3.14 can be manipulated to show that the sign of c0(3S1|3D1) is

dependent on the sign of ε̄ whereas the phase-shifts are independent of the sign of c0(3S1|3D1).



3.6. SCATTERING AMPLITUDES 55

−10

0.36 0.37 0.38 0.39 0.40 0.41

10

0

20

−20

−10

0.36 0.37 0.38 0.39 0.40 0.41

10

0

20

−20

−10

0.36 0.37 0.38 0.39 0.40 0.41

10

0

20

−20

−10

0.36 0.37 0.38 0.39 0.40 0.41

10

0

20

−20

−10

0.36 0.37 0.38 0.39 0.40 0.41

10

0

20

−20

−10

0.36 0.37 0.38 0.39 0.40 0.41

10

0

20

−20

−10

0.36 0.37 0.38 0.39 0.40 0.41

10

0

20

−20

−10

0.36 0.37 0.38 0.39 0.40 0.41

10

0

20

−20

−10

0.36 0.37 0.38 0.39 0.40 0.41

10

0

20

−20

Figure 3.8: Phase-shifts for the 3P 0, 3P 1 and 3P 2 partial-waves. The points are as

described in the text. Inner bands reflect the statistical uncertainties on the phase-shifts

from the fits in Eq. 3.17 and outer bands reflect the combined statistical and systematic

uncertainties.
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Figure 3.9: Volume-dependent spectra for irreps with ~P = ~0. Black and grey points,

slightly displaced in L/as for clarity, are, as in Figure 3.6, energy levels extracted from

analyses of correlation functions. Orange points and bands show solutions to Eq. 2.53 for

the reference K-matrix parameterisation in Table 3.4. The inner dark orange error

bars/error bands reflect the statistical uncertainties and the outer lighter orange error

bars/error bands also include systematic uncertainties.
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Figure 3.10: As Figure 3.9 but for A2 irreps with ~P 6= ~0.
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Figure 3.11: Phase-shifts for partial-waves, 3`J , and 3S1 – 3D1 mixing angle, ε̄, as

described in the text. Each curve corresponds to a parameterisation in Table 3.12 with

χ2/Ndof ≤ 1.5. The darker inner band (typically thinner than the width of the curves)

reflects the statistical uncertainty on the reference parameterisation in Table 3.4 and the

lighter outer bands correspond to the combined statistical and systematic uncertainties on

this parameterisation. Faded regions highlight that no energy levels have been used to

constrain the phase-shifts and mixing angle when atEcm ≥ 0.41. The discrete energy

levels used as constraints are shown as small dots at the bottom of the figure with the top

and bottom rows for L/as = 24 and 20 respectively. An axis reflecting energy above

threshold in physical units is displayed at the top of the figure.
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Figure 3.12: Upper: Finite-volume spectra in the [000]T+
1 and ~P 6= ~0 A2 irreps on the

L/as = 24 lattice as a function of c0(3S1|3D1) as described in the text. Black and grey

points are, as in Figure 3.6, energy levels extracted from correlation functions, plotted at

c0(3S1|3D1) = −5.28 the value in the reference amplitude parameterisation in Table 3.4.

Grey bands are to guide the eye and show the combined statistical and systematic

uncertainties on the black points. Orange curves show the finite-volume spectra from the

reference amplitude when c0(3S1|3D1) is varied with the other parameters fixed. Lower:

δ3S1
(Ecm), δ3D1

(Ecm) and ε̄(Ecm) for the reference amplitude with a selection of values for

c0(3S1|3D1). The shaded bands shows the combined statistical and systematic

uncertainties of the reference amplitudes, i.e. when c0(3S1|3D1) = −5.28.
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3.7 Summary

In this chapter, we have reported on the first calculation of ρπ scattering using lattice QCD,

focusing on the isospin-2 channel. As expected for an exotic isospin, the hadron-hadron

interactions are found to be relatively weak. The angular momentum barrier at low energy

provides a natural hierarchy in `, and the coupling of ` with the intrinsic spin of the ρ leads

to a number of partial-waves for a given JP . The possibility of ‘spin-orbit’ forces in QCD

allows amplitudes of common `, but distinct J , to differ. For each of JP = 1+, 2−, 3+, . . . ,

there are two dynamically-coupled partial-waves, and for 1+ we are able to determine

the 3S1 and 3D1 amplitudes along with the coupling between them. We are also able to

determine the scattering phase-shifts for all partial-waves of ` ≤ 2.

Our results followed from application of the formalism relating scattering amplitudes in

an infinite volume to the discrete spectrum of QCD in a finite periodic volume defined

by the lattice. We computed this spectrum in two spatial volumes in a version of QCD

where the degenerate u, d quarks are heavier than in experiment, such that they are

degenerate with the strange quark and the theory has an exact SU(3)F flavour symmetry.

The resulting theory has octet pseudoscalar mesons (such as the π) of mass ∼ 700 MeV

and stable octet vectors mesons (such as the ρ) of mass ∼ 1020 MeV.

Spectra were obtained by variational analysis of matrices of two-point correlation

functions computed using bases of operators resembling ρπ. The large number of partial-

waves contributing, together with the weakness of the interactions, leads to spectra which

feature many nearly-degenerate states. The use of bases of operators featuring all relevant

‘meson-meson’ constructions in the energy region of interest leads to a robust determination,

where the nearly degenerate states are resolved in the variational solution by virtue of

their orthogonal overlap structures in the space of operators.

The spectra obtained in the two volumes, featuring 141 energy levels, were used to

constrain the energy dependence of multiple partial-waves. Amplitudes were parameterised

and the parameters adjusted so that the predicted finite-volume spectra matched the

calculated spectra, as quantified by a correlated χ2. The dependence on the particular form

of parameterisations used was explored and found to be rather modest. The largest single

source of systematic uncertainty in the calculation was due to the difference in the lattice

anisotropy for the π and the various helicity components of the ρ. This is a relatively
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small discretisation effect, but its impact in this particular calculation is amplified by the

weakness of the interactions. This causes the finite-volume energy levels to be shifted

relatively little from their non-interacting values.

The resulting scattering amplitudes presented in Figure 3.11 show a phase-shift in the
3S1 channel which is clearly non-zero and repulsive. Phase-shifts for the other extracted

partial waves are found to be compatible with zero within their systematic error. The

mixing between 3S1 and 3D1 in JP = 1+, as quantified by a mixing angle ε̄ in the Stapp

parameterisation, is determined and found to be small but significantly non-zero. We

are able to determine its sign by considering spectra where the ρπ has overall non-zero

momentum with respect to the lattice.

The low energy (near threshold) behaviour of the scattering amplitudes can be

summarised in terms of the corresponding scattering lengths. Using the definition,

limkcm→0 k
2`+1
cm cot

[
δ3`J
]

= a(3`J |3`J)−1, we find for the reference amplitude,19

a(3S1|3S1) = (−5.44± 0.10± 0.88) · at mπ a(3S1|3S1) = (−0.80± 0.01± 0.13)

a(3P 0|3P 0) = (−132± 14± 104) · a3
t m3

π a(3P 0|3P 0) = (−0.43± 0.05± 0.34)

a(3P 1|3P 1) = (−303± 12± 114) · a3
t m3

π a(3P 1|3P 1) = (−0.98± 0.04± 0.37)

a(3P 2|3P 2) = (502± 14± 362) · a3
t m3

π a(3P 2|3P 2) = (1.62± 0.05± 1.17)

a(3D2|3D2) = (−8950± 1050± 5330) · a5
t m5

π a(3D2|3D2) = (−0.63± 0.07± 0.38)

a(3D3|3D3) = (−4320± 1310± 7270) · a5
t m5

π a(3D3|3D3) = (−0.30± 0.09± 0.51).

The qualitative behaviour of the 3PJ -waves is the same as that found in Section 3.6.1

where only irreps with a single non-negligible partial wave were considered and each of

the 3PJ scattering lengths given above is consistent within errors with those found in that

section.

In conclusion, we have demonstrated how scattering amplitudes involving hadrons with

non-zero spin can be computed using lattice QCD. Further applications of the approach

presented in this study include the isospin-1 ρπ and ωπ systems. In JP = 1+, experiments

observe low-lying resonances, the a1 and b1 axial-vectors respectively, both of which have

been measured to have significant coupling to both 3S1 and 3D1 partial-waves [47, 73]. We

will examine these two systems in the following two chapters. Furthermore, experiments

19We do not quote a 3D1 scattering length because t(3D1| 3D1) ∼ (kcm)4 � t(3S1| 3D1) ∼ (kcm)2 at

threshold and as such the contribution of ε̄ cannot be neglected, unlike in the 3S1 case.
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in the charmonium sector appear to show resonant behaviour in the exotic-flavour J/ψ π

channel. First attempts to determine lattice QCD spectra here have appeared [68,74], but

as yet, there has been no determination of the scattering amplitudes.

Appendices

3.A Subduction Tables

Tables 3.5, 3.6 and 3.7 present the subduction patterns for vector-pseudoscalar partial-

waves with ` ≤ 3 for momenta of type [00n], [0nn] and [nnn] respectively for integer

n.

[00n] Λ A1 A2 E B1 B2

JP (3`J)

0−
(

3P 0

)
1+

3S1

3D1

 1+

3S1

3D1


1−
(

3P 1

)
1−
(

3P 1

)
2+
(

3D2

)
2+
(

3D2

)
2+
(

3D2

)
2+
(

3D2

)
2−

3P 2

3F 2

 2−

3P 2

3F 2

 2−

3P 2

3F 2

 2−

3P 2

3F 2


3+

3D3

3G3

 3+

3D3

3G3


[2]

3+

3D3

3G3

 3+

3D3

3G3


3−
(

3F 3

)
3−
(

3F 3

)
[2]

3−
(

3F 3

)
3−
(

3F 3

)
4−

 3F 4

3H 4

 4−

 3F 4

3H 4


[2]

4−

 3F 4

3H 4


[2]

4−

 3F 4

3H 4

 4−

 3F 4

3H 4


Table 3.5: Partial-wave JP (3`J) subductions for ` ≤ 3 at ~P = [00n] into irreps Λ of the

little-group Dic4. A subscript [N ] indicates that this JP has N embeddings in the irrep Λ.

Partial-waves with ` > 3 that couple dynamically to partial-waves with ` ≤ 3 are shown

in grey italic. This table is derived using the results presented in Refs. [9] and [10].
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[0nn] Λ A1 A2 B1 B2

JP (3`J)

0−
(

3P 0

)
1+

3S1

3D1

 1+

3S1

3D1

 1+

3S1

3D1


1−
(

3P 1

)
1−
(

3P 1

)
1−
(

3P 1

)
2+
(

3D2

)
[2]

2+
(

3D2

)
2+
(

3D2

)
2+
(

3D2

)
2−

3P 2

3F 2

 2−

3P 2

3F 2


[2]

2−

3P 2

3F 2

 2−

3P 2

3F 2


3+

3D3

3G3

 3+

3D3

3G3


[2]

3+

3D3

3G3


[2]

3+

3D3

3G3


[2]

3−
(

3F 3

)
[2]

3−
(

3F 3

)
3−
(

3F 3

)
[2]

3−
(

3F 3

)
[2]

4−

 3F 4

3H 4


[2]

4−

 3F 4

3H 4


[3]

4−

 3F 4

3H 4


[2]

4−

 3F 4

3H 4


[2]

Table 3.6: As Table 3.5, but for ~P = [0nn] with little-group Dic2.
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[nnn] Λ A1 A2 E

JP (3`J)

0−
(

3P 0

)
1+

3S1

3D1

 1+

3S1

3D1


1−
(

3P 1

)
1−
(

3P 1

)
2+
(

3D2

)
2+
(

3D2

)
[2]

2−

3P 2

3F 2

 2−

3P 2

3F 2


[2]

3+

3D3

3G3

 3+

3D3

3G3


[2]

3+

3D3

3G3


[2]

3−
(

3F 3

)
[2]

3−
(

3F 3

)
3−
(

3F 3

)
[2]

4−

 3F 4

3H 4

 4−

 3F 4

3H 4


[2]

4−

 3F 4

3H 4


[3]

Table 3.7: As Table 3.5, but for ~P = [nnn] with little-group Dic3.

3.B Operator Bases

We show the operator basis in Tables 3.8 - 3.11 for all irreps considered in Figures 3.6, 3.7

and 3.13 that were not shown in Table 3.3.

[000]A+
2 [000]E+ [000]T+

2 [000]A−1 [000]T−1

ρ[011]π[0-1-1] ρ[011]π[0-1-1] ρ[001]π[00-1] ρ[001]π[00-1] ρ[001]π[00-1]

ρ[111]π[-1-1-1] ρ[111]π[-1-1-1] {2} ρ[011]π[0-1-1] ρ[011]π[0-1-1] {2} ρ[011]π[0-1-1]

ρ[111]π[-1-1-1] ρ[111]π[-1-1-1] ρ[111]π[-1-1-1]

2 ops. 2 ops. 4 ops. 3 ops. 4 ops.

Table 3.8: As Table 3.3 but for irreps A+
2 , E+, T+

2 , A−1 and T−1 at ~P = [000].
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[000]E− [000]T−2 [001]A1 [001]B1 [001]B2

ρ[001]π[00-1] ρ[001]π[00-1] ρ[011]π[0-10] ρ[011]π[0-10] {2} ρ[011]π[0-10]

{2} ρ[011]π[0-1-1] {2} ρ[011]π[0-1-1] ρ[010]π[0-11] ρ[010]π[0-11] {2} ρ[010]π[0-11]

ρ[111]π[-1-1-1] {2} ρ[111]π[-1-1-1] ρ[111]π[-1-10] {2} ρ[111]π[-1-10] ρ[111]π[-1-10]

ρ[110]π[-1-11] {2} ρ[110]π[-1-11] ρ[110]π[-1-11]

ρ[012 ]π[0 -1 -1 ] ρ[012 ]π[0 -1 -1 ] {2} ρ[012 ]π[0 -1 -1 ]

4 ops. 5 ops. 4 ops. 6 ops. 6 ops.

Table 3.9: As Table 3.3 but for irreps E− and T−2 at ~P = [000] and A1, B1 and B2 at

~P = [001].

[001]E2 [011]A1 [011]B1 [011]B2 [111]A1

ρ[001]π[000] ρ[001]π[010] ρ[011]π[000] ρ[011]π[000] ρ[011]π[100]

ρ[000]π[001] ρ[111]π[-100] ρ[001]π[010] {2} ρ[001]π[010] ρ[001]π[110]

{3} ρ[011]π[0-10] {3} ρ[110]π[-101] ρ[000]π[011] ρ[000]π[011] ρ[112 ]π[00 -1 ]

{3} ρ[010]π[0-11] ρ[100]π[-111] {2} ρ[111]π[-100] ρ[111]π[-100] {3} ρ[012 ]π[10 -1 ]

ρ[002]π[00-1] ρ[012 ]π[00 -1 ] {3} ρ[110]π[-101] {3} ρ[110]π[-101] ρ[002]π[11-1]

{3} ρ[111]π[-1-10] ρ[002]π[01-1] {2} ρ[100]π[-111] ρ[100]π[-111] ρ[11-1]π[002]

{3} ρ[110]π[-1-11] ρ[01-1]π[002] ρ[012 ]π[00 -1 ] {2} ρ[012 ]π[00 -1 ] {3} ρ[10 -1 ]π[012 ]

ρ[00-1]π[002] ρ[00 -1 ]π[012 ] ρ[002]π[01-1] {2} ρ[002]π[01-1] ρ[00 -1 ]π[112 ]

{3} ρ[012 ]π[0 -1 -1 ] {3} ρ[-10 -1 ]π[112 ] ρ[01-1]π[002] {2} ρ[01-1]π[002]

ρ[00 -1 ]π[012 ] {2} ρ[00 -1 ]π[012 ]

{3} ρ[112 ]π[-10 -1 ] {3} ρ[112 ]π[-10 -1 ]

16 ops. 8 ops. 12 ops. 13 ops. 4 ops.

Table 3.10: As Table 3.3 but for irreps E2 at ~P = [001]; A1, B1 and B2 at ~P = [011] and

A1 at ~P = [111].
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[111]E2 [002]A1 [002]B1 [002]B2 [002]E2

ρ[111]π[000] ρ[011]π[0-11] ρ[011]π[0-11] {2} ρ[011]π[0-11] ρ[001]π[001]

{3} ρ[011]π[100] ρ[012 ]π[0 -10 ] ρ[012 ]π[0 -10 ] {2} ρ[012 ]π[0 -10 ] ρ[002]π[000]

{3} ρ[100]π[011] ρ[111]π[-1-11] {2} ρ[111]π[-1-11] ρ[111]π[-1-11] {3} ρ[011]π[0-11]

ρ[000]π[111] ρ[0 -10 ]π[012 ] ρ[0 -10 ]π[012 ] {2} ρ[0 -10 ]π[012 ] ρ[000]π[002]

{3} ρ[112 ]π[00 -1 ] ρ[112 ]π[-1 -10 ] {2} ρ[112 ]π[-1 -10 ] ρ[112 ]π[-1 -10 ] {3} ρ[012 ]π[0 -10 ]

{6} ρ[012 ]π[10 -1 ] ρ[110 ]π[-1 -12 ] {2} ρ[110 ]π[-1 -12 ] ρ[110 ]π[-1 -12 ] {3} ρ[111]π[-1-11]

{3} ρ[002]π[11-1] {3} ρ[0 -10 ]π[012 ]

{3} ρ[11-1]π[002] {3} ρ[112 ]π[-1 -10 ]

{6} ρ[01 -1 ]π[102 ] {3} ρ[110 ]π[-1 -12 ]

{3} ρ[00 -1 ]π[112 ]

14 ops. 2 ops. 3 ops. 3 ops. 9 ops.

Table 3.11: As Table 3.3 but for irreps E2 at ~P = [111] and A1, B1, B2 and E2 at

~P = [002].
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3.C Additional Spectra

We provide here the finite-volume spectra plots for irreps at non-zero momenta, not shown

in Figures 3.6 and 3.7, in Figure 3.13.
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Figure 3.13: As Figure 3.7 but for all other irreps with |~P |2 ≤ 4.
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3.D Chew-Mandelstam Phase-Space

The t-matrix can be conveniently expressed in terms of a real symmetric K-matrix and a

diagonal matrix I as shown in Eq. 3.14. Unitarity of the S-matrix for real s is guaranteed

provided,

Im Ia(s) =

−ρa(s) if s ≥ s
(a)
thr.

0 if s < s
(a)
thr.

leaving the real part of Ia(s) arbitrary. Here, we have introduced an index a labelling

the hadron-hadron channel to generalise the discussion. Of course, in the context of ρπ

scattering presented in this chapter, there is only one channel.

A simple choice for Ia(s) immediately follows from the constraints imposed by unitary:

choosing Ia(s) = −iρa(s). Although a perfectly good choice, this form of Ia(s) does not

make use of the analytic properties of the amplitude. Furthermore, this choice does not

give any useful behaviour of the amplitude near thresholds or any resonant pole masses.

An alternative is constructed through the Chew-Mandelstam function [72] where the real

part is related to the imaginary part through a dispersive integral. The physical S-matrix

amplitudes are assumed to be analytic functions of complex s, and it follows from Eq. 3.14

that Ia(s) are analytic functions of complex s on a domain which excludes the branch cut

originating from the square root in ρa(s) at threshold, s
(a)
thr. =

(
m

(a)
1 +m

(a)
2

)2
. Using the

Cauchy integral formula, one can write,

Ia(s) =
1

2πi

∫
Ca
ds′

Ia(s
′)

s′ − s
(3.18)

where Ca is the boundary of the open set Ua ⊂ C where Ia(s) is analytic, shown in

Figure 3.14.

By deforming the contour Ca such that the boundary goes out toward infinity and

assuming Ia(s) has compact support for |s| → ∞, the contour integral in Eq. 3.18 can be

expressed as an integral along the real axis from s
(a)
thr. to infinity,

Ia(s) =
1

2πi
lim
ε→0

∫ ∞
s
(a)
thr.

ds′
Ia(s

′ + iε)− Ia(s′ − iε)
s′ − s

= − 1

π

∫ ∞
s
(a)
thr.

ds′
ρa(s

′)

s′ − s
(3.19)
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1

Figure 3.14: A sketch of the contour Ca in the complex s-plane. The conventional choice

of branch cut from s
(a)
thr. =

(
m

(a)
1 +m

(a)
2

)2
towards infinity along the positive real axis is

shown.

where the second equality follows from the ‘Real analyticity’ [75] of t(s): t(s) = t(s∗)∗

and so Ia(s
∗) = Ia(s)

∗, giving Ia(s + iε) − Ia(s − iε) = 2 Im Ia(s + iε) = −2ρa(s + iε).

This integral is however divergent and needs regularising. This can be done through a

‘subtraction’, where the regularised integral can be written as,

Ia(s) = Ia(s
(a)
thr.)−

s− s(a)
thr.

π

∫ ∞
s
(a)
thr.

ds′
ρa(s

′)

(s′ − s)(s′ − s(a)
thr.)

(3.20)

which integrated explicitly gives [64],

Ia(s) = Ia(s
(a)
thr.) +

ρa(s)

π
log

[
ξa(s) + ρa(s)

ξa(s)− ρa(s)

]
− ξa(s)

π

m
(a)
2 −m

(a)
1

m
(a)
2 +m

(a)
1

log
m2

m1

, (3.21)

where ξa(s) = 1− (m
(a)
2 +m

(a)
1 )2/s.

The expression in Eq. 3.21 has a residual arbitrariness in the real part of Ia(s
(a)
thr.) for

which one choice we employ is to set this to zero, i.e. ReIa(s = s
(a)
thr.) = 0, and we refer

to this as ‘threshold subtraction’. Another convenient choice, when the K-matrix has a

‘pole term’ with mass parameter m, is to set Ia(s
(a)
thr.) such that ReIa(s = m2) = 0, which

we refer to as ‘pole subtraction’. With this choice, in the energy region around s = m2,

the t-matrix resembles a Breit-Wigner form and the mass m and Breit-Wigner mass mR

coincide [64].



3.E. SCATTERING PARAMETERISATIONS 71

3.E Scattering Parameterisations

Table 3.12 shows the different parameterisations of the K-matrix considered in the

parameterisation variation as discussed in detail in Section 3.6.2.
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Chapter 4

Investigation of ρπ in isospin-1 at

mπ ∼ 700 MeV

The scattering of ρπ with exotic isospin-2 was found, as expected, to have weak interactions

in all partial-wave amplitudes up to the πππ threshold. Naturally, one may want to consider

ρπ scattering in quantum numbers where more significant interactions are expected, e.g.

ρπ in isospin-1 where an a1 axial-vector resonance features. In this short chapter, we

examine the isospin-1 ρπ system in the SU(3)F flavour limit and find evidence that, at this

pion mass, the a1 axial-vector is a bound-state. We begin with a discussion on G-parity

and Bose-symmetry at the SU(3)F point and then present the finite-volume spectra.

4.1 G-Parity in SU(3)F

Within the SU(3)F flavour framework, the a1 meson, with (IG)JPC = (1−)1++, forms

part of an axial-vector octet. We label the SU(3)F multiplets by the isoscalar component

and carry a subscript denoting the irrep, for example, (f1)8 labels the axial-vector octet

hosting the a1. We will adopt this labelling convention from here-on-in unless otherwise

specified, so the π and ρ mesons belong to the (η)8 (pseudoscalar) and (ω)8 (vector) octets

respectively and the corresponding singlets, (η)1 and (ω)1, contain admixtures of the η, η′

and ω, φ mesons respectively. Unlike in the isospin-2 case, where the corresponding SU(3)F

representation 27 can be formed only from products of two-mesons in octet multiplets,

8⊗ 8, the SU(3)F representation 8 and can be formed from both 8⊗ 1 and 8⊗ 8.

A subtlety that arises when considering the product of two SU(3)F representations, that

does not occur in SU(2)F, is the possibility of multiple embeddings within some target

flavour representation. In SU(2)F, the product of two isospins, I1⊗I2 = |I1−I2|⊕· · ·⊕I1+I2,

gives a single embedding in each isospin |I1 − I2|, |I1 − I2|+ 1, · · · , I1 + I2. However, in

73
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SU(3)F, the tensor product of two octets for example, 8⊗ 8, gives rise to the two linearly

independent octet embeddings 81 and 82.

Following the conventions given in DeSwart’s [67], the SU(3)F Clebsch-Gordan coefficients

for 8⊗ 8→ 81 ⊕ 82 are symmetric and anti-symmetric in 81 and 82 respectively,(
8 8 8i

ν1 ν2 ν

)
= ξi

(
8 8 8i

ν2 ν1 ν

)
(4.1)

where ξ1 = 1 and ξ2 = −1. It is useful at this point to write out the non-zero SU(3)F

Clebsch-Gordan coefficients for the two embeddings explicitly. As we are at liberty to work

with any member of the octet, we choose ν = (I, Y, Iz) = (1, 0, 1). We label the initial

octets 8a and 8b in order to distinguish them. The states |F ; I, Y, Iz〉 are then given by,

|81; 1, 0, 1〉 =−
√

3

10
|8a; 1

2
, 1, 1

2
〉 |8b; 1

2
,−1, 1

2
〉 −

√
3

10
|8a; 1

2
,−1, 1

2
〉 |8b; 1

2
, 1, 1

2
〉

+
1√
5
|8a; 1, 0, 1〉 |8b; 0, 0, 0〉+

1√
5
|8a; 0, 0, 0〉 |8b; 1, 0, 1〉 (4.2)

|82; 1, 0, 1〉 =
1√
6
|8a; 1

2
, 1, 1

2
〉 |8b; 1

2
,−1, 1

2
〉 − 1√

6
|8a; 1

2
,−1, 1

2
〉 |8b; 1

2
, 1, 1

2
〉

+
1√
3
|8a; 1, 0, 1〉 |8b; 1, 0, 0〉 − 1√

3
|8a; 1, 0, 0〉 |8b; 1, 0, 1〉 . (4.3)

These isovector components of the octets 81 and 82 have definite opposite G-parities.

This can be readily seen by acting with the G-parity operator on the states |8i; 1, 0, 1〉
written above. It is convenient to consider Ĝ as Ĉ followed by a π-rotation about the

y-component of isospin, R̂, as it is then straightforward to show [76],

Ĉ |8a; I, Y, Iz〉 = Ca(−1)
Y
2

+Iz |8a; I,−Y,−Iz〉

R̂ |8a; I, Y, Iz〉 = (−1)I−Iz |8a; I, Y,−Iz〉

Ĝ |8a; I, Y, Iz〉 = Ca(−1)
Y
2

+I |8a; I,−Y, Iz〉 , (4.4)

where Ca is the intrinsic C-parity of the neutral element of the octet, for example, Ca = +1

for (η)8 and Ca = −1 for (ω)8. It immediately follows that,

Ĝ |81; 1, 0, 1〉 = − CaCb |81; 1, 0, 1〉

Ĝ |82; 1, 0, 1〉 = + CaCb |82; 1, 0, 1〉 . (4.5)
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As an example, if 8a denotes the pseudoscalar octet (η)8 (Ca = +1) and 8b the vector

octet (ω)8 (Cb = −1), then |81; 1, 0, 1〉 will have positive G-parity and |82; 1, 0, 1〉 negative.

In the case of 8⊗ 1→ 8, the G-parity is much simpler. For ν = (1, 0, 1), the two-meson

state transforming in 8 is given trivially by,

|8; 1, 0, 1〉 = |8a; 1, 0, 1〉 |1b; 0, 0, 0〉 (4.6)

and the G-parity is G = −CaCb.
One could of course have chosen a different component of the octet with hypercharge

zero with which to work, for example the neutral element ν = (0, 0, 0), and a similar

argument would follow. For the remainder of this thesis, we always consider a target

component of ν = (1, 0, 1) and use the G-parity conventions laid out here.

