
 

Kinetic Uncertainty Relations for the Control of Stochastic Reaction Networks

Jiawei Yan (闫嘉伟) ,1,2 Andreas Hilfinger,3,4,5 Glenn Vinnicombe,6 and Johan Paulsson1,*
1Department of Systems Biology, Harvard University, 200 Longwood Avenue, Boston, Massachusetts 02115, USA

2Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
3Department of Chemical & Physical Sciences, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
4Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada

5Department of Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
6Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom

(Received 23 February 2019; revised manuscript received 27 June 2019; published 6 September 2019)

Nonequilibrium stochastic reaction networks are commonly found in both biological and nonbiological
systems, but have remained hard to analyze because small differences in rate functions or topology can
change the dynamics drastically. Here, we conjecture exact quantitative inequalities that relate the extent of
fluctuations in connected components, for various network topologies. Specifically, we find that regardless
of how two components affect each other’s production rates, it is impossible to suppress fluctuations below
the uncontrolled equivalents for both components: one must increase its fluctuations for the other to be
suppressed. For systems in which components control each other in ringlike structures, it appears that
fluctuations can only be suppressed in one component if all other components instead increase fluctuations,
compared to the case without control. Even the general N-component system—with arbitrary connections
and parameters—must have at least one component with increased fluctuations to reduce fluctuations in
others. In connected reaction networks it thus appears impossible to reduce the statistical uncertainty in all
components, regardless of the control mechanisms or energy dissipation.
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From biochemistry to ecology, biological systems can
form stochastic interaction networks where components
present in low numbers affect each other’s production or
degradation rates. Predicting the dynamical heterogeneity
this creates is exceedingly difficult, both because most
nonlinear systems are analytically unsolvable and because
even the simplest networks, including those with just
two components, can display oscillations, multimodality,
bursting, noise suppression, and a range of other features
depending on exact parameters and connections, which
often are unknown [1–4]. However, some general rules
apply regardless of parameters and the form of rate
functions [5–12]. For example, for deterministic dynamical
systems, Bendixson’s criterion states that there are broad
classes of feedback systems that cannot display stable limit
cycles [5]. Here, we consider similar types of systems but at
the level of stochastic birth and death events rather than
deterministic continuous changes, and look for constraints
on the pattern of fluctuations that can arise.
We first ask whether feedback loops between two

components can reduce spontaneous fluctuations in both
of them, compared to systems with the same average
abundances but constant rates. That is, we consider if
there exist rate functions such that the noise suppression
can be mutual, or if one component must display significant
fluctuations in order for other components to have reduced
fluctuations. Specifically, we consider the case where

components X1 and X2 are present in integer numbers
and change in probabilistic birth and death events:

x1⟶
fðx2Þ

x1 þ b1; x1⟶
x1=τ1 x1 − 1;

x2⟶
gðx1Þ

x2 þ b2; x2⟶
x2=τ2 x2 − 1: ð1Þ

All rates are propensities, i.e., continuous-time transition
probabilities for jumps between the integer-valued states.
The τ are average lifetimes and b1 and b2 are integer birth
sizes that often equal one but could be large and randomly
distributed, e.g., when components are produced in bursts
or litters [13–16]. The reaction rates fðx2Þ, gðx1Þ are
allowed to take any functional form; i.e., the components
can arbitrarily affect each other’s production rates. This
includes oscillatory or multimodal behavior, and we only
exclude systems that cannot become statistically stationary,
e.g., due to infinite lifetimes or absorption at state
fx1; x2g ¼ f0; 0g if fð0Þ ¼ gð0Þ ¼ 0. We consider more
complex reaction topologies below, but many systems
selected to suppress noise create minimal feedback loops
to reduce information losses from stochastic signaling
events, and models of such systems have often been similar
to special cases of Eq. (1) [17,18].
Effective noise suppression generally requires fast feed-

