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Abstract

Verification of advanced controllers for safety-critical systems

Kestutis Siaulys

In order to design and deploy a feedback controller in a real application, one must de-
termine suitable specifications that the design must meet (“validate”), and then ensure that
the chosen specifications have been met (“verify”).

In this thesis, we investigate a verification paradigm based on formal methods, such as the
Satisfiability Modulo Theories (SMT) and quantifier elimination (Weispfenning’s virtual
term substitution and quantifier elimination by cylindrical algebraic decomposition) algo-
rithms. Any control design requirement (such as satisfactory performance, robustness to
uncertainties, stability, etc.) that can be expressed in a first order logic formula can be (in
principle) verified by using one of these methods.

Consequently, in principle, this allows us to consider problems like general non-convex
optimisation, exact computation of structured singular value, and synthesis of non-convex
feasible parameter sets. In practice, the generality of algorithms like quantifier elimination
by cylindrical algebraic decomposition come with a downside of high running time when
applied to more complex systems with more parameters. This, in some cases, limits the
complexity of the system that we could consider.

Therefore, we focused our attention on control problems such as obtaining an explicit MPC
law for a linear time invariant system with a quadratic objective and polytopic constraints, or
computation of the structured singular value for a system under parametric (and not norm-
bounded) uncertainty. Such problems can be expressed as quantifier elimination problems
with a particular quantification structure that allows us to take advantage of a specialised
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quantifier elimination algorithm — the quantifier elimination by Weispfenning’s virtual term
substitution procedure that has much lower worst-case running time on these types of prob-
lems than quantifier elimination by cylindrical algebraic decomposition algorithm.

Despite these constraints, we were able to apply a quantifier-elimination-based verification
framework to clearance of a flight control law developed for a real world industrial system
from the aerospace field not only at particular combination of parameters but throughout the
whole flight envelope.

In conclusion, while in principle formal methods are applicable to a large body of problems
arising in control theory, more widespread practical application depends on further research
in efficiency and running time improvement in the implementation of these algorithms.
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Chapter 1

Introduction

1.1 Motivation and Scope of Work

Before an advanced feedback control law, such as a Model Predictive Control (MPC) based
controller that contains an optimisation algorithm inside the loop, can be implemented and
deployed in a safety critical system such as fault-tolerant flight control, it has to be exten-
sively validated and verified in order to ensure that required specifications are met. Vali-
dation of the system deals with determining the specifications (such as satisfactory perfor-
mance, robustness to uncertainties, stability, etc.) that the system must meet, while verifica-
tion is concerned with checking that the system satisfies this chosen list of specifications. By
definition, validation is a subjective process that relies on making judgements of what real
world requirements are important. On the other hand, verification is a more objective step
— once the required specifications are expressed mathematically, they can be checked rig-
orously. Hence, throughout this thesis, we focus our attention on clearly defined verification
criteria that can be expressed precisely in mathematical form.

In this thesis, we introduced novel approach to verification based on formal methods
(Satisfiability Modulo Theory (SMT) solvers, quantifier elimination (QE) algorithms such
as Weispfenning’s virtual term substitution and quantifier elimination by cylindrical alge-
braic decomposition (CAD)). In a nutshell, this verification approach works by expressing
a verification criterion of choice in a mathematical form that one of the SMT solvers or QE
algorithms is (in principle) capable of checking (subject to decidability).

Consequently, this allows us to analyse the problem from a different angle and, in some
cases, obtain results that standard control analysis techniques are not necessarily capable
of. This is the case because formal methods, essentially, work by algebraically manipu-
lating the mathematical expression representing the verification criterion to arrive at the
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conclusion and do not involve numerical techniques such as simulation or gridding. This
guarantees that verification by formal methods does not miss a critical frequency or param-
eter combination at which the desired property is violated. Additionally, the generality of
these methods and, in particular, of the CAD-based QE algorithm, allows us (in principle)
to relax conditions such as convexity of the cost function in the optimisation problem. This
enables us to express general optimisation, computation of structured singular value µ and
Linear Temporal Logic (LTL) specification problems as quantifier elimination problems,
and to compute some results that standard techniques are not capable of — for example,
synthesising feasible parameter sets for nonlinearly parametrized systems in the LTL case.

The downside to the proposed quantifier-elimination-based approach that relies on a
general QE algorithm (such as quantifier elimination by cylindrical algebraic decomposi-
tion) is the computational penalty that has to be paid when compared to numerical methods.
This severely limits the complexity of systems that can be verified using this kind of QE
algorithm. Therefore, we limit our attention to control problems that can be expressed as
equivalent quantifier elimination ones with a particular quantification structure where all
quantified variables appear at most quadratically. In this case, a specialised QE algorithm
(quantifier elimination by Weispfenning’s virtual term substitution procedure) that has much
lower worst-case running time on these types of formulas, is applicable. The introduction
of Weispfenning’s algorithm for the solution of control-theoretic problems is a principal
contribution of this thesis.

Therefore, instead of attempting to obtain an an explicit MPC law for a general non-
linear time invariant system with a polynomial objective and polynomial constraints, we
restrict our attention to a linear time invariant system with a quadratic objective and poly-
topic constraints. This guarantees that the quantification structure of the resulting quantifier
elimination problem is such that the efficient Weispfenning’s QE algorithm is applicable.
This is also the case if we consider an MPC problem with a quadratic objective and linear
constraints but with an underlying system dynamics that are linear in the input but nonlinear
in the state (with polynomial state evolution functions).

Similarly, instead of trying to compute the structured singular value µ for a system under
a general norm-bounded uncertainty (which results in a computationally intractable prob-
lem that requires the use of the CAD-based QE algorithm), we consider a system under
structured parametric uncertainty. In this case, all the quantified variables in the equiva-
lent quantifier elimination problem appear linearly, and therefore Weispfenning’s quantifier
elimination algorithm is again applicable. This allows us to analyse the robust stability of
systems subject to three or four parametric uncertainties. In particular, these examples il-
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lustrate the important advantage of the quantifier-elimination-based verification framework
compared to standard iterative branch and bound methods for computing the structured sin-
gular value µ for the system containing only real parametric uncertainties — quantifier
elimination based approach computes the exact value of µ in form of an algebraic expres-
sion rather than lower and upper numerical bounds on it.

Finally, despite the rather high complexity of the system, we were able to use a quantifier-
elimination-based verification framework to verify a control law developed for a real world
industrial system from the aerospace field. The control scheme in question was developed
for the European 7th Framework project titled “REconfiguration of CONtrol in Flight for
Integral Global Upset Recovery (RECONFIGURE)”. The aim of this project was to develop
advanced aircraft guidance and control techniques that facilitate the automated handling of
abnormal events while simultaneously optimizing aircraft performance. In particular, we
investigate the performance of a robust vertical-load-factor-tracking control law which is
based on application of theory from robust MPC and H2 control and which is supposed
to be used as a backup to the baseline Airbus control law in the case when calibrated air-
speed measurement is lost due to multiple simultaneous sensor failures. The verification
framework successfully showed for which parts of the flight envelope (in terms of aircraft
mass, centre of gravity and altitude) the system (interconnection of the model of the aircraft
short period dynamics and the backup controller) performance and robustness conditions of
interest hold. This problem was computationally tractable by a quantifier-elimination-based
verification framework because it depended on a small number of parameters, and therefore
a CAD-based QE algorithm could be utilised. Consequently, this illustrates that, in some
particular instances, verification frameworks based on formal methods can be used to verify
properties of real world industrial systems.

1.2 Structure of the Thesis

The structure of the thesis is as follows. Chapter 2 provides a review of the relevant literature
of formal methods, including SMT solvers, Why3 and MetiTarski tools and QE (Weispfen-
ning’s virtual term substitution and quantifier elimination by cylindrical algebraic decom-
position) algorithms. Chapter 3 is the main part of the thesis where we consider various
verification approaches relying on formal methods that were discussed in the literature re-
view in Chapter 2. In Chapter 3, robustness criteria of interest are defined and translated to
the form that formal methods based approaches are capable of verifying. The Why3 verifica-
tion framework is used to prove Lyapunov stability of an autonomous system implemented
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graphically in Simulink. Quantifier elimination algorithms are used for analysis of the sta-
bility of uncertain systems via calculation of the structured singular value µ , obtaining an
explicit MPC solution and verifying properties like recursive feasibility (as presented in
Siaulys and Maciejowski (2016)), synthesising feasible parameter sets for various systems
and LTL specifications, and checking selected performance and robustness requirements
throughout the whole flight envelope for the backup flight control scheme developed for the
RECONFIGURE project (Maciejowski et al., 2016).

The thesis is concluded in Chapter 4 which provides a summary of the work done, and
some comments on what has been achieved and on the prospects for further progress.



Chapter 2

Literature Review of Formal Methods

2.1 Satisfiability Modulo Theories

2.1.1 Preliminaries

In this section, we give definitions of constructs that will be used throughout the chapter.
A literal l is either a propositional variable p or its negation ¬p. A clause C is a

disjunction of literals C = l1 _ l2 _ · · ·_ ln. Collection P of propositional formulas f is the
smallest class with the properties:

• each literal l 2 P

• if f0 2 P, then ¬f0 2 P

• if f0,f1 2 P, then f0 ^f1 2 P, f0 _f1 2 P, (f0 ) f1) 2 P and (f0 , f1) 2 P.

A truth assignment (or model M) for a propositional formula f maps propositional vari-
ables in f to either true or false. Truth assignment M satisfies f (written as M |= f ) if M
makes f evaluate to true. Formula f is satisfiable if there exists an M such that M |= f .
Otherwise, formula f is unsatisfiable. Formula f is called valid if for all models M, M |= f .
f1 and f2 are equisatisfiable if f1 is satisfiable if and only if f2 is satisfiable.

A propositional formula f is in a conjunctive normal form (CNF) if it is a conjunction
of clauses C1 ^C2 ^ · · ·^Cm, which can equivalently can be expressed as a set of clauses
{C1, C2, . . . ,Cm}. Any propositional formula can be converted to CNF in a polynomial time
by replacing each compound subformula with a new variable and adding required clauses.
For example, consider f = ¬p_ (q^¬r) (which is clearly satisfiable by, say, the model
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M = {p = f alse,q = true,r = f alse}). Let k1 = q^¬r, express it as k1 , q^¬r, which is
equivalent to

(¬k1 _ (q^¬r))^ (¬q_ r_ k1) = (¬k1 _q)^ (¬k1 _¬r)^ (¬q_ r_ k1),

which can then be expressed as a set of clauses K1 = {¬k1_q, ¬k1_¬r, ¬q_r_k1}. Then,
analogously, let f = ¬p_ k1 = k2, express it as k2 , ¬p_ k1, which is equivalent to

(¬k2 _ (¬p_ k1))^ ((p^¬k1)_ k2) = (¬k2 _¬p_ k1)^ (p_ k2)^ (¬k1 _ k2),

which can then be written as a set of clauses K2 = {¬k2_¬p_k1, p_k2, ¬k1_k2}. Hence,
the propositional formula f is equisatisfiable to the set of clauses {k2}[K1[K2. From now
on, all propositional formulas f are assumed to be in a CNF, unless stated otherwise.

A predicate P is a function of one or more variables in some domain of definition X that
returns Boolean values, i.e. it is a function of the form:

P : X ! {true, f alse}. (2.1)

For example, the predicate P(x,y) ⌘ (x = y+ 2) with the domain of definition being real
numbers (i.e., x,y 2R) evaluates to true for x = 2,y = 0 and evaluates to false for x = 0,y =
2. Clearly, by definition, any predicate P(x1, . . . ,xn) becomes a proposition (a statement
that is either true or false but not both) when specific values are substituted for the variables
x1, . . . ,xn.

Another important concept is quantification. Let P(x1, . . . ,xn) be a predicate with a
domain of definition X (i.e, x1, . . . ,xn 2 X). Then universal quantification is a proposition
of the form:

8x1, . . . ,xn in X ,P(x1, . . . ,xn). (2.2)

(2.2) is defined to be true if and only if P(x1, . . . ,xn) is true for every x1, . . . ,xn in X . Simi-
larly, an existential quantification is a proposition of the form:

9x1, . . . ,xn in X ,P(x1, . . . ,xn), (2.3)

which is defined to be true if and only if P(x1, . . . ,xn) is true for at least one combination of
the variables x1, . . . ,xn in X . A variable x is called free if it is not bound by any quantifier
8, 9. For example, x is free in 9y : P(x,y) but y is not. A quantifier-free formula is a formula
not containing universal 8 or existential 9 quantifiers. A sentence is a formula without free
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variables.

Many problems of interest require (or are described more intuitively in) an extension of
propositional formula called first order logic formula. In a propositional formula the atomic
formulas (propositional variables p) have no internal structure — they are either true or
false. In the first order logic formula the atomic formulas are predicates which are not
allowed to have predicates or functions as arguments. Additionally, in the first order logic,
quantification is only allowed over the arguments of predicates.

A formula j2 is a logical consequence of a formula j1 if every model that makes j1 true
also makes j2 true. A theory T is a set of sentences F1, . . . ,Fn (i.e. a set of formulas without
free variables) that is closed under logical consequence, i.e., if F1, . . . ,Fn |= G, then G 2 T .
Elements of T are called theorems which are constructed by selecting a set of sentences
called axioms and deducing their logical consequences. Given some theory T , it is said that
the first order logic formula j is satisfiable modulo theory T if T [ {j} is satisfiable. A
theory T is decidable if there is an algorithm that, given a sentence F , determines whether
or not F 2 T . An algorithm D for a decidable theory T that checks whether a formula j is
satisfiable modulo theory T is called a decision procedure for theory T .

In order to illustrate some of theses concepts, consider an example of first order logic
formula j in CNF

j ⌘ (x = y+2)| {z }
P(x,y)

^(y � z�2)| {z }
Q(y,z)

^( f (x) = f (z))| {z }
Z(x,z)

, (2.4)

where x,y,z 2R, f (x) is some function over the real numbers (i.e., 8x1,x2 2R,x1 = x2 =)
f (x1) = f (x2)) and P(x,y), Q(y,z) and Z(x,z) are appropriate predicates. In this particular
case, the clauses are the predicates P(x,y), Q(y,z) and Z(x,z), all of which are required to
evaluate to true in order for j to be true. By using the fact that P(x,y) must be true, variable
y can be eliminated in (2.4):

j ⌘ (x � z)^ ( f (x) = f (z)). (2.5)

It is clear that (2.5) evaluates to true if we set x = z. Hence, the first order logic formula j
is satisfiable by any model M such that M = {x,y,z 2 R : x = y+2 = z}.

In order to check satisfiability of the formula (2.4), we implicitly relied on two theories:
theory of Linear Real Arithmetic (LRA) and theory of Equality with Uninterpreted Functions
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(EUF). The atomic formulas in LRA are of the form:

a1x1 + . . .+anxn r b, (2.6)

where a1, . . . ,an,b 2 R are real constants, x1, . . . ,xn 2 R are real variables and r is a rela-
tional operator (r 2 {<,,>,�,=, 6=}). Notice that multiplication of two real variables
x1 · x2,x1,x2 2 R is not allowed in atomic formulas of this theory. Decision procedure for
this theory is based on the dual simplex algorithm (Dutertre and de Moura, 2006). EUF
theory is a first order theory defined via the following axioms

Reflexivity: 8x, x = x

Symmetry: 8x,y, x = y =) y = x

Transitivity: 8x,y,z, x = y^ y = z =) x = z

Congruence: 8x1, . . . ,xn,y1, . . . ,yn, (x1 = y1)^ . . .(xn = yn) =) f (x1, . . . ,xn) = f (y1, . . . ,yn)

where f (x1, . . . ,xn) is an uninterpreted function with only its arity (i.e., the number of ar-
guments) known. Decision procedure for this theory is based on the congruence closure
algorithm (Nieuwenhuis and Oliveras, 2007)

Finding the model (truth assignment) M for the propositional formula f is called the
Boolean satisfiability problem, or SAT. High level description of the algorithm used by the
majority of the SAT solvers is given in Section 2.1.2. Finding the model M for the first
order logic formula j is called the Satisfiability modulo theory problem, or SMT. SMT
solvers rely heavily on SAT solvers in order to perform effective case analysis (i.e. finding
which predicates in the first order logic formula j have to be true and which ones have to
be false in order to make j true). This approach, taken by the majority of SMT, solvers will
be discussed in Section 2.1.3.

2.1.2 Boolean satisfiability problem

Most of the SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) al-
gorithm (Davis et al., 1962), whose pseudocode is depicted in Algorithm 1. The DPLL
algorithm performs a systematic search over the search space that is a full binary tree where
each vertex is a propositional variable with two children (except for leaf vertices) represent-
ing the potential truth assignment (true or false) for this variable. Hence, the search space
for a propositional formula f with n variables is a tree with 2n leaves, and each path from
the root to the leaf represents a potential truth assignment M. Given a propositional CNF
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formula f , DPLL-based algorithms use three main operations to search this tree for a truth
assignment M that satisfies f :

Algorithm 1 Pseudocode for DPLL algorithm
function DPLL(f )

if f is a consistent set of literals L then
return true

. detection that formula f is satisfiable
if f contains an empty clause E then

return DPLL(f ^¬l)
. backtrack in case a single clause E evaluates to false
. i.e. try to proceed with an opposite truth value of l

while there is some unit clause U in f do
unit_propagate(f , U)

while there is some pure literal p in f do
pure_literal_elimination(f , p)

Decision(l) . heuristically choose an unassigned propositional variable l
return DPLL(f ^ l) . equivalent to assigning l to true

• Decision (also called branching or case-splitting, denoted as Decision(l) in pseu-
docode) — an unassigned propositional variable l is chosen heuristically and assigned
the value of true or false.

• Propagation — deduces the consequences of this partial truth assignment using var-
ious deduction rules, including:

– Unit-clause rule (denoted as unit_propagate(f , U) in pseudocode) — if, after
the partial truth assignment, a clause U is a unit clause (i.e. it is composed of
a single unassigned literal l), then U can only be made true by assigning the
value needed in order to make l true. This essentially means that no choice
for l is required. Therefore, all clauses containing l (other than the unit clause
itself) can be removed, and all literals ¬l can be removed from the remaining
clauses (since l can not contribute to making those clauses true). This procedure
significantly reduces the size of the search space. For example, consider formula
f composed of a set of clauses {a_b, ¬a_c, ¬c_d, a}, where a is a unit clause.
Then this can be reduced to an equivalent set of clauses {c, ¬c_ d, a}, which
further gets reduced to {c, d, a}. Hence, f is satisfiable with a truth assignment
a = d = c = true while the value of b can be chosen arbitrarily.
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– Pure literal elimination (denoted as pure_literal_elimination(f , p) in pseu-
docode) — if a propositional variable p occurs with only one polarity in the
formula f (i.e. only p or ¬p is present in f , but not both), it is called a pure
literal. All clauses containing pure literal p can be made true by an appropri-
ate truth assignment. Hence, all clauses containing p can be deleted, further
reducing the search space.

• Backtracking (denoted as DPLL(f ^¬l) in pseudocode) — if, after the partial truth
assignment and propagation, a particular clause E becomes empty (i.e. all literals
of E got assigned to false), then formula f evaluates to false as well. This situation
is called a conflict, and E is called a conflicting clause. This indicates that some
earlier truth assignments were incorrect. Therefore, the algorithm must backtrack
and try a different truth assignment to the branch. In case when where is nowhere to
backtrack, the formula f is unsatisfiable (hence, unsatisfiability of formula f can only
be detected after an exhaustive search).

Satisfiability of the formula f is detected when the original set of clauses making up f
gets reduced to a consistent set of literals L (i.e. no l and ¬l literals in the set of clauses).
Also, by setting the values of literals in L to true, we obtain the model M that satisfies f
(propositional variables that are in the original formula f but do not appear in the set L are
allowed to have an arbitrary truth value in the model M).

Many additional improvements of the described basic DPLL algorithm have been pro-
posed over the years, including:

• Efficient heuristics for choosing literal l in the decision step.

• Efficient data structures and indexing techniques that speed up unit-clause rule appli-
cation.

• Random restarts.

• Preprocessing techniques.

• Improvements to the basic backtracking algorithm, including conflict-driven clause
learning and non-chronological backtracking (backjumping). These improvements
describe a backtracking method that, after reaching the conflicting clause E, finds (via
implication graph) the reason of the conflict (i.e. truth assignment to propositional
variables), and remembers it (by adding the negation of the conflicting condition to
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the set of initial clauses) in order to make sure that the same conflict is not reached
again.

Since SAT is NP-complete, there is no known way to solve SAT problem in polynomial time
and therefore all solvers for solving SAT problem take exponential time in the worst case.
Regardless, SAT solvers are capable of solving many real-world formulas seen in practice
with tens of thousands of propositional variables and millions of constrains (i.e. clauses).
This allows SAT solvers to be applied in various industrial verification scenarios like model-
checking that the circuit design has desirable behaviour for all allowable inputs, or that two
differing circuit designs are functionally equivalent.

2.1.3 SMT solvers: combining SAT and theory-specific solvers

In this section, we address state of the art approaches to solving the Satisfiability Modulo
Theory problem: given a first order logic formula j(x1, ..,xn) and a decidable combination
of theories T = T1 [ . . .[Tm, is there an assignment to the variables x1, . . . , xn that makes
j satisfiable modulo theory T ? Two main ways of answering this question are an eager
approach and a lazy approach.

In an eager approach (also known as bit-blasting), a first order logic formula first gets
translated to a propositional logic formula (so, for example, a 64-bit integer variable would
get represented as 64 boolean variables). Then this propositional formula would be checked
for satisfiability with an efficient SAT solver. Advantages of this approach are the ability
to use off-the-shelf SAT solvers and taking advantage of a continuous improvement in their
performance. Nonetheless, there are fundamental drawbacks — translation to propositional
logic causes us to lose the structure of the first order logic formula j(x1, ..,xn) which then
leads to the SAT solver finding it difficult to discover “trivial” facts in that particular theory
(like the commutativity a+b = b+a property for linear integer arithmetic). Therefore, this
approach is mostly utilised for bit-vector arithmetic.

This led to the development of the so-called lazy approach, in which a DPLL-based SAT
solver (as described in Section 2.1.2) gets integrated together with theory-specific decision
procedures for theories T1, . . . ,Tm. The algorithm for this approach usually gets denoted
DPLL(T), and the pseudocode for an “offline lazy” version of this approach is depicted in
Algorithm 2. With this approach, the first order formula j gets converted to a propositional
formula F in CNF (F = CNF_bool(j)). Then, satisfiability of this propositional formula
F gets checked with a DPLL-based SAT solver (DPLL(F)). If F is unsatisfiable, so is
the first order logic formula j . Otherwise, the truth assignment M gets produced which
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gets converted to a theory-specific model M
0

(To_T heory_T (M)). Then satisfiability of
the model M

0
gets checked with a theory-specific decision procedure (theory_T (M

0
)). If it

returns the status of M
0

as satisfiable, then we are done. Otherwise, we add the negation
of the truth assignment M (which is called a theory lemma) to the original propositional
formula F in order to make sure that we do not arrive at the same conflict later in the search
(F = F ^¬M) — this process is called clause learning.

Algorithm 2 Pseudocode for DPLL(T) algorithm
function LAZY_SMT(j )

F = CNF_bool(j)
while true do

[res, M] = DPLL(F)
if res == true then

M
0
= To_Theory_T(M)

res = Theory_T(M
0
)

if res == true then
return satisfiable

else
F = F ^¬M

else
return unsatisfiable

Such an ‘offline lazy” approach would work in principle, but not in practice. Significant
improvements in performance can be achieved by having a tighter integration between an
SAT solver and theory-specific solvers Ti, i = 1, . . . ,m. Such an approach is called an online
lazy approach, and it has the following main differences compared to the offline one:

• Theory-driven backjumping and learning. When unsatisfiable is returned by a the-
ory solver, it can produce a conflicting set (i.e. inconsistent subset of the input con-
straints). Negation of this conflicting set is added to the initial set of clauses in order
to make sure that the prover does not reach the same inconsistency again. This then
drives non-chronological backtracking (i.e. allowing to backtrack over several deci-
sions at once rather than one), consequently reducing the size of the search space.

• Early pruning — invoking the theory solver on intermediate truth assignments pro-
vided by the SAT solver (i.e., not waiting for SAT solver to find the full truth model
M). If theory solver returns unsatisfiable, then the algorithm can backtrack imme-
diately, consequently significantly pruning the search tree. One possible disadvan-
tage is that many expensive and possibly unneeded calls to the theory solver may be
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made. Therefore, some theory solver calling strategy has to be implemented in order
to achieve a reasonable trade-off. This may include calling the solver eagerly, i.e.
every time a new propositional variable is assigned, calling it after a unit-clause rule
application, or calling it based on some heuristic metric.

• Theory solver incrementality. This is related to the previous improvement. With
early pruning implemented, a set of constraints (i.e. truth assignments to clauses)
gets continuously incrementally updated when a new clause is assigned a truth value.
Hence, crucially for efficiency (since theory solvers get called very frequently on
similar problems), the theory solver must have a property of incrementality — when a
new constraint (truth assignment to a clause) is added, there is no need for the theorem
prover to redo all theory-specific calculations from scratch. Analogously, it is also
crucial for efficiency that the theory solver possesses a property of backtrackability,
i.e. ability to inexpensively restore its internal state after a constraint (truth assignment
to a clause) is removed from the constraint set.

• Theory propagation. In case an early pruning check returns that the partial truth
assignment M is satisfiable, the theory solver may also return a truth assignment to
the unassigned clauses.

2.2 Why3: an interface to SMT solvers

Why3 is a tool that will be used to create logic theories that fully represent control systems
expressed graphically as Simulink (The MathWorks Inc., 2012b) diagrams (analogously to
the approach presented in Araiza-Illan et al. (2014)). The Why3 logic language is a first-
order language with polymorphic types, extended with recursive algebraic data types, in-
ductive predicates, recursive functions and predicate symbols (for more details, see Bobot
et al. (2011)).

Once a Why3 theory representing a Simulink diagram is created, it can be sent as input to
one of over 20 different automated theorem provers and their Satisfiability Modulo Theory
(SMT) solvers. An SMT solver calculates satisfiability of a verification goal in the input
theory by using a library of given mathematical definitions, axioms and theories. For our
purposes, in Section 3.1.2, we will be using Why3 to interface with Alt-Ergo, CVC3 and Z3
provers in order to verify the asymptotic stability of a system.

Section 2.2.1 provides a high-level description of Why3 syntax.
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2.2.1 Why3 syntax

In order to create logical Why3 theories representing Simulink diagrams, the following Why3
language components will be used:

• Theories: all Why3 logic expressions (such as types, predicates, functions, axioms,
lemmas and verification goals) that will be used to describe a Simulink diagram must
be declared inside a theory, which, in Why3 syntax, is expressed as:

theory <Name_of_theory>

\\Comment: logic expressions used to describe a Simulink diagram

end

More complicated theories can be constructed modularly by using or cloning basic
theories. The use statement:

use import <file_name>.<Theory_A>

just copies the theory Theory_A with the same symbols as the ones used in the decla-
ration of Theory_A. The clone statement:

clone <file_name>.<Name_of_Theory> as <New_name_of_Theory>

with function <name> = <new_name>

constructs a local copy of the cloned theory with no reuse of symbols, possibly instan-
tiating some of its abstract (i.e. declared but not defined) symbols. Cloning a theory
allows us to create several instances of the same theory with different parameter val-
ues (unlike using a theory, which just copies it once). Why3 has a standard library
of some basic theories, such as integers, Boolean and real numbers. For the Why3
standard library theory RealInfix for real numbers (and other Why3 standard library
theories it depends on), see Appendix A.1 on page 137.

• Functions: operations on data. Can be polymorphic (i.e. accept different types) and
recursive. Functions can be uninterpreted (no explicit definition of the calculation
performed by the function) and interpreted (calculation performed by the function is
defined explicitly). For our purposes, we will be using uninterpreted functions:

function <name> <input_types> : <output_types>

and we will define the action performed by the function via axioms. An example of
this approach is provided on page 15 for uninterpreted functions in1 and out1 which
represent the input and output signals of the ’Gain’ Simulink block.

• Lemmas and axioms: logic statements used to help to prove verification goals:
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lemma/axiom <Name>: <logic statement>

Axioms are statements that are taken to be true without proof and hence can be used
directly by SMT solvers to help with a proof of a verification goal. Lemmas have to
be proven before being used in the same fashion.

• Verification goals: logic expressions which have to be proven by SMT solvers in
order to verify that properties of interest hold in the system:

goal <Name>: <logic expression>

A library of theories for various scalar Simulink blocks has been developed by us (for the
full list, see Appendix A.2 on page 141). For example, consider the theory developed for a
scalar ’Gain’ block:

theory Gain

use import int.Int

use import real.RealInfix

function in1 int : real

function out1 int : real

constant gain : real

axiom a1 : forall k:int. out1 k = in1 k *. gain

axiom a2 : forall k:int. in1 k >. 0.0 /\ gain >. 0.0 -> out1 k >. 0.0

axiom a3 : forall k:int. in1 k <. 0.0 /\ gain <. 0.0 -> out1 k >. 0.0

axiom a4 : forall k:int. in1 k <. 0.0 /\ gain >. 0.0 -> out1 k <. 0.0

axiom a5 : forall k:int. in1 k >. 0.0 /\ gain <. 0.0 -> out1 k <. 0.0

end

In this theory, the standard Why3 theories of integers Int and real numbers RealInfix
are imported first in order to allow SMT solvers to argue about statements containing those
types of numbers. Two uninterpreted functions, in1 and out1, represent the input and
output signals of the ’Gain’ block, respectively. Both of these functions take a non-negative
integer time step k as input (as exemplified by the int keyword in the declaration of the
functions in1 and out1) and produce a real number as output (as exemplified by the real
keyword in the declaration of the functions in1 and out1). The output of the function in1
represents the value of the input signal of the ’Gain’ block at time step k, while output of
the function out1 represents the value of the output signal of the same block at time step
k. Constant gain represents the scalar gain value of the ’Gain’ block. Axiom a1 represents
functionality of the ’Gain’ block (i.e. at all time steps k, the value of the output signal of the
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’Gain’ block is equal to the value of the input signal multiplied by the value of the gain),
while the rest of the axioms (a2, a3, a4 and a5) define the sign properties of the output
signal out1.

2.3 Quantifier elimination algorithms

2.3.1 Introduction

Many analysis and synthesis problems in control theory can be represented by the first order
formula

Q1x1 . . .Qnxnj(p1, . . . , pm,x1, . . . ,xn), (2.7)

where Qi 2 {8,9} are either universal or existential quantifiers and j is a quantifier-free for-
mula constructed by conjunction (^), disjunction (_) and negation (¬) of atomic formulas
of the form f r 0 (where f 2 R[p1, . . . , pm,x1, . . . ,xn] is a polynomial and r 2 {=, 6=,<,}
is a relational operator).

One of the ways to find the values of the parameters p1, . . . , pm for which the prop-
erty (2.7) holds is to feed it as an input formula to a quantifier elimination algorithm that
outputs a quantifier-free formula F(p1, . . . , pm) such that:

F(p1, . . . , pm)⌘ Q1x1 . . .Qnxnj(p1, . . . , pm,x1, . . . ,xn). (2.8)

For example, feeding the first-order formula requiring the quadratic to be always positive

F(a,b,c)⌘ 8x ax2 +bx+ c > 0 (2.9)

to one of those algorithms results in an output that is an equivalent quantifier-free expression
in unquantified parameters a,b,c describing where (2.9) holds:

F(a,b,c) = c > 0^
✓✓

b < 0^a >
b2

4c

◆
_ (b = 0^a � 0)_

✓
b > 0^a >

b2

4c

◆◆
. (2.10)

In the following sections, we will discuss the details of the following quantifier elimina-
tion algorithms:

• Quantifier elimination by Cylindrical Algebraic Decomposition (CAD) algorithm by
Collins (1975), discussed in Section 2.3.3, was the first practical quantifier elimination
algorithm. It works by dividing Rn+m space into a disjoint set of regions, called cells,
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in each of which all polynomials from a given set are either positive, negative or
zero (i.e., have a constant sign). The main advantages of this algorithm are that it is
applicable to any input formula of the form (2.7) and that its output F(p1, . . . , pm) is
a disjoint union of cells. The main disadvantage of the algorithm is that it is limited
to somewhat simple problems because the upper bound on the size of the CAD (i.e.,
the number of disjoint cells needed to represent this decomposition) grows doubly
exponentially with the number of variables n+m (Collins, 1975) in the first order
formula (2.7).