These considerations are important when constructing meson-meson operators in order

to ensure they have the desired G-parity. Had we chosen different SU(3)F Clebsch-Gordan

coefficients that did not project the flavour embeddings onto definite G-parity, meson-

meson operators constructed in both octet multiplets would need to be included and

states of both G-parities would feature in the spectrum. This would significantly increase

the size of the operator basis and subsequently the computational cost. Having flavour

representations of definite symmetry also enables us to take advantage of Bose-symmetry

when considering products of identical meson octets which we discuss below.

4.2 Bose-Symmetry in SU(3)F

It is instructive to first think about Bose-symmetry in SU(2)F. For a pair of identical

mesons M1M2, the total wavefunction, comprised of a product of flavour (χ), spin (Q)

and spatial (R) wavefunctions, must be symmetric under the interchange M1 ↔M2 and

this places constraints on the symmetries of each wavefunction.1 For example, ππ in

isospin-1 is symmetric in spin (QS), antisymmetric in isospin (χA) and therefore must

be antisymmetric in the spatial wavefunction (RA). This forbids isospin-1 ππ in an even

partial-wave.

In SU(3)F, using the symmetries defined by the choice of SU(3)F Clebsch-Gordan

coefficients in Eq. 4.1, analogous restrictions can be deduced. Consider first identical

1For a product of mesons, the colour wavefunction is always symmetric.
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Sa = 0
81: 1S0,

1D2,
1G4, . . .

82: 1P1,
1F3, . . .

Sa = 1

81:

1S0,
1D2,

1G4, . . .
3P0,

3P1,
3P2,

3F2,
3F3,

3F4, . . .
5S2,

5D0,
5D1,

5D2,
5D3,

5D4,
5G2,

5G3,
5G4,

5G5,
5G6, . . .

82:

1P1,
1F3, . . .

3S1,
3D1,

3D2,
3D3,

3G3,
3G4,

3G5, . . .
5P1,

5P2,
5P3,

5F1,
5F2,

5F3,
5F4,

5F5, . . .

Table 4.1: Partial-wave content (` ≤ 4) of multiplets 81 and 82, from a product of two

identical octets, 8a ⊗ 8a, with intrinsic spins Sa.

octets of intrinsic spin-0. Total spin S is zero and the spin wavefunction, QS, is symmetric

meaning the product of flavour and spatial wavefunctions must be overall symmetric.

This leaves two possible combinations, χARA or χSRS. As 81 and 82 are symmetric and

anti-symmetric embeddings in flavour respectively, we deduce only partial-waves of even `

are permitted in 81 and odd ` in 82.

For identical octets with intrinsic spin-1, the symmetry of the spin wavefunction,

depending on the total spin of the meson-meson pair, is symmetric for S = 0, 2 and

anti-symmetric for S = 1. It follows that when the spin wavefunction is symmetric, the

product of flavour and spatial wavefunctions must be totally symmetric, so either χARA

or χSRS, and when anti-symmetric, the same product must be totally anti-symmetric,

either χSRA or χARS. This restricts partial-waves with even S + ` to the multiplet 81 and

odd S + ` to 82.

To summarise, for the product of two identical SU(3)F octet mesons transforming in 8i,

partial-waves are permitted where (−1)`+S = ξi. Table 4.1 summarises the partial-wave

contents of 81 and 82 for ` ≤ 4.

4.3 Operator Constructions in [000]T+
1

Single-meson operators transforming in the axial-vector octet (f1)8 are constructed

according to Eq. 3.4. As discussed previously, we choose ν = (1, 0, 1), corresponding to the
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a+
1 meson, with (IG)JPC = (1−)1++. At rest, JP = 1+ subduces into the [000]T+

1 irrep

and we construct a total of 8 single-meson-like operators, using up to two gauge-covariant

derivatives, as described in Section 3.2.1.

To determine a sufficient basis of meson-meson operators, it is instructive to consider

all relevant two-meson thresholds below the first three-meson threshold, (η)8(η)8(η)8, at

Ecm = 0.4434. We first consider two-meson thresholds formed from the product 8⊗ 8 of

which there are three: (η)8(η)8, (ω)8(η)8 and (ω)8(ω)8. As in the isospin-2 study, all

meson-meson operators with corresponding non-interacting energies up to, and a modest

distance above, the cut-off are included in the operator basis for a robust determination of

the spectra.

Consider first (η)8(η)8-like operators. Using Eq. 4.5, negative G-parity constructions

appear in the 81 embedding and Bose-symmetry constraints restrict (η)8(η)8 to even

partial-waves, of which only ` ≥ 4 appear in [000]T+
1 . Subsequently, there are no (η)8(η)8

operators with non-interacting energies below the cut-off and as such none are included in

the basis.2

For (ω)8(ω)8, negative G-parity again occurs for operators constructed in the flavour

symmetric embedding, 81. The allowed S-waves for identical vector-vector multiplets,

shown in Table 4.1, are 1S0 and 5S2 in 81 and 3S1 in 82. As neither 1S0 nor 5S2 subduce

into [000]T+
1 , there are no (ω)8(ω)8 operators at threshold. Corresponding non-interacting

energies for (ω)8(ω)8 operators with non-zero relative momenta are above the cut-off and

such operators are excluded from the basis.

For (ω)8(η)8, negative G-parity comes through the 82 embedding. No Bose-symmetry

constraints apply here as the multiplets are not identical. Meson-meson operators are

constructed according to Eq. 3.2.2 and, as an explicit example, we giveO†T
+
1 2

82 (1,0,1) constructed

from optimised operators transforming in [000]T−1 and [000]A−1 ,

O†T
+
1 2

82 (1,0,1) =

[
1√
6

(
Ω
†T−1 2

8 ( 1
2
,1, 1

2
)
Ω
†A−1 1

8 ( 1
2
,−1, 1

2
)
− Ω

†T−1 2

8 ( 1
2
,−1, 1

2
)
Ω
†A−1 1

8 ( 1
2
,1, 1

2
)

)
+

1√
3

(
Ω
†T−1 2

8 (1,0,1) Ω
†A−1 1

8 (1,0,0) − Ω
†T−1 2

8 (1,0,0) Ω
†A−1 1

8 (1,0,1)

)]
=

1√
6

[
(K∗+)†(K

0
)† − (K

∗0
)†(K+)†

]
+

1√
3

[
(ρ+)†(π0)† − (ρ0)†(π+)†

]
. (4.7)

where in the last equality we give the SU(2)F operators explicitly for reference.

2The smallest momenta required occurs at |~p|2 = 5 with [210]A2 ⊗ [210]A2 → [000]T+
1 .
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mesons atEcm

(η)8 0.1478(1)

(f0)1 0.2007(18)

(ω)8 0.2154(2)

(ω)1 0.2174(3)

threshold atEcm

(η)8(f0)1 0.3485(18)

(ω)8(η)8 0.3632(2)

(ω)8(ω)8 0.4308(3)

(ω)8(ω)1 0.4328(4)

(η)8(η)8(η)8 0.4434(2)

Table 4.2: (Left): relevant stable hadron masses. (Right): thresholds relevant for

multi-meson levels appearing in JP = 1+.

The two-meson thresholds formed from the product 8⊗ 1 that lie below the cutoff and

have a negative G-parity are (η)8(f0)1 and (ω)8(ω)1. Operators resembling both these

pairs of mesons are included in the basis.

For reference, relevant stable hadron masses and thresholds relevant for JP = 1+ are

recorded in Table 4.2. The complete list of operators used to compute the matrix of

correlation functions in [000]T+
1 is given in Table 4.3.
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L/as = 16 L/as = 20 L/as = 24

8× ψ̄Γψ 8× ψ̄Γψ 8× ψ̄Γψ

(ω)8[000](η)8[000] (ω)8[000](η)8[000] (ω)8[000](η)8[000]

(f0)1[001](η)8[00-1] (f0)1[001](η)8[00-1] (f0)1[001](η)8[00-1]

{2} (ω)8[001](η)8[00-1] {2} (ω)8[001](η)8[00-1] {2} (ω)8[001](η)8[00-1]

(ω)1[000](ω)8[000] (ω)1[000](ω)8[000] (f0)1[011](η)8[0-1-1]

(f0)1[011](η)8[0-1-1] {3} (ω)8[011](η)8[0-1-1]

{3} (ω)8[011](η)8[0-1-1] (ω)1[000](ω)8[000]

(f0)1[111](η)8[-1-1-1]

{2} (ω)8[111](η)8[-1-1-1]

13 ops. 17 ops. 20 ops.

Table 4.3: As in Table 3.3 but for operators in the 8 of SU(3)F flavour transforming in

[000]T+
1 . Meson-meson operators are ordered by increasing non-interacting energy (see

Section 3.2.2). The operators, M1[~p1]M2[~p2], are constructed from optimised M operators

with momentum types ~p1 and ~p2 respectively. Different momentum directions are summed

over as in Eq. 3.8. Single-meson operators are denoted ψ̄Γψ.

4.4 Finite-Volume Spectra

Matrices of correlation functions were calculated on the lattice described in Section 3.3. In

addition, we also used a smaller volume, (L/as)
3× (T/at) = 163×128 for which Nvecs = 64,

Ncfgs = 532 and Ntsrcs = 2. The finite-volume spectra were determined using a variational

analysis and we present the energy levels in Figure 4.1.

We make some qualitative observations from the spectra. Firstly, we see an energy level

far below the lowest threshold which appears to be volume independent, characteristic of

a bound-state. This is in fact unsurprising as a previous study on these lattices of the

isovector spectrum [29] finds, using a basis of single-meson-like operators only, a ground

state in the (f1)8 multiplet around the same energy.

Examining the spectra above the lowest energy level, we observe that the levels with

largest operator-state overlaps onto (ω)8(η)8-like operators appear to be consistent with or

displaced a small distance above each of the non-interacting (ω)8(η)8 energies. Analogous
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behaviour was seen in the ρπ isospin-2 spectra (Figure 3.5) where weak 3S1-wave and

negligibly small 3D1- and 3D3-wave amplitudes were determined.

An energy level with dominant operator-state overlap onto the (ω)8(ω)1 operator

is found to be roughly consistent with threshold on each volume, indicative of weak

interaction in 3S1-wave (ω)8(ω)1 in this energy region.

Regarding the (η)8(f0)1-like energy levels, these are found to be poorly determined

and carry large uncertainties, owing to the noisy (f0)1 with vacuum quantum numbers.

However, we find the levels are broadly consistent with the corresponding non-interacting

energies.

As a final comment, we find the next excited state in the single-meson-like spectrum

in Ref. [29] was found to be above (η)8(η)8(η)8 threshold. This is consistent with our

observations in Figure 4.1 that we do not observe any additional levels or resonant like

features below the three-body cutoff.
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Figure 4.1: Finite-volume spectrum for the (f1)8 flavour multiplet in the [000]T+
1 irrep on

each lattice volume. Energy levels are coloured according to the largest operator-state

overlap factors. Black points correspond to energy levels with dominant operator-state

overlap factors onto qq̄-like operators, red are (ω)8(η)8-like, blue are (η)8(f0)1-like and

green are (ω)8(ω)1-like. Errorbars reflect statistical uncertainties only. Points are slightly

displaced horizontally for clarity. Solid curves reflect non-interacting energies

corresponding to meson-meson operators included in the basis, as shown in Table 4.3, and

dashed lines are thresholds.
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4.5 Summary

To conclude, the (f1)8 multiplet appears to be a bound-state and interactions in the
3S1/

3D1, ρπ partial-waves appear to be weak and similar in characteristic to the ρπ isospin-

2 study, with no evidence of resonant behaviour in an energy region below the three-body

cutoff. A rigorous scattering analysis would require significantly improved statistical

precision on the poorly determined (η)8(f0)1 levels and many moving frame spectra, as

in the isospin-2 study, to constrain the large number of coupled channels and partial-waves

in this scattering system. Furthermore, given that the qualitative observations suggest

amplitudes are similar in characteristic to the isospin-2 calculation, we do not pursue this

analysis further.

At a lighter pion mass, we may expect to observe resonant behaviour in isospin-1 ρπ.

For narrow resonances, the spectrum calculated using a basis of single-meson operators

appears to give energy levels near the corresponding resonant mass determined from an

amplitude analysis – for example the ρ in Ref. [30]. This makes the spectra figures in

Ref. [29], calculated using a basis of single-meson-like operators, a particularly useful

guide for identifying potentially resonant channels. As shown in Figure 14 of Ref. [29], the

ρπ threshold first appears to be below the a1 energy on a lattice where mπ ∼ 391 MeV.

At this pion mass however, previous lattice calculations [30] find the ρ meson to be an

unstable narrow resonance and ρπ subsequently becomes the three-body πππ channel.

Although significant recent progress has seen development in a quantisation condition for

three-body scattering [52–60], the formalism has not matured to the level where we could

apply it to the a1.

As mentioned at the end of Chapter 3, the b1 axial-vector, the C-parity partner of the

a1, has experimentally observed decays to πω, dynamically-coupled in 3S1-,
3D1-wave.

At mπ ∼ 391 MeV the ω is stable against strong decay. The negative G-parity of the ω

forbids the decay to ππ and the lowest relevant threshold, πππ, is closed. Considering the

qq̄-like spectra with b1 quantum numbers, shown in Figure 15 of Ref. [29], we observe an

energy level a modest distance above πω threshold. This makes for an ideal candidate with

which to examine the effects of dynamically-coupled partial-waves in a resonant system.

With the framework and formalism in place, we proceed with a study of πω scattering in

Chapter 5.



Chapter 5

A b1 resonance at mπ ∼ 391 MeV

In Chapter 3, we presented a first calculation of ρπ scattering in isospin-2, determining

the 3S1– and 3D1–wave JP = 1+ amplitudes and their dynamical mixing, finding relatively

weak effects as expected in this exotic isospin channel. This was deliberately chosen

as a testing ground where resonant physics is not expected to feature and enabled the

development of the necessary tools and techniques for performing scattering calculations of

hadrons with non-zero spin. In Chapter 4, we examined ρπ in isospin-1 at the same heavy

pion mass and found evidence of a bound a1 and weak interactions in ρπ. In this chapter,

we explore the scattering of a vector-pseudoscalar pair in a system where resonance physics

is expected.

The experimentally-observed b1(1235) [5] isovector with JPC = 1+− is dominantly seen

through its decay to the πω final state, where the ω is the lightest isoscalar vector meson

and has a very small decay width to three pions. As in the case of ρπ, we can have the π

and ω in a relative 3S1– or 3D1–wave – indeed, by studying the angular distribution in the

decay of the b1, experiments have estimated the amplitudes of these two partial-waves [47].

In this chapter, we will report on a study of the isovector JPC = 1+− channel, in which

we expect to see a b1 resonance decaying to πω. In light of the discussion in the summary

of Chapter 4, we make use of Nf = 2+1 lattice configurations generated with a light-quark

mass such that the pion has a mass around 391 MeV. With this light-quark mass, the ω

meson is found to have a mass around 881 MeV [26,77], and hence is stable against decay

to three pions whilst the b1 is expected to resonate, just above πω threshold.

To study the b1 we compute matrices of correlation functions in three lattice volumes,

in a number of irreps at several overall momenta, employing a wide range of operators

resembling both single-hadron and multi-hadron structures. In addition to πω, the πφ

channel becomes kinematically open in the energy region of interest. Although the φ is

heavier than the ω, we find that it is also stable against decay to KK and πππ at the

83
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light-quark mass considered here. Furthermore, we pay attention to the fact that three-

body channels, ππη and πKK, which have relatively low thresholds even for mπ ≈ 391

MeV, can, in principle, play a role. Experimentally, three-body decays of resonances are

found to be dominated by two-body isobar resonances. For example, in a ππη final state

at relatively small total energy, the Dalitz plot will be expected to have the bulk of the

events in narrow horizontal and vertical bands around mππ ∼ mρ and mπη ∼ ma0 .
1 The

extensive use of three-meson operators, resembling ππη and πKK, are employed in this

study.

In this calculation, we determine a large number of finite-volume energy levels in multiple

volumes and moving frames. To constrain the JP = 1+ amplitudes, up to 36 energy levels,

each typically having statistical uncertainty at the tenth of a percent level, are utilised.

In addition, systematic tests exploring the role of the three-body channels are performed.

As discussed in previous chapters, the three-body scattering formalism has not reached

a maturity needed for a rigorous calculation, nevertheless we find evidence that these

three-body channels have negligible effect in this particular case involving a low-lying b1

resonance.

A previous lattice QCD study [49] of the b1 limited itself to the rest-frame in one

rather small volume. By considering only two degenerate flavours of light quarks and no

strange quarks, any physics associated with the πφ channel was disallowed. A very small

operator basis was used, such that only one usable energy level was obtained and this had

a statistical uncertainty at the percent level. Enforcing elastic 3S1–wave scattering only,

ignoring any effect from the 3D1–wave, and fixing the decay coupling of an assumed b1

resonance at a value equal to that extracted from experimental measurements, a crude

estimate of the b1 mass was made in the case that the pion mass is 266 MeV. An earlier

study [78] used a different approach in which the light-quark mass was tuned such that the

b1 decay to πω is exactly at kinematic threshold. From the time-dependence of a single

correlation function, an estimate of the decay coupling was inferred.

It has been suggested [79] that the πφ channel, coupled to πω, may feature a Zs resonance

analogous to the Zc enhancement that has been seen in the πJ/ψ final state [80, 81]. We

will find no evidence of a Zs resonance in this work.

We begin by examining the operator constructions relevant for this calculation.

1There will also be a diagonal ‘reflection’ of the a0 band due to the symmetry of exchanging the pions.
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5.1 Operator Constructions

The region we study includes the opening of several multi-hadron thresholds: πω, πφ,

ππη and πKK, and we find that this necessitates the inclusion of two-meson-like and

three-meson-like operators in our basis, as well as single-meson operators of fermion-bilinear

form which we expect to have good overlap with any bound state or relatively-narrow

resonance present. Four-meson thresholds lie beyond the energy region we consider,

and previous calculations suggest that local tetraquark-like operators have little effect

on the spectra [68, 82], so neither of these types of operators are included in the basis.

The construction of interpolating operators resembling single-meson, two-meson and

three-meson structures is discussed in the subsections which follow.

5.1.1 Single-Meson Operators

The construction of ‘single-meson-like’ operators follows the procedure detailed in Sec-

tion 3.2.1, with SU(2)F Clebsch-Gordan coefficients replacing SU(3)F in Eq. 3.4. Single-

meson operators are written as ψ̄Γψ for the remainder of this chapter.

In the construction of optimised operators for the stable ω (Ω†ω) and φ (Ω†φ), in each

relevant irrep, a variational analysis is performed on a matrix of correlation functions

calculated from a basis of hidden-light (ūΓu + d̄Γd) and hidden-strange (s̄Γs) flavour

structure, i.e. isospin-0. All relevant disconnected contributions that arise from self-

annihilations of quarks at source and sink respectively are computed but are found to be

small as shown in Figures 4 and 5 of Ref. [26]. This is consistent with the experimentally

motivated ‘OZI’ rule which postulates that diagrams with disconnected quark lines are

suppressed relative to connected ones - an implication being that qq̄ pairs in isoscalar

mesons prefer not to annihilate. Within each irrep, the ground-state and first excited-state

are projected out, found to have dominant operator-state overlaps with hidden-light and

hidden-strange operators respectively, and correspond to the ω and φ mesons.

We use the same flavour basis, but with pseudoscalar bilinear structures, for determining

the optimum η operator (Ω†η) in each irrep. Unlike in the vector case, there is significant

mixing between the hidden-light and hidden-strange flavour structures as is observed

through the disconnected diagrams (significant off-diagonal flavour contributions, see

Figures 2 and 3 in Ref. [26]), indicating, as is well known, that the ‘OZI’ rule does not

apply in the pseudoscalar channel.
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5.1.2 Two-Meson Operators

Our approach to constructing operators which resemble a two-meson structure has been

discussed in Section 3.2.2, where we again replace SU(3)F Clebsch-Gordan coefficients

with those for SU(2)F.

For energies below three-meson thresholds, previous calculations have suggested that

a sufficient set of operators for a reliable calculation of the spectra consists of single-

meson and two-meson operators. Recalling the discussion in Section 3.2.2, two-meson

operators O†ΛµM1M2
(~p12) are efficient at interpolating the finite-volume energy levels near to

the associated non-interacting energies,

E
(2)
n.i. =

√
m2

1 + |~p1|2 +
√
m2

2 + |~p2|2 ,

and truncating the two-meson operator bases when the corresponding non-interacting

energies are beyond the energy region of interest has been demonstrated to be sufficient for

a robust determination of the spectra. In this chapter, two-meson operators are written

M1 [~p1]M2 [~p2] in all tables and figures, with M labelling the meson and ~p the momentum

type.

Correlation functions with MM operators at the source and/or sink feature Wick

contractions in which quarks annihilate either within an isoscalar meson or between two

mesons. Considering a basis with overall isospin-1 as relevant here, with M = ūΓd and

MM = {πω, πφ}, we need to evaluate diagrams whose structure is similar to those shown

in Figure 1 of [64].2

5.1.3 Three-Meson Operators

Three-meson operators, and operators with a structure resembling more than three

mesons, can be constructed by iteratively applying the two-meson operator construction.

Schematically,

O†ΛµM1M2M3
(~p123) =

∑
µ12, µ3

∑
~p12∈{~p12}∗
~p3∈{~p3}∗

~p12+~p3=~p123

C

(
[~p12]Λ12 [~p3]Λ3 [~p123]Λ

µ12 µ3 µ

)
O†Λ12µ12

M1M2
(~p12) Ω†Λ3µ3

M3
(~p3)

(5.1)

2This figure refers to MM = {πK, ηK} in isospin-1/2.
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where O†ΛµM1M2
is a two-meson operator constructed from a product of optimised single-

meson operators. We have dropped the flavour labels here for brevity. Note that it does

not matter with which optimised single-mesons we formed the intermediate two-meson

operator, i.e. O†ΛµM1M2
(~p12), O†ΛµM2M3

(~p23) or O†ΛµM1M3
(~p13), as the tensor product is associative.

An argument for determining a sufficient set of three-meson operators, analogous to that

presented previously, would suggest calculating the corresponding non-interacting energies,

E
(3)
n.i. =

√
m2

1 + |~p1|2 +
√
m2

2 + |~p2|2 +
√
m2

3 + |~p3|2

and enforcing a similar truncation on the basis. While this approach has the advantage

of being straightforward, it pays no attention to the fact that we expect certain two-

meson pairs to feature resonating behaviour, the finite-volume analogue of the Dalitz-plot

enhancements, or that they may form bound-states.

Consider the example of πππ in isospin-2. Following the construction above, we would

be attempting to describe energy eigenstates of the ππ isospin-1 subsystem using O†ΛµM1M2

constructed using only ‘ππ’-like operators. To reliably determine the isovector ππ spectra,

i.e. the ρ spectra, an operator basis including both ψ̄Γψ and ππ-like operators is needed

as shown in Figure 1 of Ref. [30]. An alternative approach, based upon this observation

and used in Ref. [68], utilises an optimised two-meson operator which will be a linear

combination of ψ̄Γψ and ππ-like operators. We denote such an optimised operator Ω†R,

where R indicates the meson with the corresponding quantum numbers, i.e. Ω†ρ for the

example above.3 In general, multiple optimised operators may be relevant – Ω†Rn denotes

the optimal interpolating operator for the nth excited state in the relevant meson-meson

subsystem.

Combining these operators with an optimised single-meson operator yields an alternative

set of three-meson operators, given schematically by,

O†ΛµR12M3
(~p123) =

∑
µ12, µ3

∑
~p12∈{~p12}∗
~p3∈{~p3}∗

~p12+~p3=~p123

C

(
[~p12]Λ12 [~p3]Λ3 [~p123]Λ

µ12 µ3 µ

)
Ω†Λ12µ12

R12
(~p12) Ω†Λ3µ3

M3
(~p3) .

(5.2)

3Lattice irreps contain more than one spin but for convenience we choose the label R corresponding to

the lightest such meson, e.g. in [000]T−1 we choose ρ.
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By design, we anticipate that these three-meson operators will efficiently interpolate

finite-volume levels in the region of an energy value,

E
(2+1)
n.i. = EΛ12

Rn
12

(~p12) +
√
m2

3 + |~p3|2, (5.3)

where EΛ12

Rn
12

(~p12) are finite-volume energies calculated in the two-meson subsystem in irrep

[~p12]Λ12, i.e. they will efficiently capture interaction in the two-meson subsystem assuming

weak residual interaction with the third meson. Calculating E
(2+1)
n.i. energies, for all possible

combinations of two-meson subsystems that together with the third meson give the desired

quantum numbers, and truncating at a desired energy, provides a procedure for selecting

which of these three-meson operators to include in the basis.

To illustrate the construction presented above, consider the example of a three-meson

operator resembling ππη in the irrep [000]T+
1 with IG = 1+. We begin with the construction

shown in Eq. 5.1. For ~p1 = ~p2 = ~p3 = ~0, there is only one possible irrep,

(IG=1−)︷ ︸︸ ︷
[000]A−1︸ ︷︷ ︸

π

⊗

(IG=1−)︷ ︸︸ ︷
[000]A−1︸ ︷︷ ︸

π

⊗

(IG=0+)︷ ︸︸ ︷
[000]A−1︸ ︷︷ ︸

η

→ [000]A−1 ,

so no non-interacting ππη level, or corresponding operator, appears in [000]T+
1 at threshold.

If the pions are both given one unit of momentum, ~p1 = ~p2 = [001] and ~p3 = ~0 (recalling

that directions of momenta ~pi are summed over), the product,

(IG=1−)︷ ︸︸ ︷
[001]A2︸ ︷︷ ︸

π

⊗
(IG=1−)︷ ︸︸ ︷
[001]A2︸ ︷︷ ︸

π

⊗

(IG=0+)︷ ︸︸ ︷
[000]A−1︸ ︷︷ ︸

η

→

(IG=1+)︷ ︸︸ ︷
[000]T+

1 ⊕ ...

appears once in [000]T+
1 with IG = 1+. Following the construction outlined in Eq. 5.1

yields one operator of the form O†ππη with corresponding non-interacting energy,

E
(3)
n.i. = 2

√
m2
π +

(
2π
L

)2
+mη.
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Now, we consider bound-states and resonances in the ππ and πη two-meson subsystems

and construct operators according to Eq. 5.2. Unlike in the previous construction, the order

in which we combine the single-meson operators does matter as the intermediate Ω†R depends

on the flavour structure of the two-meson subsystem. As before, for ~p1 = ~p2 = ~p3 = ~0

there is no embedding in [000]T+
1 . For ~p1 = ~p2 = [001] and ~p3 = ~0, there are two possible

distinct two-meson subsystems to consider.

First, for the ππ subsystem, there are three possible flavour combinations, IG =

0+, 1+, 2+, and three possible irreps with momentum ~p12 = ~0, namely [000]A+
1 , [000]T−1 and

[000]E+. When combined with the η, only the ππ subsystem with IG = 1+ transforming in

[000]T−1 gives the desired overall flavour and irrep. This ππ subsystem contains quantum

numbers corresponding to the ρ and the construction is, schematically,

( (IG=1−)︷ ︸︸ ︷
[001]A2︸ ︷︷ ︸

π

⊗
(IG=1−)︷ ︸︸ ︷
[001]A2︸ ︷︷ ︸

π

)
⊗

(IG=0+)︷ ︸︸ ︷
[000]A−1︸ ︷︷ ︸

η

→

(IG=1+)︷ ︸︸ ︷
[000]T+

1

(IG=1+)︷ ︸︸ ︷
[000]T−1︸ ︷︷ ︸

ρ

⊗

(IG=0+)︷ ︸︸ ︷
[000]A−1︸ ︷︷ ︸

η

→

(IG=1+)︷ ︸︸ ︷
[000]T+

1 . (5.4)

Calculating the E
(2+1)
n.i. energies amounts to determining the ρ-like energy eigenstates in

[000]T−1 with IG = 1+ and adding these to the η energy according to Eq. 5.3,

E
(2+1)
n.i. = E

T−1
ρn ([000]) +mη ,

where we recall that ρn denotes the nth energy eigenstate within the irrep. In many cases,

including here, only the lowest energy two-meson state (n = 0) yields an operator below

the energy cut-off.

