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Genome-wide association and epidemiological
analyses reveal common genetic origins between
uterine leiomyomata and endometriosis
C.S. Gallagher et al.#

Uterine leiomyomata (UL) are the most common neoplasms of the female reproductive tract

and primary cause for hysterectomy, leading to considerable morbidity and high economic

burden. Here we conduct a GWAS meta-analysis in 35,474 cases and 267,505 female

controls of European ancestry, identifying eight novel genome-wide significant (P < 5 × 10−8)

loci, in addition to confirming 21 previously reported loci, including multiple independent

signals at 10 loci. Phenotypic stratification of UL by heavy menstrual bleeding in 3409 cases

and 199,171 female controls reveals genome-wide significant associations at three of the 29

UL loci: 5p15.33 (TERT), 5q35.2 (FGFR4) and 11q22.3 (ATM). Four loci identified in the meta-

analysis are also associated with endometriosis risk; an epidemiological meta-analysis across

402,868 women suggests at least a doubling of risk for UL diagnosis among those with a

history of endometriosis. These findings increase our understanding of genetic contribution

and biology underlying UL development, and suggest overlapping genetic origins with

endometriosis.
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Uterine leiomyomata (UL), also known as uterine
fibroids, are hormone-driven tumors with an estimated
prevalence ranging from 20–77%1,2. Although the

majority of UL are asymptomatic, about 25% of women with UL
are symptomatic, and may experience heavy menstrual bleeding
(HMB), abdominal pain, infertility, and increased risk of mis-
carriage3. Currently, the only essentially curative treatment is
uterine extirpation via total hysterectomy. Known risk factors for
UL include increasing age up to menopause, ethnicity (particu-
larly African ancestry), family history of UL, nulliparity, and
increased body mass index (BMI)4. Studies of familial aggregation
and twins, as well as racial differences in prevalence and mor-
bidity, suggest heritable factors influence risk for developing
UL5–10. Recent GWAS have identified 26 loci significantly asso-
ciated (P < 5 × 10−8) with UL: 10q24.33, 11p15.5, and 22q13.1 in
Japanese women11, 25 loci in white women of European ances-
try12–15, including the three previously identified loci in Japanese
women, and a distinct region at 22q13.1 in African American
women16.

To define further the genetic architecture of UL, we perform a
discovery meta-analysis of GWAS on UL across a total of 35,474
cases and 267,505 female controls of white European ancestry,
which more than doubles the case sample size of previously
reported GWAS11,12,14–16. The meta-analysis identifies eight
novel loci significantly associated with UL (P < 5 × 10−8) and
confirms 21 previously reported European risk loci. Interestingly,
HMB-limited UL GWAS reveals three of the 29 independent loci
to be significantly associated with the co-occurrence of UL and
HMB. Four loci identified in the meta-analysis are also reported
to be associated with risk for endometriosis, which together with
an epidemiological meta-analysis indicating an association
between endometriosis and diagnosis of UL suggest overlapping
genetic origins between the two highly common gynecologic
diseases.

Results
UL GWAS meta-analysis. Our discovery meta-analysis of GWAS
on UL includes four population-based cohorts and one direct-to-
consumer cohort of white European ancestry: Women’s Genome
Health Study (WGHS), Northern Finnish Birth Cohort (NFBC),
QIMR Berghofer Medical Research Institute (QIMR), UK Biobank
(UKBB), and 23andMe (Supplementary Methods, Supplementary
Table 1). Imputation of genotypes was carried out using 1000
Genomes Project Phase 3 and Haplotype Reference Consortium
(HRC) reference panels. UL phenotype in each cohort was ana-
lyzed in a logistic regression or linear mixed model assuming
additive genetic effects with multivariate adjustment for age, BMI,
and/or correction for population structure. After quality control
metrics were applied, including exclusion of non-informative
(MAF < 0.01) and poorly imputed (r2 < 0.4) SNPs, we performed a
fixed-effects, inverse-variance-weighted (IVW) meta-analysis
across 35,474 cases with a clinical or self-reported history of UL
and 267,505 unaffected female controls. Altogether 8,662,096
biallelic SNPs were analyzed and adjustments for genomic infla-
tion performed (Supplementary Fig. 1, Supplementary Table 2).
Through linkage disequilibrium score (LDSC) regression analysis,
an estimated 89.5% of the genomic inflation factor (λGC) of 1.12
was attributable to polygenic heritability (intercept= 1.02, s.e.=
0.0081). Overall, individual SNP-based heritability (h2) was esti-
mated to be 0.0281 (s.e.= 0.0029) on the liability scale.

Risk loci associated with UL. We observe genome-wide sig-
nificant associations (P < 5 × 10−8) at 2505 SNPs across 29
independent loci (Table 1, Supplementary Fig. 2, Supplementary
Table 3). The Manhattan plot is shown in Fig. 1. We identify eight

novel loci associated with UL (2p23.2, 4q22.3, 6p21.31, 7q31.2,
10p11.22, 11p14.1, 12q15, and 12q24.31), which include the fol-
lowing candidate genes of interest: HMGA1, BABAM2, and
WNT2. HMGA1 is a member of the high mobility group proteins
and is involved in regulation of gene transcription17. Somatic
rearrangements of HMGA1 at 6p21 have been recurrently
documented in UL, albeit at a much lower frequency than those
of HMGA2—another member of the high mobility group protein
family18–20. BABAM2 at 2p23.2 encodes a death receptor-
associating intracellular protein that promotes tumor growth by
suppressing apoptosis21. Associations at 7q31.2 containing
WNT2, a member of the Wnt gene family, provide support for the
previously suggested role of Wnt signaling in UL22,23.

Among 29 independent loci are 21 loci previously reported to
be significantly associated with UL11–16. A number of identified
loci harbor genes previously implicated in cell growth and cancer
risk in different tissue types, including cervical cancer24, epithelial
ovarian cancer25,26, breast cancer27,28, glioma29,30, bladder
cancer31, and pancreatic cancer32–34. Specifically, seven indepen-
dent loci contain well-characterized oncogenes and tumor
suppressor genes from the Cancer Gene Census list in
COSMIC35: PDGFRA, TERT, ESR1, WT1, ATM, FOXO1, and
TP53.

