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Optimal Power Control for LDPC Codes

in Block-Fading Channels
Gottfried Lechner, Khoa D. Nguyen, Albert Guillén i Fàbregas

and Lars K. Rasmussen

Abstract—We study the error probability of LDPC codes in
delay-limited block-fading channels with channel state informa-
tion (CSI) at the transmitter and the receiver. We derive the
optimal power allocation algorithms for LDPC codes with specific
degree distributions using multi-edge-type density evolution error
boundaries. The resulting performance approaches the outage
probability for a number of power constraints. Furthermore,
we adapt the algorithm for finite-length codes and show that
the proposed algorithm enables gains larger than 10 dB over
uniform power allocation. The method is valid for general,
possibly correlated, fading distributions. This represents the first
analysis of specific LDPC codes over block-fading channels with
full CSI.

I. INTRODUCTION

The block-fading channel [1], [2] has attracted attention

over the past decade as a conveniently simple channel model

that captures fundamental characteristics of practical wire-

less communications systems. The most popular example is

an orthogonal frequency division multiplex (OFDM) system,

where it is common to assume that the fading coefficient

of a single frequency band is constant over a finite number

of OFDM symbols. Other examples are frequency-hopping

in GSM/EDGE systems, free-space optical systems [3], and

hybrid optical-radio frequency systems [4] where the links

can be modeled as (possibly correlated) slow-varying fading

channels.

In practice, the number of independent fading blocks is

predominantly quite limited. For example, in OFDM-based

systems, there is a significant degree of frequency correlation,

which implies that only groups of subcarriers can be consid-

ered (and treated, for code design purposes) as independent.

Furthermore, for a large number of fading blocks it is usually

not desirable to construct full diversity codes since the rate

of the code is always upper bounded by 1/B where B is the
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of Technology, Osquldas väg 10, SE-100 44 Stockholm, Sweden (e-mail:
Lars.Rasmussen@ieee.org).

This work has been supported by the Australian Research Council under
ARC grant DP0881160, by the Swedish research council under VR grant
621-2009-4666. Furthermore, the research leading to these results has re-
ceived funding from the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n◦ 228044.

number of blocks. Therefore, for practical reasons, we focus

our examples on relevant scenarios where the number of fading

blocks is relatively small.

For delay-sensitive applications, the block-fading channel

is delay-limited, implying that each codeword is transmitted

over a finite number of fading blocks. An outage occurs when

the instantaneous mutual information is less than the target

transmission rate [1], [2]. It has been shown [5], that there

exist codes whose error probability is arbitrarily close to the

outage probability for large block lengths; conversely, the word

error probability of any code is lower bounded by the outage

probability for sufficiently long block lengths. Therefore, the

outage probability is the natural fundamental limit of the

channel.

An important characteristic of the outage probability is its

SNR exponent or diversity gain. The outage SNR exponent is

the asymptotic (for large SNR) slope of the outage probability

as a function of the SNR, in a log-log scale. For discrete, fixed

transmission alphabets, such as QAM signal constellations,

the optimal SNR exponent is determined by the transmission

and channel parameters through the Singleton bound [5]–[7].

Practical coding schemes based on powerful turbo-like codes

[8], [9] and low-density parity-check (LDPC) codes [10], [11]

have been proposed, and demonstrated to achieve full diversity.

When channel state information (CSI) is available only at

the receiver, the available transmission power is uniformly

distributed across fading blocks. In case CSI is available at the

transmitter, the outage probability can be minimized through

power allocation, i.e., the transmit power is allocated across

blocks as a function of the channel realization subject to

certain constraints. Optimal power allocation for delay-limited

block-fading channels using continuous or discrete symbol

alphabets has been studied in [2], [4], [12]–[17], where short-

term, long-term, and short-to-long-term power ratio (SLPR)

constraints have been of particular interest. In some cases, all

outages can be removed, showing dramatic performance gains

with respect to uniform power allocation.

The region of channel gain realizations causing an outage

event has previously been characterized by an outage boundary

[9], [10], [18]. Furthermore, a similar error boundary can

be determined for practical coding schemes, providing a

qualitative measure of the gap to the outage limit [9], [10],

[18], [19].

