
INTRODUCTION

Aging causes biological and functional changes not only in or-
ganisms but also at the cellular level [1-3]. Failure of repair systems 
progresses to cellular damage, which drives the aging process. 
Oxidative stress, DNA damage, telomere shortening and inflam-
matory senescence-associated secretory phenotype (SASP) may 
be prominent causative agents of aging [4-7]. These age-related 
factors can adversely affect normal cellular homeostasis, which 
may contribute to the development or progression of age-related 
diseases, including neurodegenerative conditions (Alzheimer’s 
disease, Huntington’s disease, Parkinson’s disease, and amyotrophic 
lateral sclerosis) [8-11]. 

Macroautophagy (herein autophagy) is a conserved intracellular 
degradation mechanism that delivers cytoplasmic contents, such 
as aggregated proteins and organelles, to the lysosome for clear-
ance. Autophagosomes derive from phagophores, cup-shaped and 
double-membrane structures. After the edges of the phagophore 
extend and fuse, the resulting autophagosomes have captured 
cytoplasmic proteins and organelles. Autophagosomes ultimately 
fuse with lysosomes to become autolysosomes, enabling the degra-
dation of the autophagic contents. (Fig. 1). During starvation, this 
process is in general involved in cell survival and cellular energy 
formation by enabling nutrient recycling [12, 13]. Amino acids 
negatively regulate autophagy via mammalian target of rapamycin 
(mTOR) signaling, a negative regular of autophagy [14]. Under 
non-starvation and starvation conditions, autophagy can degrade 
aggregate-prone proteins (aggrephagy), intracellular pathogens 
(xenophagy), damaged mitochondria (mitophagy), excess per-
oxisomes (perophagy), and impaired endoplamic reticulum (ER-
phagy) [12, 15]. 

During normal aging, the expression of some autophagy-associ-
ated genes, including autophagy-related (ATG) protein 5 (ATG5), 
ATG7, and beclin1, may decline in the human brain [16]. Au-
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tophagy gene polymorphisms have been implicated in age-related 
neurodegeneration, suggesting that impairment or defects in the 
autophagy machinery may contribute to age-related pathologies 
[13, 17, 18]. Intracellular accumulation of protein aggregates due 
to compromised autophagy is common in pathological conditions 
[12]. Restoring the deterioration of autophagy may be a rational 
strategy for improving aging-related diseases [1]. In this review, we 
aim to summarize how autophagy is linked to aging factors in cel-
lular pathology and age-related disease.

OVERVIEW OF AUTOPHAGY PROCESS

One of the earliest steps regulating autophagosome formation 
is the activation of the Unc-51-like kinase (ULK) complex that 
comprises ULK1, ULK2, ATG13, focal adhesion kinase (FAK) 
family-interacting protein of 200kDa (FIP200), and ATG101 [13]. 
The ULK complex is activated by 5'-adenosine monophosphate 
(AMP)-activated protein kinase (AMPK) or inhibited by mTOR 
complex 1, which regulate ULK phosphorylation [12, 19]. Sub-
sequently, this complex recruits the class III phosphatidylinositol 
3-kinase (PI3K) complex I that contains VPS34, VPS15, beclin1, 
and ATG14L. This complex enables phosphatidylinositol 3-phos-
phate (PI3P) generation on the phagophore [1, 12]. PI3P induces 
the recruitment of a PI3K-binding proteins, tryptophan-aspartic 
acid (WD) repeat domain phosphoinositide-interacting (WIPI 1 
and 2) [13]. WIPI2 can directly bind to ATG16L1, thereby allow-

ing it to be recruited by the ATG12-ATG5-ATG16L1 complex 
[20]. ATG12 is conjugated to ATG5 via ATG7 (E1-like enzyme) 
and ATG10 (E2-like enzyme), and ATG12-ATG5 conjugates can 
bind to ATG16L1 non-covalently (ATG12-ATG5-ATG16L1) [12]. 
The microtubule-associated protein 1 light chain3 (LC3) family 
members, like LC3 proteins, are cleaved in their C-terminal tails 
by ATG4. Cleaved LC3 (LC3-I) can be conjugated in an ubiquitin-
like manner to the lipid phosphatidylethanolamine (PE) on 
phagophore membranes via ATG7 (E1-like enzyme), ATG3 (E2-
like enzyme) [12, 21], and the E3 like- ATG12-ATG5-ATG16L1. 
The lipidated LC3 is known as LC3-II. LC3 family members con-
jugated to phagophores are thought to contribute to membrane 
elongation, closure, and recruitment of autophagy receptors, such 
as p62/sequestosome (SQSTM1) and optineurin, which assist in 
the recruitment of various selective autophagy substrates to phag-
ophores [1, 12]. 