• Weispfenning’s virtual substitution algorithms by (Loos and Weispfenning, 1993;
Weispfenning, 1997), discussed in Section 2.3.2. In general, these virtual substitution
algorithms are applicable as long as all quantified variables x1, . . . ,xn appear at most
quadratically in the input formula (2.7). If all the quantified variables in (2.7) appear
linearly, virtual substitution algorithms are guaranteed to be able to eliminate all quan-
tified variables from the outset. If some of the quantified variables x1, . . . ,xn in (2.7)
appear quadratically, some additional constraints on the first order formula (2.7) must
be imposed to ensure the capability to eliminate all quantified variables from the out-
set (these will be discussed in detail in Section 2.3.2). As will be shown in Section 3.4,
many MPC problems (starting with a linear one) can be reduced to this type of first
order formula. The main advantage of this algorithm is that its worst-case running
time on these types of formulas does not depend on the number of free variables
p1, . . . , pm (in contrast to CAD). The main disadvantage of this type of algorithm is
that it often significantly increases the size of the formula (i.e. the quantifier-free out-
put F(p1, . . . , pm) given by the virtual substitution algorithm is usually a set of regions
that is not mutually disjoint) which might make subsequent calculations involving the
output of Weispfenning’s algorithm complicated.

2.3.2 Weispfenning’s virtual term substitution algorithm

As was mentioned in Section 2.3.1, in general, Weispfenning’s virtual substitution algo-
rithms (Loos and Weispfenning, 1993; Weispfenning, 1997) are applicable as long as all
quantified variables x1, . . . ,xn in (2.7) appear at most quadratically. In principle, in order to
ensure that these virtual substitution algorithms are capable of eliminating all the quantified
variables in (2.7), additional constraints on the quantification structure Q1x1 . . .Qnxn and
the quantifier-free formula j(p1, . . . , pm,x1, . . . ,xn) in (2.7) have to be imposed in order to
ensure that degrees of all quantified variables x1, . . . ,xn never appear with an order higher
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than quadratic during successive elimination steps.
According to Weispfenning (1997), the kinds of the first order formula (2.7) where com-

plete quantifier elimination by the virtual substitution algorithm can be guaranteed from the
outset are:

• The expression (2.7) is linear in all quantified variables except (possibly) one, which
appears quadratically and whose quantifier (either 9 or 8) is outermost or second to
outermost in the prefix Q1x1 . . .Qnxn in (2.7).

• All the occurrences of quantified variables that appear quadratically in (2.7) are sepa-
rated, i.e. no such two variables appear in the same atomic subformula f r0 of (2.7).
This trivially ensures that degrees of the remaining quantified variables do not increase
after an elimination step.

• All the occurrences of quantified variables that appear quadratically in (2.7) are pure
(with the possible exception of the quadratically quantified variable with an outermost
quantifier out of quadratically quantified variables), i.e. they contain no corresponding
linear term. Clearly, in this case, these variables can be replaced by linear variables
via simple substitutions.

• Finally, Weispfenning’s virtual substitution algorithm described in Weispfenning (1997)
is applicable in cases where the quantified variables occur in degrees higher than
quadratic, provided that these degrees can be reduced by polynomial factorization to
values of at most 2.

The quantifier elimination algorithm, described in (Weispfenning, 1997) (which is an exten-
sion of the algorithm described in (Loos and Weispfenning, 1993)), eliminates quantifiers
as follows. For the sake of simplicity (since extension to multiple quantified variables, in-
cluding universal quantification, is trivial), consider a first order formula of the form (2.7)
with a single existentially quantified variable x:

9xj(p1, . . . , pm,x). (2.11)

Here j is quantifier-free and constructed by conjunction and disjunction of atomic formulas
fi ri 0 of the form

fi ⌘
�
ai(p1, . . . , pm)x2 +bi(p1, . . . , pm)x+ ci(p1, . . . , pm)

�
ri 0 , i 2 I,
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which are at most quadratic in the quantified variable x, with ai(p1, . . . , pm), bi(p1, . . . , pm)

and ci(p1, . . . , pm) being polynomials that are independent of x. Denote:

Di = b2
i �4aici,

ai� = (�bi �
p

Di)/(2ai),

ai+ = (�bi +
p

Di)/(2ai).

Let j[e/x] denote a formula that is obtained from j by substituting e for x. For example, if

j(p,x)⌘ (x2 � x+ p  0)| {z }
f1

^(�x+2  0)| {z }
f2

, (2.12)

then
j[2/x]⌘ (4�2+ p  0)^ (0  0)⌘ (2+ p  0).

In general, direct substitution of square-root expressions ei = ai� or ei = ai+ for x in the
atomic formula fi ri 0 would result in an expression of the form

fi[ei/x] =
xi + yi

p
Di

zi
ri 0, (2.13)

where xi, yi and zi are appropriate polynomials in p1, . . . , pm. Expression (2.13) contains an
undesirable radical. Hence, in order to eliminate the presence of the radical, instead of a
direct substitution, (2.13) is replaced by an equivalent expression via ’virtual substitution’.
The form of the equivalent expressions depends on the type of relational operator ri in the
atomic formula fi ri 0 as follows:

fi[ei/x] = 0 ⌘(xiyi  0)^ (x2
i � y2

i Di = 0),

fi[ei/x] 6= 0 ⌘(xiyi > 0)_ (x2
i � y2

i Di 6= 0),

fi[ei/x] 0 ⌘((xizi  0)^ (x2
i � y2

i Di � 0))_

((yizi  0)^ (x2
i � y2

i Di  0)),

fi[ei/x]< 0 ⌘((xizi < 0)^ (x2
i � y2

i Di > 0))_

((yizi  0)^ (xizi < 0_ x2
i � y2

i Di < 0)). (2.14)

Finally, let I1, I2, I3, I4 be the set of indices i 2 I such that ri is =,,<, 6=, respectively. Then
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9xj(p1, . . . , pm,x) is equivalent to the following quantifier-free formula

9x j(p1, . . . , pm,x)⌘ F(p1, . . . , pm)⌘
_

i2I1[I2

((ai = 0^bi 6= 0^j[�cib�1
i /x])_

(ai 6= 0^Di � 0^ (j[ai�/x])_j[ai+/x]))_
_

i2I3[I4

((ai = 0^bi 6= 0^j[(�cib�1
i + e)/x])_ (2.15)

(ai 6= 0^Di � 0^ (j[(ai�+ e)/x])_

j[(ai++ e)/x]))_j[�•/x],

where e denotes a positive infinitesimal. Expressions involving infinitesimals e in (2.15) are
replaced by equivalent ones not containing them according to the following set of rules:

fi[(e+ e)/x] = 0 ⌘(ai = 0)^ (bi = 0)^ (ci = 0),

fi[(e+ e)/x] 6= 0 ⌘(ai 6= 0)_ (bi 6= 0)_ (ci 6= 0),

fi[(e+ e)/x] 0 ⌘ fi[(e+ e)/x] = 0_ fi[(e+ e)/x]< 0,

fi[(e+ e)/x]< 0 ⌘ fi[e/x]< 0_ fi[e/x] = 0^
✓

d fi

dx
[e/x]< 0_ d fi

dx
[e/x] = 0^ai < 0

◆
.

Similarly, expressions containing infinity in (2.15) are replaced by the following ones:

fi[�•/x] = 0 ⌘(ai = 0)^ (bi = 0)^ (ci = 0),

fi[�•/x] 6= 0 ⌘(ai 6= 0)_ (bi 6= 0)_ (ci 6= 0),

fi[�•/x] 0 ⌘ fi[�•/x] = 0_ fi[�•/x]< 0,

fi[�•/x]< 0 ⌘
2_

n=0

 
(�1)nFn < 0^

2̂

m=n+1
Fm = 0

!
,

where F0 = ci,F1 = bi,F2 = ai.

Example of Weispfenning’s algorithm application
Consider

9xj(p,x)⌘ 9x(x2 � x+ p  0)| {z }
f1

^(�x+2  0)| {z }
f2
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with:

a1 = 1,b1 =�1,c1 = p,

a2 = 0,b2 =�1,c2 = 2,

D1 = 1�4p, a± =
1±

p
D1

2
.

Hence, according to (2.15), performing direct substitution

9xj(p,x)⌘ F(p)⌘

{(a1 = 0^b1 6= 0^j[�c1b�1
1 /x])_ (a1 6= 0^D1 � 0^ (j[a1�/x]_j[a1+/x])}_

{(a2 = 0^b2 6= 0^j[�c2b�1
2 /x])_ (a2 6= 0^D2 � 0^ (j[a2�/x]_j[a2+/x])}_j[�•/x]⌘

✓
1�4p � 0^

✓
3+

p
D1

2
 0_ 3�

p
D1

2
 0

◆◆
_j[2/x]_ false

results in an expression containing radicals
p

D1. In order to eliminate them, recall the
relevant virtual substitution rule from (2.14):

xi + yi
p

Di

zi
 0 ⌘(xizi  0)^ (x2

i � y2
i Di � 0)_

(yizi  0)^ (x2
i � y2

i Di  0).

Then:

F(p)⌘ 9x
�
(x2 � x+ p  0)^ (�x+2  0)

�

⌘
✓

1�4p � 0^
✓

3+
p

D1

2
 0_ 3�

p
D1

2
 0

◆◆
_j[2/x]_ false

⌘ (1�4p � 0)^

((6  0)^ (9�D1 � 0)_ (2  0)^ (9�D1  0)_

(6  0)^ (9�D1 � 0)_ (�2  0)^ (9�D1  0))_ (2+ p  0)

⌘ (1�4p � 0)^ (8+4p  0)_ (2+ p  0)

⌘ p �2 ⌅

Moreover, the virtual term substitution algorithm has been extended to formulas in which
a single quantified variable appears at most cubically (Weispfenning, 1994). In principle,
this algorithm can be extended to formulas in which the quantified variable appears with an
unbounded degree, by exploiting Thom’s Lemma for representation of real roots — for the
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state of the art, see Kosta and Sturm (2015); Liiva et al. (2014). Unfortunately, no efficient
implementation of the algorithm for these cases exists yet.

We will use Weispfenning’s virtual term substitution algorithm implementation in Math-
ematica (Wolfram Research Inc., 2016) for the computational examples in Sections 3.4.5,
3.4.6 and 3.4.7.

2.3.3 Quantifier elimination by cylindrical algebraic decomposition al-
gorithm

In this section, we discuss the quantifier elimination by cylindrical algebraic decomposi-
tion algorithm (Collins, 1975). Section 2.3.3.1 provides an intuitive example that illustrates
the main concepts of the algorithm without relying on its full mathematical machinery. Sec-
tion 2.3.3.2 provides necessary definitions. Section 2.3.3.3 gives a detailed description of the
algorithm that constructs the cylindrical algebraic decomposition (CAD). In Section 2.3.3.4,
it is shown how the obtained CAD is used for quantifier elimination. Finally, we provide a
less intuitive example in Section 2.3.3.5 that performs quantifier elimination systematically
by using the algorithm discussed in this section.

2.3.3.1 Intuitive example

Consider the quantifier elimination problem

F(x1)⌘ 9x2j(x1,x2)⌘ 9x2 : (x2
1 + x2

2  1)^ (x2 = x1) (2.16)

which, essentially, asks us to find for which values of the variable x1 the straight line (x2 =

x1) gets inside the unit disk (x2
1+x2

2  1). The solution to this quantifier elimination problem
is obvious — it is the interval �

p
2

2  x1 
p

2
2 , as can be seen in Figure 2.1 (a).

It was trivial to solve this problem by inspection. Here we present the outline of a
systematic approach (called quantifier elimination by cylindrical algebraic decomposition)
for solving the quantifier elimination problem (2.16) that illustrates the main ideas of this
algorithm without relying on its full mathematical machinery.

Let f1(x1,x2) = x2
1 + x2

2 �1 and f2(x1,x2) = x2 � x1. The first part of the procedure is to
partition the space R2 into disjoint regions (called cells) where polynomials f1(x1,x2) and
f2(x1,x2) have a constant sign (positive, negative or identically zero) throughout each cell,
and find a sample point s = (s1,s2) 2 R2 in each one of those cells. Construction of this
partition is achieved in three phases:
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Fig. 2.1 Figure (a) represents the intuitive solution to the quantifier elimination prob-
lem (2.16) while figure (b) illustrates the projection operation for the same problem. “Singu-
larities” of the algebraic curves defined by f1(x1,x2) = 0 and f2(x1,x2) = 0 are denoted by
red crosses while their projections onto the x1-axis are denoted by black dots. Finally, cylin-
drical algebraic decomposition of R2 induced by the polynomials f1(x1,x2) and f2(x1,x2) is
shown in figure (c). Dots, line segments between dots and regions of R2 between those line
segments represent disjoint cells Ci, i = 1, . . . ,47. Throughout each one of those 47 cells,
polynomials f1(x1,x2) and f2(x1,x2) have a constant sign.

(i) Find the projections onto the x1-axis of all the “singularities” (vertical tangents, inter-
sections, isolated points, self-crossings, cusps) of the algebraic curves defined by the
polynomials f1(x1,x2) = 0 and f2(x1,x2) = 0 (see Figure 2.1 (b)). The projections of
these points onto the x1-axis are

a1 =�1, a2 =�
p

2
2

, a3 =

p
2

2
, a4 = 1, (2.17)

which decomposes the x1-axis into 9 components (4 points and 5 open intervals) —
see the first column of Table 2.1.

(ii) Now, for each of those 9 segments on the real line, a point belonging to that segment
(called a sample point s1), is found. For the projection points ai, i = 1, . . . ,4, the
sample point s1 has to be chosen to be ai, while for the open intervals, any point in
that interval can be chosen to be a sample point s1 (see the second column of the
Table 2.1).

Then, both f1(x1,x2) and f2(x1,x2) are evaluated at a sample point x1 = si in each of
the components, thus giving us 2⇥9 = 18 polynomials in x2 (see the third and fourth
columns of the Table 2.1) — essentially, f1(x1,x2) and f2(x1,x2) are evaluated on the
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x1 s1 f1(s1,x2) f2(s1,x2) Real roots s2 V (Ci)
(�•,a1) �2 x2

2 +3 x2 +2 �2 �3,�2,0 F,F,F

a1 �1 x2
2 x2 +1 �1,0 �2,�1,� 1

2 ,0,1 F,F,F,F,F

(a1,a2) � 4
5 x2

2 � 9
25 x2 +

4
5 � 4

5 ,�
3
5 ,

3
5 �1,�4

5 ,�
7

10 ,�
3
5 ,0,

3
5 ,1 F,F,F,F,F,F,F

a2 �
p

2
2 x2

2 � 1
2 x2 +

p
2

2 �
p

2
2 ,

p
2

2 �1,�
p

2
2 ,0,

p
2

2 ,1 F,T,F,F,F

(a2,a3) 0 x2
2 �1 x2 �1,0,1 �2,�1,� 1

2 ,0,
1
2 ,1,2 F,F,F,T,F,F,F

a3

p
2

2 x2
2 � 1

2 x2 �
p

2
2 �

p
2

2 ,
p

2
2 �1,�

p
2

2 ,0,
p

2
2 ,1 F,F,F,T,F

(a3,a4)
4
5 x2

2 � 9
25 x2 � 4

5 �3
5 ,

3
5 ,

4
5 �1,�3

5 ,0,
3
5 ,

7
10 ,

4
5 ,1 F,F,F,F,F,F,F

a4 1 x2
2 x2 �1 0,1 �1,0, 1

2 ,1,2 F,F,F,F,F

(a4,+•) 2 x2
2 +3 x2 �2 2 0,2,3 F,F,F

Table 2.1 Construction of the partition (called cylindrical algebraic decomposition) for the
problem represented by j(x1,x2).

vertical line rising from the sample point s1.

(iii) Now, real roots of f1(s1,x2) = 0 and f2(s1,x2) = 0 are found for each s1 (see the fifth
column of the Table 2.1), which decomposes the x2-axis into disjoint components.
Then the sample point s2 is chosen for each one of those components in an analogous
manner as before (see the sixth column of the Table 2.1).

Finally, we have obtained 47 sample points s = (s1,s2), representing disjoint cells of
R2 where both polynomials f1(x1,x2) and f2(x1,x2) have a constant sign throughout
each of those cells. Such a partition is called a cylindrical algebraic decomposition,
and is depicted in Figure 2.1 (c).

Finally, after the cylindrical algebraic decomposition is constructed, the existential quanti-
fier in (2.16) can be eliminated as follows. The truth value, denoted V (Ci) (where Ci stands
as a label for a cell, i = 1, . . . ,47)

V (Ci)⌘ j(s1,s2)⌘ (s2
1 + s2

2  1)^ (s2 = s1) (2.18)

is evaluated for each one of the cells. The results of this calculation are summarised in
the last column of the Table 2.1, where T stands for true and F stands for f alse. We see
that when x1 = a2 = �

p
2

2 , x1 2 (a2,a3) ⌘ (�
p

2
2 ,

p
2

2 ) and x1 = a3 =
p

2
2 , there exists a

cell C ⇢ R2 where V (C) evaluates to true, i.e. the straight line (x2 = x1) lies inside the
unit disk (x2

1 + x2
2  1). Hence, as expected, the equivalent quantifier-free expression F(x1)
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(see (2.16)) is:

F(x1)⌘
 
�
p

2
2

 x1 
p

2
2

!
. (2.19)

In this intuitive example, it was trivial to perform the projection of the “singularities” of
algebraic curves defined by f1(x1,x2) = 0 and f2(x1,x2) = 0, to find the roots of the poly-
nomials and to evaluate them at rational sample points. General projection operation, poly-
nomial root isolation and evaluation of algebraic sample points are more involved and are
discussed in greater detail and rigour in Section 2.3.3.3.

2.3.3.2 Definitions

In this section, we provide various definitions used in the description of the algorithm that
constructs cylindrical algebraic decomposition (see Section 2.3.3.3) by, essentially, follow-
ing Arnon et al. (1984).

Construction of cylindrical algebraic decomposition requires a formal and systematic
treatment of systems of equations and inequalities. Hence, a notion of a semi-algebraic set
is important. A set is semi-algebraic if it can be constructed by finitely many applications
of union, intersection and complementation operations on sets of the form

{x 2 Rn | f (x)� 0}, (2.20)

where f 2 R[x1, . . . ,xn] is an n-variate polynomial.

One of the important properties of semi-algebraic sets is that they are closed under pro-
jection, i.e. the projection of a semi-algebraic set to a lower dimensional space is also semi-
algebraic. This property is of crucial importance in the projection phase of the cylindrical
algebraic decomposition algorithm.

Now, we introduce some definitions that are useful for describing how algebraic surfaces
and curves partition the space Rn. These definitions are needed as building blocks for a
formal definition of cylindrical algebraic decomposition of Rn.

Let a region, R, be a non-empty connected subset of Rn. Then the set:

Z(R) = R⇥R= {(a,x) | a 2 R,x 2 R} (2.21)

is called a cylinder over the region R. Now, let f , f1, f2 be continuous and real-valued
functions on region R with f1(a) < f2(a) 8a 2 R. Then, an f-section of the cylinder Z(R)
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x3

x2

x1

R (region)

f1-section

f2-section

Z(R) (cylinder)

(f1, f2)-sector

Fig. 2.2 A geometrical interpretation of the definitions of region, cylinder, sections, sector,
stack.

is the set:
{(a, f (a)) | a 2 R}, (2.22)

which is the graph of f over R. Similarly, an ( f1, f2)-sector of the cylinder Z(R) is the set:

{(a,b ) | a 2 R, f1(a)< b < f2(a)}. (2.23)

Clearly, f�sections and ( f1, f2)-sectors of cylinders are regions. For a geometrical inter-
pretation of these definitions, see Figure 2.2.

Now, let X ✓ Rn. Then a decomposition of X is a finite collection of disjoint regions
whose union is X:

X=
k[

i=1
Xi, Xi \X j = /0, i 6= j. (2.24)

Consequently, it is obvious that the set of continuous, real-valued functions defined over the
region R, f1 < f2 < .. . < fk,8x 2 R, naturally induces a decomposition of the cylinder Z(R)
consisting of the following regions:

(i) ( fi, fi+1)-sectors of Z(R), 0  i  k with f0 =�• and fk+1 =+•.

(ii) fi-sections of Z(R), 1  i  k.

Such a decomposition is called a stack over R. Also, notice the strict inequalities f1 < f2 <

.. . < fk,8x 2 R in the definition of the stack. Geometrically, this just means that the graphs
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of different functions must not intersect each over R (see Figure 2.2).
Finally, we can give a definition of a cylindrical decomposition. A decomposition D of

Rn is cylindrical if:

(i) n = 1: D is a partition of a real line R1 into a finite set of numbers and the finite and
infinite open intervals bounded by these numbers.

(ii) n > 1: D0
= F1 [ . . .[Fm is a cylindrical decomposition of Rn�1, and over each Fi,

there is a stack which is a subset of the decomposition D.

From the definition of cylindrical decomposition, it is obvious that any cylindrical decom-
position of Rn induces a unique cylindrical decomposition of Rn�1 all the way down to
R1.

A decomposition is algebraic if each of its regions is a semi-algebraic set. When a
decomposition is defined by a set of polynomials f1, . . . , fk 2 R[x1, . . . ,xn], it is algebraic
since all the boundaries in the decomposition are zero sets of those polynomials.

A cylindrical algebraic decomposition (CAD) of Rn is a decomposition that is both
cylindrical and algebraic. The components of CAD are called cells. For an example of
CAD of R2, see Figure 2.1 (c). This CAD of R2 induces CAD of R1 which is represented
in Figure 2.1 (b) by black dots and open intervals between them on the real axis.

Now, let X ✓ Rn, and f 2 R[x1, . . . ,xn] be an n-variate polynomial. Then f is sign-
invariant on X if one of the following conditions hold:

(i) 8x 2 X : f (x)> 0 (“ f has a positive sign on X”)

(ii) 8x 2 X : f (x) = 0 (“ f has a zero sign on X”)

(iii) 8x 2 X : f (x)< 0 (“ f has a negative sign on X”)

The set F = { f1, . . . , fr} 2 R[x1, . . . ,xn] of polynomials is invariant on X if each fi 2 F is
sign-invariant on X. Also, set X is F -invariant if F is invariant on X.

Definitions and concepts discussed in this section are of crucial importance in describing
the algorithm constructing the cylindrical algebraic decomposition (see Section 2.3.3.3).

2.3.3.3 Cylindrical algebraic decomposition

In this section, we give a description of the algorithm that, given a set of polynomials F ,
constructs the cylindrical algebraic decomposition (CAD) (Collins, 1975). Discussion here
formalises the one for the intuitive example in Section 2.3.3.1. In Section 2.3.3.4, it will
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be shown how the CAD (obtained by the algorithm discussed in this section) is used for
quantifier elimination.

CAD ALGORITHM (Collins, 1975)
Input: F = { f1, . . . , fr} 2 R[x1, . . . ,xn], a set of n-variate polynomials.
Output: F -invariant CAD Dn of Rn, i.e. all the polynomials in the set F have the same
sign in each of the cells of Dn.
This algorithm consists of three major phases: projection, base and extension.

• PROJECTION PHASE
Let PROJ denote the projection operator. Then, the algorithm starts by computing
the set

PROJ(F )⌘ F1 ⇢ R[x1, . . . ,xn�1] (2.25)

such that for any F1-invariant CAD Dn�1 of Rn�1, there exists an F -invariant CAD
Dn of Rn which induces Dn�1. In general, the algorithm performs projection operation
PROJ (n�1) times to produce the sets

PROJ(F )⌘ F1 ⇢ R[x1, . . . ,xn�1],

PROJ2(F )⌘ PROJ(PROJ(F ))⌘ PROJ(F1)⌘ F2 ⇢ R[x1, . . . ,xn�2],

...

PROJn�1(F )⌘ Fn�1 ⇢ R[x1],

where Fn�1 is a set of univariate polynomials in x1. As can be seen, each projec-
tion operation reduces the number of variables by one. After the projection phase is
completed, the construction of Fn�1-invariant CAD D1 of R1 is performed (this op-
eration is called the base phase). Afterwards, successive extensions of CAD D1 of R1

to CAD D2 of R2 to . . . an F -invariant CAD Dn of Rn are performed (this operation
is called the extension phase).

The aforementioned projection operator PROJ must satisfy the stated desired prop-
erty, i.e. any PROJ(F ) ⌘ F1-invariant CAD Dn�1 of Rn�1 is induced by some F -
invariant CAD Dn of Rn. It can be seen that, equivalently, PROJ operator has to
find regions over which the given set of polynomials, F , has a constant number of
real roots. This can be formalised by the notion of delineability. To do so, consider
fi 2 F , and write it in the form

fi(x1, . . . ,xn�1,xn) = f di
i (x1, . . . ,xn�1)xdi

n + . . .+ f 0
i (x1, . . . ,xn�1) (2.26)
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and let z = (z1, . . . ,zn�1) 2 Rn�1. Then fi,z(xn) = fi(z1, . . . ,zn�1,xn) is the univariate
polynomial obtained by substituting z for the first n�1 variables.

Also, introduce the reductum, f̂ ki
i , of a polynomial

f̂ ki
i (x1, . . . ,xn�1,xn) = f ki

i (x1, . . . ,xn�1)xki
n + . . .+ f 0

i (x1, . . . ,xn�1), (2.27)

where 0  ki  di. Now, we are ready to state the notion of the set F being delineable
on the subset of Rn.

Definition 1 (taken from Section 8.6.2 of (Mishra, 1993))
As before, let F = { f1, . . . , fr} 2 R[x1, . . . ,xn�1][xn] be a set of real polynomials, and
let C ⇢ Rn�1 be connected. It is said that F is delineable on C if it satisfies the
following properties:

(i) Condition 1: for each 1  i  r (i.e., for every polynomial in the set F ), the total
number of complex roots of fi,z (counting multiplicity and including real roots)
remains invariant as z varies over C.

(ii) Condition 2: for each 1  i  r (i.e., for every polynomial in the set F ), the
number of distinct complex roots (including real roots) of fi,z remains invariant
as z varies over C.

(iii) Condition 3: for each 1  i < j  r (i.e., for every pair of polynomials in the
set F ), the total number of complex common roots of fi,z and f j,z (counting
multiplicity and including real roots) remains invariant as z varies over C. ⌅

Moreover, according to the Lemma 8.6.3 in Mishra (1993), if the set F is delineable
over C ⇢ Rn�1, then the number of distinct real roots of F is invariant over C.

Before describing the projection operator PROJ, we have to reference several other
definitions and results. Let f ,g 2 R[x1, . . . ,xn�1][xn] be n-variate polynomials with
deg( f ) = m, deg(g) = n, m � n (where deg( f ) denotes the degree of the polynomial f
in xn). For 0  k < n, let subresk( f ,g)2R[x1, . . . ,xn�1][xn] with deg(subresk( f ,g))
k denote the kth subresultant of f and g. Each coefficient of subresk( f ,g) is the
determinant of a certain matrix of f and g coefficients — for more details, see Chapter
7 of Mishra (1993). For 0  k < n, the k� th principal subresultant coefficient of f
and g w.r.t. xn, denoted pscxn

k ( f ,g), is the coefficient of xk
n in subresk( f ,g). Also, let

Dxn denote the partial derivative operator w.r.t. xn.
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Additionally, we reference the following result which will be needed to show that the
PROJ operator satisfies the stated delineability property.

Proposition 1 (lemma 7.7.9 in (Mishra, 1993)) For all 0 < i  n, the statement that
polynomials f and g have a common factor of degree i is equivalent to:

psc j( f ,g) = 0, j = 0, . . . , i�1 and psci( f ,g) 6= 0. (2.28)

Finally, we can give the definition of the projection operator PROJ which, as re-
quired, given the set of polynomials F ⇢R[x1, . . . ,xn�1][xn], computes another set of
(n� 1)-variate polynomials PROJ(F ) ⇢ R[x1, . . . ,xn�1] characterising the maximal
connected F -delineable subsets of Rn�1 (i.e., subsets of Rn�1 over which polynomi-
als in F have a constant number of real roots).

The projection operator PROJ is defined as follows: given F ,

PROJ(F ) = PROJ1(F )[PROJ2(F )[PROJ3(F ) (2.29)

where

– PROJ1 = { f k
i (x1, . . . ,xn�1) | 1  i  r, 0  k  di}

Suppose that the set PROJ1(F ) is invariant over C 2 Rn�1. The invariance of
the set PROJ1(F ) implies that the degree w.r.t. xn of the polynomials (2.27) is
constant over C. This is equivalent to the fact that the number of roots of each
polynomial is constant over C, and hence Condition 1 in the Definition 1 of F

being delineable over C is satisfied.

– PROJ2 = {pscxn
l ( f̂ k

i (x1, . . . ,xn),Dxn( f̂ k
i (x1, . . . ,xn))) | 1  i  r, 0  l < k  di}

According to Proposition 1, the invariance of the set PROJ2(F ) implies that the
greatest common divisor of each polynomial and its derivative (gcd( f ,Dxn f ))
has a constant degree. Also, note that the number of distinct zeros of the poly-
nomial f 2 R[x1, . . . ,xn�1][xn] is given by deg( f )� deg(gcd( f ,Dxn f )). Hence,
together with the invariance of PROJ1(F ), the number of distinct zeros of each
polynomial in F is constant. Hence, Condition 2 in the Definition 1 of F being
delineable over C is satisfied.

– PROJ3 = {pscxn
m ( f̂ ki

i (x1, . . . ,xn), f̂ k j
j (x1, . . . ,xn)) | 1  i < j  r, 0  m  ki 

di, 0  m  k j  d j}
Again, according to Proposition 1, the invariance of PROJ3(F ), together with
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the invariance of PROJ1(F ), implies that the number of common zeros of each
pair of polynomials in F is constant. Hence, Condition 3 in the Definition 1 of
F being delineable over C is satisfied.

Finally, according to the already stated Lemma 8.6.3 in Mishra (1993), we can con-
clude that the set PROJ(F ) characterises the set over which the number of distinct
real zeros of the polynomials in F is constant, as required.

The projection operator PROJ that was described in this section tends to produce
sets with a large number of polynomials which consequently increases the execution
time of the algorithm constructing CAD. Over the years, various improvements to the
original projection operator have been proposed in order to address this issue — for
more details, see Hong (1990), McCallum (1988), McCallum (1998), Brown (2001).

• BASE PHASE:
Input: output of the projection phase, PROJn�1(F )⌘ Fn�1 ⇢ R[x1], which is a set
of monovariate polynomials.
Output: Fn�1-invariant CAD D1 of R1.
Zeros of monovariate polynomials in Fn�1 define a sign-invariant decomposition of
R1, i.e. CAD D1 of R1. In this phase, for all the cells Ci 2 D1, an exact represen-
tation of a particular algebraic point (called sample point si) belonging to that cell is
found. To do so, distinct real roots ai, i = 1, . . . ,k of all the polynomial in Fn�1 are
isolated (via, say, Sturm Sequence based method — for more details, see Section 8.4
in (Mishra, 1993)):

�• < a1 < a2 < .. . < ak <+• (2.30)

with

a1 2 (r1, p1],

a2 2 (r2, p2],

a3 2 (r3, p3],

...

ak 2 (rk, pk],

and r1 < p1  r2 < p2  . . . pk�1  rk < pk, ri, pi 2Q, i = 1, . . . ,k (i.e., end points of
each interval are rational numbers).

A sample point si for a cell of D1 that is an open interval can be chosen to be one of
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the rational number defining the intervals isolating the roots ai, i= 1, . . . ,k, i.e. si = ri

or si = pi for i = 1, . . . ,k.

A sample point si for a cell of D1 that is a root ai, i = 1, . . . ,k might be represented
by a minimal polynomial Mai(x) and an isolating interval (ai,bi),ai,bi 2Q such that
the interval (ai,bi) contains no other real zeros of Mai(x) other than ai.

• EXTENSION PHASE:
Input: a list of sample points si describing the CAD D1 of R1.
Output: CAD Dn of Rn, described by a list of cells (indexed in some way) and their
sample points.
In this step, the base phase is used repetitively to “lift” a sign-invariant decomposition
Di�1 of Ri�1 to a sign-invariant decomposition Di of Ri.

Initially, consider the lift from D1 of R1 to D2 of R2. Let C be a cell of D1 with a sam-
ple point x1 = s. Then the polynomials in the set Fn�2 ⌘ PROJn�2(F ) are evaluated
at the sample point x1 = s. This, in turn, results in a set of monovariate polynomials
in x2. Then, the base phase is performed on those monovariate polynomials (i.e., root
isolation and sample point creation). Hence, second components of the sample points
of the CAD D2 of R2 are constructed.

Consequently, the extension process is then repeated to construct sample points of the
cells of the decomposition D3 of R3, . . ., Dn of Rn.

After the extension phase is completed, what we end up is a list of cells and their
sample points, i.e. CAD Dn of Rn. ⌅.