The aim of this paper is to study the performance of

LDPC code ensembles over the block-fading channel with

power allocation. We apply multi-edge-type density evolution

to completely characterize the code ensemble by its error

boundary. Power allocation schemes arising from various
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power constraints are easily incorporated into the framework.

Optimal power allocation algorithms for infinite-length codes

operate exactly at the error boundary of the code, which is the

equivalent of the threshold for ergodic channels. In contrast

to the asymptotic case of infinite block length, finite-length

codes do not show a threshold effect. Therefore, we derive

new power allocation algorithms that can be applied to finite-

length codes. Our modified algorithm for finite-length codes

leads to performance gains of more than 10 dB with respect to

uniform power allocation for lengths as short as 200. Although

we restrict ourselves to binary inputs, the results can be easily

generalized to arbitrary input constellations.

The remainder of this paper is organized as follows. The

system model and the power allocation schemes are introduced

in Section II. In Section III, we define outage and error regions

which allow for a unified treatment of code ensembles and the

computation of outage/error probabilities. These regions are

used in Section IV to derive results for systems with power

allocation. Power allocation for finite-length codes is presented

in Section V and concluding remarks can be found in Section

VI.

II. SYSTEM MODEL AND POWER ALLOCATION

We consider transmission of codewords over B channels

(blocks), where the channel coefficients αb, b = 1, . . . , B are

constant and chosen independently from a known distribution.

Let xb denote the input of channel b consisting of the elements

xb,ℓ, ℓ = 1, . . . , N/B, where N (an integer multiple of

B) denotes the overall codeword length. We assume that

xb,ℓ are chosen with equal probability from {+√
γb,−

√
γb}

and therefore E

[

x2
b,ℓ

]

= γb. The corresponding input-output

relationship of the channel is given by

yb = αbxb + zb, (1)

where zb denotes zero-mean white Gaussian noise with vari-

ance σ2 = 1. For simplicity, we assume that the fading coeffi-

cients αb are Rayleigh distributed with E
[

α2
b

]

= 1. However,

our results hold for a wide variety of fading distributions. The

average received SNR on block b is therefore γb.

When CSI is only available at the receiver, the transmit

power is distributed uniformly across the fading blocks, i.e.,

γb = Px for b = 1, . . . , B, where Px denotes the average

transmit power. In the case of CSI at the transmitter, power

allocation subject to short-term or long-term constraints can

be applied. For a short-term constraint, we have that

〈γ〉 ≤ PST, (2)

where γ = (γ1, . . . , γB) and

〈γ〉 ,
1

B

B
∑

b=1

γb (3)

denotes the arithmetic mean of the elements of the vector γ.

For a long-term constraint, the expected power per codeword

is upper bounded by PLT

E [〈γ〉] ≤ PLT. (4)

An example of a combination of a short- and long-term power

constraint is the case of a short-term to long-term power ratio

(SLPR) where

PST

PLT

=
〈γ〉

E [〈γ〉] ≤ SLPR. (5)

III. OUTAGE AND ERROR REGIONS

Let IB(α, γ) denote the instantaneous mutual information

between the input and output vector of the block-fading

channel normalized by the codeword length

IB(α, γ) =
1

B

B
∑

b=1

Ib(γbα
2
b), (6)

where the vector of channel coefficients is α = (α1, . . . , αB)
and Ib(γbα

2
b) is the mutual information of an AWGN channel

with binary inputs and SNR γbα
2
b .

Following [12], we define the outage region as the set of

all realizations of the channel coefficients where the channel

does not support the transmission rate r of the code

Rout(γ; r) =
{

α ∈ R
B
+ : IB(α, γ) < r

}

, (7)

and the boundary Bout(γ, R) of this outage region is given by

Bout(γ; r) =
{

α ∈ R
B
+ : IB(α, γ) = r

}

. (8)

The outage probability is obtained by integrating the density

function of the fading parameters over the outage region

Pout(γ; r) =

∫

α∈Rout(γ;r)

p(α)dα. (9)

We define the outage diversity as

dout = − lim
P→∞

log Pout(γ; r)

log P
, (10)

where P denotes the average power. We will denote by dout,ST

and dout,LT the outage diversity with short- and long-term

power constraints, respectively.

In the same way, we compute the word error probability of

an LDPC code ensemble by replacing the outage region by

the error region of the code. This error region, i.e., the region

of channel realizations for which the decoder is unable to

decode successfully, can be computed using density evolution

for multi-edge-type codes [20].