Autophagosomal membranes may derive from a number of 
sources including ER, Golgi, mitochondria, endosomes and the 
plasma membrane [22]. Mammalian ATG9 and ATG16L1 traffic 
from the plasma membrane to sites of autophagosome formation 
[23]. Homotypic fusion of early ATG16L1 vesicles mediated by 
the soluble N-ethylmaleimide sensitive factor attachment protein 
receptors (SNAREs) protein vesicle-associated membrane protein 
(VAMP)7, contributes to phagophore genesis [24]. Interestingly, 
mATG9-contating vesicles can meet ATG16L1 vesicles in recy-
cling endosomes and heterotypic fusion between mATG9 and 

Fig. 1. Schematic overview 
of the autophagy process. 
Ini tially, a precursor form of the 
auto phagosome, a phagophore is 
formed by various sources inclu-
ding ER, Golgi, mitochondria, 
endosomes, and plasma mem-
brane. This cup-shaped and dou-
ble membrane structure extends 
its edges to form an autophago-
some. Closed autophagosomes 
containing engulfed cytoplasmic 
proteins or organelles migrate to-
ward the perinuclear part of the 
cells where lysosomes are clus-
tered to enable autophagosome-
lysosome fusion. Alternatively, 
autophagosomes can generate 
amphisomes by fusion with en-
dosomes. Ultimately, autophago-
somes or amphisomes fuse with 
lysosomes where their contents 
are degraded.
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ATG16L1 is mediated the by SNARE protein VAMP3 [25], and 
these processes are important for autophagosome biogenesis. In 
addition, it has been suggested that the SNARE protein syntaxin 
17 (STX17) on the ER binds ATG14L and relocates ATG14L to 
ER-mitochondria contact sites, implicating ER-mitochondria con-
tact sites in autophagosome formation [26]. Recent data suggest 
that many of the key events in autophagosome formation, includ-
ing LC3 conjugation to PE, occur on RAB11A-positive recycling 
endosomes [27]. 

Completed autophagosomes migrate along microtubules toward 
the perinuclear localization where lysosomes are concentrated [13]. 
The minus-end-directed dynein and plus-end-directed kinesin 
are key motor proteins that transport autophagosomes [28-30]. 
Before forming autolysosomes, autophagosomes can fuse with en-
dosomes resulting in amphisomes [31].

Membrane fusion requires a series of tethering and docking pro-
cesses [32]. Homotypic fusion and vacuole protein sorting (HOPS) 
complex, ectopic P granules protein 5 (EPG5), and pleckstrin ho-
mology domain containing protein family member 1 (PLEKHM1) 
have been suggested as tethering factors for autophagosome-
lysosome fusion [33]. After tethering, autophagosome-lysosome 
fusion is mediated by SNAREs [34]. Through these processes, 
autophagosomes eventually undergo fusion with acidic lysosomes 
for degradation (autolysosome) [12, 13].

AGE-RELATED FACTORS AND AUTOPHAGY 

Oxidative stress and autophagy 

Oxidative stress caused by reactive oxygen species (ROS) includ-
ing several types of free radicals (superoxide (O2•−), hydrogen 
peroxide (H2O2), and hydroxyl radicals (OH•)) is thought to af-
fect cellular aging [4, 35]. The main antioxidant enzymes, such as 
superoxide dismutase (SOD), catalase (CAT), peroxidase (GPX) 
and glutathione (GSH), protect against excessive ROS, but their 
function is disrupted by cellular aging [4, 35]. Intracellular ROS 
is mainly generated by the electron transport chain (ETC) in mi-
tochondria. The ETC transfers electrons via an electrochemical 
gradient (Δp), consisting of a membrane potential (Δψ) and a pH 
gradient (ΔpH), that synthesizes adenosine triphosphate (ATP) by 
the process of oxidative phosphorylation (OXPHOS) across mito-
chondrial inner membrane [36, 37]. During this process, electrons 
from nicotinamide adenine dinucleotide (NADH) at the complex 
I (NADH dehydrogenase) site and FADH2 at the complex II (suc-
cinate dehydrogenase) site are transferred by coenzyme Q, which 
transports electrons to complex III (cytochrome c  reductase). 
Then, the electrons are carried by cytochrome c  and eventually 
complex IV (cytochrome c  oxidase) accepts electrons to O2 to 

produce H2O. ATP is produced from ADP in complex V (ATP 
synthase). Among the ETC complexes, complex I and complex III 
have been considered as sites of production of superoxide [4, 37-
40]. The antioxidant SOD converts superoxide to H2O2 that subse-
quently is converted to OH− and OH• radicals via the Fenton and 
Haber-Weiss reactions. Also, CAT, peroxiredoxin or glutathione 
peroxidase can convert superoxide to H2O. ROS can damage 
DNA, lipids, and proteins, which lead to cellular aging [35, 41, 42]. 
Mitochondria undergo morphological and functional changes 
with age, including declines in ETC function, mitochondrial inner 
membrane function, and mitochondrial integrity [4, 43], which 
can result in impairments of cellular energy and normal cellular 
activity [43]. Autophagy plays an essential role in the clearance of 
damaged mitochondria (mitophagy). Compromised autophagy 
thus leads to mitochondrial dysfunction, accumulation of abnor-
mal mitochondria and oxidative stress [2, 44, 45]. 