The second possible construction considers the πη subsystem where there is only one

flavour combination, IG = 1−, and one possible irrep, [001]A1. These quantum numbers

correspond to the a0 meson. Schematically,

( (IG=1−)︷ ︸︸ ︷
[001]A2︸ ︷︷ ︸

π

⊗

(IG=0+)︷ ︸︸ ︷
[000]A−1︸ ︷︷ ︸

η

)
⊗

(IG=1−)︷ ︸︸ ︷
[001]A2︸ ︷︷ ︸

π

→

(IG=1+)︷ ︸︸ ︷
[000]T+

1

(IG=1−)︷ ︸︸ ︷
[001]A1︸ ︷︷ ︸

a0

⊗
(IG=1−)︷ ︸︸ ︷
[001]A2︸ ︷︷ ︸

π

→

(IG=1+)︷ ︸︸ ︷
[000]T+

1 , (5.5)
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and, as before, we determine the E
(2+1)
n.i. energies by calculating the a0-like energy eigenstates

in [001]A1 with IG = 1− and add these to the π energy according to Eq. 5.3,

E
(2+1)
n.i. = EA1

a0n
([001]) +

√
m2
π +

(
2π
L

)2
.

For each E
(2+1)
n.i. below some energy cut-off, we can construct operators of the form O†a0π

via Eq. 5.2. The EA1
a0n

([001]) energies are an example of a case where it may be prudent

to consider multiple states (n ≥ 0) in the two-body sector. Figure 4 of Ref. [62] shows

the [001]A1 spectra corresponding to the EA1
a0n

([001]) energies – there are many nearby

low-lying energy levels on each volume. Following the construction given in Eq. 5.2 leads

to multiple operators of the form O†a0π corresponding to similar E
(2+1)
n.i. .

As an example of the large number of diagrams needed to evaluate the RM operators,

necessary to efficiently interpolate both ππη- and πKK-like states, we consider the case

of an a0π operator at the sink and a qq̄-like operator at the source. Here, the optimised a0

operators are formed from a linear superposition of qq̄, πη and KK constructions, listed

in Table 5.6. This leads to the diagrammatic components shown in Figure 5.1 which need

to be connected to the quark lines from the π and the source operator to form complete

Wick contractions. It follows that, even in this simple case of a b1 − a0π correlator, we

would have diagrams with the structures shown in Figure 5.2.
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Figure 5.1: Quark propagation lines (black are light quarks, green are strange quarks)

from operator constructions featuring in an optimised a0-like operator.

Figure 5.2: Wick contraction topologies for b1 − a0π. Left meson resembles the b1, upper

right meson the π and the remaining one or two mesons the a0 (only a subset of the

topologies in Figure 5.1 is relevant here).

5.2 Lattice Details

Correlation functions were computed on anisotropic lattices of spatial volumes (L/as)
3 =

163, 203 and 243 each having temporal extent T/at = 128, where the temporal lattice

spacing, at, is finer than the spatial lattice spacing, as ∼ 0.12 fm, with an anisotropy

ξ = as/at ∼ 3.5. Gauge fields were generated from the improved gauge and fermion action

discussed in Section 2.2, with Nf = 2 + 1 flavours of dynamical quarks where the strange
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(L/as)
3 × (T/at) Nvecs Ncfgs Ntsrcs

163 × 128 64 479 8 – 32

203 × 128 128 452 – 603 4

243 × 128 160 553 4

Table 5.1: Number of distillation vectors Nvecs, gauge configurations Ncfgs, and

time-sources Ntsrcs used in the computation of correlation functions.

quark is tuned to approximately its physical mass and the degenerate light quarks are such

that mπ ∼ 391 MeV [21]. All relevant Wick contractions were calculated without requiring

additional propagator inversions beyond the basic set of tsrc− t and t− t perambulators for

light and strange quarks, which were computed for use in previous calculations on these

lattices. The very large number of diagrams incurs only a combinatoric cost associated

with the contraction of the perambulators with the operator constructions.

Correlation functions were computed using the number of distillation vectors, gauge

configurations and time-sources shown in Table 5.1. Typically, we calculated all the

elements of the matrix of correlation functions, including the transposes, Cij and Cji,

which are related by hermiticity. In a few cases where there are a particularly large number

of diagrams contributing, we made use of hermiticity to infer Cji from the computed Cij.

Masses of relevant stable hadrons are shown in Table 5.2, where π, K, η(′) and σ masses

are taken from Refs. [28], [64], [62] and [7] respectively. Using energy levels on three lattice

volumes, we determine the masses and anisotropies of the ω and φ mesons and show the

results in Figure 5.3.

The same characteristic splitting between the |λ| = 0, 1 components, as for the stable ρ

meson in Section 3.4 at the larger quark mass, is found, and we attribute this splitting

to discretisation effects given that mπL & 4 and mπT & 9, meaning the finite-volume

effects here are also small. As in Section 3.4, the values of atmω, atmφ and ξ used are

obtained by taking the largest variations within one standard deviation of the means

across the different helicities. This yields the masses given in Table 5.2 and an anisotropy

ξ = 3.443(48) which is consistent with the anisotropies previously determined for π, K

and η [28, 62,64].
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meson (JP ) atm

π(0−) 0.06906(13)

K(0−) 0.09698(9)

η(0−) 0.10364(19)

σ(0+) 0.1316(9)

ω(1−) 0.15541(29)

η′(0−) 0.1641(10)

φ(1−) 0.17949(21)

threshold atEcm

πω 0.22447(32)

ππη 0.24176(26)

πφ 0.24855(25)

πKK 0.26302(18)

ππσ 0.26972(92)

ππππ 0.27624(26)

ππη′ 0.30222(102)

Table 5.2: Left: The masses of relevant stable hadrons with uncertainties. Right:

Relevant threshold energies with uncertainties.

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4

Figure 5.3: Momentum dependence of ω and φ energies and fits to Eq. 3.10. Blue and red

lines correspond to the ω meson with |λ| = 0 and 1 respectively. Similarly, green and

orange lines correspond to the φ meson with |λ| = 0 and 1. Points are shown with

statistical uncertainties and grey points show the (L/as) = 16 in-flight energies which are

not included in the fit.
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5.3 Operator Bases

In this study, we are principally interested in irreps that contain JP = 1+. For irreps

at rest, JP = 1+ subduces only into T+
1 . However, for in-flight irreps, different helicity

components of JP = 1+ are subduced across multiple irreps, as shown in Tables 3.5 – 3.7.

For example, λ = 0 and ±1 subduce into A2 and E2 respectively for overall momentum

~P = [001]. Furthermore, at non-zero momentum, parity is no longer a good quantum

number and so many irreps contain both J+ and J−, e.g. 1+ and 1−.

For irreps in flight, we will restrict our attention to ~PA2. These contain subductions of

the λ = 0 part of JP = 1+ but, because reflection parity η̃ = P (−1)J is a good quantum

number for λ = 0, they do not contain JP = 1−. In contrast, [001]E2 contains JP = 1−

as well as JP = 1+. The latter gives comparatively lower-lying JP = 1− levels, as seen in

Ref. [30], and so will lead to a dense spectrum of mixed JP = 1+ and 1− energy eigenstates.

Considering only ~PA2 allows us to avoid the complication of disentangling the JP = 1+

and 1− scattering amplitudes.

The relevant thresholds for the isovector sector with positive G-parity are shown in

Table 5.2. In the construction of correlation matrices we utilise two-meson operators

resembling πω and πφ and three-meson operators resembling ππη and πKK. All three-

meson operators are of the form O†RM corresponding to ρη and a0π for ππη–like operators

and a0π and K∗K for πKK–like operators.4 As the ππσ–threshold also opens in our

energy region, three-meson operators resembling ρσ and a1π were considered for inclusion.

These appear in a relative P -wave in the [000]T+
1 and ~PA2 irreps at values of E

(2+1)
n.i. that

lie far above ππππ–threshold. Similarly, relevant ππσ non-interacting energies, E
(3)
n.i., are

far above ππππ–threshold. Although the construction of operators resembling four-mesons

could be done analogously to the three-meson operator construction described above, we do

not include these in our basis and choose to restrict to energies below the ππππ–threshold.

The operator basis used for the [000]T+
1 irrep on each lattice volume is presented in

Table 5.3. Included are all two-meson and three-meson operators corresponding to E
(2)
n.i. and

E
(2+1)
n.i. below ππππ–threshold.5 The operator lists for ~P A2 irreps with ~P 6= ~0 are recorded

4The optimised operators Ω†R for ρ, a0 and K∗ used in RM operator constructions are determined

independently in each relevant irrep using variational analysis with the operator bases that are presented

in Appendix 5.A.
5There are no E

(3)
n.i. below 4mπ in [000]T+

1 .
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L/as = 16 L/as = 20 L/as = 24

22× ψ̄Γψ 22× ψ̄Γψ 22× ψ̄Γψ

π[000]ω[000] π[000]ω[000] π[000]ω[000]

π[000]φ[000] π[000]φ[000] π[000]φ[000]

ρ[000]η[000] ρ[000]η[000] ρ[000]η[000]

K∗[000]K [000] K∗[000]K [000] K∗[000]K [000]

{2}π[001]ω[001]

Table 5.3: [000]T+
1 operator basis for each lattice volume, with operators ordered by

increasing En.i.. The maximum number of single-meson operators, N , is denoted by

N × ψ̄Γψ; various subsets of these were considered to obtain robust fits. The number in

braces, {Nmult}, denotes the multiplicity of linearly independent two-meson operators if

this is larger than one.

in Appendix 5.A. We include, as well as all low-lying two-meson operators, also the lowest

three-meson (RM) operator in each irrep, with the intention of robustly determining the

spectra up to the lowest E
(2+1)
n.i. or E

(3)
n.i. energy. Moving frames were found to be essential in

determining the sign of the off-diagonal entry in the t-matrix between dynamically-coupled

partial-waves in vector-pseudoscalar scattering, as shown in Section 3.6.3, and provide

more energy levels with which to constrain the amplitudes.

In order to estimate the strength of partial-waves with J ≥ 2 that feature in [000]T+
1 and

~P A2, on the largest volume, we also computed spectra in irreps [000]E−, [000]T+
2 , [001]B1

and [001]B2, whose partial-wave content are presented in Tables 3.1 and 3.5. In addition

to the vector-pseudoscalar partial-waves presented in the tables, the [001]B1 and [001]B2

irreps also feature pseudoscalar-pseudoscalar JP = 3− (1F 3) partial-waves: ππ{1F 3} and

KK{1F 3}. The operator bases used for these irreps are presented in Appendix 5.A.

As we are considering the G-parity positive isovector sector, the neutral channels have

charge-conjugation C = −. The contributing JPC includes our target 1+− where we expect

a low-lying b1 resonance, which in the quark model would be a qq̄ spin-singlet in a P -wave.

The 2−− and 3−− channels are expected to resonate at a higher energy, corresponding

to the ρ2, ρ3 resonances, which would be spin-triplet D-waves in the quark model. Still

higher, we might have a 3+− resonance, b3, as a spin-singlet F -wave qq̄. In addition, we
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also have contributions from the exotic 0−− and 2+− channels – they do not appear in the

qq̄ quark model and previous lattice calculations [29] suggest that they may resonate in

the form of hybrid mesons at much higher energy. As such, because they do not resonate

in this energy region and feature at least a P -wave threshold suppression, it follows that

we expect all partial waves except JP = 1+ to be small at low energies, and indeed we will

find this to be the case.

5.4 Finite-Volume Spectra

The finite-volume spectra, extracted from a variational analysis of the matrix of correlation

functions computed from the bases of operators given in Table 5.3, are presented in

Figure 5.4. On the largest volume (L/as = 24), the principal correlators illustrate the

quality of the signal extraction for each energy level and the operator-state overlap factors

reflect the contributions from operators in the basis. It can be seen from the overlap

factors that the two-meson and, in particular, the three-meson operator constructions

efficiently interpolate the associated states. In some cases, an eigenstate has a dominant

overlap with only one operator, suggesting that the state closely resembles that particular

operator structure.

Consider first the number of energy levels expected below atEcm ≈ 0.27 on each volume.

In the absence of residual meson-meson interactions, we would expect four on each lattice

volume: one at each of the two E
(2)
n.i. corresponding to π000ω000 and π000φ000, shown as solid

horizontal lines in the figure, and one at each of the E
(2+1)
n.i. corresponding to ρ000η000 and

K∗000K000, shown as short dotted horizontal lines. Counting the number of energy levels

actually extracted, we find five, with an ‘additional’ level appearing near πφ threshold.

This may suggest the existence of a narrow resonance, as seen in a calculation of the ρ [30]

and K∗ [83] resonances, with a mass close to πφ threshold.6 On the largest volume, the

consequence of π001ω001 having a multiplicity of two is clear: two energy levels are found,

one very close to the non-interacting energy and one somewhat higher in energy.

In Figure 5.4, we also present an investigation of the importance of including RM
operators in the basis. The rightmost panel shows the spectrum extracted when ρη and

6We will see that the proximity of the resonance to πφ threshold is purely coincidental as hinted at by

the operator overlaps in Figure 5.4 as discussed below.
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K∗K operators are excluded, compared to the spectrum extracted with the full basis.

With the smaller basis, we see that typically the levels close to the ρη and K∗K ‘non-

interacting’ energies are no longer found. The spectrum at lower energies shows only

modest discrepancies, except on the smallest lattice volume (L/as = 16) where we might

indeed expect the finite-volume effects associated with ρη and K∗K to be largest. Finding

‘incorrect’ spectra due to ‘incomplete’ operator bases has been demonstrated in previous

works. One example can be seen in Figure 1 of Ref. [30] where including both ψ̄Γψ and

ππ operators is shown to be essential in order to robustly determine the ρ spectrum.

Figure 5.4 demonstrates an analogue of this for the case of three-meson operators.

Qualitative observations about the spectrum can be ascertained from a consideration of

the operator-state overlap factors shown in Figure 5.4. The energy level just below πω

threshold on all volumes has significant overlap onto both π000ω000 and ψ̄Γψ operators.

This characteristic might be expected if a qq̄-like resonance lies nearby [4,30]. For the two

levels in close proximity to πφ threshold, one appears dominated by ψ̄Γψ operators with

some overlap onto πω, ρη and K∗K operators, while the other is completely dominated

by π000φ000. Furthermore, we observe that all other levels have very small overlaps

with the π000φ000 operator, reflecting the fact that the matrix of correlation functions is

approximately block diagonal with respect to π000φ000. This suggests that πφ is essentially

‘decoupled’, as might be expected from the ‘OZI rule’. The states close to the ρη and K∗K

‘non-interacting’ energies are observed to have large overlap with ρη and K∗K operators

respectively. The highest two states shown, near to the π001ω001 two-fold degenerate non-

interacting energy, differ somewhat in their overlaps. The level shifted up has overlap with

both the π001ω001 and ψ̄Γψ operators, while the other, which lies on the non-interacting

energy, has significant overlap only with the π001ω001 operators.

In Figure 5.5, we present the cm-frame finite-volume spectra for irreps [000]T+
1 and

~P A2 on the three volumes, with only those levels found below the lowest E
(2+1)
n.i. or E

(3)
n.i.

shown.7 Points in grey are levels that prove to be sensitive to the presence of ρη, K∗K

and a0π operators in the basis, or which are very close to the energy cut-off, and these

levels are excluded from the main scattering analysis in Section 5.5. Although we take

a conservative approach and exclude these levels, we will find in Section 5.5 that they

7Errorbars on the energy levels include estimates of systematic uncertainly coming from varying t0

and fitting time ranges, and reasonable variations of the operator basis. Also included is the effect of the

uncertainty on the anisotropy which appears when we boost back from the ‘lab’ energy to the cm frame.
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are mainly well described by the scattering amplitudes, and we re-examine these levels in

Section 5.7.

For irreps ~P A2 with ~P 6= ~0, the density of energy levels is much higher than in irreps

at rest – more momentum combinations for two– and three–mesons with associated E
(2)
n.i.,

E
(2+1)
n.i. and E

(3)
n.i. lying below the ππππ–threshold are possible. This can make identifying

an ‘additional’ level more challenging in these irreps. However, in the [111]A2 irrep we

can clearly see an additional energy level on each volume relative to the number expected

from counting the non-interacting two-meson energies. We also observe an ‘avoided level

crossing’ where the π000ω111 non-interacting energy crosses atEcm ∼ 0.25, another signature

characteristic of a narrow resonance in this energy region.

In Figure 5.6, the finite-volume spectra on the L/as = 24 lattice volume for irreps

[000]T+
2 , [000]E−, [001]B1 and [001]B2 is presented. We observe very little deviation

of the extracted energy levels from non-interacting πω energies, suggesting that the πω

scattering amplitudes in J ≥ 2 partial-waves are very small in this energy region. We also

find levels in [001]B1 and [001]B2 consistent with non-interacting ππ energies and with

dominant overlaps onto ππ operators. This is in line with the results of Ref. [30] where

the ππ{1F 3} amplitude (JP = 3−) was found to be consistent with zero in this energy

region. We also find a level in [001]B1 consistent with the non-interacting KK energy

and with dominant overlap onto KK operators, suggesting that the opening of the KK

threshold does not enhance the scattering in JP = 3−.
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Figure 5.4: Left: Finite-volume spectrum in the [000]T+
1 irrep on three lattice volumes.

Black points give the energy levels, including statistical uncertainties, from a variational

analysis using the operator bases in Table 5.3. Solid curves are two-meson non-interacting

energies, atE
(2)
n.i., short dashed horizontal lines are atE

(2+1)
n.i. , and long dashed horizontal

lines show the two–, three–, and four–meson thresholds. Multiplicities (if greater than

one) are shown as {n}. For each energy level on the largest volume, we show the principal

correlators, plotted as λn(t, t0) eEn(t−t0) for t0 = 10 at so that a horizontal line is observed

when a single exponential dominates. Points show λn(t, 10) and error bars correspond to

the one-sigma statistical uncertainty. Curves show fits to the form described in the text;

the curves show the fit range and grey points are not included in the fit. The histograms

show the operator-state overlap factors, Zn
i = 〈n|O†i (0)|0〉, for each energy level on the

largest volume for the MM = πω (dark blue), πφ (green) and RM = ρη (blue-green),

K∗K (purple) operators along with a sample set of single-meson operators subduced from

JP = 1+ (red) and JP = 3+ (orange). The overlaps are normalised such that the largest

value for any given operator across all energy levels is equal to one. Right: The spectrum

extracted when ρη and K∗K operators are excluded from the basis (black) compared with

the complete spectrum (grey).
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Figure 5.5: Finite-volume energy levels in the cm-frame for [000]T+
1 and ~P A2 below the

lowest E
(2+1)
n.i. or E

(3)
n.i.. Black points are used in the scattering analysis in Section 5.5 while

grey points are excluded from the main analysis as discussed in the text. Solid curves are

two-meson non-interacting energies, atE
(2)
n.i., short solid grey horizontal lines show the

lowest E
(2+1)
n.i. or E

(3)
n.i., and long dashed horizontal lines show the two–, three–, and

four–meson thresholds. Multiplicities (if greater than one) are shown as {n}. The

horizontal axes are in units of L/as.
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Figure 5.6: As Figure 5.5 but for irreps [000]T+
2 , [000]E−, [001]B1 and [001]B2 on the

largest lattice volume. Dashed curves show non-interacting two-meson energies where the

corresponding operator was not included in the basis.
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5.5 Scattering Analysis

Scattering amplitudes are calculated following the procedure described in Section 3.6,

utilising the general two-body formalism set out in Section 2.7. We therefore mainly

restrict our attention to the two-body channels, πω and πφ, and in Section 5.7 we estimate

the systematic effects of neglecting the three-body channels ππη and πKK in the energy

region considered, finding them to be small.

In the case of a vector-pseudoscalar channel in JP = 1+, there is never rigorously elastic

scattering – as soon as the πω threshold opens, there are always two coupled partial-waves,
3S1 and 3D1. However, at low energies the angular momentum suppression of the D-wave

may make the system effectively elastic in S-wave and we examine this case in Section 5.5.1.

Scattering with more than one partial-wave was discussed in detail in Chapter 3 and

it is straightforward to incorporate multiple hadron-hadron channels. We parameterise

the energy dependence of t(s) which, for more than one partial-wave and hadron-hadron

channel, can be expressed in terms of a real symmetric K-matrix, K(s), where[
t−1(s)

]
`Ja,`′Jb

=
1

(2k(a))
`

[
K−1(s)

]
`Ja,`′Jb

1

(2k(b))
`′

+ δ``′ Iab(s), (5.6)

is an augmented version of K(s) given in Eq. 3.14 accommodating a hadron-hadron

channel index a. It follows that Iab(s) = Ia(s) δab is a matrix diagonal in hadron-hadron

channel where unitarity constrains the imaginary part of Ia(s) in each hadron-hadron

channel. As presented in Appendix 3.D, we can take a number of different forms of Ia(s),

all subject to the constraints imposed by unitarity, to diversify the parameterisations.

One parameterisation we utilise expresses the components of K−1(s) as polynomials in

s, [
K−1(s)

]
`Ja,`′Jb

=
N∑
n=0

c
(n)
`Ja,`′Jb s

n , (5.7)

where c(n) is a real symmetric matrix. Flexibility in this form comes from varying N and

allowing parameter freedom in different combinations of c
(n)
`Ja,`′Jb coefficients.

An alternative is to parameterise the components of K(s) directly, using a parameteri-

sation of the form,

K`Ja,`′Jb(s) =
g`Ja(s) g`′Jb(s)

m2 − s
+

N∑
n=0

γ
(n)
`Ja,`′Jb s

n , (5.8)
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where m is a real parameter, g`Ja(s) is some real polynomial in s, and γ(n) is a symmetric

matrix of real parameters. These forms assume nothing about a nearby resonance or

bound state but the inclusion of a pole term can efficiently describe such behaviour where

it is present. These and similar K-matrix parameterisations have been successfully used

in previous lattice QCD calculations of three coupled-channel resonant scattering [7,62]

and the non-resonant vector-pseudoscalar scattering in Chapter 3 (Ref. [84]).

As an explicit example, one that we will make use of later, consider a K-matrix

parameterisation suitable for describing the dynamically-coupled JP = 1+ channels

πω
{

3S1

}
, πω

{
3D1

}
and πφ

{
3S1

}
.8 One possible choice, with 7 free parameters, is,

K(s) =
1

m2 − s


g2
πω{3S1}

gπω{3S1} gπω{3D1} gπω{3S1} gπφ{3S1}

gπω{3S1} gπω{3D1} g2
πω{3D1}

gπω{3D1} gπφ{3S1}

gπω{3S1} gπφ{3S1} gπω{3D1} gπφ{3S1} g2
πφ{3S1}



+


γ

(0)

πω{3S1},πω{3S1}
γ

(0)

πω{3S1},πω{3D1}
0

γ
(0)

πω{3S1},πω{3D1}
0 0

0 0 γ
(0)

πφ{3S1},πφ{3S1}

 , (5.9)

where this form allows mixing between πω and πφ channels only through gπφ{3S1}.

To include additional partial-waves that contribute as a consequence of the finite-

volume but which do not mix in an infinite-volume, i.e. those with distinct JP as seen in

Tables 3.1 and 3.5– 3.7, we modify the t-matrix by including additional diagonal blocks,

each corresponding to a unique JP (recall the example given in Eq. 3.3).

Statistical uncertainties on the scattering parameters and parameter correlations are

determined by calculating the second derivatives of the correlated χ2 at its minimum. We

make a conservative estimate of systematic uncertainties on each scattering parameter

due to the uncertainties on stable hadron masses and the anisotropy by repeating the χ2

minimisation fitting procedure at all the various combinations of ξ ± δξ and mi ± δmi.
9

Unlike in the case of ρπ scattering in isospin-2, where the largest systematic variation in the

amplitude was observed by decreasing the hadron masses and increasing the anisotropy (and

8In principle, we should also consider πφ in the 3D1 partial-wave; however, suppression due to the

centrifugal barrier factor, compounded with strong OZI suppression of πφ, suggests it will be negligibly

small. We will indeed find that the amplitude is consistent with zero in the energy region we consider.
9Values of the anisotropy, masses and uncertainties are given in Section 5.2.
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vice-versa), the significant interactions at play here necessitate an evaluation of all possible

combinations – as it is less clear how these variations propagate the uncertainty. For

each of these minimisations, we keep the finite-volume energies, Ecm, their corresponding

uncertainties, δEcm, and correlations between energy levels fixed, where,

atEcm = f
(
atElat, ξ

)
=

√(
atElat

)2 − 1

ξ2

(
2π

L/as

)2∣∣~n∣∣2
at δEcm =

√(
∂f

∂
(
atElat

))2(
at δElat

)2
+

(
∂f

∂ξ

)2

δξ2 , (5.10)

and Elat is the energy in the lattice frame. For each scattering parameter, the largest

change in the central value is quoted as its systematic uncertainty.

5.5.1 Elastic πω{3S1} Scattering

Below πφ threshold, the kinematically-open hadron channels are the two-body πω and

three-body ππη. We expect ππη to become an important channel near the lowest E
(2+1)
n.i.

where the ρ and a0 resonances enhance the ππ and πη subsystems respectively. The lowest

E
(2+1)
n.i. (and E

(3)
n.i.) in each of the irreps we consider is typically much higher in energy

than the πφ threshold. For a first analysis, we therefore ignore ππη and return to this in

Section 5.7.

In this energy region only slightly above πω threshold, the centrifugal barrier suppresses

contributions of higher-partial waves, t`J,`′J ∼ k`+`
′

cm , such that we expect the 3D1 contribu-

tions to the coupled {3S1,
3D1} partial-waves to be rather small, assuming the threshold

suppression is not overridden by a resonant enhancement in 3D1. Similarly, following the

discussion in Section 5.3, πω scattering amplitudes in other partial-waves that appear in

these irreps due to the finite-volume are expected to be suppressed relative to the 3S1

amplitude and to have no significant resonant enhancement below πφ threshold. As such,

we can attempt an elastic analysis of πω{3S1} scattering at low energy.

We use 20 levels, all at least one standard deviation below the πφ threshold. Specifically,

for each irrep, these correspond to the lowest level on each of the (L/as) = 16 and 20

volumes and the lowest two levels on the (L/as) = 24 volume,10 shown as the black points

below πφ threshold in Figure 5.5. The discrete phase-shift points, calculated through the

10On the (L/as) = 24 volume, of the two levels close to πφ threshold, the slightly lower level is included
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one-to-one mapping described in Section 3.2, are determined and are plotted in Figure 5.7.

There is a clear trend for them to increase, as energy increases from πω threshold, to a

value of around 90◦ as they approach the energy cut-off at πφ threshold. This is indicative

of a narrow resonance with mass located somewhere near πφ threshold.

In addition to extracting discrete phase-shift points, we also fit the spectrum using

energy-dependent parameterisations of elastic scattering. A selection of choices which

describe the finite-volume spectra well are included as grey curves in Figure 5.7 with the

details of the parameterisations presented in Table 5.13 of Appendix 5.B. As an example

of a parameterisation which can describe the data, we choose as a reference amplitude,

plotted as the blue curve in Figure 5.7,

K(s) =
g2
πω{3S1}

m2 − s
, (5.11)

using the Chew-Mandelstam prescription for I(s) with Re I(s = m2) = 0. We find the

best fit description of the finite-volume spectrum is,

m = (0.2472± 0.0007± 0.0003) · a−1
t

1 −0.04

1


gπω{3S1} = (0.068± 0.009± 0.010) · a−1

t

χ2/Ndof = 15.1
20−2

= 0.84,
(5.12)

where the first uncertainty is statistical and the second is systematic as discussed above,

and where the matrix shows the correlations between the parameters.