Using approximate conditional analysis, we identify multiple
distinct association signals for UL at 10 loci (at locus-wide
significance, P < 1 × 10−5, Bonferroni correction) (Supplementary
Table 4). Fine-mapping was conducted on all 43 distinct
association signals arising from the 29 detected UL loci, revealing
three association signals with a single variant in the 99% credible
set (Fig. 2, Supplementary Table 5). The missense variant at
20p12.3 (rs16991615; E341K) maps to MCM8, a gene that
encodes a protein involved in DNA double-strand break repair36.
MCM8 has also been implicated in length of reproductive
lifespan, menopause, and premature ovarian failure37,38. Another
variant (rs78378222) resides in the 3’UTR of TP53 at 17p13.1,
and has been shown to disturb 3’-end processing of TP53
mRNA39. This variant has been associated with both malignant
and benign tumor types39–41.

UL GWAS limited by HMB. HMB, one of the major symptoms
of UL, is estimated to affect up to 30% of reproductive-aged
women, having a considerable impact on a woman’s quality of
life. Thus, variants specifically associated with this symptom are
of particular interest for drug target development. We performed
a GWAS on UL limited by HMB using a linear mixed model
across 3409 cases and 199,171 unaffected female controls from
the UKBB (Supplementary Methods, Supplementary Fig. 3). We
observe genome-wide significant associations (P < 5 × 10−8) at
three of the 29 independent UL loci: 5p15.33 (rs72709458, OR
[95% CI]= 0.86 [0.81–0.91], P= 3.50 × 10−8), 5q35.2
(rs2456181, OR [95% CI]= 0.87 [0.83–0.91], P= 4.20 × 10−10),
and 11q22.3 (rs1800057, OR [95% CI]= 0.66 [0.58–0.76], P=
2.80 x 10−9) (Fig. 3, Supplementary Fig. 4, Supplementary
Table 6). The lead SNP at 11q22.3, a missense variant in ATM,
has been associated with increased risk of various cancers, such as
breast cancer42,43, while the lead SNP at 5p15.33, an intronic
TERT variant, has previously been implicated in gliomas44. The
lead SNP rs2456181 at 5q35.2 resides near FGFR4, a gene
encoding a cell-surface receptor for fibroblast growth factors
involved in regulation of several pathways, including cell pro-
liferation, differentiation, and migration.

HMB GWAS. A GWAS based solely on HMB across 9813 cases
and 210,946 female controls reveals one genome-wide significant
association at 11p14.1, one of the eight novel loci associated with
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UL (Supplementary Figs. 5 and 6). The lead SNPs for UL and
HMB at 11p14.1 are in high LD, and the direction of the effect is
the same (Supplementary Fig. 7). This locus has previously been
associated with endometriosis, age at menarche, and follicle-sti-
mulating/luteinizing hormone levels45–47. According to GTEx

(v7), the lead SNP for HMB (rs11031005) is a potential expression
quantitative trait locus (eQTL) for ARL14EP in several tissue
types, such as testis and thyroid. Mendelian randomization (MR)
was used to assess the causality of genetic association between UL
(exposure) and HMB (outcome). Interestingly, MR reveals that

Table 1 Overview of lead SNPs with significant associations at 29 independent loci in UL GWAS meta-analysis

Locus Lead SNP RA OA RAFEUR PMeta OR (95% CI) Gene(s) of interesta

1p36.12b,c rs7412010 C G 0.15 2.4 × 10−29 1.13 (1.11–1.16) WNT4, CDC42
2p23.2 rs55819434 A G 0.91 5.6 × 10−09 1.09 (1.06–1.12) BABAM2
2p25.1b,c rs35417544 T C 0.69 2.3 × 10−19 1.09 (1.07–1.10) GREB1
3q26.2c rs35446936 A G 0.24 1.0 × 10−08 1.06 (1.04–1.08) TERC
4q12c rs62323682 T C 0.94 4.9 × 10−18 1.15 (1.12–1.19) LNX1, PDGFRA
4q13.3c rs12640488 A G 0.52 4.0 × 10−14 1.06 (1.05–1.08) SULT1B1
4q22.3 rs4699299 T C 0.69 4.7 × 10−08 1.05 (1.03–1.07) PDLIM5
5p15.33c rs72709458 T C 0.23 4.7 × 10−21 1.10 (1.08–1.13) TERT
5q35.2c rs2456181 C G 0.49 1.1 × 10−11 1.06 (1.04–1.08) ZNF346, UIMC1
6p21.31 rs116251328 A T 0.02 3.0 × 10−08 1.15 (1.09–1.21) GRM4, HMGA1
6q25.2b,c rs58415480 C G 0.84 1.9 × 10−54 1.19 (1.17–1.22) SYNE1, ESR1
7q31.2 rs2270206 A C 0.16 4.6 × 10−08 1.06 (1.04–1.09) WNT2
9p24.3c rs10976689 A G 0.60 2.4 × 10−13 1.06 (1.05–1.08) ANKRD15
10q24.3c rs9419958 T C 0.13 1.1 × 10−16 1.10 (1.08–1.13) OBFC1, SLK
10p11.22 rs10508765 A G 0.80 1.5 × 10−10 1.07 (1.05–1.09) ZEB1, ARHGAP12
11p15.5c rs547025 T C 0.92 1.5 × 10−14 1.13 (1.09–1.16) RIC8A, BET1L
11p14.1b rs11031006 A G 0.14 5.7 × 10−15 1.10 (1.07–1.12) FSHB
11p13c rs61889186 C G 0.86 1.4 × 10−25 1.12 (1.10–1.15) WT1
11p13c rs2785202 C G 0.55 6.9 × 10−14 1.06 (1.05–1.08) PDHX, CD44
11q22.3c rs149934734 T C 0.03 1.1 × 10−27 1.33 (1.26–1.40) C11orf65, KDELC2
12q13.11c rs2131371 A C 0.28 1.6 × 10−18 1.08 (1.06–1.10) SLC38A2
12q15 rs11178393 T C 0.89 3.3 × 10−08 1.08 (1.05–1.10) PTPRR
12q24.31 rs28583837 A G 0.22 2.3 × 10−08 1.06 (1.04–1.08) PITPNM2
13q14.11c rs117245733 A G 0.02 5.7 × 10−14 1.31 (1.21–1.39) FOXO1
17p13.1c rs78378222 T G 0.99 7.1 × 10−31 1.54 (1.43–1.66) SHBG, TP53
20p12.3c rs16991615 A G 0.07 8.8 × 10−10 1.11 (1.07–1.14) MCM8, TRMT6
22q13.1c rs4821939 A T 0.20 7.8 × 10−16 1.08 (1.06–1.10) TNRC6B
Xp26.2c rs12392108 A T 0.31 5.9 × 10−46 1.13 (1.11–1.15) RAP2C
Xq13.1c rs4360450 A G 0.37 2.1 × 10−18 1.08 (1.06–1.10) MED12