Under normal conditions, ROS can regulate autophagy. How-
ever, excessive ROS can impair organelles and lead to protein 
modification and aggregation. Conversely, autophagy can decrease 
oxidative damage. O2•− is induced by starvation, or a lack of py-
ruvate, L-glutamine, or glucose. Both O2•− and H2O2 are induced 
by starvation. Mitochondria-generated O2•− and H2O2 are major 
autophagy regulators [42, 45-47]. Under starvation conditions, 
ROS-induced activation of AMPK induces autophagy [48]. In 
mETC deficient cells, O2•− production is blocked under starvation 
conditions, thereby reducing the activation of AMPK and increas-
ing activation of the mTOR pathway, which results in a reduction 
of starvation-induced autophagy [48]. Downstream of AMPK, 
peroxisome proliferator-activated receptor gamma coactivator 
1-alpha (PGC-1α), is required for modulation of antioxidant genes 
in response to oxidative stress. The AMPK-PGC-1α signaling 
pathway controls mitochondrial ROS. Cells with reduced AMPK 
activity increase mitochondrial ROS and experience premature ag-
ing [49]. Parkinsonism-causing genes like Parkin, phosphatase and 
tensin homolog-induced putative kinase (PINK), and DJ-1 im-
pact mitochondrial health via autophagy [50-52]. ROS promotes 
Parkin/PINK-dependent mitophagy [50]. Also, Parkin induces 
beclin1-mediated autophagic degradation of molecular debris and 
dysfunctional mitochondria, which prevents oxidative stress [51]. 
Loss of PINK1 compromises the function of mitochondrial com-
plexes I and II, and increases sensitivity to oxidative stress with 
aging [53]. Similar to Parkin and PINK1, DJ-1, a redox-dependent 
molecular chaperone, is also associated with mitochondria [54]. 
The loss of DJ-1 increases fragmentation of mitochondria, causes 
accumulation of autophagy-associated factors, such as LC3, and 
lowers mitochondrial membrane potential [52]. On the other 
hand, overexpression of DJ-1 suppresses formation of protein ag-
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gregates. Because DJ-1 is genetically associated with Parkin and 
PINK1, it can rescue the effects of PINK1 mutation in Drosophilia 
[55]. 

DNA damage and autophagy 

Extrinsic agents, such as ultraviolet (UV) light and toxins, or in-
trinsic stimuli such as ROS can cause damage to DNA. Damaged 
DNA is associated with cellular dysfunction. A declining ability to 
repair DNA and consequent accumulation of DNA damage may 
contribute to cellular senescence. Also, mutations in nuclear and 
mitochondrial genes caused by impaired DNA repair have been 
associated with aging. DNA damage includes mismatch, strand 
breaks (single or double), and base modification, which contribute 
to DNA lesions. Numerous DNA repair systems are activated in 
response to damaged DNA, including homologous recombina-
tion repair (HR), non-homologous end joining (NHEJ), mismatch 
repair (MMR) base excision repair (BER), and nucleotide exci-
sion repair (NER) [56, 57]. HR accurately repairs harmful double 
strand breaks (DSBs) in DNA using a homologous DNA template. 
NHEJ also repairs DSBs and ligates broken ends directly (non-ho-
mologous). MMR detects and repairs erroneous base incorpora-
tion and insertions/deletions. BER recognizes and eliminates non-
bulky lesions in DNA caused by apurinic/apyrimidinic sites (AP 
sites), oxidation, deamination, and alkylation. In the case of NER, 
it removes bulky or helix-distorting DNA lesions, which come 
from UV light, chemicals, and radiation [56, 58-60]. Many previ-
ous studies have implicated defective DNA repair system in aging 
[5, 61]. In an in vitro  study with fibroblasts, senescent cells show 
increased DSBs and inefficient NHEJ. Age-dependent genomic 
instability is caused by abnormal DSB repair [5]. In aged rats, BER 
activity is reduced in neurons [61]. Age-associated decline of NER 
is related to DNA damage in response to UV light [62]. 

Interestingly, it has been reported that DNA repair is closely 
connected to autophagy [63]. Beclin1 hemizygosity compromises 
autophagy and activates DNA damage responses in mammary ep-
ithelial cells [64]. Likewise, defective autophagy leads to impaired 
DNA repair. In particular, accumulation of p62 has been observed 
after loss of autophagy, which interrupts DNA damage responses 
(DDR) [65]. Inhibition of p62 accumulation mitigates defective 
autophagy-induced genome damage [66]. The p62 is involved in 
regulation of NHEJ and HR. In a p62-dependent manner, recruit-
ment of DNA repair proteins, such as BRCA1, RAP80 and Rad51, 
to double strand breaks is compromised under autophagic defi-
ciency (Atg3 knockout) [65]. Interestingly, the balance between 
HR and NHEJ is regulated by p62 [67]. In addition, suppression 
of NHEJ causes DNA damage and cell death in an autophagy-
deficient environment (Atg7 null cells). Autophagy-deficient cells 

have defective activation of checkpoint kinase-1 (Chk1), which 
contributes to DNA repair by HR. Its failure in response to DNA 
damage leads to reduced recruitment of Rad51 to the damaged 
sites, which is important to correct HR [68]. Furthermore, autoph-
agy mediates NER by increasing recognition of damaged DNA. In 
Atg5-deficient embryonic fibroblast cells, autophagy deficiency 
results in the failure to sense damaged DNA by XP group C (XPC) 
and DNA damaging-binding protein 2 (DDB2), which are impor-
tant in recognition of global genome NER-specific damage after 
UV-induced stress [69]. Also, impaired autophagy results in DNA 
damage, increased mutation rates and chromosomal instability 
in breast epithelial cells with allelic loss of beclin1or in Atg5 null 
mouse embryonic fibroblasts (MEFs) [70].

