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Summary 

The argument for Natural Flood Management in the UK has strengthened in recent years with increasing 

awareness of the potential benefits gained from upstream interventions (especially improvements in water 

quality, public amenities and biodiversity). This study aims to develop understanding of another potential 

benefit – interventions promoting free discharge at downstream urban drainage outfalls by moderating water 

levels in receiving watercourses.  

  

A novel, coupled model (linking Dynamic TOPMODEL, HEC-RAS and Infoworks ICM) is calibrated for the 

Asker catchment in Dorset, England. This predominantly rural watershed drains to the town of Bridport, 

frequently submerging a surface drainage outfall in a nearby housing estate. Two forms of upstream, 

catchment-scale intervention (hillslope tree planting and in-channel large woody debris) are modelled to 

understand their impacts on the functioning of the drainage network during both the calibration period and a 

range of design storms.  

  

The results indicate that interventions have greatest positive impact during frequent events. For example, 

during a storm with a 10% annual exceedance probability (AEP), upstream NFM could reduce outfall 

inundation by up to 3.75 hours and remove any surcharging of flow within the drainage system in Bridport. 

In more severe storms, the results suggest interventions could slightly prolong the time the outfall was 

submerged. However, by slowing the wider catchment’s response during the 3.3% AEP storm, upstream 

interventions allow more water to escape the urban drainage system and reduce the maximum surface 

flooding extent within the housing estate by 35%.  

 

 

 

*crf35@cam.ac.uk. 

Centre for Sustainable Development, Department of Engineering, 

University of Cambridge 
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Introduction 

This paper examines the possibility that a series of upstream, catchment-scale Natural Flood Management 

(NFM) interventions could improve the functionality of surface drainage networks. These networks typically 

drain an urban storm water catchment using a series of pipe inlets (e.g. road gullies) before conveying the 

water (under gravity) to outfalls which discharge into ‘receiving watercourses’ (Butler & Davies, 2011). 

Performance of such systems can be difficult to quantify, with unpredictable and flashy failure modes (Palla, 

Colli, Candela, Aronica, & Lanza, 2018; Wheater & Evans, 2009). It is hypothesised here that upstream NFM 

might be used to promote free drainage from frequently submerged outfalls, thereby improving the resilience 

of the contributing drainage network. 

 

It has been generally accepted there will be increased variability in river flows as a result of climate change 

(Hannaford and Marsh, 2008; Prosdocimi, Kjeldsen and Svensson, 2014; Penning-Rowsell, 2015). It is 

estimated there will be a general increase of between 5 and 20% in river flows during wet seasons in south 

east England (Committee on Climate Change, 2016). To combat this uncertainty, a Catchment-Based Flood 

Management (CBFM) philosophy has emerged in recent years, which aims to use a series of spatially discrete 

interventions to evolve rural catchment uplands and reduce risk of downstream fluvial flooding (Lane, 2017). 

In certain catchments, this CBFM approach will also influence how the downstream receiving watercourse 

interacts with urban drainage.  

 

The paper presents a modelling case study investigating the impact of a series of upstream, catchment-scale 

interventions on the ability to sustain/improve free discharge at a particular downstream outfall and thereby 

reduce surface flooding in a nearby housing estate.  

 

 

Catchment-based Flood Management 

The dominant component of CBFM strategies to date has been catchment-scale Natural Flood Management 

(NFM), with interventions aiming to ‘slow the flow’ in catchment uplands in order to mitigate fluvial flooding 

for particular downstream reaches (Dadson et al., 2017; Lane, 2017). The evidence for local NFM impacts 

influencing the catchment-scale response (>10km2) remains inconclusive (Iacob, Brown, & Rowan, 2017; Lane 

& Milledge, 2013). However, there have been increasing numbers of community-led projects being 

implemented in recent years (Rouillard & Spray, 2017). Examples of interventions include moorland grip 

blocking, afforestation, buffer strips and floodplain reconnection. These interventions range between those 

that are purely ‘natural’ interventions and those that are traditionally ‘engineered’. For instance, the EA’s 

‘Working with Natural Processes’ evidence base defines a ‘continuum of options’ ranging from ‘natural 

recovery’ through to ‘hard engineering’ (Burgess-Gamble et al., 2017).  Similarly, Dadson et al. (2017) define 

NFM interventions as those that ‘seek to restore or enhance catchment processes’ while at the same time 

offering ‘significant co-benefits’. The Scottish Environment Protection Agency (SEPA) also argues that NFM 

might be used to augment traditional solutions (i.e. by reducing wall height or prolonging design life) (Forbes, 

Ball, & McLay, 2015).  

 

It is argued here that, in addition to mitigating fluvial flooding in extreme rainfall, this range of interventions 

could also improve the resiliency of urban surface water drainage during lesser events. By moderating water 

levels of urban watercourses, upstream interventions could reduce submersion of frequently drowned 

drainage outfalls. In doing so, NFM would promote free discharge from the urban system and thereby 

improve the effective capacity of the network. The detrimental impact of receiving watercourses submerging 
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drainage outfalls has been recognised in the literature (Douglas, Kobold, Lawson, Pasche, & White, 2007; Ellis 

& Viavattene, 2014) and there have been several identified examples in the UK (Craven & Littlewood, 2011; 

Jackson Hyder Consulting, 2015; Ramsbottom, Tarrant, & Cooper, 2006).  

 

The potential impact of NFM on this interface will now be evaluated using a modelling investigation. This will 

focus on a flood-prone surface outfall in the Dorset town of Bridport and interventions in the upstream Asker 

river catchment.  

 

 

Methods 

Case Study 

The River Asker drains a 48km2 area of western Dorset before passing through the town of Bridport 

(population of approximately 14,000) and then discharging into the English Channel. The eastern uplands of 

the catchment (254m above sea level) mark the beginning of chalk groups that stretch along the coast towards 

the Isle of Wight and the South Downs. The catchment drains from these chalk groups, crossing areas 

primarily formed of silty mudstone and sandstone, eventually reaching the alluvium deposits in the lower 

river reaches. Over 95% of the bedrock is classified as having either ‘high’ or ‘moderate’ permeability by the 

British Geological Survey (BGS). The catchment is predominantly grassland (approximately  

62% of total area) with significant pockets of arable (24%) and woodland (8%). There are several small villages 

scattered throughout the catchment.  