5.5.2 Dynamically-Coupled πω{3S1}, πω{3D1} Scattering

Here we relax the assumption of negligible πω
{

3D1

}
contributions and perform a coupled-

channel analysis on the dynamically-coupled πω
{

3S1

}
and πω

{
3D1

}
system, restricted to

the same low energy region below πφ threshold as in Section 5.5.1. Motivated by the

apparent resonant behaviour in the πω
{

3S1

}
phase-shift in Figure 5.7, we should allow for

a resonance to have a πω
{

3D1

}
coupling, as this could significantly enhance the πω

{
3D1

}
contribution above the suppression imparted by the centrifugal barrier.

but the slightly higher level, essentially a decoupled πφ energy level as indicated by the histograms in

Figure 5.4, is excluded.
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Figure 5.7: πω
{

3S1

}
elastic phase-shift assuming no 3D1 amplitude. The blue line shows

the reference amplitude given in Eq. 5.12 with the blue bands reflecting the statistical

(inner) plus systematic (outer) uncertainty. Grey lines and bands correspond to a range

parameterisations presented in Table 5.13 of Appendix 5.B with only the statistical

uncertainties shown. The point size (small to large) of the discrete phase-shift point

encodes the lattice volume (small to large).

A choice of reference amplitude capable of describing the finite-volume spectra is the

three-parameter,

K(s) =
1

m2 − s

(
g2
πω{3S1}

gπω{3S1} gπω{3D1}

gπω{3S1} gπω{3D1} g2
πω{3D1}

)
, (5.13)

again using the Chew-Mandelstam prescription for I(s) with Re I(s = m2) = 0. The

resulting best-fit parameters are found to be,
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m = (0.2471± 0.0007± 0.0004) · a−1
t


1 −0.04 0.00

1 0.49

1

gπω{3S1} = (0.071± 0.011± 0.010) · a−1
t

gπω{3D1} = (0.45± 0.91± 0.28) · at

χ2/Ndof = 14.9
20−3

= 0.87.
(5.14)

The parameters m and gπω{3S1} are compatible with those of the reference amplitude in

Eq. 5.12 and we find gπω{3D1} to be consistent with zero within uncertainties. In Figure 5.8,

we present the πω
{

3S1

}
and πω

{
3D1

}
phase-shifts and the ε̄(πω

{
3S1

}
|πω
{

3D1

}
) mixing-

angle as defined in the Stapp-parameterisation [65] and given in Eq. 3.1. A number of

different K-matrix parameterisations were explored and are plotted as the grey curves

in Figure 5.8 and listed in Table 5.14 of Appendix 5.B. We observe that all descriptions

exhibit a πω
{

3S1

}
phase-shift compatible with the behaviour seen in Section 5.5.1, a

πω
{

3D1

}
phase-shift that is very small, and a mixing-angle that is consistent with zero

within a modest uncertainty over this energy range.

5.5.3 Coupled πω{3S1}, πω{3D1} and πφ{3S1} Scattering

We now consider scattering amplitudes in an energy region up to the ππππ–threshold. In

this region, πω, ππη, πφ, πKK and ππσ are all kinematically open, however, by using

only energy levels below the lowest E
(2+1)
n.i. or E

(3)
n.i. in each irrep, and excluding any energy

levels which show significant sensitivity to the presence of ρη, K∗K and a0π operators, we

propose that we can effectively neglect the effect of three-body channels. This provides a

total of 36 energy levels – all the black points shown in Figure 5.5.

Both πω and πφ are vector-pseudoscalar channels dynamically-coupled in 3S1 and 3D1

partial-waves. However, considering the angular momentum suppression for the heavier

threshold and the lack of mixing observed in the histograms presented in Figure 5.4, we

assume that πφ
{

3D1

}
will have negligible impact at low energies. We will in fact show that

this is the case in Section 5.7. Subsequently, we are left with a system of three coupled

channels: πω
{

3S1

}
, πω

{
3D1

}
and πφ

{
3S1

}
. Many other partial-waves can contribute to

the finite-volume spectra as can be seen from Tables 3.1 and 3.5– 3.7, but, as discussed

in Section 5.3, we expect these to be negligibly small and will show this explicitly in

Section 5.7.
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To parameterise the energy dependence of the three-channel t-matrix, we use K-

matrices of the form in Eq. 5.8 restricted to linear expansions in g`Ja(s) and γ(s). Many

parameterisations are used and successful fits are recorded in Table 5.15 of Appendix 5.B. It

should be noted that, while use of the K-matrix guarantees unitarity, it does not guarantee

good analytic properties. Indeed, we found that some parameterisations, which successfully

describe the finite-volume spectra, have t-matrix pole singularities at complex energies

on the physical sheet. Such poles are forbidden by causality, and these parameterisations

must be rejected as giving rise to unphysical solutions. A list of such parameterisations is

given in Table 5.16 of Appendix 5.B and the resulting amplitudes are omitted from any

subsequent figures.

As a reference amplitude, the five parameter K-matrix,

K(s) =
1

m2 − s


g2
πω{3S1}

gπω{3S1} gπω{3D1} 0

gπω{3S1} gπω{3D1} g2
πω{3D1}

0

0 0 0

+


γ

(0)

πω{3S1},πω{3S1}
0 0

0 0 0

0 0 γ
(0)

πφ{3S1},πφ{3S1}

 ,

(5.15)

provides a good description of the finite-volume spectra with fewest free parameters, used

with the Chew-Mandelstam prescription with Re Ia(s = m2) = 0. The best-fit parameters

are,

m = (0.2465± 0.0007± 0.0001) · a−1
t



1 −0.05 0.05 −0.01 −0.23

1 0.70 −0.54 −0.06

1 −0.39 −0.06

1 0.22

1



gπω{3S1} = (0.106± 0.007± 0.007) · a−1
t

gπω{3D1} = (1.08± 0.47± 0.28) · at

γ
(0)

πω{3S1},πω{3S1}
= −0.35± 0.19± 0.18

γ
(0)

πφ{3S1},πφ{3S1}
= 0.90± 0.24± 0.27

χ2/Ndof = 36.8
36−5

= 1.19.

(5.16)

No improvement in the description of the finite-volume spectra was found by including

freedom in gπφ{3S1}. Subsequently, we fixed this parameter to be zero in the reference

amplitude.
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There is no established method in the literature to minimally display the 6 real degrees

of freedom of the S-matrix in three-channel scattering. For the two-channel case, the

Stapp-parameterisation is minimal with regard to unitarity and reduces to single-channel

phase-shifts when the channels decouple. No generalisation to more channels that naturally

reduces to the two-channel Stapp-parameterisation appears in the literature. In Chapter 7

we provide such a generalisation to n-channels where, if k are decoupled, the scattering

S-matrix naturally block diagonalises into an (n−k) coupled-channel block and a diagonal

block containing k decoupled phase-shifts. This definition of phase-shift and mixing-angles

presented in Chapter 7 is used whenever we present the S-matrix for more than two

coupled-channels.

The phase-shifts and mixing-angles, explicitly defined for three coupled-channel scat-

tering in Eq. 7.8 of Chapter 7, are plotted in Figure 5.9 for the reference amplitude in

Eq. 5.16 (coloured curves) and for other successful parameterisations listed in Table 5.15

of Appendix 5.B (grey curves). We observe that the behaviour of the πω
{

3S1

}
phase-shift

is in close agreement with the results of Section 5.5.2, and the πω
{

3D1

}
phase-shift is once

more very small and compatible with zero. The πφ
{

3S1

}
phase-shift shows a small positive

tendency indicative of a weak attraction. The mixing-angle ε̄(πω
{

3S1

}
|πω
{

3D1

}
) is small

and positive, while the mixing angles ε̄(πω
{

3S1

}
|πφ
{

3S1

}
) and ε̄(πω

{
3D1

}
|πφ
{

3S1

}
) are

around two orders of magnitude smaller and statistically consistent with zero across all

parameterisations.

To complement the phase-shifts and mixing-angles, the same amplitudes are plotted

as ρaρb|t`Ja,`′Jb|2 in Figure 5.10. A significant bump-like enhancement in the πω
{

3S1

}
→

πω
{

3S1

}
element is observed – a canonical indication for a resonance in a scattering

cross-section measurement.

In Figure 5.11, we present the finite-volume energies calculated using the reference

amplitude of Eq. 5.16, which are found to be in good agreement with the lattice computed

energies, as suggested by the small χ2. Notably, for levels not included in the fits, shown

in grey, the predicted spectra on the (L/as) = 20, 24 volumes appear to be mainly in

reasonable agreement, whereas on the (L/as) = 16 volume there is much more discrepancy.

This may be attributed to more significant contributions from three-meson amplitudes

on smaller volumes, further supported by the observation that there is a much larger

variation in the spectrum in the [000]T+
1 irrep on the smaller volume when three-meson



110 CHAPTER 5. A b1 RESONANCE AT Mπ ∼ 391 MEV

like operators are removed – see Figure 5.4. We re-examine these levels in Section 5.7

where we estimate the effects of the three-body channels.

A final comment concerns the systematic uncertainties on the scattering amplitudes

due to the uncertainty placed on the anisotropy. Unlike in the ρπ isospin-2 case, where

the weak nature of the interactions meant the uncertainty on the anisotropy dominated

the systematic effects, here the interactions are strong and this uncertainty contributes

relatively little. This can be seen from the relative sizes of the inner and outer bands in

Figures 5.9 and 5.10.

To summarise, the characteristic ‘bump’ we found in the scattering magnitudes in

Figure 5.10 and the observed avoided level crossing in the [111]A2 spectrum, seen in

Figure 5.5, suggests a resonance. To demonstrate this rigorously, we proceed to determine

the pole singularities of our scattering amplitudes.
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Figure 5.8: Upper: πω
{

3S1

}
(blue) and πω

{
3D1

}
(purple) phase-shifts for the reference

amplitude in Eq. 5.14 with the bands reflecting the statistical (inner) plus systematic

(outer) uncertainties. In grey are parameterisations given in Table 5.14 of Appendix 5.B

with only statistical uncertainties shown. Middle: As upper but for the mixing-angle,

ε̄(πω
{

3S1

}
|πω
{

3D1

}
). Lower: Black points are the finite-volume energy levels used to

constrain the fit and orange points are the energy levels calculated using Eq. 2.53 for the

reference amplitude in Eq. 5.14.
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Figure 5.9: Upper: As in Figure 5.8 but for the πω
{

3S1

}
(blue), πω

{
3D1

}
(purple) and

πφ
{

3S1

}
(green) phase-shifts for the reference amplitude in Eq. 5.16 and for other

parameterisations presented in Table 5.15 of Appendix 5.B (grey). Middle: As upper but

for the mixing-angle ε̄(πω
{

3S1

}
|πω
{

3D1

}
). The other mixing-angles, ε̄(πω

{
3S1

}
|πφ
{

3S1

}
)

and ε̄(πω
{

3D1

}
|πφ
{

3S1

}
), are extremely small and consistent with zero for all

parameterisations and are not plotted. Lower: The energy levels used to constrain the

scattering amplitude (black) and their corresponding description by the reference

amplitude in Eq. 5.16 (orange).
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Figure 5.10: As Figure 5.9 but for ρaρb|t`Ja,`′Jb|2. Coloured curves illustrate the reference

amplitude in Eq. 5.16 with bands reflecting the statistical (inner) plus systematic (outer)

uncertainty. Other parameterisations presented in Table 5.15 of Appendix 5.B are in grey

with bands reflecting only the statistical uncertainties. ρaρb|t`Ja,`′Jb|2 not plotted are

significantly smaller than those shown and are consistent with zero.
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Figure 5.11: As Figure 5.5 but including, as orange bands, the energy levels calculated

from the reference amplitude in Eq. 5.16 using Eq. 2.53 as a function L/as. The thickness

of the bands reflect the combined statistical and systematic uncertainties. The vertical

red band on the right of the figure indicates the position of the resonant pole of mR and

width ΓR as determined in Section 5.6. The red horizontal line at the resonant mass is

shown in each irrep to guide the eye.
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5.6 Pole Analysis for Coupled-Channel Amplitudes

At each threshold, unitary of the S-matrix necessitates a branch point singularity and the

corresponding branch cut divides the complex s-plane into two Riemann sheets so that for

n open thresholds there are 2n sheets. Riemann sheets can be labelled by the sign of the

imaginary component of the cm-frame momentum k
(a)
cm in each hadron channel a and we

identify the physical sheet, where physical scattering occurs, just above real energy axis, as

having Im(k
(a)
cm ) > 0 for all a. On the physical sheet, causality forbids complex-valued poles

and restricts any singularities to lie on the real axis below threshold – these correspond to

bound-states.11 Amplitudes that permit complex-valued poles on the physical sheet give

an unacceptable description of the scattering process. Sheets with other sign combinations

are referred to as unphysical and complex-valued poles, found in complex-conjugate pairs,

on these sheets correspond to resonances.

For poles away from the real axis, we define the real and imaginary parts of the pole

singularity at s = s0 as the mass mR and the width ΓR of a resonance respectively, with
√
s0 = mR ± i

2
ΓR. For narrow resonances, with a single dominant decay mode, this

definition of the resonance mass and width agree well with the location of the peak and

full-width at half-maximum of the ‘bump’ respectively, observed in Figure 5.10. It is

much more difficult to see resonant behaviour in strongly coupled-channel scattering or

for broader resonances, observed in the resonant a0 [62] and f0 [7], which do not have

the distinctive characteristic bump of a narrow resonance, however, the determined pole

singularity is free from such ambiguities.

For the three channels πω{3S1}, πω{3D1} and πφ{3S1} considered here, there are four

Riemann sheets owing to the two distinct hadron-hadron thresholds, πω and πφ. The

labelling conventions are summarised in Table 5.4 and agree with those in Ref. [62]. For

physical scattering close to πφ threshold, the lower-half plane of sheet II and III and the

upper-half plane of sheet IV are close to physical scattering [62]. Depending on the strength

of the couplings to the hadron-hadron channels, a resonance can appear in slightly different

positions across the sheets. A discussion is presented for the strongly coupled a0 [62] where

toy amplitudes are used to illustrate this behaviour.

At complex energies close to a pole singularity at s0, the scattering t-matrix can be

11Real-valued poles below threshold on unphysical sheets are referred to as virtual bound-states.
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Sheet Im kπω Im kπφ

I + +

II - +

III - -

IV + -

Table 5.4: Sheet labelling as a function of the sign of the imaginary components of k
(a)
cm .

written in the factorised form,

t`Ja,`′Jb(s ∼ s0) ∼ c`Ja c`′Jb
s0 − s

, (5.17)

where the complex valued couplings c`Ja reflect the strength of the resonance coupling

to channel a{3`J}. For each coupled hadron-hadron channel, the coupling is determined

only up to a sign. This leads to a sign ambiguity here between the πω and πφ couplings.

Conversely, the relative sign between dynamically-coupled partial-waves, in this case

πω{3S1} and πω{3D1}, can be determined due to the aforementioned unique determination

of t(πω{3S1}|πω{3D1}). We showed for the vector-pseudoscalar ρπ that the sign of

t(ρπ{3S1}|ρπ{3D1}) was uniquely determined using moving frame irreps in Figure 3.12.

For each parameterisation successfully describing the finite-volume spectra we perform

a search across all Riemann sheets for a large complex s-range12 and determine any pole

singularities appearing in the amplitudes and corresponding couplings by factorising the

t-matrix according to Eq. 5.17. Uncertainties on the pole and couplings in each case are

estimated by appropriately propagating through the uncertainties and correlations on the

fit parameters. For the reference amplitude given in Eq. 5.16, pole singularities were found

in complex conjugate pairs on sheet II at,

at
√
s0II = 0.2435(13)(10)± i

2
0.0175(20)(19), (5.18)

where the first uncertainty is statistical and the second is systematic. A complex conjugate

pair of poles was also found on sheet III in the same location up to the precision shown in

12We search approximately Re at
√
s ∈ [0.21, 0.28] and 2 Im at

√
s ∈ [−0.2, 0.2]. Any pole outside this

real energy region would not be well constrained by our data.
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Eq. 5.18. The corresponding couplings for the pole in the lower-half plane are,

atc(πω
{

3S1

}
)II = 0.106(6)(6) exp[−i π 0.078(28)(26)]

atc(πω
{

3D1

}
)II = 0.010(4)(3) exp[−i π 0.181(26)(24)], (5.19)

and c(πφ
{

3S1

}
)II is exactly zero, a result of the choice of reference amplitude. Considered

as a ratio we have, ∣∣∣c(πω{3D1

}
)II/c(πω

{
3S1

}
)II

∣∣∣ = 0.091(37)(20)

arg
[
c(πω

{
3D1

}
)II/c(πω

{
3S1

}
)II
]

= −π 0.103(26)(24).

The fact that the poles on sheets II and III are in essentially the same position is a

consequence of the πφ channel being almost completely decoupled from the πω channel as

discussed in Section 5.4.

For each successful three-channel parameterisation, recorded in Table 5.15 of Ap-

pendix 5.B, we found poles and couplings broadly consistent with those given above. We

show these in Figure 5.12, observing that the scatter over different parameterisations is

not significantly larger than the uncertainty on the reference amplitude. The calculation

of the error ellipses, presented in the figure, are detailed in Appendix 5.C.
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Figure 5.12: Top: Lower half-plane sheet II poles. Red ellipses reflect the statistical

uncertainties, oriented to account for correlations between the real and imaginary parts,

for poles from all the parameterisations shown in Table 5.15 of Appendix 5.B. Black

ellipses correspond to the reference amplitude in Eq. 5.16 reflecting the statistical (inner)

plus systematic (outer) uncertainties. Bottom: As top but for the corresponding

couplings, c(πω
{

3S1

}
)II (blue), c(πω

{
3D1

}
)II (purple) and c(πφ

{
3S1

}
)II (green). Black

ellipses again correspond to the couplings of the reference amplitude in Eq. 5.16 where

c(πφ
{

3S1

}
)II = 0.
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5.7 Systematic Tests

To test the robustness of the extracted scattering amplitudes and the determination of the

resonant pole and couplings, we consider three sources of potential systematic uncertainties

due to possibilities we have so far neglected. First, we examine the partial-waves that mix

as a consequence of the finite-volume, which we neglected based on observations discussed

in Section 5.4, and the πφ{3D1} amplitude which we asserted was negligible. Second,

we examine the dependence of the energy levels on the πω{3D1}, πω{3P 0} and πω{3P 2}
parameters to demonstrate that we are able to constrain these amplitudes. Third, we

make an estimate of the possible size of effects due to the neglected three-body channels

that are not currently possible to rigorously incorporate into the analysis.

5.7.1 Additional Partial-Waves

We first consider the πω{3P 0} and πω{3P 2} amplitudes that enter in the ~P A2 irreps as

shown in Tables 3.5 – 3.7. Since a P -wave has less threshold suppression than a D-wave,

we might expect these waves to be at least as important as πω
{

3D1

}
, though they are

not expected to be resonant at such low energies. Augmenting the reference amplitude as

defined in Eq. 5.16, we allow a non-zero amplitude in the πω{3P 0} and πω{3P 2} channels

by including a constant γ-term for each in the K-matrix and for these additional channels

we set Re Ia(s = (mπ+mω)2) = 0 in the Chew-Mandelstam phase-space. The resulting

t-matrix is block diagonal in JP , reflecting the fact that this mixing is a result of the

reduced symmetry on the lattice. We fit to the same 36 energy levels as in Section 5.5.3

and, allowing all parameters to vary, find,

m = (0.2466± 0.0007) · a−1
t γ

(0)

πω{3S1},πφ{3S1}
= 0.79± 0.25

gπω{3S1} = (0.105± 0.007) · a−1
t γ

(0)

πω{3P 0},πω{3P 0}
= (−8± 21) · a2

t

gπω{3D1} = (1.12± 0.46) · at γ
(0)

πω{3P 2},πω{3P 2}
= (−10± 12) · a2

t

γ
(0)

πω{3S1},πω{3S1}
= −0.34± 0.19 χ2/Ndof =

34.4

36− 7
= 1.19, (5.20)

where correlations between the πω
{

3S1

}
, πω

{
3D1

}
and πφ

{
3S1

}
parameters are compatible

with those shown in Eq. 5.16, and correlations between these and πω{3P 0} and πω{3P 2}
parameters are small. We observe that the amplitudes in both πω{3P 0} and πω{3P 2} are
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consistent with zero. A similar approach allowing for πω{3D2} and πω{3D3} parameter

freedom finds no evidence for large amplitudes as one would expect given the larger angular

momentum suppression and lack of low-energy resonances with JPC = 2+− and 3+−.

In order to investigate the possible effect of the previously excluded πφ{3D1}, we take

the reference amplitude in Eq. 5.16 and extend it to include a constant diagonal γ-term

in πφ{3D1} in the K-matrix. Once again fitting to the 36 energy levels and allowing all

parameters to vary, we find the πφ{3D1} parameter to be consistent with zero, as expected,

with all other parameters compatible with those presented in Eq. 5.16.

5.7.2 Spectrum dependence on πω{3P0}, πω{3P2} and πω
{

3D1

}
To examine how the πω{3P0}, πω{3P2} and πω

{
3D1

}
amplitudes are constrained in our

analysis, we examine how the particular energy levels in the finite-volume spectra depend

upon the strength of these partial-waves. For πω
{

3D1

}
this is shown in Figure 5.13,

where the curves present the finite-volume energy spectrum for the reference amplitude

in Eq. 5.16, varying the value of gπω{3D1} while keeping all other parameters fixed. In

each irrep, we see a level near the lowest πφ non-interacting energy which appears to

be independent of the value of gπω{3D1}, as expected given the complete decoupling of

πφ in the reference amplitude. The figure shows that most other levels have significant

dependence on gπω{3D1}, in particular those low down in the spectra, indicating that the

lattice computed levels are providing constraint on the 3D1-wave strength, but there are

some notable exceptions. In irreps [011]A2 and [111]A2, there are levels observed to be

consistent with the two-fold degenerate non-interacting πω energies, which show no visible

dependence on gπω{3D1}.

Interestingly, the position of these same levels proves to be strongly dependent on the

amplitude strength in the πω{3P 0} and πω{3P 2} partial-waves, so the lattice computed

energies allow us to confidently limit the amplitude of these P -waves to be very small

in this energy region. This is expected given the P -wave threshold suppression and

lack of JPC = 0+−, 2+− resonances in this energy region. Figures 5.14 and 5.15 show

the analogue of Figure 5.13 but for varying πω{3P 0} and πω{3P 2} channel parameters

respectively. In these two cases, the reference amplitude in Eq. 5.16 is modified, as

described in Section 5.7.1, to include a constant γ-term in the K-matrix for channels

πω{3P 0} and πω{3P 2}.
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Figure 5.13: Sensitivity of the finite-volume spectra to gπω{3D1}. Lighter to darker red

curves reflect smaller to larger values of gπω{3D1} as shown in the key. The central curves

correspond to gπω{3D1} = 1.08, i.e. the mean value in the reference amplitude in Eq. 5.16.

The grey bands reflect the combined statistical and systematic uncertainties of Eq. 5.16.

The horizontal axes are in units of L/as.

5.7.3 Three-body channels

For the light-quark masses used in this calculation, the resonant behaviour is found to

occur between the relatively low-lying ππη threshold and the somewhat higher-lying πKK

threshold. As such, we might worry that these channels could have a significant impact

on the physics in this region. We previously saw that in Figure 5.4 there appeared to be

deviations in the finite-volume spectra depending on whether or not three-meson operators

were included in the bases, most notably on the smallest volume. As a precaution, we

ensured that we only made use of those energy levels which lie below the lowest E
(2+1)
n.i.

value and which show no significant dependence on the presence/absence of ρη, K∗K

or a0π operators.

In this section, we attempt to quantify the size of possible contributions from the three-

body sector on our scattering amplitudes and resonance pole by treating the scattering

system as though ππ in ππη can be completely replaced by a stable ρ with a fixed mass
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Figure 5.14: As Figure 5.13 but for varying γ
(0)

πω{3P 0},πω{3P 0}
. The central curves corresponds

to γ
(0)

πω{3P 0},πω{3P 0}
= 0. The phase-shifts on the left reflect the strengths of the πω{3P 0}

amplitudes.

atmρ = 0.1509(2), (the pole mass obtained from the ππ isospin-1 scattering amplitudes

in Ref. [30]) and πK in πKK can be completely replaced by a stable K∗ with atmK∗ =

0.1648(1) (the bound-state pole mass in the K∗ scattering analysis presented in Ref. [66]).

In this way we augment our scattering matrix with two extra channels ρη
{

3S1

}
and

K∗K
{

3S1

}
.

This approach cannot be expected to completely describe the finite-volume spectra

because, for example, whenever the ρ has non-zero momentum, we expect there to be

more than one corresponding energy level, as indicated by Figure 1 in Ref. [30]. A model

where the ρ is treated as a stable particle cannot capture this and will not even give the

right number of energy levels in the ‘three-body’ spectrum. However, at the light-quark

masses and lattice volumes used in this calculation, the nearest non-interacting ππ energy

in the rest-frame ρ spectra is much higher than atEcm = 0.1509, as shown in Figure 1

of Ref. [30], and there is effectively only one finite-volume level which lies very close to

the ρ resonance mass. In this case, provided we only approximate ππη-like levels where

the corresponding ππ subsystem is overall at rest, the stable ρ may be a reasonable first
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Figure 5.15: As Figure 5.14 but for varying γ
(0)

πω{3P 2},πω{3P 2}
.

approximation to the true three-body physics.

For [000]T+
1 , the relevant low-lying three-meson like operators are of the form ρ000η000

and K∗000K000 as shown in Table 5.3. We will therefore restrict our analysis to include

the 36 energy levels with which we used to constrain the amplitudes in Section 5.5.3 in

addition to the remaining energies in [000]T+
1 shown in Figure 5.4, giving a total of 48

levels to constrain five coupled channels. Taking the reference amplitude in Eq. 5.16,

modified to include a ‘pole plus constant’ term in ρη
{

3S1

}
and K∗K

{
3S1

}
, we find best-fit

parameters,

m =(0.2485± 0.0008) · a−1
t γ

(0)

πω{3S1},πω{3S1}
= −0.52± 0.16

gπω{3S1} =(0.14± 0.01) · a−1
t γ

(0)

πφ{3S1},πφ{3S1}
= 0.64± 0.17

gπω{3D1} =(1.8± 0.5) · at γ
(0)

ρη{3S1},ρη{3S1}
= −1.82± 0.13

gρη{3S1} =(0.0± 0.1) · a−1
t γ

(0)

K∗K{3S1},K∗K{3S1}
= 1.27± 0.52

gK∗K{3S1} =(0.20± 0.01) · a−1
t χ2/Ndof =

46.6

48− 9
= 1.19. (5.21)

The πω
{

3S1

}
, πω

{
3D1

}
and πφ

{
3S1

}
parameters are in reasonable agreement with those

found for the reference amplitude in Eq. 5.16. We show in Figure 5.16 the finite-volume
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Figure 5.16: As Figure 5.11 but for the amplitude in Eq. 5.21. Orange bands reflect only

the statistical uncertainty on the scattering parameters. The grey bands are transcribed

from Figure 5.11.

spectra calculated through Eq. 2.53, analogous to Figure 5.11. We observe that the

dependence of the finite-volume energy levels in moving-frame irreps, lying below the

lowest E
(2+1)
n.i. , on the new ‘three-body’ part of the amplitude is very slight. However, there

is improved agreement in [000]T+
1 where the previously excluded levels, in particular on

the (L/as) = 16 volume, are now described quite well. We argue that this shows our

original selection criteria, giving the 36 energy levels across all irreps, is sound and leads

to a robust determination of the scattering t-matrix.

For this limited five coupled-channel analysis of πω
{

3S1

}
, πω

{
3D1

}
, πφ

{
3S1

}
, ρη

{
3S1

}
and K∗K

{
3S1

}
, utilising the generalised n-channel Stapp-parameterisation presented

in Chapter 7, the five phase-shifts and three non-zero mixing-angles are presented in

Figure 5.17. We find that seven of the mixing-angles, all featuring either πφ
{

3S1

}
and/or

ρη{3S1}, are extremely small and consistent with zero. This illustrates the natural reduction

from the five-channel parameterisation to the three-channel parameterisation in the case

that two channels decouple.