Mitochondrial DNA (mtDNA) is more vulnerable to ROS than 
nuclear DNA [71, 72]. Mutation of mtDNA is likely due to replica-
tion errors by mtDNA polymerase and point mutations/deletions 
accumulate with aging. mtDNA deletions are more frequent in the 
aging brain [73]. Previous studies support that the BER is mainly 
involved in repair of oxidative mtDNA modification and mitigate 
mitochondrial impairment [74]. MMR-dependent autophagy 
requires Bcl-2 Interacting Protein 3 (BNIP3) in an mTOR-depen-
dent manner and BNIP3 is important in mitophagy in response to 
hypoxia [75, 76]. 

Telomere shortening and autophagy

Telomeres are composed of six base pair repeated DNA sequenc-
es (TTAGGG) at the end of linear chromosomes. These protect 
genetic information during DNA replication and protect chro-
mosomal ends from damage or being recognized as DNA breaks, 
thereby maintaining genomic stability [6, 77]. Telomeres bind to 
the shelterin complex, which includes telomere- binding proteins, 
such as protection of telomeres protein-1 (POT1), telomeric re-
peat binding factor-1 (TRF1), TRF2, TRF1-interacting protein-2 
(TIN2), repressor/activator protein1 (RAP1), and TIN2- and 
POT-1interacting protein (TPP1). These components generate t-
loops and regulate telomere integrity and synthesis of telomeric 
DNA by telomerase. Furthermore, these proteins interact with 
DNA repair factors and protect telomeres from damage [78]. To 
maintain telomere length, a telomerase consisting of telomerase 
RNA competent (TERC) and telomerase reverse transcriptase 
(TERT), helps to add telomeric DNA at the 3' ends of telomeres. 
However, telomeres progressively shorten with cell division/DNA 
replication cycle, which is caused by the lack of telomerase activity. 
Normally, aging leads to functional decline of telomerase in most 
of somatic cells. However, in immortalized cells, such as germ cells 
and cancer cells, telomerase can sustain its activity. It is difficult to 
restore telomeres with the DNA repair machinery and this eventu-
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ally results in cellular senescence and aging [6, 77, 79]. 
Aged telomerase-deficient mice show impaired telomere func-

tion, increased genetic instability, and a higher incidence of cancer 
[80]. Similarly, Terc deficiency results in short telomeres in older 
mice. Conversely, Terc haploinsufficiency rescues aberrant telo-
meres and prevents premature aging [81]. In in vitro systems using 
human embryonic kidney (HEK) cell lines with/without trans-
formation of viral oncogenes, the incidence of dicentric chromo-
somes and telomere inactivation are increased in mortal cells with-
out oncogenes, and correlate with population doublings. However, 
oncogene-transformed immortal cells have stable telomeres and 
telomerase reactivation after senescence/crisis [82]. Also, chro-
mosomal instability increases in fibroblasts derived from older 
telomerase (mouse transferase RNA, mTER)-null mice that have 
compromised telomerase activity [83]. Similarly, tissues and MEFs 
primary cells from mTER null mice lack telomeric repeats [84]. 
Telomere shortening can induce a DDR pathway including p53 
and p21. In particular, DNA binding activity of p53 increases with 
age. Activation of p53 is involved in cellular senescence and tran-
scriptional activation of p21 [85]. The increase in p53 is likely due 
to the loss of TRF2, which can lead to p53-dependent cell cycle 
arrest [78]. Also, a p53-dependent DNA damage pathway is also 
activated by dicentric chromosomes. The loss of p53 is related to 
extended cellular lifespan [85]. p53 deficiency reduces adverse ef-
fects of telomere dysfunction at the cellular and organismal levels 
[86]. 

Previous studies have shown that telomere biology is associated 
with autophagy [87-89]. In cells undergoing crisis, which is associ-
ated with deprotected telomeres, there are increased cytoplasmic 
vacuoles and autophagy-related proteins (ATG5-ATG12, LC3-
II) [88]. Telomeric 3' overhang-specific DNA oligonucleotides, 
which mimic telomere loop disruption, can result in induction of 
autophagosomes and inhibit mTOR signaling in malignant glioma 
cells [87]. In addition, in multiple cell lines, such as HEK 293T, 
HepG2, and U-2 OS, TERT binds to and suppresses mTORC1 
kinase, thereby inducing autophagy. TERT knockdown increases 
components of mTORC1, resulting autophagy impairment under 
basal and amino acid starvation conditions [89]. Autophagy con-
tributes to inhibition of p53, which can be affected by telomere 
shortening. As a feedback mechanism, p53 can activate autophagy 
[85, 90]. 