SNP single-nucleotide polymorphism, RA risk allele, OA other allele, RAFEUR average risk allele frequency in European samples, OR odds ratio
a≤300 kb distant from association signal
bLoci previously associated with endometriosis
cLoci previously associated with UL
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Fig. 1 Manhattan plot for UL GWAS meta-analysis across all cohorts. Meta-analysis of GWAS including 302,979 women of white European ancestry
across all cohorts identified 29 independent loci associated with UL. Red and blue horizontal lines indicate genome-wide significant (P < 5 × 10−8) and
suggestive (P < 1 × 10−5) thresholds, respectively
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genetic predisposition to UL is causally linked to an increased risk
of HMB, with the β estimate of 0.26 being significant in the IVW
model (P= 1.2 × 10−12) in the absence of heterogeneity (P= 0.13)
(Supplementary Table 7). The MR Egger regression shows no
significant directional pleiotropy (intercept= 0.01, P= 0.36)
supporting a causal relationship.

Overlap of UL and endometriosis. Interestingly, significant
association signals are observed at several loci previously asso-
ciated with endometriosis: 1p36.12 (rs7412010, OR [95% CI]=
1.13 [1.11–1.16], P= 2.43 × 10−29), 2p25.1 (rs35417544, OR
[95% CI]= 1.09 [1.07–1.10], P= 2.32 × 10−19), 6q25.2
(rs58415480, OR [95% CI]= 1.19 [1.17–1.22], P= 1.86 × 10−54),
and 11p14.1 (rs11031006, OR [95% CI]= 1.10 [1.07–1.12], P=
5.65 × 10−15)45,48–50. LD is strong between UL and previously
reported endometriosis lead SNPs45 at all except one locus, 2p25.1
(Supplementary Table 8). In addition, the direction of effect is
the same between the lead SNPs at 1p36.12. Using LDSC regres-
sion, we observe a moderate genetic correlation between UL
and endometriosis in women with European ancestry (rg=0.39,

s.e= 0.05, P= 9.77 × 10−13). Endometriosis has an earlier age-of-
onset than UL, with a mean age of 25–29 years and 35 years,
respectively. MR suggests that genetic predisposition to endome-
triosis (exposure) is causally linked to an increased risk of UL
(outcome); the β of 0.36 is significant (P= 3.7 × 10−3) in the IVW
model (heterogeneity P= 9.5 × 10−68) (Supplementary Table 7).
Leave-one-out sensitivity analysis reveals that no single SNP alone
drives the significant relationship between endometriosis and UL,
but instead the relationship is accounted for by contributions from
multiple variants across the genome (Supplementary Fig. 8). Given
the high degree of heterogeneity, the effect sizes were estimated in
a minimal set of SNPs that when used as a genetic instrument
eliminate the heterogeneity (Supplementary Fig. 9). The effect size
estimate (β= 0.12) from the minimal set of variants remains
significant (P= 4.3 × 10−3) in the IVW model in the absence of
heterogeneity (P= 0.23). We also applied the MR pleiotropy
residual sum and outlier (MR-PRESSO) global and distortion tests
to adjust for variants causing significant bias in the estimates
through horizontal pleiotropy. Outlier-adjusted estimates still
provide significant evidence for a causal estimate of endometriosis
on UL (β= 0.29, P= 0.002) (Supplementary Table 7).
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Endometriosis, defined by ectopic growth of endometrial-like
tissue outside the uterus, is a common inflammatory hormone-
dependent disease that affects reproductive-aged women51.
Although functional studies of relevant tissue are needed to
confirm consequences of the variants in regulation of gene
expression, each of the four observed overlapping genomic loci
contains a gene(s) known to be involved in progesterone or
estrogen signaling. WNT4 at 1p36.12 encodes a secreted signaling
factor that promotes female sex development, and regulates both
postnatal uterine development and progesterone signaling during
decidualization52,53. Recently, SNPs at 1p36.12 associated with a
greater endometriosis risk have been suggested to act through
CDC42, a gene that encodes a small GTPase of the Rho family54.
GREB1 at 2p25.1 is an early response gene in the estrogen
receptor (ER)-regulated pathway, and promotes growth of breast
and pancreatic cancer cells55,56. ESR1 at 6q25.2 encodes the alpha
subunit of the ligand-activated nuclear ER that regulates cell
proliferation in the uterus57. FSHB at 11p14.1 encodes the
biologically active subunit of follicle-stimulating hormone, which
regulates maturation of ovarian follicles and release of ova during
menstruation58,59.