 

The town of Bridport sits on the confluence of three rivers – the Asker, the Brit and the Simene. While the Brit 

has caused significant fluvial flooding in recent years (BBC News, 2014, 2016), flood defences (i.e. adjacent 

banking) built in the 1980s have prevented the Asker overtopping during these events (West & Mann, 1987). 

However, water levels in the River Asker has influenced surface flooding with drainage unable to cope with 

intense pluvial events. This is also indicated by the updated surface water risk map (UK Government, 2019) 

within the drainage zone indicated in Figure 1, At least 10% of the area (primarily the only access road for 

over 30 residential properties) is affected by surface flooding during a 30 year return period storm.  

 

 

Interventions 

There are currently no physical NFM projects within the Asker catchment. A GIS-based desk study was used 

to identify opportunity areas for two separate forms of intervention across three separate upstream sub-

catchments (these are shown in Figure 1). These sub-catchments have been called ‘north’, ‘east’ and ‘south’.  

 

The first intervention was hill-slope tree planting, which aims to increase infiltration rates, slow surface runoff 

and increase losses through evapotranspiration (Healey, Smith, Pagella, & Ford, 2016). Several physical 

studies have shown this to be effective at the ‘hillslope scale’ (Archer et al., 2013; Marshall et al., 2014) 

although at catchment scale physical studies have had mixed results (Stratford et al., 2017). The areas chosen 

for modelled tree planting were: (1) in areas of existing grassland (2) areas with underlying soils that were 

either free draining or slowly permeable and (3) locations on slopes between 10 and 30% (which is comparable 

to the aforementioned physical studies). This planting was represented using alterations to Dynamic 

TOPMODEL parameters (following Hankin et al. (2016) and shown in Table 1).  
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Figure 1: (a) Asker river catchment and (b) downstream Bridport surface drainage zone 
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The second intervention was in-channel woody debris, which aims to introduce storage through upstream 

ponding and slow channel flows sufficiently to have an alleviating impact in smaller events (Bornschein & 

Pohl, 2018). Several physical studies have reinforced this hypothesis (Norbury, Shaw, & Jones, 2018; Short, 

Clarke, Carnelli, Uttley, & Smith, 2019). The intervention was applied in areas of the channel 50m away from 

any infrastructure such as buildings or bridges (both upstream and downstream). This is to reflect the wider 

concern about moving debris blocking culverts and exacerbating flood risk (Curran, 2010; Dixon & Sear, 2014). 

The modelled intervention is located outside afforested areas, meaning the physical equivalent would require 

artificial placement of debris (as in Addy and Wilkinson (2016)). This intervention was represented in HEC-

RAS by increasing the Manning’s roughness coefficient to 0.1 (following other studies such as Thomas and 

Nisbet (2007), Odoni and Lane (2010) and Dixon et al. (2016). 

 

 

Available Data 

The Asker river is gauged downstream in Bridport (see Figure 1) with a Flat V Crump weir. The record 

(dating from March 1996 with a 15 minute time step) was obtained from the EA with a Freedom of 

Information (FOI) request. There is only one EA rain gauge in the catchment. However, two others were 

within 1.8km of the catchment (see Figure 1) and deemed close enough to inform spatial rainfall distribution. 

These were again obtained with a FOI request to the EA, providing a full record with a 15 minute time step 

available from February 2008.   

 

A DEM (with resolution 5m) was created from OS Terrain data (extracted from EDINA Digimap) and used to 

delineate watersheds. EDINA Digimap was also used to obtain OS Topography and OS MasterMap Water 

Network for identifying infrastructure and the river network respectively. Land use data came from the 

CORINE Land Cover inventory (2012 – 2018 layer). The soils data was obtained from Cranfield University’s 

LandIS portal.  

 

 

 
Figure 2: Mass ratio between rainfall input and flow output across a 10 year record 
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A preliminary mass balance check revealed significant and relatively consistent discrepancies in the measured 

data. Across the seven years shown in Figure 2, net rainfall typically exceeds the total mass leaving the 

catchment through the flow gauge (across quarterly intervals). To make this calculation, rainfall gauge data 

was spatially extrapolated using Thiessen polygons. Actual evapotranspiration was approximated by 

converting potential evapotranspiration values from the Centre for Ecology and Hydrology’s (CEH) CHESS 

database (with a record up to December 2015) (Robinson et al., 2016). The limited available data meant this 

approximation was carried out using a simple sinusoidal function (established by Calder (1986) and 

implemented using an R function developed by Metcalfe, Beven and Freer (2015)).  

 

There are several potential contributing factors to explain this mass imbalance. Percolation (or flow through 

fractured medium) within the bedrock chalk layers in the eastern uplands – although only covering  10% of 

the catchment area – may having an influence on the whole-catchment catchment response (the influence of 

chalk on catchment response has been extensively discussed (Hughes et al., 2011; Jimenez-Martinez, Smith, & 

Pope, 2016)). Although less porous, infiltration into the lower sandstone bedrock (which covers 47% of total 

area) may also be causing groundwater losses. These incongruities between the surface and groundwater 

catchments could be being compounded by a seasonal fresh-saline water boundary, with groundwater 

discharging directly to the sea. There may also be gauging errors resulting in over-estimation of rainfall input 

(e.g. through extrapolation across Thiessen polygons, minimum measurement interval or reporting faults). It 

is also possible there are unknown abstraction flows across the catchment. 

 

One of the key assumptions in Dynamic TOPMODEL – that of approximating the effective hydraulic gradient 

from the slope angle – means that the model is best suited where catchment response is dominated by 

response of shallow soils. This means it has limitations for characterising the apparently complex sub-surface 

flows within this case study catchment. However, its beneficial characteristics  (including effective 

parameterisation, reduced computing times, representation of NFM, coupling with downstream models) 

make it ideal for the focus of this research – whether upstream interventions can impact on downstream 

drainage.  For this reason, a rainfall correction factor was used to equate the observed mass balance, with 

losses to groundwater assumed as not affecting surface and shallow sub-surface catchment response. Given 

any NFM intervention will have no impact on the behaviour of the underlying bedrock, this was deemed a 

pragmatic way forward. For the calibration period (across January and February 2014) this meant reducing 

rainfall input with a factor 0.74. 