2.3.3.4 Quantifier elimination algorithm based on cylindrical algebraic decomposi-
tion

Recall the first order formula (2.7)

Q1x1 . . .Qnxnj(p1, . . . , pm,x1, . . . ,xn), (2.31)

where Qi 2 {8,9} are either universal or existential quantifiers and j is a quantifier-free for-
mula constructed by conjunction (^), disjunction (_) and negation (¬) of atomic formulas
of the form f j r 0, j = 1, . . . ,r (where f j 2R[p1, . . . , pm,x1, . . . ,xn] is a polynomial and r 2
{=, 6=,<,} is a relational operator). Also, let F = { f1, . . . , fr} 2 R[p1, . . . , pm,x1, . . . ,xn]

be the set of polynomials that appear in j .
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Then Collins’ quantifier elimination algorithm, based on cylindrical algebraic decom-
position (Collins, 1975), eliminates quantifiers Q1, . . . ,Qn from the expression (2.31) as
follows:

QE by CAD algorithm (Collins, 1975)

Input: a first order formula (2.31).
Output: a quantifier-free formula F(p1, . . . , pm) that is equivalent to (2.31).

• Step 1: CAD construction. A cylindrical algebraic decomposition Dn+m for Rn+m

induced by the set of polynomials F is built, as described in Section 2.3.3.3.

• Step 2: Evaluation. Now, let C be a cell of Dn+m, and let s=(s1, . . . ,sm,sm+1, . . . ,sm+n)

be a sample point of C (where si, i = 1, . . . ,m+n is the i�th coordinate of the sample
point). Denote V (C) the truth value (true or false) of j(s1, . . . ,sm,sm+1, . . . ,sm+n).
Because of the way the CAD is constructed, the value of V (C) is constant throughout
the cell C. Hence, in this step, the truth values of all cells C in Dn+m are evaluated.

• Step 3: Propagation. For k = n�1,n�2, . . . ,0, determine the truth values of the cells
of the CAD Dk+m from the truth values of the cells of the CAD Dk+m+1 by using the
following procedure:

Let C be a cell of Dk+m,0  k  n� 1, and let C1, . . . ,Cl be the cells in the
stack over C. Then:

– If Qk+1 ⌘ 9, then V (C) =
lW

i=1
V (Ci).

– If Qk+1 ⌘ 8, then V (C) =
lV

i=1
V (Ci).

Essentially, in this step, the truth values of the cells of Dk+m+1 are propagated to the
truth values of the cells of Dk+m.

• Step 4: Solution. Finally, a quantifier-free expression F(p1, . . . , pm) can be obtained.
Let C be a cell of CAD Dm, and define:

S = {C 2 Dm |V (C) = true}. (2.32)

Then:
F(p1, . . . , pm)⌘

[

C2S
C.⌅ (2.33)
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As can be seen from the description of the algorithm, full CAD of Rn+m is constructed
first (step 1) and truth evaluations are performed later (steps 2,3). Construction of CAD,
in general, is a computationally expensive procedure. Hence, the execution time of this
quantifier elimination algorithm can be improved by combining CAD construction with
truth evaluation so that parts of the CAD are constructed only as needed to perform truth
evaluation and CAD construction is aborted as soon as no more truth evaluation is needed.
This is achieved by making use of more information contained in the input formula (2.31),
including its quantification structure, Boolean connectives and the absence of some variables
from some of the polynomials. This is called partial CAD for quantifier elimination — for
more details, see Collins and Hong (1991).

We have covered all the technical details needed to provide a quantifier elimination by
cylindrical algebraic decomposition example that illustrates all the mathematical machinery
discussed in previous sections.

2.3.3.5 Full example

Let

f1(x1,x2) = x2
2 �2x1x2 + x4

1,

f2(x1,x2) = (2431x1 �3301)x2 �2431x1 +2685.

Now, consider the quantifier elimination problem

F(x1)⌘ 9x2j(x1,x2)⌘ 9x2 : ( f1(x1,x2) 0)^ ( f2(x1,x2)� 0) (2.34)

which asks us to find for which values of the variable x1 there exists a value of the variable
x2 such that the polynomial f1(x1,x2) is non-positive and the polynomial f2(x1,x2) is non-
negative. Graphical solution to this problem is illustrated in Figure 2.3 (a).

We will arrive at the solution of this problem by using the full quantifier elimination by
cylindrical algebraic decomposition algorithm, as described in Sections 2.3.3.3 and 2.3.3.4.

• Step 1: CAD construction
Firstly, CAD D2 of R2 is built, which, as described in Section 2.3.3.3, consists of the
projection, base and extension phases.

Projection phase
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a
b

-2 -1 0 1 2 3
-2

-1

0

1

2

3

x1

x 2

(a) Graphical solution to the quantifier elimination
problem (2.34).
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x 2

(b) CAD D2 of R2.

Fig. 2.3 In figure (a), the blue region represents f1(x1,x2)  0 and the orange one corre-
sponds to f2(x1,x2)� 0. Hence, the solution to the quantifier elimination problem (2.34) is
given by the interval a  x1  b. Figure (b) illustrates the cylindrical algebraic decomposi-
tion of R2 induced by the polynomials f1(x1,x2) and f2(x1,x2).

Let F = { f1, f2} 2 R[x1,x2]. Reductum of the polynomials

f1(x1,x2) = f 2
1 (x1)x2

2 + f 1
1 (x1)x2 + f 0

1 (x1),

f2(x1,x2) = f 1
2 (x1)x2 + f 0

2 (x1),

(in alignment with (2.26)), as described by (2.27), are

f̂ 0
1 = x4

1, f̂ 1
1 =�2x1x2 + x4

1, f̂ 2
1 = f1 = x2

2 �2x1x2 + x4
1,

and

f̂ 0
2 =�2431x1 +2685, f̂ 1

2 = f2 = (2431x1 �3301)x2 �2431x1 +2685,
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respectively. Then:

PROJ1 (F )⌘ { f k
i (x1) | 1  i  2, 0  k  deg( fi)}

= {1,�2x1,x4
1,(2431x1 �3301),(�2431x1 +2685)}

PROJ2( f1)⌘ {pscx2
l ( f̂ k

1 (x1,x2),Dx2 ( f̂ k
1 (x1,x2))) | 0  l < k  2}

l = 0,k = 1

pscx2
0 ( f̂ 1

1 (x1,x2),Dx2 ( f̂ 1
1 (x1,x2))) = pscx2

0 (�2x1x2 + x4
1,�2x1) =�2x1

l = 0,k = 2

pscx2
0 ( f̂ 2

1 (x1,x2),Dx2 ( f̂ 2
1 (x1,x2))) = pscx2

0 (x2
2 �2x1x2 + x4

1,2x2 �2x1)

= 4x2
1(x1 �1)(x1 +1)

l = 1,k = 2

pscx2
1 ( f̂ 2

1 (x1,x2),Dx2 ( f̂ 2
1 (x1,x2))) = pscx2

1 (x2
2 �2x1x2 + x4

1,2x2 �2x1) = 2

PROJ2( f2)⌘ {pscx2
l ( f̂ k

2 (x1,x2),Dx2 ( f̂ k
2 (x1,x2))) | 0  l < k  1}

l = 0,k = 1

pscx2
0 ( f̂ 1

2 (x1,x2),Dx2 ( f̂ 1
2 (x1,x2)))

= pscx2
0 ((2431x1 �3301)x2 �2431x1 +2685,2431x1 �3301)

= 2431x1 �3301

PROJ3(F )⌘ {pscx2
m ( f̂ k1

1 (x1,x2), f̂ k2
2 (x1,x2)) | 0  m  k1  deg( f1) = 2, 0  m  k2  deg( f2) = 1}

m = 0,k1 = 0,k2 = 0

pscx2
0 ( f̂ 0

1 (x1,x2), f̂ 0
2 (x1,x2)) = pscx2

0 (x4
1,�2431x1 +2685) =�2431x1 +2685

m = 0,k1 = 0,k2 = 1

pscx2
0 ( f̂ 0

1 (x1,x2), f̂ 1
2 (x1,x2)) = pscx2

0 (x4
1,(2431x1 �3301)x2 �2431x1 +2685) =

{undefined, since f̂ 1
2 (x1,x2) has a higher degree in x2 than f̂ 0

1 (x1,x2)}

m = 0,k1 = 1,k2 = 0

pscx2
0 ( f̂ 1

1 (x1,x2), f̂ 0
2 (x1,x2)) = pscx2

0 (�2x1x2 + x4
1,�2431x1 +2685)

=�2431x1 +2685

m = 0,k1 = 1,k2 = 1

pscx2
0 ( f̂ 1

1 (x1,x2), f̂ 1
2 (x1,x2))

= pscx2
0 (�2x1x2 + x4

1,(2431x1 �3301)x2 �2431x1 +2685)

=�x1
�
2431x4

1 �3301x3
1 �4862x1 +5370

�

m = 0,k1 = 2,k2 = 0

pscx2
0 ( f̂ 2

1 (x1,x2), f̂ 0
2 (x1,x2)) = pscx2

0 (x2
2 �2x1x2 + x4

1,�2431x1 +2685)

=�2431x1 +2685

m = 0,k1 = 2,k2 = 1

pscx2
0 ( f̂ 2

1 (x1,x2), f̂ 1
2 (x1,x2))

= pscx2
0 (x2

2 �2x1x2 + x4
1,(2431x1 �3301)x2 �2431x1 +2685)

= (13x1 �5)(17x1 �15)
�
26741x4

1 �38742x3
1 �8854x2

1 �51552x1 +96123
�

m = 1,k1 = 1,k2 = 1

pscx2
1 ( f̂ 1

1 (x1,x2), f̂ 1
2 (x1,x2))

= pscx2
1 (�2x1x2 + x4

1,(2431x1 �3301)x2 �2431x1 +2685)

= 2431x1 �3301

m = 1,k1 = 2,k2 = 1

pscx2
1 ( f̂ 2

1 (x1,x2), f̂ 1
2 (x1,x2))

= pscx2
1 (x2

2 �2x1x2 + x4
1,(2431x1 �3301)x2 �2431x1 +2685)

= 2431x1 �3301
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Cell index C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

x1 (�•,�1) �1 (�1,0) 0
�
0, 5

13
� 5

13
� 5

13 ,
15
17
� 15

17
� 15

17 ,r1
�

r1

s1 �2 �1 � 1
2 0 1

4
5
13

1
2

15
17

9
10 r1

Cell index C11 C12 C13 C14 C15 C16 C17 C18 C19

x1 (r1,1) 1
�
1, 2685

2431
� 2685

2431
� 2685

2431 ,
3301
2431

� 3301
2431

� 3301
2431 ,r2

�
r2 (r2,+•)

s1
19
25 1 21

20
2685
2431

6
5

3301
2431

3
2 r2 2

Table 2.2 CAD D1 of R1.

Hence

PROJ(F ) =PROJ1(F )[PROJ2(F )[PROJ3(F )

={1,�2x1,x4
1,(2431x1 �3301),(�2431x1 +2685),4x2

1(x1 �1)(x1 +1),2,

� x1(2431x4
1 �3301x3

1 �4862x1 +5370),

(13x1 �5)(17x1 �15)(26741x4
1 �38742x3

1 �8854x2
1 �51552x1 +96123)}

⌘F1 ⇢ R[x1],

a set of univariate polynomials in x1.

Base phase
In this phase, the PROJ(F ) ⌘ F1-invariant CAD D1 of R1 is constructed, i.e. the
real line R is split into points and open intervals where each of the polynomials in F1

have a constant sign. This decomposition is obviously defined by the real roots of the
polynomials in F1

�1, 0,
5

13
,

15
17

, r1, 1,
2685
2431

,
3301
2431

, r2, (2.35)

where r1 (0.9 < r1 < 0.95) and r2 (1.5 < r2 < 1.6) are real roots of the polynomial

2431x4
1 �3301x3

1 �4862x1 +5370 2 F1

which can be isolated via Sturm Sequence based method (see Section 8.4 in (Mishra,
1993) for more details). Similarly, it can be found that the polynomial

26741x4
1 �38742x3

1 �8854x2
1 �51552x1 +96123 2 F1

has no real roots. These real roots (2.35) define an F1-invariant decomposition of R,
consisting of 9 points and 10 open intervals with sample points s1 given in Table 2.2.
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Cell index Ci j C71 C72 C73 C74 C75 C76 C77

Sample point (s1,s2)
� 1

2 ,0
� �1

2 ,
1
2 �

1
4

p
3
� �1

2 ,
1
2
� �1

2 ,
2939
4171

� �1
2 ,

3
4
� �1

2 ,
1
2 +

1
4

p
3
� �1

2 ,1
�

V (Ci j)⌘ j (s1,s2) F T T T F F F

Table 2.3 Quantifier elimination for the stack over the cell C7 2 D1.

Extension phase
In this step, the base phase is used repeatedly to “lift” the CAD D1 of R1 (obtained in
the previous step) to the CAD D2 of R2. To illustrate this phase, we will only perform
calculations for the cell C7 =

� 5
13 ,

15
17
�
2 D1 with a sample point s1 =

1
2 (calculations

for the remaining cells of D1 are analogous). Firstly, the polynomials in the set F =

{ f1(x1,x2), f2(x1,x2)} are calculated at the sample point x1 = s1 =
1
2

f1(s1,x2) = x2
2 � x2 +

1
16

,

✓
real roots

1
2
± 1

4
p

3
◆
,

f2(s1,x2) =�4171
2

x2 +
2939

2
,

✓
real root

2939
4171

◆
,

which results in a pair of univariate polynomials in x2. Now the base phase (real root
isolation and sample point creation) is performed on these polynomials which results
in the sample points s2 for the stack over the cell C7 2 D1 (see Table 2.3). After
performing this extension procedure for all the cells Ci 2 D1, i = 1, . . . ,19, we obtain
an F -invariant CAD D2 of R2, as depicted in Figure 2.3 (b).

In the following steps, we again limit our calculations to the stack over the cell C7 2D1

(since calculations for the remaining cells are analogous).

• Step 2: Evaluation
In this step, the truth value

V (Ci j)⌘ j(s1,s2)⌘ ( f1(s1,s2) 0)^ ( f2(s1,s2)� 0) (2.36)

is calculated for all the cells C7 j 2 D2, j = 1, . . . ,7 (i.e. for all the cells in the stack
over the cell C7 2 D1). The results are summarized in Table 2.3, where T stands for
true and F stands for f alse.

• Step 3: Propagation
In this step, the truth values of the cells of the CAD D1 are determined from the truth
values of the cells of the CAD D2.
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Again, consider the cell C7 2 D1 with C7 j 2 D2, j = 1, . . . ,7 being the cells in the
stack over C7. Since the quantifier elimination problem (2.34) has a single existential
quantifier

V (C7) =
7_

j=1
V (C7 j) = F _T _T _T _F _F _F = T, (2.37)

which implies that when x1 2C7 =
� 5

13 ,
15
17
�
, (2.34) evaluates to true.

• Step 4: Solution
By performing the extension, evaluation and propagation calculations for all the cells
Ci, i = 1, . . . ,19 in the CAD D1 (which are analogous to the one done for C7), we
eventually arrive at the quantifier-free expression to the quantifier elimination prob-
lem (2.34):

F(x1)⌘
[

{Ci2D1|V (Ci)=true}
Ci ⌘�1  x1 

15
17

. (2.38)

2.4 MetiTarski: theorem prover for real-valued functions

2.4.1 Introduction

MetiTarski (Paulson, 2012) is an automatic theorem prover that is designed to prove univer-
sally quantified mathematical inequalities containing real-valued functions such as log10(x),
exp(x), sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), sinh(x), cosh(x), tanh(x), n

p
x.

It is based on a combination of Metis (Hurd, 2003, 2007), a resolution theorem prover,
and a decision procedure for the theory of real closed fields (i.e., a quantifier elimination
algorithm). Cursory explanation of how MetiTarski produces a proof is as follows:

• Step 1: Real-valued functions are eliminated by substituting appropriate upper or
lower bounds obtained from Taylor series or continued fraction expansions. In gen-
eral, a typical proof uses a combination of bounds in order to get a good approximation
of the real-valued function over an appropriate range of variables. For example, upper
and lower bounds for log(x) that are valid for x > 0 and based on a continued fraction
expansion are:

(47x3 +239x2 +131x+3)(x�1)
12x(x3 +12x2 +18x+4)

 log(x) (3x3 +131x2 +239x+47)(x�1)
12(4x3 +18x2 +12x+1)

. (2.39)

Hence, this step converts the problem of proving a universally quantified real-valued
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function inequality into the problem of the form

8x1 . . .8xnj(x1, . . . ,xn), (2.40)

where (as in (2.7)) j is a quantifier-free formula constructed by conjunction (^),
disjunction (_) and negation (¬) of atomic formulas of the form f r 0 (where f 2
R[x1, . . . ,xn] is a polynomial and r 2 {=, 6=,<,} is a relational operator).

• Step 2: To prove the problem (2.40), MetiTarski calls an external quantifier elimina-
tion algorithm implemented in Z3 (de Moura and Bjørner, 2008), QEPCAD (Brown,
2003) or Mathematica (Wolfram Research Inc., 2016).

While any system of polynomial equalities and inequalities of the form (2.7) can be proven
in principle (if given enough time and memory) by using the quantifier elimination by cylin-
drical algebraic decomposition algorithm (see Section 2.3.3), the problem of proving a gen-
eral real-valued function inequality is undecidable (Paulson, 2012), i.e. there does not exist
an algorithm which could prove all true statements of this kind. Hence, we cannot conclude
anything from the failure of MetiTarski to prove an inequality. Despite this fact, in many
situations, it is remarkably useful, as illustrated by the following example.

2.4.2 Example: time delay with lag and integrator

In this section, we provide a simple example that illustrates MetiTarski capability to prove
inequalities involving real-valued functions like sin(x) and cos(x). Consider a transfer func-
tion of the form:

L(s) =
e�sT1

s(1+ sT2)
. (2.41)

Suppose that we are interested in the following verification criterion: what is the largest
value r such that, 8 T1 +T2  r, T1 � 0, T2 � 0, the magnitude of the complementary sensi-
tivity function satisfies:

|T ( jw)|=
����

L( jw)

1+L( jw)

����
p

2 = 3dB. (2.42)
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(a) Nichols plot with T1 = R, T2 = 0.
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(b) Nichols plot with T1 = 0.5, T2 = R�0.5.
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(c) Nichols plot with T1 = 0.25, T2 = R�0.25.
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(d) Nichols plot with T1 = 0, T2 = R.

Fig. 2.4 Nichols plots for various T1 and T2 values satisfying T1 +T2 = R.

This verification criterion gets translated to the following real-valued function problem that
MetiTarski is asked to prove:

8x,T1,T2 : (T1 � 0)^ (T2 � 0)^ (T1 +T2  r) (2.43)

=) (T 2
2 x2 +1) · (2x2 �4xsin(T1x)+2T 2

2 x4 �4T2x2 cos(T1x)+1)> 0).

Initially, we ask MetiTarski to prove (2.43) for r = 1 — it returns false. Consequently, we
ask MetiTarski to prove (2.43) for the following values of r 2 [0,1]

0.5 (MetiTarski returns true),0.75 (MetiTarski returns true),

0.875 (MetiTarski returns false),0.8125 (MetiTarski returns false),

0.78125 (MetiTarski returns false),0.765625 (MetiTarski returns false),

0.7578125 (MetiTarski returns true),0.76171875 (MetiTarski returns true),
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i.e., we essentially perform a simple bisection search for r. Hence, we find that the largest
value of r for which (2.43) holds lies in the interval 0.76171875  r  0.765625.

Let R = 0.76171875. Nichols plots with loci of constant 20log10 |T (s)| and arg(T (s))
overlaid are depicted in Figure 2.4 for several cases of T1 and T2 values satisfying T1+T2 =

R. The limiting case is achieved when T1 = R and T2 = 0 — see Figure 2.4 (a).



Chapter 3

Application of Formal Methods to
Control Analysis Problems

In this chapter, robustness criteria of interest are defined and then translated to the form that
automated theorem provers (Why3, MetiTarski) or one of the quantifier elimination algo-
rithms (Weispfenning’s virtual term substitution, quantifier elimination based on cylindrical
algebraic decomposition) are capable of verifying. Consequently, this allows us to anal-
yse robustness criteria from a different perspective and, in some cases, obtain results that
standard control analysis techniques are not capable of.

In Section 3.1, it is shown how the Why3 verification framework can be used to prove
Lyapunov stability of an autonomous system implemented graphically in Simulink. Sec-
tion 3.2 shows how avoidance of various exclusion regions by the open loop transfer func-
tion can be expressed as a simple quantifier elimination problem. In Section 3.3, quantifier
elimination algorithms are used for analysing stability of uncertain systems via calculation
of the structured singular value µ . Additionally, contrast is drawn between the proposed
quantifier elimination based method and the standard methods (like branch and bound al-
gorithms) for computing the value of µ . Then, in Section 3.4, we show how a general
optimisation problem can be converted to a quantifier elimination one. This is then used
for obtaining an explicit MPC solution which consequently allows verification of proper-
ties like recursive feasibility. Moreover, in Section 3.5, it is shown how a Linear Temporal
Logic (LTL) specification can be converted to a quantifier elimination problem. This quan-
tifier elimination problem is then used to find feasible parameter sets in cases when standard
Linear Temporal Logic (LTL) approaches fail, like nonlinearly parametrized systems or LTL
specifications that result in non-convex feasible parameter sets.

In Section 3.6.1, a backup flight control scheme developed for the RECONFIGURE



44 Application of Formal Methods to Control Analysis Problems

project is described. Initially, in Section 3.6.2, a quantifier-elimination-based verification
framework is applied to this control law in order to verify certain properties of the system at
particular points in the flight envelope. In Section 3.6.3, a verification framework based on
quantifier elimination is developed to clear various criteria of interest throughout the whole
flight envelope for the same backup flight control law. Consequently, this shows that, in
some particular instances, verification frameworks based on formal methods are capable of
dealing with real world industrial problems.

3.1 Verification of properties of control systems implemented
graphically with Why3-based verification framework

3.1.1 Introduction

The capability to automatically clear verification criteria of control systems implemented
graphically in Simulink is undoubtedly appealing from a practical perspective. This moti-
vates the development of a verification framework that would take a system implemented in
Simulink (together with additional blocks in the Simulink diagram to represent verification
criteria of interest) as an input and then would automatically create a Why3 theory (see Sec-
tion 2.2) representing this graphical implementation. Finally, the Why3 tool could then be
used to check whether or not the criteria are met by passing the corresponding Why3 theory
to SMT provers it interfaces with. In particular, this kind verification scheme would be a
powerful tool to clear verification requirements for the backup flight control law developed
in Maciejowski et al. (2016) for the RECONFIGURE project (Goupil et al., 2014).

Therefore, in Section 3.1.2, we develop a verification framework of this nature while si-
multaneously carrying out preliminary tests of its capability by using it to check asymptotic
stability of several instances of autonomous linear discrete time systems. Unfortunately,
even for these simple systems, the Why3 verification framework often runs into computa-
tional issues (mainly running out of time) at the SMT prover stage. The reason for this is
discussed in Section 3.1.3. Fortunately, also Section 3.1.3, we show that all the verification
criteria that the Why3 verification framework failed to clear was cleared with no issues by
using an approach based on quantifier elimination algorithms discussed in Section 2.3.3.

Hence, verification approach that utilises quantifier elimination methods is taken advan-
tage of throughout the rest of this chapter. Moreover, as will be shown later in Sections 3.6.2
and 3.6.3, this quantifier-elimination-based approach (rather than the Why3 verification
framework) is used to successfully clear verification criteria of interest for the backup flight
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control law developed in Maciejowski et al. (2016).

3.1.2 Why3 verification framework and its application to verify asymp-
totic stability

Consider the autonomous linear discrete time system

x(k+1) = Ax(k) , k = 0,1,2, . . . (3.1)

and the candidate Lyapunov function of the form

V (x(k)) = x(k)T Px(k), (3.2)

where P is chosen to be a positive definite matrix. In order to show that the origin is a glob-
ally asymptotically stable equilibrium point for the system (3.1) with a particular matrix A,
it is sufficient to show that the Lyapunov function (3.2) satisfies the following requirements:

1. Req. 1: 8x(k) 6= 0, V (x(k+1))�V (x(k))< 0.

2. Req. 2: 8x(k) 6= 0, V (x(k))> 0.

3. Req. 3: V (x(k)) = 0 if x(k) = 0.

Obviously, requirements Req. 2 and Req. 3 are already satisfied (since the matrix P is
chosen to be positive definite and the Lyapunov function is chosen as in (3.2)). Regard-
less, we will still verify these requirements with the Why3 verification framework, together
with the requirement Req. 1 for specific examples of systems of the form (3.1). The high-
level overview of the Why3 verification framework (implemented by us analogously to the
approach considered in Araiza-Illan et al. (2014)) is illustrated in Figure 3.1. In this frame-
work, system (3.1) is firstly implemented graphically as a Simulink model. Then high level
verification requirements (such as Req. 1, 2, 3) are expressed by adding custom ’Require’
type blocks to this Simulink diagram. Finally, this annotated diagram is automatically trans-
lated to a Why3 theory with verification goals which, if discharged by one of the SMT
provers, verifies that the system meets the required criteria. In the following sections, we
discuss the steps of this framework in more detail.

Step 1
First of all, the system of interest has to be represented graphically as a Simulink model. For
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Fig. 3.1 Verification framework for systems expressed graphically in Simulink. Red blocks
represent actions required by a human user, green blocks indicate automated steps and yel-
low blocks show the outcome of verification.

simplicity, we assume that all blocks and signals are scalar. Note that this does not impose
the constraint on x(k) to be scalar — this will be illustrated in Section 3.1.2.2 for x(k) 2R2.
The following scalar Simulink blocks are currently allowed (since we have developed Why3
theories for these Simulink blocks and added the appropriate code to the MATLAB translation
script used in step 3): ’Sum’, ’Product’, ’Gain’, ’Unit delay’, ’Unit advance’, ’Saturation’,
various compare-to-zero blocks, ’Logic And’ and ’Logic Or’ blocks. For the full library, see
Appendix A.2 on page 141. This library of theories of Simulink blocks could be extended in
order to accommodate a bigger class of models, including the ones that require non-scalar
blocks and signals to be represented graphically as a Simulink model.

Step 2
In order to express verification goals graphically in Simulink, a custom ’Require’ block is
created, as depicted in Figure 3.2. This block has two input ports, denoted as ’Pre_in’ and
’Post_in’, which must be of Boolean type. By connecting signal ’in1’ to the port ’Pre_in’
and signal ’in2’ to the port ’Post_in’, we add a verification condition of the form:

8k, in1 = true ! in2 = true (3.3)

i.e. for all time steps k, if a pre-condition ’Pre_in’ holds, then the post-condition ’Post_in’
must hold as well.

Output ports Pre_out and Post_out just replicate the respective input ports, while the port



3.1 Verification of properties of control systems implemented graphically with Why3-based
verification framework 47

NOT

NOT
OR

OR

1
Pre_in

2
Post_in

3
Implication_out

1
Pre_out

2
Post_out

Fig. 3.2 Custom ’Require’ Simulink block used to add verification conditions to the model.

Implication_out has value ¬ Pre_in
W

Post_in, which is equivalent to Pre_in ! Post_in.
Output ports are only used for checking their respective values in a Simulink simulation,
while input ports are used in the automatic translation process in step 3 in order to add
specified verification goals to a Why3 theory.

For example, consider a discrete time first order system of the form x(k+ 1) = Kx(k)
depicted in Figure 3.3 on page 51. In order to argue about the stability of this system, we
implemented a Lyapunov function V (x) = x2 graphically in the Simulink diagram. Then
each of the ’Require’ blocks represents a verification condition which, if proven, guarantees
asymptotic stability:

1. ’Req1:’ 8k, x(k) 6= 0 !V (x(k+1))�V (x(k))< 0, i.e. at each time step k, if the state
of the system is not at the origin, the Lyapunov function must be decreasing.

2. ’Req2:’ 8k, x(k) 6= 0 !V (x(k))> 0, i.e. at each time step k, if the state of the system
is not at the origin, the Lyapunov function must be positive.

3. ’Req3:’ 8k, x(k) = 0 !V (x(k)) = 0, i.e. at each time step k, if the state of the system
is at the origin, the Lyapunov function must be zero.

Step 3
In this step, a MATLAB function (for full code of the function, see Appendix A.3 on page 145)
automatically translates a Simulink model like the one in Figure 3.3 into a corresponding
Why3 theory. When called, this translation function automatically performs the following
steps:

1. Identification of ’Require’ blocks in the Simulink model. This step is needed because
’Require’ blocks represent verification goals and not the actual functionality of the
control system.
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2. Standard Why3 theories used in theories for scalar Simulink blocks (such as theories
for integers, real numbers and Boolean expressions) are imported. For the Why3
standard library theory RealInfix for real numbers (and other Why3 standard library
theories it depends on), see Appendix A.1 on page 137.

3. For all the blocks in the diagram (except the ’Require’ ones), every outgoing signal
is identified, named and translated to an appropriate uninterpreted function. For ex-
ample, an n-th output signal of the block named block_name will be translated to the
function:

function <block_name>_p<n> int : <real/bool>

where int and real/bool indicate the type of the signal (integer, real and Boolean,
respectively).

4. For each block in the model (except the ’Require’ ones), an appropriate Why3 the-
ory for that scalar block is cloned from the file ’Theories.why’ with an appropriate
parametrisation of input and output functions, gains, etc. For example, consider a
’Gain’ block named Neg in Figure 3.3 with a gain of �1. It is translated to

clone Theories.Gain as Neg with function in1 = vx_old_p1,

function out1 = neg_p1

axiom Neg_gain: Neg.gain = -.1.0

where -.1.0 represents the value of the gain (i.e., �1).

5. For each ’Require’ block, a verification goal is created. Suppose that the signals
named prec and post are connected to the input ports ’Pre_in’ and ’Post_in’ of the
’Require’ block, respectively. Then a verification goal of the form

goal <name_of_goal> : forall k: int. prec k = True -> post k = True

is added. Verification goal of this form represents the requirement that, for all time
steps k (k = 0,1,2, . . .), if some precondition prec holds (prec k = True), then post-
condition post is true as well (post k = True).

For example, the translation function produces the following Why3 theory for the Simulink
diagram shown in Figure 3.3:

theory Lyapunov_stability
use import int.Int
use import real.RealInfix
use import bool.Bool

function desc_grad_p1 int:bool
function difference_p1 int:real
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function neg_p1 int:real
function not_zero_x_p1 int:bool
function vx_p1 int:real
function vx_old_p1 int:real
function vx_pos_p1 int:bool
function vx_zero_p1 int:bool
function x_p1 int:real
function x_not_zero_p1 int:bool
function x_old_p1 int:real
function x_zero_p1 int:bool

clone Theories.LessThanZero as Desc_grad with function in1 = difference_p1,
function out1 = desc_grad_p1

clone Theories.Sum as Difference with function in1 = neg_p1, function in2 = vx_p1,
function out1 = difference_p1

clone Theories.Gain as Neg with function in1 = vx_old_p1, function out1 = neg_p1
axiom Neg_gain: Neg.gain = -.1.0

clone Theories.NotEqualToZero as Not_zero_x with function in1 = x_p1, function out1 =
not_zero_x_p1

clone Theories.Product as Vx with function in1 = x_p1, function in2 = x_p1, function out1
= vx_p1

clone Theories.Product as Vx_old with function in1 = x_old_p1, function in2 = x_old_p1,
function out1 = vx_old_p1

clone Theories.GreaterThanZero as Vx_pos with function in1 = vx_p1, function out1 =
vx_pos_p1

clone Theories.EqualToZero as Vx_zero with function in1 = vx_p1, function out1 =
vx_zero_p1

clone Theories.Gain as X with function in1 = x_old_p1, function out1 = x_p1
axiom X_gain: X.gain >. -.1.0 /\ X.gain <. 1.0

clone Theories.NotEqualToZero as X_not_zero with function in1 = x_p1, function out1 =
x_not_zero_p1

clone Theories.UnitDelay as X_old with function in1 = x_p1, function out1 = x_old_p1

clone Theories.EqualToZero as X_zero with function in1 = x_p1, function out1 = x_zero_p1

goal G1 : forall k: int. not_zero_x_p1 k = True -> desc_grad_p1 k = True
goal G2 : forall k: int. x_not_zero_p1 k = True -> vx_pos_p1 k = True
goal G3 : forall k: int. x_zero_p1 k = True -> vx_zero_p1 k = True

end

Step 4
The created Why3 theory is sent to one of the SMT solvers via a Why3 tool. SMT solvers
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automatically discharge verification conditions in the input theory, thus checking whether
the system satisfies required properties at all time steps. ⌅

In Sections 3.1.2.1 and 3.1.2.2, we apply this Why3 verification framework to simple
systems of the form x(k+1) = Kx(k) with x(k) 2 R and x(k) 2 R2, respectively.

3.1.2.1 Computational example: first order system

Consider a first order system of the form

x(k+1) = Kx(k), k = 0,1,2, . . . (3.4)

with x(k)2R, K 2R, together with appropriate scalar Simulink blocks needed to implement
the Lyapunov function V (x) = x2 and ’Require’ blocks for adding verification conditions as
shown in Figure 3.3, with the corresponding Why3 theory Lyapunov_stability given
on page 48. The three verification goals in theory Lyapunov_stability represent the
following verification conditions expressed in terms of the Lyapunov function V (x) = x2:

• goal G1: 8 x(k) 6= 0, V (x(k+1))�V (x(k))< 0.

