
 

From disorder to order:  

the importance of context in protein folding 

and binding mechanisms 

 

 

 

 

 

 

Carolina Altomar Testa Furtado de Mendonça 

Wolfson College 

University of Cambridge 

September 2019 

 

This dissertation is submitted for the degree of Doctor of Philosophy



 
 

 
i 

Declaration 
This dissertation is the result of my own work and includes nothing which is the outcome of 

work done in collaboration, except where specifically indicated in the Preface or specified in 

the text. It is not substantially the same as any that I have submitted for a degree or diploma or 

other qualification at the University of Cambridge or any other University, and no part has 

already been or is concurrently being submitted for any degree, diploma or other qualification. 

It does not exceed the 60,000-word limit, as imposed by the Physics and Chemistry Degree 

Committee. 

 

Carolina A. T. F. de Mendonça 

September 2019 

 

 

 

 

  



 
 

 
ii 

Summary 
Anfinsen’s seminal work has shown that the information required for a protein to fold into its 

specific three-dimensional structure is encoded into its amino acid sequence. The protein 

structure was believed to determine its activity, meaning that a protein needs to fold in order to 

function. More recently, intrinsically disordered proteins (IDPs) have been shown to represent 

a significant portion of the proteome. Despite the lack of a predefined structure, they still play 

important roles in cellular function, challenging the structure-function paradigm. Proteins are 

largely studied in isolated conditions, but in a cellular environment they are part of a vastly 

more complex system. The work presented here aims to shed light on how context can influence 

folding and binding mechanisms.  

First, we used SasG – a bacterial protein that defies the disorder prediction with its unique 

sequence composition and unusual structure – as a template to investigate co-translational 

folding, and how the presence of the ribosome can affect its folding mechanism. SasG in vitro 

translation was investigated utilising force profile experiments. We showed that both the G52 

and E-G52 constructs can fold very early, when still inside the vestibule of the ribosome. 

Moreover, our results suggest that non-native interactions can also provide sufficient force to 

release the stall sequence. 

Next we employed protein members of the BCL-2 family – involved in controlling the cell 

death mechanism – to understand what encodes a coupled folding and binding reaction. 

Although displaying a variety of conformations, some IDPs can fold upon binding to a partner 

protein. Promiscuous binding is a great advantage of disordered molecules, as multiple IDPs 

are able to bind and fold to the same partner protein. This raises the question of what 

orchestrates a coupled folding and binding reaction: the IDP or the partner protein? Using phi-

value analysis we studied four IDP-partner protein complexes, composed of alternative pairs of 

BCL-2 family members. In the bimolecular context, the disordered protein dictates the 

transition state interactions. Therefore, analogous to Anfinsen’s postulate, the folding pathway 

is encoded by the protein that folds, even when binding to another macromolecule is required.  

Finally, studies of the BCL-2 member BID on its full-length context showed that it cannot 

interact with its partner A1 unless it is cleaved and unfolded (tBID). These results provide 

insights on the role of tBID as a player during programmed cell death and hence why the 

pathway of cleaving BID with caspase is energetically favourable.  
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1 Introduction 

 

1.1  From DNA to protein 

The discovery of the DNA double helix structure in 1953 (Watson & Crick, 1953) is 

considered a milestone in the history of science as it opened new perspectives in the way 

biology is perceived. The subsequent interest in how genes control the cellular chemical 

processes gained vast attention in the scientific community and gave rise to very powerful 

techniques (e.g. recombinant DNA tools, gene sequencing and engineering). Moreover, 

major advances such as mapping the human genome (Venter et al., 2001; Lander et al., 

2001) and the promise of gene therapy, all have their origins in the unveiling of the DNA 

structure.  

The two DNA strands are known as polynucleotides, since the monomeric units are called 

nucleotides. DNA nucleotides are comprised of a phosphate, a pentose sugar (deoxyribose) 

and four nitrogenous bases (adenosine, A; cytosine, C; guanine, G and thymine, T; 

Figure 1.1).  

   

Figure 1.1:Schematic of DNA nucleotides.  

Each group of three nucleotides, named codons, contain the coding information for an amino 

acid (e.g. GGG = glycine). The great potential of DNA is to encode genes from codons. 

Genes are a sequence of codons that encode multiple amino acids. These covalently linked 

amino acid polymers, classically known as proteins, are key players in cellular function.   

H	

Phosphate	

Pentose	sugar	
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1.2 Protein building blocks 

Considering that in a codon the 4 different DNA nucleotide bases should be arranged in a 

group of 3 to encode an amino acid, one could expect that 64 different amino acids could 

be produced (43). However, only 20 naturally occurring amino acids exist, with different 

codons being able to encode the same amino acid. This biological strategy reduces the 

chances of a single nucleotide mutation resulting in a different amino acid and potentially 

altering the protein sequence, structure and function. Amino acids are classically divided 

into four different groups, based on their chemical properties: charged, aromatic, non-polar 

and polar (Figure 1.2). 

 

Figure 1.2: Naturally occurring amino acids represented by their structures, full names, three letters 
and single letter codes. pKa values at pH 7 are reported for charged residues. Structures were 
constructed using ChemDraw 18.2.   
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Amino acids are the protein building blocks, as they form a linear polymer, known as a 

polypeptide chain, where the monomeric units are linked through the peptide bonds (ω). 

The peptide bond is planar and can be in two conformations: trans (ω =180˚) or cis (ω =0˚) 

(Figure 1.3). Due to steric clashes of the polypeptide side chain, the vast majority of peptide 

bonds are found in trans conformation (Stewart et. al., 1990). Polypeptide backbones 

provide two extra rotational bonds, known as psi (ψ) and phi (ϕ) torsion angles (Figure 1.3). 

 

Figure 1.3: Peptide bond conformations. Tripeptide structures showing the first peptide bond (ω) 
in (A) trans and (B) cis conformations. Psi (ψ) and (ϕ) angles are also represented. R indicates the 
amino acid side chains. Structures were constructed using ChemDraw 18.2.  

 

1.3 From a polypeptide chain to a folded protein 

In vivo, proteins are normally found in solution. Interactions between the amino acids and 

the solvent can influence the psi and phi angles of a polypeptide chain. However, intra-

molecular interactions can also occur and allow the extended chain of residues to fold into 

a more compact, well-packed three-dimensional structure (Figure 1.4). When the folded 

state is lower in energy compared to the denatured state, folding becomes a spontaneous 

event. Despite the specificity of the inter-residue interactions, folded proteins are only 

marginally stable, with the Gibbs free energy for folding (ΔGfolding) of about -2 to -10 

kcal.mol- 1 (Savage et al. 1993; Taverna and Goldstein 2002). A single hydrogen bond, for 

instance, is estimated to contribute with 1-5 kcal.mol-1 (Fersht et al. 1985), suggesting that 

all interactions can significantly affect protein stability.  
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Figure 1.4: A polypeptide chain can fold to form a more compact 3-dimensional structure. (A) an 
extended, 1-dimentional structure of a polypeptide chain. (B) interactions of residues in the 
polypeptide chain can drive the folding of the molecule, forming a more compact, structured 
conformation. For simplicity, only the backbone structure is represented, with carbons (gray), 
nitrogen (blue) and oxygen (red) atoms illustrated. Structures were constructed using PyMOL 
(version 1.5.0.4, Schrödinger) and the PDB code 1A2P. 

 

1.3.1  Hydrogen bonds 

A hydrogen bond is essentially an electrostatic attraction between a hydrogen covalently 

bound to a highly electronegative atom – the donor (e.g. oxygen, nitrogen, fluorine) and 

another electronegative atom containing an unshared pair of electrons – the acceptor. In a 

polypeptide chain, hydrogen bonds can be formed between the amide (donor) and the 

carbonyl groups (acceptor) present in the amino acids backbones. Although the formation 

of intra-molecular hydrogen bonds seems to be sufficient and very favourable, the solvent 

also needs to be considered (Dill 1990; Hunter 2004). Water can act as a hydrogen bond 

donor or acceptor. Since hydrogen bonds can be formed between residue and solvent, 

intramolecular hydrogen bonds do not confer a significant contribution to protein stability. 

Nevertheless, specific structures can be constructed with the hydrogen bonds between the 

amino acids, which makes this type of interaction very important to the ability of proteins 

to adopt a folded conformation. 
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1.3.2 Van der Waals  

Van der Waals is a distance-dependant interaction based on attraction and repulsion forces. 

It differs from covalent and ionic interactions, where attractions result in the formation of a 

chemical electronic bond. In comparison, van der Waals force is weaker and is strongly 

influenced by the distance between the interacting molecules (Roth et al, 1996). Atoms of 

any kind have fluctuating electron distribution relative to their nuclei, resulting in transient 

dipoles. When two atoms are close in proximity, the dipole of one can induce a dipole on 

the other, leading to an attraction force. However, the decrease of the distance between the 

two atoms can cause the two electron orbits to overlay, causing a repulsion effect. The 

optimal distance between the two atoms required for an effective van der Waals interaction 

is dependent on the nature of the atom. When a protein folds into its three-dimensional 

conformation, the atoms are packed in a distance that favours dipole interaction, van der 

Waals force play significant role in protein structure formation and stability (Pace, 2014).  

 

1.3.3 Effect of electrostatics 

Considering the 20 naturally occurring amino acids, at different pH environment, a subset 

of them can be ionised, resulting in either loss or acceptance of a proton (Figure 1.2). 

Electrostatic interactions can be formed by the attraction and repulsion of charges. Although 

hydrogen bonds and van der Waals force are also considered to be electrostatic in nature, 

charge-charge interactions can be effective at much longer distances (e.g. 5-10 Å) (Zhou 

and Pang 2018). Therefore, opposite charged interactions can be expected to substantially 

drive protein folding. However, the aqueous nature of the solvent needs to be considered: 

dipoles present in water molecules allow not only the hydrogen bond formation but also 

charge-charge interactions to occur between the water and the charged residues. 

Consequently, when polypeptide chains fold, most polar side chains seek the exterior, where 

they can be solvated by water molecules in the solvent (Perutz 1978). Nonetheless, charged 

interactions can contribute to the formation of the correct structure upon folding. An 

unpaired charged residue is likely to be located in the solvent accessible surface of the 

protein, where it can interact with water. For that reason, electrostatics interactions can also 

play a role in promoting protein solubility.   
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1.3.4 Hydrophobic effect 

The hydrophobic effect is the propensity of non-polar substances to attract each other in an 

aqueous environment, in order to exclude the water molecules (Chandler 2005). 

Considering the protein building blocks, non-polar amino acids would repel water 

molecules, forming a hydrophobic core. Note that the attractive forces between non-polar 

residues are not driven by the amino acids per se, but originate from the water molecules. 

There are two hypothesis that try to explain this effect: 1) Water molecules have a decrease 

in entropy in the presence of hydrophobic molecules. The water molecules undergo a special 

rearrangement around the hydrophobic residues in order to maximise their ability to form 

hydrogen bonds (Ball 2011; Camilloni et al. 2016). 2) Hydrophobic residues create an 

enthalpic penalty by disrupting the water hydrogen bond network (Lum, 1999). Either way, 

a solvent exposed hydrophobic group in a protein structure would imply an energetic 

disadvantage. Therefore, the hydrophobic packing of a polypeptide chain is associated with 

a substantial gain in free energy. For that reason, the hydrophobic effect is considered the 

driving force of protein folding (Dill, 1990; Pace 2014). 

 

1.3.5 Disulphide bonds 

Typically called S-S bonds, disulphide bonds are covalent interactions between two thiol 

groups that are located in close proximity in space. The thiol group present in the cysteine 

residue can form S-S bonds when two of these residues are in an oxidising environment and 

close to each other. Hence, it is more likely to form these interactions in a folded state, 

where the residues are in a much closer proximity, compared to the unfolded state. 

Although, the formation of a disulphide bond after the protein is folded can provide an 

enthalpic gain and contribute to the stability of the folded state, this is not always true 

(Creighton 1988). Formation of disulphide bonds can increase the strain of the native state 

structure (Clarke, 1995a; Clarke, 1995b) as well as stabilising the unfolded state by the 

presence of the intramolecular interactions (Clarke et al. 2000). Although some of the 

proteins studied in this thesis contain cysteine residues, none of them have native disulphide 

bonds present in their folded structure. 
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1.4 Protein structure 

Proteins can adopt different conformational structures, with the simplest being the uni-

dimensional covalent linkage of the amino acids forming a polypeptide chain, known as 

primary structure. In order to adopt more complex structures, amino acids psi and phi angles 

can experience torsions that allow a structure rearrangement. Although the possibilities 

might be vast, many of the psi (ψ) and phi (ϕ) angle combinations, and the associated 

structure conformations, are not favourable due to steric clashes (Ramachandran, 1963). 

The Ramachandran plot (Figure 1.5) describes the torsional psi and phi angles of the amino 

acids in a peptide.  

 

Figure 1.5: General Ramachandran plot. psi (ψ) and phi (ϕ) angle combinations of a typical amino 
acid residue is restricted to the outlined regions. Amino acids (black points) usually fall within 
favored regions (interior lines). The regions favor distinct secondary structures: α-helices (α), left-
handed α-helices (αL) and β-sheets (β). Figure was adapted from Lovell et al., 2003 and shows the 
favourable psi and phi angle combinations for all amino acids, except glycine and proline.  

As previously discussed, all amino acid residues with the exception of prolines, are capable 

of forming hydrogen bonds with each other through both amide and carbonyl groups. 

Considering the unfavourable psi and phi angle torsions, intramolecular hydrogen bonds 

can occur in two manners: 1) the carbonyl group of one residue (i) can interact with the 

amide group of another residue located 3 to 4 residues ahead (i+4) (Figure 1.6, A). These 

interactions originate a helical structure, most commonly found with turns every 3.6 

residues, known as α-helices. 2) Interactions can also occur between the carbonyl and amide 

groups of amino acids that are much further apart (e.g. when a turn is introduced in a 

polypeptide chain). These can originate much more extended structures, known as β-sheets 

αL
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(Figure 1.6, B). The torsion angles in α-helices and β-sheets confers a much more ordered 

assembly in comparison with the flexible primary structure of a polypeptide chain, and 

together they represent the secondary structures of proteins.  

   

Figure 1.6: Intramolecular hydrogen bonding generates protein secondary structures. (A) In an α-
helix, the carbonyl of one residue can hydrogen bond with the amide group of another residue when 
they are 4 residues apart. (B) In a β-sheet, residues located at much further distances can come 
closer when a turn is made in the primary structure allowing the residues to hydrogen bond. Some 
hydrogen bonds are represented by dashed lines. For simplicity, only the backbone structure is 
represented, with carbons (gray), nitrogen (blue) and oxygen (red) atoms illustrated. Structures 
were constructed using PyMOL (version 1.5.0.4, Schrödinger). 

Elements of secondary structure can then interact and build the most complex level of 

unimolecular protein structure: the tertiary (Figure 1.7). These interactions are driven by the 

amino acid side chains and the forces previously discussed in section 1.3. 

 

Figure 1.7: Different representations of a protein tertiary structure. (A) Barnase represented by the 
secondary structure elements that come together to form the protein structure. (B) The tight packing 
of the protein residues can be easily visualised when we represent all atoms. (C) Cartoon 
representation only shows the secondary structure elements. The three structures were constructed 
using PyMOL (version 1.5.0.4, Schrödinger) and the PDB code: 1A2P.  
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1.5 Why study protein folding 

Proteins differ from one another in their sequence of amino acids and most fold to form 

highly specific, three-dimensional structures. In vivo proteins are not isolated, and many 

other factors will influence folding, such as metal ions, salts, ligands, temperature, post-

translational modifications and chaperones.  

The protein folding field started to gain importance and began to develop in the late 50’s, 

after the first protein structure was determined (Kendrew et al., 1958). Since then, there has 

been a continuous and increasing interest in understanding how protein structures are 

formed and the mechanisms by which they fold. 

Further investigation and experiments showed that all the information required for a protein 

to fold into its native conformation is carried in the amino acid sequence (Anfinsen et al., 

1961). However, the mechanisms for folding and the relationship of folding mechanisms 

from primary sequence to tertiary structure are still not completely understood.  

The protein folding timescale can vary from hours to milliseconds, but what drives this 

difference in time is not well defined. In 1968, Levinthal demonstrated, using simple 

calculations, that because of the large number of degrees of freedom in the psi/phi angles in 

a polypeptide chain, a random search of all possible pathways for folding would be on a 

geological timescale. Hence, it would not be possible for a protein to fold into its native 

conformation in a short timescale if it had to sequentially sample all the possible 

conformations. He proposed the idea of the folding being driven by a rapid formation of a 

local nucleus that determines the following folding of the polypeptide chain (Levinthal 

1968, 1969). This conclusion supported the idea of folding pathways, which are pre-

determined routes that allow the protein to fold from its denatured to its native state in a 

biologically relevant timescale.  

There are a number of principles that drive the protein folding field. The reason why a 

protein folds is due to the native state being lower in energy than its denatured state. 

However, proteins are very easily destabilized, and even small changes in amino acid 

sequence can be enough to make the native state higher in energy compared to the 

denatured, thus preventing the protein from folding (Fersht, 1999). 
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Protein folding studies are still a significant challenge in science. Tackling the most 

fundamental questions on how a protein folds, is stabilized, interacts with ligands and 

functions, have a profound impact on how we may perceive metabolic regulation, cellular 

function and possibly better understand underlying processes in disease states. Ultimately, 

such studies could open possibilities for new treatments in order to ameliorate a patient’s 

quality of life (Hammarström et al. 2003). 

 

1.5.1 Models of protein folding 

Over the past decades, different models have been described in order to explain how proteins 

fold. The first models, also known as the “classical view” of protein folding, were based on 

the idea of folding pathways. The framework model (Ptitsyn 1973), for instance, suggests 

that the folding starts with the formation of secondary structure elements that then interact 

to form subsequent intermediates. The final structure is accomplished with the packing of 

the side chains. Another model, typically referred to as the nucleation condensation, states 

that the folding limiting step is the formation of a nucleus, followed by the rapid propagation 

of the protein structure (Fersht 1997). The nucleus is an expanded version of the protein 

native structure, which is further stabilised by long range interactions within the protein 

sequence. Thus, the formation of the nucleus is coupled with the condensation of the whole 

structure (Itzhaki, 1995). 

Subsequent studies have proposed what is commonly referred to as the “new view” of 

protein folding model: the energy landscape theory applied to protein folding (Bryngelson 

et al., 1995; Onuchic et al., 1997). The landscape describes the dependence of free energy 

on all protein conformations. High and low energy conformations are represented by a hill 

and a valley, respectively. Hence, the energy surface is typically referred to as the energy 

funnel. The energy landscape theory suggests that a protein does not follow a single folding 

pathway but different routes down the folding funnel are possible. The downhill nature of 

folding allows it to proceed one residue at a time, randomly. Populated intermediates are 

interpreted as regions of kinetic traps in the landscape.  

A lot has been discussed in the protein folding community regarding folding mechanisms, 

with the majority of the work based on globular proteins. In this thesis we want to investigate 



 
Introduction 

 
 

 
11 

non-traditional protein structures: SasG, a bacterial protein with an usual sequence 

composition and structure, as well as, a subset of proteins that are disordered in isolation 

and only fold upon binding to a partner protein. 
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1.6 Staphylococcus aureus surface protein G (SasG) 

 

1.6.1 Biological background 

Bacterial cells enclosed in a polymeric matrix can adhere to a living or inert surface to form 

functional communities known as bacterial biofilms (Costerton, Stewart, and Greenberg 

1999). The formation of a biofilm involves an initial attachment of these communities onto 

a surface and a subsequent maturation phase that is physiologically specific to each 

organism. The maturation step consists of an intracellular aggregation and the formation of 

a 3-dimensional structure, characteristic of a mature biofilm. Once the maturation step is 

complete, a final detachment phase disperses the bacterial cells to new infection sites in the 

human body (Otto 2008). Biofilms are very difficult to eradicate as they are resistant to the 

host immune system and to antimicrobial agents (Dunne 2002; Lewis 2001; Steward and 

Costdrton 2001). 

The most frequent bacteria found on human skin and mucous surfaces are Staphylococci, 

which are a common cause of infections caused by biofilms. S. aureus and S. epidermis can 

form biofilms on implanted medical devices causing infections that often require device 

removal (Harris and Richards 2006). Staphylococcus aureus surface protein G (SasG) 

promotes cell-to-cell accumulation during biofilm formation (Geoghegan et al., 2010). 

SasG is a protein from the MSCRAMMs (microbial surface components recognizing 

adhesive matrix molecules) group that contains an LPXTG motif essential for covalent 

linkage to the cell peptidoglycan (Corrigan et al. 2007). SasG has an A domain at its N-

terminus, which is responsible for promoting adhesion to epithelial cells (Roche, Meehan, 

and Foster 2003) followed by a B region, that promotes accumulation during biofilm 

formation (Geoghegan et al., 2010). 

The SasG B region is composed of nine repeats of two domains (Figure 1.4, A): the G5 

domain which is approximately 80 residues (PFAM accession number PF07501; Bateman 

et al., 2004; Bateman, Holden and Yeats, 2005) and the E domain which is approximately 

50 residues (D. T. Gruszka et al. 2012). The G5 domain was named after its five conserved 

glycine residues, also present in the E domain. The sequence identity between G5 domains 

(except for the first and last G5s) and between E domains is >97% (D. T. Gruszka et al. 
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2012). On the PONDR-FIT (Xue et al. 2010) and other disorder predictor analysis, G5 and 

E domains are expected to be disordered as they have an intrinsically disordered protein 

(IDP) sequence composition (Figure 1.8). 

 

Figure 1.8: SasG G5 and E domains disorder prediction. (A) Schematic representation of the 
domains arrangement within SasG. (B) G5 and E domains PONDR-FIT analysis show that both 
domains are predicted to be disordered. The sequence composition of G5 and E have also been 
shown.  

 

1.6.2 Biophysical background 

During my MPhil, I investigated the role of the glycine residues in the SasG protein. The 

project involved stability and kinetics studies, which provided evidence of the importance 

of the interface between the E and the G52 domains and solid information for the 

characterization of the folding pathway of G52 and E-G52 constructs. All the following data 

and analysis were previously presented and discussed in my MPhil thesis. 

 

a 
G5^1 PKTITELEKKVEEIPFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYGP!
G5^2 VKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGP!
G5^3 VKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYGP!
G5^4 VKGDSIVEK~~EEIPFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGP!
G5^5 VKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGP!
G5^6 VKGDSIVEK~~EEIPFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGP!
G5^7 VKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGP!
G5^8 VKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPVNELTEFGG!
G5^9 KTGTPETKT~~VEIPFETKREFNPKLQPGEERVKQEGQPGSKTITTPITVNPLTGEKVGEGQPTEEITKQPVDKIVEFGG!

E^1 ETIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGP!
E^2 ETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGP!
E^3 ETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGP!
E^4 ETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGP!
E^5 ETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGP!
E^6 ETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGP!
E^7 ETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGP!
E^8 EKIPQGHKDIFDPNLPTDQTEKVPGKPGIKNPDTGKVIEEPVDDVIKHGP!
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The role of the E-G52 interface in stability 
 

Equilibrium studies of the G52 domain in isolation showed that mutations of the most 

conserved glycines G584A and G587A, located in the triple helical region, were so 

significantly destabilizing to the domain structure, that the G52 domain was mostly unfolded 

in 0 M urea (G587A~70% unfolded and G584A~100% unfolded). In the E-G52 construct, 

the same mutations are also significantly destabilizing but both E and G52 are folded in that 

context (Figure 1.9). 

The data show that the addition of the intrinsically disordered E domain to an unfolded G52 

rescues the stability of the system. This result shows the significant free energy contribution 

that comes from the inter-domain interface. As has been shown previously, the E-G52 

interface is more stable than the domains themselves (estimated to be > 6 kcal.mol-1; 

(Gruszka et al., 2015). 

 

Figure 1.9: Equilibrium curves comparison of the mutants G584A and G587A in G52 in isolation 
and E-G52 construct. (A) G52 domain crystal structure with mutants highlighted and equilibrium 
fraction folded data for G52-WT (black), and its mutants G584A (grey) and G587A (blue). (B) E- G52 
domain crystal structure with mutants highlighted and equilibrium fraction folded data for E-G52-
WT (red), and its mutants G584A (grey) and G587A (blue). 

Folding mechanism of SasG 
 
In the context of the G52 in isolation, all the mutations in the C-terminal region of the domain 

show a Φ-value of about 1, whereas mutations in its N-terminal region result in a Φ-value 

of approximately 0 (Figure 1.10). The data clearly suggest that in the transition state (TS) 
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the G52 domain has structure in its C-terminal region that is almost completely native-like. 

This is where the domain starts to fold.  

In the E-G52 construct, mutations in the N-terminal region of G52 and all mutants located 

in the E domain show a Φ-value of 0 suggesting that this whole region of the protein is 

unstructured in the TS. Dr. Gruszka’s Φ-value analysis for Pro-to-Ala and Tyr-to-Trp 

mutations are in agreement with all the glycine to alanine data. Pro-to-Ala mutations located 

in the E domain and in the N-terminal region of G52 domain also have a Φ-value of 0 

whereas in the C-terminal end of the G52, Φ-values of 1 are also observed (Figure 1.10). 

The Φ-value analysis show that the folding of G52 domain starts via its C-terminal end, 

which is also the rate-limiting step for the folding of the entire E-G52 construct.  

 

 

Figure 1.10:  Mapping the structure of the WT folding pathway for G52 and E-G52 constructs 
(Proline data and global fitting provided by Dr. Dominika Gruszka). (A) Chevron plots for G52-WT 
(black) and its mutants (colour-coded). Left panel shows mutants that unfold faster than G52-WT 
and fold at approximately the same rate (Φ=0). Right panel shows mutants that fold slower than 
G52-WT but unfold at the same rate (Φ=1). (B) Structure of the G52 TS mapped into the domain 
crystal structure. (C) Chevron plots for E-G52-WT (black) and its mutants (colour-coded). Left panel 
shows mutants that unfold faster than E-G52-WT and fold at approximately the same rate (Φ=0). 
Right panel shows mutants that fold slower than E-G52-WT but unfold at the same rate (Φ=1). (D) 
Structure of the E-G52 TS mapped into the construct crystal structure. (Figure taken from Gruszka 
et al., 2016).  
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Alternative folding pathway of E-G52 
 
In the context of the E-G52, Gly-to-Ala mutations located in the C-terminal region (G576A 

and G626A) and in the triple helical region (G584A and G587A) of the G52 domain, show 

a change in the dependence of the rate constant for folding on denaturant 

concentration (mkf). The data suggest an alternative pathway for folding once the C-terminal 

region of G52 is destabilized. Dr. Gruszka observed the same change in the folding m-value 

for the mutant E-G52-Y625W (also in the C-terminal region of the G52).  

As the change in the folding m-value is only detected in the E-G52 construct and it is 

observed for the proteins with the triple helical region or C-terminal end destabilized, we 

hypothesised that the alternative pathway for folding could start via the inter-domain 

interface.  

A pseudo-WT analysis, in the context of E-G52-Y626, two mutations (P540A and P599A) 

revealed results that contributed to the characterization of the alternative pathway for 

folding. 

1) The E domain is partially folded in the transition state of the alternative pathway: 

The mutant P540A resulted in an intermediate phi (0.3< Φ <0.7) in the context of the 

E-G52-Y625W, implying that the triple helical region of the E domain is partially structured 

in the TS (Figure 1.11). 

2) If the interface between the two domains is destabilized, then the E-G52 reverts 

to the original folding pathway: the chevron plot of the mutant E-G52-Y625W-P599A has 

the same mkf as E-G52-P599A and E-G52-WT, indicating the wild-type-like folding 

pathway. This supports the hypothesis that in the alternative folding pathway the interface 

between the two domains is folded (Figure 1.11).  
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Figure 1.11: Kinetic data of the Pro-to-Ala mutants in the context of E-G52-Y625W pseudo-WT. (A) 
Proline and tyrosine residues in E-G52 structure. (B) Chevron plots for E-G52-WT (blue), E-G52-
Y625W (green), E-G52-P540A (black) and E-G52-Y625W-P540A (cyan). (C) Chevron plots for E-
G52-WT (blue), E-G52-Y625W (green) E-G52-P599A (black) and E-G52-Y625W-P599A (orange). 
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1.7 Intrinsically disordered proteins  

Since the first protein structure was determined 6 decades ago (Kendrew et al., 1958,1960), 

proteins were typically associated with the classical structure-function paradigm, where the 

protein biological function was defined by its specific three-dimensional structure. More 

recently, the discovery of proteins that lack a pre-defined structure has intriguided the 

scientific community. The carriers of such “structure-free“ conformations were named 

intrinsically disordered proteins (IDPs) or protein hybrids comprised by ordered domains 

and disordered regions (IDRs). Following the idea that the information required for a protein 

to fold is encoded in its amino acid sequence (Anfinsen 1973), the lack of strucutre must 

also be encoded in the IDP sequences. In comparison to folded proteins, disordered proteins 

typically comprise a higher number of prolines, glycines and charged residues (Romero et 

al. 2001; Theillet et al. 2013; Uversky, Gillespie, and Fink 2000), whereas hydrophobic 

residues are underrepresented. Together, IDPs and IDRs can often be found in nature, with 

noticeble amounts of both being present in all life kindoms and viral proteomes (Dunker et 

al., 2000; Xue, 2012; Peng et al., 2014). 