 

An Infoworks ICM model (developed from one provided by Wessex Water – the local water company) was 

used to model the response of part of Bridport’s surface drainage network (see the drainage area outlined in 

Figure 1). Cross-section data from an EA river model of the Asker (produced in 2013 by JBA) was also inserted 

into the Infoworks model to allow an integrated numerical replication of the urban drainage system and 

receiving watercourse flows. This original model was initially unverified.  However, after calibrating of the 

upstream rural response (with Dynamic TOPMODEL and HEC RAS), a 3% AEP year storm was run through 

the coupled model. The flooding extent from this simulation (caused by surcharged manholes in the drainage 

zone) is within 2% of the flooding area indicated by the national surface water flood map. The model was then 

deemed as giving an acceptable estimation of drainage behaviour.  
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Calibration of Models 

The response of the rural catchment (and subsequent implementation of NFM) was characterised by two 

coupled models: Dynamic TOPMODEL and HEC-RAS. The benefits of such a coupled approach have recently 

become recognised (Hankin, Metcalfe, Beven, & Chappell, 2019). 

 

Dynamic TOPMODEL (a descendent of TOPMODEL) is an academically-established, semi-distributed, semi 

conceptual hydrological model (Beven, 1979). It is freely available as a CRAN package in the programming 

language R, the structure for which is discussed in detail in Metcalfe, Beven and Freer (2015). Dynamic 

TOPMODEL has been applied widely. It has been used to evaluate spatial variability of rainfall (Younger, 

Freer, & Beven, 2009), estimate contaminant transfer (Page, Beven, Freer, & Neal, 2007) and quantify impact of 

NFM (Hankin et al., 2016; Metcalfe, Beven, Hankin, & Lamb, 2017). By defining and then computing the 

response of areas that respond in a hydrologically similar manner, the solver can characterise catchment-wide 

response in a computationally efficient manner. The areas (termed Hydrological Response Units (HRUs)) are 

defined using seven main parameters (see Table 1). Conceptually, each HRU is formed of three storage 

volumes: root zone, unsaturated and excess, which fill and empty depending on the parameterisation and 

rainfall input. Flux between HRUs (i.e. subsurface and surface flow) is represented as transfer between these 

storage volumes and is computed using (i) a weightings matrix (from the M8 multiple flow algorithm) and (ii) 

the kinematic slope-hydraulic gradient approximation.  

 

Table 1: Parameters and calibrated values in Dynamic TOPMODEL 

 

The Asker catchment was discretised primarily by the topographic wetness index (TWI) – a ratio of the 

contributing area and slope for any point. This follows similar approaches in the literature (Hankin et al., 2017; 

Metcalfe, Beven, Hankin, & Lamb, 2018). Thiessen polygons, defined by the gauges shown in Figure 1, were 

also incorporated into the discretisation to better capture rainfall distribution.  

 

A Monte Carlo procedure was used to calibrate the model, based on simulations run with a 15-minute time 

step from 00.15 on 17th January 2014 to 00.00 on 25th February 2014. The length of calibration period is 

comparable to other, event-based, Dynamic TOPMODEL calibrations for NFM (Metcalfe et al., 2017, 2018). 

The sampling bounds for 5000 parameter sets are given in Table 1. These bounds were informed by 

Parameter Description 
Sampling 

Range 

Final Value 

(2 s.f.) 

NFM Impact 

(see Table 1) 

ln T0 
[log 𝑚2/ℎ𝑟] 

Lateral saturated transmissivity [4 , 10] 9.3 
× 1.3 

(unlogged value) 

m 
[𝑚] 

Exponential decline in conductivity [0.001 , 0.015] 0.0036 × 1.2 

srz0 
[%] 

Initial root zone storage [0.1 , 0.3] 0.14 × 0.99 

srzmax 
[𝑚] 

Maximum root zone storage [0.98 , 1] 1.0 − 

td 
[ℎ𝑟/𝑚] 

Unsaturated zone time delay [10 , 60] 49 − 

vof 
[𝑚/ℎ𝑟] 

Overland flow routing velocity [80 , 150] 92 × 0.75 

vchan 
[𝑚/ℎ𝑟] 

Channel routing velocity [1000 , 2000] 1600 − 
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consideration of catchment characteristics and values used elsewhere in the literature (Beven & Freer, 2001; 

Freer, McMillan, McDonnell, & Beven, 2004; Metcalfe et al., 2018). The resultant simulations that achieved the 

peak flow within 10% were then ranked based on their replication of the inundation period (see Figure 3) and 

the Nash Sutcliffe Estimation.  This parameter set was then carried forward to the HEC-RAS calibration.  

 

In the CRAN implementation of Dynamic TOPMODEL, channel flow is routed to the catchment outlet using a 

‘time delay’ histogram which is based on the geographical layout of the river network. This is computationally 

efficient and has been shown to offer reasonable approximation in small catchments (Beven, 1979). However, 

using HEC-RAS to route channel flow enabled evaluation of in-channel NFM interventions and consideration 

of sub-catchment synchronisation. 

 

The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) has established solvers for 1D, 2D 

and coupled 1D-2D scenarios (US Army Corps of Engineers, 2016). The full 2D shallow flow equations were 

solved (using HEC-RAS’s implicit finite volume solver) to characterise flow across the catchment’s DEM. 

Although this may be computationally less efficient, the 2D model was much easier to couple with Dynamic 

TOPMODEL and avoided the need for surveyed data of upstream river reaches. Also, in such a dendritic river 

network, a 1D model for the whole catchment would have been large and cumbersome (a similar argument is 

found in (Liu & Merwade, 2018)).   

 

The two models were coupled by creating a 20m buffer around each of the 44 river reaches to act as HRUs. 

The input flows crossing into each of these (obtained from the Dynamic TOPMODEL solver) were then taken 

as individual reach inputs for the HEC-RAS model. The HEC-RAS Controller (a local API enabling 

automation of HEC-RAS modules) was used in a sensitivity analysis of a uniform channel roughness to 

calibrate the model. Manning’s roughness coefficients between 0.02 and 0.04 (at a 0.001 increment) were 

trialled. The final value was 0.024, which gave a NSE value of 0.83 when comparing the HEC-RAS output 

flows with the observed (above 0.8 is deemed satisfactory in such models (Buytaert & Beven, 2009)). Figure 3 

compares the final simulation with those observed at the downstream flow gauge (labelled FG1 in Figure 1).  