• goal G2: 8 x(k) 6= 0, V (x(k))> 0.

• goal G3: V (x(k)) = 0 for x(k) = 0.

If all of these verification goals can be discharged by some SMT solver, then asymptotic
stability of the system is verified.

Prover goal G1 goal G2 goal G3
Alt-Ergo Unknown (realised under 50s) Proven (under 0.1s) Proven (under 0.1s)
CVC3 Unknown (realised under 120s) Proven (under 0.1s) Proven (under 0.1s)

Z3 Proven (under 0.5s) Proven (under 0.1s) Proven (under 0.1s)

Table 3.1 Verification results with |K|< 1.

Suppose |K| < 1 in the system (3.4). In the Why3 theory Lyapunov_stability rep-
resenting this system, this assumption is represented by the following axiom on the gain
value:

axiom X_gain: X.gain >. -.1.0 /\ X.gain <. 1.0

i.e., in this Why3 theory, instead of giving a specific value of K, we just assume that |K|< 1.
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Fig. 3.3 Graphical implementation of a first order system x(k + 1) = Kx(k) in Simulink,
together with ’Require’ blocks Req1, Req2 and Req3 representing verification criteria.
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MATLAB translation script, given the Simulink diagram illustrated in Figure 3.3 as an
input, successfully produces a corresponding Why3 theory Lyapunov_stability in a frac-
tion of a second (step 3 in the verification framework). Results of verification obtained
when Lyapunov_stability Why3 theory is passed to SMT provers Alt-Ergo, CVC3 and
Z3 provers (step 4 in the verification framework) are summarised in Table 3.1. Prover Z3
is capable of discharging all three goals, hence proving the asymptotic stability of the sys-
tem (3.4). Alt-Ergo and CVC3 are capable of dealing with goals G2 and G3, but cannot
discharge goal G1 (i.e., provers return proof-status ’Unknown’) because of their inability to
deal with universal quantification and non-linear arithmetic inequalities (since the goal G1
becomes 8x(k) 6= 0, x2(k)(K2 �1)< 0).

On the other hand, suppose |K| � 1. This assumption in the Why3 theory would be
represented as:

axiom X_gain: X.gain <=. -.1.0 \/ X.gain >=. 1.0

With this assumption in place, all provers (Alt-Ergo, CVC3 and Z3) still prove goals G2 and
G3, as expected. While trying to prove the goal G1, CVC3 runs out of time (given a time
limit of one hour), while Alt-Ergo and Z3 are not capable of discharging this particular goal
because of its mathematical structure (proof-status ’Unknown’ returned by the provers).
Hence, these provers are not capable of showing that the system (3.4) with |K|� 1 does not
satisfy the Lyapunov stability requirement represented by goal G1.

Now suppose the value of K in (3.4) is left unspecified, i.e. no particular numerical
value is assigned to K and no bounds on it are introduced in a form of an axiom in the
Lyapunov_stability Why3 theory. In this case, goals G2 and G3 are still discharged by
all SMT provers. Alt-Ergo and CVC3 are incapable of dealing with goal G1 (proof-status
’Unknown’ returned), while Z3 runs out of time (the time limit being 6 hours) trying to
discharge this goal.

A conclusion regarding these results, and a way forward using quantifier elimination
based verification approach, is presented in Section 3.1.3.

3.1.2.2 Computational example: second order system

Similarly to the Section 3.1.2.1, consider a second order system of the form

x(k+1) = Ax(k), k = 0,1,2, . . . , (3.5)
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where x(k) =

"
x1(k)
x2(k)

#
and A =

"
A11 A12

A21 A22

#
. Figure 3.4 shows this system implemented us-

ing only scalar Simulink blocks and scalar signals, together with other scalar blocks needed
to implement a Lyapunov function V (x) = xT Px and ’Require’ blocks for adding verification
conditions. Verification goals are analogous to the ones in Section 3.1.2.1, the only differ-
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Fig. 3.4 Graphical implementation of a second order system x(k+ 1) = Ax(k) in Simulink
using only scalar blocks and signals, together with ’Require’ blocks Req1, Req2 and Req3
representing verification criteria.

ence being that the Lyapunov function now is of the form V (x) = xT Px for some positive
definite matrix P.

As before, the MATLAB translation script, given the Simulink diagram illustrated in
Figure 3.4 as an input, successfully produces a corresponding Why3 theory in a fraction
of a second. Results of verification obtained for several systems when this Why3 theory is
passed to SMT provers are shown in Table 3.2, where the matrix Q is the following matrix
in the discrete Lyapunov equation:

AT PA�P =�Q. (3.6)
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In the first, second and fourth cases, CVC3 and Z3 are capable of discharging all goals
under four seconds, hence proving the asymptotic stability of the system of the form (3.5).
In the third case, goal G1 is proven only by Z3, goal G2 is proven only by Alt-Ergo while
goal G3 is discharged by all provers — therefore, this second order system is proved to be
asymptotically stable as well.

Case # 1 2 3 4

A


0.5 0
0 0.6

� 
0.5 0
0 �0.9999

� 
0.2 4
0 0.5

� 
6 �3

12 �6

�

P


1 0
0 1

� 
1 0
0 1

� 
9 8
8 240

� 
761 �377
�375 191

�

Q


0.75 0
0 0.64

� 
0.75 0

0 0.0002

� 
8.64 0

0 4

� 
5 1
3 2

�

Alt-
Ergo

G1: unknown
G2: proven (under 2s)
G3: proven (under
40s)

G1: unknown
G2: proven (under
1.6s)
G3: proven (under
32s)

G1: unknown
G2: proven (under
47s)
G3: proven (under
115s)

G1: unknown
G2 and G3: ran out of
time (1h)

CVC3 All goals proven (un-
der 2.5s)

All goals proven (un-
der 2.1s)

G1 and G2: unknown
G3 - proven (under
5s)

All goals proven (un-
der 4s)

Z3 All goals proven (un-
der 0.1s)

All goals proven (un-
der 0.1s)

G1 and G3: proven
(under 5s)
G2 - ran out of time
(1h)

All goals proven (un-
der 1s)

Table 3.2 Verification results for various A and P values.

On the other hand, consider the system

x(k+1) =

"
0.2 4
0 0.5

#
x(k) (3.7)

which was proven to be asymptotically stable by using the Lyapunov function

V (x) = xT

"
9 8
8 240

#
x (3.8)

(as shown in Table 3.2). In Table 3.3, we consider the same system with different values
of matrix P for the Lyapunov function (all of which are positive definite). In this table, the
matrix Q is as described by the equation (3.6).

Only in the first case the provers were able to collectively discharge all three goals (i.e.,
each one of the three goals was discharged by at least one of the provers), consequently
proving asymptotic stability, while in the second, third and fourth cases, none of the provers
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Case # 1 2 3 4

P


9 8
8 240

� 
1 0
0 28

� 
1 1
1 28

� 
1 2
1 36

�

Q


8.64 0
0 4

� 
0.96 �0.8
�0.8 5

� 
0.96 0.1
0.1 1

� 
0.96 1
0.1 5

�

Alt-
Ergo

G1: unknown
G2: proven (under
47s)
G3: proven (under
115s)

G1: unknown
G2: proven (under 2s)
G3: proven (under
33s)

G1: unknown
G2: proven (under
47s)
G3: proven (under
89s)

G1: unknown
G2: proven (under
48s)
G3: proven (under
120s)

CVC3 G1 and G2: ran out of
time (1h)
G3 - proven (under
5s)

G1: ran out of time
(1h)
G2 and G3: proven
(under 5s)

G1 and G2: unknown
G3: proven (under 5s)

G1 and G2: unknown
G3: proven (under 5s)

Z3 G1 and G3: proven
(under 5s)
G2 - ran out of time
(1h)

G1: ran out of time
(1h)
G2: proven (under
30s)
G3: proven (under 5s)

G1 and G2: ran out of
time (1h)
G3: proven (under 5s)

G1 and G2: ran out of
time (1h)
G3: proven (under 5s)

Table 3.3 Verification of a system (3.7) with various values of P for Lyapunov function
V (x) = xT Px.

could deal with the goal G1 despite the suitable choice of P matrix. Additionally, in the first
and second cases in Table 3.3, CVC3 runs out of time while trying to discharge G1, but stops
before the time limit in third and fourth cases because it detects non-linear arithmetic it is not
capable of dealing with. Moreover, notice that when the matrix Q is diagonal, asymptotic
stability is always proven. Conversely, when Q is not diagonal, asymptotic stability only

gets proven for a trivial system A =

"
6 �3
12 �6

#
(see Table 3.2) where the matrix A has a

single eigenvalue with an algebraic multiplicity of 2.
Similarly, instead of using a specific matrix P, using just the fact that the matrix P must

be positive definite (which is expressed by adding the following axiom in the corresponding
Why3 theory):

axiom P_gain: forall x1 x2: real.
(x1 >. 0 /\ x2 >. 0) \/ (x1 <. 0 /\ x2 <. 0) \/
(x1 >. 0 /\ x2 <. 0) \/ (x1 <. 0 /\ x2 >. 0)
->
P_11.gain *. x1 *. x1 +.
P_12_21.gain *. x1 *. x2 +.
P_22.gain *. x2 *. x2 >. 0.0

leads to all provers running out of time (time limit being six hours) while trying to deal with
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the goal G1.

A conclusion regarding these results, and a way forward using quantifier elimination
based verification approach, is presented in Section 3.1.3.

3.1.3 Conclusions

In principle, the Why3 verification framework developed in Section 3.1.2 could be applied
to any control system implemented in Simulink as long as a corresponding Why3 theory is
developed for each type of Simulink block used in this implementation (including Simulink
blocks used to implement verification criteria). For a current library of such Why3 theories,
see Appendix A.2 on page 141.

Unfortunately, as illustrated in Sections 3.1.2.1 and 3.1.2.1, we run into computational
issues (SMT provers running out of time or returning proof-status ’Unknown’ indicating
their inability to proceed) even when trying to prove a simple property of global asymptotic
stability for systems of the form x(k+1) = Kx(k) with x(k) 2 R or x(k) 2 R2.

Expressing the system of interest as a Simulink diagram and then converting it to an
equivalent Why3 theory to prove a simple property such as asymptotic stability introduces
a lot of variables (which correspond to signals in the Simulink diagram and are declared as
uninterpreted functions in the Why3 theory — see Lyapunov_stability on page 48 for an
example). This, at the end of the day, just represents the verification problem in a complex
way while at the same time not necessarily making it easier to analyse more complicated
robustness properties.

On the other hand, many analysis and synthesis problems in control theory can be rep-
resented as a quantifier elimination problem of the form (2.7) on page 16. This approach
requires fewer variables to express verification requirement of interest than a Why3 verifi-
cation framework (since, unlike Why3 verification framework, it does not have to explicitly
deal with a multitude of variables coming from signals in the Simulink diagram). For ex-
ample, for a given positive definite matrix P and system A, goal G1 can be expressed as a
quantifier elimination problem of the form:

8x1,x2, x1 6= 0_ x2 6= 0 :
h
x1 x2

i
Q

"
x1

x2

#
> 0. (3.9)

As expected, quantifier elimination algorithms show that (3.9) is equivalent to true for all
choices of A and P represented in Tables 3.2 and 3.3.
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Similarly, for a given system A and general matrix P =

"
P11 P12

P21 P22

#
, the asymptotic sta-

bility can be proven by eliminating quantifiers from the following first order formula:

9P11,P12,P21,P22 :

 
8x1,x2, x1 6= 0_ x2 6= 0 :

 h
x1 x2

i
P

"
x1

x2

#
> 0

!
^
 h

x1 x2

i
Q

"
x1

x2

#
> 0

!!
.

(3.10)

Again, for all the systems A from Table 3.2, quantifier elimination algorithm shows that (3.10)
is equivalent to true, as expected.

Hence, from computational perspective, we see that using quantifier elimination algo-
rithms to prove asymptotic stability of the system is more practical than trying to do so via
the Why3 based framework considered here. Therefore, in the following sections, we focus
on checking various criteria by expressing it as a quantifier elimination problem first.

3.2 Exclusion regions

In this section, we consider several verification criteria that can be expressed in terms of
exclusion regions. In order for the robustness specification expressed in terms of an ex-
clusion zone to hold, the graph of the open loop transfer function L( jw) representing the
system must not enter the specified region. To check whether or not this is the case, the
avoidance condition is converted by us to an equivalent quantifier elimination problem. In
Section 3.2.1, we will discuss the M-circle exclusion region while Section 3.2.2 will con-
sider exclusion regions whose avoidance guarantees that sufficient simultaneous gain and
phase margins are attained.

3.2.1 M-circle exclusion region

Consider an M-circle exclusion region (for reference, see Levine (1996), section 10.3.8),
which is defined as a bound on the magnitude of the complementary sensitivity function

|T ( jw)|=
����

L( jw)

1+L( jw)

���� M, (3.11)

where L(s) is an open loop transfer function and M > 0 is a constant. Let L( jw) = x+ iy
(i.e., x = Re(L( jw)) and y = Im(L( jw))). Then the inequality (3.11) can be written as

✓
x+

M2

M2 �1

◆2

+ y2 
✓

M
M2 �1

◆2
, (3.12)
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i.e. an M-circle exclusion region is a disk in a Nyquist plane with a centre xc =
M2

1�M2 ,yc = 0

and a radius r =
��� M

M2�1

���.
Some important properties of M-circles are:

• If the open loop transfer function L(s) does not enter the M-circle of value M, then
the complementary sensitivity gain plot will stay below 20log10 M.

• If M1 > M2 > 1, then the M2-circle contains the M1-circle.

• For M = 1, the M-circle reduces to the vertical line x =�1
2 .

• If M converges to 1 from below, the M-circle converges to the right half plane given
by x � �1

2 ; if M converges to 1 from above, then the M-circle converges to the left
half plane given by x �1

2 .

In order to prove with a quantifier elimination (QE) algorithm that the open loop transfer
function L( jw) does not enter the M-circle exclusion region, we have to show that:

8w : |L( jw)� xc|> r. (3.13)

Hence, the QE algorithm has to discharge the following first order formula:

8w : (Re(L( jw))� xc)
2 + Im(L( jw))2 > r2. (3.14)

Suppose L( jw) is a rational transfer function of the form

L( jw) =
a(w)+ i ·b(w)

c(w)
, (3.15)

where a(w),b(w) and c(w) are real functions of w . Then the requirement (3.14) reduces to
the condition that a particular polynomial is positive for all frequencies w:

8w : (a(w)� xcc(w))2 +b(w)2 � r2c(w)2 > 0. (3.16)

If L(s) is a discrete-time transfer function (as is the case for the backup flight control
law discussed in Section 3.6.1), it has to be evaluated at s = e jq = cos(q)+ j · sin(q). In
this case, the polynomial in (3.16) becomes a trigonometric polynomial f (cos(q),sin(q))
in terms of q :

8q : (0  q ^q < 2p)) f (cos(q),sin(q))> 0. (3.17)
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In order to deal with this, we make a substitution X = cos(q), Y = sin(q) and require the
quantifier elimination algorithm to discharge:

8 X ,Y : (X2 +Y 2 = 1)) f (X ,Y )> 0. (3.18)

This is indeed what we do in Section 3.6.2 when trying to verify criteria of interest for the
discrete-time backup flight control law discussed in Section 3.6.1.

3.2.2 Exclusion regions for simultaneous gain and phase margins

Suppose we want to verify that the system, described by an open loop transfer function L(s),
has simultaneous gain and phase margins Gm and Pm, respectively. This can be achieved by
making sure that L( jw) does not enter a chosen exclusion region around the critical point
(�180�, 0 dB) in the Nichols plane. For example, a hexagonal exclusion region depicted
in Figure 3.5 (a) guarantees simultaneous gain and phase margins of 3 dB and 30�. Note
that the hexagonal exclusion region is somewhat conservative, since non-convex exclusion
regions around the critical point (�180�, 0 dB) in the Nichols plane could be used to repre-
sent the simultaneous gain and phase margin requirement.

While, in principle, proving avoidance of the hexagonal exclusion region in the Nichols
plane by using MetiTarski theorem prover for real-valued functions is possible, for non-
trivial examples, it is almost always computationally intractable. This intractability arises
from having to repeatedly approximate real-valued functions with appropriate polynomial
bounds. Hence, we overbound this region by an ellipse:

|L( jw)|2dB
G2

m
+

(\L( jw)+180)2

P2
m

= 1. (3.19)

This obviously introduces some additional conservatism, because the uncertainty region is
larger than the strictly required exclusion zone.

As was shown in Deodhare and Patel (1998), if we let Gm and Pm in (3.19) be

Gm = 20log10 (a+ r) , (3.20)

Pm = cos�1
✓

a2 � r2 +1
2a

◆
, (3.21)

then this elliptical Nichols exclusion region can be non-conservatively overbounded by a
circular exclusion region in the Nyquist plane with a center (�a, 0) and radius r with
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Fig. 3.5 Exclusion regions.

a > 0, a > r and r > |a�1| (i.e. critical point (�1, 0) in the Nyquist plane is contained
inside the circle), as can be seen in Figure 3.5 (b). Therefore, for example, if the open
loop frequency response L( jw) does not enter the circular exclusion region shown in Fig-
ure 3.5 (b), it implies that L( jw) does not enter the elliptical Nichols exclusion region de-
picted in Figure 3.5 (a), and therefore the system has a guaranteed simultaneous gain and
phase margin of 3 dB and 32�.

Deodhare and Patel (1998) showed that L( jw) not entering the described circular exclu-
sion region is equivalent to avoidance of (�1,0) critical point in the Nyquist plane by an
open loop frequency response L̂( jw) of all perturbed systems of the form

L̂(s) = L(s)(a+D), ||D||•  r, (3.22)

which can obviously be rewritten as:

L̂(s) = aL(s)
⇣

1+
r
a

D
⌘
, ||D||•  1. (3.23)

Equation (3.23) can be interpreted as a multiplicative uncertainty on the scaled system.
Via the small gain theorem, this can be shown to be equivalent to an upper bound on the
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complementary sensitivity function for a scaled plant:
����

����
AL( jw)

1+AL( jw)

����

����
•

<
a
r
, where A =

a
a2 � r2 . (3.24)

Note that for A = 1, this reduces to an M-circle criterion described in Section 3.2.1.

Suppose L( jw) is expressed as in equation (3.15). Then, in summary, if a quantifier
elimination algorithm discharges the following first order formula

8w : (a(w)+ac(w))2 +b(w)2 � r2c(w)2 > 0, (3.25)

then the following claims can be made:

• The system described by an open loop frequency response L( jw) has a simultaneous
gain and phase margin as shown in equations (3.20) and (3.21), respectively.

• All uncertain systems with an open loop transfer function (3.23) are closed-loop sta-
ble.

Note that robust stability requires not only staying outside the exclusion region, but also
encircling it the correct number of times (0 if open-loop stable, according to the Nyquist
stability criterion). It is enough to check closed-loop stability with the nominal system L(s).

This simultaneous gain and phase margin verification condition will be cleared for the
backup flight control law discussed in Section 3.6.1 at given flight points (see Section 3.6.2)
and throughout the whole flight envelope (see Section 3.6.3).

3.3 Structured singular value µ computation as a quanti-
fier elimination problem

In this section, a quantifier elimination based approach to the computation of the structured
singular value µ problem is considered. Firstly, in Section 3.3.1, relevant definitions and
standard ways of computing µ are discussed. Then, in Sections 3.3.2 and 3.3.3, approaches
of expressing the µ computation problem as a quantifier elimination one are introduced,
together with a comparison of our method to the standard ones discussed in Section 3.3.1.
Finally, in Section 3.3.4, some computational examples illustrating application of quantifier
elimination to structured singular value µ computation are given.
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Fig. 3.6 Feedback system with a generalised plant G and uncertainty structure D.

3.3.1 Introduction

Consider a feedback interconnection as illustrated in Figure 3.6, where G is a closed-loop
stable system and D is a structured norm-bounded uncertainty of the form

D(d ) = {D : D = block diag(D1(s), . . . ,Dn(s)),Di 2 Hri⇥ri
• , ||Di||•  d}⇢ Hm⇥m

• , (3.26)

where Hri⇥ri• denotes the set of stable ri ⇥ ri transfer functions with a finite H• norm and
m=Ân

i=1 ri. This kind of representation raises an obvious question: is the system G robustly
stable under the structured uncertainty D 2 D(d )? In order to answer this question non-
conservatively, a measure called structured singular value µ was introduced in Doyle (1982)
that takes into account the structure of the uncertainty D 2 D(d ). It is defined as

µ(G) =
1

minD2D(d ){s(D) s.t. det(I �GD) = 0} , (3.27)

unless no D 2 D(d ) makes (I �GD) singular, in which case µ(G) = 0. In (3.27), s(D)
denotes the largest singular value of the matrix D — for more details, see Chapter 10 in Zhou
and Doyle (1998).

The system G is robustly stable 8D 2 D(d ) if and only if:

8w,µ(G( jw))<
1
d
. (3.28)

The exact computation of the structured singular value µ (3.27) is known to be NP-hard for
the general case (Braatz et al., 1994). Hence, literature focuses on developing methods for
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computing both lower and upper bounds on µ instead. The standard way to compute the
upper bound on µ in polynomial time was developed in Young et al. (1995), and it proceeds
as follows.

Proposition 2 (Young et al., 1995)
Consider a feedback interconnection as illustrated in Figure 3.6, with G being a closed-loop
stable system and D being a structured norm-bounded uncertainty of the form (3.26).

Let bi be a positive scalar, wi be some given frequency and D⇤ denote the complex conju-
gate transpose of the matrix D. Then, if there exist some scaling matrices D1(wi) 2 D1 and
D2(wi) 2 D2, where D1 and D2 are the sets reflecting the block-diagonal and real/complex
structure of D(d )

D1 = {D1 2 Cm⇥m,D1 = D⇤
1 > 0 : 8D 2 D(d ),D1D = DD1},

D2 = {D2 2 Cm⇥m,D2 = D⇤
2 : 8D 2 D(d ),D2D = D⇤D2},

such that

s
✓
(I +D2(wi))

� 1
4

✓
D1(wi)G( jwi)D1(wi)�1

bi
� jD2(wi)

◆
(I +D2(wi))

� 1
4

◆
 1, (3.29)

then µ(G( jwi)) bi. ⌅

The problem of minimizing bi for each of frequencies wi can be solved by using a Lin-
ear Matrix Inequality (LMI) solver or a gradient descent algorithm — for more details,
see Young et al. (1995). Usually, the calculation of this upper bound is performed on a finite
frequency grid (see implementation of the function mussv in the MATLAB Robust Control
Toolbox The MathWorks Inc. (2012a)).

Now consider D 2 D(d ) (3.26) with all the uncertainties being real parametric ones, i.e.
Di 2 R, i = 1, . . . ,n. Then the uncertainty structure expressed by (3.26) reduces to

DR(d ) = {D : D = diag(D1(s), . . . ,Dn(s)),Di 2 R, |Di| d}, (3.30)

while the structured singular value µ computation reduces to:

µ(G) =
1

minD2DR(d ){d |det(I �GD) = 0} . (3.31)

It is worth noting that computation of the so called real-mu value (3.31) is also known to be
an NP-hard problem (Braatz et al., 1994).
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With appropriate scaling on the uncertainty D, (3.31) can be expressed as:

µ(G) =
1

minD2DR(1){k 2 [0,+•) s.t. det(I � kGD) = 0} =
1

km
. (3.32)

As was noted in de Gaston and Safonov (1988), km in (3.32) can be interpreted as the lowest
value of k such that the image of the unit hypercube

D = {D = (D1, . . . ,Dn)⇢ Rn : Di 2 R, |Di| 1} (3.33)

under the mapping det(I�kGD) contains the origin of the complex plane. If, for some fixed
value k1 2 [0,+•), the map of the hypercube D into the complex plane under det(I�k1GD)
does not include the origin, then k1 < km (and, µ = 1

km
< 1

k1
— i.e., an upper bound on

µ is obtained). By repeating the mapping det(I � kGD) for increasingly larger values of k
until the origin is just included in the image, one would obtain the exact value of km, and
consequently, µ .

Computing an exact image of D (3.33) under the map det(I�kGD) is, in general, a com-
putationally intractable task (de Gaston and Safonov, 1988). On the other hand, computing
the convex hull of the image is relatively practical by using the following result from Zadeh
and Desoer (1963).

Proposition 3 (Zadeh and Desoer, 1963), page 476
Consider the structured uncertainty D 2 DR(1) (3.30), with non-repeated parametric uncer-
tainties D1, . . . ,Dn. Let V

0
i be the image (a point in the complex plane C) of the vertex Vi of

the unit hypercube D (3.33) under the map det(I � kGD) for some k 2 [0,+•), i.e.:

V
0
i ( jw) = det(I � kG( jw)Vi), i = 1, . . . ,2n. (3.34)

Then the image of the unit hypercube D by the map det(I � kGD) is contained in the convex
hull of the set of points

n
V

0
1, . . . , V

0
2n

o
:

S ⌘ co
n

V
0
1, . . . , V

0
2n

o
⌘
(

2n

Â
i=1

aiV
0
i ⇢ C| : (8i,ai � 0)^

2n

Â
i=1

ai = 1

)
. (3.35)

⌅

Hence, finding the smallest value of k for which the set S (3.35) contains the origin pro-
vides a lower bound kL on km = 1

µ . This motivates an iterative exponential time procedure
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in de Gaston and Safonov (1988) for computing km (and, consequently, µ) to an arbitrary
accuracy with a branch and bound scheme. By keeping partitioning the unit hypercube D
into smaller ones, and applying the Proposition 3 repeatedly on each one of them, a more
and more accurate lower bound kL on km (and, consequently, a more accurate upper bound
on the structured singular value µ = 1

km
< 1

kL
) is obtained.

Generalisations of the procedure in de Gaston and Safonov (1988) to cases when the
structured uncertainty D2DR(1) is allowed to have repeated parametric uncertainties D1, . . . ,

Dn were developed in Sideris and de Gaston (1986) and Sideris and Sanchez Pena (1989).
Similar procedures based on the branch and bound approach were developed in Balakrish-
nan et al. (1991), Chang et al. (1991) and Newlin and Young (1997).

In the following two sections, we show how the computation of the structured singular
value µ problem can be expressed and tackled as a quantifier elimination one. In Sec-
tion 3.3.2, we consider a particular type of single-input single-output (SISO) system, and
show how computation of the structured singular value µ in that case can be expressed as an
M-circle avoidance problem. This is then converted to an equivalent quantifier elimination
problem (as discussed in Section 3.2.1). In Section 3.3.3, we show how structured singular
value µ computation can be expressed as a quantifier elimination problem, both for systems
with norm-bounded (3.26) and parametric (3.30) uncertainties. The differences between
quantifier-elimination based approach for µ computation and the standard approaches dis-
cussed in this section (and illustrated by Propositions 2 and 3) are discussed in Section 3.3.3
as well.

3.3.2 Expression of SSV µ computation problem as a quantifier elimi-
nation problem in SISO case

Consider a SISO system of the form

P1(s) = (1+D)⇤P2(s,D1, . . . ,Dn) (3.36)

with ||D||• < r1 and ||D1||• < r2, . . . , ||Dn||• < rn+1. Then (according to the small gain
theorem applied to a multiplicative perturbation), if 8 D1, . . . ,Dn, P2(s,D1, . . . ,Dn) does NOT
enter the M-circle exclusion region with M = 1/r1, then µ(P1)< 1.

For a particular example, consider a continuous nominal system with an open loop trans-
fer function L0(s) and an uncertain system L(s) of the form

L(s) = (1+D1(s))(1+D2(s))L0(s) = (1+D1(s))L1(s), (3.37)



66 Application of Formal Methods to Control Analysis Problems

where:

||D1(s)||• < r1 =
1
M

� fictitious multiplicative perturbation used to represent M-circle

exclusion region of value M.

||D2(s)||• < r2 � actual uncertainty on the nominal system L0(s) representing unmodelled

plant dynamics.

Then the following statements are equivalent:

• Structured singular value µD(L)< 1.

• The uncertain system L1(s) = (1+D2(s))L0(s) does not enter the M-circle of value M
for any uncertainty D2(s) such that ||D2(s)||• < r2. Equivalently, for all such pertur-
bations D2(s), the magnitude of the complementary sensitivity of the uncertain system
L1(s) will stay below 20log10 M = �20log10 r1 on the Bode gain plot. This will be
illustrated with an example in Section 3.3.4 (see Figure 3.7).

Suppose L0(s) is a rational transfer function of the form

L0( jw) =
a(w)+ i ·b(w)

c(w)
, (3.38)

where a(w),b(w) and c(w) are real functions of w . Then

L1( jw) = (1+D2( jw))L0( jw)

= (1+R(w)+ j ·S(w))
a(w)+ i ·b(w)

c(w)

=
1

c(w)
([a(w)(1+R(w))�b(w)S(w)]+ j [b(w)(1+R(w))+a(w)S(w)]) ,

where

R(w) = Re(D2( jw)) ,

S(w) = Im(D2( jw))

and therefore ||D2(s)||• < r2 ⌘ R(w)2 +S(w)2 < r2
2 8 w . Hence, the largest value of r2 for

which the M-circle exclusion region (with centre xc and radius r) for an uncertain system
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L1(s) is avoided can be expressed as the first order formula:

8 w, S(w), R(w) : S(w)2 +R(w)2 < r2
2 =) (3.39)

(a(w)(1+R(w))�b(w)S(w)� xcc(w))2 +(b(w)(1+R(w))+a(w)S(w))2 � r2c(w)2 > 0.

By giving (3.39) as an input to the quantifier elimination algorithm, we obtain the largest
value of r2 (since it is the only non-quantified variable) for which (3.39) holds. An example
of an application of the approach discussed here is given in Section 3.3.4.1.

3.3.3 Expression of SSV µ computation problem as a quantifier elimi-
nation problem in MIMO case

Consider the feedback interconnection depicted in Figure 3.6 with nominal system G being
closed-loop stable and uncertainty structure D(d ) given by (3.26) and repeated here for
clarity:

D(d ) = {D : D = block diag(D1(s), . . . ,Dn(s)),Di 2 Hri⇥ri
• , ||Di||•  d}. (3.40)

Then the closed-loop system G is stable 8D 2 D(d ) if and only if:

8D 2 D(d ), 8w,det(I �G( jw)D( jw)) 6= 0. (3.41)

Introduce the smallest value of the uncertainty magnitude d such that 9 D 2 D(d ) which
destabilises the plant:

dmin(G( jw)) = min{d : det(I �G( jw)D( jw)) = 0 for some D 2 D(d )}. (3.42)

This optimisation problem can be expressed as a quantifier elimination problem

9 S(w)1,R(w)1, . . . ,S(w)n,R(w)n : (z � d )^ (det(I �G( jw)D( jw)) = 0)^ (S(w)2
i +R(w)2

i  d 2),

(3.43)
which, by eliminating d , can be written as:

9 S(w)1,R(w)1, . . . ,S(w)n,R(w)n : (det(I �G( jw)D( jw)) = 0)^ (S(w)2
i +R(w)2

i  z2). (3.44)

Since expression (3.44) contains the optimisation variable z and frequency w as unquantified
variables, its output can be expressed as z function of w (i.e. z(w)). Since the structured
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singular value µ is defined as

µ(G( jw)) = dmin(G( jw))�1 =
1

z(w)
, (3.45)

this implies that expression (3.44) allows us to obtain the structured singular value µ . The
uncertain plant is stable 8D 2 D(d ) with the uncertainty radius d if and only if:

8 w,µ(G( jw))< d�1. (3.46)

Hence, the actual exact expression for the structured singular value µ (expressed as an al-
gebraic number) can be found by adding existential quantification of frequency w to (3.44):

9 w,S(w)1,R(w)1, . . . ,S(w)n,R(w)n : (det(I�G( jw)D( jw)) = 0)^ (S(w)2
i +R(w)2

i  z2). (3.47)

Because of the presence of multiple uncertainty bound definitions S(w)2
i + R(w)2

i  z2

in (3.44) and (3.47), in general, a CAD-based quantifier elimination algorithm (described
in Section 2.3.3) will be required to eliminate quantified variables from these first order
formulas.

Now consider the uncertainty structure DR(d ) (3.30) containing only real parametric
uncertainties and repeated here for clarity:

DR(d ) = {D : D = diag(D1(s), . . . ,Dn(s)),Di 2 R, |Di| d}. (3.48)

For this kind of uncertainty structure, the quantifier elimination problem (3.44) becomes:

9 D1,D2, . . . ,Dn : (det(I �G( jw)D) = 0)^ (|Di| d ). (3.49)

Similarly to (3.47), the actual value of the real structured singular value µ (expressed as an
algebraic number) can be calculated by eliminating quantified variables from the expression:

9 w, D1,D2, . . . ,Dn : (det(I �G( jw)D) = 0)^ (|Di| d ). (3.50)

Moreover, recall that a matrix is singular if and only if its rows (columns) are linearly
dependent. Without loss of generality, let ai(w), i= 1, . . . ,n be the i-th row of the matrix (I�
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G( jw)D). Then the quantifier elimination problem (3.49) is equivalent to

9 D1,D2, . . . ,Dn,k1,k2, . . . ,kn : (k1 6= 0_ . . ._ kn 6= 0)^
n

Â
i=1

kiai(w) = 0(1 x n)^ |Di| d ,

(3.51)
where 0(1 x n) is a 1-by-n zero vector. It is important to notice that all quantified variables
in (3.51) appear linearly and therefore Weispfenning’s quantifier elimination algorithm (de-
scribed in Section 2.3.2) is capable of eliminating all of them.