The growing interest of this intriguing class of proteins starts precisely by the challenge that 

they represent in the structure-function paradigm. Despite being very flexible and lacking a 

well defined strucutre, IDPs are biologically active and predominantly involved in 

transcription and signaling regulation (Ward, 2004). It has been suggested that the lack of a 

globular structure might represent an advantage for IDPs, as the strucuture flexibility might 

play a role in allowing them to interact with different targets in the cell (Dunker et al. 2001; 

Wright and Dyson 1999). Furthermore, the disorder-to-order transition of IDPs during 

binding processes in the cell can be a fine mechanism for cellular regulation.  

Although evolution can provide positive changes leading to better adaptation, mutations in 

proteins can be unfavourable. In folded proteins, for instance, mutations can largely affect 

protein stability (Tokuriki et al. 2007), which explains the evolutionary pressure to maintain 

the position and nature of the residues that are crutial to the protein thermodynamic stability 

(Mirny and Shakhnovich 1999). Due to the lack of structure, IDPs are more susceptible to 

mutations and evolutionary changes (Chen et al., 2006). Nevertheless, the evolution 

persistance of disorder confirms the relevance of such class of proteins and indicates that 

the functional benefits of disorder surpass the ability to tolerate mutations. The lack of 
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structure also provides more acessibility to amino acid side chains, making them more prone 

to post translation modifications (PTMs) (Bah and Forman-Kay 2016). PTMs can 

significantly affect the energy landscapes of IDPs causing structural changes and directly 

impacting on protein function. Phosphorylation and acetylation modifications, for instance, 

allow changes in the IDP conformation possibilities as well as can allow them to act as 

regulatory switches (Kouzarides 2007; Nash et al. 2001). Another feature of IDPs is their 

ability to bind weakly and promiscuously to different targets (Chen 2012; Zhou 2012). The 

kinase inhibitory domain of the cyclin-dependant  kinase (CDK), for instance, can bind to a 

diverse family of cyclin-CDK complexes (Kriwacki et al. 1996). Likewise, the GTPase-

domain of the Wiskott–Aldrich syndrome protein (WASP) can bind to its own CTA-

domain, resulting in its inhibition, whereas when in a different conformation, it can bind to 

the GTP-ase Cdc42, resulting in WASP activation (Kim et al. 2000).  

Due to their unusual strucuture and biological relevance in cellular processes, the presence 

of IDPs in the cell requires a very specific and tight regulatory mechanism (Babu et al. 

2012). Studies have shown that human transcripts that encode IDPs have higher mRNA 

decay rates as well as an increased proportion of miRNA, suggesting lower gene expression 

levels of these proteins (Chen, 2008; Edwards et al., 2009). Moreover, an increased 

proportion of ubiquitination sites are found in IDPs compared with folded proteins (Edwards 

et al. 2009; Radivojac et al. 2010), targeting those molecules to fast degradation (Tompa et 

al. 2008). Together, these are suggestions that most IDPs are predicted to have shorter half-

lifes comapared to ordered proteins (Van Der Lee et al. 2014). In some cases, once this 

cellular regulation is somehow compromised, increased expression levels and persistance 

of IDPs in the cell, can lead to multiple diseases, including cancer and different types of 

neurodegenerative disorders (Babu 2016; Uversky, Oldfield, and Dunker 2008). Together, 

all these intriguing features and functional relevance makes this class of proteins very 

interesting, which can explain the increasing number of studies involving IDPs since their 

discovery. 

 

1.7.1 Coupled folding and binding of IDPs 

In the cell, transcription and signalling regulation are typically achieved by protein 

interactions. Although lacking a pre-defined structure, a subset of IDPs can fold upon 
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binding to a partner macromolecule, known as coupled folding and binding reaction (Dyson 

and Wright 2002). In these cases, the folded partner provides the necessary free energy for 

the folding of the IDP. IDPs coupled folding and binding reactions are typically involved in 

signalling systems (Wright and Dyson 2015). A question regarding the mechanism can 

emerge: what comes first, folding or binding? The route by which the folded complex is 

formed may indeed affect function. Two extreme mechanisms are proposed: in the induced 

fit mechanism, all members of the conformational ensemble of the IDPs are binding-

competent, resulting in folding after binding to the partner macromolecule. In the 

conformational selection mechanism, only correctly folded members of the ensemble are 

binding-competent, resulting in folding before binding (Figure 1.12). 

 

 

Figure 1.12: Schematic of IDPs coupled folding and binding mechanisms. A subset of IDPs can fold 
upon binding to a folded partner. Two extreme mechanisms have been proposed. In the induced fit 
mechanism (top), any member of the structural ensemble of IDPs are binding-competent and can 
fold subsequently to binding. In the conformational selection (bottom), only the correctly folded 
structures are able to bind, hence folding precedes binding. Structures were constructed using 
PyMOL (version 1.5.0.4, Schrödinger) and the PDB code: 2VOI and 1DDB.   
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It is important to emphasise that coupled folding and binding reactions with elements of 

both mechanisms, are possible (Hammes et al. 2009; Greives and Zhou, 2014). Although 

thermodynamic arguments can often be made in order to explain coupled folding and 

binding mechanisms, only kinetic studies of these complexes can properly shed light on 

mechanisms (Gianni, Dogan, and Jemth 2016; Kiefhaber, Bachmann, and Jensen 2012; 

Shammas et al. 2016). 
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1.8 Aims of this thesis 

Throughout the decades that protein folding has been investigated, studies are typically done 

with proteins in isolation. Understanding proteins single domains and how certain properties 

(e.g. thermodynamic stability, folding and unfolding mechanisms) are conserved through 

families of proteins, is a very powerful way to understand the fundamentals of protein 

science. However, in vivo, proteins are immersed in a crowded cellular environment, where 

many other factors can alter the way they fold and function: temperature, pH, chaperones, 

interaction with other macromolecules These are just a  few examples of how context can 

affect the properties of proteins. Moreover, a vast proportion of the proteome is known to 

be intrinsically disordered, with a subset of these molecules being able to fold only upon 

binding to another protein. The aim of the work designed in this thesis was to shed light on 

how context can influence protein dynamics and protein-protein interactions.  

After a previous study of the bacterial protein SasG, where the folding mechanisms were 

extensively characterised and described (Gruszka et al. 2016), the next intriguing question 

was on the charged nature of this protein. What is the role of the numerous charged residues 

in SasG stability and ability to fold? Then, to explore protein folding in a more complex 

context, co-translational folding was also targeted: how the elongated beta-sheet structure 

of SasG can fold upon translation on the ribosome? How that compares with the folding of 

the domains in isolation? 

Intrigued by the disorder-order fine line drawn by SasG, the next step of the thesis targets 

intrinsically disordered proteins and protein-protein interactions. How coupled folding and 

binding reactions of IDPs compare to the folding of a single protein? What encodes the 

folding information: the IDP or the partner protein? Finally, as IDPs are largely studied as 

peptides, how the coupled folding and binding of an IDP peptide compares with the protein 

in the full-length context? 
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2 Thermodynamics and kinetics analysis 

2.1 Protein folding 

 

2.1.1 Equilibrium studies of proteins 

The use of denaturants, such as urea and guanidine hydrochloride, is one of the primary 

ways of measuring the conformation stability of proteins and comparing this with the 

stability of the mutated proteins. The use of denaturants is widespread (Pace 1986) even 

though their mechanism of action is not yet completely understood. It is known that the 

interactions of denaturant with protein constituent groups are more favourable in 

comparison with the interaction between these groups and water (Tanford 1970) and alter 

the equilibrium between native and denatured states of the protein. 

Different probes can be used in order to investigate to what extent a protein is folded (CD, 

fluorescence, etc.). Although many proteins denature irreversibly (Kauzmann 1959), many 

of them regain their folded conformation once the denaturant is removed. Thermal unfolding 

(another method of denaturation) of chymotrypsinogen (Brandts 1964) characterized the 

transition between folded and denatured state as being very abrupt (Figure 2.1), a 

phenomenon that was also observed for many other systems and led to the idea of a “two-

state” process representing the equilibrium between native and denatured states. In a “two-

state” process, the equilibrium reactions (D⇌N) are cooperative, occurring in a single step 

with no populated intermediates. 
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Figure 2.1: Representation of a fluorescence denaturation curve under equilibrium conditions. 

The free energy of transfer of a protein from pure water to a denaturant solution shows a 

linear dependence (Figure 2.2) in denaturant concentration (Pace 1986) and is expressed by 

the equation (Greene and Pace 1974): 

  

∆"#$% = ∆"#$%
'() 	−	,#$%	[den]                 Equation 2.1 

 

Where,  

∆"#$% is the free energy of unfolding at a specific denaturant concentration. 

∆"#$%
'()  is the free energy of unfolding in pure water. 

,#$%	is the equilibrium m-value (see details bellow). 

[den] is the concentration of denaturant. 
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The equilibrium m-value is the dependence (slope) of the free energy of unfolding on 

denaturant concentration and it is related to the change in the solvent accessible area (SASA) 

as the protein unfolds (Myers, Pace, and Scholtz 1995).  

There is a point in the denaturant concentration ([den]50%) at which 50% of proteins are 

denatured. When [den] = [den]50%, both states D and N are equally populated ([D] = [N]) 

and the energy difference between them (∆"2$3)	is zero, so: 

 

∆"#$%
'() = 	,D−N	[den]50%                 Equation 2.2 

 

  

Figure 2.2: Free energy of unfolding has a linear dependence with the concentration of denaturant.   

 

The values ∆"#$%
'(), mD-N and [den]50% can be extracted from an equilibrium denaturation curve 

using the following equation (Clarke and Fersht 1993): 

 

; = 	 [
(=>?	@>	[ABC])?(=D?@D[ABC])BEF	{HDI>([ABC]$[ABC]JK%/MN}]

P?BEF	{HDI>	([ABC]$[ABC]JK%)/MN}]
	          Equation 2.3 
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Where, 

F is the fluorescence reading at given [den]. 

αN is the fluorescence of the native protein in pure water. 

βN is the gradient of the fluorescence baseline for native protein. 

αD is the fluorescence of the denatured protein in pure water. 

βD is the gradient of the fluorescence baseline for denatured protein. 

T is the temperature at which the experiment is performed (K). 

R is the universal gas constant (1.987 cal.mol-1.K-1). 

   

The terms αN, βN, αD and βD are shown graphically in Figure 2.3: 

 

    

Figure 2.3: Diagram to explain visually the meaning of the terms from Equation 2.3.  
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To allow comparison between different equilibrium curves, the fluorescence reading (F) is 

converted to fraction folded reading, which varies between 0 and 1 to indicate the proportion 

of the protein found in the native state at given denaturant concentration:  

 

Fraction	folded = Z$(=D?@D[ABC])

=>?@>[ABC])$(=D?@D[ABC])
             Equation 2.4 
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2.1.2 Kinetics studies of proteins 

Protein folding was initially considered to be a process involving a series of intermediates 

so that a random search for the correct conformation was not feasible (Levinthal paradox). 

However, the study of the chymotrypsin inhibitor 2 showed a two-state kinetic behaviour 

with no populated intermediates (Jackson and Fersht 1991). In this case, proteins would fold 

apparently directly from the denatured to the native state via a transition state (TS), which 

is the highest energy point on the reaction pathway (Figure 2.4).  

    

Figure 2.4: Free energy diagram showing the denatured, transition and native states. 

The free energies of transfer of the native, transition and denatured states from water into a 

denaturant solution are linearly proportional to [den]. As well as in the Equation 2.1, the 

following equations can be stated: 

∆"#$[\ = ∆"D−TS
H2O 	−	,#$[\	[den]           Equation 2.5 

∆"[\$% = ∆"TS−N
H2O 	−	,[\$%	[den]											Equation 2.6 

Using the relationship k = A exp (-ΔG/RT): 
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∆"#$[\ = bc ln df 	– 	bcfg	h                     Equation 2.7 

∆"[\$% = −bc ln di 	– 	bcfg	h                  Equation 2.8 

ln dj = ln di
H2O	 + 	,di	[den]                       Equation 2.9 

		ln dl = ln df
H2O	 + 	,df	[den]                        Equation 2.10 

 

Assuming two-state kinetics, at concentrations below [den]50% the natural log of the folding 

rate against [den] (chevron plot) will be a straight line with gradient mkf. Similarly, above 

[den]50% the natural log of the folding rate against [den] will be a straight line with gradient 

mku (Figure 2.5). Kinetic parameters can be extracted from the observed chevron plot by 

using the equation: 

 		ln dmno = ln[dl
'()	 expr−,sl	[den]t + [dj

'()	 exp(,sj	[den])]    Equation 2.11 

kobs is the observed rate constant at a particular [den]. 

  

Figure 2.5: Chevron plot and its kinetic parameters.  
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The kinetic free energy of unfolding in water, ∆"#$%	uvC
'()  can be calculated from: 

 

∆"#$%	uvC
'() = −bcfg(dw

'()/dx
'())          Equation 2.12 

 

And since ,#$[\	 = bc,sx and ,[\$% = bc,sw: 

 

,#$%	syz	 = 	,#$[\	 +	,[\$% = bc(,sw + ,sx)          Equation 2.13 

 

So, if kinetic and equilibrium ,#$%		are the same and if both equilibrium and kinetic 

∆"#$%	
'() are also the same, folding can be described as two-state, where there are no populated 

intermediates in the folding pathway. 

 

2.1.3 Φ-value analysis 

A standard experimental procedure to investigate the transition state in protein folding 

consists of mutating a single residue in the primary sequence of the polypeptide and seeing 

the effect of the mutation on the equilibrium and kinetics studies. It is known that mutations 

can affect the free energy of the native and transition states and consequently cause a 

difference in their equilibrium stabilities (ΔΔGD-N and ΔΔGD-TS). 

 

ΔΔ"#$% = ∆"#$%
|[ − ∆"#$%

}~[                       Equation 2.14 

ΔΔ"#$[\ = ∆"#$[\
|[ − ∆"#$[\

}~[                       Equation 2.15 
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If a particular residue is located in a region of the protein with a native conformation in the 

transition state, then ∆Δ"#$[\ will be the same as ∆Δ"#$% (Figure 2.6, A). 

Φ = ∆∆ÄÅIÇÉ

∆∆ÄÅIÑ
= 1                     Equation 2.16 

 

However, if a residue is located in a region of the protein with a denatured conformation in 

the transition state (no native contacts), then the ∆Δ"#$[\ will be 0 (Figure 2.6, B). 

Φ = ∆∆ÄÅIÇÉ

∆∆ÄÅIÑ
= 0                     Equation 2.17  

   

 

Figure 2.6: Φ-value analysis. (A) Mutation destabilizes the native and the transition states to the 
same extent, giving a Φ-value of 1. (B) Mutation destabilizes the native state but does not affect the 
transition state giving a Φ-value of 0. 
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2.2 Coupled folding and binding reactions 

 

2.2.1 Reaction rates 

As previously stated, in a reversible reaction, the rate constant k describes the flux of the 

forward and reverse reactions. For protein folding events, the rates are termed ku (rate 

constant for unfolding) and kf (rate constant for folding). Analogous to that, in a two-state 

bimolecular reaction, the rates are termed kon (association rate constant) and koff (dissociation 

rate constant).  

For a two-state protein, the change in concentration of the denatured protein is described by 

Equation 2.18:  

A[2]

AÜ
= dw[á]	−	dx[à]                         Equation 2.18 

 

Where [N] and [D] are the concentrations of native and denatured protein, respectively, and 

ku and kf are the rate constant of unfolding and folding, respectively. 

When equilibrium is achieved, the change in concentration of native and denatured protein 

is equal. Therefore, the equilibrium constant K for a two-state protein is described by 

Equation 2.20:  

0 = 	dw[á]	−	dx[à]                         Equation 2.19 

â =	 [2]

[3]
= sä

sã
                                            Equation 2.20  

In a reaction involving two proteins, where proteins A and B interact to form a complex C, 

like in IDP coupled folding and binding reactions, the rate by which the complex is formed, 

will depend on the concentration of both proteins. Hence, the change in concentration of 

protein A is described by Equation 2.21:  

A[å]

AÜ
= dmxx[ç] − dmC[h]. [è]                    Equation 2.21  
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Where [A], [B] and [C] are the concentrations of proteins A, B and complex C, respectively, 

and kon and koff are the association and dissociation rates constants, respectively. 

Analogous to the uni-molecular process, once equilibrium is achieved, the change in 

concentration of protein A is zero and the equilibrium constant Kd is described by Equation 

2.23:  

0 = dmxx[ç] − dmC[h][è]                     Equation 2.22 

 

âê = 	
[å][ë]

[í]
= 	 sìãã

sîï
                               Equation 2.23 

 

As previously discussed, the unfolding of a protein upon rapidly mixing with denaturant can 

be followed by a change in the fluorescence. The fluorescence change can be described by 

a single exponential function, that is derived from the rate law. Starting from a two-state 

reaction (Equation 2.18), the concentration of native protein can be replaced by the change 

in concentration of denatured protein: 

A[2]

AÜ
= dw([à]ñ − [à])	−	dx[à]       Equation 2.24  

A[2]

AÜ
+	(dw+	dx)[à] = dw[à]ñ         Equation 2.25 

Equation 2.25 can be then integrated: 

[à] = 	 só[2]K
sóòsô

+ 	çe($sóòsô)Ü           Equation 2.26 

Which is equivalent to a single exponential function, described by equation 2.27: 

[à] = 	;xvCöõ + ∆;e($sìúù)Ü            Equation 2.27  

Where Ffinal is the fluorescence reading at the end of the reaction, ∆F in the fluorescence 

change along the reaction, kobs is the observed rate constant (ku + kf) and t is time.  
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For a reaction involving two proteins in near equimolar concentrations, the concentrations 

of both proteins are relevant and must be considered. The model used by Shammas et al. 

(2013) contemplates this case and the integration of the rate law is more complex than 

previously demonstrated. When one of the proteins in the reaction has a significantly higher 

concentration in comparison to the other (pseudo-first order condition), the model is again 

simplified. For instance, if the concentration of protein B is 10 times higher than the 

concentration of protein A, it can be assumed that only 10% of protein B will associate and 

go into complex. In that case, the concentration of protein B will not change upon the 

reaction and therefore can be incorporated in the association rate constant: 

A[å]

AÜ
= dmxx[ç] − d′mC[h]                      Equation 2.28  

where k’on is the new association rate constant and is equal to kon multiplied by the 

concentration of B (10 times in excess).  
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3 Materials and methods  

Throughout the entire course of the biophysical experiments for this thesis, all the buffers 

and reagents were prepared at room temperature, volumetrically, with deionised water 

(ddH2O) purified at 18 mΩ cm-1 of resistance by an ELGA maxima system. The pH of the 

buffers and solutions were checked using Radiometer MeterLab PHM210 instrument. 

 

In this chapter, suppliers will be referenced as a superscript: 

(a) MP Biomedicals Inc., (b) Life Technologies, (c) Sigma-Aldrich Company, (d) Fisher 

Scientific International Inc., (e) STARLAB group (f) Biotium, (g) Thermo Scientific, 

(h) Acros organics, (i) BDH laboratory supplies, (j) GE Healthcare Life Sciences, 

(k) Agarose Bead Technologies, (l) New England Biolabs, (m) Eurogentec (n) Merck. 

 

3.1 Molecular Biology 

LB 

LB media was prepared from commercially available capsulesa. 10 g tryptone, 5 g yeast 

extract and 10 g NaCl were diluted in 1 litre ddH2O and autoclaved. When stored, the 

solutions were kept 4 °C. 

 

LB agar plates 

The plates were prepared from commercially available capsulesa. 10 g tryptone, 5 g yeast 

extract, 10 g NaCl and 15 g agar were diluted in 1 litre ddH2O and autoclaved. After cooling 

down to about 50 °C, kanamycin or ampicillin was added (60 μg.ml-1 and 100 μg.ml-1 final 

concentration, respectively) and the plates were stored at 4 °C. 
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Kanamycin (KAN) 

3 g of kanamycinb was diluted in 50 ml ddH2O to prepare a [1000x] stock (60 mg.ml-1 final 

concentration). The solution was syringe filtered through a 0.2 μm cellulose acetate 

membrane and stored at 4 °C.  

 

Ampicillin (AMP) 

5 g of ampicillind was diluted in 50 ml ddH2O (100 mg.ml-1 final concentration). The 

solution was syringe filtered through a 0.2 μm cellulose acetate membrane and stored in 1 

mL aliquots at -20 °C. 

 

LB - Kanamycin and LB- Ampicillin (LB- KAN and LB- AMP) 

After the LB media was prepared using the standard procedure described before, kanamycin 

or ampicillin was added to a final concentration of 60 μg.ml-1 or 100 μg.ml-1, respectively.  

 

Tris- Acetate-EDTA buffer (TAE) 

A [1x] buffer composition consists in 40 mM Tris (pH 8.0), 20 mM acetic acid, and 1mM 

EDTA. A [50x] stock was prepared using 242 g Tris basec, 100 ml of 0.5 M EDTAg (pH 

8.0) and 57.1 ml glacial acetic acidd, diluted in 1 litre of ddH2O.  

 

Agarose gel  

0.5 g agarosee was added to 50 ml [1x] TAE buffer and heated up (> 100 °C) until it was 

dissolved. Then, 5 μl of the DNA stain GelRedf was added to produce a 1% (w/v) agarose 

gel. 

  



 
Materials and methods 

 
 

 
37 

Phusion Hot Start II DNA polymeraseg 

It is the DNA polymerase used in all site direct mutagenesis (SDM) and PCR protocols. It 

is commercially available and it is supplied with its appropriate buffer. It was stored at -20 

°C. 

 

Deoxynucleotide mix (dNTP)g 

Commercially available solution containing dATP, dCTP, dGTP and dTTP, each at final 

concentration of 10 mM. 10 μl aliquots stored at -20°C.  

 

DpnI g 

The restriction enzyme used to digest methylated DNA. It is supplied in appropriate buffer 

and stored at -20°C. 

 

Gene ruler 1kb plus g 

Commercially available ladder used for quantification and size determination of double-

stranded DNA on agarose gels. It covers a wide range (75-2000 bp) of DNA lengths and it 

is supplied with its appropriate buffer. Stored at 4 °C.  

 

3.2 Buffers and reagents 

3.2.1 Protein production and purification  

SasG  

 

Binding buffer 1: 20 mM Tris (pH 8.0), 100 mM NaCl, 20 mM imidazole.  

1.76 g Trizma acidc, 1.05 g Trizma basec, 5.84 g NaClc, 1.36 g imidazoleh were diluted in 1 

litre of ddH2O and vacuum filtered through a 0.2 μm cellulose acetate membrane. 
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Gradient buffer 1: 20 mM Tris (pH 8.0), 100 mM NaCl, 500 mM imidazole. 

1.76 g Trizma acidc, 1.05g Trizma basec, 5.84g NaClc, 34.04g imidazoleh were diluted in 1 

litre of ddH2O and vacuum filtered through a 0.2 μm cellulose acetate membrane.  

 

Phosphate buffered saline (PBS) [20x] 

A [1x] solution consists in 10 mM phosphate (pH 7.4), 136.5 mM NaCl, 2.7 mM KCl (164 

mM ionic strength). A [20x] stock solution was prepared with 28.83 g Na2HPO4 

(dihydrate)d, 5.93 g NaH2PO4 (dihydrate) d, 159.54 g NaClc, 4.03 g KCli diluted in 1 litre of 

ddH2O.  

 

Binding buffer 2: 10 mM phosphate (pH 7.4), 136.5 mM NaCl, 2.7 mM KCl, 20 mM 

imidazole. A [1x] solution was prepared from 50 ml [20x] PBS stock and 1.36 g imidazoleh 

diluted in 1 litre of ddH2O. The solution was vacuum filtered through a 0.2 μm cellulose 

acetate membrane.  

 

Gradient buffer 2: 10 mM phosphate (pH 7.4), 136.5 mM NaCl, 2.7 mM KCl, 500 mM 

imidazole.  

A [1x] solution was made with 50 ml [20x] PBS stock and 34.04 g imidazoleh diluted in 1 

litre of ddH2O. The solution was vacuum filtered through a 0.2 μm cellulose acetate 

membrane.  

 

Coomassie brilliant blue (CBB) stain: 0.2% (w/v) CBB R-250, 50% (v/v) EtOH, 10% (v/v) 

CH3COOH.  

A 500 ml stock solution was prepared dissolving 1 g of CBB R-250g in 250 ml ethanolc, 50 

ml glacial acetic acidd and 200 ml of ddH2O.  
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Coomassie brilliant blue (CBB) destain: 10% (v/v) EtOH, 10% (v/v) CH3COOH.  

A 1 litre stock solution was prepared by adding 100 ml of ethanolc, 100 ml glacial acetic 

acidd in 800 ml ddH2O. 

 

 Isopropyl β-D-1-thiogalactopyranoside (IPTG)g 

A 1 M stock was prepared diluting 2.38 g of IPTG in 10 mL dd H2O. The solution was 

filtered through a 0.22 μm sterile membrane and 400 μl aliquots stored at -20 °C. 

 

Mark 12 unstained standardb 

Commercially available ladder used for size determination of proteins on a NuPAGE gels. 

It covers a range 2.5-200 kDa and it is supplied ready to use. It was stored at 4 °C.  

 

HRV 3C proteaseg 

Commercially available protease supplied as a 10,000 units with a highly specific 

recognition sequence for Leu-Glu-Val-Leu-Phe-Gln-↓-Gly-Pro, cleaving after the 

glutamine residue. It was used to cleave histidine tags in the SasG purification process.  

 

A1 and BID full-length  

 

Tobacco etch virus (TEV) protease: 

TEV protease was expressed and purified in the lab by Tristan Kwan following Blommel 

and Fox protocol (Blommel and Fox 2007). It was stored in 20 mM TRIS (pH 7.5), 125 mM 

NaCl, 2 mM DTT, 2 mM EDTA and 50% (v/v) glycerol at -20 °C.  
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TEV cleavage buffer: 

10 mM TRIS pH 8.0, 150 mM NaCl. It was prepared with 0.866 g Trizma acidc, 0.533 g 

Trizma basec and 8.519g NaClc diluted in 1 litre of ddH2O. The solution was vacuum filtered 

through a 0.2 μm cellulose acetate membrane. 

 

Instant bluec: 

Commercially available coomassie dye-based protein stain. It is a solution formulated for 

fast and sensitive protein detection. The bands were visible in less than 15 minutes without 

the need to destain.  

 

Biophysical buffer: 

50 mM Sodium Phosphate, 0.05% Tween, pH 7. It was prepared with 5.29 g Na2HPO4  

(dihydrate)d, 3.17 g NaH2PO4 (dihydrate) d and 500 μL of Tween 20d diluted in 1 litre of 

ddH2O. The solution was vacuum filtered through a 0.2 μm cellulose acetate membrane. 

 

Ion-exchange buffer: 

20 mM Tris, 0 and 1 M NaCl, pH 7. A [10x] stock was prepared with 28.8 g Trizma acidc, 

1.94 g Trizma basec and 0 or 58.44 g NaClc diluted in 1 litre of ddH2O. The solution was 

vacuum filtered through a 0.2 μm cellulose acetate membrane. 

A [1x] solution was made by dilution of the [10x] stock. 

 

Page ruler unstained protein ladderg: 

Commercially available ladder used for protein size determination on SDS gels. It covers a 

range from 5 kDa to 250 kDa and it is supplied ready to be used. It was stored at -20 °C. 
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Glutathione Sepharose 4B GST-tagged protein purification resinj: 

Commercially available affinity chromatography resin for batch purification of GST- tagged 

proteins. 

 

Dithiothreitol (DTT)b:  

A 1 M stock was prepared with 1.54 g DTT diluted in 10 mL ddH2O or in an appropriate 

buffer. 400 μL aliquots were stored at -20 °C.  

 

Truncated BID (t-BID): 

 

Caspase 8n: 

Commercially available protein (Uniprot Q14790) employed as a protease to cleave full- 

length BID generating t-BID. Caspase was resuspended in 50 μL of biophysical buffer with 

15% glycerol. 

 

PUMA 

 

Nickel resink: 

Commercially available nickel resin that recognizes exposed histidine residues and retain a 

protein containing a His-tag. Used in PUMA purification process.  

 

Factor Xal: 

Commercially available protease with a recognition sequence of Ile-Glu/Asp-Gly-Arg, 

cleaving after the Arg residue. It was used to cleave PUMA from GB1.  
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Factor Xa cleavage buffer:  

20 mM Tris pH 8.0, 50 mM NaCl, 5 mM CaCl2. Prepared by the dilution of the [10x] 20 

mM Tris, pH 8 with the addition of 2.92 g of NaCl and 0.74 g CaCl2 in 1 litre of ddH2O. 

The solution was vacuum filtered through a 0.2 μm cellulose acetate membrane. A [10x] 

stock of 20 mM Tris was prepared with 28.8 g Trizma acidc, 1.94 g Trizma basec.  