It is important to note that density evolution allows the

computation of the bit error rate but we are interested in

the computation of the word error rate. In the case where all

variable node degrees are larger than two, it has been shown

in [21] that the iterative decoding thresholds of bit and block

error probability coincide. Jin and Richardson [22] extended

this result to the case where degree two variable nodes exist

but possess a certain structure. To be precise, the degree two

variable nodes have to be arranged in a chain which ensures

that the number of nodes in the neighborhood of a variable

node in the degree two subgraph grows at most linearly in the

distance from the node.

Let LDPC(L, R) define an LDPC ensemble in the context

of the multi-edge-type framework (for a detailed description of

multi-edge-type density evolution we refer to [20, Chapter 7]).
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The multinomials L and R are associated with variable nodes

and check nodes, respectively. Furthermore, assume that the

ensemble satisfies the constraints for the degree two variable

nodes as stated above, i.e., the iterative decoding threshold for

bit and word error probabilities are identical. We define the

error region of an LDPC(L, R) ensemble as

Rerr(γ; L, R) =
{

α ∈ R
B
+ : lim

i→∞
Pb(i) > 0

}

, (11)

where i denotes the number of iterations and Pb(i) denotes the

bit error probability after i iterations. In other words, the region

Rerr consists of all realizations of the fading coefficients where

the iterative decoder is not able to converge to zero errors. In

contrast to the outage region, which depends only on the code

rate r, the error region of an LDPC ensemble depends on the

multi-edge degree distributions L and R (which in turn define

the code rate).

Similarly to the outage probability, the word error proba-

bility of an LDPC ensemble is given by the integral of the

distribution of the fading coefficients over the error region

Perr(γ; L, R) =

∫

α∈Rerr(γ;L,R)

p(α)dα. (12)

We similarly define the code diversity as

dc = − lim
P→∞

log Perr(γ; L, R)

log P
. (13)

We will denote by dc,ST and dc,LT the code diversity with

short- and long-term power constraints, respectively.

As an example for the rest of this paper, we consider two

blocks (B = 2) and a full-diversity (dc,ST = 2) root-LDPC

code [10] which is defined by the parity-check matrix

H =

[

I 0 H1 H2

H3 H4 I 0

]

, (14)

where all sub-matrices Hj (j = 1, . . . , 4) have variable and

check node degree of two and I and 0 denote the identity and

zero matrix, respectively. Therefore, the overall code of rate

r = 1/2 consists of variable nodes of degree two and three

and check nodes of degree five. The edges in the sub-matrices

H2 and H4 are placed such that these variable nodes form a

chain, therefore satisfying the condition in [22] for equal bit

and block error probability thresholds. This particular structure

allows the code to achieve full diversity [10].

Figure 1 shows the outage boundary for r = 1/2 and the

error boundary for this LDPC ensemble. The gap between the

boundaries corresponds to the gap between outage probability

and error rate of the LDPC code.

IV. POWER ALLOCATION FOR INFINITE-LENGTH CODES

Depending on the system parameters and the constraints

on the transmit power, optimal power allocation can be

determined to minimize the outage/error probability, given

that CSI is available at the transmitter [2], [4], [12]–[16].

In this section we further develop the outage/error-region

framework to deal with optimal power allocation based on

various power constraints. In particular, we derive expressions

to numerically evaluate the effective average transmit power
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Fig. 1. Outage boundary (solid line) and error boundary for root-LDPC
code with uniform power allocation (dashed line) at SNR = 0 dB and rate
r = 1/2. The modified boundaries for the outage and error region due to
power allocation are shown as dotted and dash-dotted lines, respectively.

and corresponding word error probability, and compare the

performance of root-LDPC codes with optimal power allo-

cation based on short-term, long-term, and short-to-long-term

power ratio constraints.

Instead of allocating the same transmit power Px on each

block, the transmitter allocates power γb on block b, where

γb ≥ 0, b = 1, . . . , B are chosen such that the required mean

power 〈γ〉 for successful transmission is minimized. For the

computation of the outage probability, successful transmission

requires that the average mutual information is larger than the

code rate r, whereas for the computation of the error rate,

convergence of the LDPC decoder to zero error probability

is required. By requiring that the realization of the channel

coefficients α does not belong to the regions defined in (7) and

(11), we can study both cases and formulate the optimization

problem as

γ∗(α) = arg min
γ∈RB

+

〈γ〉 s.t. α /∈ R(γ). (15)

where R(γ) denotes Rout(γ; r) or Rerr(γ; L, R), respectively.