Inflammation and autophagy

Normally, senescent cells are eliminated by the immune sys-
tem. However, this system deteriorates with aging and the ac-
cumulation of senescent cells can impair tissue homeostasis [7]. 
Senescence-associated secretory phenotype (SASP) is a process 

where senescent cells release pro-inflammatory factors (interleu-
kin (IL)-6, IL-8, and IL-1α), proteases (matrix metallopeptidase 
(MMP)-1, -3, and -13), chemokines (C-C motif chemokine ligand 
2 (CCL2), and macrophage inflammatory proteins (MIPs)), and 
growth factors (transforming growth factor-β (TGF-β)) [7, 91, 92]. 
SASP factors are related to migration and recruitment of immune 
cells and influence tissue repair in the early phase; persistent SASP 
from senescent cells can lead to chronic inflammation and tissue 
dysfunction [93]. This is accomplished by the nuclear factor kappa 
light chain enhancer of activated B cells (NF-κB) or p38 mitogen-
activated protein kinase (MAPK) signaling pathways, upstream 
of SASP. Cyclic GMP-AMP synthase (cGAS)/stimulator of inter-
feron genes (STING) pathways have been suggested as a mediator 
of SASP [91, 92, 94]. Through paracrine (non-cell-autonomous) 
or autocrine (cell-autonomous) mechanisms, SASP components 
from senescent cells, can reinforce cellular senescence and are in-
volved in the progression of aging [7, 91, 95]. 

SASP appears to increase with aging [96-100]. For example, with 
age, plasma tumor necrosis factor-α (TNF-α) and IL-8 are over-
expressed [96-98]. In old human fibroblasts, cellular senescence 
is involved in the activation of TGF-β [99]. Also, increased MMP-
1 expression is closely associated with endothelial cell senescence 
[100]. In human BJ fibroblasts, senescent cells show increased 
levels of monocyte chemotactic protein-1 (MCP-1), IL-15, IL-1β, 
Toll-like receptor (TLR)4, and intercellular adhesion molecule-1 
(ICAM-1) [101]. In human IMR-90 fibroblasts, IL-1α signaling 
regulates SASP components (IL-6 and IL-8) and potentiates cel-
lular senescence [95]. Interestingly, in the same human IMR-90 
fibroblasts, CXCR2 expression is increased during replicative se-
nescence, compared to early and middle passage cells, and deletion 
of CXCR2 extends lifespan of the cells [102]. In particular, ablation 
of cGAS reduces CCL7, VCAM-1, CCL2 and CSF1 mRNA levels. 
Similarly, STING knockout also diminishes CCL7 and CCL2 in 
MEFs. Production of some SASP components, such as IL-6 and 
TNF-α, is dependent on cGAS. Thus, the cGAS-STING pathway 
positively promotes senescence and SASP [103].

Numerous studies suggest the autophagy machinery interacts 
with and controls the immune system and inflammation. Also, 
impairment of autophagy is associated with various inflammatory 
diseases [104, 105]. Rapamycin, an mTOR inhibitor as well as an 
autophagy inducer, can reduce SASP secretion products like IL-6 
and other cytokines via mTORC1, and decrease the NF-κB-IL1A 
positive feedback loop [106]. Knockdown of ATG5 or ATG7 can 
delay production of SASP components such as IL-6 and IL-8 [107]. 
Under autophagy-deficient conditions, p62 accumulates and 
induces NF-κB activity [104]. Suppression of autophagy in basal 
conditions induces IL-1β in human peripheral blood mononu-
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clear cells (PBMCs) in response to TLR2 or 4 ligands. Autophagy 
induction under starvation conditions can lead to a reduction of 
IL-1β. In this process, cytokine production is dependent on p38 
MAPK [108]. Similarly, macrophages from ATG16L1-deficient 
mice have increased production of IL-18 and IL-1β. Also, ATG7-
deficient macrophages and ATG4BC74A mutated RAW264.7 
macrophage cell lines manifest increased production of IL-1β 
following lipopolysaccharide (LPS) stimulation [109]. GATA4, 
as a positive regulator of SASP and senescence, triggers NF-κB 
activation. However, ablation of GATA4 suppresses its activity 
and SASP genes. The activity of the transcription factor GATA4 
upregulates the genes encoding C-X-C motif ligand (CXCL) 1, IL-
6, IL-8, chemokine (C-C motif) ligand (CCL) 2, and granulocyte-
macrophage colony-stimulating factor (GM-CSF). Deletions of 
ATG5 and ATG7 or the autophagy adaptor p62 increase GATA4 
levels in IMR-90 fibroblasts. Interestingly, p62 physically interacts 
with GATA4, an interaction which is decreased with aging. In ag-
ing human brain, increased GATA4 levels are seen in prefrontal 
cortex [110]. Taken together, these reports suggest that autophagy 
plays an important role in SASP, which is associated with aging.