 

PBS 25 mM imidazole buffer: 

Prepared by the dilution of the [20x] PBS and the addition of 1.70 g of Imidazole diluted in 

1 litre of ddH2O. The solution was vacuum filtered through a 0.2 μm cellulose acetate 

membrane. 

3.2.2 Ionic strength studies  

MOPS 5 mM ionic strength buffer: 

10 mM MOPS (pH 7.4), 5 mM ionic strength due to the buffer. It was prepared with 0.88 g 

of MOPS acidc, 1.32 g of MOPS basec diluted in 1 litre of ddH2O. The solution was vacuum 

filtered through a 0.2 μm cellulose acetate membrane. 

 

MOPS 1 M ionic strength buffer: 

10 mM MOPS (pH 7.4), 1 M ionic strength. It was prepared with 0.75 g of MOPS acidc, 

1.46 g of MOPS basec and 58.18 g NaClc diluted in 1 litre of ddH2O. The solution was 

vacuum filtered through a 0.2 μm cellulose acetate membrane.  

 

3.2.3 pH dependence studies  

Phosphate buffer, pH 2 

10 mM phosphate, 8 mM ionic strength, pH 2. It was prepared with 0.63 g Na2HPO4  

(dihydrate)d, 0.67 g NaH2PO4 (dihydrate)d, 0.212 g NaClc diluted in 1 litre of ddH2O. The 

solution was vacuum filtered through a 0.2 μm cellulose acetate membrane.  
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Phosphate buffer, pH 3 

10 mM phosphate, 8 mM ionic strength, pH 3. It was prepared with 0.123 g Na2HPO4  

(dihydrate)d, 1.37 g NaH2PO4 (dihydrate)d diluted in 1 litre of ddH2O. The solution was 

vacuum filtered through a 0.2 μm cellulose acetate membrane.  

 

Acetate buffer, pH 4 

10 mM acetate, 8 mM ionic strength, pH 4. It was prepared with 0.50 g acetic acid, 0.218 g 

sodium acetate, 0.374 g NaClc diluted in 1 litre of ddH2O. The solution was vacuum filtered 

through a 0.2 μm cellulose acetate membrane.  

 

Acetate buffer, pH 4.5 

10 mM acetate, 8 mM ionic strength, pH 4.5. It was prepared with 0.372 g acetic acid, 0.503 

g sodium acetate, 0.247 g NaClc diluted in 1 litre of ddH2O. The solution was vacuum 

filtered through a 0.2 μm cellulose acetate membrane.  

 

Acetate buffer, pH 5 

10 mM acetate, 8 mM ionic strength, pH 5. It was prepared with 0.204 g acetic acid, 0.880 

g sodium acetate, 0.084 g NaClc diluted in 1 litre of ddH2O. The solution was vacuum 

filtered through a 0.2 μm cellulose acetate membrane.  

 

MES buffer, pH 6 

10 mM MES, 8 mM ionic strength, pH 6. It was prepared with 1.15 g of MES acidc, 0.160 

g of MES basec and 0.231 g NaClc diluted in 1 litre of ddH2O. The solution was vacuum 

filtered through a 0.2 μm cellulose acetate membrane.  
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MOPS buffer, pH 7 

10 mM MOPS, 8 mM ionic strength, pH 7. It was prepared with 1.339 g of MOPS acidc, 

0.809 g of MOPS basec and 0.263 g NaClc diluted in 1 litre of ddH2O. The solution was 

vacuum filtered through a 0.2 μm cellulose acetate membrane.  

 

TRIS buffer, pH 8 

10 mM TRIS, 8 mM ionic strength, pH 8. It was prepared with 0.866 g Trizma acidc, 0.533 

g Trizma basec, 0.141 g NaClc diluted in 1 litre of ddH2O. The solution was vacuum filtered 

through a 0.2 μm cellulose acetate membrane.  

 

TRIS buffer, pH 9 

10 mM TRIS, 8 mM ionic strength, pH 9. It was prepared with 0.173 g Trizma acidc, 1.066 

g Trizma basec, 0.402 g NaClc diluted in 1 litre of ddH2O. The solution was vacuum filtered 

through a 0.2 μm cellulose acetate membrane.  

 

CAPS buffer, pH 10 

10 mM CAPS, 8 mM ionic strength, pH 10. It was prepared with 1.63 g acid componentc, 

0.10 g basic componentc, 0.319 g NaClc diluted in 1 litre of ddH2O. The solution was 

vacuum filtered through a 0.2 μm cellulose acetate membrane.  

CAPS buffer, pH 11 

10 mM CAPS, 8 mM ionic strength, pH 11. It was prepared with 0.487 g acid componentc, 

0.30 g basic componentc, 0.016 g NaClc diluted in 1 litre of ddH2O. The solution was 

vacuum filtered through a 0.2 μm cellulose acetate membrane.  
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3.2.4 Urea solutions  

A 9.5 M ureaj stock solution was made in the appropriate buffer (PBS or biophysical buffer). 

For equilibrium experiments, a series of dilutions were made in order to get a range of 

different concentrations. For proteins containing cysteines, DTT (10 mM final 

concentration) was also added to the urea solution in order to prevent disulphide bond 

formation. The urea concentration was measured using an Atago 1T refractometer (at 25°C 

± 0.5°C) and the equation: 

 

[Urea] =117.66x + 29.753x2 + 185.56x3    Equation 3.1 

 

Where x is the difference in reading between the urea solution and the pure buffer. 

 

 

3.3  Experimental protocols 

 

3.3.1 Preparation of chemically competent cells 
 

E. coli strains (DH5α, BL21- DE3 and C41-pLysS) were used to prepare competent cells 

following the protocol: 

In a sterile Erlenmeyer, 200 μL of bacteria cell was added to 50 mL of LB media and 

incubated in a shaker at 37 °C for approximately 5 hours (OD600 0.3-0.6). The solution was 

then pelleted by centrifugation (Heraeus Multifugue X3Rg, 3000 RPM, 10 minutes, 4 °C) 

and the supernatant was discarded. The cell pellet was resuspended in 10 ml 100 mM CaCl2, 

15% (v/v) glycerol solution and incubated on ice for 20 minutes. Once again, the solution 

was pelleted by centrifugation and the supernatant discarded. The cell pellet was 

resuspended in 2 ml 100 mM CaCl2, 15% (v/v) glycerol solution, aliquoted in 50 μl samples, 

flash-frozen in liquid nitrogen and stored at -80°C. 
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3.3.2 Heat-shock transformation 
 

1 μl of a plasmid stock of interest was added into 50 μl of chemically competent E. coli cells 

and incubated on ice for approximately 30 minutes. The cells were heated up in a water bath 

at 42 °C for 45 seconds and then transferred back into ice for 5 more minutes. Then, 850 μl 

of LB media was added and the cells were incubated in a shaker at 37 °C for 45 minutes. 

The cells were pelleted by centrifugation (2400 ×g, 3 minutes, 25 °C) and resuspended in 

approximately 50 μl of its supernatant to be spread onto either a LB-KAN or LB-AMP agar 

plate. The plate was incubated overnight at 37 °C. 

3.3.3 Plasmid production and purification  
 

On the next day following the transformation, a single colony was taken from the agar plate, 

added to 5 mL of either LB-KAN or LB-AMP media and incubated overnight at 37 °C. The 

cells were then pelleted by centrifugation (17000 ×g, 5 minutes, 25 °C) and the plasmid was 

purified using a QIAprep spin Miniprep kit (QIAGEN) following the manufacturers 

protocol and stored at - 20  °C. 

 

SasG, pH and ionic strength dependence studies: Dr. Dominika Gruszka kindly provided 

me with SasG genes (E-G52 and G52) that were inserted into a pSKB2 plasmid that 

contained a N-terminal histidine tag and a HRV 3C protease recognition cleavage site. The 

plasmid contains a T7 promoter and a kanamycin resistant gene (KanR). 

 

SasG, folding on the ribosome studies: A modified version of the commercially available 

pRSETa vector was used in all the folding on the ribosome experiments. The plasmid 

contains a T7 promoter and an ampicillin resistant gene (AmpR). This modified plasmid 

also encodes an N-terminal polyhistidine tag (6 x His) and a Thrombin cleavage site. 

 

SasG, effect of the charges on the ribosome studies: To study the effect of the charges on 

the co-translational folding of SasG, three versions of G52 and E-G52 were designed: one 
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with all the negative charges replaced, one with all the positive charges replaced and one 

with all the charges replaced. The 3 genes for E-G52 were purchased from GenScript in 

pUC57 vector. The 3 genes for G52 were cut from the purchased E-G52 ones. Then, a 

molecular biology step was done to insert all genes into the same modified pRSETa, the 

same used for all the other ribosome studies (see above).  

 

A1: Bonsu Ku (Korea Research Institute of Bioscience and Biotechnology) donated the A1 

gene inserted into a slighted modified pGEX-4T-3 plasmid, which contained a TEV 

cleavage site. As a result of TEV cleavage, an additional GS was left at the N-terminus of 

A1. 

 

PUMA: Expressed as a GB1 fusion protein. PUMA gene was inserted into a modified 

version of pRSETa plasmid, engineered by Dr Joseph Rogers, which contained an 

N-terminal histidine tag preceding the GB1 and a Factor Xa cleavage site between GB1 and 

PUMA.  

 

Full-length BID and t-BID: The protein encoding genes were designed and purchased 

from GenScript in pUC57 vector. In the lab, I designed a molecular biology strategy to insert 

both genes into the pGEX-4T-3 plasmid, the same used for A1. The proteins were expressed 

and purified using a very similar protocol to A1.     

 

3.3.4 Calculating plasmid concentration 
 

With the purified plasmid DNA, its concentration was calculated using A260  nm absorption 

readings of a 10x diluted sample, measured on a CARY 50 BIO UV-Vis spectrometer. The 

sample was prepared using 10 μL of plasmid DNA diluted into 90 μL ddH2O and measured 

against a blank sample consisted of 10 μL buffer EB (elution buffer, QIAGEN) diluted in 

90 μL ddH2O. 
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Considering that a solution containing 50 μg.ml-1 of double-stranded DNA has an 

absorbance at 260 nm of 1 and taking into account the dilution factor of the sample (DF = 

10), the plasmid concentration was calculated following the equation: 

[Plasmid] = A260 . DF . 50 ug.ml-1           Equation 3.2 

The quality of the DNA was determined by the ratio between A260 and A280 nm readings, 

with values in the range of 1.8-2.0 taken to mean good quality DNA. 

 

3.3.5 Polymerase chain reaction (PCR) 
 

The PCR protocol used in this thesis followed the Phusion Hot Start II DNA Polymerase 

specifications and the samples prepared in order to have a 50 μL total volume per reaction 

tube.  

Table 3.1: Phusion Hot Start II DNA Polymerase recommended PCR sample preparation 

protocol for optimal performance. 

Reaction Mix Final concentration 

H2O - 

HF buffer  1x 

dNTPs  200 μM each 

Primer forward  0.5 μM 

Primer reverse  0.5 μM 

Template DNA (plasmid) 10 ng. μl-1 

Phusion Hot Start II DNA Polymerase  0.02 U/μl 

 

The reaction was performed in a PTC-100 Programmable Thermal Controller (Thermo 

Fisher Scientific). 
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Table 3.2: Cycling program used for PCR  

Step Temperature (°C) Time 

Initial denaturation 95 2 min 

 35 cycles  

Denaturation 95 30 sec 

Annealing  55 30 sec 

Extension  72 4 min 

 End of cycles  

Final extension 72 20 min 

Hold 10 ∞ 

 

3.3.6 Site directed mutagenesis (SDM) 
 

In order to edit a gene by adding, removing or mutating its DNA sequence, SDM was 

performed. The desired plasmid DNA was used as a template and complementary primers 

(30-40 nucleotides in length) were designed containing the desired change in its sequence.   

The SDM protocol followed the Phusion Hot Start II DNA Polymerase specifications in 

order to get an optimal condition for the enzyme. The volumes for the sample preparation 

were calculated in order to have a 50 μL total volume per reaction tube.  

Table 3.3: Phusion Hot Start II DNA Polymerase recommended SDM sample preparation 
protocol for optimal performance. 

Reaction Mix Final concentration 

H2O - 

HF buffer  1x 

dNTPs  200 μM each 

Primer forward  0.5 μM 

Primer reverse  0.5 μM 

Template DNA (plasmid) 20-50 ng. μl-1 

Phusion Hot Start II DNA Polymerase  0.02 U/μl 
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The SDM was performed in a PTC-100 Programmable Thermal Controller (Thermo Fisher 

Scientific). 

Table 3.4: Cycling program used for SDM 
Step Temperature (°C) Time 

Initial denaturation 98 3 sec 

 25 cycles  

Denaturation 98 30 sec 

Annealing  65 30 sec 

Extension  72 3 min 

 End of cycles  

Final extension 72 10 min 

Hold 4 ∞ 

To digest the remaining methylated template DNA, 3 μL of DpnI (10 U/ μL) was then added 

to each reaction tube and incubated overnight at 37 °C. Then, 10 μL of the sample was 

transformed into 100 μL chemically competent cells (DH5α) and the purified plasmid DNA 

was stored at -20 °C. In order to confirm the SDM success, the sample was sent for 

sequencing (Genewiz Inc.). 

3.3.7 Ligation  
 

Ligation reaction was employed in order to join two nucleic acid fragments and to create 

recombinant DNA molecules, such as when a foreign DNA fragment was inserted into a 

plasmid. The ligation reaction is described in Table 3.5. 

Table 3.5: Sample preparation for ligation. 
Reaction Mix Volumes 

H2O 6 μl  

[10x] ligase buffer T4 1 μl 

T4 ligase (5 U/μL) 1 μl 

Plasmid DNA (~100 ng/μL) 1 μl 

DNA insert (~100 ng/μL) 1 μl 
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The sample was incubated at 4 °C overnight in order to guarantee an optimal efficiency of 

the reaction. In the following day, the sample was transformed into DH5α cells (10 μl of the 

ligation sample in 100 μl cells).  

The plasmid was then purified using the QIAprep spin Miniprep kit following the 

manufacturer protocol (QIAGEN) and stored at -20 °C. The purified plasmid was sent for 

sequencing to confirm the reaction’s success. 

3.3.8 Protein production 
 

1 μl of the desired plasmid DNA (~100 ng.μL-1) was transformed into 50 μL BL21-DE3 

(SasG and BID full-length) or C41-pLysS (PUMA and A1) chemically competent cells. On 

the following day, a single colony was added to 50 mL of LB-KAN or LB-AMP media and 

the solution incubated overnight at 37 °C.  

Then, 10 mL of the pre-culture was used to inoculate 1 litre of LB-KAN or LB-AMP media. 

The flask was incubated in a shaker at 37 °C until OD600 was 0.6-0.8 when the cells have 

reached the exponential growth phase. To induce protein expression, 400 μl of IPTG (1 M 

stock) was added to each flask. The temperature was reduced (25 °C for SasG, 24 °C for A1 

and 18 °C for PUMA) and the flask incubated overnight, shaking at 180 rpm. For BID full- 

length, after induction, the temperature was kept at 37 °C for 6 hours.  
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3.3.9 Protein purification 
 

SasG  

S. aureus, Uniprot Q2G2B2, residues 502-629 

 

EG52    

GPETIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVE

KEEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKD

PINELTEYGPET   

G52 

YGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIIS

KGESKEEITKDPINELTEYGPET  

Figure 3.1: Amino acid sequence of SasG E-G52 and G52.  

After the protein expression step, the cells were centrifuged (8000 x g, 15 minutes, 8° C) 

and the pellet was resuspended in 35 ml binding buffer 1 on ice. Cells were lysed by 

sonication (3 minutes total time, 3 seconds on, 7 seconds off) and the cell debris was pelleted 

by centrifugation (38000 ×g, 45 minutes, 8° C). The supernatant was filtered (0.22 μm) and 

purified by FPLC (AKTA, GE Healthcare). The sample was initially loaded onto a 5 ml 

HisTrap column equilibrated with Binding buffer 1. The protein was eluted from the 

HisTrap column using a linear Gradient buffer 1, (20-500 mM Imidazole gradient). The 

fractions containing the protein were collected and cleaved overnight with HRV 3C protease 

in order to remove the N-terminal His-tag. The sample was dialysed (3.5 KDa membrane) 

against 4 litres of [1x] PBS buffer overnight at 4 °C. 

The protein sample in PBS buffer was submitted to a second step of purification using a 

HisTrap column. This step was to separate the cleaved His-tag and the remaining impurities 

from the protein. The sample was loaded into the column and eluted from the HisTrap with 

the Binding buffer 2. As a final step, Gradient buffer 2 was used to wash the HisTrap 

column. The purified protein was stored at -20 °C. 
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The purity of the protein was verified by SDS-PAGE (NuPAGE Bis Tris Mini Gels, Novex 

by Life Technologies) and the correct molecular weight confirmed by mass spectroscopy.  

A1  

Mouse, Uniprot Q07440, residues 1-152 containing P104K and C113S mutations 

 

GSMAESELMHIHSLAEHYLQYVLQVPAFESAPSQACRVLQRVAFSVQKEVEKNLKSYLDD

FHVESIDTARIIFNQVMEKEFEDGIINWGRIVTIFAFGGVLLKKLKQEQIALDVSAYKQV

SSFVAEFIMNNTGEWIRQNGGWEDGFIKKFEPKS 

Figure 3.2: Amino acid sequence of A1. The plasmid containing the P104K and C113S mutations 
was kindly donated by Bonsu Ku. The additional N-terminus GS was left as a result of a TEV 
cleavage.  

 

The A1 sequence containing the mutations P104K and C113S was the same used to solve 

the structures of A1: PUMA and A1: BID (Smits et al. 2008). Cells were pelleted by 

centrifugation (8000 x g, 15 minutes, 8° C), resuspended in 35 mL of PBS and sonicated (3 

minutes total time, 15 seconds on, 45 seconds off). The cell debris was pelleted by 

centrifugation (38000 ×g, 45 minutes, 8° C) and the supernatant was incubated with 

glutathione sepharose 4B resin (approximately 10 mL) for four hours at 4° C. Then, the 

resin containing the bound protein was washed once with PBS and twice with TEV cleavage 

buffer. Each washing step consisted in topping up the falcon tube with buffer, mixing it with 

the resin by inverting the tube and spinning it down by centrifugation (500 ×g, 5 minutes, 

4° C). The supernatant was discarded after each wash. The resin was resuspended in TEV 

cleavage buffer and a final concentration of 2 mM EDTA and 10 mM DTT were added to 

the solution. In order to cleave the protein off the resin, 5 µM of TEV protease was added 

and the protein was incubated overnight at room temperature. The purification of the 

cleaved protein consisted of two FPLC steps: an ion-exchange followed by a size exclusion. 

Using an AKTA FPLC instrument, cleaved A1 was loaded onto an ion-exchange column 

(HiTrapTM SP HP, 5 mL) using the buffers 20 mM TRIS pH 7.0 with 0 and 1 M NaCl. A 

gradient of 0 – 23% NaCl over 60 mL was used to elute A1. Fractions containing the almost 

pure A1 (assessed by SDS-PAGE) were combined. As a final step of purification, the 

protein was loaded into a Superdex G75 gel filtration column used also to exchange the 
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buffer into the 50 mM sodium phosphate biophysical buffer. The purity of the protein was 

verified by SDS-PAGE and the correct molecular weight confirmed by mass spectroscopy. 

The protein was stored at 4° C. 

PUMA peptide  

Mouse, Uniprot Q99ML1, residues 127-161, containing the mutation M144A 

 

RVEEEEWAREIGAQLRRAADDLNAQYERRRQEEQH 

Figure 3.3: Amino acid sequence of PUMA peptide. The peptide was produced containing the 
M144A mutation to prevent oligomerization.  

The mutation M144A was introduced to make the peptide less prone to self-association 

(Joseph M. Rogers, Wong, and Clarke 2014). Cells were pelleted by centrifugation (8000 x 

g, 15 minutes, 8° C), resuspended in 35 mL of PBS, 25 mM imidazole buffer and cells were 

lysed by sonication (3 minutes total time, 15 seconds on, 45 seconds off). Sonicate 

supernatant was incubated with Ni+2 agarose resink (1.25 mL per litre of culture) for 1 hour 

at 4° C. The resin was washed twice with PBS, 25 mM imidazole and once with Factor Xa 

cleavage buffer. Washing steps consisted in filling up the falcon tube with buffer, mixing it 

by inversion and decanting the resin by centrifugation (500 ×g, 5 minutes, 4°C). The 

supernatant was discarded after each wash. The resin was resuspended in Factor Xa 

cleavage buffer and incubated with 20 ug of Factor Xal overnight at room temperature. The 

purification of PUMA consisted of two steps: an ion exchange followed by size exclusion. 

Using an AKTA FPLC instrument, the resin supernatant was loaded onto an ion-exchange 

column (HiTrapTM SP HP, 5 mL), using the buffers 20 mM TRIS pH 7.0 with 0 and 1 M 

NaCl. PUMA was eluted from the column with a gradient of 0 – 250 mM NaCl over 90 mL. 

Fractions containing PUMA (assessed by SDS-PAGE) were pooled and loaded onto a size 

exclusion column (HiLoadTM 26/600 Superdex 30 pg). This final step was used also to 

exchange the buffer into the 50 mM sodium phosphate biophysical buffer. The purity of the 

protein was verified by SDS-PAGE and the correct molecular weight confirmed by mass 

spectroscopy. Purified PUMA was aliquoted, flash frozen in liquid nitrogen and stored at 

- 80 °C.  
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BID-TAMRA peptides  

Mouse, Uniprot P70444, residues 76- 110 

 

Mouse BID peptides, wild-type and mutants, were purchased from Biomatik (Canada). The 

peptides were N-terminally labelled with TAMRA fluorescent dye. The peptides were 

synthetized as trifluroacetate salts and were reconstituted in biophysical buffer. The 

solutions were filtered, aliquoted, flash frozen in liquid nitrogen and stored at - 80°C.  

WT   SESQEEIIHNIARHLAQIGDEMDHNIQPTLVRQLA 

E81G    SESQEGIIHNIARHLAQIGDEMDHNIQPTLVRQLA 

E81A    SESQEAIIHNIARHLAQIGDEMDHNIQPTLVRQLA 

I82A    SESQEEAIHNIARHLAQIGDEMDHNIQPTLVRQLA 

I83A    SESQEEIAHNIARHLAQIGDEMDHNIQPTLVRQLA 

N85G   SESQEEIIHGIARHLAQIGDEMDHNIQPTLVRQLA 

N85A   SESQEEIIHAIARHLAQIGDEMDHNIQPTLVRQLA 

I86A   SESQEEIIHNAARHLAQIGDEMDHNIQPTLVRQLA 

R88G   SESQEEIIHNIAGHLAQIGDEMDHNIQPTLVRQLA 

R88A   SESQEEIIHNIAAHLAQIGDEMDHNIQPTLVRQLA 

L90A   SESQEEIIHNIARHAAQIGDEMDHNIQPTLVRQLA 

Q92G   SESQEEIIHNIARHLAGIGDEMDHNIQPTLVRQLA 

Q92A   SESQEEIIHNIARHLAAIGDEMDHNIQPTLVRQLA 

I93A   SESQEEIIHNIARHLAQAGDEMDHNIQPTLVRQLA 

E96G   SESQEEIIHNIARHLAQIGDGMDHNIQPTLVRQLA 

E96A   SESQEEIIHNIARHLAQIGDAMDHNIQPTLVRQLA 

M97A   SESQEEIIHNIARHLAQIGDEADHNIQPTLVRQLA 

H99G   SESQEEIIHNIARHLAQIGDEMDGNIQPTLVRQLA 

H99A   SESQEEIIHNIARHLAQIGDEMDANIQPTLVRQLA 

I101A   SESQEEIIHNIARHLAQIGDEMDHNAQPTLVRQLA 

I86A-M97A SESQEEIIHNAARHLAQIGDEADHNIQPTLVRQLA 
Figure 3.4: Amino acid sequences of synthetized BID wild-type and mutants. The peptides were 
synthesized with an N-terminal TAMRA fluorescent dye. 
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Figure 3.5: Chemical structure of TAMRA fluorescent dye. 5 Carboxytetramethylrhodamine 
(TAMRA) dye was attached to the N-terminus of all synthesized BID peptides. The presence of 
TAMRA did not change the net charge of the peptides. TAMRA chemical structure was constructed 
using ChemDraw Professional (version 17.0). 

 

BID full-length  

 

Mouse, Uniprot P70444, residues 1- 195 

 

GSMDSEVSNGSGLGAEHITDLLVFGFLQSSGCTRQELEVLGRELPVQAYWEADLEDELQT

DGSQASRSFNQGRIEPDSESQEEIIHNIARHLAQIGDEMDHNIQPTLVRQLAAQFMNGSL

SEEDKRNCLAKALDEVKTAFPRDMENDKAMLIMTMLLAKKVASHAPSLLRDVFHTTVNFI

NQNLFSYVRNLVRNEMD 

Figure 3.6: Amino acid sequence of BID full-length. The gene that encodes the protein was 
purchased from GenScript in the pUC57 vector. The additional GS at the N-terminus of the sequence 
was left as a result of a TEV cleavage.      

 

Cells were pelleted by centrifugation (8000 x g, 15 minutes, 8° C), resuspended in 25 mL 

of PBS and the cells were lysed by sonication (3 minutes total time, 15 seconds on, 45 

seconds off). The sonicate supernatant was incubated with glutathione sepharose 4B resin 

(approximately 10 mL) for four hours at 4° C. Resin was washed once with PBS and twice 

with TEV cleavage buffer. The beads were resuspended in TEV cleavage buffer and EDTA 

and DTT (2 and 10 mM final concentrations, respectively) were added to the solution. Then, 

5 µM final concentration of TEV protease was added and the protein was incubated at room 

(CH2)2N O NH(CH2)2

C
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C
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temperature overnight. Differently than what was done for A1 purification, a HisTrap step 

was used for BID instead of an ion-exchange. BID full- length has an overall charge of -15 

(32 positively charged and 17 negatively charged residues) and adding an ion-exchange step 

would be particularly challenging, as a very high salt concentration would be required. Since 

TEV has a His-tag, a His-Trap step was employed to separate cleaved TEV from the protein. 

Firstly, 20 mM imidazole was added to the protein sample to prevent BID binding to the 

nickel resin. Then, the solution was passed through a HisTrap column (2 mL/min flow rate). 

As a final purification step, the protein was loaded onto a Superdex G75 gel filtration 

column used also to exchange the buffer into the 50 mM sodium phosphate biophysical 

buffer. The purity of the protein was verified by SDS-PAGE and the correct molecular 

weight confirmed by mass spectroscopy. The protein was stored at 4 °C. 

t-BID 

 

Mouse, Uniprot P70444, residues 61- 195 

 

SQASRSFNQGRIEPDSESQEEIIHNIARHLAQIGDEMDHNIQPTLVRQLAAQFMNGSLSE

EDKRNCLAKALDEVKTAFPRDMENDKAMLIMTMLLAKKVASHAPSLLRDVFHTTVNFINQ

NLFSYVRNLVRNEMD 

Figure 3.7: Amino acid sequence of t-BID. The gene that encodes t-BID was purchased from 
GenScript in the pUC57 vector but the truncated protein could not be produced directly. It required 
the production of BID full-length and its truncation was produced using caspase 8.  

 

Purified BID full-length was cleaved by caspase 8 in order to produce t-BID. The 25 U of 

the purchased caspase was resuspended in 50 μL of biophysical buffer with 15% glycerol. 

The protease was added to 10 mL of BID full-length (approximately 70 μM) with 5% 

glycerol, 10 mM DTT and 10 mM EDTA. The reaction was carried out at room temperature 

overnight. After the reaction, SDS-PAGE shows three components present: t-BID, BID 

fragment (60 residues cleaved from BID) and a small amount of uncleaved BID full-length. 

To unfold t-BID and BID fragment that remain folded after cleavage, the protein sample 

was incubated with 8 M urea for 2 hours at room temperature, before a size exclusion gel 
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filtration step. Using an AKTA FPLC instrument, the protein sample was loaded onto a G75 

gel filtration column, previously equilibrated with 8 M urea in the biophysical buffer. 

Fractions containing separated t-BID, BID fragment and BID full-length were collected and 

the proteins were stored at 4 °C. 
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3.3.10  Calculating protein concentration 
 

Protein concentration was calculated following the Beer-Lambert equation: 

 

A= ε.c.l                     Equation 3.3 

Where,   

A is the absorbance at a specific wavelength. 

ε is the extinction coefficient of the solution (M-1.cm-1). 

c is the solution concentration (M). 

l is the path length of the cuvette in which the sample is contained (cm). 

The absorbance readings were taken in a CARY 50 BIO UV-Vis spectrometer. A sample of 

the corresponding buffer was used as a blank and the total absorbance calculated by the A280 

values from the protein sample. The extinction coefficient for SasG (ε= 2980 M-1.cm-1) was 

obtained from the ProtParam tool (ExPASy). For a more accurate extinction coefficient and 

concentration calculation, multiple samples of A1, BID peptides and BID full-length were 

sent for amino acid analysis (AAA) performed at the Biochemistry department. The 

experimental concentration values from AAA were then plotted against the A280 (A555 for 

TAMRA labeled peptides) values and the gradients of the straight-line fits gave the 

extinction coefficients. (A1: ε= 24200 M-1.cm-1, BID-TAMRA peptides ε= 85000 M-1.cm-1 

and BID full-length ε= 8700 M-1.cm-1).  