back responses, such that the system can self-correct
existing perturbations before new ones arise. Though the
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average lifetimes of the two components cannot both be
short relative to each other, the nonlinear rate functions
could amplify even small changes in one component into
large changes in the production rate of the other [7] and
thus in some sense respond quickly to changes. Despite
that, we here conjecture that no such systems, regardless
of parameters and rate functions fðx2Þ and gðx1Þ, could
reduce stationary fluctuations in both components, com-
pared to the corresponding open-loop system where f and g
are constant, for the same averages and burst statistics. In
the absence of bursts (bi ¼ 1) this means that X1 and X2

cannot both display sub-Poisson fluctuations, which we
refer to as an inaccessible Poisson square (Fig. 1).
We first consider the stationary small noise limit at high

copy numbers [20,29] where the normalized covariance
matrix with elements Σij ¼ Covðxi; xjÞ=ðhxiihxjiÞ satisfies
the Lyapunov equation

AΣþ ΣAT þD ¼ 0: ð2Þ
Here, A is the Jacobian matrix for the dynamics of the
average abundances (normalized by their steady states)
subject to small deviations, and D is the system’s diffusion
matrix. For the class of systems defined in Eq. (1), Aii ¼
−1=τi while the off-diagonal entries are unknown param-
eters that depend on the unspecified control functions.
Because here each reaction only changes one component,
the diffusion matrix is diagonal with entries (see SM [19]):

Dii ¼
2

τi

hsii
hxii

; ð3Þ

where hsii ¼ ðhbii þ 1Þ=2 is the average jump size for
component Xi. Solving Eq. (2) for the normalized standard
deviations σ̄i ≔

ffiffiffiffiffiffi
Σii

p
, which we will colloquially refer to

as “noise” throughout this Letter, in terms of the unknown
covariance Σ12 gives

τ1σ̄
2
1

�
σ̄22−

hs2i
hx2i

�
þτ2σ̄

2
2

�
σ̄21−

hs1i
hx1i

�
¼ðτ1þτ2ÞΣ2

12: ð4Þ

Because the right hand side of Eq. (4) cannot be negative
we must have

σ̄i ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hsii=hxii

p
for at least one i; ð5Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsii=hxii

p
corresponds to the noise without control,

i.e., for constant rates. Thus, no such system could suppress
noise in both components below their uncontrolled levels.
For any finite ratio of lifetimes, the small-noise approach

further predicts that the normalized standard deviation in
X1 cannot be lower than a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ1=τ2

p
below the

noise when the rates are constant, and vice versa for X2.
In fact, when one component is arbitrarily short lived,
so that there can be no limit on noise suppression in the
other component, the fast component equilibrates to condi-
tional Poisson distributions for each value of the slow
component, even for nonlinear functions f and g. The law
of total variance—without small-noise approximations—
then states (see SM [19]) that Eq. (5) must again hold.
Thus, the conjecture holds asymptotically both in the high
abundance limits regardless of timescales and for separated
timescales regardless of abundances. For intermediate and

(a) (b) (c)

FIG. 1. Trade-off for mutual control systems. (a) We consider the following generic class of mutual control systems: each component
is assumed to decay with some (unspecified) half-life but the way in which the two components affect each other’s production rates Rþ

i is
left completely unspecified, see Eq. (1). (b) Analytical results suggest that no such control system can simultaneously suppress noise in
both components below their respective Poisson fluctuations (denoted by 100% in the diagram). We find numerically that the bounds
derived in the high copy number regime (red lines) in fact constrain all tested systems (black dots) regardless of noise levels and copy
numbers. This numerical confirmation suggests that no mutual control system—regardless of chosen control functions or parameters—
can simultaneously exhibit sub-Poisson fluctuations in both components as indicated by the lack of data points in the lower left. (c) Here,
we present the analytical bounds (colored lines) of Eq. (4) for different lifetimes together with exact numerical realizations of systems
with nonlinear control systems (dots). The colors correspond to fixed relative lifetimes, and each dot corresponds to a different system
with a different set of control functions and parameters [see Supplemental Material (SM) for numerical details [19] ]. For each ratio of
relative lifetimes none of the tested systems beat the limit of Eq. (4).
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low abundances without timescale separation, the exact
analytic methods previously developed to identify bounds
on stochastic reaction systems [6,7,9] were not helpful for
this system. We therefore performed systematic numerical
explorations.
First, we used the exact Gillespie algorithm [21] to