AGE-RELATED DISEASES AND AUTOPHAGY 

Alzheimer’s disease

In Alzheimer’s disease (AD) animal models, autophagy has pro-
tective effects against depositions of misfolded amyloid beta (Aβ) 
and neurofibrillary tangles from tau hyperphosphorylation, which 
can accelerate impairment of cell function and homeostasis [111]. 
Autophagy triggers Aβ and tau clearance as autophagy substrates, 
while autophagic failure can increase intracellular Aβ [111]. In 
AD, at least in later stages of disease, there is an accumulation of 
autophagosomes, suggesting impairment of autophagosome clear-
ance [112]. Familial AD can be caused by mutations in Presenilin 
1 (PS1), which is a γ-secretase component and is important in 
lysosomal acidification in autophagy [112, 113]. Increased levels of 
hyperactivated mTOR are observed in postmortem brains of AD 
[113-115]. Defects in autophagy can exacerbate cognitive impair-
ment in an AD model [116]. However, enhancement of autophagy 
reduces AD-related signs in animal models. Treatment with ra-
pamycin results in a reduction of Aβ deposition, and extended 
longevity in AD models [1, 111, 117]. In Tg2567 mice, rapamycin 
reduces Aβ burden and restores synaptic and cognitive function 
[118]. Trehalose, an mTOR-independent autophagy enhancer, de-
creases tau aggregates in a neuronal cell model of tauopathy [119], 
and suppresses Aβ aggregates [120]. 

Age-associated SASP and oxidative stress are also closely associ-
ated with AD, suggesting that these factors may contribute to its 

pathology [8, 121]. AD models display reactive microglia near the 
Aβ plaque and reactive microglia release proinflammatory cyto-
kines, including TNF-α, IL-1β, and IL-6 [122, 123]. During aging, 
chronic inflammation can lead to increased amyloid precursor 
protein (APP), tau phosphorylation, and memory impairment 
[124]. AD patients have increased levels of TNF-α, ILs (IL-1β, IL-
6, IL-12, and IL-18) and TGF-β in peripheral blood, and TGF-β 
in the cerebrospinal fluid (CSF), suggesting that the inflammatory 
immune system is closely related to the pathology and symptoms 
of AD [125]. Interestingly, myeloid ATG5 deficiency accelerates 
these cytokine levels and reactive microgliosis in the 5XFAD AD 
mouse model [123]. Microglia from Beclin1-/- mice have increased 
levels of IL-1β and IL-18 [126]. On the contrary, enhancement 
of autophagy with rapamycin treatment reduces the SASP [106]. 
Also, rapamycin inhibits Aβ25-35-induced inflammatory mediators 
such as TNF-α and IL-1β [127]. 

Oxidative stress is closely related to Aβ [128]. Aβ can cause oxi-
dative stress [128]. Inversely, oxidative stress can accelerate Aβ 
deposition [129, 130]. Oxidative stress induced by H2O2 increases 
intracellular Aβ in the human SH-SY5Y neuroblastoma cell line 
[130]. Aβ may enter into the mitochondria, generate free radicals 
and cause mitochondrial dysfunction. In particular, Aβ inhibits 
mitochondrial respiration. Additionally, mutation of APP or 
soluble Aβ results in mitochondrial oxidative damage, which af-
fects AD development and progression [131]. Interestingly, Parkin 
decreases intracellular Aβ and triggers beclin1-dependent autoph-
agy. Parkin overexpression also blocks Aβ-induced mitochondrial 
dysfunction and oxidative stress. Moreover, reduced levels of be-
clin1 are linked to aging and neurodegenerative diseases [51]. APP 
transgenic mice lacking beclin1 have increased Aβ deposition, and 
abnormal neuronal structure [132]. On the contrary, rapamycin-
induced autophagy reduces hippocampal neuronal damage in Aβ-
injected rats. At the same time, it normalizes ROS and antioxidant 
(SOD, GSH, catalase) levels [117]. In SH-SY5Y neuroblastoma, 
rapamycin alleviates Aβ-induced redox imbalances, lowers ROS 
and increases antioxidant enzymes [133]. 