 

3.3.11  Equilibrium folding stability: data acquisition and data analysis 
 

Two solutions were prepared volumetrically to perform equilibrium experiments: 9 M and 

0 M urea, both in 1x PBS. A Hamilton Microlab® was used to dispense the solutions in order 

to create a set of 68 tubes (800 μl samples) with urea concentration ranging from 0 to 9 M. 

A 100 μl sample of 45 μM protein stock solution in 1x PBS was added to each tube in order 
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to give a final protein concentration of 5 μM. The set of tubes were left to equilibrate at 

25 °C for 30 minutes. The data were collected using a LS-50 luminescence 

spectrophotometer (PerkinElmer). Fluorescence readings were obtained from each solution 

equilibrated at 25 °C. The excitation wavelength was set to 276 nm and the scan taken from 

290-390 nm (300 nm.min-1).  

The acquired data were exported to a Kaleidagraph spreadsheet (Synergy Software) plotted 

and fitted to Equation 2.3 (chapter 2), from which thermodynamic parameters (,#$%, 

[den]50% and ∆"#$%
'(); see chapter 2 for details) were obtained. To allow comparison the 

fluorescence data were converted into fraction folded using the Equation 2.4 (chapter 2). 

3.3.12  Folding on the ribosome: the arrest peptide assay 
 

The arrest peptide assay with the incorporation of 35S methioninel into nascent protein 

chains was performed using the PUREfrexm in vitro translation kit. Up to 24 reactions could 

be run simultaneously. 

A master mix reaction containing the solutions with the volumes recommended on the kit 

protocol and the 35S methionine was prepared. 9 μl of the master mix was added to 1 μl of 

the template DNA within a 20 seconds interval between each sample. The final 10 μl 

reaction (Table 3.6) was incubated in a thermo mixer at 37 °C for 15 minutes and 500 rpm.  

Table 3.6: Reaction mix for the incorporation of 35S methionine into nascent protein chains.  

Reaction Volume 

Solution I 5 μl 

Solution II 0.5 μl 

Solution III 0.5 μl 

Template DNA 1.0 μl 
35S methioninel 0.5 μl 

ddH2O 2.5 μl 

To stop the reaction after 15 minutes, 10 μl of ice-cold 10 % (v/v) trichloroacetic acid (TCA) 

in water was added to each tube within a 20 seconds interval between each sample. They 

were incubated on ice for 30 minutes. 
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Precipitated samples were pelleted by centrifugation for 5 minutes at 4°C and 14000 rpm. 

The supernatants were removed and discharged via the radioactivity waste sink. 10 μl of 

[1x] protein loading buffer was added to each tube and the pellets were resupended by 

agitation (15 minutes, 37°C and 1400 rpm). Then 1.5 μl of RNase A (4 mg/ml) was added 

to each tube and samples were incubated for 15 minutes at 37° C with shaking at 700 rpm. 

The samples were loaded (11.5 μl) onto a standard NuPage gel and run for 50 minutes at 

200 V. After running, the gel was fixed in 50 ml Instant Blue solution for 45 minutes and 

then dried in a gel drier for 2 hours at 80 °C. 

The dried gel was transferred to a phosphorimaging plate and left for two days. After that, 

the phosphorimaging plate was read on the Typhoon trioj and the image saved and analysed 

using the program ImageJ (Schneider, Rasband, and Eliceiri 2012); Figure 2.1).  

 

Figure 3.8: Arrest peptide assay. (A) A generic protein imaged gel. (B) The intensity of the two 
bands is quantified to generate a profile of intensity vs. position using the ImageJ program.  
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The data can be fitted to an equation involving the two Guassians and a flat baseline. 

 

ü = h + 	ç†
I(°IÅ)(

(¢( + 	;†
I(°I£)(

(§(             Equation 3.4 
 

 

From equation 3.4, the area of each band can be quantified using: 

 

Area	1 = 	ç•√2ß                                   Equation 3.5 

Area	2 = 	;®√2ß                                   Equation 3.6 

 

And finally, each band can be quantified as a percentage of the total area or, in other words, 

we can find out the fraction full-length of the protein in each linker length sample and then 

get the force profile (fraction full-length vs. linker length). 

 

3.3.13 Circular Dichroism (CD) 
 

CD was employed in order to investigate the proteins and peptides secondary structures. 

The experiments were performed using an Applied Photophysics Chirascan spectrometer. 

Samples were prepared by weight to ensure an accurate concentration. In each experiment, 

the buffer in use was scanned and subtracted from each protein spectrum. The CD signal 

(millidegrees (mdeg)), obtained from far-UV CD is dependent on protein secondary 

structure as well as on the number of peptide bonds. Therefore, to allow comparison 

between different proteins, the CD signal was converted to mean residual ellipticity (MRE), 

which accounts for protein concentration, number of amino acids (aa) and cuvette path 

length (Equation 3.7): 

MRE = ¨#	ov≠Cöõ	(ÆAB≠)

Pñ	E	ØmCØBC∞±ö∞vmC	(})	E		CwÆnB±	mx	öö	E	Fö∞≤	õBC≠≤∞	(ØÆ)
  Equation 3.7 
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Path length needs to be taken into account as the interactions between the polarised light 

and the protein molecules will vary not only with the protein concentration and its number 

of residues, but with the length that the light will pass through as well. A longer path length 

will result in a greater mdeg signal. However, increasing the path length also increases the 

background absorbance, which can be minimised by adjusting the detector voltage. The 

manufacturer’s recommendation for the Applied Photophysics instrument was a maximum 

of 800 V. An optimization of signal to noise ratio was obtained carefully balancing the 

protein concentration and the path length for each experiment.  

 

A1 

 

Due to the presence of a single cysteine residue in A1 sequence, DTT (10 mM final 

concentration) was added to the protein sample to avoid disulphide-bond formation. DTT 

absorbs in the far-UV region, which increases the background absorbance. To optimize this 

condition, a 0.2 mm cuvette was chosen to allow enough light to pass through and reach the 

detector. Experimental settings were 1 nm bandwidth, 5 s adaptive time-per-point sampling 

at 25 °C. Different A1 concentrations were used and compared to check for oligomerization.   

 

BID TAMRA peptides  

 

To check for oligomerization propensity of TAMRA labelled BID peptides, two different 

concentrations (5 and 10 μM) were scanned and the spectra of each peptide compared. The 

experimental settings were 2 mm path length, 1 nm bandwidth, 5 s adaptive time-per-point 

sampling at 25 °C. All peptide samples were prepared and scanned on the same day. Each 

sample was sent for amino acid analysis (Department of Biochemistry) for an accurate 

concentration determination. Peptide helicity was calculated from the highest concentration 

sample.  
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Coupled folding and binding  

 

CD was used to probe coupled folding and binding between IDP and partner protein, based 

on the assumption that a change in the structures would occur. Spectra of equimolar 

concentrations of each individual component were collected and converted to MRE. Then, 

the mean of the two individual sample spectra was calculated and the MRE would represent 

the spectrum expected if no structure change would occur upon binding. Next, a mixture of 

the two samples (1:1 volume ratio) was incubated at 25 °C for two hours and then scanned. 

The difference between the expected spectrum calculated from the individual scans and the 

one from the mixture, is related to the structure change upon the formation of the complex. 

To allow this comparison, the difference spectra were multiplied by the fraction of protein 

in complex. The concentration of the complex ([AB]) was estimated by the equation 3.8. 

 

[AB] = 	 (	
[µ]?[∂]?	∑∏$π(([µ]?[∂]?∑∏)$∫	[µ].[∂])	)

ª
								Equation 3.8 

 

Where, [A] and [B] are the total concentration of each protein and Kd is the dissociation 

constant for the complex. To calculate the fraction bound, the concentration of the complex 

([AB]) was divided by the total amount of either protein A or B.  

 

Helical content estimation 

 

The helical content estimation in this thesis was calculated from the MRE value at 222 nm 

following Muñoz and Serrano method (Muñoz and Serrano 1995). 

The method describes that the expected MRE of a helical protein at 0 °C is given by: 

MRE≤BõvE	(ñ°¨)	 = −39500	 ø1 − ª.¿¡

CwÆnB±	mx	öÆvCm	öØvAo
¬    Equation 3.9  
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For a random coil at a given temperature, the MRE is calculated by: 

 

MREØmvõ = 400 − 45t                              Equation 3.10 

  

Where 400 is the MRE value at 222 nm for a random coil at 0 °C and t is the temperature 

in Celsius.  

The MRE for a helix at a given temperature is calculated by: 

 

MRE≤BõvE = 	MRE≤BõvE	(ñ°¨) + 100t        Equation 3.11 

 

Where MRE helix (0°C) can be calculated from the Equation 3.9 and t is the temperature in 

Celsius.  

 

Then, the helical content can be estimated by: 

 

%	Helix = Pññ

(P?ƒ
(≈∆«(((I≈∆«»… ÀÃ)
(≈∆«ÕìÀ I≈∆«((()

Œ
                 Equation 3.12 

 

Where MRE222 is the measured MRE at 222 nm and MREcoil and MREhelix are calculated 

from the equations 3.10 and 3.11. 
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3.3.14  Association kinetics 
 

Association kinetics experiments were performed by rapidly mixing protein solutions in a 

stopped-flow spectrometer (Applied Photophysics) and following the TAMRA dye 

fluorescence. The excitation wavelength was 555 nm and the emission was recorded above 

570 nm, with a slit width of 1 mm. The temperature was maintained at 25 °C. A cut-off 

filter (570 nm) was utilized to reduce the detection of scattered light. A minimum of 15 

traces were collected and averaged before analysis. Data collected before the instrument’s 

mixing dead-time (1 ms) were removed. 

The experiments were performed under pseudo-first order conditions, with the 

concentration of one protein at least 10-fold higher than the other. To minimize the signal 

to noise problem, the protein with the lower fluorescence was used in excess. The averaged 

trace of each concentration of protein in excess was fit to a single exponential decay function 

(Equation 2.26, chapter 2) and the observed rate constant (kobs) was calculated by: 

 

dœno = dmC	[A] +	dmxx                       Equation 3.13 

 

Where [A] is the concentration of the protein in excess, and kon and koff are the association 

and dissociation rate constants, respectively. Thus, kon was determined by the gradient from 

the fit of kobs versus [A]. 
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3.3.15 Dissociation kinetics  
 

Dissociation kinetics experiments were performed using either a stopped-flow spectrometer 

(Applied Photophysics) (for kobs > 0.03 s-1) or a fluorescence spectrophotometer (Cary 

Eclipse, Varian) (for kobs < 0.03 s-1). Samples comprised of peptide/protein and its partner 

were mixed with various concentrations of an excess of competitor peptide. The idea being 

that the higher affinity peptide competitor would form a complex with the partner protein, 

releasing the peptide of interest, reaching a new equilibrium. The fluorescence change upon 

formation of the new complex was used to extract the kobs. Traces were averaged and the 

mean was fit to a single exponential decay function (Equation 2.26, chapter 2). Excess of 

the competitor was used to guarantee that kobs represents koff, whereas at a low 

competitor/complex ratio, kobs would represent the koff plus a component of kon, from the 

peptide/partner complex being reformed. 

Experimental settings were 340 nm excitation and 360 nm emission wavelengths, when 

following intrinsic tryptophan fluorescence, or 555/575 nm for TAMRA labelled peptides. 

The temperature was maintained at 25 °C and slit widths were 2.5 and 10 nm on the 

fluorimeter or 1 nm on the stopped-flow. For TAMRA labelled BID peptides, the 

fluorescence change was small. Therefore, fluorescence anisotropy (vertical/vertical 

channel) was used to follow the dissociation kinetics.  

Pre-formed complexes of 5 μM BID-TAMRA peptides/partner protein were mixed with 

different concentrations of PUMA, in a 1:9 or 1:10 ratio for the fluorimeter and stopped-

flow, respectively. Samples were manually mixed before starting to be recorded in the 

fluorimenter, which caused the start of the reaction to be missed. This lag time was taken 

into account by recording the time between the addition of the competitor and the return of 

the cuvette to the fluorimeter. That information was then used to adjust the reaction time 

scale during the data analysis. Three data points of different concentrations of competitor 

were recorded and the observed rate constants (kobs) were averaged. As the concentrations 

of competitor were sufficiently high, kobs was equal koff. 
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3.3.16 Equilibrium binding affinities 
 

Equilibrium dissociation constants (Kd) were measured following fluorescence anisotropy, 

using a spectrophotometer (Cary Eclipse, Varian) at 25 °C. The TAMRA dye fluorophore 

was excited at 555 nm and its emission was recorded at 575 nm. The emission/excitation 

slit widths were 2.5 and 10, respectively. Vertical and horizontal channels were used to 

calculate the anisotropy.  

Thus, a correction factor (G) was calculated to take into account the instrument capacity to 

detect the fluorescence in the different channels. G factor was calculated by: 

 

G = —“”

—““
                              Equation 3.14 

 

Where IHH is the fluorescence intensity when using the horizontal excitation/emission 

channel and IHV, the horizontal excitation and vertical emission channels.   

The anisotropy (R) can then be calculated by: 

  

R = —””$‘—”“

—””?ª‘—”“
                       Equation 3.15 

 

Where IVV is the fluorescence intensity when using the vertical excitation/emission channel 

and IVH, the vertical excitation and horizontal emission channels.   

To account for the changes in fluorescence intensity upon the binding reaction, the 

anisotropy can be adjusted (Radj) using the equation from Dandliker et al (Dandliker et al. 

1981): 

b’ê÷ =
◊
ÿ
	×	

⁄ô	

⁄¤
×	M¤?Mô

P?◊
ÿ
×

⁄ô
⁄¤

                             Equation 3.16 
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Where Q is the measured fluorescence, x is the difference between the measured and the 

free peptide anisotropy, y is the difference between the anisotropy of the bound peptide and 

the measured anisotropy and R is the measured anisotropy.  

Total fluorescence intensity of the free (Qf) and bound (Qb) peptide was calculated by: 

 

Q = Ififi + 2Ifi'                                    Equation 3.17 

After the anisotropy calculation (Equation 3.16), it is then possible to determine the 

equilibrium binding dissociation constant (Kd): 

böAfl = bx + ∆b ƒ∑∏?[å]?[ë]$π((∑∏?[å]?[ë])($∫[å][ë])

ª[å]
Œ																			Equation 3.18 

 

where [A] and [B] are the concentrations of the IDP peptide and partner protein, 

respectively, Rf is the anisotropy of the free peptide and ΔR is the difference between the 

free and bound peptide anisotropies. 

 

3.3.17 Data Analysis  
 

Throughout the thesis, biophysics data were fit using Kaleidagraph (version 4.1, Synergy). 

Quantification of the protein gels bands for the ribosome experiments was done using 

ImageJ (version 1.52a, NIH). 
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4 Role of charged residues in the stability of SasG  

4.1 Introduction 

 

4.1.1 SasG biological background 

 

Certain bacterial species are able to produce a polymeric matrix that adheres to living or 

inert surface to form functional communities, known as bacterial biofilms (Costerton et al. 

1999). Biofilms are very difficult to eradicate as they are resistant to the host immune system 

and to antimicrobial agents (Lewis 2001; Dunne 2002; Steward & Costdrton 2001), and 

present a challenge when treating chronic infections – as usually seen with inserted medical 

devices (Harris and Richards 2006). Staphylococci are a common source of infections 

mediated by biofilms, as they populate the human skin and mucous surfaces.  

Staphylococcus aureus surface protein G (SasG) promotes cell-to-cell accumulation during 

biofilm formation (Geoghegan et al. 2010b). Non-pathogenic S. aureus normally lives in 

anterior nares, where the pH is just below neutral, around 6 to 6.5 (Washington et al. 2000). 

When infection starts and S. aureus turns into a pathogen somewhere in the body, the pH is 

likely to be more acidic. It is known that during immune responses, neutrophils and other 

immune cells release their content in acidic microenvironments (Cao et al. 2015), where the 

pH is likely to drop below 5. In fact, there are some suggestions in the literature that release 

of zinc by neutrophils (and associated drop in pH) might be the trigger for biofilm formation 

(Conrady, Wilson, and Herr 2013). In this context, it is expected that during biofilm 

formation, SasG would experience a variety of different conditions in the body, including 

changes in pH. 
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4.1.2 SasG biophysical background 

 

SasG amino acid composition is very intriguing: it is comprised mainly of charged residues, 

prolines and glycines. Thus, it has a sequence composition of an IDP, but yet it folds. Its G5 

domains are folded in isolation and in multidomain constructs whereas the E domains only 

fold when preceding a G5 domain or in multidomain constructs (Dominika T Gruszka et al. 

2012).  

The second G5 domain (G52) has 38% of its sequence composed by charged amino acids 

(Arg, Lys, Asp, Glu) and lacks a hydrophobic core as the β-sheets are exposed to solvent on 

both sides. The E domain is also highly charged, which makes the E-G52 construct 

analogous, with a total of 36% of charged residues (Figure 4.1).  

  

Figure 4.1: Charged residues in SasG G52 and E-G52 constructs. Side chains of (A) G52 and (B) E-
G52, showing exposed charged amino acids and its sequences with charged residues highlighted 
and their percentage within the domain amino acid composition.  

A	

B	

!
GPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITT
PTLKNPLTGEIISKGESKEEITKDPINELTEYGPET!
		

38%	charged	(31/82):	Arg	(2),	Lys	(11),	Asp	(3),	Glu	(15)	
		
	

!
GPEMIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVD
SVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKG
EKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPET!
	

36%	charged	(48/132):	Arg	(4),	Lys	(16),	Asp	(7),	Glu	(21)	
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4.1.3 Kappa value 

Highly charged proteins can be extended or collapsed, depending on their patterning. The 

patterning can be measured using a kappa value (κ), a parameter that can vary from 0-1 (Das 

and Pappu 2013). κ is low for well-mixed sequences, where the intra-chain interactions are 

well balanced. Segregated opposite charges generates a high κ (Figure 4.2). 

 

Figure 4.2: Kappa value example of thirty sequence variants composed by Glu-Lys residues. 
Column 1 shows the label of each sequence variant. Column 2 shows the actual sequence, with Glu 
residues in red and Lys residues in blue. Column 3 shows the κ-values (Figure taken from Das and 
Pappu 2013). 

The pattern of charged residues in a protein sequence can be related to its ability to fold. 

Low κ-values are often encountered in random coil ensembles, whereas high κ-values are 

observed in hairpin-like conformations where long-range electrostatic interactions occur. 

The κ-value for SasG G52 domain was calculated using CIDER (Holehouse et al. 2017), a 

tool developed by the Pappu laboratory that uses various algorithms to analyse protein 

sequences. 

κ-values for G52 domain and E-G52 are 0.072 and 0.080, respectively (Figure 4.3). 

According to the charged residues pattern distribution, both constructs were likely to be 

expanded. This is in agreement with the PONDR-FIT (Xue et al. 2010) disorder predictor 

analysis (Introduction, chapter 1), but not in agreement with the structural data. One might 

infer that the charges are involved in salt bridges formation, as is the case for the highly 

patterned sequences.  
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Figure 4.3: Kappa values results for SasG G52and E-G52 constructs. Values for both G52 and E-G52 

are low, 0.072 and 0.080 respectively.  

It has been shown that proline and glycine residues are very important for SasG stability at 

physiological pH (Gruszka et al. 2016). Additionally, it is known that the cooperativity 

between SasG domains could be important for sensing mechanical stress (Gruszka et al. 

2015), allowing the protein to fold and unfold in response to environmental conditions.  

Considering that the protein also naturally experiences environments with different pH and 

given the unusually charged nature of the protein, we were interested to investigate whether 

protein stability was also sensitive to this environmental input. 

 

4.1.4 Chapter aims 

In this chapter, bioinformatics analysis and biophysical experiments were performed in 

order to investigate the role of charged amino acids in the stability of SasG. It will include 

results from the peptide charge calculator tool, kappa-value analysis, salt bridges predictor, 

ionic strength dependence (for both G52 and E-G52 constructs) and pH dependence studies 

of G52. The data provide insights on the importance of the charged residues for SasG 

stability.  

Protein Name = SasG.G52

Amino Acid Sequence = 
GPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPET

Length = 82
Molecular Weight (ProtParam) = 9069.02 da
pI (ProtParam) = 4.82
Kappa Value (Assuming all Charged) = 0.072

Amino Acid Content = 
{'A': 1, 'C': 0, 'E': 15, 'D': 3, 'G': 8, 'F': 2, 'I': 7, 'H': 0, 'K': 11, 'M': 0, 'L': 4, 
'N': 3, 'Q': 1, 'P': 8, 'S': 3, 'R': 2, 'T': 10, 'W': 0, 'V': 3, 'Y': 1}

Protein Name = SasG.E-G52

Amino Acid Sequence = 
GPEMIAPGHRDEFDPKLPTGEKEçEVPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKGEKT
ITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPET

Length = 132
Molecular Weight (ProtParam) = 14463.01 da
pI (ProtParam) = 4.84
Kappa Value (Assuming all Charged) = 0.080

Amino Acid Content = 
{'A': 2, 'C': 0, 'E': 21, 'D': 7, 'G': 14, 'F': 3, 'I': 9, 'H': 1, 'K': 16, 'M': 1, 'L': 5, 
'N': 4, 'Q': 1, 'P': 17, 'S': 4, 'R': 4, 'T': 13, 'W': 0, 'V': 8, 'Y': 2}
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4.2 Results 

 

4.2.1 Peptide charge calculator 

The “Peptide charge calculator” (Gale Rhodes, University of Southern Maine), is a script 

that calculates the sum of each charged species of a protein sequence using the Henderson-

Hasselbach equation at each pH. Using this tool, it was possible to generate a plot with the 

profile of the net charge against increasing pH for SasG G52 and E-G52 constructs. (Figure 

4.4).  

  

Figure 4.4: Peptide charge calculator results for G52 and E-G52constructs. The script computes net 
charge on peptide from composition of ionisable residues.   

 

The plot shows the expected net charge across the pH range for G52 and E-G52. Any residues 

involved in salt bridges may experience altered pKa values (Anderson, Becktel, and 

Dahlquist 1990), stabilising the ionised state. Protein stability is altered by changes in total 

net charge (Shaw et al. 2001). Therefore, based on this net charge calculator, we might 

expect the protein stability to remain relatively unaltered in the 6-9 region, with changes in 

stability occurring in the range 3-5 and 10-12. On the other hand, if the residues are involved 

in salt bridge formation, we might expect the protein stability to remain unchanged over a 

wider range of pH.  
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4.2.2 SasG salt bridges  

 

The ESBRI tool (Evaluating the salt bridges in proteins online tool; Costantini et al. 2008), 

was used in order to check if charged residues were involved in salt bridges along SasG 

structure. A cut off of 4 Å was used as a maximum distance between two opposite charged 

residues (Kumar and Nussinov 2002). The results show that despite having 31 charged 

amino acids, G52 has only six salt bridges (Figure 4.5, A). E-G52 has 48 charged amino 

acids but only 8 salt bridges (Figure 4.5, B). Perhaps this should not be a surprise since all 

residues are solvent exposed and able to interact with water. 

 

  

 

 

 

 

 

 

 

 

Figure 4.5: Salt bridges results of SasG contructs. Salt bridges predictions for (A) G52 and (B) 
E-G52, using ESBRI tool (Costantini et al. 2008) assuming a 4 Å cut-off. 

  

G52-WT!
Residue 1! !Residue 2! !Distance!
LYS 565 ! !GLU 621 !  !3.84!
ARG 567 ! !GLU 578 !  !3.09!
LYS 586 ! !GLU 560 ! !3.23!
LYS 589 ! !GLU 612 ! !3.46!
LYS 597 ! !ASP 553 ! !3.90!
LYS 611 ! !GLU 613 ! !3.96!
!
!
EG52-WT!
Residue 1!Residue 2! ! !Distance!
HIS 506 ! !ASP 621 !  !2.92!
HIS 506 ! !ASP 578 !  !3.27!
LYS 565 ! !GLU 560 ! !3.84!
ARG 567 ! !GLU 612 ! !3.09!
LYS 586 ! !GLU 553 ! !3.23!
LYS 589 ! !GLU 613 ! !3.46!
LYS 597 ! !ASP 613 ! !3.90!
LYS 611 ! !GLU 613 ! !3.96!
!

A	

B	
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4.2.3 Ionic strength effect on SasG contructs: G52 and E-G52 
 

Both constructs G52-WT and E-G52-WT were successfully expressed in E. coli and purified 

by nickel affinity chromatography. A yield of approximately 60 mg of protein per litre of 

cell culture was obtained. The purity of each protein was verified by SDS-PAGE and 

confirmed by mass spectrometry. 

Neither G52 or E domains have a tryptophan residue in their sequence composition, so all 

equilibrium studies were performed following tyrosine fluorescence signal. There is one 

tyrosine located in the C-terminal end of each domain; one in E and one in G5 (figure 4.6).  

 

 

Figure 4.6: Tyrosine residues in E-G52 construct. 

Previous equilibrium and kinetics studies showed that the observed fluorescence signal in 

SasG EG52 construct comes mainly from the tyrosine located in the G52 domain (Y625) 

(Gruszka et al. 2016). 

In order to do a screening of the charge-charge interactions of SasG and gain some insights 

on the protein stability, we investigated the effect of the ionic strength. Equilibrium studies 

were performed in both constructs G52-WT and E-G52-WT. Urea-induced equilibrium 

unfolding curves (pH 7.4) were recorded for each construct (one in MOPS, 5 mM ionic 

strength and the other in MOPS, 1 M ionic strength) and then compared with the curves 

recorded in PBS (164 mM ionic strength) in each case (Figure 4.7). 
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Figure 4.7: Effect of ionic strength on the stability of SasG. Urea-induced equilibrium denaturation 
studies at pH 7.4 and varying the ionic strength. (A) G52-WT equilibrium curves and its parameters 
in different buffers: PBS with 164 mM (black), MOPS with 5 mM IS (pink) and MOPS with 1 M IS 
(purple). (B) E-G52-WT equilibrium curves and its parameters in different buffers: PBS with 164 
mM (black), MOPS with 5 mM IS (pink) and MOPS with 1 M IS (purple). 

 

In the cases of G52-WT the stability decreased slightly whereas for E-G52-WT the stability 

remained the same with an increasing concentration of salt. The data was considered the 

first sign suggesting that charge-charge interactions may not be key for the stability of both 

G52-WT and E-G52-WT in PBS. 

 

4.2.4 pH dependence of the SasG stability 
 

When a change in a folded protein environment is made, the charged amino acids, especially 

arginine, lysine, aspartic acid and glutamic acid may have an altered pKa. The pKa is the 

pH value at which 50% of the molecules will be protonated. As SasG is highly charged, the 

initial question was to investigate the role of the charged amino acids on the stability of G52 

domain (Table 4.1). 

A	 B	

Ionic	
strength	

(IS)	

						m-value	
(kcal.mol-1.M-1)	

[den]50%	
(M)	

ΔG	
(kcal.mol-1)		

5	mM	 1.03	±	0.01	 3.33	±	0.01	 3.43	±	0.03	

164	mM	 0.99	±	0.01	 2.76	±	0.01	 2.73	±	0.03	

1	M	 0.85	±	0.01	 2.38	±	0.01	 2.02	±	0.02	

Ionic	
strength	

(IS)	

						m-value	
(kcal.mol-1.M-1)	

[den]50%	
(M)	

ΔG	
(kcal.mol-1)		

5	mM	 1.29	±	0.03	 5.00	±	0.04	 6.45	±	0.16	

164	mM	 1.31	±	0.04	 4.31	±	0.01	 5.65	±	0.17	

1	M	 1.38	±	0.02	 4.43	±	0.02	 6.11	±	0.09	
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Table 4.1: Charged amino acid composition of the G52 domain. 

Amino acid Number pKa 

Lysine (K) 11 10.4 

Glutamic acid (E) 15 4.5 

Aspartic acid (D) 3 4.0 

Arginine (R) 2 12.5 

Tyrosine (Y) 1 9.6 

 

In addition to the ionic strength studies a series of urea-induced equilibrium experiments 

were performed on the G52 construct, with a range of buffers at different pH values (Table 

4.2), in order to investigate possible chemical shifts on the pKa values of the charged amino 

acids. This study would help to provide insights into the nature of the folded G52 domain, 

despite the lack of a hydrophobic core and the high percentage of charged residues. 

To discount the effect of salts on protein stability, all buffers were prepared with the lowest 

possible ionic strength, which was kept the same for the preparation of all of them (8 mM 

ionic strength). 

Table 4.2 Buffers used for the pH dependence studies of SasG G52-WT domain. 

pH Buffer pKa 

2.0 Phosphate 2.15 

3.0 Phosphate 2.15 

4.0 Acetate 4.76 

4.5 Acetate 4.76 

5.0 Acetate 4.76 

6.0 MES 6.21 

7.0 MOPS 7.31 

8.0 Tris 8.06 

9.0 Tris 8.06 

10.0 CAPS 10.51 

11 CAPS 10.51 
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In the urea-induced equilibrium denaturation studies, the pH transpired to have an effect on 

stability in the range between pH 2 and pH 5 and then in the range between pH 10 and pH 

11. Moreover, no effect on stability was verified for pH values between 6 and 9, as 

previously suggested by peptide charge calculator (Figure 4.8, A and fluorescence data on 

Appendix 1).  