Epidemiological meta-analysis. Given shared risk loci and
genetic correlation of UL and endometriosis, we conducted an
epidemiological meta-analysis including 402,868 women from
three population-based cohorts: Nurses’ Health Study II (NHSII),
Women’s Health Study (WHS), and UKBB (Supplementary
Methods, Supplementary Table 9), to assess the likelihood of UL
diagnosis among women who had or had not been diagnosed
with endometriosis. Women with endometriosis had a sig-
nificantly higher likelihood of UL diagnosis (multivariable-
adjusted summary relative risk (RR) [95% CI]= 2.17 [1.48–3.19])
(Fig. 4). All cohort-specific analyses demonstrated at least a
doubling of risk, suggesting a robust association (Table 2).
However, biologically and statistically significant heterogeneity
was observed in the pooling of effect size estimates in the meta-
analysis (P < 1 × 10−4) (Fig. 4). Therefore, absolute effect esti-
mates need to be interpreted in the context of source populations.
Heterogeneity could reflect various different population sampling
and data collection factors among the three cohorts. First, the
validity of self-reported diagnosis of endometriosis and to a lesser
extent UL are known to be <75% in general population cohorts,

such as UKBB, compared to more highly validated self-
assessment in the medical professional NHSII and WHS
cohorts7. Second, endometriosis clinical definitions prior to the
1990s were more restrictive—often limited to the presence of
endometrioma and/or “powderburn” superficial peritoneal
lesions among adult women60. Subsequently, definitions have
expanded to recognize a wide range of superficial peritoneal
phenotypic presentations, as well as incidence among adolescents
and young women61. It may be impactful therefore that the WHS
participants were ≥ 45 years of age in 1992, while NHSII parti-
cipants were ≥ 25 years of age in 1989, and UKBB participants
were aged 40 to 69 in 2006. Thus, disease definitions varied
during the peak calendar years of incidence among the cohorts,
and in addition, while the NHSII were queried about endome-
triosis prospectively during their reproductive years, the WHS
and UKBB cohorts were cross-sectionally asked to recall their
gynecologic health experience decades earlier. It is also important
to note that while WHS and NHSII participants were asked
specifically about endometriosis diagnosis via questionnaire, the
UKBB data collection included qualitative interviews during
which endometriosis would be documented only when the par-
ticipant herself raised it as a health issue. Those with mild
symptoms or those past their reproductive years and thus past the
moderate to severe life-impacting symptoms of the disease may
have been less likely to offer endometriosis among the list of their
health issues. This is supported by the low prevalence of endo-
metriosis reported within the UKBB compared to WHS, NHSII,
and other population-based estimates62. However, the UKBB
participants (due to the qualitative interview structure and recall
bias) and the WHS participants (due to recall bias) could have
been more likely to choose to report endometriosis if they also
suffered from UL together, resulting in diagnostic bias and con-
sequently an inflation of effect estimates. Indeed, the population
heterogeneity and differing potential for diagnostic bias by cohort
fits with the observed differences among effect estimate magni-
tudes with the RRs and CI widths ordered from NHSII (RR=
1.56) to WHS (RR= 1.96) to UKBB (RR= 3.50) (Fig. 4).

Bioinformatic analyses of UL risk SNPs and loci. To estimate
the genetic correlation between UL and various reproductive
traits, as well as cardiometabolic traits/diseases, we performed LD
Hub analysis for a total of 21 traits/diseases (Supplementary
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Fig. 4 Epidemiologic meta-analysis demonstrates endometriosis is associated with UL. Random-effects, inverse-variance-weighted meta-analysis was
performed across the effect sizes and standard errors in 402,868 women from three cohorts (NHSII, WHS, and UKBB). Squares represent point estimates
from individual studies, whiskers correspond to the 95% CIs, and the diamond represents results from the meta-analysis. There was evidence of significant
heterogeneity based on Cochran’s Q statistic (P < 1 × 10−4)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12536-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4857 | https://doi.org/10.1038/s41467-019-12536-4 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Data 1). We observe significant correlations between increased
risk of UL and earlier age of menarche (rg=−0.16, P= 3.7 ×
10−6), earlier age of first birth (rg=−0.14, P= 1.0 × 10−3),
increased levels of triglycerides (rg= 0.13, P= 1.9 × 10−3), and
increased BMI (rg= 0.11, P= 2.0 × 10−3), as previously suggested
by epidemiological studies63,64, illustrating that common genetic
factors can predispose women to both risk factors related to, for
example, adverse metabolic and cardiovascular disease risk and
UL. Gene-set and tissue enrichment analyses across 8971 SNPs
with suggestive (P < 1 × 10−5) or significant (P < 5 × 10−8) UL
associations using DEPICT65 reveal enrichments (false discovery
rate (FDR) < 0.05) in gene sets, such as steroid hormone receptor
(GO:0035258; P= 1.03 × 10−5), hormone receptor binding
(GO:0051427; P= 9.07 × 10−5), and nuclear hormone receptor
binding (GO:0035257; P= 1.53 × 10−4) (Supplementary Data 2
and 3). The results are concordant with the hormone-driven
nature of UL. We did not observe any cell/tissue types sig-
nificantly enriched for the expression of the genes in the asso-
ciated loci (Supplementary Fig. 10). To identify potential causal
genes at UL risk loci, we used a summary-data based MR (SMR)
method, including both eQTL and mQTL data from peripheral
blood66,67. We identify 18 potential causal genes showing no
significant heterogeneity in SMR (PHEIDI > 5 × 10−3), including
WNT4 (rs55938609, PSMR= 6.92 × 10−15), GREB1 (rs35417544,
PSMR= 3.93 × 10−19), WT1 (rs12280757, PSMR= 1.87 × 10−18),
and FOXO1 (rs3924478, PSMR= 5.76 × 10−10) (Supplementary
Data 4 and 5).