realize the system in Eq. (1), using a wide range of
functions fðx2Þ, gðx1Þ, and parameters τi, including com-
binations of sharp and damped functions, ratios of poly-
nomials, exponential functions, etc. (see SM [19]). For all
ratios of lifetimes τ1=τ2, some systems could get extremely
close to the bounds in Eq. (4) but we found none that
violate them, suggesting that the inequality is tight and a
real physical limit on the system for all nonlinear functions
[see Fig. 1(c)]. However, it is only possible to sample a
subset of possible functions fðx2Þ and gðx1Þ, as these lie on
an infinite-dimensional Hilbert space. We therefore also
systematically explored systems in the low copy number
regime with less than five or less than ten copies of each
type, i.e., with only five or ten values of fðx2Þ and gðx1Þ,
respectively. This allows us to more densely sample the
space of possible functions (see SM [19]). We considered
106 reaction systems of each type, using many different
types of functions, including nonmonotonic ones and
randomly generated values. Again, many examples get
exceedingly close to the predicted bound but none break it.
Though short of an exact and general proof, this combi-
nation of analytical limits and systematic numerical explo-
rations supports the conjecture of a hard trade-off for all
systems in which two components directly control each
other. Nonstationary systems can of course start inside the
Poisson square, but that would only reflect the choice of
initial conditions, not an ability to suppress noise. The
physically more relevant question is whether a system
moving from one stationary state to another—due to some
change in parameters or rate functions—could temporarily
move through the Poisson square. This is indeed possible
for some special types of systems, but we could only find
very minor violations through the upper right corner of
the Poisson square (see SM [19]), potentially suggesting
bounds even on nonstationary dynamics.
Next, we investigate if these principles generalize to

multicomponent systems. First, we consider feedback loops
in which the components control each other in a ringlike
structure [Fig. 2(a)] where the reactions of component Xi
for i ¼ 2;…; N are given by

xi⟶
riðxi−1Þ

xi þ bi; xi⟶
xi=τi xi − 1; ð6Þ

and X1 has production rate r1ðxNÞ and decay rate x1=τ1.
This describes systems in which feedback acts indirectly,
through a cascade of reactions. The same combination of
approaches as above suggests that in any N-component
feedback ring structure as defined in Eq. (6), only a single
component can exhibit fluctuations below Poisson noise

[Fig. 2(b)], and that any pair of components Xi, Xj are
constrained by

1

τi

�
σ̄iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsii=hxii

p
�

−2
þ 1

τj

�
σ̄jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsji=hxji

p
�

−2
≤
1

τi
þ 1

τj
: ð7Þ

For N ¼ 3 this follows from the Lyapunov approach above
Eq. (2) in the high copy number limit. The corresponding A
matrix then has the following structure:

A ¼

2
64
−1=τ1 0 A13

A21 −1=τ2 0

0 A32 −1=τ3

3
75; ð8Þ

where A12, A32, and A13 again depend on the unspecified
control functions. For stability, all eigenvalues of A should
have negative real parts, in which case a unique positive
definite solution of Eq. (2) exists [22]. Solving Eq. (2) is
then inconclusive with respect to showing Eq. (7), since the
stability criterion cannot be directly applied. Therefore,
instead of solving Eq. (2) for all (co)variances, we looked
for a symmetric matrix ψ satisfying the following two
conditions:

X4X1

X6 X5

X2 X3

(a) (b)

Noise in :X1

N
oi

se
 in

 
:

X 3

Noise in :X2

FIG. 2. Trade-offs between pairs of components within a
feedback ring. Two-component mutual control systems can be
generalized to a multicomponent control feedback loop in which
N components affect the production rate of the next component
within a ring as defined by Eq. (6). (a) Schematic illustration of a
ringlike connection feedback loop for N ¼ 6. (b) Numerical
support that feedback rings can only suppress noise in at most one
component. Considering stochastic realizations of control sys-
tems within the class defined by Eq. (6) for N ¼ 3 we find
numerically that the bounds derived in the high copy number
regime constrained all systems regardless of noise levels and
copy numbers. Each dot corresponds to the numerical data for a
given system with a specified set of control functions and
parameters (see SM for numerical details [19]). We find numeri-
cal confirmation that no three-component feedback ring can
suppress fluctuations in more than one component. Note, that
lower-dimensional feedback loops are special cases of the higher-
dimensional ones in which some components are infinitely fast
with τi → 0. (See Movie S1 in the SM [19].)
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tr½ψðAΣþ ΣATÞ� ¼ A11 þ A22; ð9Þ