This effect is very clear when we plot the variation in stability (ΔGD-N) against pH value 

where we can see a significant change in stability from pH 2 to pH 5 and pH 10 to pH 11 

whereas in the pH range between 6 and 9, the stability is relatively constant (Figure 4.8, B). 

  

 

 

Figure 4.8: Equilibrium studies and effect of pH on the stability of the G52 domain. (A) Equilibrium 
denaturation curves of G52-WT in different pH buffers (pH ranging from 3 to 11). Due to a very 
strong destabilising effect, we were not able to calculate fraction full-length at pH 2 (see 
fluorescence data on Appendix 1). (B) Variation of stability (ΔGD-N) plotted against pH values 
(triangles). The peptide charge calculator results for G52 were also plotted for comparison (data 
previously shown in figure 4.4). 

Due to the topology and structural similarity between G52 and E-G52 and because they both 
show a similar prediction using the peptide charge calculator, we decided not to perform the 
same pH dependence experiments for E-G52. 
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4.3 Conclusion 

The pH dependence studies of the G52 domain are in agreement with results observed from 

ionic strength studies, as it does not show a dramatic effect on the domain stability over the 

range of pH values. Another interesting tool, was the salt bridges predictor (ESBRI- 

evaluating the salt bridges in proteins online tool; Costantini et al. 2008), which shows that 

G52 has six salt bridges and EG52 has 8. These do not appear to have either a significant 

pKa shift and/or are not particularly stabilising to the fold of the protein. All the remaining 

charged residues (19 in G52 and 32 in E-G52) are apart from each other with distances 

greater than 4 Å. 

The acquired data when compared with the prediction from the net charge calculator, 

suggest that no significant effect on the pKa values of the amino acids is observed. From 

the results, it is clear that the unusual charge composition of SasG does not significantly 

contribute to the protein capacity to stay folded at different pH values during biofilm 

formation in the cell.  

Kappa-values of both G52 and E-G52 are low, which would be an indicative of a random 

coil. The result is in agreement with the PONDR-FIT (Xue et al. 2010) disorder predictor 

analysis, that suggest that both constructs should be disordered. Yet, the protein is folded in 

solution. The bioinformatics analysis and biophysical results of this chapter are in 

agreement, showing that SasG stability does not come greatly from the presence or the 

pattern distribution of its charged residues. Clearly this protein goes against current 

predictive methods of protein stability. Since this protein has few hydrophobic and aromatic 

residues, the reason for the stability of SasG is unclear. However, our previous studies have 

demonstrated that the interface between the two domains can contribute to the formation of 

the E-G52 construct, even when both domains were destabilised and are unfolded in 

isolation (Gruszka et al. 2016).  
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5 Co-translational Folding of SasG 

I would like to thank Dr. Jeffrey Hollins for building the constructs containing the different 

liker lengths and Dr. Lee Kwa for the assistance with the molecular biology of the charged 

constructs. I am also very grateful to Annette Steward for doing some repeats of the force 

profile experiments.  

5.1 Introduction 

In vivo, proteins fold and function under a variety of conditions, including temperature, pH 

and mechanical stress, all of which can modulate the folding energy landscapes (Sosnick & 

Barrick 2011, Guinn et al. 2015, Baldwin 2006). The ribosome, for instance, can influence 

protein folding: since folding is often faster than the rate of translation, molecules can 

attempt to fold while being translated (Cabrita, Dobson, and Christodoulou 2010). Although 

the idea that the ribosome can affect the folding process is well accepted, the mechanism by 

which it occurs is not fully understood (Kaiser et al. 2011).  

The extent to which studies in vitro compare with the folding of proteins in vivo is also not 

entirely comprehended. In contrast with in vitro conditions, aspects such as i) the 

unidirectional vectorial orientation that the peptide chain arises from the ribosome; ii) the 

conformational possibilities allowed to the emerging sequence before the entire protein is 

translated; and iii) the possible interactions between the nascent chain and the highly 

charged surface of the ribosome are examples of new possibilities of conditions which might 

influence folding in vivo (Knight et al. 2013; Nilsson et al. 2015; Tian et al. 2018).  

Our previous studies regarding the folding of SasG showed that both G52 and E-G52 fold 

via the same, highly polarised transition state, with formation of the C-terminal region of 

G52 domain being the limiting step for the folding of the entire structure. Once the main 

pathway is destabilised, it was also possible to observe and characterise an alternative 

folding pathway that starts via the interface between the two domains (Gruszka et al. 2016). 

After this extensive study to characterise SasG folding pathway in vitro, we were interested 

in using SasG as model to investigate co-translational folding and get some insights on how 

comparable the in vitro and in vivo results are.  
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5.1.1 The ribosome  
 

The ribosome is a macromolecular machine – present in all living cells – that decodes 

genetic information and converts it into amino acid sequence. It contains three large 

ribosomal RNA (rRNA) molecules, which represent two-thirds of its mass, and over fifty 

proteins (Kurland 1960). One of the first attempts to reveal the ribosome structure dates a 

bit more than 40 years, when a model of an E. coli ribosome was obtained by negative 

electron microscopy (Lake 1976). Although rudimentary compared to the most recent data, 

the study was able to show the two ribosomal subunits, referred to as small and large. Later 

on, with the development of new techniques, much more detailed structures of the ribosome 

allowed us to gain more knowledge on its architecture and function. Cryogenic electron 

microscopy (cryo-EM) for instance, was recently able to reveal the atomic structure of a 

mammalian ribosome-Sec61 complex, determined to 3.4 Å resolution (Voorhees et al. 

2014). 

Ribosome small and large subunits are named 30S and 50S in bacteria and 40S and 60S in 

eukaryotes, respectively. The small subunit is involved in decoding the messenger RNA 

(mRNA) information whereas the large one contains the peptidyl transferase centre (PTC), 

where the formation of peptide bonds occurs. The ribosome tunnel connects the PTC to the 

site where the nascent chain emerges (Frank et al. 1995). During the translation step, the 

nascent polypeptide chain travels through the ribosome tunnel in order to emerge into the 

cell cytoplasm (Milligan and Unwin 1986).  The average distance from the PTC to the end 

of the tunnel is approximately 100 Å and the diameter of the tunnel is 15 Å. At 80 Å from 

the PTC, the tunnel widens significantly to form the vestibule (Figure 5.1) (Nissen et al. 

2000).  

Early results demonstrated that the ribosome tunnel fits approximately 30-40 amino acids 

of a typical nascent chain (Malkin and Rich 1967), suggesting that translated polypeptides 

transit the ribosome tunnel in an extended conformation of approximately 3.5 Å per residue. 

For consistency to the other studies in our lab, we are going to assume that it takes about 35 

residues of an extended nascent chain to span the approximate 100 Å from the PTC to exit 

the ribosome tunnel (Tian et al. 2018).  
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Figure 5.1: A schematic representation of the ribosome tunnel cross-section. The ribosome tunnel 
connects the peptidyl transferase centre (PTC) to the exit site, where the polypeptide chain emerges. 
The tunnel total length is approximately 100 Å and can protect approximately 30-40 of a nascent 
chain. Studies showed helices being formed in the lower tunnel and formation of tertiary structure 
was encountered in the vestibule region 

 

5.1.2 Co-translational folding 
 

The relationship between the protein folding in vitro and co-translational folding has gained 

a lot of relevance in recent years and a variety of methods have been employed for that 

purpose (Thommen et al. 2017, Komar 2018). Elements of secondary and tertiary structures 

(Kudva et al. 2018), as well as small peptides, have been found to be formed in the ribosome 

tunnel (Tu & Deutsch 2017, Su et al. 2017, Mercier & Rodnina 2018; Figure 5.1). Moreover, 

entire domains like spectrin R16 and the Ig I27 have been shown to be able to fold while 

still in the ribosome vestibule, before exiting the tunnel (Nilsson et al. 2017; Tian et al. 

2018).  

In comparison to domains folding in isolation, the presence of the ribosome has been 

reported to be able to affect the folding process. For instance, in the co-translational folding 

of the Ig-like domain FLN5, the ribosome was found to modulate the folding process, as the 

domain could only fold well beyond the tunnel whereas it can fold spontaneously when in 

isolation (Cabrita et al. 2016). For T4 lysozyme, the ribosome was shown to slow down the 
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folding to the native structure compared to in vitro results. Moreover, incomplete T4 

lysozyme polypeptides are able to fold near the ribosome surface whereas misfolding and 

aggregation is observed when they are free in solution (Kaiser et al. 2011).  

Quantitative pulse-proteolysis experiments were able to identify a destabilising effect of the 

ribosome on the nascent polypeptide chain (Samelson et al. 2016) and electrostatics was 

also shown to play a role in the nascent chain. Due to the highly charged ribosome surface, 

the net charge of the polypeptide chain can define its mobility as it arises from the ribosome 

tunnel: negatively charged chains are more dynamic whereas positively charged ones are 

more static, as the latter can interact with the ribosome surface (Knight et al. 2013).  

Although some proteins are shown to fold via the same pathway on and off the ribosome 

(Tian et al. 2018), others are reported to differ (Evans et al. 2005, Nilsson et al. 2017). 

Understanding the co-translational folding has recently demonstrated that the ribosome can 

also play a role providing a further level of protein regulation (Gloge et al. 2014, Kirchner 

et al. 2017, Chaney et al. 2017).  

 

5.1.3 The arrest peptide assay 

 

The experimental procedures used in my project are based in the set up used in Gunnar von 

Heijne’s lab (Nilsson et al. 2015). The gene encoding the DNA sequence of the protein of 

interest is cloned into a series of different constructs containing a SecM stall sequence and 

a linker with variable length. Cryo-EM results were able to unravel the SecM stalling 

mechanisms upon translation (Zhang et al. 2015). The arrest sequence of SecM can interact 

extensively with the ribosome tunnel and can alter the conformations of the ribosome A-

site (where the tRNA first binds) and P-site (where the amino acid is incorporated). The 

change in conformation can cause two major consequences for translation: the tRNA 

binding in the A-site is compromised and its passage to the P-site is slowed down. Together, 

both effects contribute to the SecM stalling ability (Zhang et al. 2015). The interaction 

between the stall sequence and the ribosome can be released when a tension is applied. 

Therefore, the effectiveness of the stall is proportional to the force applied by the folding of 

the nascent polypeptide (Goldman et al. 2015) (Figure 5.2).  
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Figure 5.2: Schematic of the arrest peptide assay based on force measurements. (A) Schematic 
representation of SasG constructs. (B) Translated sequence containing the G52 domain (red), 
followed by a variable linker (purple) and the stall sequence (green). (C) Once a tension is applied 
by the folding of the G52 domain, (D) the SecM is released and the following sequence is translated 
(Lep domain, yellow).  

 

The efficiency of the arrest at each linker length can act as an indirect measurement of the 

tension applied in the stall sequence caused by the folding of the translated nascent chain. 

If the linker is too long the polypeptide chain will fold without applying a tension and will 

not release the stall. If the linker is too short, the nascent chain will not be able to fold due 

to a spatial constraint inside the ribosome tunnel. The length of the linker and the tension 

applied by the folding of the polypeptide chain needs to be optimal in order to release the 

stall sequence.  The stall sequence used in this work is the relatively weak E. coli SecM 

arrest peptide, also used in previous co-translational force profile assays  (Nilsson et al. 

2015, Nilsson et al. 2017; Tian et al. 2018; Marsden et al. 2018). The proline residue located 

at the end of the SecM sequence is the key residue for stalling and mutating it to an alanine 

completely disrupts the SecM translational stalling capacity (Yap and Bernstein 2009). 

Stall sequence: F S T P V W I S Q A Q G I R A G P 

Linker	N	 Linker	 SecM			Protein	 Lep		

Variable	length		

C	

A	

B	 C	 D	
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5.1.4 SasG as a model to study on the ribosome  

 

As previously described in the Introduction and in the previous chapter (chapters 1 and 4), 

SasG is an unusual protein, composed of tandem repeats of two domains, E and G5. Both 

domains are predicted to be disordered as their sequences are composed mainly of prolines, 

glycines and charged residues. Although the E domain is unfolded on its own, it folds when 

preceding a G5 domain. Both G5 in isolation and E-G5 can naturally fold to an extended 

three-dimensional β-sheet structure, exposed to the solvent on both sides as it lacks a 

hydrophobic core (Dominika T Gruszka et al. 2012).  

This intriguing structure folds via a very polarised transition state, with the formation of the 

far C-terminal end of the G5 domain being the limiting-step for folding the entire structure, 

in both G5 and E-G5 cases. The addition of the disordered E domain contributes to an 

increase in stability for E-G5 (6.3 kcal.mol-1) when compared to G5 in isolation (2.8 

kcal.mol-1). Furthermore, with the presence of E, an alternative pathway for folding is 

identified for E-G5 when the C-terminus of G5 is destabilised. In this context, folding of E-

G5 starts via the interface between the two domains. The interdomain interface was also 

shown to be crucial to maintain the long-range cooperativity and the cooperative folding of 

SasG (Gruszka et al. 2016). 

After characterising SasG folding pathways in vitro and the importance of the interface 

between E and G5 domains, we decided to use SasG as a model to study folding on the 

ribosome. Its unusual sequence composition, long-range interactions, extended structure 

and alternative folding pathway makes SasG a very interesting candidate to study co-

translational folding.  
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5.2 Chapter aims 

 

After an extensive study to characterise and understand how SasG is able to fold and form 

its structure in vitro, we wanted to expand this knowledge and investigate its co-translational 

folding. With the previous information regarding the role of SasG domains interface and the 

presence of an alternative pathway for folding, we performed co-translational folding 

experiments to determine the effect that the additional E domain (and the formation of the 

inter-domain interface) has on the folding of the G52 domain on the ribosome.  

This project aimed to help us to shed some light into how in vitro and in vivo studies can be 

compared and to understand to what extent the presence of the ribosome and the vectoral 

emergence of a nascent chain can influence the co-translational folding of a protein.  
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5.3 Results 

 

5.3.1 Molecular biology strategy 
 

The project started with a series of molecular biology steps in order to insert SasG DNA 

sequence in the different constructs with all linker lengths (L = 21 to 61 residues).  SasG 

DNA construct, originally in the pSKB2 vector, was subcloned into the pRSETa vector for 

consistency with all the work done in the lab. The restriction sites before and after the gene 

of interest were mutated to BamHI and EcoRI sites, respectively, by site directed mutageneis 

(SDM). The gene was extracted by double digestion and was ligated into the pRSETa 

containing the longest linker length (L61). Following up, another step of SDM was 

performed to remove the EcoRI restriction site and the stop codon in between the protein 

gene and the linker. 

In order to create all the other twenty constructs with different linker lengths, a series of 

SDM reactions were performed using the gene containing the L61 linker as template DNA. 

A series of primers were designed by Dr. Jeff Hollins based on the idea that linkers would 

be truncated from its N-terminal end, next to the protein sequence. Previous work had shown 

that truncation from the C-terminal end of the linker can alter the strength of the stall (Ismail, 

N., et al., 2012). For consistency and to keep the immediate sequence after the protein 

constant, all linker sequences started with Ser-Gly-Ser-Gly. Following the SGSG, the 

middle of the linker sequences are composed by a fraction of the Lep domain known to be 

disordered and of a variable length, followed by the SecM stall sequence. An extra fraction 

of the Lep domain comes after the stall sequence in order to differentiate by length the 

translated protein that was stalled from the one released from the ribosome (Figure 5.3).  
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Figure 5.3: Protein sequences of all primers designed to create the different linker length constructs 
for the force profile assays. Using the gene containing the protein, the longest linker length (L61) 
and the SecM stall sequence, a series of SDM were applied to truncate the linker and generate all 
constructs with variable liker lengths. Figure shows that the linker was truncated from its N-
terminus, just after the protein sequence. The primer sequences start from SGSG (green), followed 
by a sequence extracted from the Lep domain that is known to be disordered (black), and by the 
SecM stall sequence (first six residues showed in red).  

In order to create controls, the key proline residue responsible for the stall within the SecM 

sequence was mutated to an alanine in order to generate a non-stop control. In addition, the 

proline was also mutated to a stop codon (TAA) to create a control that, once translated, 

would generate a shorter sequence as translation would stop at the end of the linker and not 

at the subsequent Lep domain (Figure 5.4). At each linker length, these two controls would 

allow us to associate the bands on the gel to its correct protein: either the stalled or the full- 

length translated polypeptide nascent chain.  

Protein	 Linker	 SecM	 Lep		

L21 SGSG                                          FSTPVW 
L23 SGSG                                       SS FSTPVW 
L25 SGSG                                     WMSS FSTPVW 
L27 SGSG                                   GDWMSS FSTPVW 
L29 SGSG                                 MMGDWMSS FSTPVW 
L31 SGSG                               YFMMGDWMSS FSTPVW 
L33 SGSG                             GQYFMMGDWMSS FSTPVW 
L35 SGSG                           PPGQYFMMGDWMSS FSTPVW 
L37 SGSG                         IVPPGQYFMMGDWMSS FSTPVW 
L39 SGSG                       TWIVPPGQYFMMGDWMSS FSTPVW 
L41 SGSG                     NATWIVPPGQYFMMGDWMSS FSTPVW 
L43 SGSG                   QQNATWIVPPGQYFMMGDWMSS FSTPVW 
L45 SGSG                 PGQQNATWIVPPGQYFMMGDWMSS FSTPVW 
L47 SGSG               LVPGQQNATWIVPPGQYFMMGDWMSS FSTPVW 
L49 SGSG             KTLVPGQQNATWIVPPGQYFMMGDWMSS FSTPVW 
L51 SGSG           YQKTLVPGQQNATWIVPPGQYFMMGDWMSS FSTPVW 
L53 SGSG         PIYQKTLVPGQQNATWIVPPGQYFMMGDWMSS FSTPVW 
L55 SGSG       KDPIYQKTLVPGQQNATWIVPPGQYFMMGDWMSS FSTPVW 
L57 SGSG     GIKDPIYQKTLVPGQQNATWIVPPGQYFMMGDWMSS FSTPVW 
L59 SGSG   AYGIKDPIYQKTLVPGQQNATWIVPPGQYFMMGDWMSS FSTPVW 
L61 SGSG KFAYGIKDPIYQKTLVPGQQNATWIVPPGQYFMMGDWMSS FSTPVW 
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Figure 5.4: Controls involved in the folding on the ribosome experiments. (A) Proline to alanine 
mutation in the stall sequence prevents the stalling on the ribosome and the subsequent Lep domain 
sequence is translated. (B) Proline to stop-codon mutation in the stall sequence prevents the stalling 
on the ribosome and stops translation after the linker. 

 

5.3.2 Folding on the ribosome of the G52 domain 
 

Once the constructs containing the different linker lengths were created, folding on the 

ribosome studies were performed in order to generate the force profile of the G52 domain. 

Pro-Ala and one Pro-stop codon controls were also generated for some linker lengths. The 

experiments were performed using the in vitro translation kit (see Materials and Methods, 

chapter 3) and the force profile results for G52 are plotted in figure 5.5. 

N	 Linker	 SecM	Protein	 Lep		

Variable	length		

C	
Pro-to-Ala	

N	 Linker	 SecM	 Lep		
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C	
Pro-to-stop	

A	 B	
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Figure 5.5: Cotranslational force profile for the G52 domain. (A) Example of a SDS-PAGE gel that 
was used to quantify the amount of stalled relative to full-length translated protein at different linker 
lengths. (B) Force profile of SasG G52 domain. Fraction full-length protein is plotted against the 
number of residues in the linker (linker length). The results are the average of two experiments for 
each linker length and the error bars represent the standard error. 

From the force profile experiments for the G52 domain we can see that the highest force is 

applied at the linker length L= 35 which is the position at which the protein is emerging 

from the vestibule. Apparently SasG starts to fold at linker length L31, in other words, 

before it is fully emerged from the tunnel. Interestingly, we can also observe a high force 

for the linker lengths L23 and L25, when the polypeptide chain is still inside the ribosome 

tunnel. At longer linker lengths, no significant force was observed, as the folding does not 

generate enough tension to release the stall. These results are the average of at least three 

experiments for each linker length. Pro-to-Ala and Pro-to-stop controls were also quantified 

by the SDS-PAGE gels, and some examples are shown in Figure 5.6. 

L23  L25   L29   L31  L35 L37 L41 L43 L47 L49   L51  L53   L55    L57  L59   L61 
A

B

Full length
Stalled 
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Figure 5.6: SDS-PAGE gels used to quantify the G52 domain bands at different linker lengths and 
its controls. The gel shows some examples of G52 bands at different linker lengths (black) and some 
Pro-to-Ala (red) and Pro-to-stop (green) controls.   

The controls allowed the association of each band on the gel to its respective result: Pro-Ala 

controls correspond to full-length protein, whereas Pro-stop correspond to the stalled 

protein. We chose not to do a control for every linker length as the gels were very clear, 

with just two bands appearing for each construct.  

From biophysical studies during my MPhil, I was able to characterise one Gly-to-Ala 

mutation, G587A, in G52 that was completely disruptive to the domain structure (see 

Introduction, Chapter 1). For the folding on the ribosome studies, I used G52-G587A as a 

non-folding control. The mutation was introduced to different linker length constructs via 

SDM. Force profile results are shown in figure 5.7.  

 

Figure 5.7: Force profile results for the G52 construct and its non-folding control G52-G587A. (A) 
Force profiles of G52 (red) and its non-folding control G5-G587A (purple triangles). Although the 
non-folding control was expected to not exert any force, the nascent chain was able to release the 
stall at different linker lengths. (B) Normalised data for G52 taking into account the contribution of 
extra effects apart from folding that promote the stall release for G52-G587A. The results are the 
average of at least three experiments for each linker length. The results are the average of at least 
two experiments for each linker length and the error bars represent the standard error. 
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Although the non-folding control differs from the WT results, their fraction full-length is 

significantly higher from what we expected. At lower linker lengths (L23 and L25), as well 

as we see for G52-WT, a great proportion of the translated molecules can release the stall. 

This means that the force applied while the protein is still inside the ribosome tunnel, does 

not come from a folding event. In the peak region of the force profile of G52-WT, we see a 

much lower fraction full-length for G52-G587A. This suggests that between linkers L31-

L47 is where the folding of G52 happens during translation. This is represented by 

normalised data (Figure 5.7, B) that takes into account the contribution on fraction full- 

length that comes from the non-folding control.  

The results show that the G52 domain can fold while still in the ribosome vestibule. 

Additionally, it also suggests that the domain is able to apply force and release the stall from 

additional sources that are not folding. High fraction full-length readings at lower linker 

lengths and for the non-folding control could possibly be explained by the formation of non-

native interactions or structures being formed inside the ribosome tunnel or even that the 

translated polypeptide chain could be interacting with the ribosome.  
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5.3.3 Folding on the ribosome of E-G52  
 

In order to gain more insights, E-G52 construct was also studied for comparison. The 

additional folding pathway characterised in vitro, where folding starts with the formation of 

the interface between the two domains, could possibly add some new possibilities to fold 

co-translationally. In the main folding pathway, formation of the far end of the G52 domain 

is the limiting step that drives the folding of the entire structure. Because of the vectoral 

emergence of the nascent chain on the ribosome, the E-G52 interface would be available 

earlier than the C-terminus of the G52 domain. We would predict that E-G52 could start to 

form its structure earlier than G52.  

Results of E-G52 on the ribosome showed otherwise. As well as for G52, the stall sequence 

is released at lower linker lengths (<L30) and the main peak of the E-G52 force profile 

overlays with the one from G52 (Figure 5.8), resulting in an almost identical force profiles 

for both constructs.  

 

 

Figure 5.8: Co-translational folding force profile for E-G52. (A) Force profile of SasG E-G52 
construct. (B) Comparative results of G52 and E-G52 force profiles. Force profiles of G52 (red) and 
E-G52 (blue). Fraction full-length protein is plotted against the linker length. The results are the 
average of at least two experiments for each linker length and the error bars represent the standard 
error. 
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In order to get a non-folding control for E-G52, we identified a mutation that disrupts the 

construct stability and prevent its formation. It consists of three Ala-Gly mutations: G587A, 

G602A and G626A. Those three mutations were previously shown to be the most 

destabilising ones for E-G52 (Gruszka et al. 2016). The mutations were introduced to the E-

G52 gene, one at the time, by SDM. The protein containing the triple mutant was expressed 

and purified and equilibrium studies confirmed its unfolded state (Figure 5.9). 

 

 

Figure 5.9: Equilibrium denaturation curve of purified E-G52 non-folding control. Fluorescence 
data at 305 nm of the triple mutant E-G52-G587A-G602A-G626A shows its unfolded nature. 

 

Force profile experiments were also performed for E-G52 non-folding control. A scattered 

profile was observed throughout the entire plot. Fraction full-length values were much lower 

for all points of the non-folding control, including the ones of shorter linker lengths (Figure 

5.10). The results for E-G52 non-folding control correspond to what would be expected for 

a polypeptide nascent chain that is unable to form a structure and release the stall, which is 

not what was observed for G52-non folding control.  
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Figure 5.10: Force profile results for E-G52 and its non-folding control E-G52-G587A-G602A-
G626A. (A) Force profiles of E-G52 (dots) and its non-folding control G5-G587A-G602A-G626A 
(triangles). The results are the average of at least two experiments for each linker length. (B) 
Comparison of the normalised data for E-G52 (blue) and G52 (red) taking into account the non-
folding controls of each construct. The results are the average of at least two experiments for each 
linker length and the error bars represent the standard error. 

We also studied on the ribosome E-G52 with a single Gly-Ala mutation, the one that disrupts 

the G52 domain structure in isolation (used as G52 non-folding control) but does not have 

the same effect on E-G52. It was previously showed that E-G52-G587A folds via the 

alternative pathway that starts by the formation of the E-G52 interface (Gruszka et al. 2016). 

Thus, the force profile of E-G52-G587A could shed some light in the role of the alternative 

folding pathway on the co-translational folding of SasG. 

To our surprise, the force profile results of E-G52-G587A are very similar to the E-G52 non-

folding control, the triple mutant G587A-G602A-G626A (Figure 5.11), suggesting that this 

single mutation in the E-G52 construct is unable to fold on the ribosome.  
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Figure 5.11: Comparative results of E-G52, E-G52-G587A and E-G52 non-folding control. Force 
profiles of E-G52 (blue), EG52-G587A mutant (cyan) and EG52-G587A-G602A-G626A non-folding 
control (triangles). The results are the average of at least two experiments for each linker length 
and the error bars represent the standard error. 

These results suggest that the alternative pathway for folding might not be an available 

option for E-G52 to fold on the ribosome. This is in agreement with what we see for G52 

and E-G52, where no difference between the two force profiles was identified. The initial 

hypothesis that E-G52 would fold earlier, once the interface between the two domains was 

translated, did not prove to be correct. It has been shown that the ribosome can have 

destabilising effect on polypeptide nascent chains (Liu et al. 2017; Samelson et al. 2016), 

which could maybe explain the inability of E-G52 construct to fold via its alternative 

pathway for folding.  
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5.3.4 Role of charged residues on co-translational folding of SasG 

 

The unexpectedly high values of fraction full-length for G52 non-folding control (G587A) 

were very intriguing. The ribosome has a highly charged surface, mainly negatively charged 

and electrostatics is known to play an important role on the nascent chain dynamics. It has 

been shown that the amplitude of local motion of a highly negatively charged nascent chain 

that is in close proximity with the ribosome is higher when compared with disordered 

polypeptides under physiological conditions. Moreover, highly positively charged 

polypeptides are shown to be less dynamic, as they can interact with the ribosome surface 

(Knight et al. 2013, Figure 5.12). 

 

 

Figure 5.12: Schematics of the role of electrostatics on ribosome-nascent chain interaction. Due to 
the overall negatively charged nature of the ribosome surface, the more negatively charged the 
nascent chain, the more dynamic it will behave. Positively charged nascent chains will tent to 
interact with the ribosome surface and stay static (Figure taken from Knight et al. 2013). 

 

The unusual charged content of SasG raised the hypothesis that the folding on the ribosome 

experiments could also be reporting some electrostatics contributions. In order get some 

insights on that, we designed three SasG constructs for both G52 and E-G52: one where all 

the positively charged residues were removed (only negative left), one with all negatively 

charged residues removed (only positive left) and one with all the charges removed (no 

charges left).  

Positively charged lysine and arginine were mutated to methionine whereas negatively 

charged residues aspartic acid and glutamic acid were mutated to asparagine and glutamine, 
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respectively (all sequences are shown in Appendix 2). The mutations were chosen to 

minimise their effect as much as possible, as we wanted to test for the effect of the charges 

only. Charged residues in SasG are distributed all over the domain E and G52 domains 

(Figure 5.12).  

 

Figure 5.13: Charges content and distribution in SasG. (A) Cartoon representation of SasG E-G52 
structure showing the charged residues distributions represented as sticks (positively charged in 
blue and negatively charged in red)). (B) Number of charged amino acids in E-G52 and E-G52 
constructs. 