 

  
Figure 3: Calibration of coupled Dynamic TOPMODEL and HEC-RAS response 
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Although the coupled model has captured the maximum flow, across the calibration period the peak 

magnitudes are generally under-predicted slightly. While the flashiness of these larger events has been mostly 

replicated, the simulated response is more sluggish for smaller events. Although the base flow is under-

predicted, the model has captured the timing of simulated events. Given the purposes of this study, this was 

critical and this simulation was deemed an acceptable fit.  

 

Both upstream hydrographs were then fed into the Infoworks ICM model (as upstream inputs), resulting in 

periods of inundation of the downstream surface drainage outfall (DO1 in Figure 1). These periods of 

inundation have been defined as occurring when the receiving watercourse rises above the invert of the 

outfall pipe.  For the most part, the simulation has replicated these periods of inundation (see Figure 3). 

Across the 6 week calibration period, there were 28.5 hours of inundation observed, while 24 hours were 

simulated in the calibration. This slight under-estimation is primarily caused by two smaller events (the 

flashiness of which were not replicated in the calibration) which caused short periods of inundation.  

 

Results 

This study investigated the impact of interventions when applied across three upstream sub-catchments (see 

Figure 1 for their delineation). There are seven different combinations of intervention – three when applied in 

a single sub-catchment, three with two sub-catchments and another when all upstream areas are altered.  

These were all run through the upstream coupled model.  

 

Figure 4 shows the impact of these different combinations of intervention on the three of the largest flow 

peaks within the calibration period. All combinations reduce peak magnitude. In general the more sub-

catchments targeted with NFM, the greater the reduction. A single altered sub-catchment can decrease peak 

flows across this calibration period by anywhere between 4% and 10%. With two upstream areas this jumps to 

between 12% and 26%. With interventions across all three, peaks reduce between 19 and 28%. The base flows 

between these peaks saw minimal impact from any intervention.  

 

Figure 4 also shows that, through attenuation of the hydrograph, these interventions are impacting the time 

water-levels remain above the downstream outfall. The smallest peak (1st February) sees the greatest impact – 

with all intervention combinations reducing the time the downstream outfall is inundated (which in the plain 

calibration was 7.25 hours). The north and east interventions reduce this period by 30 and 90 minutes 

respectively. The south intervention has a substantially larger individual impact, causing a reduction of 2.75 

hours. Two sub-catchments have a wider range of improvement- reducing the inundation period to between 2 

and 5 hours (the most effective being the east-south combination). When all three have interventions, the 

model suggests that inundation is removed entirely. However, the two later peaks (on 7th and 15th February) 

do not see such positive impact. In fact, the attenuation of the larger peaks mean that inundation durations are 

either unaltered or even prolonged slightly. The model suggested the largest intervention could prolong 

inundation from the middle and largest peaks by 45 minutes. 
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Figure 4: Impact of NFM on peak flows within the calibration 

 

 

A series of seven design storms (all of which cause downstream outfall inundation) were also generated using 

FEH catchment descriptors and run through the coupled model. This was done in order to gain a better 

understanding of the impact of NFM on this catchment across a wider range of storms. Figure 5a compares 

peak reductions to changes in inundation duration for five separate storms with tree planting and woody 

debris present across all three sub-catchments simultaneously. This intervention lessened peak magnitude for 

the 10 year storm by 57% and also reduced the inundation by 3.75 hours. The impact on peak flow for the 15 

year storm is similar, but the reduction in inundation is much smaller – 0.75 hours. For larger events (from 20 

year returns) peak reductions remained significant but there were slight increases in the time that the outfalls 

were submerged (of 15 or 30 minutes).  

 

      
Figure 5: (a) Impact of design storms on downstream hydrograph and (b) individual contribution of different 

NFM types 
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Figure 6: Functionality of Bridport surface drainage before and after upstream NFM interventions during a (a) 

1 in 10 year storm; (b) 1 in 15 year storm; (c) 1 in 20 year storm; (d) 1 in 33 year storm 

 

 

 

   Flooded manhole     Surcharged manhole     Freely-draining manhole     Maximum flood extent 

 

 
 (before/after intervention)     (before/after intervention)            (before/after intervention)              (before/after intervention) 

 

 

 

(a) (b) 

(c) (d) 
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To understand more about the individual contributions of the two different forms of NFM, each one was run 

through the coupled model for every design storm. Figure 5b compares these individual contributions (when 

applied across all three sub-catchments) against the combined, overall peak flow reduction. As expected, peak 

reductions diminish with increasing storm severity. However, even for a 1 in 100 year storm, cross slope 

planting and woody debris cause 15% and 27% reductions respectively.   

 

Figure 6 demonstrates the ‘before’ and ‘after’ states of manholes in the Infoworks ICM model to demonstrate 

the impact of NFM on performance of the surface drainage network. In the unaltered catchment, the 10 year 

storm led to inundation of the network, without causing surcharging into the estate.  However, the upstream 

NFM intervention removes any surcharging within the urban system. The 15 and 20 year storms cause surface 

flooding in the estate (of differing extents). In both cases, the upstream intervention removes any surface 

flooding, although the system remains surcharged. Although there is still street flooding in the 33 year storm, 

the upstream interventions significantly reduce the maximum extent. This is very interesting because in 

Figure 5a the 20 and 33 year storms are shown to prolong the time the outfall is submerged. In fact, the 

attenuating impact of the interventions is delaying the pulse in the receiving water course, meaning more 

water can escape the urban system before the rural response submerges the outfall. 

 

 

Discussion 

NFM interventions are broadly successful in reducing the magnitude of peak flows in the River Asker during 

the calibration period (Figure 4). The peak attenuations also reduce inundation of the Bridport outfall, albeit 

within a more limited range of smaller events (up to a 1 in 20 year storm - from Figures 5a). This gives 

encouragement that other catchments, especially those containing frequently submerged outfalls, might also 

benefit from upstream interventions over that kind of window of smaller events.  