FOXO1 expression in UL. To explore potential functional sig-
nificance, we examined expression of the FOXO1 protein, a
transcription factor that plays an important role in cell pro-
liferation, apoptosis, DNA repair, and stress response68. Inter-
estingly, inactivation of FOXO1 promotes cell proliferation and
tumorigenesis in several hormone-regulated malignancies, such
as prostate, breast, cervical, and endometrial cancers69–72. Con-
versely, we observe a significant increase in nuclear FOXO1
protein expression in UL compared to myometrial samples using
immunohistochemistry on tissue microarrays (Supplementary
Fig. 11). Patient-matched tumor-normal pairs show 1.69-fold
higher (P= 0.01; paired t-test) nuclear FOXO1 expression in UL,
while the expression is as much as 2.32-fold greater (P= 1.52 ×
10−9; Welch’s t-test) when all 335 UL are considered (Supple-
mentary Fig. 12). These results are consistent with a previous
study73, which showed phosphorylated (p) FOXO1 (pSer256) to
be predominantly present in the nucleus in UL, but sequestered in
the cytoplasm of myometrium. The concomitant increase of

p-FOXO1 and reduced expression of its interaction partner 14-3-
3γ in UL has been suggested to lead to impaired nuclear/cyto-
plasmic shuttling of p-FOXO1, which promotes cell survival73–75.
We performed stratification of samples by genotype, revealing a
statistically significant increase in FOXO1 levels of UL harboring
the risk allele for rs6563799 (allelic dosage, P= 0.047; homo-
zygosity for risk allele, P= 0.035) (Supplementary Figs. 11 and
13). An increase in FOXO1 levels of UL with the rs7986407 risk
allele is also observed; however, the change is not statistically
significant (Supplementary Figs. 11 and 13).

Discussion
In our meta-analysis of GWAS on UL, we identify 29 genomic
loci to be significantly associated with UL in women of white
European ancestry, including eight novel and 21 previously
reported loci. Candidate genes in the identified loci implicate
pathways of estrogen and progesterone signaling (ESR1, FSHB,
GREB1, WNT2, and WNT4), as well as cell growth (FOXO1,
PDGFRA, TERT, TERC, and TP53) in predisposing women to UL.
We do not confirm five of 26 previously identified loci reported to
be significantly associated with UL12,14–16. Two of these loci,
3p24.1 and 16q12.1, are nominally significant (P < 1 × 10−5) in
our GWAS meta-analysis, but the remaining three loci (3q29,
17q25.3 and a distinct region at 22q13.1) do not reach nominal
significance. Ancestral differences may explain the absence of the
association originally identified in African American women in
the genomic region at 22q13.1, while variation in phenotypic
definitions12 may underlie the two other loci.

Discovery of eight novel loci significantly associated with UL
reveals several candidate genes of particular interest: BABAM2,
FSHB, HMGA1, and WNT2. Because UL are benign tumors that
rarely, if ever, develop into malignancy, the association between
UL and multiple loci harboring well-known oncogenes and tumor
suppressor genes is also worthy of note. Fine-mapping of the
TP53 locus identifies rs78378222 to be the most probable causal
variant, which has been shown to disrupt the polyadenylation
sequence in the 3’UTR of TP53 and result in reduced expression
of mRNA39. We also observe nuclear FOXO1 levels to be sig-
nificantly elevated in UL when compared to myometrium.
FOXO1 is a downstream target of the Akt signaling pathway that
responds to hormone signaling through the progesterone receptor
in UL and activates proliferative responses76.

HMB is one of the major debilitating symptoms of UL and can
have a substantial impact on a woman’s quality of life. Here, we
report GWAS on both UL limited by HMB and solely on HMB,
revealing potential targets for pharmacologic intervention:

Table 2 Multivariable-adjusted effect estimates of the association between endometriosis and UL among women in NHSII, WHS,
and UKBB cohorts

Cohort n UL cases Age-adjusted Multivariable-adjusted

Nurses’ Health Study IIa 102,545 10,714 1.61 (1.50–1.73) 1.57 (1.45–1.68)
Women’s Health Studyb 26,868 1,262 2.04 (1.78–2.34) 1.97 (1.71–2.26)
UK Biobankc 273,455 19,789 3.11 (2.86–3.37) 3.50 (2.77–4.38)

aHazard ratios (95% confidence intervals [CIs]) from Cox regression models. Multivariable model was adjusted for age (continuous), age at menarche (<11, 11, 12, 13, 14–15, >15), infertility (yes, no),
ancestry (White, Black, Hispanic, Asian, other), parity (nulliparous, 1, 2, 3, 4+), age at first birth (<25, 25–29, >29), time since last birth (<1, 1–3, 4–5, 6–7, 8–9, 10–12, 13–15, ≥16), age first oral
contraceptive use (13–16, 17–20, 21–24, ≥25), BMI (<20, 20–21.9, 22–23.9, 24–24.9, 25–26.9, 27–29.9, ≥30), menstrual cycle length (<26, 26–31, 32–50, and >50 days), smoking (never, past, current),
recent gynecologic/breast exam (no recent exam, recent exam), use of anti-hypertensive medications/diastolic blood pressure (no meds <65, no meds 65–74, no meds 75–84, no meds 85–89, no meds
≥90, meds <65, meds 65–74, meds 75–84, meds 85-89, meds ≥90), and physical activity (MET hours/week: <3, 3–<9, 9–<18, 18–<27, 27–<42, ≥42).
bOdds ratios (95% CI) from logistic regression models. Multivariable model was adjusted for age at baseline (continuous), age at menarche (<11, 11, 12, 13, 14–15, >15), ancestry (White, Black, Hispanic,
Asian, other), parity (nulliparous, 1, 2, 3, ≥4), age at first birth (<25, 25–29, >29), oral contraceptive use (ever, never), BMI (<20, 20–21.9, 22–23.9, 24–24.9, 25–26.9, 27–29.9, ≥30), smoking (never,
past, current), use of anti-hypertensive medications/diastolic blood pressure (no meds <65, no meds 65–74, no meds 75-84, no meds 85–89, no meds ≥90, meds <65, meds 65–74, meds 75–84, meds
85–89, meds≥ 90), physical activity (never/rarely, <1 time/week, 1–3 times.week, ≥4 times/week), alcohol consumption (never/rarely, 1–3 drinks/month, 1–6 drinks/week, ≥1 drinks/day).
cOdds ratios (95% CI) from logistic regression models. Multivariable model was adjusted for age (<50, 50–55, 56–60, ≥60), age at menarche (<11, 11, 12, 13, 14–15, >15), ancestry (White, Black, Asian,
other), parity (nulliparous, 1, 2, 3, ≥4), age at first birth (<25, 25–29, >29), oral contraceptive use (ever, never), BMI (<20, 20–21.9, 22–23.9, 24–24.9, 25–26.9, 27–29.9, ≥30), smoking (never, past,
current), physical activity (never/rarely, 1–3 drinks/week, ≥4 drinks/week), alcohol consumption (never/rarely,1–3/month, 1–4/week, ≥1/day), and menopausal status (premenopausal,
postmenopausal).
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ARL14EP, ATM, TERT, and FGFR4. In addition, MR analyses
suggest that genetic predisposition to UL is causally linked to an
increased risk of HMB. These results form a solid basis for further
work to elucidate the mechanisms underlying UL-related HMB
and towards tailored treatments of UL and HMB.