Additionally, in the case of the real uncertainty structure (3.48), the reciprocal of the
structured singular value µ (z = 1/µ) can be calculated by eliminating quantified uncertain-
ties from the formula based on the Routh-Hurwitz stability criterion (Routh, 1877)

8 D1,D2, . . . ,Dn,(|D1| d ^ . . .^ (|Dn| d ) =) (Routh-Hurwitz conditions for (I +L(DR,s))) ,
(3.52)

where L(DR,s) is the open-loop transfer function. An example of such a computation will
be given for a SISO system in Section 3.3.4.1.

The main advantage of computing structured singular value µ by eliminating quanti-
fied variables from (3.47) compared to using Proposition 2 on page 63 is that quantifier
elimination based approach computes the actual value of µ rather than it’s upper bound.
Additionally, the value obtained by using quantifier elimination will be expressed as an al-
gebraic number. Moreover, most implementations for computing upper bound of µ that use
Proposition 2 do so on a finite frequency grid. Hence, such implementation may miss a
critical frequency at which the maximal value of µ(G( jw)) is obtained. This is clearly not
the case for quantifier elimination based methods because of their algebraic nature.

In principle, given enough time, all the quantified variables in (3.47) can be eliminated
by using CAD-based quantifier elimination procedure. Unfortunately, in practice, it turns
out that this problem becomes computationally intractable even in the case of two norm-
bounded uncertainties (i.e., i = 2) and a system with a single input and a single output.
Hence, the main disadvantage of our approach is that because of the high computational
complexity of the quantifier elimination problem, only very simple problems with a general
norm-bounded uncertainty structure (3.40) can be considered.

Now consider computing the structured singular value µ for the system containing only
real parametric uncertainties (3.48). Doing so by using a standard iterative branch and
bound method (such as the one given in de Gaston and Safonov (1988) and discussed in
Section 3.3.1) allows one to bound the value of µ to an arbitrary accuracy. In contrast,
quantifier elimination based approach gives the exact value of µ (rather than a bound) in
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a form of an algebraic number. Moreover, in this case, Weispfenning’s virtual substitution
algorithm can be used since all the quantified variables in the structured singular value µ
computation problem (3.51) appear linearly. Weispfenning’s algorithm has better worst-case
running time than CAD-based algorithm because it does not depend on the number of free
variables. As a result, our approach is capable of computing real-µ for more complicated
systems than it is for systems with a general norm-bounded uncertainty (3.40). Examples
of such computation are presented in Sections 3.3.4.2 and 3.3.4.3 for systems with three
parametric uncertainties and for the missile system with four parametric uncertainties, re-
spectively.

3.3.4 Computational examples

3.3.4.1 Robustness of a simple SISO system

As described in Section 3.3.2 on page 65, consider an uncertain system of the form

L(s) = (1+D1(s))(1+D2(s))L0(s) = (1+D1(s))L1(s) (3.53)

with ||D1(s)||• < r1 = 1/M, ||D2(s)||• < r2, R(w) =Re(D2( jw)), S(w) = Im(D2( jw)) and
a nominal system (taken from Dorobantu et al. (2014))

L0(s) =
18.75s+225

s2 +7.22s+246.5
(3.54)

which is representative of the short period longitudinal dynamics of a small fixed wing
aircraft.

Suppose we want to find the largest value of r2 such that for all uncertainties ||D2(s)||• <

r2, the uncertain system L1(s) = (1+D2(s))L0(s) does not enter the M-circle exclusion
region of value M = 100.05 ⇡ 1.122 (with centre xc = �4.86, yc = 0 and radius r = 4.33).
This in turn guarantees that 8 ||D2(s)||• < r2:

• the magnitude of the complementary sensitivity T1(s) of the uncertain system L1(s)
will stay below 20log10 M = 1 dB.

• µD (L(s))< 1.

As was shown in Section 3.3.2, the calculation of this largest value of r2 can be expressed
as a quantifier elimination problem

8 w, S(w), R(w) : S(w)2 +R(w)2 < r2
2 =) p(w,S(w),R(w))> 0, (3.55)
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Fig. 3.7 Plots for nominal plant L0(s) (blue) and worst case uncertain plant L1(s) (red).

where p(w,S(w),R(w)) is a polynomial of the form:

p(w,S(w),R(w))⌘ (3.56)

(a(w)(1+R(w))�b(w)S(w)� xcc(w))2 +(b(w)(1+R(w))+a(w)S(w))2 � r2c(w)2.

By eliminating quantified variables from (3.55), the CAD-based quantifier elimination al-
gorithm finds that �0.547174  r2  0.547174. Corresponding plots with r2 = 0.547174
obtained with MATLAB Robust Control Toolbox (The MathWorks Inc., 2012a) are shown
in Figure 3.7. It is worth noting that functions implemented in the Robust Control Tool-
box (such as mussv for computing lower and upper bounds on the structured singular value
µ) perform computations on an automatically determined finite frequency grid. As a conse-
quence, Robust Control Toolbox claims that the system (3.53) with ||D1(s)||• < 1

M = 10�0.05

is robustly stable for r2  0.55, as can be seen in Figure 3.8 (a). Increasing the density of
the frequency grid at which bounds on the structured singular value µ are calculated by the
Robust Control Toolbox results in the plot of µ depicted in Figure 3.8 (b), which clearly
shows that the system is not robustly stable with r2 = 0.55. Hence, this represents an ad-
vantage of computing the structured singular value µ via quantifier elimination methods.
Since quantifier elimination procedures are algebraic, they are guaranteed not to miss the
critical frequency w or parameter combination at which the desired verification criterion is
violated, unlike standard verification methods (such as the implementation of the algorithm
in the Robust Control Toolbox for finding bounds on µ).

With r1 = 1/M = 10�0.05 and, given the level of uncertainty r2, for which values of
R(w) = Re(D2( jw)) and S(w) = Im(D2( jw)) is the system (3.53) robustly stable, i.e.
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Fig. 3.8 µ over frequency plots obtained via Robust Control Toolbox with r1 = 10�0.05, r2 =
0.55.

µD (L(s))< 1? This problem can be expressed as a quantifier elimination one:

8w : (S(w)2 +R(w)2 < r2
2) =) p(w, S(w), R(w))> 0. (3.57)

Semialgebraic regions in terms of S(w) and R(w) for which µD (L(s)) < 1 for various
values of r2 are given in Figure 3.9 (a). Moreover, by keeping r2 as a variable in (3.57)
(rather than assigning numerical values), a semialgebraic region describing the dependence
of S(w),R(w) on r2 can be found, as depicted in Figure 3.9 (b). Additionally, consider the
first order formula with quantified uncertainties and frequency w as a free variable

8S(w),R(w) : (S(w)2 +R(w)2 < r2
2) =) p(w, S(w), R(w))> 0, (3.58)

which could be used as an alternative to the quantifier elimination problem (3.55) for finding
the largest value of r2 for which the system (3.53) is robustly stable. Eliminating quantifiers
from (3.58) gives us the expression of the form

r2 =
q

P1(w)�
p

P2(w), (3.59)

where P1(w) and P2(w) are rational functions of the frequency w:

P1(w) =
0.120656w4 �54.673w2 +9009.44

w2 +144
, (3.60)

P2(w) =
0.0143667w8 �12.9837w6 +5036.16w4 �946985w2 +7.48275⇥107

(w2 +144)2 . (3.61)
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Fig. 3.9 Robustness computations for the SISO system of the form (3.53).

For the purpose of clear representation, coefficients of polynomials in (3.60) and (3.61) are
approximations of the actual algebraic numbers that were part of the output of the quantifier
elimination algorithm. The graph of the function (3.59) representing r2 dependence on fre-
quency w is shown in Figure 3.9 (c). It can be seen that for r2  0.547174, the system (3.53)
is robustly stable, as expected.

Trying to calculate the structured singular value µ as a function of frequency, µ(L( jw)),
with complex uncertainties ||D1(s)||• < d , ||D2(s)||• < d by eliminating quantifiers from
(3.44) (Section 3.3.3, page 67) fails because of the high computational burden experienced
by the CAD-based quantifier elimination algorithm.

Now, suppose that the uncertainties D1 and D2 are real and |D1|  1, |D2|  1. Then,
by eliminating quantifiers from the formula (3.49) using Weispfenning’s virtual substitution
algorithm, we obtain the following dependence:

d (w) =
1

µ(w)
⌘

0

@w =�

q
7993

2

5
^ z �

7
q

53
3

25

1

A_

0

@w = 0^ z �

q
943

2

15

1

A_

0

@w =

q
7993

2

5
^ z �

7
q

53
3

25

1

A .

(3.62)

Therefore, the structured singular value µ for this system is:

µ =
25

7
q

53
3

⇡ 0.85  1. (3.63)

Hence, the uncertain system (3.53) with real uncertainties |D1|  1, |D2|  1 is robustly
stable.

Additionally, trying to find the reciprocal z of the structured singular value µ via the
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Routh-Hurwitz based quantifier elimination problem (as described by (3.52)) results in the
first order formula:

8 D1,D2(|D1| z^ (|D2| z) =)
✓

1875
100

(D1D2 +D1 +D2)+
1875
100

+
722
100

> 0
◆

^
✓

225(D1D2 +D1 +D2)+
2465
10

+225 > 0
◆
. (3.64)

Eliminating quantifiers from (3.64) produces the result that is in agreement with (3.63), as
expected.

As was noted in Section 3.3.3, in practice, quantifier elimination based approach can
be used to compute structured singular value µ only for very simple systems with a gen-
eral norm-bounded uncertainty structure (3.40). Hence, this motivates to concentrate our
attention to systems with only real parametric uncertainties (3.48). These types of systems
should be more amenable to our approach since, unlike in the norm-bounded uncertainty
case, Weispfenning’s virtual substitution algorithm can be used instead of CAD-based al-
gorithm to eliminate quantifiers from (3.51). Sections 3.3.4.2 and 3.3.4.3 will illustrate this
approach by considering systems with real parametric uncertainties.

3.3.4.2 Systems with three real parametric uncertainties

Consider a SISO system taken from de Gaston and Safonov (1988) with the open loop
transfer function

L(s) =
800(s+2)(1+D1)

s(s+10)(s+4+D2)(s+6+D3)
(3.65)

and three real parametric uncertainties |D1| 0.1, |D2| 0.2 and |D3| 0.3. Here D1 repre-
sents multiplicative gain uncertainty while D2 and D3 are additive perturbations representing
uncertainties in its pole position. This SISO system can be transformed into the feedback
interconnection of the form shown in Figure 3.6 with

G(s) =

2

664

�800(s+2)
n(s)

800(s+2)
n(s)

800(s+2)(s+4)
n(s)

s(s+10)(s+6)
n(s)

�s(s+10)(s+6)
n(s)

800(s+2)
n(s)

s(s+10)
n(s)

�s(s+10)
n(s)

�s(s+10)(s+4)
n(s)

3

775 (3.66)

(here n(s) = s4 +20s3 +124s2 +1040s+1600) and structured uncertainty D:

D = diag(d1,d2,d3), d1 =
D1

0.1
, |d1| 1;d2 =

D2

0.2
, |d2| 1;d3 =

D3

0.3
, |d3| 1. (3.67)
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Computing the structured singular value µ for the system G (3.66) with uncertainty structure
D (3.67) can (according to (3.51)) be expressed as a quantifier elimination problem of the
form

9 d1,d2,d3,k1,k2,k3 : (k1 6= 0_ k2 6= 0_ k3 6= 0)^
3

Â
i=1

kiai = 0(1 x n)^ |di| d , (3.68)

where ai, i = 1,2,3 is the i-th row of the matrix (I �G( jw)D) and 0(1 x n) is a 1-by-n zero
vector. Then, by eliminating quantifiers from (3.68) using Weispfenning’s quantifier elimi-
nation algorithm, we obtain the 1

d (w) = µ(w) expression in algebraic form

µ(w) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

1
10 for w = 0,

1
80(2w2+15)
3(w2+20)

� 5
3
p

2
r

3w6+320w4+1200w2

(w2+20)2

for 0 < w  w1,

1
20(9w4+3100w2+12000)
3(3w4+1100w2+16000)

� 10
3

r
� 9w10+4200w8+205200w6�58720000w4�979200000w2�5184000000

(3w4+1100w2+16000)2

for w1 < w  w2,

1
�w6�150w4�2000w2�20000

5(w2+20)2 + 1
40

r
w14+304w12+31200w10+1120000w8+4000000w6

(w2+20)4

for w > w2,

(3.69)
where

w1 = Root
⇥
x10 +520x8 +54800x6 �4710400x4 �106496000x2 �552960000,2

⇤
⇡ 8.2282,

w2 = Root
⇥
9x10 +4200x8 +365200x6 �42080000x4 �915200000x2 �5184000000,2

⇤
⇡ 8.6772.

Here Root[ f (x),k] represents the exact k-th root of the polynomial equation f (x) = 0 (all
real roots come before the complex ones and are ordered in an increasing order; complex
roots are ordered with respect to their real part first and then with respect to their negative
imaginary part).

Moreover, consider the quantifier elimination problem (3.68) with additional existential
quantification over frequency w added, i.e.:

9 w,d1,d2,d3,k1,k2,k3 : (k1 6= 0_ k2 6= 0_ k3 6= 0)^
3

Â
i=1

kiai = 0(1 x n)^ |di| d . (3.70)

Then, by firstly eliminating variables d1, d2, d3, k1, k2 and k3 using Weispfenning’s quantifier
elimination algorithm (as was done to obtain (3.69)), and then eliminating frequency w
using CAD-based quantifier elimination algorithm, we compute the algebraic expression
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Fig. 3.10 Graphs of µ(w) obtained using Weispfenning’s quantifier elimination algorithm
for systems subject to parametric uncertainties.

representing the exact value of the structured singular value µ:

µ =
Root

⇥
x5 +1260x4 +154800x3 �184420800x2 +10679040000x�161740800000,1

⇤

Root [x5 �120400x4 +5129120000x3 �8087769600000x2 �2936678400000000x+7706050560000000000,1]
⇡ 0.292621.

(3.71)

Note that attempting to eliminate all quantified variables from (3.70) using CAD-based
quantifier elimination algorithm does not produce an answer in 24 hours. The graph of the
function µ(w) (3.69) is given in Figure 3.10 (a). System (3.65) was used in de Gaston and
Safonov (1988) to illustrate their iterative branch and bound procedure for computing 1

µ to
an arbitrary accuracy for a system with real parametric uncertainties. After three iterations,
the algorithm presented there arrives at the following upper and lower bounds for 1

µ(w) for
w = 9:

6.7256  1
µ(9)

 6.8976. (3.72)

Note that by using (3.69), we can calculate the exact value of 1
µ(9) :

1
µ(9)

=
131949

p
15385�13580728
408040

⇡ 6.8271. (3.73)

This illustrates the main difference between quantifier elimination based approach and branch
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and bound algorithms for computing structured singular value µ . The output of the quan-
tifier elimination algorithm is an algebraic number representing the exact value of µ while
the branch and bound based procedure is an iterative numerical algorithm providing tighter
and tighter bounds on µ with each iteration.

Additionally, de Gaston and Safonov (1988) finds that the largest value of µ(w) for the
system G(s) (3.66) with the uncertainty structure (3.67) is µ = 1

3.44 ⇡ 0.2907, obtained at
the frequency w = 8.22 rad/s (since they have found that at w = 8.22, det(I�kG( jw)D)⇡ 0
at one of the vertices of the hypercube D representing the uncertainty structure with k =

3.44). This is obviously not the case since, as we have found, the largest value of µ(w) is
0.292621 (3.71) and is obtained at w = w1 ⇡ 8.2282. This is the case because the proposed
quantifier elimination based procedure allows us to obtain the exact expression of µ(w)

while the algorithm described in de Gaston and Safonov (1988) uses frequency gridding to
derive bounds on µ(w) at each discrete frequency point, and an extensive frequency search
is needed for this method in order to increase the accuracy. Hence, another advantage of
the quantifier elimination based method when compared to this particular branch and bound
method is that it is guaranteed not to miss the critical frequency at which the maximal value
of µ(w) is obtained.

Now consider a nominal system G(s) in Figure 3.6 taken from Chang et al. (1991) with
a state-space representation (A,B,C)

A =

2

66664

�27
10 �2 �3

2 �1
2

�3
2 �4 �3

2 �3
2

�1
5 0 �3 0

3
2 2 7

2 � 7
10

3

77775
, B =

2

66664

1 0 0
0 0 0
0 0 1
0 1 0

3

77775
, C =

2

64
� 3

10 0 0 0
0 0 0 � 3

10
� 3

10 0 0 0

3

75 (3.74)

and uncertainty structure with a repeated parametric uncertainty d2:

D = diag(d1,d2,d2), |d1| 1, |d2| 1. (3.75)

As before, computation of the structured singular value µ for the system G =C(sI�A)�1B
(3.74) with the uncertainty structure (3.75) can be expressed as a quantifier elimination
problem of the form analogous to (3.68). Hence, by eliminating the quantified variables, we
obtain the 1

d (w) = µ(w) expression in algebraic form

µ(w) =

8
<

:

27
98 for w = 0,

1
P(w) for w > 0,

(3.76)
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where:

P(w) = Root[x3 �81w2 +162
�
+ x2 ��180w4 �5787w2 �26424

�

+ x
�
1740w4 +49908w2 +261216

�

�2000w6 �44080w4 �323724w2 �774448,1].

(3.77)

As before, by eliminating frequency w using CAD-based quantifier elimination algorithm
from the quantified formula

9 w :
✓

w = 0^d � 98
27

◆
_ (w > 0^d � P(w)) , (3.78)

we obtain that µ = 1
d = 27

98 ⇡ 0.2755. Note that

lim
w!0

1
P(w)

=
1

Root [81x3 �13212x2 +130608x�387224,1]
⇡ 0.00654619, (3.79)

i.e. µ(w) is not continuous at w = 0. The graph of the function µ(w) (3.76) for w > 0 is
given in Figure 3.10 (b).

System (3.74) was used in Chang et al. (1991) to illustrate their iterative branch and
bound procedure for computing structured singular value µ for systems subject to real para-
metric uncertainty. The algorithm presented there arrives at the result of µ = 0.2755, which
is in line with the result obtained by the quantifier elimination based procedure. Unlike the
method for computing real µ developed in de Gaston and Safonov (1988), the algorithm
presented in Chang et al. (1991) does not rely on frequency search and can accommodate
systems subject to repeated real parametric uncertainties. Hence, the main difference be-
tween the quantifier elimination based approach proposed by us and the branch and bound
procedure in Chang et al. (1991) is that quantifier elimination algorithm outputs the exact
value of µ in a form of an algebraic number while procedure in Chang et al. (1991) is a
numerical algorithm that, with each iteration, keeps reducing the gap between the lower and
the upper bounds on µ until the desired accuracy is achieved.

3.3.4.3 System with four real parametric uncertainties

Consider a longitudinal rigid missile model taken from Reichert (1992). This nonlinear
aerodynamic missile model has one control input (tail deflection), two outputs (acceleration
and pitch rate) that are used by the autopilot and two states (angle of attack and pitch rate).
The linearisation of this system is performed at a particular trim point, and, consequently,
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Fig. 3.11 Graph of µ value obtained using Weispfenning’s quantifier elimination algorithm
for a system subject to four real parametric uncertainties.

4 parametric uncertainties in the stability derivatives are directly introduced in the physical
missile model.

By eliminating quantifiers from expression (3.51) with Weispfenning’s quantifier elim-
ination algorithm, we obtain the result illustrated in Figure 3.11. Attempting to perform
the same calculation with a CAD algorithm does not produce an answer in 24 hours. The
piecewise-constant nature of the graph in Figure 3.11 illustrates an important advantage
of a quantifier-elimination-based verification. Since quantifier elimination is an algebraic
procedure that analytically manipulates the expression (3.51), it is guaranteed not to miss
frequencies at which a jump in the µ value occurs. This is clearly not the case for the
structured singular value µ computation methods that rely on gridding.

3.4 Optimisation as a quantifier elimination problem

In this section, application of the quantifier elimination based approach to optimisation prob-
lems is considered. In Section 3.4.1, a general optimisation problem arising in the context of
control synthesis and analysis problems and its conversion to an equivalent quantifier elim-
ination problem is discussed. We note that, while in principle an algebraic solution to this
general non-convex optimisation problem could be obtained by using the CAD-based quan-
tifier elimination algorithm, it is infeasible in practice. Hence, in Section 3.4.2, we consider
a particular (but common) type of optimisation problem arising in Model Predictive Con-
trol (MPC) that can be solved using Weispfenning’s virtual term substitution algorithm and
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provide the procedure for obtaining this solution in Section 3.4.3. Then, in Section 3.4.4,
we show how this algebraic solution to an optimisation problem, together with Weispfen-
ning’s algorithm, can be used to check recursive feasibility of the system, for both nominal
and disturbed systems. Finally, Sections 3.4.5, 3.4.6 and 3.4.7 provide relevant application
examples. Section 3.4.5 illustrates how the procedure developed in Section 3.4.3 can be
used to obtain an explicit MPC solution for a linear system with a quadratic cost and lin-
ear constraints while Section 3.4.6 shows how the same method can be used to obtain an
explicit MPC solution for an input-affine nonlinear system with a quadratic cost and linear
constraints. Finally, in Section 3.4.7, we illustrate through several examples how Weispfen-
ning’s algorithm can be used to verify recursive feasibility of the MPC system.

3.4.1 Expression of a general optimisation problem as a quantifier elim-
ination problem

Consider a general optimisation problem arising in the context of control synthesis and
analysis questions

min
u1,...,um

h(u1, . . . ,um,x1, . . . ,xn) (3.80)

s.t. g1(u1, . . . ,um,x1, . . . ,xn) 0,

g2(u1, . . . ,um,x1, . . . ,xn) 0,

. . .

gk(u1, . . . ,um,x1, . . . ,xn) 0,

where x1, . . . ,xn 2 Ri are states, u1, . . . ,um 2 R j are inputs and

h,g1, . . . ,gk 2 R[u1, . . . ,um,x1, . . . ,xn]

are polynomial functions of u1, . . . ,um,x1, . . . ,xn. Then, the optimal value function J(x1, . . . ,xn)
can be obtained by eliminating quantified inputs from the definition of the the optimal value
function:

J(x1, . . . ,xn)⌘ (3.81)

9 u1, . . . ,um (J = h(u1, . . . ,um,x1, . . . ,xn)^g1(u1, . . . ,um,x1, . . . ,xn) 0^ . . .^gk(u1, . . . ,um,x1, . . . ,xn) 0)

^ [8u
0
1, . . . ,u

0
m(g1(u

0
1, . . . ,u

0
m,x1, . . . ,xn) 0^ . . .^gk(u

0
1, . . . ,u

0
m,x1, . . . ,xn) 0) =)

J  h(u
0
1, . . . ,u

0
m,x1, . . . ,xn)].
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In principle, for any general optimisation problem of the form (3.80), the optimal value
function J(x1, . . . ,xn) can be obtained by eliminating quantified variables from (3.81) with
a CAD-based quantifier elimination algorithm. At the same time, in practice, (3.81) is an
unnecessarily complicated quantified formula which increases the number of variables in the
problem description from m+n in (3.80) in to 2m+n in (3.81). This results in an increased
execution time while running CAD-based quantifier elimination algorithm since, as was
mentioned in Section 2.3.1, the upper bound on the size of the corresponding cylindrical
algebraic decomposition grows doubly exponentially with the number of variables in the
first order formula. This can be avoided by observing that in order to find the optimal
value function J(x1, . . . ,xn), it is enough to eliminate m quantified inputs u1, . . . ,um from
the expression representing the lower bound on the feasible objective region:

9 u1, . . . ,um(z � h^g1  0^ . . .^gk  0). (3.82)

Once (3.82) is fed to a quantifier elimination algorithm, the output of it will be a quantifier-
free expression of the form z � J(x1, . . . ,xn). It is then trivial to extract the optimal value
function J(x1, . . . ,xn) from such an expression. Hence, for computational reasons, we
will always express our optimisation problem as a quantifier elimination problem of the
form (3.82).

Similarly, optimal inputs u⇤1, . . . ,u
⇤
m for the general optimisation problem of the form (3.80)

can be computed by eliminating quantified variables from the formula:

8u1, . . . ,um, (u1 6= u⇤1 _ . . ._um 6= u⇤m)^ (g1(u1, . . . ,um) 0^ . . .^gk(u1, . . . ,um) 0) =)

h(u1, . . . ,um)� h(u⇤1, . . . ,u
⇤
m)^g1(u⇤1, . . . ,u

⇤
m) 0^ . . .^gk(u⇤1, . . . ,u

⇤
m) 0. (3.83)

In principle, both (3.82) and (3.83) could be fed as an input to a general CAD-based quanti-
fier elimination algorithm which would produce equivalent quantifier-free expressions cor-
responding to the optimal value function and optimal input, respectively. For example,
consider a univariate nonconvex polynomial function h(u) of the form

h(u) = 5u6 �5u4 +u2 �1, (3.84)

whose graph is presented in Figure 3.12 (a). The optimal value function J (which, in this
case, is just a constant) of h(u) can be computed by eliminating quantified variables from
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Fig. 3.12 Graphs of example nonconvex univariate (h(u)) and bivariate (h(u1,u2)) polyno-
mial objective functions.

either (3.81) or (3.82), with the result being:

J =
4

135

⇣
�
p

10�35
⌘
. (3.85)

Computing (3.85) by eliminating quantifiers from (3.81) takes 0.09 seconds while doing so
by eliminating quantifiers from (3.82) takes 0.004 seconds. Hence, as was noted before, in
order to compute the optimal value function, it is more practical to use (3.82) as an input to
the quantifier elimination algorithm. The optimal input u⇤ can be computed by eliminating
quantified variables from the first order formula (3.83), with the result being

u⇤ =�
r

1
15

⇣p
10+5

⌘
or u⇤ =

r
1

15

⇣p
10+5

⌘
(3.86)

and the whole computation taking 0.01 seconds.

Now consider a bivariate nonconvex polynomial six-hump camelback function h(u1,u2)

(taken from Section 8.2.5 of A. Floudas et al. (1999))

h(u1,u2) =

✓
u4

1
3
�

21u2
1

10
+4

◆
u2

1 +u1u2 +u2
2
�
4u2

2 �4
�
, (3.87)
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whose graph is presented in Figure 3.12 (b). The optimal value function J of h(u1,u2) is:

J = Root[1146617856000000000x7 �9581138804736000000x6 +27413621004828672000x5

�23689343118695989248x4 �22202693685841526784x3 +40987423246990311936x2

�7230107387480268288x�3617973538199106125,1]⇡�1.03163.

(3.88)

Computing (3.88) by eliminating quantifiers from (3.81) takes 4.95 seconds while doing so
by eliminating quantifiers from (3.82) takes 0.21 seconds. This again illustrates that com-
puting the optimal value function J by eliminating quantified variables from the expression
representing the lower bound on the feasible objective region (3.82) is more efficient in
terms of execution time.

The optimal input (u⇤1,u
⇤
2) for h(u1,u2) can be found via quantifier elimination to be

(u⇤1,u
⇤
2) = (r1,r2) or (u⇤1,u

⇤
2) = (�r1,�r2), r1,r2 2 R, (3.89)

where

r1 = Root[16000x14 �201600x12 +1038720x10 �2798208x8 +4154880x6

�3227600x4 +1032400x2 �8125,8]⇡ 0.089842,

r2 = Root[10485760x14 �26214400x12 +26214400x10 �13279232x8 +3534848x6

�456704x4 +22144x2 �325,3]⇡�0.712656.

(3.90)

Computing the optimal input (u⇤1,u
⇤
2) (3.89) by eliminating quantified variables from (3.83)

using CAD-based quantifier elimination algorithm took around 10 seconds. Notice that
the analogous computation for the univariate case (h(u) in (3.84)) took 0.01 seconds. This
shows that, while it is possible in principle, attempting to compute the optimal input u⇤1, . . . ,u

⇤
m

for a general polynomial objective function h(u1, . . . ,um,x1, . . . ,xn) with three or more op-
timisation variables (m � 3) is an infeasible task in a practical sense.

Therefore, in Section 3.4.2, we will limit our attention to a particular set of optimisation
problems arising in Model Predictive Control (MPC) that can be converted to quantifier
elimination problems that Weispfenning’s virtual term substitution algorithm (whose worst-
case running time (in contrast to CAD) does not depend on the number of free variables
n) could deal with. Afterwards, in Section 3.4.3, we will develop a procedure based on
Weispfenning’s quantifier elimination method for solving the MPC problem presented in
Section 3.4.2.
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3.4.2 Explicit MPC problem formulation

Consider a discrete-time linear time invariant system

x(i+1) = f (x(i),u(i)) = Ax(i)+Bu(i), (3.91)

where x 2Rn is the state and u 2Rm is the input. Suppose we want to regulate (3.91) to the
origin in such a way that polytopic constraints

Y(i)⌘ E(i)x(i)+F(i)u(i) b(i) (3.92)

are satisfied at all time steps i = 0,1, . . .. Assuming measurement of the current state x(0)
is available, one of the ways to solve this regulation problem by using MPC is to solve the
following quadratic optimisation problem

min
u(0),...,u(N�1)

N�1

Â
i=0

�
x(i)T Qx(i)+u(i)T Ru(i)

�
+ x(N)T Px(N) (3.93)

s.t. Y(i), i = 0, . . . ,N �1, E(N)x(N) b(N)

where at each time step

x(i) = Aix(0)+
i�1

Â
j=0

Ai�1� jBu( j) (3.94)

is the predicted state at time step i obtained given the current state x(0) and the input se-
quence {u(0),u(1), . . . ,u(N � 1)}, N is the control horizon and Q, R and P are state, input
and terminal costs, respectively. In general, it is common practice to make the assumption
that Q = QT � 0, R = RT > 0, P � 0 (where Q > 0 and Q � 0 denote that the matrix Q is
positive-definite and positive-semidefinite, respectively) in order to make the optimisation
problem (3.93) convex.

Standard implementation of MPC relies on online optimisation to obtain the optimal
input sequence {u⇤(0),u⇤(1), . . . ,u⇤(N�1)} at each time step by solving (3.93), an optimal
control problem over a finite horizon. In the usual receding horizon approach, only the first
input u⇤(0) of the optimal input sequence obtained is applied to the controlled system (3.91).
At the following time step, the measurement of the new current state x(0) is obtained and
the whole procedure is repeated.

On the other hand, an analytic expression of the optimal input u⇤(0) can be obtained
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offline as a piecewise-affine function of the state

u⇤j(0) = Kjx(0)+G j if Hjx(0) k j, j = 1, . . . ,M, (3.95)

where Kj 2 Rm⇥n, G j 2 Rm and Hjx(0) k j j = 1, . . . ,M represent M polytopic regions in
terms of the current state x(0) where u⇤j(0) is the optimal control input. This approach, called
explicit MPC, is useful when implementation of MPC via online optimisation algorithm is
not computationally feasible — for example, in cases of systems with high sampling rates.
Explicit MPC allows to move most of the computation offline, while online computation
gets reduced to a relatively simple computation of the optimal input (3.95) depending on the
value of the current state x(0).

The standard way of obtaining the explicit MPC solution (3.95), developed in Bemporad
et al. (2002), is via multiparametric programming which treats the current state x(0) as a
parameter. In order to provide a summary of this algorithm, it is helpful to express the
optimisation problem (3.93) in an appropriate equivalent form first. Let:

U =
⇥
uT (0),uT (1), . . . ,uT (N �1)

⇤T 2 RNm, X =
⇥
xT (1),xT (2), . . . ,xT (N)

⇤T 2 RNn.

(3.96)
Then (3.94) for i = 0, . . . ,N can be written as

X =

2

666664

A
A2

...
AN

3

777775
x(0)+

2

666664

B 0 . . . 0
AB B . . . 0
...

...
. . .