It has been shown in [23] that the solution of (15) is optimal

in the sense that it minimizes the outage/error probability. This

is because the above problem and the maximum mutual infor-

mation subject to a power constraint problem are equivalent

in terms of outage probability. The optimization of the power

allocation algorithm in (15) depends only on the region of

interest allowing outage and error regions to be treated in

exactly the same way. Power allocation effectively modifies the

outage/error region since it allows successful transmission for

channel realizations which would cause an error for uniform

power allocation. For the example of the previous section these

modified outage/error regions are shown in Figure 1.

The optimization problem in (15) can be solved in an

efficient way. For a given α, let Rγ denote the region

of all power-allocation vectors γ which lead to an outage



4

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

γ1

γ2

γ
∗

2

γ
∗

1

2〈γ∗〉

2〈γ∗〉

Fig. 2. Power allocation for two blocks with α1 = 0.2 and α2 = 2.0. The
solid line corresponds to the boundary of Rγ and the dashed line to the mean
power 〈γ〉 = 0.63 dB.

(the corresponding error region for LDPC codes is defined

according to (11))

Rγ(α; r) =
{

γ ∈ R
B
+ : IB(α, γ) < r

}

. (16)

In the block-fading channel, the instantaneous mutual infor-

mation of a block is just a function of the product γbα
2
b

and therefore, the region Rγ can be obtained directly from

Rout. For two blocks, the optimization problem is illustrated

in Figure 2 with α1 = 0.2 and α2 = 2.0. The solid line

represents the boundary of Rγ and the dashed line corresponds

to vectors γ with the same mean power. The point of tangency

of both functions is the solution of (15) and the values of γ∗
1

and γ∗
2 can directly be obtained. For higher dimensions, the

optimization can be performed numerically. We note that the

complexity of such an optimization grows exponentially in the

number of dimensions (i.e., fading blocks). Since we focus on

a relatively small number of blocks this is not an issue in

practice.

We start by considering a short-term power constraint where

the mean power over one codeword is upper bounded by PST.

The optimal solution for this problem has been obtained in [13]

and it is based on the relationship between mutual information

of Gaussian channels and the minimum mean-square error

[24]. Let RST denote the modified region under a short-term

power constraint defined as

RST(PST) =
{

α ∈ R
B
+ : 〈γ∗(α)〉 > PST

}

. (17)

The outage/error probability under a short-term power con-

straint is computed in the same way as before by integration

over the probability density function of the channel parameters

Perr,ST(PST) =

∫

α∈RST(PST)

pα(α)dα. (18)

It has been shown in [14], [16] that the diversity achieved

by this power allocation algorithm is given by the Singleton

bound, i.e., the same as if no power allocation was employed.

We next consider a long-term power constraint. In contrast

to a short-term power constraint, where the mean power over

one codeword is upper bounded, a long-term power constraint

upper bounds the expected power per codeword by PLT. The

optimal power allocation for this case was determined in [12]

for Gaussian distributed inputs and in [14], [16], [17] for

arbitrary constellations. In [14] it was shown that a long-

term power constraint PLT can be enforced by imposing a

corresponding short-term power constraint PST
∗ > PLT (see

[14] for more details). Therefore, the outage/error region can

be defined via the short-term power constraint as

RLT(PLT) =
{

α ∈ R
B
+ : 〈γ∗(α)〉 > PST

∗
}

. (19)

The optimal power allocation under a long term constraint [14]

is

γ∗
LT(α) =

{

γ∗(α), 〈γ∗(α)〉 ≤ PST
∗,

0, otherwise
(20)

i.e., if the required power for successful transmission of a

codeword is larger than PST
∗, the transmitter allocates zero

power on that codeword, thereby saving transmit power.

The average transmit power Pavg is given by the integral

over all fading gains outside the error region imposed by the

short-term constraint PST
∗, and the short-term power constraint

PST
∗ is determined such that the average transmit power does

not exceed the long-term power constraint, i.e.,

Pavg =

∫

α/∈RST(PST
∗)

〈γ∗(α)〉pα(α)dα ≤ PLT. (21)

It is now straightforward to determine the error probability

for the case of a long-term power constraint by setting PST =
PST

∗ in (18). In a similar manner, we can determine the error

probability for the case of short-term to long-term power ratio

constraints.