Biological overlap between UL and endometriosis, two highly
common gynecologic diseases has long been suspected due to
similarities in molecular mechanisms and progenitor cells. Our
UL GWAS meta-analysis indicates that genes previously asso-
ciated with endometriosis and involved in hormone-signaling
pathways are also associated with UL (WNT4/CDC42, GREB1,
ESR1, and FSHB). Overlap observed in the genetic etiology of
endometriosis and UL led us to epidemiologically quantify the co-
occurrence of these two diseases across three independent
cohorts. The epidemiological meta-analysis indicates that women
with a history of endometriosis are at elevated risk for reporting
UL. Results from our MR analyses suggest that genetic predis-
position to endometriosis is causally linked to increased risk of
UL. Alternatively, given the discordance in the direction of allelic
effects for the UL and endometriosis loci, our MR results may
indicate a significant overlap in the underlying biology of the two
diseases. Additional work is needed to better quantify the con-
tribution of genetic effects to the directional relationship between
endometriosis and UL. Results of which will enable us to quantify
what portion of the MR results reflect the fundamental patho-
biological overlap in these two diseases of the uterus. Further
characterization of the mutual pathogenic mechanisms of UL and
endometriosis has the capacity to discover not only a deeper
understanding of the underlying biology, but also treatments for
two diseases that cause significant morbidity in roughly one-third
of the world’s population.

Methods
Subjects. For UL GWAS meta-analysis, four population-based cohorts (WGHS,
NFBC, QIMR and UKBB) and one direct-to-consumer cohort (23andMe) from the
FibroGENE consortium were included (Supplementary Table 1), resulting in
35,474 UL cases and 267,505 female controls of white European ancestry. Sample
sizes were maximized using a basic, harmonizing phenotype definition to separate
cases and controls solely based on either self-report or clinically documented UL
history. Our large-scale epidemiologic analysis was comprised of three population-
based cohorts (NHSII, WHS, and UKBB), totaling 402,869 women. HMB GWAS
included the UKBB cohort, consisting of 220,759 women. Detailed descriptions of
cohorts and sample selections are available in Supplementary Methods. All parti-
cipants provided informed consent in accordance with the processes approved by
the relevant jurisdiction for human subject research for each cohort: the Partners
HealthCare System Human Research Committee (WHS/WGHS), the Ethical
Committee of the Northern Ostrobothnia Hospital District (NFBC), the Human
Research Ethics Committee at the QIMR Berghofer Medical Research Institute and
the Australian Twin Registry (QIMR), the North West Multi-centre Research
Ethics Committee (UKBB), Ethical and Independent Review Services (an external
institutional review board; 23andMe), and the Institutional Review Boards at
Harvard T.H. Chan School of Public Health and Brigham and Women’s Hospital
(Partners Human Research Committee) (NHSII).

Genotyping. Several different Illumina-based genotyping platforms (Illumina Inc.,
San Diego, CA, USA) were used: HumanHap300 Duo‘+’ chips or the combination
of the Human-Hap300 Duo and iSelect chips (WGHS), Infinium 370cnvDuo array
(NFBC), 317 K, 370 K, or 610 K SNP platforms (QIMR). Genotyping of partici-
pants in the UKBB was performed either on the Affymetrix UK BiLEVE or
Affymetrix UK Biobank Axiom® array with over 95% similarity. Genotyping of
participants in the 23andMe cohort was performed on various versions of
Illumina-based BeadChips.

Quality control and imputation. Each cohort conducted quality control measures
and imputation for their data. For WGHS, NFBC, QIMR, and 23andMe, all cases
and controls with a genotyping call rate <0.98 were excluded from the study.
Imputation was performed on both autosomal and sex chromosomes using the
reference panel from the 1000 Genomes Project European dataset (1000 G EUR)
Phase 3. Imputation was carried out using ShapeIt2 and IMPUTE2 softwares77,78.
SNPs with call rates of <99% or with deviation from Hardy-Weinberg equilibrium
(P ≤ 1 × 10−6) were excluded from further analyses. Population stratification for
the data was examined with principal component analysis (PCA) using

EIGENSTRAT79. The four HapMap populations were used as reference groups:
Europeans (CEU), Africans (YRI), Japanese (JPT), and Chinese (CHB). All
observed outliers were removed from the study. UKBB data QC and imputation
were performed centrally, prior to public release of the data80. Genotype data used
in the present analyses were imputed up to the Haplotype Reference Consortium
(HRC) panel. We applied additional quality control filters to exclude poorly
imputed SNPs (r2 < 0.4) and SNPs with a MAF of <1%.