 

The genes were purchased from GenScript in the standard pUC57 vector. The same 

molecular biology strategy previously used was employed to insert the genes into the 

pRSETa vector containing all linker lengths for the folding on the ribosome studies. 

Furthermore, the genes were also inserted into the pSKB2 plasmid for protein expression. 

The six constructs, G52 and E-G52 only positive, only negative and no charges, were 

expressed. All proteins but E-G52 only positive and only negative charges were insoluble 

and went to the cell pellet. To check for the protein stabilities, equilibrium denaturation 

studies were performed for both E-G52 only positive and only negative charges. The results 

showed that the two proteins were unfolded (Figure 5.13). 

E	 G52	

A	

B	

	 Positively	charged	 Negatively	charged	
E	domain	 7	 10	
G52	domain	 13	 18	
E-G52	 20	 28	
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Figure 5.14: Equilibrium denaturation curves of purified proteins: E-G52 only negative and only 
positive charges. Fluorescence data at 305 nm of (A) E-G52 only negative and (B) E-G52 only 
positive charges show their unfolded nature. 

 

With the preliminary knowledge that all designed proteins cannot fold, force profile 

experiments were performed for all six constructs. Results of both G52 and E-G52 were 

similar, showing that in the absence of negatively charged residues (only positive 

constructs), force profiles showed the lower fraction full-length readings. In contrast, the 

presence of negatively charged residues (only negative charges constructs) showed the 

higher read through. Constructs with no charges showed intermediate fraction full-length 

values almost through the entire force profiles (Figure 5.14). 

The data suggest that the charge composition of the nascent chain can play a significant role 

in the force profile experiments, as the stall sequence can be released even by disordered 

polypeptides. The results show that force profile experiments can report not only on folding 

events but also other sources of non-native interactions intra- or/and inter-molecular, 

possibly between nascent chain and ribosome. They also reveal that the interactions largely 

occur while some parts of the chain are still sequestered in the tunnel (i.e. at linker lengths 

<35).  
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Figure 5.15: Effect of charged residues in SasG folding on the ribosome. (A) Comparative force 
profile results of G52: only positive charges (blue), only negative charges (red) and no charge (grey). 
(B) Comparative force profile results of G52: only positive charges (blue), only negative charges 
(red) and no charge (grey). The results are the average of at least two experiments for each linker 
length and the error bars represent the standard error.  
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5.4 Discussion 

 

After an extensive study of SasG in vitro, it was possible not only to understand the folding 

pathway of both G52 domain in isolation and E-G52, but we have also identified an 

alternative pathway for folding of the multidomain construct E-G52 (Gruszka et al. 2016). 

The results showed very clearly that the interface between the two domains is key for this 

intriguing protein to maintain its stability. The lack of a hydrophobic core, the highly 

charged sequence composition and with the preliminary knowledge of the ability of E-G52 

to fold via the interface between the two domains, SasG became an interesting system to 

study on the ribosome. 

Force profile experiments results showed an early folding of G52, while the domain is still 

inside the ribosome vestibule (linker length L31). Surprisingly, high fraction full-length 

values were also observed for G52-G587A, a Gly-Ala mutant that is known to disrupt the 

domain structure. The result was an indication that force profile experiments can report not 

only the folding of a nascent chain, but other factors could also contribute to the release of 

the stall sequence.  

It was interesting to notice high read through of fraction full-length for shorter linker lengths 

(<L30). It has been previously reported that at very short linker lengths (L18-L20), the 

ribosome tunnel available space (10-15 Å wide) can accommodate alpha helices formation 

(Wilson et al. 2011). It has also been shown that small β-sheet proteins (<4.2 KDa) can 

apply a force and release the stall at short linker lengths, folding while still inside the 

ribosome tunnel (Marino, Von Heijne, and Beckmann 2016). But SasG results also showed 

high fraction full-length values for G52 non-folding control (G52-G587A), which is an 

indication that the stall release does not come from the folding of the domain in this case.  

In comparison to the G52 domain, the E-G52 construct shows an almost identical force 

profile. They are both able to fold at similar positions when being translated, while still 

inside the ribosome vestibule. Our initial prediction was that E-G52 could fold earlier than 

G52 on the ribosome, as it has an alternative pathway that starts by the formation of the 

inter-domain interface. The results did not support this hypothesis. Moreover, a single 

mutant G587A, that is known to disrupt the G52 domain in isolation but does not prevent 
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the E-G52 to fold in vitro, showed a similar force profile result when compared to the non-

folding control (E-G52-G587A-G602A-G626A). In vitro, this Gly-Ala mutation on E-G52 

disrupts the main folding pathway (via the C-terminal end of G52) but the structure is formed 

via its alternative one (via the domains interface). All together, these data suggest that the 

alternative folding pathway might not be available on the co-translational folding of SasG 

E-G52, maybe due to the additional destabilising effect that the ribosome can confer to the 

nascent chain. Despite the unexpected results, co-translational studies of SasG show the first 

example of the formation of large all β-sheet structures (≈10 kDa for G52 and ≈15 kDa for 

E-G52) inside the ribosome.  

Based on the highly charged nature of SasG and to try to gain some more insights about 

other factors that could contribute to the stall release on the force profiles, electrostatic 

effects were tested. Constructs containing only positive, only negative and no charged 

residues were designed for both G52 and E-G52. The results show that nascent chains 

containing only positive charges were mostly unable to release the stall whereas the ones 

with only negatively charged residues showed the higher fraction full-length values 

throughout their force profiles. In the absence of charged residues, the constructs showed 

intermediate fraction full-length values for a great proportion of linker lengths, including 

the ribosome vestibule region, where both G52 and E-G52 were shown to fold co-

translationally (≈L30 – L40).  

It has been shown that nascent chain dynamics varies depending on its charged nature when 

in close proximity with the ribosome (Knight et al. 2013). Highly negatively charged 

polypeptides were found to be very dynamic, with higher amplitude of local motion in 

comparison to disordered polypetides. Highly positively charged nascent chains, on the 

other extreme, were shown to be static as they can interact with the negatively charged 

ribosome surface. In light of those findings, we could hypothesise that SasG only negative 

charges constructs are the most dynamic of the designed constructs, what could explain the 

release of the stall at most linker lengths. The only positive charges constructs can interact 

with the ribosome surface, thus they stay attached to the surface and are not able to release 

the stall. No charged SasG variants show an intermediate behaviour. Maybe the lack of 

charged residues causes a hydrophobic collapse of the structures that can also apply a 

tension on the stall and allow its release. 
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The results also show high fraction full-length readings at shorter linker lengths for nearly 

all constructs, suggesting that electrostatics on its own is not enough to explain that 

behaviour. Despite that, the study suggests that force profile experiments can report both on 

intramolecular folding of a protein when being translated, as well as, intermolecular 

interactions between the nascent protein chain and the ribosome.  
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6 Encoding IDP coupled folding and binding 

This chapter is the result of a project done in collaboration with other two students in my 

group, Dr. Michael Crabtree and Quenton Bubb. Each of us worked with one system 

composed by an IDP and a partner protein. The biophysical results of the three systems were 

then combined with the work done by Dr. Joseph Rogers. Together, the four systems 

allowed us to gain some knowledge on the encoding of coupled folding and binding 

reactions of IDPs. I would like to thank Tristan Kwan for the expression and purification of 

PUMA-35 used in my dissociation experiments as a competitor peptide. The results of this 

chapter were published in Crabtree et al. 2018. 

 

6.1 Introduction 

 

6.1.1 What does it mean for a protein to be disordered? 

 

Natively disordered proteins comprise an important and well represented group of proteins. 

Their biological relevance is well established in nature (e.g. cell signalling and regulatory 

processes) as we can see their persistence throughout evolution. But what are these proteins? 

To be considered intrinsically disordered, a protein should be an extended, flexible 

polypeptide with very little or no secondary structure present under physiological 

conditions, although transient secondary structures is known to occur in such disordered 

ensembles. Over the past two decades, an increasing amount of those proteins have been 

reported and characterised (Uversky 2002).  

Although disordered in isolation, a variety of those IDPs can gain structure and become 

relatively rigid upon binding to natural partners. This phenomenon is known as coupled 

folding and binding (Figure 6.1). 
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Figure 6.1: Schematic of a coupled folding and binding reaction. Adapted from Rogers et al. 2014. 

 

6.1.2 Encoding protein folding and function 

 

Since the discovery of the first protein structure reported in 1958, the protein structure-

function paradigm has been simply described as: in order for a polypeptide to function, it 

needs to fold. Adopting a three-dimensional structure was believed to be the key 

requirement for a protein to be able to function (Alberts 2008). With the discovery of IDPs, 

natively unstructured proteins that are able to play important roles in vivo, our attention was 

brought back to the fundamental definition of what encodes protein folding and function. 

Early experiments performed by Anfinsen demonstrated that the information required for a 

polypeptide chain to fold into its unique three-dimensional structure is built in the protein 

sequence composition (Anfinsen et al., 1961; Anfinsen, 1973). However, IDPs are natively 

unstructured, so we might say that they have disorder encoded in their sequence (Romero 

et al. 2001). Nonetheless, some IDPs become folded upon binding to a partner protein, 

which raises the question: what encodes a coupled and folding and binding reaction – IDPs 

or partner proteins?  
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6.1.3 The BCL-2 family network 

 

B-cell lymphoma 2 (BCL-2) family is well known and described as the cell apoptosis 

regulator. The family is composed by a number of proteins that share the evolutionary 

conserved BCL-2 homology (BH) domains (Reed, 1998; Korsmeyer, 1999). Protein 

members of this family act as pro- or anti-apoptotic in the cell by controlling the 

permeabilisation of the mitochondrial outer membrane (Kvansakul et al. 2008). Pro-survival 

and pro-apoptotic proteins share four BH domains (BH1-BH4, Figure 6.2, A) and fold to 

similar globular structures: seven amphipathic α‑helices surrounding a central hydrophobic 

helix (α5) (Muchmore et al., 1996; Figure 6.2, B). BH3-only proteins are composed only 

by the BH3 amphipathic helix (Figure 6.2, A), which mediates their interaction with the 

hydrophobic groove (formed by helices 2-5) on the surface of the globular protein members 

of the family. Unlike the other family members, BH3-only proteins are intrinsically 

disordered in isolation but become helical upon binding to the partner proteins (Hinds et al. 

2007), which makes the BCL-2 family an interesting network to study coupled folding and 

binding.  

 

Figure 6.2: The role of the BCL-2 family network in controlling cell death. (A) Schematic of the 
BCL-2 family protein members divided in three categories: initiators, pro-survival and pro-
apoptotic. Initiator proteins contain only the BH3 helix, whereas pro-survival and pro-apoptotic 
proteins have four BCL-2 homology regions (BH1-BH4) (B) Example of a BCL-2 family member 
fold, composed by seven amphipathic α‑helices and a central hydrophobic helix (α5). Figure adapted 
from Czabotar et al. 2014.  

The	BCL-2	Family			A	 B	
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6.1.4 The BCL-2 family as a model to study encoding of coupled folding 

and binding reactions using Φ-value analysis 

 

Previous work carried out by Dr. Joseph Rogers was able to characterise the transition state 

of the coupled folding and binding reaction between the disordered PUMA peptide and 

MCL-1. Φ-value analysis revealed that at the transition state, PUMA is partially folded 

towards its N-terminus whereas the rest of the peptide remains disordered (Rogers et al. 

2014; Figure 6.3). 

 

Figure 6.3: Φ-value analysis of PUMA peptide binding to MCL-1. The results show that formation 
of PUMA structure starts via the N-terminus (intermediate Φ-values) whereas the rest of the 
molecule is still disordered at the transition state (low Φ-values). Data and figure from Rogers et 
al. 2014. 

Using the previous results from PUMA:MCL-1, we decided to use the BCL-2 family as a 

model to unravel the encoding of IDPs coupled folding and binding. We chose to study two 

IDPs (PUMA and BID) and two partner proteins (MCL-1 and A1), which have low 

sequence identity (≈20%) but very high structure identity between them (Figure 6.4 and 

6.5). Comparative Φ-value analysis of the four systems (BID:A1, BID:MCL-1, PUMA:A1 

and PUMA:MCL-1) would help us to shed some light and understand the encoding of 

coupled folding and binding reactions.  

Change Partner Protein: A1

0.2<F >0.6	
0<F >0.2	
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Figure 6.4: Sequence and structural alignment of A1, MCL-1, PUMA and BID constructs. (A) Left: 
sequence alignment for A1 and MCL-1 with helical regions represented by green and grey cylinders, 
respectively. Right: structural alignment of A1 (green) and MCL-1 (grey). The proteins are in 
complex with PUMA peptide, shown in blue. (B) Left: sequence alignment for PUMA and BID 
peptides. Right: structural alignment of PUMA (blue) and BID (yellow) peptides. The peptides are 
in complex with A1, shown in green. Alignments were produced using Clustal Omega (Goujon et al. 
2010, Sievers et al. 2011): conserved residues are indicated with an asterisk, residues with strongly 
similar properties with a colon, and residues with weakly similar properties with a period. Note that 
in addition to the sequences shown above, both MCL-1 and A1 contained a GS at the N-terminus, 
which was a remnant from protease cleavage during purification. Figure adapted from Crabtree et 
al. 2018. 

  

A1         MAESELMH-IHSLAEHYLQYVLQ-----VP--AFESAPSQACRVLQRVAFSVQKEVEK
MCL-1        EDDLYRQSLEIISRYLREQATGSKDSKPLGEAGAAGRRALETLRRVGDGVQRNHET

* :* :   .: .:**:          *     :*  :* ..*:**. .**:: *.

A1         NLKSYLDDFHVESIDTARIIFNQVMEKEFEDGIINWGRIVTIFAFGGVLLKKLKQEQI
MCL-1      AFQGMLRKLDIKNE-GDVKSFSRVMVHVFKDGVTNWGRIVTLISFGAFVAKHLKSVNQ

::. * .:.::.       *.:** : *:**: *******:::**..: *:**. : 

A1         ALDVSAYKQVSSFVAEFIMNNTGEWIRQNGGWEDGFIKKFEPKS----
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: ::. :::.::... :*: :: **: **:: *. :.    
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            .:**  ::*. :* ::.*::: : :    .: !
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6.2 Chapter aims 

 

The protein structure-function paradigm has been assumed for decades. With the discovery 

of IDPs and their biological relevance, we had to rethink the assumption that function is 

strictly related to folding. However, a subset of IDPs is able to fold upon binding to a partner 

protein. Since the early studies performed by Anfinsen, we know that the information 

required for a protein to fold is encoded in its own sequence, but what about IDPs? Is the 

folding of an IDP in a coupled folding and binding reaction encoded by the disordered 

polypeptide or is it templated by the folded partner? In this chapter we will use Φ-value 

analysis to investigate different systems and get some insights in what drives the folding of 

proteins that have disorder encoded in their sequences. 

To do so, we are going to use four systems composed by two BH3-only IDPs (PUMA and 

BID) and two partner proteins (A1 and MCL-1), all members of the BCL-2 family (Figure 

6.5). 

   

Figure 6.5: Structural homology and sequence identity of the complexes formed by the BH3-only 
BID and PUMA with the pro-survival MCL-1 and A1 proteins. The BH3-only IDPs PUMA (blue) 
and BID (yellow) can fold to an alpha helix structure upon binding to partner proteins like MCl-1 
(grey) and A1 (green). Root mean square deviation (RMSD) were obtained by structural aligments 
using PyMOL and sequence identities were calculated from the sequence alignments of the mouse 
protein constructs. Figure taken from Crabtree et al. 2018.  
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6.3 Results 

 

6.3.1  Molecular biology strategy 

 

Mouse A1 gene was kindly donated from Bonsu Ku’s lab in the pGEX vector as a GST 

fusion protein, containing a TEV cleavage site. Unlabeled PUMA-35 peptide used in this 

chapter as a competitor of BID in the dissociation experiments was expressed and purified 

in the lab by Tristan Quan. TAMRA labeled BID-WT and mutants peptides were purchased 

from Biomatik (Canada).  

 

6.3.2 Purification of A1  

 

A1 was expressed as a GST fusion protein, with a TEV cleavage site in between. The 

expressed protein was bound to the glutathione sepharose (GS) resin and cleaved using 

TEV. A1 was purified by ion exchange chomatography. An additional step in Superdex 75 

gel filtration (Figure 6.6, A) was employed to buffer exchange the protein. SDS-PAGE 

confirms the purity of the protein although the sample runs further than it would be expected 

by its mass (Figure 6.6, B).  
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Figure 6.6: Purification of A1. (A) Chromatogram image of A1 purification after G75 size exclusion 
run showing peaks 1 and 2. (B) SDS-PAGE of purified A1 after a G75 run showing protein fractions 
and NuPage unstained protein ladder for comparison. The gel starts from marker and show one 
fraction of peak 1 followed by peak 2. Pure A1 is present in all fractions.  
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Purified A1 was sent for mass spectroscopy analysis at the Department of Chemistry. 

Results confirmed A1 identity and purity with the confirmation of its expected mass. Figure 

6.7 shows a chromatogram as an example (sample sent by Dr. Michael Crabtree).  

 

Figure 6.7: Mass spectroscopy results of A1 after purification. The obtained mass of A1 was 17633 
± 5 Da and the expected mass was 17635 Da. Dr. Michael Crabtree submitted the sample to 
analysis. 

 

6.3.3 TAMRA labelled peptides 

 

Mouse BID peptides (WT and mutants) with an N-terminal TAMRA fluorescent dye 

attached were designed and purchased from Biomatik. The mutations were aimed to allow 

the investigation of coupled folding and binding of BID and a partner protein using Φ-value 

analysis.  

Similarly to folding, Φ-value analysis of a coupled folding and binding reaction is 

performed by comparing the difference in free energy between the transition state and the 
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bound state of the two proteins (complex formation). To do so, mutations are designed to 

disrupt interactions between the proteins allowing a change in free energy between the WT 

and mutant. This difference in free energy (ΔΔG) is required to be greater than 0.6 kcal.mol-

1 to allow us to have confidence in the calculated Φ-value. (Fersht and Sato 2004).  

Two sets of single mutations were designed: 

• Hydrophobic to alanine mutants: designed to disrupt the interactions between 

BID and its partner protein (e.g. A1, MCL-1). Hydrophobic residues of BID are 

found buried in the partner protein’s hydrophobic groove upon binding. Mutating 

them to alanine reduces the side chain of the residues resulting in a loss in affinity 

of the complex. 

• Alanine to glycine mutants: designed to probe the peptide helicity within the 

BID:partner complex transition state. In a coupled folding and binding reaction, 

the helicity of the peptide can be investigated by mutating residues that are not 

involved in intermolecular interactions. Charged residues in the peptide that are 

solvent exposed and do not make contact with the partner protein in the bound state 

are the target for this mutations. Firstly they are mutated to alanine, which will be 

our pseudo-WT. Next, they are mutated to glycine and the difference in free energy 

between the glycine and our pseudo-WT allow us to calculate the Φ-values. 

Importantly, when designing the mutations for Φ-value analysis, we want to guarantee that 

they are not too disruptive or they can affect the transition state otherwise. This could change 

the reaction pathway by involving different interactions in the transition state when 

compared to WT. To test for that hypothesis, a double mutant comprised of two mutations 

that have been previously characterised individually is employed: if we take BID-I86A-

M97A double mutant for instance, the Φ-value of M97A can be calculated from the 

difference in free energy between the double mutant and I86A mutant. If the same Φ-value 

is obtained, we can assume that the I86A mutation does not affect the interaction of M97A 

in the transition state. 
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6.3.4 Extinction coefficient  

In order to get an accurate concentration measurement, experimental extinction coefficients 

were calculated for both A1 and the TAMRA labelled BID peptides. A precise volume of 

each sample was sent for amino acid analysis (Biochemistry department) and the accurate 

concentration was plotted against the absorption at 280 nm for A1 and 555 nm for TAMRA. 

The results allowed us to calculate the experimental extinction coefficient (ε280) (Figure 

6.8). The values were 24,200 ± 200 M-1.cm- 1 and 85,000 ± 1,000 M-1.cm- 1, for A1 and BID 

peptides respectively. Throughout this chapter, A1 and BID peptides concentrations were 

calculated using the experimental extinction coefficient values.  

 

Figure 6.8: Extinction coefficient for A1 and TAMRA labelled BID. Extinction coefficient values 
were calculated from amino acid analysis (AAA). Concentration results for different A1 samples 
and TAMRA BID peptides were plotted against its absorbance readings at (A) 280 nm for A1 and 
(B) 550 nm for BID. The experimental extinction coefficients obtained were 24,200 ± 200 M-1.cm-1 
and 85,000 ± 1,000 M-1.cm-1 for A1 and BID, respectively. The experimental values were used for 
all A1 and BID concentration calculations in this chapter. 

6.3.5 Effect of mutations in TAMRA-BID peptides 

To investigate the oligomerisation propensity of BID peptides, CD data were collected for 

all designed peptides at two concentrations: 5 and 10 μM. Results are shown in figures 6.9 

and 6.10. For all peptides, no significant change was observed with the increase on 

concentration, meaning that the residual helicity was independent of the peptide 

concentration. The results gave us enough confidence that the CD spectrum represents the 

peptide monomer.  
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Figure 6.9: Concentration dependence CD spectra of hydrophobic to alanine mutants of BID. CD 
spectra of all BID peptides containing a hydrophobic to alanine mutation at two different 
concentrations (5 and 10 μM) show that the residual structure is maintained for all peptides with an 
increase in concentration.  
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Figure 6.10: Concentration dependence CD spectra of alanine to glycine mutants of BID. CD 
spectra of BID peptides containing a charged to alanine/glycine mutation at two different 
concentrations (5 and 10 μM). The data show that the residual structure is maintained for all 
peptides with an increase in concentration.   
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Residual helicity was calculated for all BID peptides using the mean residual ellipticity 

(MRE) at 222 nm and the Muñoz and Serrano method (1995) (Figure 6.11). The mutation 

N85A showed an evident increase in helicity compared to WT whereas all other peptides 

displayed a very similar or reduced result. Alanine to glycine mutations decreased the 

residual helicity of the peptides as expected (Serrano et al. 1992). 

 

  

Figure 6.11: Comparative helicity of BID mutants. BID peptides helicities at 5 μM (blue) and 10 
μM (red). Residual helicities were calculated from the MRE at 222 nm. 
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intensity change or anisotropy over time were monitored. Association experiments were 

performed by rapidly mixing BID and different concentrations of A1 under pseudo-first 

order conditions using a stopped flow instrument. A series of individual traces were 

averaged for each concentration and the data fitted to a single exponential (Figure 6.12, A, 

B and C). Dissociation kinetics were performed by competing a pre-formed complex of 

BID:A1 with an excess of unlabelled WT-PUMA peptide at different concentrations (Figure 

6.12, D, E and F). 

 

Figure 6.12: Association and dissociation kinetics raw data for WT-BID:A1. Fluorescence intensity 
change of the association kinetics were obtained by rapidly mixing BID and A1 under a pseudo-first 
order condition: 0.05 μM BID with (A) 1 μM A1, (B) 2 μM A1 and (C) 2.5 μM A1. Data represent 
the average of 20-30 traces at each concentration. The results were fit to a single exponential 
function. Fluorescence intensity change of the dissociation kinetics were obtained by mixing a pre-
formed complex of BID:A1 with PUMA in excess: 4 μM BID:A1 competing with (D) 80 μM PUMA, 
(E) 120 μM PUMA and (F) 160 μM PUMA. The data were fit to a single exponential plus drift 
function.  
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For both association and dissociation experiments, the fit of the signal change at each 

concentration gave us an observed rate constant (kobs). kobs was plotted against the 

concentration of the partner protein and the association rate constant (kon) was obtained from 

the gradient of the straight line (Figure 6.13, A). For dissociation experiments, kobs was 

plotted against the ratio between the concentrations of competitor over the complex and the 

dissociation rate constant (koff) was the means of the observed rates (Figure 6.13, B).  

 

Figure 6.13: Kinetics data for WT-BID:A1. (A) Association kinetics of BID interacting with A1. The 
experiments were performed in a pseudo-first order condition with two different A1 stocks. The 
gradient of the straight line gave an association rate constant of 8.2 ± 0.2 μM-1 s-1. (B) Dissociation 
kinetics was done using a pre-formed complex of BID:A1 mixed with unlabelled PUMA peptide. The 
mean of the observed rate constants gave a dissociation rate constant of 0.155 ± 0.005 x10-3 s-1. 
Errors in kon represent the error from the fit whereas in koff it comes from the standard error of the 
mean. 

 After characterising WT-BID, the same experiments were performed for all BID mutants. 

Figures 6.14 and 6.15 show the association and dissociation data for all hydrophobic to 

alanine mutants in comparison with WT-BID. Alanine to glycine mutants data are shown in 

figures 6.16 and 6.17. 
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Figure 6.14: Association kinetics of BID hydrophobic to alanine mutants interacting with A1. BID 
peptides were rapidly mixed (stopped flow) with an excess of A1 at different concentrations. The 
observed rate constant (kobs) was obtained by fitting the change in fluorescence at each 
concentration to a single exponential. Association rate constant (kon) was obtained from the gradient 
of the straight line fit of kobs against the concentration of A1. 
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Figure 6.15: Dissociation kinetics of BID hydrophobic to alanine mutants interacting with A1. A 
pre-formed complex composed by BID and A1 was mixed with unlabelled PUMA peptide at different 
concentrations. The observed rate constant (kobs) was obtained by fitting the change in fluorescence 
at each concentration to a single exponential. Dissociation rate constant (koff) was obtained from 
the mean of the observed rate constants. 
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Figure 6.16: Association kinetics of BID alanine to glycine mutants interacting with A1. BID 
peptides were rapidly mixed (stopped flow) with an excess of A1 at different concentrations. The 
observed rate constant (kobs) was obtained by fitting the change in fluorescence at each 
concentration to a single exponential. Association rate constant (kon) was obtained from the gradient 
of the straight line fit of kobs against the concentration of A1. 
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Figure 6.17: Dissociation kinetics of BID alanine to glycine mutants interacting with A1. A pre-
formed complex composed by BID and A1 was mixed with unlabelled PUMA peptide at different 
concentrations. The observed rate constant (kobs) was obtained by fitting the change in fluorescence 
at each concentration to a single exponential. Dissociation rate constant (koff) was obtained from 
the mean of the observed rate constants. 
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Figure 6.18: Equilibrium binding curve for BID-L90A binding A1. BID-L90A was incubated with 
different concentrations of A1. Data were fit to equation 3.18 (chapter 3) to obtain equilibrium Kd. 
Equilibrium and kinetic comparison of Kd show a two-state coupled folding binding reaction for 
BID-A1.  

Assuming a two-state reaction, Kd can be calculated from the ratio of koff over kon (Equation 

2.22, chapter 2). Φ-values were calculated using Equation 6.1: 

 

Φ =
ln‡don

WT

don
Mut„

ln‰
âd
Mut

âd
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                                        Equation  6.1 

 

Table 6.1 summarises all the biophysical parameters that characterise the coupled folding 

and binding of BID peptide and A1. Φ-values were very low (0 - 0.2) throughout the entire 

BID peptide, suggesting that the peptide is still mainly disordered at the transition state. 
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Table 6.1. Coupled folding and binding of BID–A1: biophysical parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Helicity of all peptides were calculated using the MRE at 222 nm and the method of Muñoz & Serrano 1995. kon and koff errors were obtained from error of  the 
curve fit and from the standard error of the mean, respectively. n is number of repeats. Kd was calculated from the ratio between koff and kon, with the respective 
errors propagated using standard methods. Φ-values were calculated using the kinetic rate constants and errors represent the propagated error. For Ala-Gly 
mutants ΔΔG and Φ are the comparison of the Gly and the pseudo-WT Ala mutants. Table adapted from Crabtree et al. 2018. 