...
AN�1B AN�2B . . . B

3

777775
U = Fx(0)+GU, (3.97)

where F and G are the so called prediction matrices. Also note that the cost function
in (3.93) can be written as

VN(x(0),U)⌘
N�1

Â
i=0

�
x(i)T Qx(i)+u(i)T Ru(i)

�
+ x(N)T Px(N)

= x(0)T Qx(0)+XT WX +UT YU, (3.98)

where:

W = diag(Q,Q, . . . ,Q,P) 2 RNn ⇥RNn,W � 0, (3.99)

Y = diag(R,R, . . . ,R) 2 RNm ⇥RNm,Y > 0. (3.100)
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Then, by taking the advantage of the expression (3.97), (3.98) can be written as

VN(x(0),U) =
1
2

UT HU + x(0)T FU + x(0)TY x(0), (3.101)

where:
H = 2(GT WG+Y), F = 2FT WG, Y = Q+FT WF. (3.102)

Note that since W and Y are diagonal matrices with W � 0, Y > 0, H = HT > 0. In a
similar fashion, the set of polytopic constraints Y(i), i = 0, . . . ,N �1 (3.92), together with a
terminal constraint E(N)x(N) b(N), can be expressed as:

2

666664

E(0)
0
...
0

3

777775

| {z }
D1

x(0)+

2

666664

0 . . . 0
E(1) . . . 0

...
. . .

...
0 . . . E(N)

3

777775

| {z }
D2

X +

2

666664

F(0) . . . 0
...

. . .
...

0 . . . F(N �1)
0 . . . 0

3

777775

| {z }
D3

U 

2

666664

b(0)
b(1)

...
b(N)

3

777775

| {z }
W

. (3.103)

Then, by taking advantage of the expression (3.97), (3.103) can be written as

GU W +Ex(0), (3.104)

where
G = D2G+D3, E =�(D1 +D2F). (3.105)

Hence, this allows us to express optimisation problem (3.93) as

min
U

1
2

UT HU + x(0)T FU (3.106)

s.t. GU W +Ex(0)

which is a convex quadratic optimisation problem dependant on the current state x(0). Note
that the term x(0)TY x(0) in (3.101) has been omitted in (3.106), as only the optimiser U is
needed. Finally, according to Bemporad et al. (2002), by defining

z =U +H�1FT x(0), (3.107)

the optimisation problem (3.106) can be written as an equivalent quadratic optimisation
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problem of the from

min
z

1
2

zT Hz (3.108)

s.t. Gz W +Sx(0)

where S = E +GH�1FT . Then, the first-order Karush-Kuhn-Tucker (KKT) optimality con-
ditions (Bazaraa et al., 1993) for the convex quadratic optimisation problem (3.108) are

Hz+GT l = 0, l 2 Rq (3.109)

li(Giz�W i �Six(0)) = 0, i = 1, . . . ,q (3.110)

li � 0, i = 1, . . . ,q (3.111)

Gz W +Sx(0), (3.112)

where Giz�W i�Six(0) represents the i-th row of the matrix Gz�W �Sx(0). Now, let G, W
and S correspond to some combination of active constraints (i.e., the set of constraints Gz =
W +Sx(0) out of the constraints Gz W +Sx(0) in the optimisation problem (3.108)), with
the assumption that the rows of G are linearly independent. Also, let l denote the vector
of Lagrange multipliers corresponding to these active constraints. Then, from (3.109) and
Gz =W +Sx(0):

l =�(GH�1GT
)�1(W +Sx(0)). (3.113)

Note that (GH�1GT
)�1 exists in (3.113) because of the assumption made that the rows of

G are linearly independent. Then, from (3.109) and (3.113), the solution to the optimisation
problem (3.108) when the constraints represented by G, W and S are active is:

z =�H�1GT l = H�1GT
(GH�1GT

)�1(W +Sx(0)). (3.114)

Note that
U = z�H�1FT x(0) = [u(0),u(1), . . . ,u(N �1)]T , (3.115)

and therefore (3.114) represents the optimal solution to the optimisation problem (3.93) in
some polyhedral state space region R. Region R is characterised by the corresponding dual
feasibility (3.111) and primal feasibility (3.112) conditions, i.e.

R ⌘ {x(0) 2 X ✓ Rn :GH�1GT
(GH�1GT

)�1(W +Sx(0))W +Sx(0)

^(GH�1GT
)�1(W +Sx(0))� 0},

(3.116)
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where X ✓ Rn represents the set of states x(0) for which the optimisation problem (3.108)
is feasible. In other words, the region R (3.116) represents the largest set of states x(0) 2
Rn such that the combination of the active constrains (represented by G, W and S) at the
minimiser represented by (3.114) remains unchanged. The iterative procedure, developed
in Bemporad et al. (2002), partitions the set X ✓Rn into mutually disjoint polyhedral regions
of the form:

R j =
�

x(0) 2 X : Hjx(0) k j
 
, j = 1, . . . ,M. (3.117)

For each one of those regions, the associated optimal solution z to the optimisation prob-
lem (3.108) is found from (3.114). It is then trivial to obtain the corresponding optimal
receding horizon control law in that region:

u⇤j(0) = [Im 0 . . . 0]U = [Im 0 . . . 0] (z�H�1FT x(0)), j = 1, . . . ,M. (3.118)

In (3.118), Im 2 Rm ⇥Rm represents an m⇥m identity matrix. The algorithm, developed
in Bemporad et al. (2002), performs these computations to obtain the explicit MPC solution
by first calling the procedure partition(Y) with Y = X (where X ✓Rn is the set of states x(0)
for which the optimisation problem (3.108) remains feasible). The procedure partition(Y)
proceeds as follows:

procedure partition(Y)

Step 1 Let x0 2 Y and e be a solution to a particular linear optimisation problem and,
if e  0, exit the partition procedure (for more details, see Bemporad et al. (2002)).
Step 2 For x(0) = x0, compute the optimal solution z0 to the quadratic optimisation
problem (3.108).
Step 3 For z = z0, x(0) = x0, determine the set of active constraints and build the
matrices G, W and S representing those active constraints. If r = rank G < l where
l is the number of rows of G, then take a subset of r linearly independent rows, and
redefine G, W and S accordingly.
Step 4 Determine the optimal solution z from (3.114).
Step 5 Obtain the compact representation of the region R (3.116) (where the optimal
solution z obtained in step 4 holds) by removing redundant inequalities from R.
Step 6 Suppose that the polyhedral region R ✓ Y , obtained in step 5, is of the form:

R ⌘ {x(0) 2 Y : Ax(0) b} . (3.119)
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Then split the region Y \R into mutually disjoint regions R1,R2, . . .Ri, i.e.

Y \R ⌘ R1 [R2 [ . . .[Ri, i = 1, . . . ,dim(b), Ri \R j = /0 8i 6= j, (3.120)

where

Ri =
�

x(0) 2 Y : (Aix(0)> bi)^ (A jx(0) b j 8 j < i)
 
, i = 1, . . . ,dim(b), (3.121)

with Ai representing the i-th row of the matrix A.
Step 7 For each one of the new regions R1,R2, . . .Ri, i = 1, . . . ,dim(b), execute parti-
tion (Ri).

end procedure

Finally, for all the regions where the optimal solution z (as defined by (3.114)) is the same
and whose union is the convex set, such a union is computed as described in Bemporad et al.
(2001).

In the following section, we propose an alternative method for obtaining the optimal
explicit MPC control law (3.95) for linear time invariant systems (3.91) with a quadratic
objective and polytopic constraints (3.93) by using quantifier elimination.

3.4.3 Explicit MPC solution via quantifier elimination

Consider the problem of obtaining the optimal explicit MPC control law (3.95) for linear
time invariant systems (3.91) with a quadratic objective and polytopic constraints (3.93). In
all examples considered, the efficient Weispfenning’s ‘quantifier elimination by virtual sub-
stitution’ algorithm is applicable, with all quantified variables appearing at most quadrati-
cally. The structure of the control problem considered makes it likely that the quantification
pattern of the resulting quantifier elimination problem will be such that this holds more
generally. At the end of this section, we will discuss which types of nonlinear systems the
proposed procedure could be applied to as well, together with the main differences between
the quantifier elimination based approach and the standard method (developed in Bempo-
rad et al. (2002) and summarised in Section 3.4.2) for obtaining the optimal explicit MPC
control law.

Let L(i) = x(i)T Qx(i)+ u(i)T Ru(i) denote the i’th stage cost in the objective function
in (3.93). Then, in a dynamic programming fashion, the single optimisation problem (3.93)
in Nm variables {u(0), . . . ,u(N � 1)} can be expressed as N optimisation problems in m
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variables:

JN�1(x(N �1)) = min
u(N�1)

hN�1(u(N �1),x(N �1)) =

min
u(N�1)

L(N �1)+ x(N)T Px(N)

s.t. C(N �1)⌘ {x(N) = Ax(N �1)+Bu(N �1)^

Y(N �1)^E(N)x(N) b(N)}

JN�2(x(N �2)) = min
u(N�2)

hN�2(u(N �2),x(N �2)) =

min
u(N�2)

L(N �2)+ J(x(N �1))

s.t. C(N �2)⌘ {x(N �1) = Ax(N �2)+Bu(N �2)^

Y(N �2)}
...

J0(x(0)) = min
u(0)

h0(u(0),x(0)) =

min
u(0)

L(0)+ J(x(1))

s.t. C(0)⌘ {x(1) = Ax(0)+Bu(0)^Y(0)}

According to (3.82), each of these N optimisation problems can be expressed as a quantifier
elimination problem

9u(i)(z � hi(u(i),x(i))^C(i)) , i = 0, . . . ,N �1, (3.122)

where z represents a slack variable which will be used to obtain the optimal value func-
tion Ji(x(i)). Applying the CAD-based quantifier elimination algorithm (see Section 2.3.3)
to (3.122) would produce an equivalent quantifier-free formula with no input u(i) depen-
dence

[

j=1,...,li

�
x(i) 2 Fj(i)^ z � Jj(x(i))

�
(3.123)

with li disjoint polytopic regions (Fl(i)\Fm(i) = ? 8l 6= m, l,m 2 1, . . . , li) whose union is
the set of feasible states:

F1(i)[ . . .[Fli(i)⌘ {x(i) : 9u(i) such that C(i)}. (3.124)

Additionally, each one of the regions Fj(i), j = 1, . . . , li would have an associated optimal



3.4 Optimisation as a quantifier elimination problem 91

value function Jj(x(i)) from which we could obtain an optimal input u⇤(i). It is important to
note that the CAD-based quantifier elimination algorithm would produce the output (3.123)
that is “solved”, i.e. regions Fj(i) would be mutually disjoint. This is the case because the
algorithm works by splitting the space Rm into disjoint cells in each of which all polynomials
in the set {z � hi(u(i),x(i)),C(i)} are either positive, negative or zero. Unfortunately, as
was discussed in Section 3.4.1, it is not practically feasible to use the CAD-based quantifier
elimination algorithm because of the high execution time needed.

Hence, we apply Weispfenning’s algorithm to (3.122). In the single input case, i.e.
m = 1, then doing so produces an equivalent quantifier-free formula with no input u(i)
dependence

[

j=1,...,ni

�
x(i) 2 O j(i)^ z � p j(x(i))

�
(3.125)

with p j(x(i)) a quadratic function of x(i) and ni overlapping regions O j(i) whose union is
the set of feasible states:

O1(i)[ . . .[Oni(i)⌘ {x(i) : 9u(i) such that C(i)}. (3.126)

Applying Weispfenning’s algorithm results in a set of overlapping regions O j(i), j 2 1, . . . ,ni

because, unlike the CAD-based quantifier elimination algorithm, Weispfenning’s algorithm
just eliminates the quantified variables but does not “solve” the resulting quantifier-free
formula (see Section 2.3.2). Consequently, since the regions O j(i), j 2 1, . . . ,ni overlap
with each other, to obtain Ji(x(i)) we have to find the smallest p j(x(i)) in each inter-
section of those regions. Therefore, region O1(i)[ . . .[ Oni(i) is split into disjoint re-
gions D1(i), . . . ,Dmi(i) such that Dl(i)\Dm(i) = ? 8l,m 2 1, . . . ,mi, l 6= m according to
the way overlapping regions intersect each other. This is done by picking two overlap-
ping regions, Om(i),On(i),m,n 2 1, . . . ,ni, splitting them into three mutually disjoint re-
gions Om(i)\ On(i), Om(i) \ (Om(i)\ On(i)) and On(i) \ (Om(i)\ On(i)), and repeating
this procedure recursively until all the regions become mutually exclusive. Then for all
Dl(i), l 2 1, . . . ,mi, pick a point x 2 Dl(i) and evaluate all quadratic functions p j(x(i)) cor-
responding to the regions Om(i),m 2 1, . . . ,ni satisfying Om(i)\Dl(i) 6=? at x(i) = x. The
quadratic function p⇤j(x(i)) with the smallest value p j(x) represents the candidate optimal
value function in the region Dl(i). If it is smallest everywhere in the region, as might be ex-
pected from the explicit MPC solution, it would follow that p⇤j(x(i))⌘ Ji(x(i)) 8x(i)2Dl(i),
otherwise the boundary would be more complex. Finally, after connecting neighbouring re-
gions with the same optimal value function, Ji(x(i)) is obtained (see Figure 3.13 (c) for an
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illustration).

In order to find the optimal explicit MPC control law u⇤(0), we have to obtain the ex-
pression for the optimal value function J0(x(0)) first. To achieve this, apply the quanti-
fier elimination algorithm to the first order formula (3.122) with i = N � 1, then obtain
JN�1(x(N � 1)) via steps described in the previous paragraph. Next apply the quantifier
elimination algorithm to (3.122) with i = N � 2, with the JN�1(x(N � 1)) expression just
obtained substituted into the formula. Repeat until the expression for J0(x(0)) is obtained.

Subsequently, the process to obtain the optimal input u⇤(0) is as follows. Suppose we
are interested in the optimal input u⇤(0) in one of the disjoint regions D j(0), j 2 1, . . . ,mi.
Firstly, the equation

h0(x(0),u(0)) = J0(x(0)) (3.127)

is solved for u(0). Since the equation (3.127) is quadratic in u(0), it has two state-dependent
solutions, u1(x(0)) and u2(x(0)). In order to find which one of these two solutions is the
optimal input u⇤(0), let C(0,u(x(0))) denote the input-independent constraint expression
obtained once the input expression u(x(0)) is substituted in the constraint set C(0). Consider
the regions

R1 ⌘C(0,u1(x(0)))^D j(0), (3.128)

R2 ⌘C(0,u2(x(0)))^D j(0). (3.129)

One of those regions is empty while the other is not. Assume, without loss of generality,
that the region R1 is non-empty. This, in turn, means that u1(x(0)) is the optimal input, i.e.:

u⇤(0) = u1(x(0)). (3.130)

The region that is non-empty can be determined by feeding the quantified expressions

9 x(0)R1, (3.131)

9 x(0)R2 (3.132)

to Weispfenning’s quantifier elimination algorithm. Since both expressions are fully quan-
tified, the quantifier-free formula will be either True or False. Again, suppose, without loss
of generality, that Weispfenning algorithm outputs that (3.131) is equivalent to True — this
means that u1(x(0)) is the optimal input, i.e. u⇤(0) = u1(x(0)). Although only u⇤(0) is ap-
plied to the system (3.91), notice that we could have obtained optimal u⇤(1), . . . ,u⇤(N �1),
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by repeating the described procedure for equations analogous to (3.127). In Section 3.4.5,
the approach described in this section is used to find the explicit MPC solution for a partic-
ular linear MPC system with a quadratic cost and linear constraints.

In general, Weispfenning’s algorithm is applicable as long as the MPC problem can be
expressed as an equivalent quantifier elimination one with particular quantification structure
(i.e., all quantified variables appear at most quadratically). This suggests that, as long as this
quantification requirement is met, the procedure discussed in this section to obtain explicit
MPC solution via Weispfenning’s algorithm can be used for nonlinear systems. This is
indeed the case if we limit our attention to the same quadratic MPC problem (3.93), but
with input-affine nonlinear system dynamics of the form

x(i+1) = g(x(i))+Bu(i), (3.133)

where g(x(i)) is a polynomial function of the state x(i). In Section 3.4.6, the approach
described in this section is used to find the explicit MPC solution for a system with dynamics
of the form (3.133) together with a quadratic cost and linear constraints.

There are several differences to be noted between the quantifier elimination based ap-
proach discussed in this section and the standard method (developed in Bemporad et al.
(2002) and summarised in Section 3.4.2) for obtaining the optimal explicit MPC control
law (3.95). First of all, it was assumed in (3.93) that the state, input and terminal costs Q,
R and P, respectively, satisfy the positive-definiteness and positive-semidefiniteness condi-
tions:

Q = QT � 0, R = RT > 0, P � 0. (3.134)

This is a standard assumption in literature in order to make the optimisation problem (3.93)
(ant its equivalent representations (3.106) and (3.108)) to be a convex optimisation prob-
lem. No such assumption has to be made for the quantifier elimination based method since,
as was discussed and illustrated in Section 3.4.1, quantifier elimination is capable of deal-
ing with a general nonconvex optimisation problem. Additionally, as long as the nonlinear
MPC problem can be expressed as an equivalent quantifier elimination one with a particular
quantification structure that Weispfenning’s quantifier elimination algorithm can deal with,
no additional work is needed to adapt the proposed method in order to make it applicable to
nonlinear systems. Finally, although the command actions provided by the explicit feedback
control law developed in Bemporad et al. (2002), by solving the optimisation problem (3.93)
at each time step and by the explicit feedback control law obtained using quantifier elimi-
nation based approach all match, the quantifier elimination based approach is an algebraic
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procedure that expresses the explicit control law (3.95) using exact algebraic numbers.

3.4.4 Checking feasibility via quantifier elimination for a linear system

Once the explicit MPC solution for the system is obtained using the procedure based on the
Weispfenning’s quantifier elimination algorithm (as discussed in Section 3.4.3), it can be
used to analyse feasibility of the optimisation problem (3.93).

Let F0 be the set of initial states x(0) for which the optimisation problem (3.93) is feasi-
ble (i.e., has a solution). Then, F0 can be expressed as

F0 ⌘ 9u(0)9u(1) . . .9u(N �1)
N�1̂

i=0
Y(i)^ (E(N)x(N) b(N)) (3.135)

and therefore can be calculated by substituting expressions for predicted states x(i)=Aix(0)+
i�1
Â
j=0

Ai�1� jBu( j), i = 1, . . . ,N�1, followed by eliminating quantifiers using Weispfenning’s

algorithm. Weispfenning’s algorithm is applicable in this case since all quantified variables
in (3.135) appear linearly. Additionally, let the set I0 ⌘ Rn \F0 denote initial states x(0) for
which optimisation problem (3.93) is not feasible.

Similarly, let F1 be the set of states x for which (3.93) remains feasible after a single
control update, assuming that the optimal control law u⇤(0) (i.e., a piecewise control law
obtained according to the procedure described in Section 3.4.3) is applied in the initial step.
Then

F1 ⌘ 9u(u⇤0(x)^ x 2 F0 ^Ax+Bu 2 F0) (3.136)

which, again, can be calculated via quantifier elimination using Weispfenning’s algorithm.
Analogously, let I1 be the set of states x for which (3.93) will lose feasibility after a single
time step:

I1 ⌘ 9u(u⇤0(x)^ x 2 F0 ^Ax+Bu /2 F0) . (3.137)

If I1 =?, the control scheme is said to be recursively feasible (i.e., for all initially feasible
states x(0) and for all optimal input sequences, (3.93) remains feasible for all time steps k).

In general, let Fk,k = 1,2, . . . denote sets of states for which the optimisation prob-
lem (3.93) remains feasible for at least k+1 time steps, and Ik,k = 1,2, . . . sets of states for
which (3.93) will lose feasibility after k time steps. Then the sequence of sets {Fk} can be
computed by applying Weispfenning’s quantifier elimination algorithm to

Fk ⌘ 9u(u⇤0(x)^ x 2 Fk�1 ^Ax+Bu 2 Fk�1) , k = 1,2, . . . (3.138)
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Fig. 3.13 Steps in obtaining explicit MPC solution by using the method based on Weispfen-
ning’s quantifier elimination algorithm and developed in Section 3.4.3.

while Ik = F0 \ (F0 \Fk).

Now suppose that an additive disturbance d(k) 2 D acts on the system (3.91), i.e.:

x(k+1) = Ax(k)+Bu(k)+d(k). (3.139)

Then the set of states I1 that will lose feasibility after a single time step can be found by
eliminating quantifiers from the formula:

9u9d (u⇤0(x)^d 2 D^ x 2 F0 ^Ax+Bu+d /2 F0) . (3.140)

Several examples of the computation of highly non-convex semialgebraic sets Fk and Ik

by using Weispfenning’s algorithm (in both nominal and disturbed cases) will be given in
Section 3.4.7.

3.4.5 Computational example: explicit MPC solution for a linear sys-
tem

In this section, we illustrate how the procedure described in Section 3.4.3 can be used to
obtain an explicit MPC solution for a linear time invariant system (3.91) with a quadratic
objective and polytopic constraints (3.93)
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Consider a linear time-invariant discrete-time system of the form (3.91) with

A =

"
75

100 �1299
1000

1299
1000

75
100

#
, B =

"
�1
1

#
(3.141)

and MPC controller designed using N = 1, Q = I, R = 1, together with the constraints
�1  x1  1, �1  x2  1, �1  u0  1, uo  1

5 + x1 + x2 (taken from Löfberg (2012)).

The procedure developed in Section 3.4.3 for obtaining the algebraic expression of the
explicit MPC solution for the system (3.141) goes as follows. Firstly, after performing quan-
tifier elimination using Weispfenning’s quantifier elimination algorithm, we obtain eight
overlapping regions O1(0), . . . ,O8(0), as illustrated in Figure 3.13 (a). Then those overlap-
ping regions are split into 18 disjoint regions D1(0), . . . ,D18(0), as shown in Figure 3.13 (b).
Finally, after finding the optimal value function J(x1(0),x2(0)) in each one of those regions,
solving for the optimal input u⇤0 and merging the regions Di(0), i = 1, . . . ,18 with the same
solution, our quantifier elimination based method obtains the explicit MPC control law (see
Figure 3.14) whose state-space partition is illustrated in Figure 3.13 (c).

As expected, the expression of the explicit MPC law obtained (see Figure 3.14) by using
the method described in Section 3.4.3 is in alignment with the one obtained via the standard
approach of using the Multi-Parametric Toolbox (Herceg et al., 2013), the main difference
here being that our method produces the answer using exact algebraic numbers.

3.4.6 Computational example: explicit MPC solution for a nonlinear
system

In this section, we illustrate how the procedure described in Section 3.4.3 can be used to
obtain an explicit MPC solution for a nonlinear MPC system of the form (3.133) with a
quadratic cost and linear constraints.

Consider the Duffing oscillator (for more details, see Section 13.5 in Jordan and Smith
(2007)), which is a nonlinear oscillator of the second order

ÿ(t)+2x ẏ(t)+ y(t)+ y(t)3 = u(t) (3.142)

with the damping coefficient x = 3
10 , y(t)2R being the continuous state variable and u(t)2

R being the control input. By using a forward difference approximation with a sampling
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Fig. 3.14 Explicit MPC solution obtained using the method based on Weispfenning’s quan-
tifier elimination algorithm and developed in Section 3.4.3.
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period h = 1
20 , we obtain a discrete time state space model

"
x1(i+1)
x2(i+1)

#
=

"
1 1

20
� 1

20
97

100

#"
x1(i)
x2(i)

#
+

"
0
1
20

#
u(i)+

"
0

� 1
20x3

1(i)

#
, (3.143)

y(i) =
h
1 0

i"x1(i)
x2(i)

#
, (3.144)

which is linear in the input u(i) and nonlinear in the state x1(i). It is important to note that
the input-affine system dynamics (3.143) is needed in order for the approach discussed in
Section 3.4.3 to be applicable. This restriction on the system dynamics ensures that the
MPC problem of interest can be expressed as an equivalent quantifier elimination problem
where all quantified variables appear at most quadratically. This in turn allows us to utilise
Weispfenning’s quantifier elimination algorithm which is the central part of the procedure
developed in Section 3.4.3.

Suppose that the MPC controller is designed with a prediction horizon N = 1 and
weights Q = I,R = 1/10, together with the constraints |x1(1)| 5, |x2(1)| 5. Then appli-
cation of the procedure described in Section 3.4.3 produces the explicit MPC control law
u⇤0(x)

u⇤0(x) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1
5 (500+5x1 +5x3

1 �97x2) if

2
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(3.145)

whose state space partition is given in Figure 3.15 (a). Figure 3.15 (b) illustrates the state
space evolution of the system, with and without (u = 0) the MPC controller, from x(0) =h

14
5 1

iT
.
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Fig. 3.15 Explicit MPC solution for a nonlinear system.

3.4.7 Computational example: checking recursive feasibility for nom-
inal and disturbed linear systems

In this section, we show how Weispfenning’s algorithm (together with the algebraic ex-
pression for the explicit MPC solution obtained by the quantifier elimination based method
developed in Section 3.4.3) can be used to eliminate quantifiers from various quantified for-
mulas discussed in Section 3.4.4 and, consequently, verify recursive feasibility of the MPC
system.

Recursive feasibility — nominal case
Is controller represented in Figure 3.14 recursively feasible? By eliminating quantifiers
from the first order formula (3.137), we find that I1 6=?, as can be seen in Figure 3.16 (b).
Hence, recursive feasibility is violated. Moreover, by repeated application of quantifier
elimination, we are able to calculate sets of states Ii which will lose feasibility after i steps
(see Figure 3.16).

Recursive feasibility — disturbed case
Consider a nominal system of the form x(i+1) = Ax(i)+Bu(i) (3.91) with

A =

"
45

100 � 7794
10000

7794
10000

45
100

#
, B =

"
�1
1

#
. (3.146)
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Fig. 3.16 Sets of states Ii which will lose
feasibility after i steps.
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Fig. 3.17 Sets of states I1 which will lose
feasibility after a single time step.

An MPC controller is designed for this system using prediction horizon N = 3, weights
Q = I, R = 1, together with constraints �1  xi+1  1, �1  ui  1, i = 0,1,2 (example
taken from Löfberg (2012)). The optimal explicit MPC solution is obtained for this system
using the procedure developed in Section 3.4.3. By using quantifier elimination as described
in Section 3.4.4, we find that this controller is recursively feasible.

Now suppose that a disturbance d(i) 2 D acts on the system:

x(i+1) = Ax(i)+Bu(i)+d(i). (3.147)

Let:

D =

("
d1

d2

#
2 R2 : �k1  d1  k1,�k1  d2  k1,k1 � 0

)
. (3.148)

For a given value of k1, which states will lose feasibility after a single time step? By posing
this question as a quantifier elimination problem in the form (3.140), and then solving it
with an elimination algorithm, we are able to find sets of states I1 of interest, as depicted in
Figure 3.17.

Hence, we see that with k1 = 1/4, I1 = ?, and the system is recursively feasible for all
allowable disturbances. Moreover, by keeping k1 as a variable in (3.140) (rather than assign-
ing a particular numerical value beforehand), and then applying Weispfenning’s algorithm,



3.4 Optimisation as a quantifier elimination problem 101

(a) 0  k1  1, fixed disturbance set. (b) 0  k2  1, state-dependent disturbance set.

Fig. 3.18 Dependence of the set I1 on the uncertainty parameter ki, i = 1,2.

we obtain the dependence of the set I1 on the magnitude of the disturbance k1, as depicted
in Figure 3.18 (a). As the magnitude of the disturbance k1 gets larger, more and more states
will lose feasibility after a single time step, which is to be expected.

Now consider a state-dependent disturbance:

D =

("
d1

d2

#
2 R2 : d2

1 +d2
2  k2(x2

1 + x2
2)

)
. (3.149)

Despite the fact that two quantified variables (d1 and d2) appear quadratically in (3.140),
Weispfenning’s algorithm is capable of eliminating both of them and hence producing the
dependence of the set I1 on the parameter k2, as illustrated in Figure 3.18 (b).

In conclusion, repeated computation of sets Fk and Ik, in both nominal and disturbed
cases, illustrated the capability of Weispfenning’s quantifier elimination algorithm to pro-
duce analytic expressions of highly non-convex semialgebraic sets. Moreover, all the exam-
ples were computed in fractions of a second, whereas attempts to use cylindrical algebraic
decomposition (using Mathematica (Wolfram Research Inc., 2016)) were abandoned after
about a day, with relentless use of memory.
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3.5 Application of formal methods to Linear Temporal Logic
specifications

3.5.1 Feasible parameter set calculation: from Linear Temporal Logic
specification to quantifier elimination problem

Linear Temporal Logic (LTL) is a logical formalism that extends propositional logic by
adding temporal operators that allow a very intuitive way to describe verification require-
ments based on how the state of the discrete time dynamical system evolves over time. Any
LTL formula y is built up recursively via the syntax

y ::= true | s | y1 ^y2 | ¬y | �y | y1 U y2, (3.150)

where s are atomic propositions describing the state of the system, ^ represents logical
conjunction, ¬ represents logical negation, � (pronounced “next”) and U (pronounced
“until”) are temporal operators.

Let kc,kc 2 N0 denote the current time step. LTL formula �y holds at the current time
step kc if y holds at the next time step kc + 1. LTL formula y1 U y2 holds at the current
time step kc, if there is some future time step k f ,k f > kc,k f 2 N at which y2 holds and y1

holds at all time steps until the future time step k f . For more details on this, see Chapter 5
in (Baier et al., 2008).

In the following, we show how calculation of a feasible parameter set F(p1, . . . , pl) for
which satisfaction of some particular property of the dynamical system is guaranteed can
be expressed as an LTL specification and consequently converted to a quantifier elimination
problem of the form discussed in Section 2.3.1. Consider a discrete-time LTI system

x(k+1) = Ax(k)+Bu(k), (3.151)

y(k) =C(p1, . . . , pl)x(k),

where x 2Rn is the state, u 2Rm is the input, y 2Rq is the output with an initial state x(0)2
Xver, bounds on the input u(k) 2 Uver 8k = 0,1,2, . . . and p1, . . . , pl denote the parameters
parametrising the output.

Suppose that the k-th output, y(k), is required to stay in a particular set, y(k)2Yver. This
requirement can be expressed as an LTL formula:

y1 ⌘�ky(0) 2 Yver. (3.152)
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Consequently, calculation of a feasible parameter set F1(p1, . . . , pl) for which (3.152) holds
for the system (3.151) can be expressed as a quantifier elimination problem:

F1(p1, . . . , pl)⌘ 8u(0),u(1), . . . ,u(k�1),
k�1̂

i=0
u(i) 2 Uver =)

 
C(p1, . . . , pl)Akx(0)+

k�1

Â
l=0

CAk�1�lBu(l)

!
2 Yver. (3.153)

Similarly, consider the requirement for the output y(k) to stay in a particular set, y(k)2Yver,
for the next k time steps. An equivalent LTL formula representing this requirement is given
by:

y2 ⌘
k̂

i=1

�
�iy(0) 2 Yver

�
. (3.154)

Analogously, calculation of a feasible parameter set F2(p1, . . . , pl) for which (3.154) holds
for the system (3.151) can be expressed as a quantifier elimination problem:

F2(p1, . . . , pl)⌘ 8u(0),u(1), . . . ,u(k�1),
k�1̂

i=0
u(i) 2 Uver =)

k̂

i=1

 
C(p1, . . . , pl)Aix(0)+

i�1

Â
l=0

CAi�1�lBu(l)

!
2 Yver. (3.155)

In case Uver is a polytope, all quantified variables in (3.153) and (3.155) (which are inputs in
this case) appear linearly and hence can be eliminated by applying Weispfenning’s virtual
substitution algorithm (Loos and Weispfenning, 1993; Weispfenning, 1997) discussed in
Section 2.3.2.

Feasible parameter sets (3.153) and (3.155) are calculated in Haesaert et al. (2017) via
the state of the art method that is essentially equivalent to a reachability algorithm. This,
consequently, results in the following restrictions:

• Restricted fragment of LTL that excludes negation. The method used in Haesaert
et al. (2017) for calculating Fi(p1, . . . , pl), i = 1,2 can’t deal with negation because
it relies on the assumption of convexity of the corresponding feasible parameter set.
Having both negation and conjunction in the logic simultaneously allows disjunction
(assuming y1 and y2 are two LTL specifications, y1_y2 ⌘ ¬(¬y1^¬y2)) which in
turn allows non-convex feasible parameter sets to arise.

• Only linearly parametrized dynamical systems are allowed in order to ensure that the
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resulting feasible parameter set is polyhedral.

Both of those restrictions can be avoided by converting an LTL specification to a quantifier
elimination problem and then calculating the feasible parameter set Fi(p1, . . . , pl), i = 1,2
by eliminating quantifiers with one of the quantifier elimination algorithms, consequently
allowing us to extend the results obtained in Haesaert et al. (2017). An illustrative example
is provided in Section 3.5.2.

3.5.2 Computational examples

Consider the system of the form

x(k+1) =

"
a 0

1�a2 a

#
x(k)+

" p
1�a2

�a
p

1�a2

#
u(k), (3.156)

y(k) =

"
p1

p2

#T

x(k),

with |a| 1 (taken from Haesaert et al. (2017)).