 

It is also interesting to note that each combination has a different relative impact on the calibration peaks. For 

example, the interventions in the north sub-catchment achieve the largest impact for the second peak but the 

smallest impact for the third. It is hypothesised that this results from the spatially varying rainfall (through the 

Thiessen polygons discussed earlier) influencing sub-catchment response. In the literature, the role of 

tributary timing on downstream response has been acknowledged as a determining factor of downstream 

response (Pattison, Lane, Hardy, & Reaney, 2014). However, in this case, there was no strong correlation 

between upstream interventions desynchronising tributaries and subsequent greater downstream reductions.  

 

Figure 5b demonstrates the effectiveness of two interventions individually and that, for more frequent storms, 

afforestation of the catchment’s slopes has greater impact. However, the figure also shows the woody debris 

intervention is more effective in more severe storms. This could be because the increased flows do not 

translate to proportionally greater water depths in the HEC-RAS model (given the river channel geometry is 

not explicitly considered). It should also be noted that no consideration for failure or movement of woody 

debris has been made, and this would become increasingly likely in severe storms.  Figure 5b also shows that, 

for every design storm, the sum of the two individual intervention reductions is greater than the reduction 

seen when they exist together in the catchment model. It is hypothesised that the attenuation caused by 

upstream interventions may be reducing the attenuating impacts of those lower in the hydrological system.  

 

The results in Figure 6 are encouraging. By reducing the likelihood of manhole surcharge during a 1 in 10 year 

storm, upstream NFM is maintaining the effective capacity of the drainage network, thereby reducing risk of 
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surface flooding from future storms. It has been recognised that improving the ability of a system to recover 

and prepare for further events makes the system more resilient (Bhattacharya-Mis & Lamond, 2014). Despite 

extending the duration of inundation, the interventions also have a positive impact on the system in more 

severe storms by reducing the amount of water discharged onto the roadway. This shows that both the 

duration and timing of the inundation period are critical in how upstream interventions impact downstream 

drainage functionality (particularly in larger events). Any de-synchronisation (of the river and drainage 

responses) would be reliant on the relative timing of the rainfall and therefore the storm track across the 

catchment. However, it should also be noted that with the increasing storm severity, the evidence behind 

intervention impact is weaker (Dadson et al., 2017) and, in general, other flooding mechanisms will become 

dominant (e.g. fluvial). It could also be argued that, although interventions are having a positive impact on a 

single storm, by prolonging the outfall being drowned the system is less resilient to further rainfall (i.e. in 

multiple events). There are also other discharges into the Asker River from Bridport and differing local outfall 

geometries will result in different responses to upstream interventions. 

 

The results in Figure 6 assume a uniform rainfall across both rural and urban catchments. Given the flashiness 

of the urban response, this assumption has a large bearing on the extent of subsequent surcharging of the 

drainage network. Differing storm tracks will alter the relative timing of the two responses, potentially 

creating wider (or reduced) surface flooding. Evaluation over a wider range of storm scenarios would provide 

a more detailed understanding of the mitigating effects of the selected NFM interventions.  

 

All of these findings must be tempered by significant sources of error in the modelling. Uncertainty in 

distributed hydrological modelling generally have been extensively discussed in the literature (Beven et al., 

2015; Jeremiah, Sisson, Marshall, Mehrotra, & Sharma, 2011; Montanari & Di Baldassarre, 2013; Refsgaard & 

Storm, 1996). In addition, although the calibration procedure produced a reasonable fit with observed flows 

and has academic precedent, it is a highly idealised approach. Another significant source of uncertainty comes 

from the fact the evidence behind the impact of physical NFM remains inconclusive. Any numerical 

replication of intervention impact is therefore subject to significant error (in terms of both magnitude and 

parameterisation). Although representation of the interventions used in this study has been informed by the 

literature (see Table 1), extrapolation of their impact within the Asker catchment introduces further 

uncertainty.  

 

Further study would benefit from sensitivity analyses of these numerical permutations to improve confidence 

in their downstream impact. Another source of error is the loose-coupling mechanisms between the three 

constituent models: Dynamic TOPMODEL, HEC-RAS and Infoworks ICM., which prevents any feedback 

between systems. Inputs into the river channel model from the hydrological model are independent of the 

level in the receiving watercourse. The 2D HEC-RAS model itself has been based on a 5m DEM (in the absence 

of sufficient river section data) and while this has enabled representation of woody debris across the 

catchment, the methodology would be improved with better representation of channel geometries. Also, any 

backwater effects across the downstream flow gauge (i.e. drowning of the weir) are not represented within the 

model.  
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Conclusions 

The case study results have indicated that significant upstream interventions in the Asker catchment have the 

potential to attenuate peak flows by up to 28%.  Results also suggest that these interventions could reduce the 

duration that drainage outfalls are submerged during frequent events (up to 1 in 20 year storms) and this has 

been shown to improve the resiliency of the urban surface water system. However, in larger events (e.g. 

beyond a 30 year return period), impact is more nuanced with upstream interventions promoting discharge 

from the system despite also slightly prolonging inundation of the outfall.  

 

While this is encouraging, it should also be recognised these results are based on a calibration period where 

the rainfall input has been corrected to ensure an equitable mass balance through the catchment (the reasoning 

and justification behind this are provided in the ‘Available Data’ section). The calibration could therefore be 

under-estimating infiltration rates across the catchment, meaning impact from physical tree planting could be 

reduced. Different net rainfall intensities could also change tributary timings and the impact of woody debris 

on downstream peaks.  

 

In practice, stakeholder engagement is critical for any NFM implementation project (Howgate & Kenyon, 

2009; Lavers & Charlesworth, 2017; Short et al., 2019). Although the interventions evaluated here would 

require wholescale changes in the management of the Asker River catchment, they demonstrate the impact 

available from an ‘NFM max’. By expanding stakeholder understanding of flood risk sources, one can increase 

engagement in potential flood mitigation measures (Rust & Venn, 2018). This paper aims to widen stakeholder 

engagement in new direction by indicatively demonstrating the ability of selected upstream, natural 

interventions to improve resiliency within downstream surface drainage systems.  