In [23], it is shown that the outage diversity under a long-

term power constraint can be obtained from the diversity of

the corresponding system with a short-term constraint. The

proof in [23] is based on the concept of outage regions which

translate to error regions in a straightforward way. Therefore,

the relation between short-term and long-term diversity also

holds for the word error rates of LDPC code ensembles: If

the short-term diversity dc,ST is larger than one, there exists a

P0 such that the delay-limited capacity is positive for PLT ≥
P0. Therefore, for dc,ST > 1, the long-term diversity dc,LT is

infinite and the average transmit power converges to a finite

value. On the other hand, if dST < 1, the diversity of the

system under a long-term constraint is given by

dc,LT =
dc,ST

1 − dc,ST
. (22)

Note, however, that the diversity will always be dc,ST for any

finite SLPR.

As an example, we show the outage probability and the

word error rates of the root-LDPC code in (14) under a long-

term power and SLPR constraint in Figure 3. We assume

B = 2 fading blocks and the fading coefficients αb are

distributed according to a Rayleigh distribution. In the case

of no short-term constraint, the error probability can be made
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Fig. 3. Outage probability (solid lines) and word error rates of the root-LDPC
code (dashed lines) for long-term power and SLPR constraints. Numbers on
the curves denote the SLPR.

arbitrarily small with finite PLT. This is due to the fact, that

dc,ST = 2 for this LDPC code ensemble [10] and therefore,

the delay-limited capacity is larger than zero. For high PLT,

the outage/error probability is dominated by the short-term

constraint and therefore, the slope of the curve corresponds to

the diversity order under a short-term power constraint. This

has been shown in [16] for the outage probability and holds

also for the error probability.

V. POWER ALLOCATION FOR FINITE-LENGTH CODES

Finite-length codes have a non-zero error rate even outside

the error region which requires a modification of the algo-

rithms of Section IV. We note that an exact analysis would

require the error probability of the finite-length code for every

vector of fading gains. This is not feasible in general and we

therefore follow a suboptimal approach. However, simulation

results at the end of this section show that our method performs

close to the asymptotic limits and that it achieves gains of more

than 10 dB.

The simplest approach is to increase the transmit power, i.e.,

computing the necessary transmit power for the asymptotic

case of infinite block length and then adding a power margin

that is sufficiently large to allow the finite-length decoder

to converge. This section shows how this additional margin

should be allocated to the individual fading blocks and how

large it should be.

First, we discuss the allocation of the additional transmit

power on the fading blocks. One approach is to distribute it

uniformly over the blocks. However, we argue that this is not

a good approach as shown in the following example: Assume

a block-fading scenario with two blocks where the first block

is received error-free (i.e., at high SNR) and the other block at

low SNR. Adding additional transmit power to the first block

(as done by a uniform allocation) will not help the decoder.

We therefore propose an allocation scheme that maximizes the

mutual information.
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0
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d
d
[d

B
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Fig. 4. Difference between the long-term constraint and the average transmit
power.

We use the power allocation algorithm for the infinite block

length case (20) with an appropriate constraint (see below)

leading to a power allocation vector γ∗
LT(α). If the transmitter

allocates non-zero power, we add additional transmit power

Padd such that the mutual information is maximized

γadd = arg max
γ′

〈γ′〉=Padd

IB(α, γ∗
LT(α) + γ′), (23)

and transmit using the power allocation γ∗
LT(α) + γadd.

The remaining question is how large Padd should be. To

answer this question, we consider a system with a long-

term power constraint PLT and an additional SLPR constraint.

Systems with a short-term power constraint can be obtained

by setting the SLPR to 0 dB. In such a setting, the maximum

short-term transmit power PST is either limited by the long-

term or by the SLPR constraint. According to (21), the

long-term constraint can be translated into a corresponding

short-term constraint P ∗
ST. Therefore, the effective short-term

constraint is given by

PST = min {P ∗
ST, PLT · SLPR} . (24)

Consider the case where the short-term transmit power is

limited by P ∗
ST. If the power allocation (20) allocates non-zero

power, we add an additional power margin Padd. To maintain

the long-term power constraint in (4), we choose P ∗
ST such that

the average transmit power due to P ∗
ST (21) and the additional

power Padd satisfies

Pavg + Padd (1 − Perr,ST(P ∗
ST)) = PLT. (25)

This allows to apply power allocation for the infinite block-

length case followed by an additional margin while still not

violating the long-term power constraint.