As a final test of the effects of the ρη{3S1} and K∗K{3S1} channels, we find the resonance
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pole and corresponding couplings. There are 16 Riemann sheets and several ‘mirror poles’,

but the closest pole is located at,

at
√
s0II = 0.2448(12)− i

2
0.0215(21), (5.22)

which agrees within uncertainties with the pole position found in Section 5.6. The

corresponding couplings are,

atc(πω{3S1})II = 0.117(7) exp[−i π 0.084(20)]

atc(πω{3D1})II = 0.016(4) exp[−i π 0.182(22)]

atc(ρη{3S1})II = 0.003(52)

atc(K
∗K{3S1})II = 0.166(8) exp[−i π 0.043(12)], (5.23)

where we exclude the meaningless phase on atc(ρη{3S1})II as the magnitude is consistent

with zero and where c(πφ{3S1})II = 0 by choice of amplitude. This decoupling of the

ρη{3S1} and πφ{3S1} channels was evident in the corresponding mixing-angles which were

all found to be negligible and consistent with zero as discussed above. The coupling to

ρη{3S1} is small but has a large uncertainty, while the coupling to K∗K{3S1} is larger.

We might expect the K∗K coupling to be comparable to the πω coupling because in an

‘OZI rule’ obeying framework they differ only in the flavour of qq̄ pair creation needed to

allow the resonance to decay.

We conclude that although we cannot currently rigorously handle three-body contribu-

tions due to ππη and πKK, we do not see any evidence to suggest that they significantly

affect the results reported here.
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Figure 5.17: Upper: As in Figure 5.9 but for the πω
{

3S1

}
(blue), πω

{
3D1

}
(purple),

πφ
{

3S1

}
(green), ρη{3S1} (orange) and K∗K{3S1} (red) phase-shifts for the reference

amplitude in Eq. 5.21. The faded error bands reflect the statistical uncertainty on the

scattering parameters. The ρη and K∗K “thresholds” are calculated using the ρ and K∗

masses given above. Lower: As upper but for the mixing-angles ε̄(πω
{

3S1

}
|πω
{

3D1

}
)

(blue), ε̄(πω
{

3S1

}
|K∗K{3S1}) (grey) and ε̄(πω

{
3D1

}
|K∗K{3S1}) (brown). All other

mixing-angles are extremely small and consistent with zero as discussed in the text.
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5.8 Interpretation

All JP = 1+ amplitude parameterisations used that prove to be capable of describing

the finite-volume spectra in the energy region we are considering, had the same char-

acteristic resonant bump in the πω
{

3S1

}
to πω

{
3S1

}
amplitude squared, with relatively

small enhancements in the diagonal πω
{

3D1

}
and πφ

{
3S1

}
elements. In the off-diagonal

amplitudes, the πω
{

3S1

}
to πω

{
3D1

}
amplitude was found to be small but positive. The

remaining off-diagonal elements were all found to be extremely small and consistent with

zero. In each of the JP = 1+ amplitudes, we found a complex conjugate pair of poles on

sheets II and III, which we interpret as the effect of a single resonance.

To quote results in physical units, we choose to set the scale using the Ω-baryon

mass measured on these lattices, atmΩ = 0.2951 [85], and the physical Ω-baryon mass,

mphys
Ω = 1672.45(29) MeV [5]. This gives a−1

t = mphys
Ω /(atmΩ) = 5666 MeV and stable

hadron masses mπ ≈ 391 MeV, mK ≈ 549 MeV, mη ≈ 587 MeV, mω ≈ 881 MeV and

mφ ≈ 1017 MeV.

Using this scale setting, we summarise the scattering amplitudes resulting from the

JP = 1+ amplitude analysis in Figure 5.18, expressing all quantities in physical units.

We find a b1 resonant pole of mass mR = 1382(15) MeV and width ΓR = 91(31) MeV,

where the uncertainties are a conservative estimate from a combination of statistical

and systematic uncertainties and encompass variation over different parameterisations.

Similarly, we find for the couplings,∣∣cπω{3S1}
∣∣ = 564(114) MeV∣∣cπω{3D1}
∣∣ = 81(56) MeV,∣∣cπφ{3S1}
∣∣ = 59(41) MeV.

In Figure 5.19, we plot the position of the pole found in this calculation compared to the

experimental b1 resonance, with mass mb1 = 1230(3) MeV and width Γb1 = 142(9) MeV [5],

and a lattice calculation at the SU(3)F point with mπ ≈ 700 MeV [29].

In the latter calculation, the b1 forms part of an axial-vector octet, the (h1)8 following

the notation in Chapter 3, with a mass around 1525 MeV. The pseudoscalar-vector

threshold (η)8(ω)8, corresponding to πω, is at roughly 1695 MeV, and thus the b1 is
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stable at this pion mass. We observe that the trajectory of the pole with varying pion

mass appears to be similar to that of the ρ and K∗ mesons shown in Ref. [4] and [83]

respectively, as may be expected for a reasonably narrow resonance.

Since we find the b1 to be a narrow resonance a moderate distance above πω threshold, it

is reasonable to compute theoretical ‘branching fractions’ for its decay to πω. For channels

a{3`J} these are given by [5],

Br
(
R→ a{3`J}

)
≡ 1

ΓR
· |c`Ja|

2

mR

ρa(mR). (5.24)

As mentioned in Ref. [7], the sum of these partial branching fractions does not necessarily

give unity. Using this definition, we obtain,

Br
(
b1 → πω

{
3S1

})
∼ 93%

Br
(
b1 → πω

{
3D1

})
∼ 2%,

and observe the πφ{3S1} branching fraction is zero as the channel is kinematically closed

(mR < mπ +mφ).

A crude extrapolation of the couplings to the physical value of the light quark masses

comes if we assume them to be independent of the light quark masses once the threshold

behaviour is removed. This is not guaranteed, but has been observed in lattice calculations

of the ρ [4, 86–95] and K∗ [83,89,96–98] couplings at various values of mπ. Considering

the ratio, ∣∣∣∣∣ c
phys.
πω{3`J}(
kphys.
πω

)`
∣∣∣∣∣ =

∣∣∣∣∣cπω{3`J}(
kπω
)`
∣∣∣∣∣ , (5.25)

where the cm-frame momentum is evaluated at the resonance pole position, and where we

use the values presented above on the right-hand side, and the experimental b1 mass to

compute kphys.
πω , gives a prediction of

∣∣cphys.
πω{3D1}

∣∣ = 146(101) MeV. Subsequently, we obtain

an estimate for the ratio of couplings at the physical pion mass of,∣∣∣∣∣c
phys.

πω{3D1}

cphys.

πω{3S1}

∣∣∣∣∣ = 0.27(20). (5.26)

The PDG [5] reports a ratio of D-wave to S-wave amplitudes for the b1 resonance of

magnitude 0.277(27), which is not computed at the complex pole position and therefore

not precisely the same quantity as we quote.
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Figure 5.18: Top: The scattering amplitudes-squared, ρaρb|t`Ja,`′Jb|2, transcribed from

Figure 5.10 with the energy axis converted to physical units. Below the amplitudes are

the energy levels used to constrain the amplitudes (black points). Bottom: The best

estimate of the resonant pole position, where uncertainties combine statistical and

systematic uncertainties with variations across parameterisations. The histograms show

the best estimate of the magnitude of each coupling with the lightly-shaded region

reflecting the combined uncertainties. The πφ{3S1} coupling is an estimate of the upper

bound.
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Figure 5.19: The b1 pole position for various pion masses. Blue shows the ground-state

mass of the axial-vector octet from a lattice calculation with mπ ≈ 700 MeV [4], red

shows the estimate from this work with mπ ≈ 391 MeV and black is the experimentally

determined mass and width of the b1 resonance [5].



5.9. SUMMARY 131

5.9 Summary

In this chapter we have presented, for the first time in lattice QCD, a calculation of

coupled πω, πφ scattering. Analysis of the obtained finite-volume spectra allowed us to

calculate the scattering amplitudes, including the effects of dynamically-coupled πω{3S1}
and πω{3D1} and resolve the mixing-angle between these two channels. A clear b1

resonance was observed, visible as a rapid increase in the πω
{

3S1

}
phase-shift through

90◦ or correspondingly as a bump in the magnitude of the πω
{

3S1

}
→ πω

{
3S1

}
t-matrix

element. More rigorously, we found pole singularities on unphysical Riemann sheets

relatively close to the real energy axis with couplings that are large for the πω
{

3S1

}
final

state, significantly smaller for πω
{

3D1

}
and compatible with zero for πφ. The mass and

width of the b1 resonance found in this calculation, with light-quark masses such that

mπ ≈ 391 MeV, appear to be compatible with a smooth interpolation between a stable

state for much larger quark mass, and the experimental resonance at lower quark mass.

We have demonstrated the effectiveness of three-meson operators, constructed by utilising

earlier calculations of meson-meson scattering channels [30, 62,66], in interpolating energy

levels closely associated with isobar enhancements in the three-meson system. For the

first time in a lattice calculation, we have demonstrated how a failure to incorporate such

operators into the basis leads to incorrect finite-volume spectra. We explored the role of

three-body channels in the scattering system, circumventing the current lack of a complete

three-body formalism by treating the ρ and K∗ as stable in a limited study, and found

they had a negligible effect in this particular case of a low-lying b1 resonance.

In performing this systematic test, we performed for the first time in a lattice QCD cal-

culation a five coupled-channel scattering analysis, πω
{

3S1

}
, πω

{
3D1

}
, πφ

{
3S1

}
, ρη

{
3S1

}
,

K∗K
{

3S1

}
, presenting the phase-shifts and mixing-angles using a parameterisation that

extends that of the conventional two-channel Stapp-parameterisation to accommodate any

number of channels.

Furthermore, observations were made of how particular finite-volume energy levels

depend upon the various partial-waves which ‘mix’ due to the cubic nature of the lattice

boundary and also upon the strength of the 3D1-wave coupling to the resonance pole –

both demonstrating our ability to constrain the amplitudes as claimed and as a useful

reference for future calculations.
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As expected, no IG = 1+ resonances are observed with a mass comparable to the b1

in JP = 0−, 2− channels. Notably, no resonating behaviour is observed in the largely

decoupled πφ channel, suggesting the absence of a Zs which might be proposed as an

analogue of the Zc seen in πJ/ψ.

This work has advanced lattice techniques for studying coupled-channel scattering

involving hadrons with non-zero spin and operators which effectively interpolate three

hadrons. Looking forward, once a three-hadron scattering formalism is practical to use, a

future calculation would enable the rigorous determination of the ππη and πKK scattering

amplitudes. Furthermore, utilising such a formalism would allow the calculation of the

G-parity-negative axial-vector, the a1, which would make for an interesting comparison.

Moving on from the simplest low-lying resonances, and as the light-quark mass approaches

its physical value, it becomes more important to reliably determine such three-hadron

scattering processes.
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Appendices

5.A Operator Tables

We present here tables of operators as referred to in the text.

L/as = 16 L/as = 20 L/as = 24

ρ[000], T−1

26× ψ̄Γψ 26× ψ̄Γψ 12× ψ̄Γψ

3× ππ 2× ππ

ρ[001], A1

8× ψ̄Γψ 18× ψ̄Γψ 18× ψ̄Γψ

4× ππ 4× ππ 4× ππ

ρ[011], A1

27× ψ̄Γψ 27× ψ̄Γψ 27× ψ̄Γψ

3× ππ 3× ππ 3× ππ

ρ[111], A1

8× ψ̄Γψ 21× ψ̄Γψ 21× ψ̄Γψ

3× ππ 3× ππ 3× ππ

Table 5.5: Single-meson and two-meson operators used to compute optimised ρ operators

in the [000]T−1 irrep and ~PA1 irreps at various overall momenta on the three volumes.

Momentum labels on the π’s that form the ππ operators are omitted for brevity.
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L/as = 16 L/as = 20

a0[001], A1

14× ψ̄Γψ 14× ψ̄Γψ

4× πη 4× πη

2× K̄K 2× K̄K

a0[011], A1

18× ψ̄Γψ 18× ψ̄Γψ

4× πη 4× πη

2× K̄K 2× K̄K

a0[111], A1

15× ψ̄Γψ

4× πη

2× K̄K

Table 5.6: As Table 5.5 but for optimised a0 operators.

L/as = 16 L/as = 20 L/as = 24

K∗
[000], T−1

6× ψ̄Γψ 16× ψ̄Γψ 9× ψ̄Γψ

K∗[001], A1

8× ψ̄Γψ 16× ψ̄Γψ 8× ψ̄Γψ

2× πK 6× πK

K∗[011], A1

8× ψ̄Γψ 26× ψ̄Γψ

3× πK 6× πK

K∗[111], A1

8× ψ̄Γψ 9× ψ̄Γψ 9× ψ̄Γψ

4× πK 4× πK

Table 5.7: As Table 5.5 but for optimised K∗ operators.
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L/as = 16 L/as = 20 L/as = 24

12× ψ̄Γψ 12× ψ̄Γψ 12× ψ̄Γψ

π[000]ω[001] π[000]ω[001] π[000]ω[001]

π[000]φ[001] π[001]ω[000] π[001]ω[000]

ρ[001]η[000] π[000]φ[001] π[000]φ[001]

a0[001]π[000] ρ[001]η[000] ρ[001]η[000]

π[001]ω[000] a0[001]π[000] K∗[001]K̄[000]

K∗[001]K̄[000] K∗[001]K̄[000] ρ1[001]η[000]

ρ[000]η[001] ρ[000]η[001]

π[001]φ[000] π[001]φ[000]

K∗[000]K̄[001]

{2}π[001]ω[011]

{2}π[011]ω[001]

Table 5.8: As in Table 5.3 but for irrep [001]A2. For operators O†RM, the superscript n on

Rn denotes the nth excited state when n ≥ 1. All ρ and K∗ operators transform in

[000]T−1 at ~p = ~0 and all ρ, a0 and K∗ operators transform in ~PA1 for ~p 6= ~0. Operators

shown in gray correspond to E
(2+1)
n.i. greater than the E

(2+1)
n.i. or E

(3)
n.i. of operators that have

not been included in the basis.
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L/as = 16 L/as = 20 L/as = 24

21× ψ̄Γψ 21× ψ̄Γψ 21× ψ̄Γψ

π[000]ω[011] π[000]ω[011] π[000]ω[011]

π[000]φ[011] π[000]φ[011] {2}π[001]ω[001]

ρ[011]η[000] {2}π[001]ω[001] π[000]φ[011]

K∗[011]K̄[000] ρ[011]η[000] π[011]ω[000]

{2}π[001]ω[001] a0[011]π[000] ρ[011]η[000]

a0[011]π[000] K∗[011]K̄[000]

π[011]ω[000]

Table 5.9: As in Table 5.8 but for irrep [011]A2.

L/as = 16 L/as = 20 L/as = 24

15× ψ̄Γψ 15× ψ̄Γψ 15× ψ̄Γψ

π[000]ω[111] π[000]ω[111] π[000]ω[111]

π[000]φ[111] π[000]φ[111] π[000]φ[111]

ρ[111]η[000] {2}π[001]ω[011] {2}π[001]ω[011]

K∗[111]K̄[000] ρ[111]η[000] {2}π[011]ω[001]

{2}π[001]ω[011] K∗[111]K̄[000] ρ[111]η[000]

π[111]ω[000] a0[111]π[000] π[111]ω[000]

{2}π[011]ω[001] K∗[111]K̄[000]

Table 5.10: As in Table 5.8 but for irrep [111]A2.
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L/as = 16 L/as = 20 L/as = 24

20× ψ̄Γψ 20× ψ̄Γψ 20× ψ̄Γψ

π[001]ω[001] π[001]ω[001] π[001]ω[001]

ρ[001]η[001] ρ[001]η[001] π[000]ω[002]

K∗[001]K̄[001] π[000]ω[002] ρ[001]η[001]

π[000]ω[002] π[001]φ[001] π[001]φ[001]

π[001]φ[001] K∗[001]K̄[001] K∗[001]K̄[001]

ρ1[001]η[001] a0[001]π[001] π[000]φ[002]

Table 5.11: As in Table 5.8 but for irrep [002]A2.

[000]T+
2 [000]E− [001]B1 [001]B2

14× ψ̄Γψ 12× ψ̄Γψ 9× ψ̄Γψ 9× ψ̄Γψ

π[001]ω[001] π[001]ω[001] π[011]π[001] π[111]π[011]

K̄[011]K[001] {2}π[001]ω[011]

π[001]ω[011] {2}π[011]ω[001]

π[011]ω[001]

Table 5.12: As Table 5.8 for irreps [000]T+
2 , [000]E−, [001]B1 and [001]B2 on the

(L/as) = 24 lattice.
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5.B Scattering Parameterisations

We present here tables of scattering parameterisations as referred to in Section 5.5.

Parameterisation Further Restrictions Npars χ2/Ndof

Breit-Wigner – 2 0.84

Effective Range

kcm cot(δ) = a−1 + 1
2
rk2

cm

– 2 0.86

K = g2

m2−s + γ(0) + γ(1)s

I(s) = −iρ(s)

– 4 0.80

γ(1) = 0 3 0.76

γ(0) = 0, γ(1) = 0 2 0.84

γ(0) = 0 3 0.75

K = g2

m2−s + γ(0) + γ(1)s

CM Re{I(s = sthr) = 0}

– 4 0.80

γ(1) = 0 3 0.76

γ(0) = 0, γ(1) = 0 2 0.84

γ(0) = 0 3 0.76

K = g2

m2−s + γ(0) + γ(1)s

CM Re{I(s = m2) = 0}

– 4 0.80

γ(1) = 0 3 0.76

γ(0) = 0, γ(1) = 0 2 0.84

γ(0) = 0 3 0.76

K−1 = c(0) + c(1)s

I(s) = −iρ(s)
– 2 0.84

K−1 = c(0) + c(1)s

CM Re{I(s = sthr) = 0}
– 2 0.84

Table 5.13: Parameterisations of elastic πω{3S1} scattering amplitudes with Npars free

parameters. Fits used 20 energy levels below πφ threshold, as described in the text. The

reference amplitude, Eq. 5.12, is in bold. ‘CM’ denotes that the Chew-Mandelstam

prescription was employed with subtraction at energy m or at threshold

sthr = (mπ +mω)2. Otherwise, we set I(s) = −iρ(s).
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5.C Error Ellipses

The error ellipses plotted in Figure 5.12 show the one standard deviation confidence

intervals for the correlated real and imaginary parts of the pole locations and corresponding

couplings. In this appendix, we present the details of how these ellipses are determined.

Consider two normally distributed random variables Xi ∼ N (0, σXi), i = 1, 2 with

covariance matrix C = cov[Xi, Xj] = E[(Xi − E[Xi])(Xj − E[Xj])]. The equation of an

ellipse is given by the quadratic form,

xTC−1x = s, (5.27)

where x = (x1, x2) and s > 0 is the scale. As C is a real (positive semi-definite) symmetric

matrix, a rotation diagonalises the quadratic form,

x′TΛx′ = s, (5.28)

where Λ = diag(λ−1
1 , λ−1

2 ) with λ1 ≥ λ2 ≥ 0 eigenvalues13 of C and x = Qx′ with

Q = (v1,v2) the orthogonal matrix of eigenvectors. The resulting ellipse is tilted, with the

major axis rotated to align with the eigenvector corresponding to the largest eigenvalue.

Explicitly written, (
x′1√
λ1

)2

+

(
x′2√
λ2

)2

= s. (5.29)

In this basis, X ′i ∼ N (0, λi) are independent normal distributions and as such the left

hand side of Eq. 5.29 represents the sum of squared standard normal distributions hence

giving a χ2 probability distribution for the scale, s ∼ χ2(2). For the usual one standard

deviation (68%) confidence interval, we seek k such that P (s < k) = 0.68, finding k = 2.28.

This gives the one standard deviation error ellipse,(
x′1√
λ1

)2

+

(
x′2√
λ2

)2

= 2.28. (5.30)

In the basis of Xi, the error ellipse has major axis length 2
√

2.28λ1, the minor axis has

length 2
√

2.28λ2 and angle the major axis makes with the horizontal is α = arctan (v1)2
(v1)1

.

As X1, X2 represent the real and imaginary parts respectively of the poles or couplings,

they do not have mean zero in general and we simply translate the ellipse to (µX1 , µX2),

giving Xi ∼ N (µXi , σXi), with covariance matrix C as before.

13If λi = 0, the ellipse is not well-defined.



Chapter 6

A π1 exotic resonance at

mπ ∼ 700 MeV

In the quark model, only a subset of all possible JPC are attainable from a quark-antiquark

pair. The total intrinsic spin S is either 0 or 1 and therefore, coupled with orbital angular

momentum `, the total angular momentum J ∈ {|`− 1|, `, `+ 1}. It follows that parity is

given by P = (−1)`+1 and charge conjugation C = (−1)`+S for flavourless mesons. These

quantum numbers define the non-exotic sequence, i.e. 0−+, 0++, 1−−, 1+−, 1++, . . . and

other quantum numbers not permitted within this framework form the exotic sequence1,

0+−, 0−−, 1−+, 2+−, . . . . These are attainable, for example, by coupling the quark-antiquark

pair with excited gluonic degrees of freedom, a hybrid meson, or additional quark-antiquark

pairs, such as a tetraquark.

Several experiments have reported an isovector 1−+ state, the π1, ranging in mass from

1.4− 2 GeV, however there are experimental and interpretational issues surrounding each

of them – in particular the existence of two states, the π1(1400) and π1(1600), is contested.

A comprehensive summary of the theoretical and experimental status is presented in

Ref. [99].

A recent reanalysis of the πη(′) data measured at COMPASS [100] was carried out using

coupled-channel amplitudes that enforce the unitarity and analyticity of the S-matrix [6].

The pole singularities were calculated by analytically continuing the amplitudes into the

complex s-plane and a single 1−+ pole, with mass ∼ 1564 MeV and width ∼ 492 MeV,

was unambiguously determined, with no evidence for a second pole that could be identified

with another π1 resonance.

Lattice QCD calculations have also found evidence for a single isovector 1−+ state in

this energy region. A fairly recent calculation determines the isovector spectrum [29] for a

1Not to be confused with the flavour exotics, such as ρπ in isospin-2.

143



144 CHAPTER 6. A π1 EXOTIC RESONANCE AT Mπ ∼ 700 MEV

number of exotic JPC multiplets, at four pion masses, the lightest being mπ ∼ 391 MeV

(computed on the same lattices as those used in Chapter 5) and heaviest mπ ∼ 700 MeV

(computed on the same lattices as those used in Chapters 3 and 4). In each case, evidence of

a single isovector 1−+ state in an energy region around ∼ 2 GeV was found. Although this

lattice calculation utilises a large, diverse basis of hybrid-like fermion bilinear operators to

determine the spectra, no operators resembling multi-hadron states are incorporated and as

such the spectra is not robust. Furthermore, many two-hadron thresholds are kinematically

open in a region much lower than the observed π1 like state and to rigorously calculate

the π1 necessitates the determination of pole singularities of the scattering amplitudes. It

is to this problem we turn here.

Once more we make use of the Nf = 3 lattices used in Chapters 3 and 4 with mπ ∼
700 MeV. Throughout this chapter, we use the notation for SU(3)F multiplets set out in

Chapter 4, where we recall that flavour multiplets are labelled by the isospin-0 component.

As such, the relevant flavour octets are labelled as follows: pseudoscalar (η)8, vector (ω)8,

scalar (f0)8, axial-vectors (f1)8 and (h1)8, tensor (f2)8. The SU(2)F components of the

pseudoscalar and vector octets are presented in Figure 3.2 and the others, listed above, in

Figure 6.16 of Appendix 6.A. We remind the reader that for the corresponding flavour

singlets, the subscript 8 is replaced with 1. For the exotic octet featuring the isovector

1−+ meson, we label the octet (π1)8 rather than (η1)8 for clarity.

The manifestation of SU(3)F significantly reduces the number of relevant two-meson

channels. As we are at liberty to pick any component of (π1)8, we choose ν = (1, 0, 1),

which has a negative G-parity. Therefore, when combining two flavour octet mesons into

a single octet, 8 ⊗ 8 → 81 ⊕ 82, only one of these two possible flavour embeddings has

an isovector component with negative G-parity, as discussed in Section 4.1. Furthermore,

Bose-symmetry restricts the allowed partial-wave configurations of two identical mesons.

This plays an important role here, as, for example, two identical pseudoscalar octets,

(η)8(η)8, are forbidden 1P 1-wave and similarly, identical vector octets, (ω)8(ω)8, are

forbidden in 1P 1- and 5P 1-wave (but are permitted in 3P 1-wave).

Despite these restrictions, there remain a large number of two-meson channels trans-

forming in (π1)8. Those relevant, appearing in the energy range we consider, include

a single pseudoscalar-pseudoscalar (η)8(η)1{1P 1} channel, a single vector-pseudoscalar

channel, (ω)8(η)8{3P 1} and two axial-vector-pseudoscalar channels, (f1)8(η)8{3S1} and
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(h1)8(η)8{3S1}. Furthermore, two vector-vector thresholds open, (ω)8(ω)8 and (ω)8(ω)1,

resulting in four vector-vector channels, (ω)8(ω)8{3P 1}, (ω)8(ω)1{1P 1}, (ω)8(ω)1{3P 1}
and (ω)8(ω)1{5P 1}, completing an eight coupled-channel system.

Unphysically heavy pions help circumvent the need to incorporate three-meson scattering

amplitudes. At rest, we will find all E
(2+1)
n.i. and E

(3)
n.i. energies on these lattices are above the

energy region of interest. For moving-frames, the E
(2+1)
n.i. and E

(3)
n.i. energies are lower-lying,

found to be near the anticipated resonant region. Moreover, the parity mixing at non-zero

momentum means low-lying resonances, such as the (f2)8, will also feature, significantly

complicating this scattering calculation of the (π1)8. In this study, we therefore restrict

to rest-frame spectra only.

At a lighter pion mass, away from the SU(3)F point, the two-meson channels separate

into their distinguishable SU(2)F components. For the relevant two-meson channels listed

above, recalling that we take the ν = (1, 0, 1) component of the (π1)8, these are as

follows: pseudoscalar-pseudoscalar (η)8(η)1 → πη, πη′, vector-pseudoscalar (ω)8(η)8 →
ρπ, K∗K, vector-vector (ω)8(ω)8 → ρω, ρφ, K∗K

∗
and (ω)8(ω)1 → ρω, ρφ, axial-vector-

pseudoscalar (f1)8(η)8 → a1η, a1η
′, f1π, f

′
1π, K1K and (h1)8(η)8 → b1π,K1K. We will

discuss couplings in these SU(2)F channels when we interpret the results.

6.1 Computational Details

Calculations of correlation functions were performed on four anisotropic lattices. In

addition to the (L/as)
3 × (T/at) = 203 × 128 and 243 × 128 lattices used in Chapter 3,

and (L/as)
3 × (T/at) = 163 × 128 used in Chapter 4, we also make use of a smaller

volumes, (L/as)
3 × (T/at) = 123 × 96, generated from the same action. On all volumes,

exponentially suppressed finite-volume and temporal effects remain negligible with mπL & 6

and mπT & 14 on the smallest volume.

Correlation functions were computed using the number of distillation vectors, gauge

configurations and time-sources shown in Table 6.1. As in previous calculations, we

typically compute all the elements of the matrix of correlation functions, however, in a

few cases we made use of hermiticity to infer Cji from the computed Cij.