 

Further research with this methodology could take many different directions. A potential area of interest 

would be diversifying the interventions evaluated (e.g. on-line ponds, runoff attention features, hedgerow 

planting) to better understand better how they interact and complement each other within a CBFM approach. 

Another would be consideration of the desynchronisation of urban and rural responses under a variety of 

storm tracks, which could also provide further evidence of the benefits of catchment-scale interventions.  

 

The paper has also shown that any such benefit will be highly specific to the nature, location and 

combinations of any NFM interventions as well as to the multi-dimensional physical characteristics of that 

particular river catchment. It follows that any new physical local NFM project that includes achieving more 

secure downstream drainage as one of its objectives would be likely to achieve optimum impact if based, in 

part, on a preliminary modelling exercise similar to that described above. 

 

 

Acknowledgements 

The authors gratefully acknowledge the EPSRC for funding this research through the EPSRC Centre for 

Doctoral Training in Future Infrastructure and Built Environment (EPSRC grant reference number 

EP/L016095/1) and Urban Flood Resilience (EPSRC grant reference number EP/P004180/1). The authors also 

thank Innovyze UK and Wessex Water for support in providing models and data to enable this study.  

 

Word Count 

The word count for this paper (excluding references and tables) is 5297.  

Page 15 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

15 

 

 

 

 

Phil. Trans. R. Soc. A. 

 

 

 

Reference List 

Addy, S., & Wilkinson, M. (2016). An assessment of engineered log jam structures in response to a flood event 

in an upland gravel-bed river. Earth Surface Processes and Landforms, 41, 1658–1670. 

https://doi.org/10.1002/esp.3936 

Archer, N. A. L., Bonell, M., Coles, N., MacDonald, A. M., Auton, C. A., & Stevenson, R. (2013). Soil 

characteristics and landcover relationships on soil hydraulic conductivity at a hillslope scale: A view 

towards local flood management. Journal of Hydrology, 497, 208–222. 

https://doi.org/10.1016/j.jhydrol.2013.05.043 

BBC News. (2014, February 15). UK storm: Strong winds and rain batter Dorset. Retrieved from 

https://www.bbc.co.uk/news/uk-england-dorset-26199916 

BBC News. (2016). “Limited benefit” Yalding flood schemes dropped -. Retrieved August 2, 2017, from 

http://www.bbc.co.uk/news/uk-england-kent-36973257 

Beven, K. (1979). On the generalized kinematic routing method. Water Resources Research, 15(5), 1238–1242. 

https://doi.org/10.1029/WR015i005p01238 

Beven, K., Bathurst, J., O’Connell, E., Littlewood, I., Blackie, J., & Robinson, M. (2015). Hydrological 

Modelling. In J. Rodda & M. Robinson (Eds.), Progress in Modern Hydrology: Past, Present and Future (pp. 

216–239). Chichester: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119074304 

Beven, K., & Freer, J. (2001). A dynamic TOPMODEL. Hydrological Processes, 15(10), 1993–2011. 

https://doi.org/10.1002/hyp.252 

Bhattacharya-Mis, N., & Lamond, J. (2014). Towards an integrated framework for building resilience using 

flood memory in built environment. In 2nd International Conference on Urban Sustainability and Resilience. 

London. 

Bornschein, A., & Pohl, R. (2018). Land use influence on flood routing and retention from the viewpoint of 

hydromechanics. Journal of Flood Risk Management, 11, 6–14. https://doi.org/10.1111/jfr3.12289 

Burgess-Gamble, L., Ngai, R., Wilkinson, M., Nisbet, T., Pontee, N., Harvey, R., … Quinn, P. (2017). Working 

with Natural Processes – Evidence Directory. Bristol. Retrieved from 

http://www.gov.uk/government/organisations/environme 

Butler, D., & Davies, J. (2011). Urban Drainage, (3rd ed.). Abingdon: Taylor and Francis. Retrieved from 

http://www.kuliah.ftsl.itb.ac.id/wp-content/uploads/2016/10/Urban-Drainage-3rd-Edition.pdf 

Buytaert, W., & Beven, K. (2009). Regionalization as a learning process. Water Resources Research, 45(11), 1–13. 

https://doi.org/10.1029/2008WR007359 

Calder, I. R. (1986). A stochastic model of rainfall interception. Journal of Hydrology, 89, 65–71. 

https://doi.org/10.1016/0022-1694(86)90143-5 

Committee on Climate Change. (2016). UK Climate Change Risk Assessment 2017 Synthesis Report. Retrieved 

from https://www.theccc.org.uk/wp-content/uploads/2016/07/UK-CCRA-2017-Synthesis-Report-

Committee-on-Climate-Change.pdf 

Craven, E., & Littlewood, S. (2011). Surface Water Management Plan for the Royal Borough of Kingston upon 

Thames. Thames Water; Environment Agency; Greater London Authority. 

Curran, J. C. (2010). Mobility of large woody debris (LWD) jams in a low gradient channel. Geomorphology, 116, 

320–329. https://doi.org/10.1016/j.geomorph.2009.11.027 

Dadson, S. J., Hall, J. W., Murgatroyd, A., Acreman, M., Bates, P., Beven, K., … Sear, D. (2017). A restatement 

of the natural science evidence concerning catchment-based “natural” flood management in the UK. The 

Royal Society, 473. https://doi.org/10.1098/rspa.2016.0706 

Dixon, S. J., & Sear, D. A. (2014). The influence of geomorphology on large wood dynamics in a low gradient 

Page 16 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

16 

 

 

 

Phil. Trans. R. Soc. A.  

 

 

 

headwater stream. Water Resources Research, 50(12), 9194–9210. https://doi.org/10.1002/2014WR015947 

Dixon, S. J., Sear, D. A., Odoni, N. A., Sykes, T., & Lane, S. N. (2016). The effects of river restoration on 

catchment scale flood risk and flood hydrology. Earth Surface Processes and Landforms, 41(7), 997–1008. 

https://doi.org/10.1002/esp.3919 

Douglas, I., Kobold, M., Lawson, N., Pasche, E., & White, I. (2007). Characterisation of Urban Streams and 

Urban Flooding. In R. Ashley, S. Garvin, E. Pasche, A. Vassilopoulos, & C. Zevenbergen (Eds.), Advances 

in Urban Flood Management (pp. 29–58). London: Taylor and Francis. 