Association analyses. Using additive encoding of genotypes and adjusting for age,
BMI, and/or the first five PCs, logistic regression analysis was performed in WGHS,
NFBC, QIMR, and 23andMe cohorts and summary statistics were provided,
including beta coefficients, χ2 values, and standard errors, for genotyped and
imputed SNPs. The UKBB association analyses were conducted using a linear
mixed model (BOLT-LMM v.2.3.2)81 adjusting for the two array types used, age
and BMI (fixed effects), and a random effect accounting for relatedness between
women. Effect size estimates (β and SE) from the linear mixed-model were con-
verted to log-odds scale prior to meta-analysis. A fixed-effects, inverse-variance-
weighted (IVW) meta-analysis on summary statistics was conducted using
METAL82 across all cohorts (Supplementary Data 6). A total of 8,662,096 SNPs
were available from at least two of the five cohorts. A quantile-quantile plot of the
results from meta-analysis across all GWAS cohorts is shown in Supplementary
Fig. 1. Details on the overall genomic inflation factor and number of analyzed SNPs
for each cohort are provided in Supplementary Table 2. For GWAS meta-analysis,
independence of genetic association with UL was defined as SNPs in low LD (r2 <
0.1) with nearby (≤500 kb) significantly associated SNPs. Individual loci corre-
spond to regions of the genome containing all SNPs in LD (r2 > 0.6) with index
SNPs. Any adjacent regions within 250 kb of one another were combined and
classified as a single locus of association. All associated genomic regions were
confirmed to have lead SNPs that were either directly genotyped or that met a
rigorously high quality imputation threshold (INFO > 0.9) in at least two cohorts.

Linkage disequilibrium score regression (LDSC). Analysis of residual inflation in
test statistics was conducted using univariate LDSC regression. Individual χ2 values
for each SNP analyzed in the GWAS meta-analysis was regressed onto LD scores
estimated from the 1000 G EUR panel. Heritability calculations can be derived
from analyzing the slope and y-axis intercept of the slope of the regression line.
Percent impact of confounders, such as population stratification, on test statistic
inflation are quantified as the LDSC ratio [((intercept–1))/((mean χ2–1))] × 100%.
Remaining effects [(1–LDSC ratio) × 100%] represent the percentage of inflation
attributed to polygenic heritability. Univariate LDSC regression was conducted
using the LDSC software (https://github.com/bulik/ldsc.git). Adjustment of herit-
ability (h2) calculations to the liability scale were performed by accounting for the
prevalence of UL in the sample (~0.132) compared to the general population
(~0.300). LDSC software was also used to estimate the genetic correlation between
UL and endometriosis (Endo) using endometriosis GWA meta-analysis summary
data from Sapkota et al.45 consisting of only European cohorts. The heritability and
LD score intercepts for both traits were computed, in this analysis with SNPs
present in both datasets for LDSC regression again using LD scores from the 1000
G EUR panel. Genetic correlation between traits was estimated as the genetic
covariance among SNPs / √ h2UL × h2Endo.

Approximate conditional analysis. Approximate conditional analysis, imple-
mented in GCTA83, was conducted to dissect distinct signals of association at each
locus. Of note, where lead SNPs at adjacent loci mapped within 1Mb of each other,
loci were combined as a single region for conditional analysis, to account for
potential LD between SNPs in different loci. GCTA makes use of meta-analysis
association summary statistics (log-OR and corresponding standard error) and a
reference panel of individual-level genotype data to obtain LD between all pairs of
SNPs at a locus (or region) that approximates the covariance in effect estimates in a
joint model. For these analyses, we made use of 5000 randomly selected white
British women (of European descent) as reference. We used the -cojo-slct option to
select index variants for each distinct association signal, at a locus-wide significance
threshold of P < 10−5, which is a conservative Bonferroni correction for the
number of SNPs mapping to a locus. For loci with multiple distinct association
signals, we obtained the conditional association summary statistics for each by
conditioning on all other index SNPs at the locus (or region) using the -cojo-cond
option.

Fine-mapping distinct association signals. For each distinct association signal,
association summary statistics (log-OR and corresponding standard error) were
extracted from the meta-analysis for all SNPs at the locus (or region). For loci with
a single signal of association, we made use of association summary statistics from
the unconditional meta-analysis. For loci with multiple signals of association, we
made use of association summary statistics from the approximate conditional
analysis. For each SNP j, we calculated an approximate Bayes’ factor in favor of
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association84, given by

Λj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where βj and Vj denote the estimated log-OR and corresponding variance from the
meta-analysis. The parameter ω denotes the prior variance in allelic effects, taken
here to be 0.04 for a disease outcome84. We then calculated the posterior prob-
ability, πj, that the jth SNP is causal for the association signal, given by

πCj ¼
Λj

P

k Λk
; ð2Þ

where the summation is over all retained variants in the locus (or region). The 99%
credible set for each signal was then constructed by: (i) ranking all variants
according to their Bayes’ factor, Λj; and (ii) including ranked variants until their
cumulative posterior probability of causality is at least 0.99.

Heavy menstrual bleeding (HMB) GWAS. The HMB GWAS was conducted
using data from the UKBB cohort (Supplementary Methods). Both hospital-linked
medical records and self-report were considered to identify women with a history
of UL, while for HMB only hospital-linked medical records were taken into
account. Controls had no previous history of either UL or HMB. Association
analyses were performed using a linear mixed model (BOLT-LMM v.2.3.2)81. Effect
size estimates (β and SE) from the linear mixed-model were converted to log-
odds scale.

Mendelian randomization (MR). MR analyses were performed using the Two
Sample Mendelian Randomization R package. GWAS summary statistics on HMB
from the UKBB cohort were used to create outcome data for MR between UL
(exposure) and HMB (outcome). To avoid overlap between samples in the exposure
and outcome cohorts, we performed UL GWAS excluding all the HMB cases85. LD
pruning was performed to confirm no duplication of exposure haplotypes or SNPs.
Subsequently, data were harmonized to ensure the same reference alleles were used in
exposure and outcome GWAS and that the variants were present in both GWAS
datasets. Thirteen independent SNPs associated with UL from our GWAS meta-
analysis were available in the HMB GWAS summary data to test for a causal effect of
UL on HMB. There were too few significant SNPs available for HMB to test for a
causal effect of HMB on UL.