Bounded-time safety verification in restricted fragment of LTL that excludes negation
Consider the fragment of LTL (3.150) that excludes negation, i.e. LTL formula y is built
up recursively via the syntax:

y ::= true | s | y1 ^y2 | �y | y1 U y2. (3.157)

This, in turn, guarantees that feasible parameter sets F1(p1, . . . , pl) and F2(p1, . . . , pl) are
convex (see Theorem 2 in Haesaert et al. (2017)). Hence, the method developed in Haesaert
et al. (2017) for calculating these sets is still applicable. Therefore, in this section, we show
how those feasible parameter sets can be calculated alternatively with quantifier elimination
methods.

Let a= 0.4 in (3.156) with x(0)2 {02}=Xver, Uver = [�0.2,0.2] and Yver = [�0.5,0.5]
and calculate F2(p1, p2) (3.155) for k = 1,2, , . . . ,5. The corresponding feasible sets cal-
culated via Weispfenning’s quantifier elimination algorithm are shown in Figure 3.19. The
feasible parameter sets F2(p1, p2) obtained by Weispfenning’s algorithm are expressed as
unions of overlapping polytopic regions — Figure 3.19 represents the unions corresponding
to F2(p1, p2). For example, for k = 1,2, the feasible parameter sets are:



3.5 Application of formal methods to Linear Temporal Logic specifications 105

-4 -2 0 2 4

-4

-2

0

2

4

p1

p 2

(a) k = 1 (blue).

-4 -2 0 2 4

-4

-2

0

2

4

p1
p 2

(b) k = 1 (blue),
k = 2 (orange).

-4 -2 0 2 4

-4

-2

0

2

4

p1

p 2

(c) k = 2 (blue),
k = 3 (orange).

-2 -1 0 1 2
-2

-1

0

1

2

p1

p 2

(d) k = 3 (blue),
k = 4 (orange).

-2 -1 0 1 2
-2

-1

0

1

2

p1

p 2

(e) k = 4 (blue),
k = 5 (orange).

Fig. 3.19 Feasible sets of parameters F2(p1, p2) for k = 1,2, . . . ,5 calculated by Weispfen-
ning’s quantifier elimination algorithm. The set of feasible parameters F2(p1, p2) contracts
as k increases.
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Fig. 3.20 Feasible sets of parameters F2(p1, p2) for k = 1,2,3,4 obtained with CAD algo-
rithm.

F2(p1, p2), k = 1 : 5p1 �2p2 �
25000
1833

 0^�5p1 +2p2 �
25000
1833

 0,

F2(p1, p2), k = 2 : �125000
5499

 5p1 �9p2 
125000
5499

^�125000
12831

 5p1 + p2 
125000
12831

.

Additionally, we calculate F2(p1, p2) (3.155) for k = 1,2, , . . . ,5 by using CAD. The output
of this algorithm gives feasible parameter sets F2(p1, p2) as a union of disjoint polytopes,
as depicted in Figure 3.20 (for case k = 5, CAD algorithm did not produce an answer in 6
hours). As expected, the feasible parameter sets obtained by using Weispfenning’s algorithm
(and depicted in Figure 3.19) and by using CAD algorithm (and depicted in Figure 3.20) are
the same. Hence, the main advantage of CAD over Weispfenning’s algorithm is that it pro-
duces an answer which is much simpler (i.e., a union of disjoint polytopic regions rather
than a union of overlapping polytopic regions).

Bounded-time safety verification with negation allowed in the logic
Now consider the full LTL (3.150), with the logical negation ¬y operation allowed in the
logic. Consequently, this allows non-convex feasible parameter sets F1(p1, . . . , pl) and
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F2(p1, . . . , pl) to arise and therefore the method developed in Haesaert et al. (2017) is no
longer applicable. Hence, in this section, the advantage of the quantifier elimination based
method is illustrated.

Example 1
Let a = 0.4 in (3.156) initialised with Xver =

h
1 0

iT
and bounds on the input Uver =

[�ub,ub] ,ub > 0. Define atomic propositions s1 and s2 as s1 $ {y(0) 0}, s2 $ {y(0)
�1}, respectively, and consider the LTL specification:

y(k) = Ok¬(s1 ^¬s2). (3.158)

Calculation of the feasible parameter sets F1(p1, p2) for which (3.158) holds can be ex-
pressed as a quantifier elimination problem (3.153) with:

Yver = (�•,�1][ (0,+•). (3.159)

The feasible parameter sets for k = 1,2, . . . ,5 and ub = 1,1/2,1/4,1/8, obtained via CAD,
are shown in Figure 3.21. Empty figures represent an empty feasible parameter set and
different colours in those plots correspond to disjoint regions obtained by the the CAD
algorithm. For example, for ub = 1/8 and k = 3, the feasible set of parameters is given by:

F1(p1, p2)⌘
✓

p1 �800000
511163

^
✓

p2 <
229435p1 �2000000

602937
_ p2 >�37465p1

66477

◆◆
_

✓
�800000

511163
< p1  0^

✓
p2 <

�228815p1 �2000000
419637

_ p2 >�37465p1

66477

◆◆
_

✓
0 < p1 

6800000
61303

^
✓

p2 <
�228815p1 �2000000

419637
_ p2 >

229435p1

602937

◆◆
_

✓
p1 >

6800000
61303

^
✓

p2 <
�412115p1 �2000000

731247
_ p2 >

229435p1
602937

◆◆
.

Using Weispfenning’s algorithm for quantifier elimination produces an equivalent result and
represents it as a union of overlapping polytopes.

Example 2
Let a = 0.4 in (3.156) initialised with Xver =

h
1 0

iT
and bounds on the input Uver =
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Fig. 3.21 Feasible sets of parameters F1(p1, p2) for different values of ub and k.
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[�ub,ub] ,ub > 0. Define a set of atomic propositions

s1 $ {y(0)�3},s2 $ {y(0)�2},

s3 $ {y(0)�1},s4 $ {y(0) 0},

s5 $ {y(0) 1},s6 $ {y(0) 2},

and consider the LTL specification:

y(k) = Ok(¬s1 ^s2)_ (¬s3 ^s4)_ (¬s5 ^s6). (3.160)

Calculation of the feasible parameter sets F1(p1, p2) for which (3.160) holds can be ex-
pressed as a quantifier elimination problem (3.153) with:

Yver = (�3,�2][ (�1,0][ (1,2]. (3.161)

The feasible parameter sets for k = 1,2, . . . ,5 and ub = 1,1/2,1/4,1/8, obtained via CAD,
are shown in Figure 3.22. For example, for ub = 1 and k = 1, the feasible set of parameters
is given by:

F1(p1, p2)⌘
✓
�891

611
< p1 � 6

5
^ �13165p1 �30000

4734
< p2 <

5165p1 �20000
12066

◆
_

✓
�6

5
< p1 � 4

5
^ 5165p1 �30000

12066
< p2 <

5165p1 �20000
12066

◆
_

✓
�4

5
< p1 � 2011

3055
^ 5165p1 �30000

12066
< p2 <

�13165p1 �20000
4734

◆
_

✓
�2011

3055
< p1 � 331

611
^
✓

5165p1 �30000
12066

< p2 <
�13165p1 �20000

4734
_ �13165p1 �10000

4734
< p2 <

5165p1

12066

◆◆
_

✓
�331

611
< p1 � 2

5
^ �13165p1 �10000

4734
< p2 <

5165p1

12066

◆
_

✓
�2

5
< p1  0^ 5165p1 �10000

12066
< p2 <

5165p1

12066

◆
_

✓
0 < p1 

433
3055

^ 5165p1 �10000
12066

< p2 <�13165p1

4734

◆
_

✓
433

3055
< p1 

789
3055

^
✓

5165p1 �10000
12066

< p2 <� 13165p1

4734
_ 10000�13165p1

4734
< p2 <

5165p1 +20000
12066

◆◆
_

✓
789

3055
< p1 

2
5
^ 10000�13165p1

4734
< p2 <

5165p1 +20000
12066

◆
_

✓
2
5
< p1 

4
5
^ 5165p1 +10000

12066
< p2 <

5165p1 +20000
12066

◆
_

✓
4
5
< p1 <

3233
3055

^ 5165p1 +10000
12066

< p2 <
20000�13165p1

4734

◆
.

These two examples illustrate the kind of problems that quantifier elimination based method
is capable of dealing with while the method presented in Haesaert et al. (2017) is not.
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Fig. 3.22 Feasible sets of parameters F1(p1, p2) for different values of ub and k.
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Fig. 3.23 Feasible sets of parameters Fa(p1, p2) for k = 1 (blue region) and k = 2 (orange
region).

Nonlinearly parametrised model set
In this section, we show how it is possible to deal with the calculation of the sets of feasible
parameters for a nonlinearly parametrised model set which is beyond the applicability of the
method developed in Haesaert et al. (2017).

Consider |a|  1 as a varying parameter in (3.156) and then let b =
p

1�a2. Suppose
that x(0) 2 {02} = Xver, Uver = [�0.2,0.2] and Yver = [�0.5,0.5]. Hence, the calculation
of the set of feasible parameters Fa(p1, p2) for which the output stays in Yver within the
next k time steps for all systems in the model set parametrised by a can be expressed as a
quantifier elimination problem of the form:

Fa(p1, p2) =8a,b,u(0),u(1), . . . ,u(k�1),
k�1̂

i=0
(�0.2  u(k) 0.2)

^
(�1  a  1)

^
(a2 +b2 = 1) =)

k̂

i=1

 
�1

2


i�1

Â
l=0

CAi�1�lBu(l) 1
2

!
.

Feasible sets of parameters Fa(p1, p2) for k = 1,2 are depicted in Figure 3.23 (compu-
tation for cases k � 3 did not finish in 6 hours). In order to eliminate quantifiers, both
Weispfenning’s virtual substitution and CAD algorithms were used. Weispfenning’s algo-
rithm initially removes all quantified inputs and parameter a which results in a first order
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formula with quantified variable b. Consequently, since parameter b appears with higher
than quadratic order (4-th order for k = 1 and 6-th order for k = 2), CAD has to be used to
eliminate it.

For illustration purposes, we provide semialgebraic set Fa(p1, p2) for k = 1
✓

p1 =�5
2
^ p2 = 0

◆
_
✓

p1 =
5
2
^ p2 = 0

◆
_

� 5
2
< p1 <

5
2
^�

q
Root

⇥
4x3 + x2

�
�12p2

1 �200
�
+ x

�
12p4

1 �500p2
1 +2500

�
�4p6

1 +25p4
1,2

⇤
 p2


q

Root
⇥
4x3 + x2

�
�12p2

1 �200
�
+ x

�
12p4

1 �500p2
1 +2500

�
�4p6

1 +25p4
1,2

⇤
,

where Root[ f (x),k] represents the exact k-th root of the polynomial equation f (x) = 0 (all
real roots come before the complex ones, are ordered in an increasing order, complex con-
jugate pairs of roots are considered to be adjacent with the root with the negative imaginary
part coming first).

3.6 Industrial example: verification of a longitudinal backup
flight control law to accommodate sensor loss in the
RECONFIGURE benchmark

In this section, we finally use the formal methods based verification framework to verify
several properties of a control law developed for a real world industrial system from the
aerospace field. Section 3.6.1 gives a short summary of the control law in question. Sec-
tion 3.6.2 discusses how verification criteria of interest can be cleared at particular flight
points, while Section 3.6.3 shows how performance and robustness conditions of interest
can be checked throughout the whole flight envelope. In conclusion, this application illus-
trates that verification frameworks based on formal methods can be used to verify properties
of real-world industrial systems.

3.6.1 Description of the control law

In this section, we give a short summary of the backup flight control law developed in
Maciejowski et al. (2016) for the RECONFIGURE project (Goupil et al., 2014) that will be
used as an example of controller clearance via formal methods. It is a robust vertical load
factor (nz) tracking control law which is based on application of theory from robust MPC
and H2 optimal control. This control law is supposed to be used as a backup to the baseline
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Airbus control law in the case when calibrated airspeed (VCAS) measurement is lost due to
multiple simultaneous sensor failures.

For the purpose of control design, Airbus has provided RECONFIGURE project mem-
bers with linearisations Asp(q), Bsp(q), Csp(q), Dsp(q) of the longitudinal short period
dynamics of an Airbus A380 aircraft at 234 different flight points qi, i 2 {1, . . . ,234} cover-
ing a flight envelope of airspeed, altitude, mass, centre of gravity, landing gear and slat/flap
positions. At those flight points, short period dynamics are

x(k+1) =

"
q(k+1)
a(k+1)

#
= Asp(q)

"
q(k)
a(k)

#
+Bsp(q)u(k), (3.162)

y(k) =

"
q(k)
nz(k)

#
=Csp(q)

"
q(k)
a(k)

#
+Dsp(q)u(k), (3.163)

where q is pitch rate, a is angle of attack, nz is vertical load factor (i.e., the acceleration
normal to the aircraft body divided by acceleration due to gravity), and u represents elevator
deflection.

For controller design purposes, the short period model (3.162) at each flight point is
augmented with simplified sensor, filter and actuator models. To avoid the need for es-
timating unmeasured states using an observer, this augmented model is transformed into
a non-minimal realisation whose state vector is comprised of a finite time history of past
inputs and outputs. Finally, for tracking, the model of the plant is augmented with an inte-
grator of the error between the load factor to be tracked and the reference. This results in
the following augmented system dynamics

x(k+1) = A(q)x(k)+B(q)u(k)+Brr(k), (3.164)

where r(k) is the vertical load factor (nz) reference and x(k) 2 R14. The state space repre-
sentation (3.164) is used for control gain synthesis.

Additionally, the 234 flight points qi, i 2 {1, . . . ,234} are split into 55 flight groups
Jj, j 2 {1, . . . ,55}. All flight points in a particular flight group have the same mass, alti-
tude, centre of gravity, slat/flap and landing gear positions, but different calibrated airspeed
(VCAS). The control design objective is to synthesize 55 state-feedback control gains Kj

(one for each flight group Jj) that stabilise the augmented model (3.164) at each flight point
in the flight group Jj. This is achieved by solving the following semidefinite programming
problem formulated for this particular application in Maciejowski et al. (2016) which applies
mathematical techniques of Cuzzola et al. (2002), de Oliveira et al. (1999) and de Oliveira
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et al. (2002).

Proposition 4 In the following, q ji denotes the i-th flight point in the j-th flight group Jj.
There exists a stabilising state-feedback control law u(k) = Kjx(k) = YjG j

�1x(k), meeting
the performance requirements:

• requirement #1: upper bound on the cost function

+•

Â
k=0

x(k)T �Q j +Kj
T R jKj +S jKj +Kj

T ST
j
�

x(k) g j, (3.165)

where Q j,R j and S j are weighting matrices for the flight group Jj.

• requirement #2: decrease in the Lyapunov function

V (x(k)) = x(k)T
⇣

g jX�1
ji

⌘
x(k) (3.166)

is at least as big as a stage cost.

These requirements are satisfied if 8q ji 2 Jj (i.e. for each flight point in this particular flight
group), there exist symmetric matrices Xi j, and for each flight group Jj, there exists a pair
of matrices {Yj, G j} satisfying the LMIs

2

66664

G j +GT
j �Xji ⇤ ⇤ ⇤

A(q ji)G j +B(q ji)Yj Xji 0 0
(Q j �S jR j

�1S j
T )1/2G j 0 g jI 0

R j
1/2(Yj +R j

�1S j
T G j) 0 0 g jI

3

77775
� 0, (requirement #2), (3.167)

"
1 x(k)T

x(k) Xji

#
� 0, (requirement #1), (3.168)

where ⇤ is used to induce a symmetric structure in the matrix. ⌅

Hence, the upper bound on the cost function g j for the flight group Jj is minimised by
solving the following LMI optimisation problem:

min
g j, G j, Xji, Yj

g j subject to (3.167) and (3.168). (3.169)

Consequently, a controller designed using Proposition 4 for a given flight group Jj will
stabilise any realisation of the system (3.164) in that flight group. However, the flight groups
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(a) Delaunay Triangulation and linear interpolation. (b) Flight group Jj with its neighbouring
flight groups Nj = {Jj1 , . . . ,Jjn} in Delau-
nay Triangulation.

Fig. 3.24 Computation of the control law u(k) = Kx(k).

only correspond to samples of the flight envelope, corresponding to discrete values of mass,
altitude, and centre of gravity. In reality, these parameters can also take on values between
the samples. Linear interpolation is an approach that can be used to accommodate this
practical issue.

The computation of the control gain K in the control law u(k)=Kx(k) for a general point
in the flight envelope is illustrated in Figure 3.24 (a). Consider the case when all flight points
in the flight group Jj, j = 0, . . . , jmax have the same mass Mj, altitude z j and centre of gravity
x j, but differing calibrated airspeed (VCAS). Firstly, Delaunay Triangulation is performed
over the set of points I j =

�
Mj,z j,x j

�
, returning a set of vertices Tj = {I j1 , I j2 , I j3 , I j4}, each

of which defines a tetrahedral simplex in the flight envelope. Then, given a particular point
in the flight envelope I = (M,z,x), the simplex Tj it belongs to is found, and the control gain
K for that point is computed via linear interpolation of the gains Kj1 ,Kj2 ,Kj3 ,Kj4 synthesised
for flight groups Jj1 ,Jj2 ,Jj3 ,Jj4 .

Strictly, this interpolated control law does not guarantee stability, since the Lyapunov
function for the flight group Jj1 , obtained implicitly while synthesizing control gain Kj1 ,
is not necessarily a Lyapunov function for flight groups Jj2 ,Jj3 ,Jj4 , and vice versa. The
solution to this is to add additional LMIs to the optimisation problem in Proposition 4, guar-
anteeing that a Lyapunov function for the flight group Jj1 is also a Lyapunov function for all
“neighbouring” flight groups Nj1 = {Jj11 , . . . ,Jj1n} that are connected by an edge with Jj1 in
Delaunay Triangulation. This is formalised in the following proposition from Maciejowski
et al. (2016) which relies on mathematical techniques of Cuzzola et al. (2002).
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Proposition 5 Let Jj, j = 0, . . . , jmax be one of the flight groups with a set of neighbouring
flight groups Nj = {Jj1 , . . . ,Jjn}, as shown in Figure 3.24 (b). Also, let the index jmk denote
the k-th flight point in the jm-th neighbouring flight group ( jm 2 { j1, . . . , jn}). Then, if the
optimisation problem

min
g j,G j,Xji,Yj,Q jmk

g j

subject to (3.167),(3.168), and
"

G j +GT
j �Q jmk ⇤

A(q jmk)G j +B(q jmk)Yj Q jmk

#
� 0 (3.170)

is feasible, the control law u(k) = Kx(k) (with K = YjG j
�1) is stabilising for any point in

the designed-for flight envelope. ⌅

It is easy to see that the added LMI condition (3.170) is equivalent to the requirement #2 in
Proposition 4 with Q j, R j and S j set to zero which is equivalent to the requirement that the
Lyapunov function must be decreasing at each time step — for more details, see Cuzzola
et al. (2002). We will refer to controllers obtained by using Proposition 4 as Type 1 (T1) and
the ones synthesised by Proposition 5 as Type 2 (T2).

Additionally, the control law discussed in this section is implemented using a limited
library (named “SAO” and provided by Airbus) of Simulink based blocks. For a detailed
account of this implementation, see Appendix B.2 on page 155. This is needed in order
to reflect the limitations of the Flight Control Computer (FCC) software coding practices
which are often quite restrictive in order to facilitate verification of stringent data integrity
and real-time requirements, and to fit with current certification processes. The library used
only allows scalar signals and operations and forbids the use of operations such as loops,
online optimisation and iterative code. Moreover, the designed controller is a backup control
law to be used in the event of multiple simultaneous sensor failures. Therefore, a switching
strategy from the nominal fully scheduled control law to the robust backup control law is
required. This switching strategy achieves continuity of the control input u at the moment
of switching (“bumpless transfer”) by appropriately initialising the state x(k) (3.164) based
on the past values of the nominal control law. Consequently, this leads to reduced transients
at the instant of switching.

Finally, in the following two sections, we will attempt to verify that the backup control
law synthesised in this section meets the following performance and robustness require-
ments:
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• Avoidance of the particular M-circle exclusion region by the open loop transfer func-
tion, as discussed in Section 3.2.1.

• Simultaneous gain and phase margin of at least 6 dB and 45� is obtained, as discussed
in Section 3.2.2.

• Satisfaction of H•-norm bounds on transfer functions from the demanded load factor
to vertical load factor and pitch rate.

In Section 3.6.2, we will show how the first two criteria can be cleared at the provided 234
flight points qi, i 2 {1, . . . ,234}. In Section 3.6.3, we will show how the last two criteria
can be cleared throughout the whole flight envelope.

3.6.2 Clearance of verification criteria at the given flight points

In this section, we provide preliminary results of clearance of the backup flight control
law (defined in Section 3.6.1) at a set of flight points. The necessary symbolic manipu-
lations required to obtain mathematical expressions of verification criteria are performed
using MATLAB Symbolic Math Toolbox (The MathWorks Inc., 2012c). The obtained veri-
fication requirements are then discharged by using a quantifier elimination algorithm based
on cylindrical algebraic decomposition implemented in Mathematica (Wolfram Research
Inc., 2016).

M-circle exclusion region
In this section, we discuss an application of M-circle exclusion region (see Section 3.2.1)
to the backup flight control law defined in Section 3.6.1. We choose an M value of M =

100.05 ⇡ 1.122 because we want the magnitude of the complementary sensitivity function to
stay below 1 dB. This results in a circular exclusion region in the Nyquist plane with center
xc = �4.86, yc = 0 and radius r = 4.33. Hence, if the open loop response L( jw) does not
enter this M-circle exclusion region, the following holds:

• The magnitude of the complementary sensitivity transfer function stays below
20log10 M = 1 dB.

• The multiplicatively perturbed system L̂(s) = (1+D(s))L(s) is internally stable for
all perturbations D(s) 2 H• such that ||D(s)||• < 10�0.05.

The results of verification are summarised in Table 3.4 (flight points not mentioned in this
table passed the verification criterion).
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Flight group Flight point Type of controller
7 34 T1 / T2
8 39 T1 / T2
9 44 T1 / T2

13 64 T1 / T2
14 69 T2
16 78 T1 / T2
17 83 T1
25 121 T1 / T2
30 145 T2
31 150 T1 / T2
32 155 T2
34 164 T1 / T2
35 169 T1
45 212 T1 / T2
46 225 T1 / T2

Table 3.4 Complete list of flight points that did not pass |T ( jw)|< 1dB verification criterion.
In the last column, T1, T2 and T1 / T2 indicate that the system with the Type 1, Type 2 and
both Type 1 and Type 2 controllers did not pass the test, respectively. In all cases, these
flight points are the ones with the largest calibrated airspeed (VCAS) in their respective
flight groups.

For illustration purposes, consider flight group 17, and, in particular, flight point 83,
with an open loop transfer function with a Type 1 controller

LT 1(z)=
0.1901z13 �0.8743z12 +1.69z11 �1.797z10 +1.219z9 �0.696z8 +0.4327z7 �0.1853z6 �0.03255z5 +0.08937z4 �0.04565z3 +0.01005z2 �0.0007975z�7.07 ·10�06

z14 �5.546z13 +13.16z12 �17.37z11 +13.91z10 �6.881z9 +2.039z8 �0.3287z7 +0.02198z6 �2.128 ·10�15z5 ,

and an open loop transfer function with a Type 2 controller:

LT 2(z) =
0.2029z13 �0.9269z12 +1.786z11 �1.867z10 +1.15z9 �0.5269z8 +0.3897z7 �0.3234z6 +0.08062z5 +0.1091z4 �0.1096z3 +0.04303z2 �0.007979z+0.0005741

z14 �5.546z13 +13.16z12 �17.37z11 +13.91z10 �6.881z9 +2.039z8 �0.3287z7 +0.02198z6 �2.128 ·10�15z5 .

For the first order formula that the quantifier elimination algorithm is required to discharge
for the Type 1 controller, see Appendix B.1 on page 151. From Table 3.4, we see that the
quantifier elimination algorithm claims that this flight point does not pass the M-circle cri-
terion with a T1 controller, but does so with a T2 one. Indeed, if we look at Nyquist plots for
systems in the flight group 17 with T1 (see Figure 3.25 (a)) and T2 (see Figure 3.25 (b)) con-
trollers, we see that flight point 83 enters the M-circle exclusion region with a T1 controller
and avoids it with a T2 one. In Nichols plots (Figure 3.25 (c) and Figure 3.25 (d)), M-circle
exclusion regions get converted to complicated shapes which are represented by dotted lines
for different values of M. Again, 1 dB exclusion region is entered with a T1 controller and
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barely avoided with a T2 one. Finally, we can look directly at the Bode magnitude plots of
the complementary sensitivity function |T ( jw)| in Figure 3.25 (e) and Figure 3.25 (f) and
arrive at the same conclusion.

Simultaneous gain and phase margin robustness specification
In this section, we discuss an application of the elliptical Nichols exclusion region as de-
scribed in Section 3.2.2 to the backup flight control law defined in Section 3.6.1. We choose
simultaneous gain and phase margin requirement of Gm = 6 dB and Pm = 45�, which results
in an overbounding circle in the Nyquist plane with centre (�a, 0) = (�1.16, 0) and radius
r = 0.84. All 234 flight points passed this criterion with both T1 and T2 controllers. In ad-
dition to clearing these gain and phase margin criteria, this also implies that, as discussed in
Section 3.2.2, for all open loop frequency responses Li( jw), i2 {1, . . . 234} at the provided
flight points with both T1 and T2 controllers, the following holds:

• All multiplicatively perturbed plants with an open-loop transfer function L̂i(s) = 1.16 ·
Li (s)

�
1+ 21

29 ·D(s)
�

with ||D(s)||• < 1, D(s) 2 H• are closed-loop stable.

•
���
��� 1.8125·Li( jw)

1+1.8125·Li( jw)

���
���
•

< 29
21 , where A = a

a2�r2 = 1.16
1.162�0.842 = 1.8125 (see (3.24) on

page 61).

On the other hand, through repeated visual inspection, it can be found that the control de-
sign actually has simultaneous gain and phase margin of Gm = 6 dB and Pm = 60� at all
flight points with both T1 and T2 controllers (i.e., none of the open-loop frequency re-
sponses L( jw) enter the red elliptical exclusion region shown in Figure 3.26 (a) and Fig-
ure 3.26 (c)). According to the results in Section 3.2.2, this elliptical region can be over-
bounded by a circular exclusion region in the Nyquist plane with centre (�1,0) and radius
1. From Figure 3.26 (b) and Figure 3.26 (d), it is obvious that this overbounding is too con-
servative, and therefore proving avoidance of exclusion regions directly in the Nichols plane
would be desirable. Unfortunately, trying to do so by using the MetiTarski theorem prover
for real-valued functions for this particular example results in a computationally intractable
problem. This additional computational complexity comes from having to repeatedly ap-
proximate real-valued functions with appropriate polynomial bounds.

In conclusion, results that were obtained in this section via quantifier elimination algo-
rithm are consistent with the graphical approach. The key difference between the conclusion
drawn through applying the proposed formal method and the conclusion drawn by inspect-
ing the frequency domain plots is that the proposed formal approach guarantees the required
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(a) Nyquist diagram of flight group 17 with a T1
controller, together with an M-circle exclusion re-
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(b) Nyquist diagram of flight group 17 with a T2
controller, together with an M-circle exclusion re-
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(c) Nichols diagram of flight group 17 with a T1
controller.
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(d) Nichols diagram of flight group 17 with a T2
controller.
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Fig. 3.25 M-circle
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M = 100.05� analysis for flight group 17.
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(a) Nichols diagram of flight group 1 with a T1 con-
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(b) Nyquist diagram of flight group 1 with a T1
controller, together with overbounding circular ex-
clusion regions.
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(c) Nichols diagram of flight group 46 with a T2
controller, together with elliptical exclusion re-
gions.
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Fig. 3.26 Simultaneous gain and phase margin analysis for flight group 1 (figures (a) and
(b)) with a T1 controller and flight group 46 (figures (c) and (d)) with a T2 controller. Black
exclusion regions correspond to simultaneous gain and phase margins of Gm = 6 dB and
Pm = 45�, while red ones correspond to Gm = 6 dB and Pm = 60�.
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property at all frequencies on the real line, and not only at a discrete set of sampled frequen-
cies.

Additionally, using a quantifier elimination algorithm automates the verification process
by removing the need for repeated visual inspection of Nichols and Nyquist plots. In gen-
eral, visual inspection is difficult and unreliable when the frequency response of the open
loop transfer function passes close to an exclusion region (see Figure 3.25 (b) and Fig-
ure 3.25 (d)). In such cases, with classical methods, trust must be put in a plotting algorithm
that operates on a discrete set of values, and therefore may produce an incorrect result when
the exclusion region and the frequency response of L(s) get close. The quantifier elimi-
nation based approach does not experience such issues because it works by algebraically
manipulating the mathematical expression representing the verification criterion and does
not rely on any numerical techniques.

3.6.3 Clearance of verification criteria throughout the whole flight en-
velope

In the previous section, we demonstrated that the quantifier elimination based approach can
be used to certify certain properties of a transfer function for a given linearisation of the
aircraft short period dynamics. We now develop a verification framework to clear various
criteria of interest throughout the whole flight envelope for the backup flight control law
described in Section 3.6.1.

In order to achieve this, we need to obtain controller gains K and system dynamics at
flight groups other than the ones provided by Airbus for the RECONFIGURE project. Since
the provided grid of flight points (and, consequently, flight groups) is not completely regular,
“fictitious” flight groups are used to “pad” the flight envelope to allow it to be bounded by
simple box constraints, as shown in Figure 3.27 (a). This is done by repeating the data for
the nearest defined flight point before performing the Delaunay Triangulation explained in
Section 3.6.1. Additionally, by re-sampling the interpolation, we can partition the padded
flight envelope into cuboids, as shown in Figure 3.27 (b). For more details on this, see
Section 2.4 on implementation aspects in Maciejowski et al. (2016).

Hence, by performing the discussed procedure, we obtain static control gains K
�
zi,Mj,xk

�

for 105 combinations of mass (in tonnes) M 2 {260, 320, 375, 405, 410, 550, 560}, cen-
tre of gravity (in percent) x 2 {28, 36, 43} and standard pressure altitude (in feet) z 2
{5000, 12500, 20000, 27500, 35000}. Therefore, the interpolated control gain K (z,M,x)
as a function of altitude z, mass M and centre of gravity x is obtained for the cuboid of the
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flight envelope

zi  z  zi+1; zi 2 {5000, 12500, 20000, 27500, 35000} , i = 1, . . . ,4,

Mj  M  Mj+1; Mj 2 {260, 320, 375, 405, 410, 550, 560} , j = 1, . . . ,6,

xk  x  xk+1; xk 2 {28, 36, 43} , k = 1, 2,

via linear interpolation (see Figure 3.27 (c))

K (z,M,x) = K (z,M,xk)+
x� xk

xk+1 � xk
(K (z,M,xk+1)�K (z,M,xk)) , (3.171)

where:

K (z,M,xk) = K
�
z,Mj,xk

�
+

M�Mj

Mj+1 �Mj

�
K
�
z,Mj+1,xk

�
�K

�
z,Mj,xk

��
,

K
�
z,Mj,xk

�
= K

�
zi,Mj,xk

�
+

z� zi

zi+1 � zi

�
K
�
zi+1,Mj,xk

�
�K

�
zi,Mj,xk

��
,

K
�
z,Mj+1,xk

�
= K

�
zi,Mj+1,xk

�
+

z� zi

zi+1 � zi

�
K
�
zi+1,Mj+1,xk

�
�K

�
zi,Mj+1,xk

��
,

K
�
zi,Mj,xk

�
� static control gain at altitude zi, mass Mj and centre of gravity xk.

In order to describe longitudinal short-period dynamics of the aircraft throughout the whole
flight envelope, we will use a polynomial surrogate model based on the provided set of
linearisations. This model was developed in Hartley (2015).

Once the control gain K(z,M,x) and the polynomial surrogate model of longitudinal
short-period dynamics are obtained, they are used to translate clearance criteria discussed at
the end of the Section 3.6.1 to a polynomial positivity problem over frequency w and flight
envelope parameters M,x,z

8 w,M,x,z : (ml  M  mu)^ (xl  x  xu)^ (zl  z  zu) =) f (w,M,x,z)> 0, (3.172)

where f (w,M,x,z) is a polynomial. All the symbolic manipulations required to obtain
the mathematical expression (3.172) are performed using MATLAB Symbolic Math Tool-
box (The MathWorks Inc., 2012c). This formula is then fed as an input to a combina-
tion of quantifier elimination algorithms (cylindrical algebraic decomposition (see Sec-
tion 2.3.3) and Weispfenning’s virtual term substitution procedure (see Section 2.3.2)) im-
plemented in Mathematica (Wolfram Research Inc., 2016) which, in turn, outputs an equiv-
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(a) Padded flight envelope.