ψ11 ≥ 1=Σ11; ψ22 ≥ 1=Σ22; ψ33 ≥ 0: ð10Þ

If such a ψ exists, the bound Eq. (7) can be shown to follow
for i, j ¼ 1, 2, and by symmetry the same inequality would
exist for all i ≠ j. For matrices with the structure of Eq. (8)
we can show that such ψ indeed exists uniquely (see SM
[19]). Then left multiplying by ψ in Eq. (2) and taking
the trace—with the same diagonal diffusion matrix D
as in Eq. (3)—we have Eq. (7) for i, j ¼ 1, 2. However,
this approach does not work for N ≥ 4 since ψ then is not
uniquely determined, but for such higher N the conclusion
is still supported by a similar systematic numerical
approach as above. All components except one would
then become sacrificial components to reduce noise in a
chosen one.
Next, we consider systems in which N components

control each other’s production rates in arbitrary topologies
as illustrated in Fig. 3(a) and defined by

xi⟶
riðfxj∶j≠igÞ

xi þ bi; xi⟶
xi=τi xi − 1: ð11Þ

The production rate of each component is allowed to be
an arbitrary function of all other components and the

degradation of component number i is assumed to be a
first-order reaction with a half-life τi as above. Because it is
rare that components directly affect their own production
rates, as opposed to using chemical intermediates, this
should apply to a large number of systems. We then
combine the trace

tr½Σ−1ðAΣþ ΣAT þDÞ� ¼ 0 ð12Þ

with the general constraint that Σ must always be positive
semidefinite so ðΣ−1Þii ≥ 1=Σii (see SM [19]). Then since
tr½Σ−1D� ¼ P

i DiiðΣ−1Þii ≥
P

i Dii=Σii, we obtain

XN
i¼1

1

τi

�
σ̄iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsii=hxii

p
�

−2
≤
XN
i¼1

1

τi
: ð13Þ

This result for the high copy number limit, which again is
supported by systematic numerical explorations at low
copy numbers, generalizes the Poisson square into an N-
dimensional Poisson hypercube, meaning that at least one
component must display larger fluctuations than Poisson
in the absence of control [Fig. 3(b)]. While the general
feedback topology can improve noise suppression com-
pared to rings, it thus seems impossible to suppress noise in
all components, regardless of topology. As above, the result
also generalizes to production in distributed bursts.
Similar results appear to apply more broadly. For the

arbitrary case in which any component can affect
the production or degradation rates of all components
including their own

xi⟶
rþi ðx1;…;xNÞ

xi þ bi; xi⟶
r−i ðx1;…;xNÞ

xi − 1: ð14Þ

we find [19] that

XN
i¼1

1

τi

�
σ̄iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsii=hxii

p
�

−2
≤
XN
i¼1

Hi

τi
; ð15Þ

where Hi ¼ ∂ lnðr−i =rþi Þ=∂ lnðxiÞ are constants that
describe how component Xi controls its own production
or degradation rates directly [20]. For example, if one
component is produced with rate ∼xmi and degraded with
rate ∼xni , then Hi ¼ n −m. For all systems in which the
linearized system is stable, the stability criterion implies
that the right hand side in Eq. (15) is positive. Thus, for any
given level of self-control in such systems, there is again a
limit on the noise suppression that can be achieved for all
components. To our knowledge, the most common reasons
for H ≠ 1 is self-replication or autocatalysis, where the
production rate increases with x and the corresponding H
value therefore is closer to zero, or saturated enzymatic
degradation, where the death rate per molecule decreases
with x and the H value again is closer to zero. Those
mechanisms make it even harder to suppress noise. For