To ensure all relevant two-meson operators are included in the basis, we examine the

location of all two-body thresholds by first determining all stable hadron masses. In
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(L/as)
3 × (T/at) Nvecs Ncfgs Ntsrcs

123 × 96 48 219 24

163 × 128 64 529 4

203 × 128 128 501 4

243 × 128 160 607 4

Table 6.1: Number of distillation vectors (Nvecs), gauge configurations (Ncfgs) and

time-sources (Ntsrcs) used to compute the (π1)8 correlation functions on each lattice

volume, as described in the text.

addition to the stable pseudoscalar (η)8 and vector (ω)8 octets, we consider the scalar,

axial-vector and tensor octets. Both axial-vector octets are stable, the (f1)8 appearing

far below (ω)8(η)8 threshold as shown in Figure 4.1 in Section 4.4. For the tensor octet,

the (η)8(η)8 threshold lies far below the calculated ‘qq̄’ mass, as shown in Figure 13 of

Ref. [26], and as such the tensor is unstable. Regarding the scalar octet, the determined

‘qq̄’ mass is found to coincide with the (η)8(η)8 threshold. For the purposes of this study,

we shall be conservative and treat the scalar octet as unstable.

Paired with each octet is a corresponding SU(3)F singlet. The pseudoscalar singlet is

found to be much heavier than its octet counterpart. The vector, axial-vector and tensor

singlets are all approximately degenerate2 with the corresponding octet masses, shown

in Figure 13 of Ref. [26], and as a result the axial-vector singlets are also stable. The

tensor singlet, as is the case for the tensor octet, is unstable and decays in D-wave to

(η)8(η)8. The scalar singlet with vacuum quantum numbers is found to be much lower in

mass relative to the octet and is stable.

To summarise, we present the stable hadron masses in Table 6.2. Also shown are

the relevant multi-hadron thresholds transforming in the (π1)8 multiplet where we have

truncated at the (f1)1(η)8 threshold. This is a moderate distance above the anticipated

resonant region of atEcm ∼ 0.46, guided by the exotic ‘qq̄’ spectrum in Figure 13 of

Ref. [26].

For the scattering calculation of the hybrid (π1)8, two-meson operators featuring (η)8,

(ω)8, (η)1 and (ω)1 at non-zero overall momentum are required. We check the momentum

2The (f1)8 and (f1)1 are slightly split with the singlet marginally heavier.
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octet atEcm singlet atEcm

(η)8 0.1478(1) (η)1 0.2017(11)

(ω)8 0.2154(2) (ω)1 0.2174(3)

(f1)8 0.3203(6) (f0)1 0.2007(18)

(h1)8 0.3272(6) (f1)1 0.3364(14)

(h1)1 0.3288(17)

threshold atEcm

(η)8(η)1 0.3495(11)

(ω)8(η)8 0.3632(2)

(ω)8(ω)8 0.4308(3)

(ω)8(ω)1 0.4324(7)

(η)8(η)8(η)8 0.4434(2)

(f1)8(η)8 0.4681(6)

(h1)8(η)8 0.4750(6)

(f1)1(η)8 0.4842(14)

Table 6.2: (Left): relevant stable hadron masses. (Right): multi-hadron thresholds

relevant for JP = 1− up to atEcm ≈ 0.485.

dependence of the (η)1 and (ω)1 energies satisfy the relativistic dispersion relation and

give a consistent value of the anisotropy compared to the value obtained in Section 3.4 for

the (η)8 and (ω)8 mesons.

The energies of the ground-state (η)1 and (ω)1 mesons were calculated from a variational

analysis of matrices of correlation functions involving bases of flavour singlet single-meson

operators. The analyses also gave the optimised operators for interpolating the (η)1 and

(ω)1 with the various momenta used in the construction of two-meson operators. The fits

to the dispersion relation given in Eq. 3.10 for (η)1 and (ω)1 are shown in Figure 6.1. We

used energies on two volumes, L/as = 20, 24, to constrain the fits. For the (η)1, energies

calculated in lattice irreps with |~p|2 ≤ 4 were used. Regarding the (ω)1, we used energies

calculated in lattice irreps with |~p|2 ≤ 4 on the larger volume and |~p|2 ≤ 2 on the smaller.3

We find the anisotropies for the helicity |λ| = 0, 1 components of the (ω)1 are comparable

to those found for (ω)8 and similarly the anisotropy calculated for the (η)1 agrees with that

of (η)8. We therefore take as the value of the anisotropy, ξ = 3.486(43), the determined

value used in Chapter 3, for the remainder of this work.

3(ω)1 energies computed on the L/as = 20 volume used Ncfgs = 197.
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Figure 6.1: Momentum dependence of the (η)1 energies and energies of the |λ| = 0, 1

helicity components of the (ω)1. Points show the energies used to constrain the fits, as

discussed in the text, with the errorbars reflecting the statistical uncertainties. Lines and

numerical values show results of fits to determine ξ using Eq. 3.10.

6.2 Operator Bases

At rest, JP = 1− subduces into the [000]T−1 irrep and the energy region we consider

includes the opening of several multi-hadron thresholds. This necessitates the inclusion

of a large number of two-meson-like operators in the basis, however, we will show that

three-meson-like operators are expected to interpolate levels above the energy cut-off and

are subsequently not included. A large number of single-meson-like operators transforming

in (π1)8 are incorporated, resembling hybrid mesons. Four-meson thresholds lie beyond

the energy region we consider and previous calculations [68,82] suggest local tetraquark-like

operators have negligible effect on the spectrum, so neither of these types of operators are
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included in the basis.

6.2.1 Single-Meson Operators

Single-meson operators transforming in (π1)8 are constructed according to Eq. 3.4. Notably,

there are no single-meson operators formed simply from a product of γ-matrices in a

fermion bilinear that have the appropriate quantum numbers. Within the operator

constructions, gluonic degrees of freedom enter through covariant derivatives. For example,

the JPC = 1−+ fermion bilinear hybrid operator, ψ̄Γψ, constructed using the commutator

of two-derivatives, is given by,

Γ =
∑
m1,m2
m3,mD

C

(
1 1 1

m1 mD m

)
C

(
1 1 1

m2 m3 mD

)
γm1

←→
D m2

←→
D m3 , (6.1)

which is proportional to the field strength tensor. For the [000]T−1 irrep in the (π1)8

flavour multiplet, we construct all possible single-meson-like hybrid operators using up to

three gauge-covariant derivatives. This gives a total of 18 operators with continuum spins

of J = 1, 3 or 4.

6.2.2 Two-Meson Operators

The construction of operators resembling a pair of mesons follows the approach detailed

in Chapter 3. To ensure all relevant two-meson operators are included in the bases, we

calculate the non-interacting energies for each two-meson threshold listed in Table 6.2.

We include the corresponding two-meson operators for all those non-interacting energies

below atEcm = 0.485. We present the final operator basis used for the [000]T−1 irrep on

each lattice volume in Table 6.3.

6.2.3 Three-Meson Operators

Included in Table 6.2 are three-body thresholds below (f1)1(η)8, for which the only one

is (η)8(η)8(η)8. We consider any E
(3)
n.i. or E

(2+1)
n.i. appearing below the energy cut-off,

analogous to the exercise done in Chapter 5, ensuring that all relevant operators are

included in the basis in order to determine a robust spectra.
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L/as = 12 L/as = 16 L/as = 20 L/as = 24

18× ψ̄Γψ 18× ψ̄Γψ 18× ψ̄Γψ 18× ψ̄Γψ

(η)8[001](η)1[001] (η)8[001](η)1[001] (η)8[001](η)1[001] (η)8[001](η)1[001]

(f1)8[000](η)8[000] (ω)8[001](η)8[001] (ω)8[001](η)8[001] (ω)8[001](η)8[001]

(h1)8[000](η)8[000] (f1)8[000](η)8[000] (η)8[011](η)1[011] (η)8[011](η)1[011]

(ω)8[001](η)8[001] (h1)8[000](η)8[000] {2}(ω)8[011](η)8[011] {2}(ω)8[011](η)8[011]

(f1)1[000](η)8[000] (η)8[011](η)1[011] (ω)8[001](ω)8[001] (η)8[111](η)1[111]

(f1)1[000](η)8[000] {4}(ω)8[001](ω)1[001] (ω)8[111](η)8[111]

(ω)8[001](ω)8[001] (f1)8[000](η)8[000] (ω)8[001](ω)8[001]

{4}(ω)8[001](ω)1[001] (η)8[111](η)1[111] {4}(ω)8[001](ω)1[001]

{2}(ω)8[011](η)8[011] (h1)8[000](η)8[000] (η)8[002](η)1[002]

(ω)8[111](η)8[111] (f1)8[000](η)8[000]

(f1)1[000](η)8[000] (h1)8[000](η)8[000]

(ω)8[002](η)8[002] (ω)8[002](η)8[002]

(f1)1[000](η)8[000]

Table 6.3: [000]T−1 operator basis for each lattice volume, with two-meson operators

ordered by increasing En.i.. As in table 5.3, the maximum number of single-meson

operators, N , is denoted by N × ψ̄Γψ and various subsets of these were considered to

obtain robust fits. The number in braces, {Nmult}, denotes the multiplicity of linearly

independent two-meson operators if this is larger than one.

At threshold, each (η)8 meson is at zero momenta, analogous to the ππη case in

Section 5.1.3, and the product of [000]A−1 irreps does not appear in [000]T−1 . Considering

various combinations of ~p1, ~p2 and ~p3, we find the lowest E
(3)
n.i. appearing in [000]T−1

corresponds to the following product,

[011]A2︸ ︷︷ ︸
(η)8

⊗ [001]A2︸ ︷︷ ︸
(η)8

⊗ [001]A2︸ ︷︷ ︸
(η)8

→ 2× [000]T−1︸ ︷︷ ︸
(π1)8

⊕ . . . , (6.2)

where the two embeddings in [000]T−1 arise from two distinct ways of combining the
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momenta shown below,4

[001]E2︸ ︷︷ ︸
(η)8(η)8

⊗ [001]A2︸ ︷︷ ︸
(η)8

→ [000]T−1︸ ︷︷ ︸
(π1)8

, (6.3)

and

[011]A2︸ ︷︷ ︸
(η)8

⊗ [011]B1︸ ︷︷ ︸
(η)8(η)8

→ [000]T−1︸ ︷︷ ︸
(π1)8

. (6.4)

For the lattice volumes in this study, the corresponding E
(3)
n.i. is far above the energy cut-off

– on the largest volume E
(3)
n.i. = 0.5152.

Regarding the E
(2+1)
n.i. energies, we consider the finite-volume spectra in the (η)8(η)8

subsystem appearing in [001]E2 and [011]B1. The lowest-lying energy in each case

corresponds to the stable (f1)8 state with Ecm ≈ 0.32 and thus any excitations must

appear at a cm-energy greater than this. As such, we can immediately infer a conservative

lower bound of E
(2+1)
n.i. ≈ 0.495 using the largest volume, beyond the energy cut-off of

atEcm = 0.485. Subsequently, no three-meson operators are included in the basis.

6.3 Finite-Volume Spectra

The finite-volume spectrum on each lattice volume was calculated using a variational

analysis of the matrix of correlation functions computed using the operator basis given in

Table 6.3. The extracted energies are presented in Figure 6.2. On the smallest and largest

volumes (L/as = 12 and 24) we also present the operator-state overlap factors.

The quality of the principal correlator fits on all volumes was good for the vast majority

of the levels, as reflected in the small statistical uncertainties in Figure 6.2, and we show

the principal correlator fits on the L/as = 24 volume in Figures 6.3 – 6.5 as an illustration.

Little systematic variation was observed on all volumes under a reasonable range of t0

values with two notable exceptions.

The first is a noisy energy level on the L/as = 20 volume at atEcm ≈ 0.48, found to

have large operator-state overlap onto the (f1)8(η)8-like operator. A large systematic

4We are not considering here multiple flavour embeddings that could arise in the product of three

SU(3)F octets.
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uncertainty was added to reflect the variation for different choices of t0. The second is

a level on the L/as = 24 volume close to the (η)8[002](η)1[002] non-interacting energy,

found with significant operator-state overlap onto the associated operator – shown in the

histogram labelled ‘N ’ in Figure 6.2. The corresponding principal correlator shown in

Figure 6.4 appears to have residual excited-state contamination. This was refitted for a

number of different t-ranges and a systematic error was added reflecting this – the final

value being atEcm = 0.4640(57).

Before we proceed to a scattering analysis, we make some qualitative observations on the

spectra shown in Figure 6.2. Consider first the number of energy levels expected on each

volume, beginning with the largest, L/as = 24. In the absence of any residual meson-meson

interactions, we would expect one level at each corresponding meson-meson non-interacting

energies, with the appropriate number of degenerate levels where the multiplicity is greater

than one. This results in seventeen levels. We find however a total of eighteen, with an

‘extra level’, labelled ‘M’, appearing in the cluster of energies at atEcm ∼ 0.46. This

extra level can be clearly seen on the L/as = 16 and 20 volumes, away from any nearby

non-interacting energies, also around atEcm ∼ 0.46. On the smallest volume, L/as = 12,

the shifts from the non-interacting energies are more pronounced but a total of six levels

are found, compared with the five anticipated in the non-interacting regime. Collectively,

these observations are similar to those made in the b1 study in Chapter 5, albeit on a

spectra far more dense with more coupled channels. Nevertheless, this suggests that a

narrow resonance is present.

The operator-state overlap factors shown for the smallest and largest volumes in Fig-

ure 6.2 allow us to make further qualitative observations. For the largest volume, the lowest

six levels, ‘A–F ’, are all consistent with the corresponding non-interacting energies and

have dominant overlap with the associated operators, either (η)8(η)1- or (ω)8(η)8-like,

with negligible overlap onto any others. This suggests no resonant behaviour in this energy

region and fairly weak interactions.

Around atEcm ∼ 0.45, a level (‘G’) consistent with the non-interacting (ω)8[111](η)8[111]

energy is seen with dominant overlap onto the (ω)8[111](η)8[111] operator but also with

moderate mixing with hybrid qq̄-like operators. Above this, five vector-vector levels can be

clearly identified, ‘H–L’, of which modest mixing with the hybrid single-meson operators

is seen for a couple. Located on the top of this cluster is a level with dominant overlap
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onto the hybrid fermion bilinear operators – ‘M’. A large amount of mixing is seen with

(h1)8[000](η)8[000] and (f1)8[000](η)8[000] and also with the (ω)8(η)8-like operators, peaked

at the (ω)8[111](η)8[111] momenta combination. One might expect this given the level

observed to have dominant overlap onto (ω)8[111](η)8[111] also had significant contributions

from qq̄-like operators. A small amount of mixing is seen with the other two-meson

operators. Next highest in energy is the refitted level, ‘N ’, dominated by (η)8[002](η)1[002]

with small overlap across all other operators.

Above the (f1)8(η)8 threshold are four levels, the lowest three, ‘O–Q’, showing vary-

ing mixtures of (ω)8[002](η)8[002], (h1)8[000](η)8[000], (f1)8[000](η)8[000] and the hybrid qq̄,

suggesting significant interactions between these channels around this energy region. The

final level (‘R’) is consistent with the (f1)1(η)8 threshold and appears decoupled, with

dominant overlap onto (f1)1[000](η)8[000] and negligible overlap for all other operators.

As a comparison, we examine the operator-state overlap factors on the smallest volume.

Here, we expect any interactions to yield more pronounced shifts in the energy spectra

away from the corresponding non-interacting energies.5 This appears to be the case and

all levels show a large amount of mixing in the overlaps factors, with the exception of

(f1)1[000](η)8[000] which again appears to be totally decoupled.

The (f1)1(η)8 threshold is taken as a cut-off and all levels below atEcm = 0.48 are

utilised in the scattering analysis (the black points in Figure 6.2). In addition, the black

level just above the (f1)1(η)8 threshold on the L/as = 12 is included – anticipated to

provide good constraints on mixing with the (f1)8(η)8 and (h1)8(η)8 channels, as evident

from the operator-state overlaps.6

5A consequence of the smaller polynomial-suppressed volume factors, relative to the largest lattice,

appearing in the quantisation condition.
6Since (f1)1(η)8 appears to be totally decoupled, we include this level above (f1)1(η)8-threshold.
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Figure 6.2: Finite-volume spectrum in the [000]T−1 irrep on four lattice volumes. Points

give the energy levels, including statistical uncertainties, from a variational analysis using

the operator bases in Table 6.3, with black points used in the scattering analysis in

Section 6.4. Solid curves are two–meson non-interacting energies and dashed horizontal

lines show the two– and three–meson thresholds. Multiplicities (if greater than one) are

shown as {n}. For each energy level on the largest and smallest volume, we present

histograms showing the operator-state overlap factors, as in Figure 5.4, for the

MM = (η)8(η)1 (dark blue), (ω)8(η)8 (red), (ω)8(ω)8 (orange), (ω)8(ω)1 (green),

(f1)8(η)8 (light blue), (h1)8(η)8 (purple) and (f1)1(η)8 (brown) operators along with a

sample set of single-meson hybrid operators subduced from JP = 1− (pink).
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Figure 6.3: Principal correlators, λn(t, t0 = 7), plotted as eEn(t−t0)λn(t, t0), from a

variational analysis of the [000]T−1 irrep on the lattice with L/as = 24. Curves show the

results of fits described in Section 2.6. The horizontal axes are in units of t/at. The

lettering corresponds to the lettering in Figure 6.2.
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Figure 6.4: Continuation of Figure 6.3.
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Figure 6.5: Continuation of Figure 6.3.
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6.4 Scattering Analysis

In this section, we present the results of the scattering analysis, following the procedure

described in Section 3.6, and once again use the general two-body formalism set out in

Section 2.7.

Recalling the discussion in the introduction, we analyse eight coupled JP = 1− channels.

We have a single pseudoscalar-pseudoscalar channel, (η)8(η)1{1P 1}, and three (axial)-

vector-pseudoscalar channels: (ω)8(η)8{3P 1}, (f1)8(η)8{3S1} and (h1)8(η)8{3S1}. In

addition to these vector-pseudoscalar like channels, where only one total intrinsic spin of

S = 1 is possible, we also incorporate vector-vector channels. The three distinct spin-spin

combinations, S = 0, 1, 2, give rise here to three dynamically-coupled JP = 1− partial-

waves, namely (ω)8(ω)1{1P 1}, (ω)8(ω)1{3P 1} and (ω)8(ω)1{5P 1}, distinguished by the

‘spin-spin’ couplings. Bose-symmetry forbids the same three partial-wave configurations

for the (ω)8(ω)8 meson-meson channel – only the 3P 1-wave is non-vanishing.

As well as the eight JP = 1− coupled-channels, we must also incorporate a further two

JP = 3− channels that mix in [000]T−1 due to the reduced symmetry of the lattice. The first

is (ω)8(η)8{3F 3}, contributing at the next leading order in threshold suppression at the

two-fold degenerate (ω)8[011](η)8[011] non-interacting energy. Second is the (ω)8(ω)1{5P 3}
channel, contributing at the four-fold degenerate (ω)8[001](ω)1[001] non-interacting energy.

Before presenting the results of the scattering analysis, we make an important observation

having utilised the rest-frame spectra only. The quantisation condition subduced in the

[000]T−1 irrep is invariant under the interchange of the (ω)8(ω)1{1P 1}, (ω)8(ω)1{3P 1}
and (ω)8(ω)1{5P 1} t-matrix scattering parameters. Therefore, as these amplitudes cannot

be uniquely determined, we refer to them collectively as (ω)8(ω)1{XP 1} for subsequent

phase-shifts, mixing-angles and resonant couplings. A proof of this observation is presented

in Appendix 6.B.

In order to parameterise the energy dependence of the ten-channel t-matrix, we use

a K-matrix formulation, recalling the relationship between the t-matrix and K-matrix

given in Eq. 5.6. This is block diagonal with respect to JP and we write,

K(s) =

(
K1−(s) 0

0 K3−(s)

)
. (6.5)



6.4. SCATTERING ANALYSIS 159

For the eight-by-eight K1−(s) matrix, hosting the JP = 1− amplitudes, we adopt the

‘pole + constant’ form of parameterisation,

K1−(s) =
g2(s)

m2 − s
+ γ

(0)

1− , (6.6)

where g2(s) is the matrix with components gS`Ja(s)gS′`′Jb(s), recalling a, b are hadron

channel labels, and γ
(0)

1− is a real constant symmetric matrix. There are many degrees

of freedom in this form and we make two further reasonable restrictions. First, shown

to be sufficient in the b1 analysis in Chapter 5, we take gS`Ja(s) to be constant. The

second follows from observations of the finite-volume spectra in Figure 6.2. Energy levels

with dominant operator-state overlap factors onto vector-vector channels appear very near

the corresponding non-interacting energies and have small operator-state overlap factors

with all other operators. We anticipate that these are weakly coupled and, as such, block

diagonalise the constant γ
(0)

1− matrix with respect to the vector-vector channels,

γ
(0)

1− =

(
γ
(0) nVV.

1− 0

0 γ
(0) VV.

1−

)
, (6.7)

and allow parameter freedom in the diagonal components only of the four-by-four vector-

vector block, γ
(0) VV.

1− . We impose no restrictions on the four-by-four non vector-vector

block, γ
(0) nVV.

1− . Note that mixing amongst the vector-vector channels and between other

JP = 1− channels is still permitted through the matrix of couplings, g2(s).

We utilise three phase-space prescriptions: simple phase-space, where I1−a(s) = −iρa(s),
and the Chew-Mandelstam phase-space, with Re I1−a(s = m2) = 0 or Re I1−a(s = sthr.) =

0.

Regarding the two-by-two matrix of JP = 3− amplitudes, we set K3−(s) = γ
(0)

3− where,

γ
(0)

3− =

(
γ

(0)

(ω)8(η)8{3F 3}, (ω)8(η)8{3F 3}
0

0 γ
(0)

(ω)8(ω)1{5P 3}, (ω)8(ω)1{5P 3}

)
. (6.8)

No exotic JPC = 3−+ resonances are expected in this energy region and we will show that

a constant matrix of this form proves to be sufficient to describe the spectra. We use a

Chew-Mandelstam prescription with Re I3−a(s = sthr.) = 0 in all parameterisations.

We find parameterisations of the form given in Eq. 6.5, subject to these additional

reasonable constraints discussed above, feature 25 independent free parameters and are

sufficiently flexible to test the robustness of the scattering amplitudes.
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Scattering amplitudes are determined following the procedure detailed in the previous

chapters. We fit many parameterisations to the 38 energy levels shown as black points in

Figure 6.2 and record successful fits, with χ2/Ndof < 1.2, in Table 6.5 of Appendix 6.C.

Analogous to the scattering analysis in the previous two chapters, we choose a reference

amplitude, representative of all other parameterisations. Here, we take the reference

parameterisation to be diagonal in γ
(0)

1− with freedom in each of the eight diagonal

components and take all but g(ω)8(ω)1{1P 1} and g(ω)8(ω)1{5P 1} to be non-zero in g2, giving

a total of seventeen free parameters. The Chew-Mandelstam prescription with pole

subtraction, Re I1−a(s = m2) = 0, is taken for K1−(s). This parameterisation is shown in

bold in Table 6.5 and the resulting fit to the lattice data yields the following parameters,

m = (0.4622± 0.0028± 0.0005) · a−1
t γ

(0)

(η)8(η)1{1P 1}
= (−1.9± 1.2± 3.0) · a2

t

g(η)8(η)1{1P 1} = (0.40± 0.13± 0.10) γ
(0)

(ω)8(η)8{3P 1}
= (−6.5± 1.2± 4.8) · a2

t

g(ω)8(η)8{3P 1} = (0.40± 0.12± 0.02) γ
(0)

(f1)8(η)8{3S1}
= (−2.2± 1.1± 1.0)

g(f1)8(η)8{3S1} = (0.31± 0.13± 0.10) · a−1
t γ

(0)

(h1)8(η)8{3S1}
= (0.3± 1.0± 0.2)

g(h1)8(η)8{3S1} = (−0.29± 0.21± 0.09) · a−1
t γ

(0)

(ω)8(ω)8{3P 1}
= (2.9± 4.3± 4.1) · a2

t

g(ω)8(ω)8{3P 1} = (−0.23± 0.15± 0.02) γ
(0)

(ω)8(ω)1{1P 1}
= (12± 13± 7) · a2

t

g(ω)8(ω)1{3P 1} = (0.20± 0.25± 0.04) γ
(0)

(ω)8(ω)1{3P 1}
= (9.2± 6.8± 5.7) · a2

t

γ
(0)

(ω)8(ω)1{5P 1}
= (12± 13± 7) · a2

t

γ
(0)

(ω)8(η)8{3F 3}
=(−340± 130± 270) · a6

t γ
(0)

(ω)8(ω)1{5P 3}
= (3.7± 9.6± 5.4) · a2

t

χ2/Ndof =
15.1

38− 17
= 0.72, (6.9)

where the first uncertainty is statistical and the second reflects the systematic uncertainties

obtained from considering variations in the stable hadron masses and anisotropy. The

systematic uncertainties we quote are calculated as the largest shift on the central values of

each parameter, taken from successful fits of the scattering amplitudes where the anisotropy

and stable hadron masses are varied by ±1σ.7 The correlation matrix for the reference

amplitude scattering parameters is given in Table 6.6 in Appendix 6.C.

7We vary all the stable hadron masses in the same way, i.e. all +1σ or all −1σ.
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The JP = 1− phase-shifts, presented using the 8-channel Stapp-parameterisation (de-

tailed in Chapter 7), and the two JP = 3− phase-shifts are plotted in Figures 6.6 – 6.7.

The solid coloured curves and error bands show the reference amplitude and all other

successful parameterisations, listed in Table 6.5, are shown as dashed coloured curves with

grey error bands.

We are not able to uniquely determine the sign of the off-diagonal elements of the

t-matrix between the dynamically-coupled 1P 1-, 3P 1- and 5P 1- (ω)8(ω)1 in the rest frame

irrep. This is because the M-matrix is diagonal, as shown in Appendix 6.B, and the

determinant is subsequently independent on the sign of these off-diagonal t-matrix terms.

In addition, all other off-diagonal t-matrix components also have a sign ambiguity, as each

hadron channel can be rephased independently, subject to the S-matrix being symmetric.

Because of this, all the mixing-angles are presented as sign-independent inelasticities,

defined as cos 2ε̄ij. With this definition, an inelasticity of unity means no mixing, and of

zero means maximally mixed. The JP = 1− inelasticities are displayed in Figures 6.8 – 6.10.

The JP = 3− amplitudes have a mixing-angle fixed to be zero in all parameterisations.

For all parameterisations presented in Table 6.5, the phase-shifts and inelasticities are in

very good agreement. The statistical and combined statistical and systematic uncertainties

of the reference amplitude are shown as the inner and outer coloured bands respectively, in

each of the figures. We see the systematic uncertainty on each phase-shift and inelasticity

is roughly comparable to the size of statistical uncertainties.

We make some qualitative observations from Figures 6.6 – 6.10. Firstly, the

(η)8(η)1{1P 1} phase-shift has a sharp rise through 90◦ at atEcm ∼ 0.46, characteris-

tic of a narrow resonance located in this region. The (ω)8(η)8{3P 1} phase-shift turns

very sharply around this energy and the (η)8(η)1{1P 1}|(ω)8(η)8{3P 1} inelasticity ap-

proaches zero. This would suggest a resonance strongly coupled to both (η)8(η)1{1P 1} and

(ω)8(η)8{3P 1}. The large uncertainties in the reference amplitude for the (η)8(η)1{1P 1}
and (ω)8(η)8{3P 1} phase-shifts at atEcm ∼ 0.46, are an artefact of the phase-shifts be-

coming extremely steep in this neighbourhood. Therefore, a small change in atEcm around

atEcm ∼ 0.46 gives a large change in the S-matrix and as such these phase-shifts have large

uncertainties here. Other parameterisations, with less steep phase-shifts in this energy

region, can be seen that do not exhibit this behaviour.

Phase-shifts in the vector-vector channels, (ω)8(ω)8{3P 1} and (ω)8(ω)1{XP 1}, are
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relatively small and appear to be consistent with zero within uncertainty. Similarly,

inelasticities with respect to any vector-vector channel are found to be near unity, al-

though non-trivial behaviour around atEcm ∼ 0.46 in the inelasticities with respect to

both (η)8(η)1{1P 1} and (ω)8(η)8{3P 1} suggests some sensitivity to the resonance-like

behaviour.