260 320 375 405 410 550 560
Mass (tonnes)

28

36

43

C
en

tre
 o

f g
ra

vi
ty

 (p
er

ce
nt

)
(b) Re-sampled flight envelope.
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Fig. 3.27 In figure (a), blue dots represent the irregular grid of flight groups provided by
Airbus while green dots represent the “fictitious” flight groups used to “pad” the flight en-
velope. Figure (b) shows the partition of the padded flight envelope into regular cuboids.
Both figures (a) and (b) represent the data at altitudes of 5000, 12500, 20000, 27500 and
35000 feet — hence, the flight envelope is split into 48 rectangular cuboids. In figure (c),
it is shown how the control gain K (z, M, xk) is interpolated as a function of altitude z and
mass M for a particular centre of gravity value xk.

alent quantifier-free formula. Since all variables in (3.172) are quantified, quantifier elimi-
nation algorithms become decision procedures with outputs True or False.

If the algorithm outputs True, it means that the verification criterion is cleared through-
out the whole flight envelope, and we are done. Otherwise, by using bisection, we split the
region over which the clearance is being done, (ml  M  mu)^(xl  x  xu)^(zl  z  zu),
into eight smaller cuboids and perform verification by quantifier elimination on each one
of them. We repeat this verify-and-split process until we reach the cuboid to be checked
whose size is smaller than the predetermined smallest allowable one (which is chosen to be
|mu �ml|  1 tonne, |xu � xl|  0.5%, |zu � zl|  100 feet). If the outcome of the quantifier
elimination procedure for the smallest allowable cuboid is True, then the property of interest
holds in this particular part of the flight envelope. Otherwise, if the outcome is False, then
the verification criterion is not cleared in this part of the flight envelope.

The described verification framework is depicted as a flowchart in Figure 3.28 on page
124.

Simultaneous gain and phase margins
In this section, we attempt to clear simultaneous gain and phase margin criteria with gain
margin Gm = 6 dB and phase margin Pm = 45�, as described in Section 3.2.2, which results
in an overbounding circle in the Nyquist plane with centre (�xc,0) = (�1.16, 0) and radius
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r = 0.84. This region now has to be avoided by the open loop transfer function L(s,M,x,z)
for all allowable values of mass M, centre of gravity x and altitude z in the flight envelope.
Assuming that

L( jw,M,x,z) =
a(w,M,x,z)+ i ·b(w,M,x,z)

c(w,M,x,z)
, (3.173)

where a,b and c are real functions of frequency w and flight envelope parameters, the input
to the quantifier elimination algorithm is the following fully-quantified first order formula:

8 w,M,x,z : (260  M  560)^ (28  x  43)^ (5000  z  35000) =) (3.174)

((a(w,M,x,z)+ xcc(w,M,x,z))2 +b(w,M,x,z)2 � r2c(w,M,x,z)2 > 0.

For the control law of Type 2, the output of the quantifier elimination algorithm is True,
which means that the simultaneous gain and phase margin criterion is met throughout the
whole flight envelope. This verification criterion was not checked for the control law of
Type 1.

H•-norm bounds on transfer functions from the demanded load factor to vertical load
factor and pitch rate
Another performance criterion of interest is to bound the H•-norms of transfer functions
from the demanded load factor nzre f to vertical load factor nz and pitch rate q. For the
transfer function from nzre f to nz, Tnzre f!nz , we choose its H•-norm to be bounded by
d = 1.1:

8 w,M,x,z : (260  M  560)^ (28  x  43)^ (5000  z  35000) =) (3.175)
����Tnzre f!nz( jw,M,x,z)

����
•  d = 1.1.

Similarly, for the transfer function from nzre f to q, Tnzre f!q, we choose its H•-norm to be
bounded as

8 w,M,x,z : (260  M  560)^ (28  x  43)^ (5000  z  35000) =) (3.176)
����Tnzre f!q( jw,M,x,z)

����
•  d = 1.3

180
p

g
VTAS

,

where VTAS denotes true airspeed.

Assuming that both Tnzre f!nz( jw,M,x,z) and Tnzre f!q( jw,M,x,z) are of the form (3.173),
the input to the quantifier elimination algorithm for both verification criteria is the following
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fully-quantified first order formula:

8 w,M,x,z : (260  M  560)^ (28  x  43)^ (5000  z  35000) =) (3.177)

a(w,M,x,z)2 +b(w,M,x,z)2 �d2c(w,M,x,z)2  0.

For the transfer function from the demanded load factor nzre f to vertical load factor nz with
the control law of Type 2, output of the quantifier elimination algorithm is True. This means
that the H•-norm bound

����Tnzre f!nz( jw,M,x,z)
����

•  1.1 is met throughout the whole flight
envelope. Clearance results for the transfer function from the demanded load factor nzre f to
pitch rate q with the control law of Type 2 are depicted in Figure 3.29. Neither of verification
criteria were checked with the control law of Type 1.
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(a) z = 5000 feet.
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(b) z = 12500 feet.
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(c) z = 20000 feet.
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(d) z = 27500 feet.
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Fig. 3.29 Clearance of the H•-norm bound for the transfer function from the demanded load
factor nzre f to pitch rate q at various altitudes z. Blue regions represent parts of the flight
envelope where the bound is met, while red ones denote sections where this verification
criterion is not cleared.

In conclusion, results presented in this section show that, for some particular problems,
quantifier-elimination-based verification frameworks can be applied to real-world industrial
systems. In particular, clearance of verification criteria throughout the whole flight envelope
was computationally tractable by a quantifier-elimination-based verification framework be-
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cause the verification problem in question depended on a small number of parameters (mass,
centre of gravity, altitude and frequency), and therefore a CAD-based quantifier elimination
algorithm could be utilised.





Chapter 4

Summary

In this thesis, we approached the verification of control systems by using formal methods.
This approach consisted of choosing verification criteria of interest and then translating it
to the form that Satisfiability Modulo Theory (SMT) solvers or quantifier elimination (QE)
algorithms are (in principle) capable of verifying.

We initially started by investigating the idea of expressing the system of interest and the
associated verification requirement graphically in terms of a Simulink diagram which then
would get translated to an equivalent Why3 theory that would be part of a first order logic
(as discussed in Araiza-Illan et al. (2014)). Then this theory would get proven/disproven by
one of the SMT solvers interfaced with Why3. This type of verification framework would
have been a very powerful tool to clear verification requirements for the control schemes
implemented graphically, such as the backup flight control law developed in Maciejowski
et al. (2016) for the RECONFIGURE project (Goupil et al., 2014). We managed to use this
approach to prove Lyapunov stability of an autonomous system with one or two states. Un-
fortunately, in particular cases, trying to apply this to a linear system with two states resulted
in computational issues (running out of time at the SMT solver stage) because of the intro-
duction of many variables (signals in the Simulink diagram) that unnecessarily increased the
complexity of the corresponding Why3 theory, and consequently, of the verification require-
ment. Hence, while in principle this verification approach could have been used to clear
verification criteria for more complicated systems such as the one presented in Maciejowski
et al. (2016), it would not have been effective because of of the immense amount of time
required by the SMT solvers.

Hence, this motivated another formal-methods-based approach that depended on ex-
pressing a verification requirement as a quantified mathematical formula. In a nutshell, this
verification framework worked by feeding the quantified formula as an input to one of the
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quantifier elimination algorithms that produce an equivalent quantifier-free mathematical
expression in unquantified parameters. Compared to the Why3 verification framework, this
quantifier elimination approach had the benefit of not requiring a large number of variables
to describe a verification specification in an appropriate form.

We took advantage of two QE algorithms: Weispfenning’s virtual term substitution and
quantifier elimination by cylindrical algebraic decomposition (CAD). The CAD-based al-
gorithm is a general quantifier elimination algorithm that, in principle, is applicable to any
input formula, regardless of its quantification structure. Weispfenning’s virtual term substi-
tution algorithm is a specialised procedure that is applicable as long as all quantified vari-
ables are linear (except (possibly) one) in the input formula. The generality of the CAD-
based QE algorithm allowed us, in principle, to consider problems involving non-convex
optimisation or computation of an exact mathematical expression for the structured singular
value µ for a general system. In practice, the complexity of the systems we could anal-
yse by using the CAD-based algorithm was fairly limited — trying to eliminate quantifiers
using CAD-based algorithm from input formulas depending on more than four variables
turned out to be intractable. This was the case because the size of the corresponding cylin-
drical algebraic decomposition grows doubly exponentially with the number of variables
(both quantified and unquantified) in the input formula. Consequently, we mostly focused
our attention to control analysis and synthesis problems that can be expressed as quantifier
elimination problems with a quantification structure amenable to Weispfenning’s algorithm.
Subsequently, this allowed us to take advantage of its lower worst-case running time which
does not depend on the number of unquantified variables in the input formula.

Initially, we showed how the avoidance of various exclusion regions by the open loop
transfer function could be expressed as a simple quantifier elimination problem. It was later
used to verify several performance and robustness specifications of the backup flight control
scheme developed for the RECONFIGURE project for a real world industrial system in the
aerospace field. This non-academic verification problem was computationally tractable by
the CAD-based QE algorithm because it depended on a small number of parameters (four
in this particular case: mass, centre of gravity, altitude and frequency). This application
example illustrated a well known fact — the main bottleneck of using the CAD-based QE
algorithm to verify properties of industrial systems is the number of parameters on which
the system depends. Hence, more widespread use of this verification approach depends on
improvements in the efficiency and running time of the underlying quantifier elimination
algorithm and on more people being aware of the algorithm and what it can do.

Additionally, we used the quantifier-elimination-based verification procedure to analyse
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the robust stability of uncertain systems via calculation of the structured singular value µ .
Attempting to compute it for a system under a general norm-bounded uncertainty (even
in the simple case of two norm-bounded uncertainties) resulted in a computationally in-
tractable problem because its quantification structure required us to use the computationally
expensive CAD-based QE algorithm. Therefore, in order to reduce the computational bur-
den from the quantifier elimination algorithm perspective, we considered a system under
structured parametric uncertainty. This then resulted in the problem with a quantification
structure that is amenable to a more efficient Weispfenning’s QE procedure. Subsequently,
this allowed us to calculate the structured singular value µ for systems subject to three or
four real parametric uncertainties. The main benefit of using the quantifier elimination based
approach as opposed to the standard branch and bound algorithms is that quantifier elimi-
nation method provides the exact value of µ rather than bounding it from below and above
to an arbitrary accuracy.

Similarly, generality of the CAD-based QE algorithm could have theoretically allowed
us to obtain an an explicit MPC law for a general nonlinear time invariant system with a
polynomial objective and polynomial constraints. Again, the types of problems we could
consider in practice were restricted by the computational complexity of the underlying quan-
tifier elimination problem. Therefore, we restricted our focus to MPC problems with a
quadratic objective and polytopic constraints and time invariant systems that resulted in
an equivalent quantifier elimination problem with a quantification structure amenable to
Weispfenning’s QE algorithm.

Finally, we showed how verification requirements for system dynamics expressed in
general Linear Temporal Logic (LTL) specifications could be translated to quantifier elim-
ination problems. This then allowed us to calculate feasible parameter sets in cases where
standard approaches in the LTL literature based on reachability analysis failed, including
nonlinearly parametrized systems or LTL specifications that result in non-convex feasible
parameter sets. Synthesis of feasible parameter sets was performed using both CAD-based
and Weispfenning’s quantifier elimination algorithms. These computations illustrated the
general rule of thumb that, as long as the quantification structure of the problem is such that
Weispfenning’s algorithm is applicable, it is more computationally efficient to use it rather
than the general CAD-based QE-algorithm.

In conclusion, while quantifier-elimination-based verification approaches have several
important benefits, such as their generality and guarantee not to miss a critical frequency or
parameter combination at which the property of interest is violated, these approaches usually
suffer from a large computational penalty compared to numerical methods. This limited
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the complexity of systems that could be verified using these methods. Therefore, a more
widespread application of the proposed verification scheme depends on the improvements
in running time and applicability of the underlying quantifier elimination algorithms.

In particular, the bottleneck of the CAD-based QE algorithm is its projection phase dur-
ing which the projection operator tends to produce sets with a large number of polynomials.
Since the introduction of the CAD-based QE algorithm, many improvements have been
suggested in order to reduce the size of the sets produced by the projection operator, and
consequently improve the efficiency of the algorithm — for more details, see Hong (1990),
McCallum (1988), McCallum (1998), Brown (2001). Hence, applicability of the verification
framework that relies on the CAD-based QE algorithm to problems with a larger number of
quantified and unquantified variables depends on the future improvement in this area.

Moreover, the extension of Weispfenning’s virtual term substitution algorithm to cases
beyond quadratically or cubically quantified variables depends on the development of the
theory of the representation of real roots. In principle, Weispfenning’s algorithm could be
extended to formulas in which the quantified variable appears with an unbounded degree,
by exploiting Thom’s Lemma for representation of real roots — for the state of the art,
see Kosta and Sturm (2015); Liiva et al. (2014). Unfortunately, no efficient implementation
of the algorithm for these cases exists yet.
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Appendix A

A.1 Why3 standard library theory for real numbers

In this section, a Why3 standard library theory for real numbers RealInfix (together with
other Why3 standard library theories it depends on) is provided for illustration purposes (for
more details, see http://why3.lri.fr/stdlib/). RealInfix theory is used to argue about real
numbers when one wants to use both integer and real binary operators.

theory RealInfix

use import Real

function (+.) (x:real) (y:real) : real = x + y

function (-.) (x:real) (y:real) : real = x - y

function ( *.) (x:real) (y:real) : real = x * y

function (/.) (x:real) (y:real) : real = x / y

function (-._) (x:real) : real = - x

function inv (x:real) : real = Real.inv x

predicate (<=.) (x:real) (y:real) = x <= y

predicate (>=.) (x:real) (y:real) = x >= y

predicate ( <.) (x:real) (y:real) = x < y

predicate ( >.) (x:real) (y:real) = x > y

end

theory Real

constant zero : real = 0.0

constant one : real = 1.0

predicate (< ) real real

predicate (> ) (x y : real) = y < x

predicate (<=) (x y : real) = x < y \/ x = y

clone export algebra.OrderedField with type t = real,

http://why3.lri.fr/stdlib/
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constant zero = zero, constant one = one, predicate (<=) = (<=)

end

theory OrderedField

clone export Field

predicate (<=) t t

predicate (>=) (x y : t) = y <= x

clone export relations.TotalOrder with type t = t, predicate rel = (<=)

axiom ZeroLessOne : zero <= one

axiom CompatOrderAdd : forall x y z : t. x <= y -> x + z <= y + z

axiom CompatOrderMult : forall x y z : t. x <= y -> zero <= z -> x * z <= y * z

end

theory Field

clone export UnitaryCommutativeRing

function inv t : t

axiom Inverse : forall x:t. x <> zero -> x * inv x = one

function (/) (x y : t) : t = x * inv y

lemma add_div : forall x y z : t. z <> zero -> (x+y)/z = x/z + y/z

lemma sub_div : forall x y z : t. z <> zero -> (x-y)/z = x/z - y/z

lemma neg_div : forall x y : t. y <> zero -> (-x)/y = -(x/y)

lemma assoc_mul_div: forall x y z:t. z <> zero -> (x*y)/z = x*(y/z)

lemma assoc_div_mul: forall x y z:t. y <> zero /\ z <> zero -> (x/y)/z = x/(y*z)

lemma assoc_div_div: forall x y z:t. y <> zero /\ z <> zero -> x/(y/z) = (x*z)/y

end

theory UnitaryCommutativeRing

clone export CommutativeRing

constant one : t

axiom Unitary : forall x:t. one * x = x

axiom NonTrivialRing : zero <> one

end

theory CommutativeRing

clone export Ring

clone Comm with type t = t, function op = op

meta AC function op

end

theory Ring

type t
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constant zero : t

function (+) t t : t

function (-_) t : t

function (*) t t : t

clone CommutativeGroup with type t = t, constant unit = zero, function op = (+),

function inv = (-_)

clone Assoc with type t = t, function op = (*)

axiom Mul_distr_l : forall x y z : t. x * (y + z) = x * y + x * z

axiom Mul_distr_r : forall x y z : t. (y + z) * x = y * x + z * x

function (-) (x y : t) : t = x + -y

end

theory CommutativeGroup

clone export Group

clone Comm with type t = t, function op = op

meta AC function op

end

theory Group

clone export Monoid

function inv t : t

axiom Inv_def_l : forall x:t. op (inv x) x = unit

axiom Inv_def_r : forall x:t. op x (inv x) = unit

end

theory Monoid

clone export Assoc

constant unit : t

axiom Unit_def_l : forall x:t. op unit x = x

axiom Unit_def_r : forall x:t. op x unit = x

end

theory Assoc

type t

function op t t : t

axiom Assoc : forall x y z : t. op (op x y) z = op x (op y z)

end

theory Comm

type t

function op t t : t
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axiom Comm : forall x y : t. op x y = op y x

end

theory TotalOrder

clone export PartialOrder

clone export Total with type t = t, predicate rel = rel

end

theory PartialOrder

clone export PreOrder

clone export Antisymmetric with type t = t, predicate rel = rel

end

theory Total

clone export EndoRelation

axiom Total : forall x y:t. rel x y \/ rel y x

end

theory PreOrder

clone export Reflexive

clone export Transitive with type t = t, predicate rel = rel

end

theory Antisymmetric

clone export EndoRelation

axiom Antisymm : forall x y:t. rel x y -> rel y x -> x = y

end

theory Reflexive

clone export EndoRelation

axiom Refl : forall x:t. rel x x

end

theory Transitive

clone export EndoRelation

axiom Trans : forall x y z:t. rel x y -> rel y z -> rel x z

end

theory EndoRelation

type t

predicate rel t t

end
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A.2 Why3 theories for scalar Simulink blocks

In this section, a current library of Why3 theories developed by us for scalar Simulink blocks
(stored in the file ’Theories.why’) is provided.

theory Product

use import int.Int

use import real.RealInfix

function in1 int : real

function in2 int : real

function out1 int : real

axiom a1: forall k:int. out1 k = in1 k *. in2 k

axiom a2: forall k:int. in1 k >. 0.0 /\ in2 k >. 0.0 -> out1 k >. 0.0

axiom a3: forall k:int. in1 k <. 0.0 /\ in2 k <. 0.0 -> out1 k >. 0.0

end

theory Sum

use import int.Int

use import real.RealInfix

function in1 int : real

function in2 int : real

function out1 int : real

axiom a1: forall k:int. out1 k = in1 k +. in2 k

axiom a2: forall k:int. in1 k >. 0.0 /\ in2 k >. 0.0 -> out1 k >. 0.0

axiom a3: forall k:int. in1 k >. 0.0 /\ in2 k <. 0.0 /\ in1 k >. -.in2 k ->

out1 k >. 0.0

axiom a4: forall k:int. in1 k <. 0.0 /\ in2 k >. 0.0 /\ in2 k >. -.in1 k ->

out1 k >. 0.0

end

theory Gain

use import int.Int

use import real.RealInfix

use import real.Abs

function in1 int : real

function out1 int : real
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constant gain : real

axiom a1 : forall k:int. out1 k = in1 k *. gain

axiom a2 : forall k:int. in1 k >. 0.0 /\ gain >. 0.0 -> out1 k >. 0.0

axiom a3 : forall k:int. in1 k <. 0.0 /\ gain <. 0.0 -> out1 k >. 0.0

axiom a4 : forall k:int. in1 k <. 0.0 /\ gain >. 0.0 -> out1 k <. 0.0

axiom a5 : forall k:int. in1 k >. 0.0 /\ gain <. 0.0 -> out1 k <. 0.0

end

theory UnitDelay

use import int.Int

use import real.RealInfix

function in1 int : real

function out1 int : real

axiom a1 : forall k:int. in1 (k+1) = out1 k

end

theory UnitAdvance

use import int.Int

use import real.RealInfix

function in1 int : real

function out1 int : real

axiom a1 : forall k:int. out1 (k+1) = in1 k

end

theory Saturation

use import int.Int

use import real.RealInfix

function in1 int : real

function out1 int : real

constant lb : real

constant ub : real

axiom a1: forall k:int. in1 k >=. lb /\ in1 k <=. ub -> out1 k = in1 k
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axiom a2: forall k:int. in1 k <. lb -> out1 k = lb

axiom a3: forall k:int. in1 k >. ub -> out1 k = ub

end

theory EqualToZero

use import int.Int

use import real.RealInfix

use import bool.Bool

function in1 int : real

function out1 int : bool

axiom a1: forall k:int. out1 k = True -> in1 k = 0.0

axiom a2: forall k:int. out1 k = False -> in1 k >. 0.0 \/ in1 k <. 0.0

end

theory NotEqualToZero

use import int.Int

use import real.RealInfix

use import bool.Bool

function in1 int : real

function out1 int : bool

axiom a1: forall k:int. out1 k = True -> in1 k >. 0.0 \/ in1 k <. 0.0

axiom a2: forall k:int. out1 k = False -> in1 k = 0.0

end

theory GreaterThanZero

use import int.Int

use import real.RealInfix

use import bool.Bool

function in1 int : real

function out1 int : bool

axiom a1: forall k:int. out1 k = True -> in1 k >. 0.0

axiom a2: forall k:int. out1 k = False -> in1 k <=. 0.0

end
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theory LessThanZero

use import int.Int

use import real.RealInfix

use import bool.Bool

function in1 int : real

function out1 int : bool

axiom a1: forall k:int. out1 k = True -> in1 k <. 0.0

axiom a2: forall k:int. out1 k = False -> in1 k >=. 0.0

end

theory GreaterOrEqualToZero

use import int.Int

use import real.RealInfix

use import bool.Bool

function in1 int : real

function out1 int : bool

axiom a1: forall k:int. out1 k = True -> in1 k >=. 0.0

axiom a2: forall k:int. out1 k = False -> in1 k <. 0.0

end

theory LessOrEqualToZero

use import int.Int

use import real.RealInfix

use import bool.Bool

function in1 int : real

function out1 int : bool

axiom a1: forall k:int. out1 k = True -> in1 k <=. 0.0

axiom a2: forall k:int. out1 k = False -> in1 k >. 0.0

end

theory LogicAnd
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use import int.Int

use import bool.Bool

function in1 int : bool

function in2 int : bool

function out1 int : bool

axiom a1: forall k:int. in1 k = True /\ in2 k = True -> out1 k = True

axiom a2: forall k:int. in1 k = False /\ in2 k = False -> out1 k = False

axiom a3: forall k:int. in1 k = False /\ in2 k = True -> out1 k = False

axiom a4: forall k:int. in1 k = True /\ in2 k = False -> out1 k = False

end

theory LogicOr

use import int.Int

use import bool.Bool

function in1 int : bool

function in2 int : bool

function out1 int : bool

axiom a1: forall k:int. in1 k = True /\ in2 k = True -> out1 k = True

axiom a2: forall k:int. in1 k = False /\ in2 k = False -> out1 k = False

axiom a3: forall k:int. in1 k = False /\ in2 k = True -> out1 k = True

axiom a4: forall k:int. in1 k = True /\ in2 k = False -> out1 k = True

end

A.3 MATLAB translation function

In this section, a MATLAB function which creates a Why3 theory representing a Simulink
model is given.

function result = translate(simulink_model)

%Capitalise the first letter - each theory must start with a capital
%letter in why
simulink_model = CapFirstLetter(simulink_model);

fileID = fopen(strcat(simulink_model, ’.why’),’w’);
fprintf(fileID,’theory %s \n\n’, simulink_model);
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fprintf(fileID,’ use import int.Int\n’);
fprintf(fileID,’ use import real.RealInfix\n’);
fprintf(fileID,’ use import bool.Bool \n\n’);

%Get the information representing Simulink diagram
load_system(simulink_model);

BlockPaths = find_system(simulink_model, ’LookUnderMasks’, ’none’, ’Type’, ’Block’)
BlockTypes = get_param(BlockPaths, ’BlockType’);
BlockNames = get_param(simulink_model, ’Blocks’);

%Capitalise first letter of each of the block names, since these
%block names are used as names for theories which must start with a
%capital letter.
for i = 1:length(BlockNames)

BlockNames{i} = CapFirstLetter(BlockNames{i});
end

NumberOfPorts = get_param(BlockPaths, ’Ports’);
%NumberOfPorts{i}(1) - number of input ports of i-th element
%NumberOfPorts{i}(2) - number of output ports of i-th element

NumberOfBlocks = length(BlockPaths);
NumberOfRequireBlocks = 0;
%------------------------------------------------------------

%1) Name all of the output signals in the Simulink diagram (since each
%signal is connected to input and output ports, all incoming signals
%will be named as well)
%2) Add functions for outgoing signals

for i = 1:NumberOfBlocks
if ~isRequireBlock(BlockPaths{i})

%add output signals and functions to all the blocks
%except the "Require" one
NumberOfOutputPorts = NumberOfPorts{i}(2);

% 1 and 2
for k = 1:NumberOfOutputPorts

%1) name each of the ports in the Simulink diagram
p = get_param(BlockPaths{i}, ’PortHandles’);
l = get_param(p.Outport, ’Line’);

if NumberOfOutputPorts==1
%one output port
SignalName = strcat(lower(BlockNames{i}), ’_p’, num2str(k));
set_param(l, ’Name’, SignalName);

else
%more than one output port
SignalName = strcat(lower(BlockNames{i}), ’_p’, num2str(k));
set_param(l{k}, ’Name’, SignalName);

end
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%2) for each of the outgoing signals, add a function
if isCompareToZeroBlock(BlockPaths{i}) || isLogicBlock(BlockPaths{i})

%if the block is a comparison to 0 block
%OR
%logical block
function_statement =

strcat([’ ’ ’function ’ SignalName ’ ’ ’int:bool’ ’\n’]);
else

function_statement =
strcat([’ ’ ’function ’ SignalName ’ ’ ’int:real’ ’\n’]);

end
fprintf(fileID, function_statement);

end
else

%calculate how many goals there are
NumberOfRequireBlocks = NumberOfRequireBlocks + 1;

end
end

%3) Create strings for cloning theories
TheoryStatements = cell(NumberOfBlocks, 1);
GoalStatements = cell(NumberOfRequireBlocks, 1);
GoalNumber = 1;

for i = 1:NumberOfBlocks
%get the names of input and output signals
%(which were populated in the previous for loop)
p = get_param(BlockPaths{i}, ’PortHandles’);
in = get_param(p.Inport, ’Line’);
out = get_param(p.Outport, ’Line’);

switch BlockTypes{i}

case ’Product’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.Product as’ ’
’BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in{1}, ’Name’) ’,
function in2 = ’ get_param(in{2}, ’Name’) ’, function out1 = ’ get_param(out,
’Name’) ’\n\n’]);

case ’Sum’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.Sum as’ ’ ’ BlockNames{i} ’
’ ’with function in1 =’ ’ ’ get_param(in{1}, ’Name’) ’, function in2 = ’
get_param(in{2}, ’Name’) ’, function out1 = ’ get_param(out, ’Name’)’\n\n’]);

case ’UnitDelay’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.UnitDelay as’ ’ ’
BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in, ’Name’) ’, function
out1 = ’ get_param(out, ’Name’) ’\n\n’]);

case ’UnitAdvance’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.UnitAdvance as’ ’ ’
BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in, ’Name’) ’, function
out1 = ’ get_param(out, ’Name’) ’\n\n’]);
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case ’Gain’
GainStr = FixToReal(get_param(BlockPaths{i}, ’Gain’));
TheoryStatements{i} = strcat([’ ’ ’clone Theories.Gain as’ ’ ’ BlockNames{i}
’ ’ ’with function in1 =’ ’ ’ get_param(in, ’Name’) ’, function out1 = ’
get_param(out, ’Name’) ’\n’ ’ ’ ’axiom’ ’ ’ BlockNames{i} ’_’ ’gain:’ ’ ’
BlockNames{i} ’.gain = ’ ’ ’ GainStr ’\n\n’ ]);

case ’Saturate’
ubStr = FixToReal(get_param(BlockPaths{i}, ’UpperLimit’));
lbStr = FixToReal(get_param(BlockPaths{i}, ’LowerLimit’));

TheoryStatements{i} = strcat([’ ’ ’clone Theories.Saturation as’ ’ ’
BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in, ’Name’) ’, function
out1 = ’ get_param(out, ’Name’) ’\n’ ’ ’ ’axiom’ ’ ’ BlockNames{i} ’_’ ’ub:’
’ ’ BlockNames{i} ’.ub = ’ ’ ’ ubStr ’\n’ ’ ’ ’axiom’ ’ ’ BlockNames{i} ’_’
’lb:’ ’ ’ BlockNames{i} ’.lb = ’ ’ ’ lbStr ’\n\n’ ]);

case ’Logic’
op = get_param(BlockPaths{i}, ’Operator’);
switch op

case ’OR’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.LogicOr as’ ’ ’
BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in{1}, ’Name’)
’, function in2 = ’ get_param(in{2}, ’Name’) ’, function out1 = ’
get_param(out, ’Name’) ’\n\n’]);

case ’AND’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.LogicAnd as’ ’ ’
BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in{1}, ’Name’)
’, function in2 = ’ get_param(in{2}, ’Name’) ’, function out1 = ’
get_param(out, ’Name’) ’\n\n’]);

end

case ’SubSystem’
if isCompareToZeroBlock(BlockPaths{i})

%if the block is a comparison to 0 block
rel = get_param(BlockPaths{i}, ’relop’);

switch rel

case ’<’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.LessThanZero
as’ ’ ’ BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in,
’Name’) ’, function out1 = ’ get_param(out, ’Name’) ’\n\n’]);

case ’<=’
TheoryStatements{i} = strcat([’ ’ ’clone
Theories.LessOrEqualToZero as’ ’ ’ BlockNames{i} ’ ’ ’with
function in1 =’ ’ ’ get_param(in, ’Name’) ’, function out1 = ’
get_param(out, ’Name’) ’\n\n’]);

case ’>’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.GreaterThanZero
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’ ’ ’ BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in,
’Name’) ’, function out1 = ’ get_param(out, ’Name’) ’\n\n’]);

case ’>=’
TheoryStatements{i} = strcat([’ ’ ’clone
Theories.GreaterOrEqualToZero as’ ’ ’ BlockNames{i} ’ ’ ’with
function in1 =’ ’ ’ get_param(in, ’Name’) ’, function out1 = ’
get_param(out, ’Name’) ’\n\n’]);

case ’==’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.EqualToZero as’
’ ’ BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in,
’Name’) ’, function out1 = ’ get_param(out, ’Name’) ’\n\n’]);

case ’~=’
TheoryStatements{i} = strcat([’ ’ ’clone Theories.NotEqualToZero
as’ ’ ’ BlockNames{i} ’ ’ ’with function in1 =’ ’ ’ get_param(in,
’Name’) ’, function out1 = ’ get_param(out, ’Name’) ’\n\n’]);

end
elseif isRequireBlock(BlockPaths{i})

GoalStatements{GoalNumber} = strcat([’ ’ ’goal G’ num2str(GoalNumber) ’ ’
’: forall k: int.’ ’ ’ get_param(in{1}, ’Name’) ’ ’ ’k = True ->’ ’ ’
get_param(in{2}, ’Name’) ’ ’ ’k = True ’ ’\n’]);
GoalNumber = GoalNumber + 1;

end
end

end

fprintf(fileID, ’\n’);
for i = 1:NumberOfBlocks

if ~isempty(TheoryStatements{i})
fprintf(fileID, TheoryStatements{i});

end
end

for i = 1:NumberOfRequireBlocks
fprintf(fileID, GoalStatements{i});

end

fprintf(fileID,’end’);
fclose(fileID);

end

function is = isRequireBlock(Block)
try

%if the block has a require field, it is a requirement block
param = get_param(Block, ’Require’);
is = true;

catch
is = false;

end
end
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function is = isCompareToZeroBlock(Block)
try

%if the block has a relop field, it is a compare to zero block
rel = get_param(Block, ’relop’);
is = true;

catch
is = false;

end
end

function is = isLogicBlock(Block)
BlockType = get_param(Block, ’BlockType’);
if strcmp(BlockType, ’Logic’)

is = true;
else

is = false;
end

end

function out = CapFirstLetter(str)
out = strcat([upper(str(1)) str(2:length(str))]);

end

function num = FixToReal(str)
val = str2double(str);
if val < 0

%add ’-.’ at the frot of the number if it is negative
str = strcat([’-.’ num2str(-val)]);

end

%calculate fractional part
frac = abs(val) - floor(abs(val));

if val == 0
str = ’0.0’;

elseif frac == 0
%if there is no fractional part, add ’.0’ to make the value real
str = strcat([str ’.0’]);

end

num = str;
end



Appendix B

B.1 Example of an M-circle exclusion region verification
condition

In this appendix, we provide a verification criterion for the M-circle exclusion region (with
an M value of M = 100.05) for the linear RECONFIGURE benchmark flight point 83 with a
Type 1 (T1) backup controller in order to illustrate the complexity of the conjecture that the
quantifier elimination algorithm is asked to prove.

8 Y:(-1<=Y&Y<=1)=>
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Fig. B.7 Vertical load factor nz control law gain K computation via interpolation over mass,
centre of gravity and altitude.
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