BID Helicity (CD) 

%  

kon
 (μM-1s-1) koff (s-1) x10-3

 n Kd (koff/kon) (nM) ΔΔG (kcal.mol-1) Φ 

WT 11.5 8.2 ± 0.2 0.155 ± 0.005  3 0.019 ± 0.001 - - 

I82A 10.7 6.8 ± 0.2 0.300 ± 0.004 4 0.004 ± 0.001 0.49 ± 0.03 0.23 ± 0.04 

I83A 12.0 7.0 ± 0.2 2.0 ± 0.5 4 0.29 ± 0.01 1.47  ± 0.02 0.06 ± 0.01 

I86A 9.0 2.9 ± 0.1 22.0 ± 0.5 4 7.6 ± 0.2 3.55 ± 0.03 0.17 ± 0.01 

L90A 7.5 3.1 ± 0.2 660 ± 3 5 210 ± 14 5.52 ± 0.04 0.10 ± 0.01 

I93A 8.9 5.6 ± 0.1 2.5 ± 0.2 4 0.44 ± 0.03 1.87 ± 0.04 0.12 ± 0.01 

M97A 11.5 8.1 ± 0.1 1.50 ± 0.04  4 0.190 ± 0.006 1.35 ± 0.03 0.004 ± 0.015 

I101A 10.1 8.6 ± 0.3 0.20 ± 0.01 3 0.022 ± 0.001 0.10 ± 0.03 -0.3 ± 0.3 

I86A- M97A 9.0 2.2 ± 0.1 110 ± 36 4 50 ± 16 4.650 ± 0.002 - 

E81A 10.0 10.7 ± 0.5  0.213 ± 0.004  4 0.020 ± 0.001 - - 

E81G 7.0 9.6 ± 0.1 0.454 ± 0.001 4 0.047 ± 0.001 0.51 ± 0.03 0.12 ± 0.05 

R88A 11.3 5.3 ± 0.2 0.88 ± 0.02 4 0.16 ± 0.08 - - 

R88G 5.8 4.9 ± 0.6  3.03 ± 0.06 4 0.6 ± 0.1 0.8 ± 0.3 0.06 ± 0.09 

E96A 13.0 10 ± 2 0.146 ± 0.005 4 0.015 ± 0.002 - - 

E96G 11.5 7.8 ± 0.3 0.77 ± 0.02 4 0.098 ± 0.005 1.1 ± 0.1 0.13 ± 0.04 

H99A 

H99G 

11.6 

13.0 
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0.182 ± 0.004 

0.17 ± 0.01 
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-0.03 ± 0.01 



 Encoding IDP coupled folding and binding 
 

 
 

 
127 

6.4 Discussion 

Intrinsically disordered proteins and intrinsically disordered regions are well represented in 

nature, comprising over 30% of the proteome (Ward et al., 2004). They are commonly found 

in cell signalling mechanisms, as is the case of our family of interest, the BCL-2. IDPs 

biological function together with their lack of a predefined structure challenges the idea that 

in order to function a protein needs to fold.  

Although disordered in isolation, some IDPs can fold to a stable three-dimensional structure 

upon binding to a partner protein. Our main interest in this project was to identify what 

encodes a coupled folding and binding reaction: the IDP or is it templated by the folded 

partner? Using the BCL-2 family as a model to study coupled folding and binding, we have 

compared four systems composed by two IDPs (BID and PUMA) and two folded proteins 

(A1 and MCL-1) using Φ-value analysis. 

Φ-value analysis has been widely employed in protein folding studies to reveal the pathway 

by which a protein goes from unfolded to its folded state. A few IDP coupled folding and 

binding studies also uses Φ-value analysis in order to unravel the mechanism by which a 

disordered peptide folds and binds to a folded partner (Dahal et al. 2017; Dogan et al. 2013; 

Gianni et al. 2014; Giri et al. 2013; Hill et al. 2014; J. M. Rogers et al. 2014; Toto et al. 

2014). Most studies have shown that few interactions are usually formed at the transition 

state of the coupled folding and binding reactions, which is in agreement with the results 

we got for disordered BH3-only proteins binding to folded BCL-2–like proteins.  

My results on BID:A1 using Φ-value analysis revealed that BID peptide remains 

unstructured at the transition state upon binding to A1, with low Φ-values observed along 

the entire peptide  (0< Φ <0.2). Considering that some IDPs can fold to different structures 

upon binding to different partner proteins (Avalos et al. 2002; Lowe et al. 2002; Richard R. 

Rustandi, Baldisseri, and Weber 2000), it would be reasonable to hypothesise that coupled 

folding and binding reactions would be templated by the folded partner. If this hypothesis 

is correct, using a different partner protein should affect the transition state interactions. To 

challenge this hypothesis, we did a comparative Φ-value analysis using the same BID 

peptide binding to a different partner, MCL-1 (Figure 1.19, A). 
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Figure 6.19: Comparative Φ-values of PUMA and BID binding to MCL-1 and A1. (A) Φ-value 

analysis data of BID peptides binding to the partners MCL-1 and A1. BID:MCL-1 data was taken 

from Quenton Bubb. (B) Φ-value analysis data of PUMA peptides binding to the partners MCL-1 

and A1. Data were taken from Rogers et al. 2014 and Dr. Michael Crabtree. (C) Correlation plot 

of Φ-values obtained for PUMA and BID peptides when binding to MCL-1 and A1. Together with 

the hydrophobic mutants, Ala-Gly mutations in PUMA that destabilises both MCL-1 and A1 by >0.6 

kcal.mol-1 are included in the plot. (D) Correlation plot of Φ-values obtained for MCL-1 and A1 

when binding to PUMA and BID peptides. Only hydrophobic mutants are represented, as Ala-Gly 

mutations did not destabilise BID complexes enough to allow Φ-value calculations. Error bars 

represent the propagated errors. Figure adapted from Crabtree et al. 2018. 

Surprisingly, the results showed a very good agreement for all mutants. In both cases, BID 

remains disordered at the transition state upon binding to the partner protein, showing low 

Φ-values throughout the entire peptide sequence. These results indicated that the disordered 

peptide BID is responsible for encoding the transition state upon binding to a partner protein. 

Interestingly, the results for PUMA peptide binding to A1 (work done by Dr. Michael 

Crabtree) show a similar Φ-value pattern to PUMA binding to MCL-1 (work done by Dr. 

Joseph Rogers), with intermediate Φ-values (0.2< Φ <0.6) observed at the N-terminal of the 

PUMA peptide whereas low Φ-values (0< Φ <0.2) are observed along rest of the peptide 
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sequence (Figure 1.19, B). Most importantly, the results show that the pattern of Φ-values 

is maintained for the peptides PUMA and BID when binding to MCL-1 and A1. A strong 

correlation of Φ-values is observed for both peptides when binding to MCL-1 and A1 

(Figure 6.19, C). In contrast, a correlation is not observed when we plot Φ-values obtained 

for MCL-1 and A1 when binding to PUMA and BID peptides. (Figure 6.19, D). The results 

support the conclusion that the IDPs encode the interactions of the transition states. 

Simulations of the unbound PUMA suggest that although mainly disordered, the peptide 

displays a higher degree of helicity at its N-terminus (Harmon et al. 2016), whereas CD data 

show that BID peptide is largely disordered in the unbound state. Both results are in 

agreement with the transition states structures findings: PUMA is partially structured with 

higher Φ-values at the N-terminal region whereas BID remains disordered. That might 

indicate that the residual structure of the IDP in the unbound state can determine the 

transition state interactions upon binding to a protein partner. IDPs encode their level of 

residual structure, and our study shows that they have also the potential to encode the 

transition state structures in a coupled folding and binding reaction. The ability of 

controlling residual structure and encoding transition state interactions provides a fine way 

of how evolution can modulate the affinity of the IDP and partner protein complexes, which 

could be one good reason for the strong conservation of disorder on the proteome. 
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7 Coupled folding and binding in a full-length 

IDP context 

7.1 Introduction 

 

7.1.1 The role of IDP sequence context on its ability to bind and interact 

 

Natively unfolded or intrinsically disordered proteins (IDPs) lack a defined structure but 

nonetheless represent a significant proportion of the proteome (Ward et al., 2004). They 

play significant roles in transcription regulation, DNA binding, intracellular transportation 

etc, where they are commonly involved in networks comprised by multiple partners (Ward 

et al., 2004; Dunker et al., 2005).  

Although the discovery of IDPs is relatively new, a significant number have been reported 

over the past 20 years (Uversky 2002). A great proportion of experimental studies 

investigate IDPs as peptides or shorter versions of the whole protein sequence, usually the 

binding motif. However, these motifs are often part of larger proteins.  

Even though studying IDPs as peptides is a much simpler way to work and can offer 

significant insights on these intriguing molecules, it has already been shown that the 

sequence context of the binding motif could affect IDPs properties. For instance, mutations 

on conserved proline residues located in flanking regions of IDPs were shown to modulate 

their binding affinities for partner proteins by controlling the lifetime of the IDP/protein 

complex and its in vivo function (Borcherds et al. 2014; Crabtree et al. 2017). Furthermore, 

the coupled folding and binding of cMyb and KIX is altered when cMyb is extended by the 

addition of the transactivation domain TAD (Shammas et al. 2014, Arai et al. 2015).   

On the previous chapter, we demonstrated that IDPs encode coupled folding and binding 

reactions with its partner proteins, as their sequences contain the necessary information for 

complex formation: same IDP binds to different partner proteins following the same 
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pathway (Crabtree et al. 2018). The research was performed using the binding motif (35 

residues) of the IDPs but they all exist in a longer context. The study opened new ideas on 

how to explore the same IDP-partner complex using the IDP in its full-length form. That 

would allow us to shed some light onto how the full-length context compares to what we 

know for the peptides.  

 

7.1.2 BID as a model of an IDP in its full-length context 

 

The BCL-2 family is well known to be involved in cell apoptosis comprising a complex 

network between pro-apoptotic, pro-survival and “initiator” proteins. The precise 

mechanism by which apoptosis occurs is still not fully understood (L.Omonosova and 

C.Hinnadurai 2008). That makes the BCL-2 a very intriguing and interesting family of 

proteins to be explored. Protein members of the BCL-2 family all have in common the 

presence of a BH3 (BCL-2 homology 3) motif. Pro-apoptotic (e.g BAK, BAX, BOK) and 

pro-survival (e.g MCL-1, A1, BCL-XL) are multi domain proteins, whereas the stimuli 

activators or “initiators” (e.g. PUMA, tBID, BIM, BAD) are BH3-only proteins and mostly 

disordered (Czabotar et al. 2014).  

A potential candidate to be studied in a full-length context is the previously studied BID. In 

contrast to all other “initiators” proteins of the BCL-2 family, full-length BID (BIDFL) has 

a defined globular structure with eight helices. Helix 3 contains the BH3 motif and it is 

connected to helices 1 and 2 by a long flexible loop, which contains a caspase cleavage site 

(Figure 7.1). Despite the low sequence identity, the structure of BIDFL is very similar to the 

other BCL-2 family proteins, like BAX and MCL-1 (Petros et al. 2004, Fesik 2000). 
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Figure 7.1: BIDFL structure (PDB 1DDB). BIDFL structure showing N- and C-terminus. The 

structure shows the first 60 residues that are cleaved in tBID in light pink, the 35 residues that 

comprise the BH3 motif are shown in yellow and the rest of the molecule is shown in dark pink. The 

35 amino acids long fragment was previously used as a peptide to study coupled folding and binding 

(Chapter 6). 

In the cell, BID is cleaved by caspase 8, where 60 N-terminal residues are removed 

generating the truncated BID (tBID) (Figure 7.2). tBID plays a key role in the cell death 

pathway, amplifying the apoptotic response which is required for an effective apoptosis 

(Czabotar et al. 2014). Although BIDFL is located in the cytosol, tBID translocates to the 

mitochondria where it signals apoptosis (Li et al. 1998).  

 

Figure 7.2: Sequence alignment of BIDFL and tBID. BIDFL is N-terminally truncated by caspase 8, 

where 60 residues are removed generating tBID. Alignment was produced using Clustal Omega 

(Goujon et al. 2010, Sievers et al. 2011).  

Even though tBID preserves the secondary helical structure of BIDFL, it adopts an α-helical 

but dynamically disordered conformation in solution (Gong et al. 2004, Wang & Tjandra 

N

C
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2013, Yao et al. 2009). Perhaps, that might facilitate the interaction between BID and the 

pro-apoptotic and pro-survival proteins, as its BH3 motif will be exposed after cleavage. 

Studying BIDFL and tBID would possibly give us insights on why nature chooses this 

pathway for the apoptosis network trigger and function, as well as gain insights into the 

contribution of the protein context to the interaction profile of the binding motif. 

 

7.1.3 Fluorescent residues in BIDFL and tBID 

 

BIDFL contains two tryptophan and one tyrosine residues (Figure 7.3). After truncation by 

caspase and the removal of BID1-60 fragment, one tryptophan and one tyrosine located in the 

flexible loop are deleted from BID, leaving tBID with one tyrosine only. Biophysical 

experiments of BIDFL are performed following the tryptophan fluorescence, whereas 

tyrosine was used for tBID. 

 

 

Figure 7.3: BIDFL structure (PDB 1DDB) showing aromatic residues. The structure shows the 

position of the aromatic residues represented as spheres: one tryptophan (orange) and two tyrosines 

(green). The tryptophan and one tyrosine are located in the flexible loop, that gets truncated on tBID 

(light pink), whereas the other tyrosine is positioned on helix 8.  
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7.1.4 Chapter aims 

 

The majority of the studies on IDPs are performed using peptides, which are the binding 

regions of a larger protein. This chapter aims to investigate an IDP in its full-length context 

to shed some light on how that affects its ability to form complexes with partner proteins 

and how it modulates the complex affinity. For that reason, I have chosen to study BID, 

which is active as a BH3-only protein tBID but is a member of the BCL-2 family that is 

structured in a full-length context. 
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7.2 Results 

 

7.2.1 Design and production of BID and tBID  

 

Mouse BIDFL and tBID genes were purchased from GenScript in the standard pUC57 vector. 

A molecular biology strategy was designed to insert both genes into pGEX-4T-3 plasmid. 

This plasmid was previously used for A1, which made the purification protocol very similar 

to the one I was already using. Primers were designed in order to extract BIDFL and tBID 

genes from their original pUC57 vector and to remove A1 gene from pGEX-4T-3. The 

primers for BID/tBID contained extra base pairs in both ends that were complementary with 

the desired pGEX-4T-3 plasmid. A ligation was performed as a last step in order to insert 

the protein genes into the vector. The choice to work with mouse over human BID was to 

keep the consistency with the previous work (chapter 6) and allow comparison between the 

results. 

Once the molecular biology steps were finished and we had both BID and tBID in the 

pGEX-4T-3 plasmid, we wanted to develop the protocol for the proteins expression and 

purification. In order to find the optimal condition for BIDFL and tBID expressions, different 

parameters were tested and varied: three different OD600 upon induction (0.4, 0.6 and 0.8), 

two different IPTG concentrations (0.1 and 1 mM) and two temperatures after IPTG 

induction (25° and 37° C). Results for the different conditions for the two proteins are shown 

in Figure 8.4. From the expression trials, it became quite clear that tBID expression was 

really poor. It was thought that the unstructured protein is likely to be insoluble so we 

decided to express only BIDFL and use it to obtain tBID with the caspase-8 cleavage later 

on. For BIDFL, we found as an optimal condition to induce expression with 0.1 mM IPTG 

at OD600 0.6-0.8 and incubate it at 37° C for 6 hours after induction (Figure 7.3). 
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Figure 7.4: Expression trials of BIDFL and tBID. Different parameters were tested in order to find 

the optimal expression protocol for the two protein constructs: three different OD600 (0.4, 0.6 and 

0.8), two different IPTG concentrations (0.1 and 1 mM) and two temperatures after induction (25° 

and 37° C). Each gel contain six samples of BIDFL and tBID in the different conditions: 1) OD 600 = 

0.4, IPTG = 0.1 mM, 2) OD 600 = 0.4, IPTG = 1 mM, 3) OD 600 = 0.6, IPTG = 0.1 mM, 4) OD 600 = 

0.6, IPTG = 1 mM, 5) OD 600 = 0.8, IPTG = 0.1 mM, 6) OD 600 = 0.8, IPTG = 1 mM. Gels represent 

the different incubation temperature and times after IPTG induction: (A) 25° C, 4 hours; (B) 25° C, 

6 hours; (C) 25° C, overnight; (D) 37° C for 6 hours, then 25 ° C overnight; (E) 37° C, 2 hours; (F) 

37° C, 3 hours; (G) 37° C, 4 hours; (H) 37° C, 5 hours (I) 37° C, 6 hours. PageRuler unstained 

standard ladder is shown in (A) for comparison (* in all gels). The trials show a very poor expression 

of tBID for all the conditions. The optimal condition for BIDFL expression was to induce with 0.1 

mM IPTG at OD600 0.6-0.8 and to incubate it at 37° C for 6 hours after induction (gel I).  
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BIDFL was expressed as a GST fusion protein and the detailed purification protocol is 

described in Chapter 3 (Materials and Methods). In the final step of purification, using a 

Superdex 75 gel filtration column, we noticed that extra peaks of higher molecular weight 

appeared before the main BIDFL one (Figure 7.5, A). SDS gel of the fractions confirm the 

expected BIDFL mass and purity not only for fractions on the main peak, but also the ones 

of higher mass (Figure 7.5, B). These results suggest that that BIDFL is capable of 

homooligomerisation.  

  

  

Figure 7.5: Purification of BIDFL. (A) Chromatogram image after BIDFL G75 size exclusion run 

showing the peaks 1, 2 and 3. (B) SDS gel of BIDFL fractions after G75 purifications and NuPage 

unstained protein ladder for comparison. Gel starts from marker and show fractions from peak 3, 

followed by peaks 1 and 2. Pure BIDFL can be identified in all fractions, suggesting that the larger 

species (first and second peaks on the chromatogram) are also formed by BIDFL.  
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Purified BIDFL samples were sent for mass spectroscopy analysis at the Chemistry 

department to confirm its identity and purity. All three samples results confirmed the 

expected mass for BIDFL. Figure 7.6 show one chromatogram as an example.   

 

Figure 7.6: Mass spectroscopy results for BIDFL. Mass spectroscopy analysis of the final BIDFL 

sample in 50 mM sodium phosphate, pH 7.0 (0.05% Tween-20) provided a mass of 22,096±12.39 

Da, which is within error of the expected mass of 22,095 Da. 

For accurate concentration calculations, samples of purified BIDFL were sent for Amino 

Acid Analysis (AAA) at the Biochemistry department, performed by Peter Sharratt. The 

results allowed us to calculate the experimental extinction coefficient (ε280) (Figure 7.7). 

The experimental and the ProtParam theoretical values were slightly different, 8700 and 

8480 M-1.cm-1 respectively. Throughout this chapter, BIDFL concentrations were calculated 

using the experimental extinction coefficient value (ε280 = 8700  M1.cm-1). 
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Figure 7.7: Extinction coefficient for BIDFL. Extinction coefficient value calculated from amino acid 

analysis (AAA). Concentration results for three different samples of BIDFL plotted against its 

absorbance readings at 280 nm. ProtParam expected value was ε=8480 M-1.cm-1 whereas the 

experimental one was ε=8700 M-1.cm-1. The experimental value was used for all BIDFL concentration 

calculations in this chapter. 

Production of BIDFL was somehow straightforward whereas tBID was not. Therefore, the 

latter was obtained by cleaving BIDFL with caspase-8 after it was produced. Even though 

the cleavage was successful (as confirmed by SDS-PAGE), the N-terminal 60-residue 

fragment (BID1-60) was still bound to the rest of the molecule (as observed by SEC). Hence, 

an extra step was added to the purification protocol in order to separate tBID from BID1-60. 

After cleavage with caspase-8, the protein was incubated in 8 M urea and unfolding of the 

protein allowed tBID and BID1-60 to be separated by size exclusion chromatography (Figure 

7.8). Pure tBID was dialysed back into buffer to remove denaturant. That is an unexpected 

and interesting result demonstrating that even though caspase-8 is able cleave BIDFL, this 

event does not sufficiently destabilise the protein to result in the separation of tBID from 

the fragment.   
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Figure 7.8: Purification of tBID after unfolding in denaturant. (A) Chromatogram image after G75 

size exclusion run in 8 M urea showing peaks 1, 2 and 3. (B) SDS gel of tBID fractions after G75 

purification in urea and NuPage unstained protein ladder for comparison. Gel starts from marker 

and shows fractions from peak 1 (uncleaved BIDFL), 2 (tBID) and 3 (BID1-60 fragment). 
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7.2.2 Stability of BIDFL 

 

The stability of BIDFL was measured by urea-induced equilibrium denaturation. The 

experiment was performed in the fluorimeter with BIDFL in 50 mM sodium phosphate, pH 

7.0 (0.05% Tween-20) and 10 mM DTT, at 25 °C. Tryptophan fluorescence was followed 

with the excitation wavelength of 280 nm and emission recorded from 300 to 400 nm. Data 

were analysed calculating the fluorescence at 356 nm and the results were fitted to a two-

state model (Figure 7.9). Although BIDFL has a flexible unfolded loop on its structure, its 

stability (12.9 kcal.mol-1) is very similar to other BCL-2 family proteins, MCL-1 and A1 (≈ 

12 kcal.mol-1) for instance. 

 

 

Figure 7.9: Equilibrium curve of BIDFL. Urea-induced equilibrium denaturation curve of BIDFL in 

50 mM sodium phosphate, pH 7.0 (0.05% Tween-20) with 10 mM DTT.  
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7.2.3 CD data of BID and tBID 

 

CD data was collected during the purification steps of tBID as well as for pure BIDFL. After 

incubation of BIDFL with caspase-8 and the first run of size exclusion chromatography 

(SEC), CD spectra overlay with the one from BIDFL (Figure 7.10, A) suggesting that the 

protein has the same structure before and after cleavage. Together with the SEC and SDS 

PAGE results, CD result agrees that the fragment BID1-60 is still present with tBID after 

BIDFL is cleaved by caspase. 

The following stage was to unfold the cleaved BID, so it was incubated in denaturant and 

then another SEC run separated tBID and fragment. Although tBID is mostly disordered, 

CD spectra show a recovery in residual structure between tBID in urea and after dialysis, in 

buffer (Figure 7.10, B). That result demonstrates the tBID ability to recover residual 

structure upon denaturant removal. Figure 7.10, C shows a comparison between BIDFL and 

tBID CD spectra. Although BIDFL contains a long flexible loop on its structure, it has similar 

CD spectra when compared with other previously studied BCL-2 family proteins like A1 

(Chapter 6). In contrast, tBID is largely disordered, as are the other BH3-only proteins such 

as PUMA. 

 

Figure 7.10: CD results during the purifications steps of tBID. (A) CD spectra show the same 

residual structure of purified BIDFL before and after cleavage with caspase-8. (B) tBID after the 

final purification step using urea shows a recovery in residual structure after dialysis to remove the 

denaturant. (C) Comparison between purified BIDFl and tBID.  
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7.2.4 Oligomerisation of BIDFL 

 

BCL-2 family oligomerisation propensity 

 

The BCL-2 family proteins mechanism of cell apoptosis is being extensively discussed and 

studied over the past years. From the biological point of view, it is known that pro-apoptotic 

family members like BAK and BAX are the cell death executioners (Dewson & Kluck 2009, 

Peña-Blanco & García-Sáez 2018). Once the signal for apoptosis is triggered, these proteins 

are able to form pores in the mitochondrial outer-membrane and release its inter-membrane 

contents, activating caspases resulting in cell death. Thus, control of pro-apoptotic proteins 

oligomerisation is believed to be key in apoptosis regulation by the BCL-2 family (Czabotar 

et al. 2014, (Kale, Osterlund, and Andrews 2018). Although the relevance of BAK/BAX 

oligomerisation is appreciated, its structures and mechanism are not yet fully understood.  

The fact that many PhD students’ projects in the lab over the last few years involved the 

BCL-2 family, allowed us to gain significant insights and gave us an unique chance to 

compare results between different protein members of the family as they came out of the 

instruments and were analysed. Dr. Basile Wicky worked with pro-apoptotic BAK and BAX 

and found out that neither of them forms oligomers under buffer conditions: not 

spontaneously, nor in the presence of BH3-only peptides. Interestingly, using detergents to 

provide a membrane-like environment, BAK and BAX oligomerise in vitro in a spontaneous 

manner, without requiring the presence of any other BCL-2 protein (Wicky, 2018). With 

the focus on the oligomerisation properties of BCL-2 proteins, Dr. Michael Crabtree spotted 

some interesting and intriguing results: equilibrium denaturation curves of pro-survival 

BCL-XL and A1 proteins, showed two transitions. Further investigation showed that this 

biphasic behaviour under denaturing conditions could be explained by oligomers formation, 

with the first transition indicating monomer to oligomer formation and the second 

representing dissociation of the oligomer into unfolded monomer. This behaviour was not 

reproduced by MCL-1, for example, another pro-survival protein. When I first purified 

BIDFL I could not ignore the intriguing result from its purification: together with the 

protein’s main peak, other peaks of higher molecular weight could be seen in the 

chromatogram. SDS gel revealed that those fractions of higher order species were only 
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composed by BIDFL, again a strong indication of oligomers formation. Michael and Basile 

also observed a similar behaviour when purifying BCL-XL. The main oligomer peak was 

in fact a dimer, confirmed by analytical ultracentrifugation (AUC).  

BIDFL sequence contains two cysteines (Figure 7.11) that could be a sensible reason for 

multimerisation under oxidising conditions. In the absence of a reducing agent, although 

not huge, oxidation over time would be expected. During the BIDFL purification steps, as 

well as in all experiments, DTT was added (10 mM final concentration) to avoid oligomers 

formation. Thus, the higher species observed could not be explained by disulphide bond 

formation. 

 

   

Figure 7.11: BIDFL structure (PDB 1DDB) showing cysteine residues. The structure shows the 

position of the two cysteine residues as blue spheres: one located in the loop between helices 1 and 

2 and the other on helix 5.  
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Cross-linking of BIDFL 

 

Although the oligomerisation was not the focus of this project, I could not ignore this 

interesting result. As well as pro-apoptotic BAK and BAX and pro-survival BCL-XL and 

A1, BID in a full-length context was also able to form higher order species. The oligomeric 

state was investigated using chemical cross-linking.  

The experiment was carried out by using two crosslinkers: EDC (1-ethyl-3-[3-

dimethyllaminopropyl]carbodiimide hydrochloride) and BS3 (bis[sulfosuccinimidyl) 

suberate). This dual composition was chosen to allow short as well as longer length cross 

species formation. EDC is known as a “zero length” crosslinker as its reaction forms new 

bonds between carboxyls and amides without incorporation of any EDC’s atoms. It reacts 

with a carboxyl group forming an O-acylisourea and this intermediate rapidly reacts with 

an amino group. This reaction results in the formation of a new amide bond, or in other 

words, the proteins cross-linking. Although EDC allows cross-linking without adding a 

spacer group, it requires the two amino acids to be in close proximity, and that is why BS3 

came into use. BS3 is a N-hydroxysuccinimide (NHS) ester with an 8-atom spacer arm (11.4 

Å). This reagent is specific for primary amines on the side chain of lysine residues and O-

acylisoureas (formed by EDC reaction). The use of EDC and BS3 together allows cross-

linking of lysine with glutamate and aspartate residues that are located far from each other.  

Crossliking gel results showed formation of dimers, trimers and tetramers of BIDFL, 

confirming the preliminary indication from SEC peaks (Figure 7.12). It is important to 

highlight that chemical cross-linking is not an equilibrium reaction, which makes the bands 

distribution on the gel not a direct association with the oligomers present in solution. 

Therefore the gel result does not necessarily represent the distribution observed by SEC, but 

it shows the capability of BID to form up to tetrameric oligomers. 
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Figure 7.12: Crosslinking results of BIDFL. (A) Chromatogram image after G75 size exclusion run 

showing the peak of purified BIDFL as well as the extra peaks (regions 1, 2 and 3). (B) SDS gel of 

BIDFL fractions after a crosslinking reaction and NuPage ruler unstained protein ladder for 

comparison. Gel starts from marker and show fractions from regions 1, 2, and 3 from the 

chromatogram image. From the gel image, we can observe the presence of BIDFL monomer and its 

oligomers: dimers, trimers and tetramers. 
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7.2.5 Association kinetics of BIDFL and tBID with the pro-survival 

protein A1 

Association kinetics experiments of both BIDFL and tBID were performed against A1 

protein. Although any other folded BCL-2 family protein could have been used, the choice 

to work with A1 was to be consistent and comparable with my previous studies of A1 and 

BID-BH3 peptide (Chapter 6).  

Experiments for BIDFL:A1 were performed under pseudo-first order conditions with A1 10x 

in excess. Results show a very slow association rate (Figure 7.13). Fitted traces represent an 

average of 25-35 measurements.  

Although the current result is not sufficient to calculate the concentration dependent 

association rate constant (kon), the significantly low apparent rate constant observed 

(≈0.02 s-1) can give us insights into this system. Two reasonable hypotheses can emerge:  

1) The two folded proteins do not interact. The folded structure of BIDFL might prevent it 

to bind and interact with A1 as its BH3 region is found enclosed in the structure.  

2) Unfolding of BIDFL is required in order to expose its BH3 region and allow complex 

formation. In the latter case, the observed rate could represent the unfolding rate of BID and 

be the rate-limiting step for BIDFL and A1 to interact. 

A quick test where the light source was temporary blocked revealed that a photobleaching 

effect plays a role on the signal, but it is not sufficient to explain the observed fluorescence 

change.  
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Figure 7.13: Association kinetics of BIDFL and A1. BIDFL and A1 were rapidly mixed in a stopped 

flow instrument on a 1:1 volume ratio under pseudo-first order conditions. The final concentrations 

in the cell were (A) 1 and 10 μM and (B) 1.5 and 15 μM, of BIDFL and A1 respectively. A 320 nm 

cut-off filter was employed, and each trace is a result of 35 measurements averaged.  

 

Unfolding kinetics of BIDFL revealed that the protein unfolds in a rate of ≈0.01 s-1 (Figure 

7.14, A), a very similar rate to the one observed for BIDFL:A1 association. The results 

support the idea that the unfolding of BIDFL is the rate limiting step for the association of 

BIDFL and A1. Surprisingly, a very similar unfolding rate (≈0.02 s-1) is observed for the 

cleaved BIDFL, after incubation with caspase but before separation from the BID1-60 

fragment (Figure 7.14, B). The results show that the cleavage process on its own, is not 

sufficient to speed up the unfolding of the BIDFL molecule.  
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Figure 7.14: Unfolding kinetics of BIDFL before and after cleavage with caspase. (A) BIDFL and (B) 

BIDFL upon cleavage with caspase unfolding kinetics. The experiments were performed in a stopped-

flow instrument, in a 1:10 volume ratio. Each point represents an average of 20-25 traces.  