(b)(a)

FIG. 3. Trade-off in N-component control networks. Here, we
consider N-component control structures of arbitrary topology
where each component is allowed to affect any other component’s
production rate (but not its own) as defined in Eq. (11).
(a) Schematic illustration of a maximally connected control
network for N ¼ 6. Since we leave all reaction rates unspecified
(here and throughout the Letter) any specific realization of this
class may have rates that depend on only a subset of the other
components and may thus be much more sparsely connected than
the above illustration—in particular, the ringlike feedback sys-
tems of Fig. 2 are a subset of the more general class considered
here. (b) Here, we present numerical support for the constraint of
Eq. (13) in the N ¼ 3 case. We generated an extensive set of
numerical realizations of arbitrarily nonlinear three-component
feedback systems with arbitrary lifetimes and abundances. Again,
we could not find any system that violated the bound derived in
the high copy number limit, and conclude that the “Poisson cube”
is inaccessible by any three component feedback systems.
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autodimerization, where two monomers form a dimer and
the degradation rate is approximately proportional to x2, the
H can double from 1 to 2. However, even this mechanism
would only marginally reduce the noise, both because the
change in H is moderate and because two molecules are
now eliminated in the same reaction, which increases the
diffusion terms in D. Thus, we believe the principle that
chemical reaction networks require some components to
fluctuate significantly applies quite broadly.
So far we assumed that each reaction changes abundan-

ces in integer steps, and only for one component at a time,
as, e.g., transcription or translation events change either the
number of messenger RNA or protein, respectively, but not
both simultaneously. However, similar results can be
derived for reaction systems where the reactions change
more than one kind of component, such as systems with
complex formation or conversion reactions. The diffusion
matrix D then has nonzero off-diagonal entries and the
relation tr½Σ−1D� ¼ P

i DiiðΣ−1Þii behind Eq. (13) no
longer holds. However, for stable systems where all
Hi > 0, the relative noise suppression compared to the
noninteracting system is still bounded by the quadrant of a
hypersphere:

XN
i¼1

�
σ̄iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsii=ðHihxiiÞ

p
�

2

≥ 1; ð16Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsii=ðHihxiiÞ

p
is the noise of the noninteracting

system. For example, adding a coproduction event to our
initial example for X1 and X2 in Eq. (1), e.g.,
fx1; x2g → fx1 þ 1; x2 þ 1g, would shrink the inaccessible
region from the Poisson square of Eq. (15) into a quadrant
of a circle with unit radius (see SM for details [19]).
An intuitive reason is that when feedback acts via a low-
copy component, intrinsic noise in that component makes
control less reliable. With stoichiometrically coupled pro-
duction reactions, such signaling noise is reduced, but only
to some extent.
Summary.—Recent studies have identified many impor-

tant constraints on the behavior of stochastic systems in
terms of energy-related properties, such as entropy produc-
tion, etc., [8–10,30–33]. However, many processes in
biology are so strongly driven that energetic constraints
cannot easily be invoked. For example, protein degradation
is not protein synthesis in reverse, but a separate energy-
consuming process. Those processes can still be subject to
other types of constraints though [6,34], e.g., determined
by the topology of the reaction network or individual
reaction steps that cause a loss of information transfer.
Indeed, when we apply our approach to systems that are
close to thermodynamic equilibriumwe identify very severe
bounds (see SM for details [19]), but regardless of energy
dissipation we also demonstrate broad trade-offs between
fluctuations in different components of stochastic reaction

networks, set only bynetwork topology. Specificallywe find
that molecular networks may require “sacrificial” compo-
nents with large noise to ensure that others function
precisely, which in turn may help explain why cells have
so many dedicated control molecules and why so many of
them appear to fluctuate substantially [17]. Our systematic
numerical explorations further suggest that the analytical
asymptotic limits identify bounds that are both exact and
tight for all parameters and rate functions. Together with the
observation that numerous such bounds exist for different
topologies, this may suggest the existence of more general
rules for stochastic reaction networks far from equilibrium,
which perhaps could be collectively captured by a different
perspective from what we can provide.
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