The phase-shifts of the axial-vector-pseudoscalar channels, (f1)8(η)8{3S1} and

(h1)8(η)8{3S1}, appear to turn on rapidly at threshold, as do the inelasticities featuring

either of these channels. This behaviour in the inelasticities is somewhat unsurprising

given the operator-state overlap factors shown in Figure 6.2, which show a large degree of

mixing between operators corresponding to these channels – in particular on the L/as = 12

lattice.

Finally, we comment on the JP = 3− amplitudes presented in Figure 6.7. These appear

to be very small in the energy range, with no signs of any resonant enhancement, as

expected in this low-energy region.

To demonstrate the quality of the scattering amplitudes at reproducing the lattice

spectra, in Figure 6.11, we present the finite-volume spectrum calculated using the

reference amplitude. For the lattice computed spectrum on each volume, a single energy

level with dominant operator-state overlap onto the (f1)1(η)8 operator has been removed

for clarity in the figure – for example the level labelled ‘R’ in Figure 6.2. Such levels will not

be interpolated by our reference amplitude as it does not incorporate the (f1)1(η)8{3S1}
channel (this was anticipated to be largely decoupled as discussed in Section 6.3). We

observe excellent agreement between each lattice computed energy used as a constraint and

those obtained from the reference amplitude. In addition, levels coloured grey, that were

excluded from the analysis, are seen to be very well described. Avoided level crossings,

characteristic of a narrow resonance, can be clearly seen in an energy region centred around

atEcm ∼ 0.46.

To summarise, the observed sharp increase in the (η)8(η)1{1P 1} phase-shift and en-

hancements in a number of inelasticities around atEcm ∼ 0.46, in addition to the ‘extra

level’ seen in the finite-volume spectra, strongly suggests the presence of a resonance.

We proceed to determine the pole singularities of our scattering amplitudes in order to

calculate any such resonances rigorously.
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Figure 6.6: Upper: (η)8(η)1{1P 1} (dark blue) and (ω)8(η)8{3P 1} (red) phase-shifts.

Lower: (ω)8(ω)8{3P 1} (orange) and (ω)8(ω)1{XP 1} (green) phase-shifts. The solid

curves show the reference amplitude given in Eq. 6.9 with the coloured bands reflecting

the statistical (inner) plus systematic (outer) uncertainty. Dashed curves and grey bands

correspond to all successful parameterisations presented in Table 6.5 of Appendix 6.C

with only the statistical uncertainties shown.
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Figure 6.7: As in Figure 6.6 but for (f1)8(η)8{3S1} (light blue) and (h1)8(η)8{3S1}
(purple) phase-shifts (upper), and for (ω)8(η)8{3F 3} (red) and (ω)8(ω)1{5P 3} (green)

phase-shifts (lower).
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Figure 6.8: Upper: the inelasticities cos 2ε̄
(
(η)8(η)1{1P 1}| . . .

)
Lower: inelasticities

cos 2ε̄
(
(ω)8(η)8{3P 1}| . . .

)
. The reference amplitude given in Eq. 6.9 is plotted with

coloured bands reflecting the statistical (inner) plus systematic (outer) uncertainty. The

solid curves show the inelasticities for all parameterisations presented in Table 6.5 in

Appendix 6.C. Statistical uncertainties on these parameterisations are omitted for clarity

in the plot.
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Figure 6.9: As in Figure 6.8 but for inelasticities cos 2ε̄
(
(ω)8(ω)8{3P 1}| . . .

)
(upper),

and for inelasticities cos 2ε̄
(
(ω)8(ω)1{XP 1}| . . .

)
(lower).
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Figure 6.10: As in Figure 6.8 but for cos 2ε̄
(
(f1)8(η)8{3S1}| . . .

)
inelasticities.
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Figure 6.11: As Figure 6.2 but including, as pink curves and points, the energy levels

calculated from the reference amplitude in Eq. 6.9, with errorbars reflecting the combined

statistical and systematic uncertainties on the reference amplitude. The lattice computed

energies are displaced horizontally for clarity. A single energy level on each lattice volume

with dominant operator-state overlap onto the (f1)1(η)8 operator has been removed as

discussed in the text.
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6.5 Pole Analysis

In Section 5.6, we discussed pole singularities in coupled-channel scattering amplitudes.

Here, we have six distinct hadron-hadron thresholds opening in the energy region considered

and therefore a total of 64 Riemann sheets. We will label the sheets by the sign of the

imaginary part of the momentum in the six channels, ordered according to increasing

threshold energies, ((η)8(η)1, (ω)8(η)8, (ω)8(ω)8, (ω)8(ω)1, (f1)8(η)8, (h1)8(η)8). For

a relatively narrow resonance pole located at atEcm ∼ 0.46, the Riemann sheet closest

to physical scattering would have a negative imaginary component of cm-momenta in

the (η)8(η)1, (ω)8(η)8, (ω)8(ω)8 and (ω)8(ω)1 channels and a positive imaginary

component in (f1)8(η)8 and (h1)8(η)8, i.e. (−,−,−,−,+,+). For convenience we shall

refer to this as sheet II. Sheet I corresponds to positive imaginary components for all

cm-momenta, (+,+,+,+,+,+), referred to as the physical sheet.

For each parameterisation successfully describing the finite-volume spectra, tabulated in

Table 6.5, we perform a search on all 64 Riemann sheets for a large complex s-range8 and

determine any pole singularities and corresponding couplings appearing in the amplitudes

by factorising the t-matrix as discussed in Section 5.6. As we cannot uniquely determine

the sign in the t-matrix for each coupled hadron-hadron channel, and cannot distinguish

the (ω)8(ω)1 J
P = 1− amplitudes in this study, as discussed in the previous section, there

is a sign ambiguity on each of the couplings.

For the reference amplitude given in Eq. 6.9, a single complex conjugate pair of pole

singularities was found on sheet II at complex energy,

at
√
s0II = 0.4607(26)(4)± i

2
0.0144(54)(34), (6.10)

where the first uncertainty is statistical and the second is systematic from varying the

hadron masses and anisotropy, as described previously. The corresponding couplings for

8We search approximately Re at
√
s ∈ [0.35, 0.49] and 2 Im at

√
s ∈ [−0.1, 0.1]. Any pole outside this

real energy region would not be well constrained by our data.
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the lower-half plane pole are,

atc((η)8(η)1{1P 1})II = 0.076(19)(16) exp[−i π 0.044(20)(46)]

atc((ω)8(η)8{3P 1})II = 0.066(14)(1) exp[−i π 0.106(28)(71)]

atc((ω)8(ω)8{3P 1})II = 0.025(16)(3) exp[−i π 0.028(31)(25)]

atc((ω)8(ω)1{XP 1})II = 0.021(25)(5) exp[−i π 0.013(34)(27)]

atc((f1)8(η)8{3S1})II = 0.212(38)(30) exp[i π 0.046(31)(15)]

atc((h1)8(η)8{3S1})II = 0.188(81)(33) exp[−i π 0.002(24)(24)], (6.11)

where again, the first error is statistical and the second is systematic. In addition,

‘mirror poles’ were robustly determined on several unphysical sheets, (−,±,±,±,+,+),

found at positions similar to that given in Eq. 6.10 with small shifts due to the small

couplings to these channels [7]. Mirror poles on several sheets with a negative imaginary

component of cm-frame momentum in (f1)8(η)8 or (h1)8(η)8 were poorly determined

and varied significantly in location relative to the sheet II pole, owing to the relatively

large uncertainties on the large couplings in these channels. We found no poles on sheet

I, in particular no complex valued poles which indicates good causal behaviour of the

reference amplitude in this energy region.

For every parameterisation listed in Table 6.5, we found a single complex conjugate

pair of pole singularities on sheet II, compatible with the pair found for the reference

amplitude, and a similar distribution of mirror poles on other unphysical sheets. The

lower-half plane sheet II pole singularities, closest to the region of physical scattering,

are shown in Figure 6.12. We observe a well determined pole in each case with excellent

agreement across all parameterisations.

Figure 6.13 shows the couplings for all parameterisations in Table 6.5. We observe little

variation in the (η)8(η)1{1P 1}, (ω)8(η)8{3P 1}, (ω)8(ω)8{3P 1} and (ω)8(ω)1{XP 1}
couplings, with more substantial spread seen in (f1)8(η)8{3S1} and (h1)8(η)8{3S1}. This

is to be expected given fewer energy levels used to constrain the amplitude around the

(f1)8(η)8 and (h1)8(η)8 thresholds.

The (η)8(η)1{1P 1} and (ω)8(η)8{3P 1} couplings are seen to be very well determined

and non-zero on all parameterisations. The (ω)8(ω)8{3P 1} and (ω)8(ω)1{XP 1} are

comparatively much smaller and show hints of being non-zero, however, we find them

roughly consistent with zero. The (f1)8(η)8 and (h1)8(η)8 couplings appear to be large,
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Figure 6.12: Lower half-plane sheet II poles. The black point corresponds to the reference

amplitude in Eq. 6.9 with errorbars reflecting the combined statistical and systematic

uncertainties. Grey points, with errorbars reflecting the statistical uncertainties,

correspond to poles from all the parameterisations shown in Table 6.5 of Appendix 6.C.

however, they are poorly determined.
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Figure 6.13: Couplings of the sheet II poles, shown in Figure 6.12, to hadron-hadron

channels. The black points corresponds to the couplings from the reference amplitude in

Eq. 6.9, with errorbars reflecting the combined statistical and systematic uncertainties.

Coloured points, with errorbars reflect the statistical uncertainties, are the couplings from

all the parameterisations shown in Table 6.5 of Appendix 6.C.
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6.6 Interpretation

For every amplitude parameterisation that was capable of describing the finite-volume

spectra, we found in the JP = 1− amplitudes, a pair of complex conjugate poles, located

on sheet II, and corresponding mirror poles on other unphysical sheets, which we interpret

as a single resonance.

Using the scale setting procedure detailed in Section 3.3 where a−1
t = 4655 MeV, we

summarise the results of the scattering analysis, expressing all quantities in physical units.

We find a (π1)8 resonant pole with mass mR = 2148(33) MeV and width ΓR = 95(69) MeV

where the single uncertainty quoted is a conservative estimate from a combination of

statistical and systematic uncertainties and encompasses variation over the range of

parameterisations. Similarly, we find for the couplings,

|c(η)8(η)1{1P 1}| = 470(177) MeV

|c(ω)8(η)8{3P 1}| = 300(133) MeV

|c(ω)8(ω)8{3P 1}| = 158(90) MeV

|c(ω)8(ω)1{XP 1}| = 191(132) MeV

|c(f1)8(η)8{3S1}| = 841(486) MeV

|c(h1)8(η)8{3S1}| = 936(555) MeV, (6.12)

and present these best estimates in Figure 6.14.

As a comparison, we plot the π1 hybrid resonance pole found in the reanalysis [6]

of the COMPASS πη(′) data [100], along with the resonance pole found in this study,

where mπ ∼ 700 MeV, in Figure 6.15. We can see at the physical light-quark mass, the

resonance is broader and lighter than that found at the unphysically heavy light-quark

mass – behaviour that we have observed in the b1 (Figure 5.19), and has been shown for

the ρ [4] and K∗ [83].

For the ρ and K∗ resonances, the couplings to ππ and πK respectively appear to be

independent of mπ, once the appropriate phase-space factors have been removed. Assuming

similar behaviour for the π1, we can extrapolate the couplings presented in Eq. 6.12 to the

physical light-quark mass.

We determine the couplings to each SU(2)F channel by weighting the SU(3)F coupling
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Figure 6.14: Points are the best estimates of each coupling – (η)8(η)1{1P 1} (dark blue),

(ω)8(η)8{3P 1} (red), (ω)8(ω)8{3P 1} (orange), (ω)8(ω)1{XP 1} (green),

(f1)8(η)8{3S1} (light blue), (h1)8(η)8{3S1} (purple) – where the error bars reflect a

combination of statistical and systematic uncertainties and encompass variation over the

range of parameterisations.

by the appropriate SU(3)F Clebsch-Gordan coefficients,

∣∣cSU(2)

(M1)I1 (M2)I2{2S+1`J}

∣∣ =
∣∣cSU(3)

(M1)F1
(M2)F2

{2S+1`J}

∣∣
√√√√√√∑

Y1,Y2
Iz1 ,Iz2

[
CSU(3)

(
F1 F2 8i

ν1 ν2 ν

)]2

. (6.13)

Recall ν = (I, Y, Iz) = (1, 0, 1) and that i = 1, 2 depending on which embedding gives a

negative G-parity. As SU(2)F flavour irreps are labelled by total isospin, we sum over the

different hypercharges and z-components of isospin for a given total isospin and normalise

such that the sum squared of the magnitudes of the SU(2)F couplings gives the magnitude

squared SU(3)F coupling.

The isoscalar components of the SU(3)F multiplets are an admixture of two SU(2)F

mesons. As such, the SU(2)F couplings that feature isoscalar components of the SU(3)F
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Figure 6.15: The π1 pole. Pink shows the estimate from this work with mπ ≈ 700 MeV

and black is the experimentally determined mass and width of the π1 resonance [6].

multiplets, via non-vanishing Clebsch-Gordan coefficients in Eq. 6.13, are appropriately

split9 between the two SU(2)F mesons. For example, for the isoscalar components of the

octet and singlet pseudoscalars, (η)8 and (η)1, we use an octet-singlet basis mixing angle

of θP = −10◦ [26], such that the isoscalar elements of the SU(3)F pseudoscalar octet and

singlet, expressed in terms of SU(2)F states, η and η′, are given by,

|(η)8; 0, 0, 0〉 = cos(θP ) |η〉+ sin(θP ) |η′〉

|(η)1; 0, 0, 0〉 = − sin(θP ) |η〉+ cos(θP ) |η′〉 , (6.14)

and therefore, the couplings to the pseudoscalar-pseudoscalar channels are,∣∣cSU(2)

πη{1P 1}

∣∣ = sin(θP )
∣∣cSU(3)

(η)8(η)1{1P 1}

∣∣
∣∣cSU(2)

πη′{1P 1}

∣∣ = cos(θP )
∣∣cSU(3)

(η)8(η)1{1P 1}

∣∣. (6.15)

This of course preserves the property that the sum squared magnitude of the SU(2)F

couplings gives the squared magnitude SU(3)F coupling. For the isoscalar components of

9Experiments have determined the admixtures for a number of isoscalar mesons.
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the octet and singlet axial-vectors, (f1)8 and (f1)1, we replace η and η′ in Eq. 6.14 with

f1 and f ′1 respectively10 and take θP = −34◦ [26]. Similarly, for the isoscalar octet and

singlet vectors, (ω)8 and (ω)1, we replace η and η′ in Eq. 6.14 with ω and φ respectively

and set θP = −52◦ [26].

Lastly, phase-space factors are removed by scaling the SU(2)F couplings by the ratio of

cm-frame momentum, evaluated at the resonance pole position at each pion mass,

∣∣cphys.
(M1)I1 (M2)I2{2S+1`J}

∣∣ =
∣∣c(M1)I1 (M2)I2{2S+1`J}

∣∣∣∣∣∣kphys.
cm

kcm

∣∣∣∣`. (6.16)

As an explicit example, consider (ω)8(η)8{3P 1}. The SU(2)F two-meson flavour content

was given in Eq. 4.7 which we transcribe below for brevity,

|(ω)8(η)8; 1, 0, 1〉 =
1√
6

(
|K∗+〉 |K0〉 − |K∗0〉 |K+〉

)
+

1√
3

(
|ρ+〉 |π0〉 − |ρ0〉 |π+〉

)
.

Following Eqs. 6.13 and 6.16, the physical π1 couplings to ρπ{3P 1} and K∗K{3P 1} are

given by,

|cphys.

ρπ{3P 1}
| =

√
2

3
|c(ω)8(η)8{3P 1}|

∣∣∣∣kphys.
ρπ

kρπ

∣∣∣∣
|cphys.

K∗K{3P 1}
| =

√
1

3
|c(ω)8(η)8{3P 1}|

∣∣∣∣kphys.

K∗K

kK∗K

∣∣∣∣. (6.17)

Note that no isoscalar elements of the SU(3)F featured in this example.

We present the couplings to each SU(2)F meson-meson channel in Table 6.4. Here, the

uncertainties reflect those on the couplings in Eq. 6.12 together with the uncertainties on

the masses and widths of the resonant poles, propagated through the ratio of cm-frame

momenta.11 Masses of the mesons at the physical light-quark limit were taken from the

PDG [5] and masses at the SU(3)F point with mπ ∼ 700 MeV were taken from Table 6.2.

10We take the f1 and f ′1 to correspond to the experimentally observed f1(1285) and f1(1420) respec-

tively [5].
11We take the physical π1 mass and width to be mphys.

R = 1564± 110 MeV and Γphys.
R = 492± 156 MeV

respectively [6].
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SU(3)F SU(2)F ∣∣cphys.
M1M2{2S+1`J}

∣∣ /MeV
M1M2{2S+1`J} M1M2{2S+1`J}

(η)8(η)1{1P 1}
πη{1P 1} 81(32)

πη′{1P 1} 343(140)

(ω)8(η)8{3P 1}
ρπ{3P 1} 227(105)

K∗K{3P 1} 124(59)

(ω)8(ω)8{3P 1}
ρω{3P 1} 71(44)

ρφ{3P 1} 106(64)

K∗K
∗{3P 1} 166(100)

(ω)8(ω)1{XP 1}
ρω{XP 1} 179(132)

ρφ{3P 1} 163(119)

(f1)8(η)8{3S1}

a1η{3S1} 371(214)

a1η
′{3S1} 65(38)

f1π{3S1} 314(181)

f ′1π{3S1} 207(120)

K1K{3S1} 652(376)

(h1)8(η)8{3S1}
b1π{3S1} 763(453)

K1K{3S1} 540(320)

Table 6.4: Couplings extrapolated to the physical quark mass limit, as described in the

text.

6.7 Summary

In this chapter we have presented, for the first time in lattice QCD, a calculation of the π1

resonance from coupled-channel scattering. Furthermore, this is the first time vector-vector

channels have been incorporated in a lattice QCD scattering calculation.

Utilising the rest-frame finite-volume spectra, scattering amplitudes in (η)8(η)1{1P 1},
(ω)8(η)8{3P 1}, (ω)8(ω)8{3P 1}, (ω)8(ω)1{XP 1}, (f1)8(η)8{3S1} and (h1)8(η)8{3S1}
were determined for a range of parameterisations. In addition, we found small

(ω)8(η)8{3F 3} and (ω)8(ω)1{5P 3} scattering amplitudes, with no evidence of resonant
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enhancement in the exotic JPC = 3−+ sector at this energy range.

By analytically continuing the scattering amplitudes into the complex energy plane,

we unambiguously found a single resonance pole with mass mR = 2148(33), relatively

close to the real energy axis with width ΓR = 95(69), that we interpreted as the π1

resonance. Of particular note, we found no evidence of a second resonance pole in this

energy region. Couplings to (η)8(η)1{1P 1} and (ω)8(η)8{3P 1} were robustly deter-

mined, found to be non-zero and comparable in magnitude, while (ω)8(ω)8{3P 1} and

(ω)8(ω)1{XP 1} couplings were smaller and consistent with zero. Hints of large cou-

plings to both (f1)8(η)8{3S1} and (h1)8(η)8{3S1} were observed but these were poorly

determined.

For the first time in a lattice QCD calculation, we performed an eight coupled-channel

scattering analysis, presenting the phase-shifts and mixing-angles through the eight-channel

generalised Stapp-parameterisation.

This work has demonstrated the advances and capabilities of lattice calculations for

studying many coupled-channel systems and in particular, in a system where large ex-

perimental efforts towards calculating the lightest exotic meson are being undertaken.

It would be desirable to pin down more precisely the couplings to the (f1)8(η)8{3S1}
and (h1)8(η)8{3S1}, featuring the b1π and f1π channels which have been seen experimen-

tally and appear in this calculation to show hints of large couplings. Looking forward,

once a three-hadron scattering formalism is practical to use, finite-volume spectra from

moving-frame irreps could be incorporated into the analysis as additional constraints,

and moreover, a calculation of the π1 at a lighter pion mass would make for an excellent

comparison.

Appendices

6.A SU(3)F Octet Multiplets

For reference, we present the SU(2)F contents of the SU(3)F scalar, axial-vector and tensor

octets in Figure 6.16.
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(a) (1−)0++ (f0)8 octet (b) (1−)1++ (f1)8 octet

(c) (1+)1+− (h1)8 octet (d) (1−)2++ (f2)8 octet

Figure 6.16: SU(2)F flavour content of the scalar, axial-vector and tensor octets. The

(IG)JPC quantum numbers for the isovector elements are given in the sub-captions.
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6.B Indistinguishable (ω)8(ω)1 Amplitudes

The quantisation condition subduced into the [000]T−1 irrep cannot distinguish between

the three JP = 1− vector-vector (ω)8(ω)1-channels. The scattering parameters within

the t-matrix, parameterising the 1P 1-,
3P 1- and 5P 1-waves, can be freely interchanged

while leaving the determinant invariant. As such, we cannot uniquely determine these

amplitudes here and must incorporate moving frames in the analysis if we are to make

such a distinction. We show this invariance by examining symmetries of the quantisation

condition below.

For convenience, we transcribe the quantisation condition subduced into [000]T−1 ,

det
`SJna

[
1 + iρ · t ·

(
1 + iM

~0,T−1
)]

= 0,

and take the second row of the irrep.12 It follows from Eq. 2.52 that as the only non-zero

subduction coefficient is trivially S10
T−1 2

= 1, the quantisation condition can be equivalently

written in the |`SJma〉 basis as,

det
`SJma

[
1 + iρ · t ·

(
1 + iM

)]
= 0,

where M is at momentum zero and has components given in Eq. 2.49. It is this matrix

we examine now.

From Eq. 2.49, it is immediate that M is diagonal in intrinsic spin and thus no mixing

between the three P -wave vector-vector channels given above can feature in M. We

therefore look at the diagonal components in each of these channels. It is useful here to

make observation about the Z-functions and integral of the product of spherical harmonics

expressed in Eqs. 2.50 and 2.51 respectively.

At zero momentum, Z¯̀m̄` = 0 whenever m̄` /∈ 4Z, ¯̀ /∈ 2Z and ¯̀, m̄` = 2, 0 and the first

few non-zero Z¯̀m̄` are Z00, Z40 and Z4±4. For ¯̀≥ 4, it is immediate from Eq. 2.51 that∫
dΩ Y ∗1m`Y

∗
¯̀m̄`
Y1m′`

= 0 as the Clebsch-Gordan coefficients,

C

(
1 1 ¯̀

0 0 0

)
= 0.

12It does not matter which row we consider, however the second row gives more symmetric Clebsch-

Gordan coefficients which will be useful later.
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For ¯̀ = m̄ = 0, it follows from Eq. 2.51 that
∫
dΩ Y ∗1m`Y

∗
00Y1m′`

= δm`m′` and hence, from

Eq. 2.49, that,

M1SJma, 1SJ ′m′a =
∑

m`,m
′
`,mS

C

(
1 S J

m` mS m

)
C

(
1 S J ′

m′` mS m′

)(
4π

k
(a)
cm

)
c
~0
0,0([k(a)

cm ]2;L)δm`m′`

=
∑
mS

C

(
1 S J

−mS mS m

)
C

(
1 S J ′

−mS mS m′

)(
4π

k
(a)
cm

)
c
~0
0,0([k(a)

cm ]2;L)

= δJJ ′δmm′

(
4π

k
(a)
cm

)
c
~0
0,0([k(a)

cm ]2;L).

As the only non-zero subduction coefficient for J = 3 in the second row of T−1 is trivially

S30
T−1 2

= 1, we find that the matrix M is invariant under permutations of all the P -wave

(ω)8(ω)1-channels.

The matrix of phase-space factors ρ is also invariant under such permutations. The

t-matrix however forbids mixing between J = 1 and J = 3 and subsequently, in general,

we cannot interchange the XP 1 and 5P 3 scattering parameters. Nevertheless, for any t-

matrix, interchanging the 1P 1, 3P 1 and 5P 1 scattering parameters will leave the determinant

invariant and therefore, using the [000]T−1 energy levels as constraints, we cannot distinguish

the 1P 1-, 3P 1- and 5P 1-wave (ω)8(ω)1 scattering amplitudes.

6.C Scattering Parameterisations

We present the table of scattering parameterisations that successfully described the finite-

volume spectra, as discussed in the text, in Table 6.5. The correlations between the

scattering parameters of the reference amplitude (the first parameterisation shown in bold

in Table 6.5) are presented in Table 6.6. Entries in the table with a dash ‘-’ in the χ2/Ndof

column correspond to parameterisations that failed to converge to a minimum.
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Chapter 7

Generalised Stapp-parameterisation

There is no established method in the literature to minimally display the S-matrix in three

or more channel scattering. An approach that is often taken involves plotting the real and

imaginary parts of each of the elements, however, this contains redundancies as it does not

account for the constraints provided by unitarity. Plotting the magnitudes via ρaρb
∣∣tab∣∣2

has the advantage of being closely related to a differential cross-section, but discards

important phase information. For the two channel case, the Stapp-parameterisation [65]

is minimal with regard to unitarity and reduces to single-channel phase-shifts when the

channels decouple. No generalisation to more channels, that naturally reduces to the

two-channel Stapp parameterisation, appears in the literature. In this chapter, we provide

such a generalisation to n-channels, preserving the notion of n phase-shifts and n(n− 1)/2

mixing-angles.

We begin by defining the exponential map from the Lie Algebra LU(n) to the Lie Group

U(n) as,

Exp: LU(n)→ U(n)

X → exp(iX). (7.1)

With this definition, a basis for LU(n) is given by the set of n2, n× n Hermitian matrices.

A convenient choice are the sets {∆i|1 ≤ i ≤ n}, {Θij| 1 ≤ i < j ≤ n} and {Ψij| 1 ≤ i <

j ≤ n} where,

(∆i)ab =δiaδib (no sum on i) (7.2)

(Θij)ab =δiaδjb + δjaδib, (i < j) (7.3)

(Ψij)ab =iδiaδjb − iδjaδib (i < j) . (7.4)

In order to construct a general n× n symmetric unitary matrix S, we exponentiate the

185
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subset of n(n+ 1)/2 symmetric matrices, {∆i,Θjk}, and take S = BBT where,

B = exp(iδ1∆1) exp(iδ2∆2)... exp(iδn∆n)

× exp(iε̄n−1nΘn−1n)... exp(iε̄12Θ12). (7.5)

Here BT denotes the matrix transpose of B and {δi, ε̄jk} are a set of n(n + 1)/2 real

parameters.

With this choice, for two channels, δ1, δ2 and ε̄12 are exactly the Stapp phase-shifts and

mixing-angle of Ref. [65]. If instead we take S = B̃B̃T , where,

B̃ = exp(iθn−1nΨn−1n)... exp(iθ12Ψ12)

× exp(iδ̃1∆1) exp(iδ̃2∆2)... exp(iδ̃n∆n) , (7.6)

we obtain a parameterisation similar to that of Blatt and Biedenharn [101] where δ̃ are

the eigen-phaseshifts and θ are some mixing-angles.

We use the indexing ε̄ij and Θij to conveniently label the angle and matrix respectively

that mix channels i and j. By construction, this parameterisation gives a symmetric

unitary matrix with n(n + 1)/2 independent free parameters and provides a natural

n-channel extension of the two-channel Stapp parameterisation.

As an example of this construction, for two-channels, the basis defined above gives the

matrices,

∆1 =

(
1 0

0 0

)
, ∆2 =

(
0 0

0 1

)
,

Θ12 =

(
0 1

1 0

)
, Ψ12 =

(
0 i

−i 0

)
.