Huntington’s disease

Huntington’s disease (HD) is caused by abnormally long CAG 
trinucleotide expansions in the Huntingtin (htt) gene, encoding 
abnormal long polyglutamine (polyQ) tracts [134]. Indeed, HD 
patients show somatic instability of CAG repeats [135]. Mutated 
htt impairs the autophagy machinery, which results in the ac-
cumulation of mutant htt and cell death [136, 137]. On the other 
hand, mutant htt is an autophagy substrate and autophagy induc-
ers, like rapamycin, induce clearance of mutant htt and reduce cell 
death [138, 139]. 
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Several lines of evidence support that oxidative stress and DNA 
repair systems are related to mutant htt or expanded CAG repeats 
[9, 140]. Oxidative damage can lead to CAG expansion at the hu-
man HD locus under disease conditions. Expanded CAG repeats 
can generate hairpin structures, which can contain mismatched 
bases. Aging R6/1 mice (HD model) accumulate oxidative DNA 
lesions in the brain. Such accumulations in the brain can overload 
the DNA repair system, increasing the probability of repairing 
single-strand breaks. R6/1 mice lacking 7,8-dihydro-8-oxogua-
nine-DNA glycosylase (OGG1), which is a BER enzyme, display 
reduced CAG expansion, indicating OGG1 induces CAG repeat 
instability [140]. Similarly, deficiency of OGG1 can decrease the 
distribution of somatic CAG expansions in the brain of Hdh 
(Q150 /Q150 ) mice and treatment with XJB-5-131 (a mitochon-
drial scavenger of ROS) prevents CAG expansion, as well as oxida-
tive damage and breaks, suggesting a role for BER in CAG expan-
sions [9]. MMR is also necessary for somatic CAG instability in 
HD transgenic mice [135]. Normal htt is involved in DNA repair 
by forming a transcription-coupled DNA repair (TCR) complex 
with ataxin-3, DNA ligase3, cyclic AMP-response element-binding 
protein (CBP), RNA phosphatase (PNKP), and RNA polymerase 
II subunit A (POLR2A). This complex can recognize DNA lesions 
and induce DNA repair. However, mutant htt damages ataxin-3 
and PNKP by disruption of the TCR complex. Additionally muta-
tion of ataxin-3 can lead to DNA strand breaks [141]. Interestingly, 
ataxin-3 is closely related to autophagy [137]. Wild-type ataxin-3 
prevents beclin1 degradation and thus positively regulates au-
tophagosome formation. The wild-type polyQ stretch in beclin1 
binds to ataxin-3 and allows beclin1 to act as a deubiquinase 
against this target. This interaction of the polyQ domain is com-
peted with expanded mutant polyQ tracts like those seen in HD, 
thereby inducing compromised autophagy in cells with mutant htt 
[137]. 

Parkinson’s disease

Parkinson’s disease (PD) can be caused by genetic mutations in 
several genes, such as autosomal dominant genes (leucine-rich 
repeat kinase2 [LRRK2], alpha-synuclein [SNCA], glucocerebrosi-
dase [GBA]) and autosomal recessive genes (DJ-1, PRKN, PINK1, 
and ATP13A2). These genes are closely related to autophagy, 
including mitophagy, and autophagy failure may be an important 
driver of pathology in many forms of PD [12, 142, 143]. Mutation 
of LRRK2 (R1441C) results in impaired autophagic balance and 
degradative capacity [142]. Alpha-synuclein inclusions, a compo-
nent of Lewy bodies, are characteristic with dysfunctional autoph-
agy [144]. Overexpression of α-synuclein, which is seen in forms 
of PD, impairs macroautophagy and increases p62 levels due to 

ATG9 mislocation [145]. PINK1 and Parkin are closely linked 
to mitochondria as mentioned above. PINK1 can recruit Parkin 
to the mitochondria, which mediate degradation of damaged 
mitochondria by autophagy. Mutations of PINK1 or Parkin ab-
rogate this function [146]. Cells lacking ATP13A2 have impaired 
autophagosome-lysosome fusion [147]. GBA is the gene that 
encodes glucocerebrosidase, a lysosomal enzyme that degrades 
glucocerebroside. Homozygotes with GBA mutations typically de-
velop a lysosomal storage disease called Gaucher’s disease. A num-
ber of published studies have found that heterozygosity for GBA 
mutations is associated with defects in autophagy and mitophagy 
as a consequence of impaired lysosomal activity [148, 149]. Thus, 
a parsimonious explanation for the PD risk associated with GBA 
heterozygosity is that it impairs lysosomal function and thereby 
compromises autophagic degradation of alpha-synuclein. 

Previous studies support that oxidative stress and impairment 
of DNA repair pathways may contribute to PD [10, 150, 151]. PD 
patients exhibit polymorphisms in DNA repair genes, including 
XRCC1, XRCC3, and APE1, which are caused by oxidative stress 
[150]. Additionally, NER capacity may be impaired in PD pa-
tients, who have genetic mutations such as LRRK2 (G2019S) and 
(R1441G). Mutation of excision repair cross-complementation 
group1 (ERCC1), an essential factor in NER pathway increases do-
paminergic (DA) neuron injury, loss of striatal DA neurons, DNA 
damage, inclusions of α-synuclein, and abnormal morphologic 
mitochondria in mice [10]. Similarly, ERCC1-mutated mice have 
early onset of age-related phenotypes, such as reduced autophagy 
and increased cellular senescence. Rapamycin treatment promotes 
autophagy and reduces cell senescence markers in ERCC1 mutant 
mice [152]. 