Ellis, J. B., & Viavattene, C. (2014). Sustainable urban drainage system modeling for managing urban surface 

water flood risk. Clean - Soil, Air, Water, 42(2), 153–159. https://doi.org/10.1002/clen.201300225 

Forbes, H., Ball, K., & McLay, F. (2015). Natural Flood Management Handbook. Stirling: Scottish Environment 

Protection Agency. https://doi.org/https://doi.org/10.13140/rg.2.1.4956.1444 

Freer, J. E., McMillan, H., McDonnell, J. J., & Beven, K. J. (2004). Constraining dynamic TOPMODEL responses 

for imprecise water table information using fuzzy rule based performance measures. Journal of Hydrology, 

291, 254–277. https://doi.org/10.1016/j.jhydrol.2003.12.037 

Hankin, B., Johnson, D., Craigen, I., Chappell, N., Page, T., & Metcalfe, P. (2016). Natural Course Project : 

Strategic Investigation of Natural Flood Management in Cumbria. Lancaster University Environment Centre. 

Hankin, B., Metcalfe, P., Beven, K., & Chappell, N. A. (2019). Integration of hillslope hydrology and 2D 

hydraulic modelling for natural flood management. Hydrology Research. 

https://doi.org/10.2166/nh.2019.150 

Hankin, B., Metcalfe, P., Johnson, D., Chappell, N. A., Page, T., Craigen, I., … Beven, K. (2017). Strategies for 

Testing the Impact of Natural Flood Risk Management Measures. In T. Hromadka & P. Rao (Eds.), Flood 

Risk Management (pp. 1–39). Intech Open Source. https://doi.org/10.5772/intechopen.68677 

Hannaford, J., & Marsh, T. (2008). High flow and flood trends in a network of undisturbed catchments in the 

UK. International Journal of Climatology, 28(November 2007), 1325–1338. https://doi.org/10.1002/joc.1643 

Healey, J. ;, Smith, A. ;, Pagella, T. ;, & Ford, H. (2016). Trees, water storage and flooding in upland agricultural 

landscapes FLOOD MITIGATION. Forestry and Timber News, 27–28. Retrieved from 

http://research.bangor.ac.uk/portal/files/15988845/Ford_H_et_al_Trees_water_storage_and_flooding.pdf 

Howgate, O. R., & Kenyon, W. (2009). Community cooperation with natural flood management: A case study 

in the Scottish Borders. Area, 41(3), 329–340. https://doi.org/10.1111/j.1475-4762.2008.00869.x 

Hughes, A. G., Vounaki, T., Peach, D. W., Ireson, A. M., Jackson, C. R., Butler, A. P., … Wheater, H. S. (2011). 

Flood risk from groundwater: Examples from a Chalk catchment in southern England. Journal of Flood 

Risk Management, 4(3), 143–155. https://doi.org/10.1111/j.1753-318X.2011.01095.x 

Iacob, O., Brown, I., & Rowan, J. (2017). Natural flood management, land use and climate change trade-offs: 

the case of Tarland catchment, Scotland. Hydrological Sciences Journal, 62(12), 1931–1948. 

https://doi.org/10.1080/02626667.2017.1366657 

Jackson Hyder Consulting. (2015). Paddock Wood Flood Alleviation Study. Guildford. Retrieved from 

https://www.kent.gov.uk/__data/assets/pdf_file/0004/35455/Paddock-Wood-SWMP-stage-2-report.pdf 

Jeremiah, E., Sisson, S., Marshall, L., Mehrotra, R., & Sharma, A. (2011). Bayesian calibration and uncertainty 

analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo 

samplers. Water Resources Research, 47(7), 1–13. https://doi.org/10.1029/2010WR010217 

Jimenez-Martinez, J., Smith, M., & Pope, D. (2016). Prediction of groundwater-induced flooding in a chalk 

aquifer for future climate change scenarios. Hydrological Processes, 30(4), 573–587. 

https://doi.org/10.1002/hyp.10619 

Lane, S. N. (2017). Natural flood management. Wiley Interdisciplinary Reviews: Water, 4(3), 1–14. 

https://doi.org/10.1002/wat2.1211 

Lane, S. N., & Milledge, D. G. (2013). Impacts of upland open drains upon runoff generation: A numerical 

Page 17 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

17 

 

 

 

 

Phil. Trans. R. Soc. A. 

 

 

 

assessment of catchment-scale impacts. Hydrological Processes, 27(12), 1701–1726. 

https://doi.org/10.1002/hyp.9285 

Lavers, T., & Charlesworth, S. (2017). Opportunity mapping of natural flood management measures: a case 

study from the headwaters of the Warwickshire-Avon. Environmental Science and Pollution Research, 

25(20), 19313–19322. https://doi.org/10.1007/s11356-017-0418-z 

Liu, Z., & Merwade, V. (2018). Accounting for model structure, parameter and input forcing uncertainty in 

flood inundation modeling using Bayesian model averaging. Journal of Hydrology, 565, 138–149. 

https://doi.org/10.1016/J.JHYDROL.2018.08.009 

Marshall, M. R., Ballard, C. E., Frogbrook, Z. L., Solloway, I., Mcintyre, N., Reynolds, B., & Wheater, H. S. 