It follows that setting n = 2 in Eq. 7.5 gives,

S =

(
cos(2ε̄12) e2iδ1 i sin(2ε̄12) ei(δ1+δ2)

i sin(2ε̄12) ei(δ1+δ2) cos(2ε̄12) e2iδ2

)
(7.7)

which is precisely the Stapp-parameterisation.
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The generalised three-channel Stapp-parameterisation has 6 free real-parameters (three

phase-shifts and three mixing-angles) and is obtained by taking n = 3 in Eq. 7.5. Fixing

ε̄13 = 0 and ε̄23 = 0 reduces to the two-channel Stapp-parameterisation in channels 1 and

2, and leaves a single phase-shift in the channel 3. An analogous reduction applies for

other appropriate combinations of mixing-angles taken to be zero. Explicitly, the elements

of the S-matrix are,

S11 =
(
χ12 c

2
13 − s2

13

)
e2iδ1

S12 = c13

(
iσ12c23 − s13s23(1 + χ12)

)
ei(δ1+δ2)

S13 = c13

(
ic23s13(1 + χ12)− σ12s23

)
ei(δ1+δ3)

S22 =
(
χ12 c

2
23 + χ12 s

2
13s

2
23 − c2

13s
2
23 − 2iσ12s13s23c23

)
e2iδ2

S23 =
(
σ12s13 (s2

23 − c2
23) + ic2

13c23s23(1 + χ12)
)
ei(δ2+δ3)

S33 =
(
c2

13c
2
23 − χ12s

2
13c

2
23 − χ12s

2
23 − 2iσ12s13s23c23

)
e2iδ3 (7.8)

where

χ12 = cos(2ε̄12), c13 = cos(ε̄13), c23 = cos(ε̄23)

σ12 = sin(2ε̄12), s13 = sin(ε̄13), s23 = sin(ε̄23).

These conventions mean that δ1 = 1
2

arg(S11), which is in agreement with Refs. [7, 62,63]

where the ‘phase-shifts’, ψi, are defined as ψi = 1
2

argSii. However, we see for δ2 and δ3

there are corrections to the phase due to the imaginary components ∝ σ12s13s23c23 in

the expressions for S22 and S33, given in Eq. 7.8. For a very weakly mixed channel these

corrections are very small and δi ≈ ψi for i = 2, 3.

We make a note here that determining {δi, ε̄jk} directly from some S-matrix is much less

trivial than in determining eigen-phaseshifts and mixing-angles by diagonalising S. The

relationship between {δi, ε̄jk} and {δ̃i, θjk} is highly non-linear and related through the

BCH formula, invoked when equating S = BBT = B̃B̃T for B and B̃ defined in Eq. 7.5

and Eq. 7.6 respectively. The method we use to determine {δi, ε̄jk} is detailed below.
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7.1 Determination of {δi, ε̄jk}

In order to determine the phase-shifts and mixing-angles as a function of cm-frame

energy, we solve S(δi, ε̄jk;Ecm) = Slat.(Ecm) for δi(Ecm) and ε̄jk(Ecm) where Slat.(Ecm) is

an S-matrix calculated from the energy dependent scattering amplitudes – for example

the reference amplitudes presented in the previous chapters. The approach we take

here is to construct a differential equation at each Ecm in the space of δi(Ecm) and

ε̄jk(Ecm) with a fixed point corresponding to the phase-shifts and mixing-angles that give

S(δi, ε̄jk;Ecm) = Slat.(Ecm). We implement an Euler flow to solve for this fixed point to

some specified tolerance. The construction is given below.

Define f(δi, ε̄jk;Ecm) to be the Frobenius norm of the difference of S and Slat.,

f(δi, ε̄jk;Ecm) = ||S(δi, ε̄jk;Ecm)− Slat.(Ecm)||2fro. (7.9)

where ||aij||fro. =
√∑

ij |aij|2 is the sum over the modulus squared of each matrix element.

By construction, f(δi, ε̄jk;Ecm) is a positive semi-definite function, attaining its minimum

when S(δi, ε̄jk;Ecm) = Slat.(Ecm). The partial derivative with respect to δi(Ecm) and

ε̄jk(Ecm) is,

∂f

∂xa
(x(Ecm);Ecm) =

∑
ij

2Re
(∂S∗ij
∂xa

(x(Ecm);Ecm)×e
(
Sij(x;Ecm)− Slat.ij (Ecm)

))
, (7.10)

where x(Ecm) denotes the vector of phase-shifts and mixing-angles, {δi(Ecm), ε̄jk(Ecm)},
and ×e denotes element-wise matrix multiplication.

To obtain the fixed point, and hence the phase-shift and mixing-angles, the parameters

x are updated at each iteration by,

x(n+1) = x(n) − h ∂f

∂x(n)
,

where h is some constant step size and the fixed point is given in the limit n → ∞. In

practice, we terminate when both,

ε >

∣∣∣∣ ||S(x(N+1);Ecm)− Slat.(Ecm)||fro. − ||S(x(N);Ecm)− Slat.(Ecm)||fro.

||S(x(N);Ecm)− Slat.(Ecm)||fro.

∣∣∣∣
ε > ||S(x(N);Ecm)− Slat.(Ecm)||fro. , (7.11)
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where the first condition ensures convergence of the flow and the second gives x(N) ≈ x(∞)

for ε small.

We propagate parameter errors and correlations in the scattering amplitudes onto

x(N)(Ecm) by first generating an ensemble of scattering parameter values according to

a multivariate Gaussian distribution defined by the parameter covariance matrix. This

ensemble is propagated under jackknife to calculate an ensemble of x(N)(Ecm) and the

corresponding means and uncertainties are determined.

As a final comment we point out a useful property of the above construction. The

parameters δi(Ecm), ε̄jk(Ecm) are continuous functions of Ecm and as such, the solution

x(N)(Ecm) to Eq. 7.11 provides an excellent set of priors at energy Ecm + ∆Ecm, provided

∆Ecm is sufficiently small, speeding up the rate of convergence.

7.2 Properties of S(δi, ε̄jk)

This S-matrix parameterisation has a number of elegant properties. Firstly, ordering the

kinematic thresholds by increasing energy, we see that below the N th threshold, for real

Ecm, the symmetric S-matrix has components Sni = Sin = δni for n ≥ N and therefore

δn(Ecm) = ε̄in(Ecm) = 0 for all n ≥ N and all i. As the N th threshold opens, the phase-shift

δN(Ecm) and N − 1 mixing-angles ε̄iN(Ecm) for 1 ≤ i ≤ N − 1 ‘turn on’. In this sense, at

each kinematic threshold, the parameterisation naturally extends to accommodate the

additional channel(s).1 Furthermore, if ε̄iN(Ecm) = 0 for all 1 ≤ i ≤ N − 1 in a region

above the N th-threshold, we see that this channel decouples and the parameterisation

appears to be block diagonal with an (N − 1) × (N − 1)-block and a single decoupled

phase-shift δN (Ecm). We observed this in the five coupled-channel b1 study in Section 5.7.3

where two-channels decoupled, illustrated clearly in Figure 5.17.

7.3 Examples

In this section, we apply the parameterisation to the scattering amplitudes determined for

the three coupled S-wave pseudoscalar-pseudoscalar system, featuring the f0 resonance [7].

We will compare the phase-shifts with those reported in the aforementioned reference and

1Multiple channels if more than one partial-wave features at a single kinematic threshold.
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examine any differences. In each of these calculations, the phase-shifts were defined as

the overall phase of the diagonal elements of the S-matrix, ψi = 1
2

argSii. We will also

present the mixing-angles through inelasticities, cos 2ε̄, as there is a sign ambiguity in

each of the off-diagonal S-matrix elements. This arises from a freedom to rephase the

hadron states, subject to the S-matrix being symmetric, and means in this case the sign is

unphysical. ‘Inelasticities’, ηi, were defined as the magnitudes of the diagonal components

of the S-matrix, ηi = |Sii|, in Ref. [7]. Below the third coupled-channel threshold, the

single inelasticity cos 2ε̄12 is equivalent to |S11| = |S22| however, above this threshold, there

is no meaningful comparison and as such we only plot cos 2ε̄ij.

7.3.1 f0

The f0 features in a three coupled-channel system of ππ, KK and ηη with vacuum

quantum numbers, i.e. (IG)JPC = (0+)0++. In brief, the results of Ref. [7] show a

somewhat decoupled ηη channel and strongly coupled ππ and KK. In Figure 7.1 we

present the phase-shifts δi and diagonal phases ψi.

The figure shows that the phase-shifts and diagonal phases agree below the ηη-threshold

– expected since these are equivalent in this energy region. Above ηη-threshold, small

deviations between δ2,3 and ψ2,3 can be seen due to the differences in the phase of the

diagonal entries2 of the S-matrix, coming from the term ∝ iσ12s13s23c23 in Eq. 7.8. As

the ηη is found to be approximately decoupled in Ref. [7], the difference between the

phase-shifts and diagonal phases is expected to be modest since the term ∝ iσ12s13s23c23

will be suppressed for small mixing-angles.

Presented in Figure 7.2 are the three inelasticities. We find a large deviation away

from unity in the inelasticity between ππ|KK compared to KK|ηη and ππ|ηη. The ππ|ηη
inelasticity is shown to be consistent with zero outside the energy range 0.21 . atEcm . 0.23

and within this interval, the difference from unity is found to be modest. This observation

is manifest in the behaviour of the phase-shifts and diagonal phases in Figure 7.1. In the

energy range 0.21 . atEcm . 0.23, small discrepancies between δ2,3 and ψ2,3 are observed

however, outside this interval they are consistent, as σ12s13s23c23 = 0 for ε̄13 = 0.

2Recall that δ1 is identical to ψ1 by construction – see Eq. 7.8.
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Figure 7.1: Phase-shifts, δi (solid curves), and diagonal phases, ψi (dashed curves), for the

reference parameterisation quoted in Ref. [7] – ππ (blue), KK (red), ηη (green). Coloured

bands reflect the uncertainties δi while the grey bands give the uncertainties on ψi.
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Figure 7.2: Inelasticities, cos 2ε̄ij, for the reference parameterisation quoted in Ref. [7] –

ππ|KK (orange), ππ|ηη (blue), KK|ηη (purple). Coloured bands reflect the uncertainties

on the reference amplitude.
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7.4 Summary

The parameterisation presented in this chapter is a natural n-channel extension of the

two-channel Stapp-parameterisation [65], minimally displaying the n(n + 1)/2 degrees

of freedom of an n× n symmetric unitary matrix. In the case that k-channels decouple,

the parameterisation block diagonalises, with an (n− k)× (n− k) block, governing the

remaining coupled (n− k)-channels, and the k-block a diagonal matrix of phases.

We have presented a method for calculating the phase-shifts and mixing-angles and have

presented the results for the three coupled-channel scattering systems featuring the f0.

As a final comment, this parameterisation allows relative sign information between

dynamically-coupled partial-waves to be captured in the mixing-angles, unlike the ρaρb|tab|2

magnitude squared where such information is discarded, vital for scattering calculations of

hadrons with non-zero intrinsic spin.



Chapter 8

Conclusion

Over the course of my PhD, my ambition was to perform scattering calculations of hadrons

with non-zero intrinsic spin from first principles QCD. Here, I summarise how that goal

was achieved.

In Chapter 3, I presented the first lattice calculation of ρπ scattering in isospin-2. I

showed how a non-zero intrinsic spin leads to dynamically-coupled partial-waves and

gave an overview on how the finite-volume energy spectra can be used to determine the

scattering amplitudes. A basis of vector-pseudoscalar operators resembling isospin-2 ρπ-like

states was constructed at the SU(3)F point. Furthermore, a discussion on how multiple

linearly independent vector-pseudoscalar operators can appear at a single non-interacting

energy and the importance of including all such operators was discussed. Using an

anisotropic lattice, large matrices of two-point correlation functions were computed within

the distillation framework, and the energy spectra for ρπ in isospin-2 were determined

from a variational analysis. I utilised the Lüscher quantisation condition to determine all

S-, P - and D-wave amplitudes from a global analysis of a large number of finite-volume

energies. For the first time in a lattice QCD calculation, the mixing-angle, governing

the dynamical mixing between the 3S1 and 3D1 partial-waves, was determined and the

dependence of the finite-volume spectra on the mixing-angle was given.

In Chapter 4, I examined ρπ in isospin-1. A comprehensive discussion of the manifestation

of Bose-symmetry and G-parity at the SU(3)F point was presented and appropriate bases

of single-meson and two-meson operators constructed. I gave a qualitative discussion of

the rest-frame spectra and concluded that the a1 axial-vector meson appeared to feature

as a bound-state.

The b1 axial-vector, with opposite charge-conjugation to the a1, decays dominantly

into the πω vector-pseudoscalar channel, dynamically coupled in 3S1- and 3D1-wave. At

light-quark masses resulting in a pion mass ∼ 391 MeV, the ω meson is stable against

strong decay to πππ and a first lattice QCD calculation of coupled πω and πφ scattering,
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incorporating dynamically-coupled 3S1- and 3D1-waves in πω, was presented in Chapter 5.

Single-, two- and three-meson operators were constructed and finite-volume spectra were

determined via a variational analysis of matrices of two-point correlation functions. Utilising

the relationship between the discrete spectrum of finite-volume energies and infinite-volume

scattering amplitudes, I found a narrow axial-vector resonance (JPC = 1+−), the analogue

of the b1 meson, with mass mR ≈ 1380 MeV and width ΓR ≈ 91 MeV. The resonance was

found to couple dominantly to S-wave πω, with a much-suppressed coupling to D-wave

πω, and a negligible coupling to πφ consistent with the ‘OZI rule’.

Chapter 6 was dedicated to a first lattice QCD scattering calculation of the exotic

JPC = 1−+ sector. To circumvent the need for a three-body scattering formalism, I

once again worked at a heavy pion mass ∼ 700 MeV. At this pion mass, the exotic

π1 was anticipated to resonate in an energy region featuring eight coupled channels:

one pseudoscalar-pseudoscalar, one vector-pseudoscalar, two axial-vector-pseudoscalar

and four vector-vector. Finite-volume spectra were calculated in the rest-frame so that

the conservation of parity ensured potentially troublesome low-lying a0- and a2-like

resonances and contributions from three-body channels were circumvented. A coupled-

channel scattering analysis was performed and a single resonance pole was robustly

determined, which I interpreted as the exotic π1 resonance. Correspondingly, the couplings

to all coupled channels were calculated and extrapolated to the physical light-quark mass

limit.

The calculations in this thesis demonstrate the capability lattice QCD has in determining

the rich spectrum of hadronic resonances. The techniques developed will enable first

principles calculations in channels featuring the exotic ‘X, Y, Z’ states in the charm and

bottom sectors, the vast majority strongly decaying via hadrons with non-zero intrinsic

spins. Furthermore, these techniques combined with a fully mature three-body formalism

will enable rigorous first principles calculations of hadrons such as the a1 meson, which has

a dominant decay to the dynamically-coupled 3S1- and 3D1-wave ρπ where the unstable ρ

decays to ππ. The recent progress in both the formalism and tools, required for rigorous

calculations of scattering amplitudes and resonances from lattice QCD, makes for an

exciting future in hadron spectroscopy.



Bibliography

[1] SciDAC, LHPC, UKQCD Collaboration, R. G. Edwards and B. Joo, The

Chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832,

[hep-lat/0409003].

[2] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi, Solving Lattice

QCD systems of equations using mixed precision solvers on GPUs, Comput. Phys.

Commun. 181 (2010) 1517–1528, [arXiv:0911.3191].

[3] R. Babich, M. A. Clark, and B. Joo, Parallelizing the QUDA Library for Multi-GPU

Calculations in Lattice Quantum Chromodynamics, in SC 10 (Supercomputing 2010)

New Orleans, Louisiana, November 13-19, 2010, 2010. arXiv:1011.0024.

[4] D. J. Wilson, R. A. Briceño, J. J. Dudek, R. G. Edwards, and C. E. Thomas,

Coupled ππ,KK̄ scattering in P -wave and the ρ resonance from lattice QCD, Phys.

Rev. D92 (2015), no. 9 094502, [arXiv:1507.02599].

[5] Particle Data Group Collaboration, M. T. et al., Review of particle physics,

Phys. Rev. D98 (Aug, 2018) 030001.

[6] JPAC Collaboration, A. Rodas et al., Determination of the pole position of the

lightest hybrid meson candidate, Phys. Rev. Lett. 122 (2019), no. 4 042002,

[arXiv:1810.04171].

[7] R. A. Briceño, J. J. Dudek, R. G. Edwards, and D. J. Wilson, Isoscalar ππ,KK, ηη

scattering and the σ, f0, f2 mesons from QCD, arXiv:1708.06667.

[8] R. C. Johnson, Angular momentum on a lattice, Phys. Lett. B114 (1982) 147.

[9] D. C. Moore and G. T. Fleming, Multiparticle States and the Hadron Spectrum on

the Lattice, Phys. Rev. D74 (2006) 054504, [hep-lat/0607004].

196

http://arxiv.org/abs/hep-lat/0409003
http://arxiv.org/abs/0911.3191
http://arxiv.org/abs/1011.0024
http://arxiv.org/abs/1507.02599
http://arxiv.org/abs/1810.04171
http://arxiv.org/abs/1708.06667
http://arxiv.org/abs/hep-lat/0607004


BIBLIOGRAPHY 197

[10] C. E. Thomas, R. G. Edwards, and J. J. Dudek, Helicity operators for mesons in

flight on the lattice, Phys. Rev. D85 (2012) 014507, [arXiv:1107.1930].

[11] M. Gell-Mann, A schematic model of baryons and mesons, Physics Letters 8 (1964),

no. 3 214 – 215.

[12] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking;

Version 2, CERN-TH-412 (Feb, 1964) 80 p.

[13] C. Gattringer and C. B. Lang, Quantum Chromodynamics on the Lattice. Springer,

2010.

[14] K. Symanzik, Continuum limit and improved action in lattice theories: (i).

principles and φ4 theory, Nuclear Physics B226 (1983), no. 1 187 – 204.

[15] B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for

QCD with Wilson Fermions, Nucl. Phys. B259 (1985) 572.

[16] P. Chen, Heavy quarks on anisotropic lattices: The Charmonium spectrum, Phys.

Rev. D64 (2001) 034509, [hep-lat/0006019].

[17] C. Morningstar and M. J. Peardon, Analytic smearing of SU(3) link variables in

lattice QCD, Phys. Rev. D69 (2004) 054501, [hep-lat/0311018].

[18] G. P. Lepage and P. B. Mackenzie, On the viability of lattice perturbation theory,

Phys. Rev. D48 (1993) 2250–2264, [hep-lat/9209022].

[19] G. P. Lepage, Redesigning lattice QCD, Lect. Notes Phys. 479 (1997) 1–48,

[hep-lat/9607076].

[20] R. G. Edwards, B. Joo, and H.-W. Lin, Tuning for Three-flavors of Anisotropic

Clover Fermions with Stout-link Smearing, Phys. Rev. D78 (2008) 054501,

[arXiv:0803.3960].

[21] Hadron Spectrum Collaboration, H.-W. Lin et al., First results from 2+1

dynamical quark flavors on an anisotropic lattice: Light-hadron spectroscopy and

setting the strange-quark mass, Phys. Rev. D79 (2009) 034502, [arXiv:0810.3588].

http://arxiv.org/abs/1107.1930
http://arxiv.org/abs/hep-lat/0006019
http://arxiv.org/abs/hep-lat/0311018
http://arxiv.org/abs/hep-lat/9209022
http://arxiv.org/abs/hep-lat/9607076
http://arxiv.org/abs/0803.3960
http://arxiv.org/abs/0810.3588


198 BIBLIOGRAPHY
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[58] M. Mai and M. Döring, Three-body Unitarity in the Finite Volume, Eur. Phys. J.

A53 (2017), no. 12 240, [arXiv:1709.08222].

[59] M. Döring, H. W. Hammer, M. Mai, J. Y. Pang, A. Rusetsky, and J. Wu,

Three-body spectrum in a finite volume: the role of cubic symmetry, Phys. Rev. D97

(2018), no. 11 114508, [arXiv:1802.03362].

[60] M. T. Hansen and S. R. Sharpe, Lattice QCD and Three-particle Decays of

Resonances, arXiv:1901.00483.

[61] T. Barnes, N. Black, and E. S. Swanson, Meson meson scattering in the quark

model: Spin dependence and exotic channels, Phys. Rev. C63 (2001) 025204,

[nucl-th/0007025].

[62] Hadron Spectrum Collaboration, J. J. Dudek, R. G. Edwards, and D. J. Wilson,

An a0 resonance in strongly coupled πη, KK scattering from lattice QCD, Phys.

Rev. D93 (2016), no. 9 094506, [arXiv:1602.05122].

[63] G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. J. Wilson,

Coupled-Channel Dπ, Dη and DsK̄ Scattering from Lattice QCD, JHEP 10 (2016)

011, [arXiv:1607.07093].

http://arxiv.org/abs/1504.04248
http://arxiv.org/abs/1203.1241
http://arxiv.org/abs/1701.07465
http://arxiv.org/abs/1707.02176
http://arxiv.org/abs/1709.08222
http://arxiv.org/abs/1802.03362
http://arxiv.org/abs/1901.00483
http://arxiv.org/abs/nucl-th/0007025
http://arxiv.org/abs/1602.05122
http://arxiv.org/abs/1607.07093


202 BIBLIOGRAPHY

[64] D. J. Wilson, J. J. Dudek, R. G. Edwards, and C. E. Thomas, Resonances in

coupled πK, ηK scattering from lattice QCD, Phys. Rev. D91 (2015), no. 5 054008,

[arXiv:1411.2004].

[65] H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phase shift analysis of 310-MeV

proton proton scattering experiments, Phys. Rev. 105 (1957) 302–310.

[66] Hadron Spectrum Collaboration, J. J. Dudek, R. G. Edwards, C. E. Thomas,

and D. J. Wilson, Resonances in coupled πK − ηK scattering from quantum

chromodynamics, Phys. Rev. Lett. 113 (2014), no. 18 182001, [arXiv:1406.4158].

[67] J. J. de Swart, The Octet model and its Clebsch-Gordan coefficients, Rev. Mod.

Phys. 35 (1963) 916–939. [Erratum: Rev. Mod. Phys.37,326(1965)].

[68] Hadron Spectrum Collaboration, G. K. C. Cheung, C. E. Thomas, J. J. Dudek,

and R. G. Edwards, Tetraquark operators in lattice QCD and exotic flavour states

in the charm sector, JHEP 11 (2017) 033, [arXiv:1709.01417].

[69] Hadron Spectrum Collaboration, R. G. Edwards, N. Mathur, D. G. Richards,

and S. J. Wallace, Flavor structure of the excited baryon spectra from lattice QCD,

Phys. Rev. D87 (2013), no. 5 054506, [arXiv:1212.5236].

[70] C. J. Shultz, J. J. Dudek, and R. G. Edwards, Excited meson radiative transitions

from lattice QCD using variationally optimized operators, Phys. Rev. D91 (2015),

no. 11 114501, [arXiv:1501.07457].

[71] C. W. Andersen, J. Bulava, B. Hörz, and C. Morningstar, Elastic I = 3/2 p-wave

nucleon-pion scattering amplitude and the ∆(1232) resonance from Nf=2+1 lattice

QCD, Phys. Rev. D97 (2018), no. 1 014506, [arXiv:1710.01557].

[72] G. F. Chew and S. Mandelstam, Theory of low-energy pion pion interactions, Phys.

Rev. 119 (1960) 467–477.

[73] CLEO Collaboration, D. M. Asner et al., Hadronic structure in the decay

τ− → ντπ
−π0π0 and the sign of the ντ helicity, Phys. Rev. D61 (2000) 012002,

[hep-ex/9902022].

http://arxiv.org/abs/1411.2004
http://arxiv.org/abs/1406.4158
http://arxiv.org/abs/1709.01417
http://arxiv.org/abs/1212.5236
http://arxiv.org/abs/1501.07457
http://arxiv.org/abs/1710.01557
http://arxiv.org/abs/hep-ex/9902022


BIBLIOGRAPHY 203

[74] S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Study of the Z+
c channel

using lattice QCD, Phys. Rev. D91 (2015), no. 1 014504, [arXiv:1405.7623].

[75] J. L. Miramontes, Hermitian analyticity versus real analyticity in two-dimensional

factorized S matrix theories, Phys. Lett. B455 (1999) 231–238, [hep-th/9901145].

[76] Chung, Suh Urk, On SU(3) Representations of qq̄ + qq̄ mesons –

http: // suchung. web. cern. ch/ suchung/ , .

[77] J. J. Dudek, R. G. Edwards, B. Joo, M. J. Peardon, D. G. Richards, and C. E.

Thomas, Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D83 (2011)

111502, [arXiv:1102.4299].

[78] UKQCD Collaboration, C. McNeile and C. Michael, Decay width of light quark

hybrid meson from the lattice, Phys. Rev. D73 (2006) 074506, [hep-lat/0603007].

[79] BESIII Collaboration, M. Ablikim et al., Search for a strangeonium-like structure

Zs decaying into φπ and a measurement of the cross section e+e− → φππ, Phys.

Rev. D99 (2019), no. 1 011101, [arXiv:1801.10384].

[80] Belle Collaboration, Z. Q. Liu et al., Study of e+e− → π+π−Jψ and Observation of

a Charged Charmonium like State at Belle, Phys. Rev. Lett. 110 (2013) 252002,

[arXiv:1304.0121].

[81] BESIII Collaboration, M. Ablikim et al., Observation of a Charged Charmonium

like Structure in e+e− → π+π−Jψ at
√
s =4.26 GeV, Phys. Rev. Lett. 110 (2013)

252001, [arXiv:1303.5949].

[82] M. Padmanath, C. B. Lang, and S. Prelovsek, X(3872) and Y(4140) using

diquark-antidiquark operators with lattice QCD, Phys. Rev. D92 (2015), no. 3

034501, [arXiv:1503.03257].

[83] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards, and C. E. Thomas, The

quark-mass dependence of elastic πK scattering from QCD, arXiv:1904.03188.

[84] A. Woss, C. E. Thomas, J. J. Dudek, R. G. Edwards, and D. J. Wilson,

Dynamically-coupled partial-waves in ρπ isospin-2 scattering from lattice QCD,

JHEP 07 (2018) 043, [arXiv:1802.05580].

http://arxiv.org/abs/1405.7623
http://arxiv.org/abs/hep-th/9901145
http://suchung.web.cern.ch/suchung/
http://arxiv.org/abs/1102.4299
http://arxiv.org/abs/hep-lat/0603007
http://arxiv.org/abs/1801.10384
http://arxiv.org/abs/1304.0121
http://arxiv.org/abs/1303.5949
http://arxiv.org/abs/1503.03257
http://arxiv.org/abs/1904.03188
http://arxiv.org/abs/1802.05580


204 BIBLIOGRAPHY

[85] R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J. Wallace, Excited state baryon

spectroscopy from lattice QCD, Phys. Rev. D84 (2011) 074508, [arXiv:1104.5152].

[86] C. Andersen, J. Bulava, B. Hörz, and C. Morningstar, The I = 1 pion-pion

scattering amplitude and timelike pion form factor from Nf = 2 + 1 lattice QCD,

Nucl. Phys. B939 (2019) 145–173, [arXiv:1808.05007].

[87] L. Leskovec, C. Alexandrou, S. Meinel, J. W. Negele, S. Paul, M. Petschlies,

A. Pochinsky, G. Rendon, and S. Syritsyn, A Lattice QCD study of the ρ resonance,

in 13th Conference on the Intersections of Particle and Nuclear Physics (CIPANP

2018) Palm Springs, California, USA, May 29-June 3, 2018, 2018.

arXiv:1810.01927.

[88] C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies,

A. Pochinsky, G. Rendon, and S. Syritsyn, P -wave ππ scattering and the ρ

resonance from lattice QCD, Phys. Rev. D96 (2017), no. 3 034525,

[arXiv:1704.05439].

[89] RQCD Collaboration, G. S. Bali, S. Collins, A. Cox, G. Donald, M. Göckeler, C. B.
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