Consider now the case where the short-term transmit power

is limited by PLT · SLPR. Using (21) allows the computation

of the average transmit power Pavg associated with this short-

term power constraint. This average transmit power is less

than PLT because otherwise, the short-term constraint would be
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Fig. 5. The dashed lines show the word error rate of infinite length root-
LDPC codes for long-term power and SLPR constraints. Simulation results
with ◦ are for N = 200 and results with × for N = 2, 000.

limited by P ∗
ST. Therefore, if we make sure that the peak-power

constraint PLT·SLPR is not exceeded, we can add an additional

margin to every transmitted codeword which is given by

Padd =
PLT − Pavg

1 − Perr,ST(PLT · SLPR)
. (26)

This additional margin Padd is shown in Figure 4 for the case

of the root-LDPC code in (14). It can be seen that it is zero

as long as P ∗
ST is the active constraint and increases with the

long-term constraint. For the case of a short-term constraint

only (i.e., SLPR = 0 dB) we see that the additional margin

is always larger than approximately 5 dB. Therefore, it is

possible to achieve error rates close to the asymptotic case

even with short block lengths. Furthermore, for larger values

of SLPR, we can expect to achieve error rates close to the

asymptotic case (in block length) if the long-term constraint

(and therefore also the additional power margin) is sufficiently

large.

To demonstrate the performance gains of our method, we

use the same example as in Section IV and set the SLPR to

15 dB. For this scenario, we constructed parity-check matrices

of length N = 200 and N = 2, 000 according to (14). For the

case where P ∗
ST is the limiting quantity in (24), we set Padd =

1.6 dB and Padd = 1.3 dB for the code of length N = 200
and N = 2, 000, respectively. The resulting error rates are

shown in Figure 5. It can be observed that the longer code

shows a better performance in the waterfall region. However,

when the SLPR constraint is the limiting quantity, both codes

perform close to the results predicted in Section IV. As a

comparison we also show the error probability for a short-term

power constraint (SLPR = 0 dB). As we observe, at error rate

10−3 our method achieves more than 10 dB gain with respect

to the short-term power constraint algorithm even with a short

code of N = 200.

VI. CONCLUSIONS

We presented an efficient method to study the word error

rates of LDPC code ensembles over the block-fading channel

with power allocation. The approach is based on a complete

characterization of the ensemble by an error boundary which

is the first analysis of specific LDPC codes over block-fading

channels with optimal power control. Our framework allows

for the incorporation of short-term, long-term and short-term

to long-term power ratio constraints.

For two fading blocks, the gain achieved by optimal power

allocation based on a short-term power constraint is limited but

significant gains can be obtained by optimal power allocation

strategies based on a long-term power constraint. Furthermore,

we conclude that codes which show a good performance for

uniform power allocation are also good for systems with

optimal power allocation based on short-term and/or long-term

power constraints. This is in line with information-theoretic

conclusions stating that an optimal transmission strategy can

be based on an outage-achieving coding scheme (for uniform

power allocation), followed by an optimal power allocation

rule [12]. To further support this claim, the example of a

root-LDPC code without optimized degree distribution shows

that this code already performs within 0.5 dB of the outage

probability.

Finite length codes do not exhibit a threshold behavior, i.e.,

even for channel realizations above the decoding threshold, the

decoder is not guaranteed to converge to zero errors. This has

to be considered for the derivation of optimal power allocation

algorithms for finite length codes. We proposed a suboptimal

algorithm that performs close to the infinite-length results and

that allows for gains of more than 10 dB with respect to

uniform or short-term constrained power allocation.
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[7] A. Guillén i Fàbregas and G. Caire, “Coded modulation in the block-
fading channel: Coding theorems and code construction,” IEEE Trans.

Inform. Theory, vol. 52, pp. 91–114, Jan. 2006.

[8] J. J. Boutros, E. Calvanese Strinati, and A. Guillén i Fàbregas, “Turbo
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