Amyotrophic lateral sclerosis 

Patients with ALS show loss of motor neurons within the CNS 
and degeneration of neuromuscular junctions. Mutation of genes 
including SOD1, TAR DNA-binding protein 43 (TDP-43), OPTN, 
fused in sarcoma (FUS), p62, and chromosome 9 open reading 
frame 72 (C9ORF72), cause familial forms of ALS [12, 153]. Many 
of ALS-associated genes are involved in autophagy/lysosomal 
function [12]. An abnormal interaction between mutated form of 
SOD1 (G86R) and beclin1 may modulate autophagy. Haplosuffi-
cient beclin1 shows protective effects in mutant SOD1 transgenic 
mice [154]. On the other hand, in the early symptomatic stage 
of disease, mutant SOD1 (G93A) mice exhibit upregulation of 
beclin1 and TFEB; however, in the middle and end stages, these 
mice show decreased levels of beclin1 and TFEB. Overexpression 
of TFEB augments effect of the beclin1 [155]. Mutation of p62 
(L341V) impairs its ability to recognize LC3B, thereby reducing 
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p62 recruitment to phagophores [156]. Treatment of trehalose can 
reduce aggregates of SOD1 and p62, and induce autophagic flux 
by rescuing mitochondrial degeneration in mutant SOD1 (G93A) 
mice. Moreover, trehalose reduces oxidative stress in the muscle of 
SOD1 mutated mice [157]. In mutant SOD1 mice, trehalose can 
extend life span and retard progression of disease by enhancing 
autophagy-associated factors, such as LC3, p62, ATG5 and beclin1, 
although the amelioration of disease may also be due to chemical 
chaperone effects of this compound reducing mutant SOD1 ag-
gregation [158]. Autophagy and the ubiquitin-proteasome system 
(UPS) are involved in TDP-43 removal: clearance of soluble TDP-
43 by the UPS and insoluble TDP-43 by autophagy. ALS tissues 
exhibit abnormal cytoplasmic accumulation of TDP-43, which 
fails to be degraded by degradation adaptor proteins owing to its 
mutation or the adaptor’s mutation [159]. Autophagy inducers, 
including rapamycin, tamoxifen, carbamazepine, and spermidine, 
improve motor function and reduce the formation of TDP-43 
inclusions in the brain of TDP-43 Tg mice. [160]. The most com-
mon mutations in ALS are hexanucleotide repeat expansions 
(GGGGCC) in C9ORF72. C9ORF72 is involved in the regulation 
of endosomal trafficking (RAB-dependent manner) for endo-
somal transport and autophagy. Deletion of C9ORF72 causes dys-
functional autophagy and endocytosis [161].

Age-related factors such as inflammatory responses and oxida-
tive stress are related to the pathogenesis of ALS [11]. ALS-related 
genetic mutations result in inflammation [11]. Reactive microglia 
and macrophages are abundant in postmortem brain and spinal 
cord of ALS patients, and T lymphocyte infiltration is present in 
ALS tissue [162]. C9ORF72 deficient mice show morphological 
change in immune organs, such as spleen, liver, and lymph nides, 
and macrophage infiltration and increased levels of lysosomal 

proteins are observed in these mice [163]. 
In a mutant SOD1 (G93A) rat model of ALS, microgliosis and 

loss of motor neuron are observed in the spinal cord. In microglial 
primary cultures from symptomatic SOD1 (G93A) rats, senes-
cence-associated bate-Galactosidase (SA-β-Gal), p53, and p16INK4a 
are increased during disease progression [164]. Mutant SOD1 
(G93A) activates caspase-1-mediated IL-1β secretion in microglia 
and macrophages. Longevity is extended in mutant SOD1 (G93A) 
mice lacking caspase-1 or IL-1β. Autophagy inhibition results in 
increased SOD1 accumulation in the cytosolic compartment and 
released IL-1β levels. Under ATG5-deficient condition, caspase-1 
activity is increased in response to mutant SOD1 (G93A) [165]. 

CONCLUDING REMARKS

In this review, we have briefly described possible connections be-
tween impaired autophagy and factors in cellular aging. Causative 
factors in aging, such as oxidative stress, DNA damage, telomere 
shortening, and SASP, are closely associated with autophagy. The 
interplay between aging and abnormal autophagy may accelerate 
age-related pathology and diseases (Table 1). Deficient autophagy 
may contribute to AD, PD, HD, and ALS, and contribute to the 
toxicity of aggregate-prone proteins. Under these disease condi-
tions, pharmacological treatment for enhancing autophagy has 
been shown to ameliorate disease in various animal models [12, 
166]. However, such strategies need to consider how modulation 
of autophagy may impact other aspects of neuronal and glial ho-
meostasis [167]. Ultimately, understanding of autophagy mecha-
nisms in the process of aging may provide crucial information for 
improving health and preventing disease states. Modulation of 
autophagy by pharmacological or genetic tools may be a potential 

Table 1. Impaired autophagy in age-related diseases

Disease Major causes and defects References

Alzheimer’s disease Clearance of misfolded plaque as autophagy substrate [1, 111-113, 117-120]
Lysosomal. acidification [112, 113, 116]
Inflammatory cytokine & Reactive microglia [8, 121-125, 127]
Oxidative stress [128-130]
Mitochondrial oxidative damage [131, 133]

Huntington’s disease Accumulation of mutant htt & Cell death [134, 136-139]
Oxidative stress & DNA repair system [9, 135, 137, 140, 141]

Parkinson’s disease Genetic mutations in autosomal dominant genes [12, 142, 144, 145, 148, 149]
Genetic mutations in autosomal recessive genes [12, 146, 147]
Oxidative stress & DNA repair system [10, 150-152]

Amyotrophic lateral sclerosis Mutation of SOD1 gene [153-155, 157, 158]
Mutation of p62 [153, 156]
Abnormal cytoplasmic accumulation of TDP-43 [153, 159, 160]
Deletion of C9ORF72 [161]
Inflammatory responses & Reactive microglia [11, 162-165]
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clinical intervention for age-related diseases. 
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