As tBID does not have a tryptophan residue, some preliminary tests were required in order 

to find the optimised settings to do association experiments with A1. That was to decide 

which excitation wavelength to use, as well as if a cut-off filter would be employed. Stopped 

flow experiments were performed in a 1:1 volume ratio, with both proteins at the same 

concentration (2 μM final). The results show that a 276 nm excitation wavelength with no 

cut-off filter is a good condition. Figure 7.15, A show an example of a trace using the chosen 

settings. 

Later on, association kinetics were done under pseudo-first order conditions using a 1:1 

volume ratio. A signal change was observed, and the data were fitted to a single exponential 

plus drift. The observed association rate for that concentration was ≈1.5 s-1 (Figure 7.15, B), 

which is two orders of magnitude faster when compared with the previous one from BIDFL 

and A1. Although preliminary, this result is more consistent with fast association as is 

observed for BID-BH3 peptide binding to A1.  

Additional kinetics experiments (association and dissociation) would have allowed us to 

compare BIDFL, tBID and BID peptide data and get insights on how the BID-BH3 motif 

sequence context can modulate the binding affinities for BID and A1. Unfortunately, these 

final experiments were challenged by time limitations.  

A B
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Figure 7.15: Association kinetics of tBID and A1. The two proteins were rapidly mixed in a stopped 

flow instrument on a 1:1 volume ratio. (A) Experiment done on a 1:1 concentration ratio: 2 μM final 

concentration of each protein. The trace is a result of 31 measurements averaged. (B) Experiment 

done under pseudo-first order conditions with A1 10x in excess: 1 and 10 μM of tBID and A1, 

respectively. The trace is a result of 15 measurements averaged. 
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7.3 Discussion 

Starting from the gene design and expression and purification protocols developed, BIDFL 

and tBID were successfully produced in the lab. Even under different conditions, expression 

of tBID transpired to be very poor, which is the reason why we chose to produce the protein 

via the cleavage of BIDFL by caspase-8. Unexpectedly, after cleavage, tBID and BID1-60 

fragment were not separated as we first expected. Thus, unfolding of the protein was 

necessary in order to get free tBID in solution. This fact showed that although caspase-8 is 

necessary for BIDFL cleavage, it is not sufficient to release it from its N-terminal 60 residues 

part. 

CD data also confirms the very similar structure of BIDFL and BID after caspase-8 cleavage. 

After the final purification step, although very disordered, tBID is able to recover some 

residual structure in buffer when compared with the its previous condition in denaturant. 

The CD spectra of both BIDFL and tBID are in agreement with expected structural 

knowledge from the literature: BIDFL is a folded alpha-helical protein whereas tBID is 

largely unstructured.  

Purification of BIDFL showed an intriguing result: extra peaks were observed on its 

chromatogram. Although the peaks would correspond to higher molecular weight species, 

SDS PAGE revealed that they are only composed by BIDFL. Considering that the cysteine 

potential of multimerisation is abrogated by the reducing agent, presence of higher order 

species comes from propensity of the protein sequence to form oligomers. That was also 

previously observed for other BCL-2 family members, both pro and anti-apoptotic proteins. 

BCL-XL also shows extra peaks upon purification. Similarly, A1 and BCL-XL can 

oligomerise once their folded structure is destabilized by a reducing agent. Moreover, pro-

apoptotic BAK and BAX oligomerise in a membrane-like environment, as when in contact 

with detergents. In the case of BIDFL, cross-linking experiments identified the size of the 

oligomers, with dimers, trimers and tetramers observed. Although only pro-apoptotic BAK 

and BAX have oligomerisation as an in vivo function (pore forming proteins), a spectrum 

of oligomerising ability is observed throughout the BCL-2 family members. That instigating 

evidence could shed some light in the functional evolution of these proteins. Evolutionary 

vestiges of the BCL-2 family ancestry could possibly explain self-assembly propensities of 

the proteins. 
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Biophysical characterisation of BIDFL showed that despite its long flexible loop, it has the 

stability similar to other BCL-2 proteins like A1 and MCL-1. To gain some insights into the 

BIDFL and tBID abilities to form complexes when compared to BID-BH3, some initial 

kinetics experiments were conducted. Association kinetics of BIDFL and A1 show a very 

slow rate (≈0.02 s-1). Interestingly, unfolding kinetics of BIDFL show a very similar rate 

(≈0.01 s-1), suggesting that the unfolding and consequent exposure of the BH3 motif is the 

rate-limiting step for the complex formation. Although one might think that the cleavage 

step with caspase would increase the unfolding rate of the BID molecule, no significant 

change was observed upon incubation with caspase (≈0.02 s-1). Thus, in order to activate 

BID to give it pro-apoptotic activity, BID has to not only be cleaved by caspase but also 

unfold.  

Preliminary association kinetics of tBID and A1 seemed promising. Further experiments 

would be required to show how the rates for association, dissociation and the modulation of 

complex formation of the protein in its physiological relevant length compares with the BH3 

peptide, or in other words, how relevant and informative is the use of peptides as a model 

for studying IDPs. 
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8 Conclusions and future perspectives 

8.1 Conclusions from this thesis 

The work designed and performed in this PhD thesis aimed to deepen our understanding of 

how context can influence protein folding dynamics and protein-protein interactions. SasG 

is a protein that challenges the predictions of folding and stability. The first step of the thesis 

aimed to explore the potential role of SasG unusual charged composition in the protein 

stability. Next, SasG was used as a system to study co-translational folding. Force profile 

experiments were used to shed light on how these elongated beta sheet structure would fold 

on the ribosome and how that compares with the in vitro results of the protein in isolation.  

Intrigued by protein disorder and seeking to gain more information of protein-protein 

interactions, the subsequent project was designed to investigate what encodes IDPs coupled 

folding and binding reactions. For that purpose, comparative ϕ-value analysis was employed 

utilising a family of proteins involved in cell-death regulation – the BCL-2 family. Finally, 

considering that IDPs are largely studied as peptides, the last chapter aimed to investigate 

an IDP as a full-length protein. The BCL-2 family member BID, a BH3-only protein that is 

structured in a full-length context, was used to shed some light on the role of this protein in 

the apoptosis mechanism in the cell. 

 

8.1.1 SasG stability cannot be explained exclusively by highly charged 

amino acids composition and distribution 

SasG is a bacterial multidomain protein, predicted to be disordered, but yet it folds. With an 

unusual sequence composition (65% of Glycines, Prolines and charged residues), it has an 

elongated beta sheet structure, exposed to the solvent in both sides. The lack of a 

hydrophobic core and the abundance of charged residues makes SasG structure very 

intriguing. Seeking to understand what is the contribution of the charged residues on SasG 

stability, we hypothesised that electrostatics could be key for the protein stability and that 

the pattern of charged residues could contribute for the structure formation. 
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Surprisingly, equilibrium studies of SasG at different pH and ionic strength values did not 

support the initial hypothesis, as they show no dramatic effect in the G52 domain stability. 

Moreover, bioinformatics analysis confirms that the majority of the charged residues in 

SasG G52 and E-G52 constructs are not involved in salt bridges.  

 SasG clearly defies current prediction of protein disorder and its stability cannot be simply 

explained by the presence or the distribution of charged residues across the molecule. 

Nevertheless, our previous studies were able to demonstrate the role of the inter-domain 

interface in the protein stability. Formation of SasG interface was shown to drive the folding 

of E-G52 even when both domains were destabilised and unfolded in isolation (Gruszka et 

al. 2016).  

 

8.1.2 Force profile experiments can report both intramolecular folding 

and intermolecular interactions between the nascent protein chain and 

the ribosome  

A fundamental question of how in vitro and co-translational protein folding studies compare 

has gained more attention in recent years. As translation happens slowly, it can allow 

nascent chains to fold while still being translated, tethered to the ribosome, even before the 

entire sequence emerges from the ribosome tunnel.  

After previously characterising SasG folding mechanism in vitro, the follow up question 

comprised how this intriguing protein would fold upon translation on the ribosome. Force 

profile experiments were employed to characterise the co-translational folding of G52, 

revealing that the domain is able to fold while is still inside the ribosome vestibule (linker 

length L31). Remarkably, a control experiment involving a non-folding variant of the G52 

domain was also able to release the stall. Furthermore, a high read through was also 

observed at very short linker lengths (<L30), where the protein is still largely sequestered 

inside the ribosome tunnel. Together, these results suggest that other factors rather than 

folding can contribute to the stall release and subsequent high fraction full-length results. 

With the prior knowledge that E-G52 has an additional pathway for folding that starts with 

the formation of the inter-domain interface (Gruszka et al. 2016), we hypothesised that E-
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G52 would fold earlier than G52 when being translated, as soon as the interface is available. 

Surprisingly, force profile results showed that G52 and E-G52 have almost identical results, 

with both constructs folding at similar positions upon translation. That was the first 

indication that the alternative folding pathway for E-G52 might not be available during 

translation. Moreover, force profile results for EG52-G587A, a mutant that is shown in vitro 

to fold via the domains interface, basically overlays with the non-folding variant of E-G52. 

The results support the idea that the alternative folding pathway, well characterised in vitro, 

is not accessible until the peptide chain emerges from the ribosome.  

SasG cotranslational folding results showed that the presence of the ribosome can affect the 

folding process in comparison with the protein in isolation, including preventing alternative 

folding mechanism known to be accessible in the absence of the ribosome. In agreement 

with recent findings, our results contribute to the idea that the ribosome can play a role in 

protein regulation.  

Interestingly, the highly charged composition of SasG allowed us to explore the role of 

electrostatics in the co-translational folding. Non-folding variants of SasG with different 

charge composition were used to shed light on how the presence of charged residues can 

contribute for the stall sequence release. Overall, although disordered, highly positively 

charged constructs were shown to release the stall whereas highly negatively charged 

nascent chains remained stalled. Although force profile experiments can be a powerful 

technique to study co-translational folding, non-folding controls transpired to be essential 

in order to attribute the stall release to folding events. 

 

8.1.3 Intrinsically disordered proteins are able to encode coupled folding 

and binding reactions 

Intrinsically disordered proteins (IDPs) are gaining more attention as their biological 

relevance is increasingly revealed. Although lacking a structure in isolation, a subset of 

IDPs is able to fold upon binding to a partner protein. Coupled folding and binding reactions 

can be very promiscuous, with different IDPs being able to bind to the same partner protein. 

Moreover, as the stability of the IDP-partner complex is dependent on the folded molecule, 
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an immediate hypothesis would be that the folded partner templates the coupled folding and 

binding reaction.  

Comparative ϕ-value analysis of BCL-2 family proteins revealed that the folding pathway 

is essentially encoded by the IDP, not templated by the stabilising partner protein as the 

initial hypothesis suggested. The results open space for new insights regarding the role of 

disorder. The ability of IDPs to encode both their residual structure and transition states, 

provide them the capacity to develop specific kinetic profiles. In vivo, disordered proteins 

are conserved and typically present in cell signalling processes, where responses to stimuli 

may need to be irreversible (e.g. apoptosis stimulation) or occur significantly fast (e.g. cell 

receptor activation). Altering the residual structure or the encoded transition state provide a 

fine manner for evolution to modulate the lifetime of these complexes, which could be a 

good explanation for disorder conservation.  

 

8.1.4 Insights of an IDP in its full-length context 

IDPs are typically studied as peptides, the binding motifs of a bigger protein. Investigation 

of the BCL-2 family member BID on its full-length context (BIDFL) could shed some light 

on the biological mechanism by which this molecule plays a role in the apoptosis network. 

It is well known that BIDFL gets truncated by caspase in the cell. Association and unfolding 

kinetics revealed that BID cannot bind its partner protein A1 in a full-length context. 

Cleavage with caspase followed by unfolding is required for the BID molecule to open and 

expose its binding motif, the BH3 region. 

Interestingly, an oligomerisation propensity, previously identified for other BCL-2 family 

members (BAK, BAX, A1, BLC-XL), was also observed for BIDFL. Although only the pore 

forming pro-apoptotic BAX and BAK have oligomerisation as an in vivo function, the 

potential to form oligomers is observed across the BCL-2 family members. That per se can 

lead to a better understanding of the functional evolution of these proteins.  



Conclusions and future perspectives 
 

 
 

 
157 

8.2 Future directions  

In terms of the work described in this thesis, it would be very interesting to compare how 

the association, dissociation and lifetime of the complexes are affected between BID 

peptide, cleaved BIDFL and tBID binding to A1. That would shed some light on how the use 

of IDP binding motifs only (peptides) can report on what actually happens in the cellular 

context. 

Another very interesting project to pursue is the oligomerisation propensity of the BCL-2 

family proteins. An evolutionary reconstruction could unravel whether the ancestor of the 

current family members was more, or less, susceptible to self-assembly.  

It would be also fascinating to study an IDP or IDR that can adopt different conformations 

upon binding to a partner molecule. The disordered C-terminal domain of p53, for instance, 

can bind as a helix (Rustandi, Baldisseri and Weber, 2000), as a coil (Lowe et al. 2002; 

Mujtaba et al. 2004) or as a strand (Avalos et al. 2002). Understanding how the transition 

state is encoded when multiple binding structures are possible would be very significant. 
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9 Apendix 

Appendix 1-  

Equilibrium curves of G52 at different pH values: fluorescence at 305 nm. 
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Appendix 2-  

SasG folding on the ribosome DNA and protein sequences 

G52 protein sequence:  

Y G P V K G D S I V E K E E I P F E K E R K F N P D L A P G T 

E K V T R E G Q K G E K T I T T P T L K N P L T G E I I S K G 

E S K E E I T K D P I N E L T E Y G P E T 

G52 DNA sequence: 

TACGGTCCGGTTAAAGGTGACTCTATCGTTGAAAAAGAAGAAATCCCGTTCGAAAAAGAA

CGTAAATTCAACCCGGACCTGGCGCCGGGTACCGAAAAAGTTACCCGTGAAGGTCAGAAA

GGTGAAAAAACCATCACCACCCCGACCCTGAAAAACCCGCTGACCGGTGAAATCATCTCT

AAAGGTGAATCTAAAGAAGAAATCACCAAAGACCCGATCAACGAACTGACCGAATACGGT

CCGGAAACC 

E-G52 protein sequence:  

G P E T I A P G H R D E F D P K L P T G E K E E V P G K P G I 

K N P E T G D V V R P P V D S V T K Y G P V K G D S I V E K E 

E I P F E K E R K F N P D L A P G T E K V T R E G Q K G E K T 

I T T P T L K N P L T G E I I S K G E S K E E I T K D P I N E 

L T E Y G P E T 

E-G52 DNA sequence: 

GGGCCCGAAACGATCGCGCCGGGTCACCGTGACGAATTTGACCCGAAACTGCCGACCGGT

GAAAAAGAAGAAGTTCCGGGTAAACCGGGTATCAAAAACCCGGAAACCGGTGACGTTGTT

CGTCCGCCGGTTGACTCTGTTACCAAATACGGTCCGGTTAAAGGTGACTCTATCGTTGAA

AAAGAAGAAATCCCGTTCGAAAAAGAACGTAAATTCAACCCGGACCTGGCGCCGGGTACC

GAAAAAGTTACCCGTGAAGGTCAGAAAGGTGAAAAAACCATCACCACCCCGACCCTGAAA

AACCCGCTGACCGGTGAAATCATCTCTAAAGGTGAATCTAAAGAAGAAATCACCAAAGAC

CCGATCAACGAACTGACCGAATACGGTCCGGAAACC 
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G52 only negative charges protein sequence:  

Y G P V M G D S I V E M E E I P F E M E M M F N P D L A P G T 

E M V T M E G Q M G E M T I T T P T L M N P L T G E I I S M G 

E S M E E I T M D P I N E L T E Y G P E T 

G52 only negative charges DNA sequence: 

TACGGTCCGGTTATGGGTGACTCTATCGTTGAAATGGAAGAAATCCCGTTCGAAATGGAA

ATGATGTTCAACCCGGACCTGGCGCCGGGTACCGAAATGGTTACCATGGAAGGTCAGATG

GGTGAAATGACCATCACCACCCCGACCCTGATGAACCCGCTGACCGGTGAAATCATCTCT

ATGGGTGAATCTATGGAAGAAATCACCATGGACCCGATCAACGAACTGACCGAATACGGT

CCGGAAACC 

E-G52 only negative charges protein sequence: 

G P E T I A P G H M D E F D P M L P T G E M E E V P G M P G I 

M N P E T G D V V M P P V D S V T M Y G P V M G D S I V E M E 

E I P F E M E M M F N P D L A P G T E M V T M E G Q M G E M T 

I T T P T L M N P L T G E I I S M G E S M E E I T M D P I N E 

L T E Y G P E T 

E-G52 only negative charges DNA sequence: 

GGGCCCGAAACGATCGCGCCGGGTCACATGGACGAATTTGACCCGATGCTGCCGACCGGT

GAAATGGAAGAAGTTCCGGGTATGCCGGGTATCATGAACCCGGAAACCGGTGACGTTGTT

ATGCCGCCGGTTGACTCTGTTACCATGTACGGTCCGGTTATGGGTGACTCTATCGTTGAA

ATGGAAGAAATCCCGTTCGAAATGGAAATGATGTTCAACCCGGACCTGGCGCCGGGTACC

GAAATGGTTACCATGGAAGGTCAGATGGGTGAAATGACCATCACCACCCCGACCCTGATG

AACCCGCTGACCGGTGAAATCATCTCTATGGGTGAATCTATGGAAGAAATCACCATGGAC

CCGATCAACGAACTGACCGAATACGGTCCGGAAACC 

 

G52 only positive charges protein sequence:  

Y G P V K G N S I V Q K Q Q I P F Q K Q R K F N P N L A P G T 

Q K V T R Q G Q K G Q K T I T T P T L K N P L T G Q I I S K G 

Q S K Q Q I T K N P I N Q L T Q Y G P Q T  
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G52 only positive charges DNA sequence: 

TACGGTCCGGTTAAAGGTAATTCTATCGTTCAAAAACAACAAATCCCGTTCCAAAAACAA

CGTAAATTCAACCCGAATCTGGCGCCGGGTACCCAAAAAGTTACCCGTCAAGGTCAGAAA

GGTCAAAAAACCATCACCACCCCGACCCTGAAAAACCCGCTGACCGGTCAAATCATCTCT

AAAGGTCAATCTAAACAACAAATCACCAAAAATCCGATCAACCAACTGACCCAATACGGT

CCGCAAACC 

E-G52 only positive charges protein sequence:  

G P Q T I A P G H R N Q F N P K L P T G Q K Q Q V P G K P G I 

K N P Q T G N V V R P P V N S V T K Y G P V K G N S I V Q K Q 

Q I P F Q K Q R K F N P N L A P G T Q K V T R Q G Q K G Q K T 

I T T P T L K N P L T G Q I I S K G Q S K Q Q I T K N P I N Q 

L T Q Y G P Q T 

E-G52 only positive charges DNA sequence: 

GGGCCCCAAACGATCGCGCCGGGTCACCGTAATCAATTTAATCCGAAACTGCCGACCGGT

CAAAAACAACAAGTTCCGGGTAAACCGGGTATCAAAAACCCGCAAACCGGTAATGTTGTT

CGTCCGCCGGTTAATTCTGTTACCAAATACGGTCCGGTTAAAGGTAATTCTATCGTTCAA

AAACAACAAATCCCGTTCCAAAAACAACGTAAATTCAACCCGAATCTGGCGCCGGGTACC

CAAAAAGTTACCCGTCAAGGTCAGAAAGGTCAAAAAACCATCACCACCCCGACCCTGAAA

AACCCGCTGACCGGTCAAATCATCTCTAAAGGTCAATCTAAACAACAAATCACCAAAAAT

CCGATCAACCAACTGACCCAATACGGTCCGCAAACC 

G52 no charges protein sequence:  

Y G P V M G N S I V Q M Q Q I P F Q M Q M M F N P N L A P G T 

Q M V T M Q G Q M G Q M T I T T P T L M N P L T G Q I I S M G 

Q S M Q Q I T M N P I N Q L T Q Y G P Q T 
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G52 no charges DNA sequence: 

TACGGTCCGGTTATGGGTAATTCTATCGTTCAAATGCAACAAATCCCGTTCCAAATGCAA

ATGATGTTCAACCCGAATCTGGCGCCGGGTACCCAAATGGTTACCATGCAAGGTCAGATG

GGTCAAATGACCATCACCACCCCGACCCTGATGAACCCGCTGACCGGTCAAATCATCTCT

ATGGGTCAATCTATGCAACAAATCACCATGAATCCGATCAACCAACTGACCCAATACGGT

CCGCAAACC 

E-G52 no charges protein sequence:  

G P Q T I A P G H M N Q F N P M L P T G Q M Q Q V P G M P G I 

M N P Q T G N V V M P P V N S V T M Y G P V M G N S I V Q M Q 

Q I P F Q M Q M M F N P N L A P G T Q M V T M Q G Q M G Q M T 

I T T P T L M N P L T G Q I I S M G Q S M Q Q I T M N P I N Q 

L T Q Y G P Q T 

E-G52 no charges DNA sequence: 

GGGCCCCAAACGATCGCGCCGGGTCACATGAATCAATTTAATCCGATGCTGCCGACCGGT

CAAATGCAACAAGTTCCGGGTATGCCGGGTATCATGAACCCGCAAACCGGTAATGTTGTT

ATGCCGCCGGTTAATTCTGTTACCATGTACGGTCCGGTTATGGGTAATTCTATCGTTCAA

ATGCAACAAATCCCGTTCCAAATGCAAATGATGTTCAACCCGAATCTGGCGCCGGGTACC

CAAATGGTTACCATGCAAGGTCAGATGGGTCAAATGACCATCACCACCCCGACCCTGATG

AACCCGCTGACCGGTCAAATCATCTCTATGGGTCAATCTATGCAACAAATCACCATGAAT

CCGATCAACCAACTGACCCAATACGGTCCGCAAACC 
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Appendix 3 - Table 1. Biophysical parameters for the coupled folding and binding of PUMA–A1. 

PUMA  Helicity %  kon (μM-1s-1) koff (s-1) x10-3 n Kd (koff/kon) (nM) ΔΔG (kcal.mol-1) Φ 

WT 20.1 5.9 ± 0.2 0.50 ± 0.02 4 0.085 ± 0.004 - - 

W133F 17.0 4.27 ± 0.04 2.03 ± 0.03 3 0.475 ± 0.008 1.02 ± 0.03 0.19 ± 0.02 

I137A 17.2 1.64 ± 0.05 6.0 ± 0.2 4 3.7 ± 0.2 2.23 ± 0.04 0.34 ± 0.01 

L141A 19.8 1.67 ± 0.01 1227 ± 8 4 735 ± 7 5.37 ± 0.03 0.139 ± 0.003 

L148A 20.1 4.90 ± 0.05 34.8 ± 0.3 3 7.10 ± 0.09 2.62 ± 0.03 0.042 ±0.008 

Y152A 28.6 5.1 ± 0.1 2.51 ± 0.03 3 0.49 ± 0.01 1.04 ± 0.03 0.08 ± 0.02 

E132A 21.0 8.8 ± 0.5 0.77 ± 0.01 4 0.088 ± 0.005 0.02 ± 0.05 - 

E132G 14.3 8.4 ± 0.2 0.86 ± 0.01 4 0.102 ± 0.003 0.09 ± 0.03 0.30 ± 0.02 

E136A 21.4 10.4 ± 0.2 0.48 ± 0.04 4 0.046 ± 0.004 -0.36 ± 0.06 - 

E136G 15.3 8.2 ± 0.2 2.38 ± 0.09 4 0.29 ± 0.01 1.09 ± 0.04 0.13 ± 0.01 

A139G 13.2 3.26 ± 0.05 1.08 ± 0.04 4 0.33 ± 0.01 0.81 ± 0.04 0.44 ± 0.02 

R143A 22.2 3.67 ± 0.04 0.88 ± 0.03 4 0.240 ± 0.008 0.62 ± 0.04 - 

R143G 15.8 3.03 ± 0.01 5.2 ± 0.2 3 1.72 ± 0.07 1.17 ± 0.04 0.097 ± 0.002 

D147A 30.2 9.4 ± 0.3 0.48 ± 0.02 4 0.051 ± 0.003 -0.92 ± 0.04 - 

D147G 15.9 6.76 ± 0.08 1.95 ± 0.05 4 0.288 ± 0.008 1.03 ± 0.04 0.2 ± 0.1 

A150G 13.3 4.84 ± 0.08 2.15 ± 0.02 4 0.444 ± 0.008 0.98 ± 0.03 0.12 ± 0.02 

R154A 20.0 4.86 ± 0.08 0.54 ± 0.02 4 0.111 ± 0.005 0.16 ± 0.04 - 

R154G 13.5 4.79 ± 0.03 0.44 ± 0.03 3 0.092 ± 0.006 -0.11 ± 0.05 -0.076 ± 0.002 

A139G (A150G) 9.7 2.78 ± 0.02 3.9 ± 0.1 4 1.40 ± 0.04 0.68 ± 0.03 0.48 ± 0.01 

A150G (A139G) 9.7 2.78 ± 0.02 3.9 ± 0.1 4 1.40 ± 0.04 0.82 ± 0.03 0.11 ± 0.01 

Percentage of helicity was calculated using the MRE at 222 nm and the method of Munoz and Serrano (1995). kon and koff were experimentally determined, and 
the associated errors represent the curve fit error and the standard error of the mean (n= number of repeats used to determine koff), respectively. Kd was 
calculated by taking the ratio between the dissociation and association rate constants, and the respective errors were propagated using standard methods. Φ 
was calculated using the kinetic rate constants and errors represent the propagated error. Table taken from Crabtree et al. 2018.  
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Table 2. Biophysical parameters for the coupled folding and binding of BID–MCL-1. 

BID  Helicity 

(CD) 

%  

kon 

(μM-1s-1) 

koff 

(s-1) 

x10-3 

n Kd 

(koff/kon) 

(nM) 

ΔΔG  

(kcal.mol-1) 

Φ 

WT 11.5 8.9 ± 0.1 3.0 ± 0.1 4 0.33 ± 0.01 - - 

I82A 10.7 9.5 ± 0.9 6.20 ± 0.07 2 0.65 ± 0.06 0.40 ± 0.06 0 ± 300 

I83A 12.0 8.6 ± 0.1 14 ± 4 4 1.7 ± 0.4 0.9 ± 0.1 0.02 ± 0.02 

I86A 9.0 4.0 ± 0.1 140 ± 14 3 35 ± 4 2.78 ± 0.08 0.172 ± 0.008 

L90A 7.5 2.1 ± 0.1 1300 ± 150 4 610 ± 80 4.50 ± 0.09 0.191 ± 0.008 

I93A 8.9 4.5 ± 0.2 430 ± 26 4 96 ± 7 3.39 ± 0.06 0.121 ± 0.008 

M97A 11.5 7.8 ± 0.3 30 ± 4 3 3.8± 0.5 1.47 ± 0.09 0.06 ± 0.02 

I101A 10.1 8.2 ± 0.1 2.5 ± 0.2 4 0.30 ± 0.03 -0.06 ± 0.07 0 ± 1 

I86A-M97A 9.0 3.5 ± 0.2 1360 ± 70 4 390 ± 30 4.23 ± 0.06 0.133 ± 0.007 

E81A 10.0 6.5 ± 0.3 3.6 ± 0.3 4 0.55 ± 0.05 - - 

E81G 7.0 4.8 ± 0.1 8 ± 2 3 1.6 ± 0.3 0.6 ± 0.1 0.27 ± 0.06 

R88A 11.3 10.0 ± 0.3 6.3 ± 0.7 3 0.6 ± 0.08 - - 

R88G 5.8 8.3 ± 0.5 15 ± 1 3 1.8 ± 0.2 0.6 ± 0.1 0.17 ± 0.06 

E96A 13.0 9.9 ± 0.8 3.8 ± 0.6 4 0.38 ± 0.07 - - 

E96G 11.5 10.9 ± 0.4 10 ± 1 4 0.9 ± 0.1 0.5 ± 0.1 -0.1 ± 0.1 

H99A 

H99G 

11.6 

13.0 

9.2 ± 0.4 

9.0 ± 0.2 

1.0 ± 0.3 

4.0 ± 0.1 

4 

4 

0.12 ± 0.03 

0.4 ± 0.1 

- 

0.8 ± 0.2 

- 

0.01 ± 0.04 

Percentage of helicity was calculated using the MRE at 222 nm and the method of Munoz and Serrano (1995). kon and koff were experimentally determined, and 
the associated errors represent the curve fit error and the standard error of the mean (n= number of repeats used to determine koff), respectively. Kd was 
calculated by taking the ratio between the dissociation and association rate constants, and the respective errors were propagated using standard methods. Φ 
was calculated using the kinetic rate constants and errors represent the propagated error. Table taken from Crabtree et al. 2018.  
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