GWAS summary statistics on endometriosis (with laparoscopy, without
laparoscopy, and all self-reported endometriosis cases) from the WHS cohort were
used to create outcome data for MR between UL (exposure) and endometriosis
(outcome). To avoid overlap between samples in the exposure and outcome cohorts,
WGHS was excluded from the UL GWAS for MR analysis. Twenty-two independent
SNPs associated with UL were available in the endometriosis GWAS summary data to
test for a causal effect of UL on endometriosis. For reverse causation model, summary
statistics from seven GWAS listing ‘endometriosis’ as the phenotype of interest
were available from the EMBL-EBI NHGRI GWAS catalog (Study Accession:
GCST000797, GCST001894, GCST001720, GCST005906, GCST000916,
GCST004549, GCST004873). Due to a low number of cases/controls or insufficient
number of SNPs after LD pruning and data harmonizing, only one of the studies
(GCST004549) was included in the analysis. Sixteen independent SNPs associated
with endometriosis were available in our UL GWAS summary data to test for a causal
effect of endometriosis on UL. The IVW model was used to test causality between
exposure and outcome. In addition, the IVW (Q) method was used to test for
heterogeneity, leave-one-out sensitivity analysis to identify the effect of individual
SNPs, and MR Egger for horizontal pleiotropy. Due to heterogeneity in our initial MR
estimates, we have now leveraged a similar approach to the one published in Corbin
et al., 2016, to identify the minimum set of variants that when used as a genetic
instrument eliminate heterogeneity86. We also conducted the MR-PRESSO test to
identify and adjust for variants causing significant bias through horizontal
pleiotropy87. MR-PRESSO method (1) applies a global test to evaluate whether
horizontal pleiotropy is present, (2) calculates the causal estimates incorporating
correction for the detected horizontal pleiotropy, and (3) applies a distortion test to
evaluate if the causal estimate is significantly different after adjustment for outliers.
We have reported the initial estimates along with the outlier-adjusted estimates as
both the global and distortion tests showed significant results.

Co-morbidity analyses. Each cohort was analyzed individually with study-specific
models chosen and covariates coded as appropriate for each cohort’s data structure
(Supplementary Methods). The study-specific effect estimates were combined using
meta-analysis to obtain a summary RR. Between study heterogeneity was assessed
with Cochran Q statistic and the I2 statistic88. Because heterogeneity among the
studies was identified, we reported a random-effects IVW effect estimate based on
the DerSimonian and Laird method89.

LD Hub, gene-set, cell/tissue enrichment, and SMR analyses. LD Hub ana-
lysis90 was conducted using summary-level results data of UL GWAS meta-analysis
to estimate the genetic correlation between UL and 21 different traits/diseases,
including various reproductive traits and cardiometabolic traits/diseases that have

publicly available GWAS results on the LD Hub repository. Multiple-testing cor-
rection was performed (0.05/21= 2.4 × 10−3). For gene-set and cell/tissue
enrichment, summary statistics from the set of 8971 SNPs with suggestive (P < 1 ×
10−5) or significant associations (P < 5 × 10−8) were analyzed using the Data-
driven Expression-Prioritized Integration for Complex Traits (DEPICT) soft-
ware65. Using the 1000 G EUR panel as a reference for LD calculations and the
‘clumping’ algorithm in PLINK91, we identified 104 independent loci at the sug-
gestive threshold for DEPICT analyses (Supplementary Data 2). FDR < 0.05 was
considered statistically significant. For SMR analysis, SNPs present in at least two
studies in the summary statistics were considered. The analysis was run using
eQTL data from the CAGE blood dataset66 and mQTLs from the LBC_BSGS blood
dataset67.

FOXO1 immunohistochemistry and genotyping. FOXO1 immunostaining was
performed on two replicate tissue microarrays (TMAs) containing 335 UL and 36
myometrium tissue samples from 200 white women of European ancestry obtained
from myomectomies and hysterectomies. Tissue cores on the replicate TMAs
represent different regions of the same samples, which include corresponding
tumor-normal tissue pairs from 35 women. Immunohistochemistry was carried out
using the BOND staining system (Leica Biosystems, Buffalo Grove, IL) with a
primary antibody dilution 1:100 (clone C29H4, Cell Signaling Technology, Dan-
vers, MA) and hematoxylin as the counterstain. Immunostaining was analyzed
using Aperio ImageScope software (Leica Biosystems). Each core was evaluated for
the ratio of stain to counterstain taking into account variable cellularity between
cores. Only nuclear labeling of the protein was evaluated. The average stain-to-
counterstain ratio was compared between patient-matched UL and myometrium
samples using a paired t-test (two-tailed), while an unpaired t-test (Welch’s t-test,
two-tailed) was applied to compare all UL and myometrium samples. Genomic
DNA from 109 UL on the TMA was available for genotyping. These UL were
genotyped for two SNPs with genome-wide significance at the 13q14.11 locus:
rs6563799 and rs7986407. For each SNP, the average FOXO1 stain-to-counterstain
ratio was compared across increasing dosage of the risk allele using a one-way
analysis of variance test (two-tailed). We also performed an unpaired t-test to
compare mean expression of UL homozygous for the risk variant against the other
genotypes (Welch’s t-test, two-tailed). P-values < 0.05 were considered statistically
significant.

URLs. For WHS see http://whs.bwh.harvard.edu/; for NFBC see http://www.oulu.
fi/nfbc/; for QIMR see http://www.qimrberghofer.edu.au/; for UK Biobank see
http://www.ukbiobank.ac.uk/; for 23andMe see https://research.23andme.com/; for
METAL see http://csg.sph.umich.edu/abecasis/metal/; for LDSC see https://github.
com/bulik/ldsc.git; for DEPICT see https://data.broadinstitute.org/mpg/depict/; for
SMR see http://cnsgenomics.com/software/smr/; and for PLINK see http://pngu.
mgh.harvard.edu/purcell/plink/.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information files. Summary statistics for the top
10,000 UL GWAS meta-analysis variants are provided in Supplementary Data 6. UL
GWAS meta-analysis summary statistics (without 23andMe), UL GWAS limited by
HMB and HMB GWAS summary statistics will be made available through the NHGRI-
EBI GWAS Catalog https://www.ebi.ac.uk/gwas/downloads/summary-statistics. To
request access to 23andMe GWAS summary statistics, please visit https://
research.23andme.com/dataset-access/.
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