(2014). The impact of rural land management changes on soil hydraulic properties and runoff processes: 

Results from experimental plots in upland UK. Hydrological Processes, 28(4), 2617–2629. 

https://doi.org/10.1002/hyp.9826 

Metcalfe, P., Beven, K., & Freer, J. (2015). Dynamic TOPMODEL: A new implementation in R and its 

sensitivity to time and space steps. Environmental Modelling and Software, 72, 155–172. 

https://doi.org/10.1016/j.envsoft.2015.06.010 

Metcalfe, P., Beven, K., Hankin, B., & Lamb, R. (2017). A modelling framework for evaluation of the 

hydrological impacts of nature-based approaches to flood risk management, with application to in-

channel interventions across a 29-km2 scale catchment in the United Kingdom. Hydrological Processes, 

31(9), 1734–1748. https://doi.org/10.1002/hyp.11140 

Metcalfe, P., Beven, K., Hankin, B., & Lamb, R. (2018). A new method , with application , for analysis of the 

impacts on flood risk of widely distributed enhanced hillslope storage. Hydrology and Earth System 

Sciences, 22, 2589–2605. https://doi.org/10.5194/hess-22-2589-2018 

Montanari, A., & Di Baldassarre, G. (2013). Data errors and hydrological modelling: The role of model 

structure to propagate observation uncertainty. Advances in Water Resources, 51, 498–504. 

https://doi.org/10.1016/J.ADVWATRES.2012.09.007 

Norbury, M., Shaw, D., & Jones, P. (2018). Combining hydraulic modelling with partnership working: towards 

practical natural flood management. Proceedings of the Institution of Civil Engineers - Engineering 

Sustainability. https://doi.org/10.1680/jensu.17.00025 

Odoni, N. A., & Lane, S. N. (2010). Assessment of the Impact of Upstream Land Management Measures on Flood 

Flows in Pickering Beck using OVERFLOW. Durham University. Retrieved from 

https://www.forestry.gov.uk/pdf/Pickering_crim_report_April_2010.pdf/$file/Pickering_crim_report_Ap

ril_2010.pdf 

Page, T., Beven, K., Freer, J., & Neal, C. (2007). Modelling the chloride signal at Plynlimon, Wales, using a 

modified dynamic TOPMODEL incorporating conservative chemical mixing (with uncertainty). 

Hydrological Processes, 21, 292–307. https://doi.org/10.1002/hyp.6186 

Palla, A., Colli, M., Candela, A., Aronica, G. T., & Lanza, L. G. (2018). Pluvial flooding in urban areas: the role 

of surface drainage efficiency. Journal of Flood Risk Management, 11, S663–S676. 

https://doi.org/10.1111/jfr3.12246 

Pattison, I., Lane, S. N., Hardy, R. J., & Reaney, S. M. (2014). The role of tributary relative timing and 

sequencing in controlling large floods. Water Resources Research, 50, 5444–5458. 

https://doi.org/10.1002/2013WR014067 

Penning-Rowsell, E. C. (2015). A realistic assessment of fluvial and coastal flood risk in England and Wales. 

Transactions of the Institute of British Geographers, 40(1), 44–61. https://doi.org/10.1111/tran.12053 

Prosdocimi, I., Kjeldsen, T. R., & Svensson, C. (2014). Non-stationarity in annual and seasonal series of peak 

flow and precipitation in the UK. Hazards Earth Syst. Sci, 14, 1125–1144. https://doi.org/10.5194/nhess-14-

Page 18 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

18 

 

 

 

Phil. Trans. R. Soc. A.  

 

 

 

1125-2014 

Ramsbottom, D., Tarrant, O., & Cooper, A. (2006). Sources of flooding on floodplains of the tidal Thames. In 

Proceedings of the 41st Defra Flood and Coastal Management Conference . University of York: HR Wallingford. 

Retrieved from 

http://eprints.hrwallingford.co.uk/63/1/HRPP325_Sources_of_flooding_on_floodplains_of_the_tidal_Tha

mes.pdf 

Refsgaard, J. C., & Storm, B. (1996). Construction, Calibration and Validation of Hydrological Models. In M. 

Abbott & J. C. Refsgaard (Eds.), Distributed Hydrological Modelling (pp. 41–54). Kluwer Academic. 

https://doi.org/10.1007/978-94-009-0257-2 

Robinson, E., Blyth, E., Clark, D., Comyn-Platt, E., Finch, J., & Rudd, A. (2016). Climate hydrology and ecology 

research support system potential evapotranspiration dataset for Great Britain (1961-2015) [CHESS-PE]. 

NERC Environmental Information Data Centre. https://doi.org/https://doi.org/10.5285/8baf805d-39ce-

4dac-b224-c926ada353b7 

Rouillard, J. J., & Spray, C. J. (2017). Working across scales in integrated catchment management: lessons 

learned for adaptive water governance from regional experiences. Regional Environmental Change, 17, 

1869–1880. https://doi.org/10.1007/s10113-016-0988-1 

Rust, W., & Venn, P. (2018). Are the benefits of integrated catchment modelling being realized in the United 

Kingdom? International Journal of Environmental Impacts, 1(3), 232–239. https://doi.org/10.2495/EI-V1-N3-

232-239 

Short, C., Clarke, L., Carnelli, F., Uttley, C., & Smith, B. (2019). Capturing the multiple benefits associated with 

nature-based solutions: Lessons from a natural flood management project in the Cotswolds, UK. Land 

Degradation and Development, 30(3), 241–252. https://doi.org/10.1002/ldr.3205 

Stratford, C., House, A., Old, G., Acreman, M., Dueñas-Lopez, M., Miller, J., … Reynard, N. (2017). Do trees in 

UK-relevant river catchments influence fluvial flood peaks? Environment Agency and Forest Research. 

Retrieved from http://nora.nerc.ac.uk/id/eprint/517804/7/N517804CR.pdf 

Thomas, H., & Nisbet, T. R. (2007). An assessment of the impact of floodplain woodland on flood flows. Water 

and Environment Journal, 21, 114–126. https://doi.org/10.1111/j.1747-6593.2006.00056.x 

UK Government. (2019). Long term flood risk information. Retrieved July 24, 2019, from https://flood-

warning-information.service.gov.uk/long-term-flood-risk/map 

US Army Corps of Engineers. (2016). HEC-RAS: Hydraulic Reference Manual. Davis. Retrieved from 

https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Reference Manual.pdf 

West, G., & Mann, K. (1987). Bridport Flood Alleviation Scheme. Water and Environment Journal, 1(3), 291–296. 

https://doi.org/10.1111/j.1747-6593.1987.tb01228.x 

Wheater, H., & Evans, E. (2009). Land use, water management and future flood risk. Land Use Policy, 

26(Supplement 1), 251–264. https://doi.org/10.1016/j.landusepol.2009.08.019 

Younger, P., Freer, J., & Beven, K. (2009). Detecting the effects of spatial variability of rainfall on hydrological 

modelling within an uncertainty analysis framework. Hydrological Processes, 23, 1988–2003. 

https://doi.org/10.1002/hyp.7341 

 

 

 

Page 19 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


