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Bayesian M -ary Hypothesis Testing:
The Meta-Converse and Verdú-Han Bounds are Tight
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Abstract—Two alternative exact characterizations of the mini-
mum error probability of Bayesian M -ary hypothesis testing are
derived. The first expression corresponds to the error probability
of an induced binary hypothesis test and implies the tightness
of the meta-converse bound by Polyanskiy, Poor and Verdú; the
second expression is related to an information-spectrum measure
and implies the tightness of a generalized Verdú-Han lower
bound. The formulas characterize the minimum error probability
of several problems in information theory and help to identify
the steps where existing converse bounds are loose.

Index Terms—Hypothesis testing, meta-converse, information
spectrum, channel coding, converse bounds, Shannon theory.

I. INTRODUCTION

Statistical hypothesis testing appears in areas as diverse
as information theory, image processing, signal processing,
social sciences or biology [1], [2]. Depending on the field,
this problem can be referred to as classification, discrimina-
tion, signal detection or model selection. The goal of M -ary
hypothesis testing is to decide among M possible hypotheses
based on the observation of a certain random variable. In a
Bayesian formulation, a prior distribution over the hypotheses
is assumed, and the problem is translated into a minimization
of the average error probability or its generalization, the Bayes
risk. When the number of hypotheses is M = 2, the problem
is referred to as binary hypothesis testing. While a Bayesian
approach in this case is still possible, the binary setting allows
a simple formulation in terms of the two types of pairwise
errors with no prior distribution over the hypotheses. The work
of Neyman and Pearson [3] established the optimum binary
test in this setting. Thanks to its simplicity and robustness, this
has been the most popular approach in the literature.
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In the context of reliable communication, binary hypothesis
testing has been instrumental in the derivation of converse
bounds to the error probability. In [4, Sec. III] Shannon,
Gallager and Berlekamp derived lower bounds to the error
probability in the transmission of M messages, including
the sphere-packing bound [4], [5], by analyzing an instance
of binary hypothesis testing. In [6], Forney used a binary
hypothesis test to determine the optimum decision regions in
decoding with erasures. In [7], Blahut emphasized the funda-
mental role of binary hypothesis testing in information theory
and provided an alternative derivation of the sphere-packing
exponent. Inspired by this result, Omura presented in [8] a
general method for lower-bounding the error probability of
channel coding and source coding. More recently, Polyanskiy,
Poor and Verdú [9] applied the Neyman-Pearson lemma to a
particular binary hypothesis test to derive the meta-converse
bound, a fundamental finite-length lower bound to the channel-
coding error probability from which several converse bounds
can be recovered. The meta-converse bound was extended to
joint source-channel coding in [10], [11].

The information-spectrum method expresses the error prob-
ability as the tail probability of a certain random variable,
often referred to as information density, entropy density or
information random variable [12]. This idea was initially used
by Shannon in [13] to obtain bounds to the channel coding
error probability. Verdú and Han capitalized on this analysis
to provide error bounds and capacity expressions that hold for
general channels, including arbitrary memory, input and output
alphabets [14]–[16] (see also [12]).

In this work, we further develop the connection between
hypothesis testing, information-spectrum and converse bounds
in information theory by providing a number of alternative ex-
pressions for the error probability of Bayesian M -ary hypoth-
esis testing. We show that this probability can be equivalently
described by the error probability of a binary hypothesis test
with certain parameters. In particular, this result implies that
the meta-converse bound by Polyanskiy, Poor and Verdú gives
the minimum error probability when it is optimized over its
free parameters. We also provide an explicit alternative expres-
sion using information-spectrum measures and illustrate the
connection with existing information-spectrum bounds. This
result implies that a suitably optimized generalization of the
Verdú-Han bound also gives the minimum error probability.
We discuss in some detail examples and extensions.

The rest of this paper is organized as follows. In Section II
of this paper we formalize the binary hypothesis testing
problem and introduce notation. In Section III we present M -
ary hypothesis testing and propose a number of alternative
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expressions to the average error probability. The hypothesis-
testing framework is related to several previous converse
results in Section IV. Proofs of several results are included
in the appendices.

II. BINARY HYPOTHESIS TESTING

Let Y be a random variable taking values over a discrete
alphabet Y . We define two hypotheses H0 and H1, such
that Y is distributed according to a given distribution P
under H0, and according to a distribution Q under H1. A
binary hypothesis test is a mapping Y → {0, 1}, where 0
and 1 correspond respectively to H0 and H1. Denoting by
Ĥ ∈ {0, 1} the random variable associated with the test
output, we may describe the (possibly randomized) test by
a conditional distribution T , PĤ|Y .

The performance of a binary hypothesis test is characterized
by two conditional error probabilities, namely ε0(P, T ) or
type-0 probability, and ε1(P, T ) or type-1 probability, respec-
tively given by

ε0(P, T ) , Pr
[
Ĥ = 1

∣∣H0

]
=
∑
y

P (y)T (1|y), (1)

ε1(Q,T ) , Pr
[
Ĥ = 0

∣∣H1

]
=
∑
y

Q(y)T (0|y). (2)

In the Bayesian setting, for Hi with prior probability
Pr[Hi], i = 0, 1, the smallest average error probability is

ε̄ , min
T

{
Pr[H0] ε0(P, T ) + Pr[H1] ε1(Q,T )

}
. (3)

In the non-Bayesian setting, the priors Pr[Hi], i = 0, 1, are
unknown and the quantity ε̄ is not defined. Instead, one can
characterize the optimal trade-off between ε0(·) and ε1(·). We
define the smallest type-0 error ε0(·) among all tests T with
a type-1 error ε1(·) at most β as

αβ
(
P,Q

)
, min
T :ε1(Q,T )≤β

{
ε0(P, T )

}
. (4)

The tests minimizing (3) and (4) have the same form. The
minimum is attained by a (possibly randomized) test TNP [3],

TNP(0|y) =


1, if P (y)

Q(y) > γ,

p, if P (y)
Q(y) = γ,

0, otherwise,

(5)

where γ ≥ 0 and p ∈ [0, 1]. When γ = Pr[H1]
Pr[H0] , the test

TNP minimizes (3); the value of p being irrelevant since it
does not affect the objective. When γ and p are chosen such
that the type-1 error ε1(Q,TNP) is equal to β, TNP attains
the minimum in (4). The test achieving (4) is not unique in
general, as the form of the test can vary for observations y
satisfying P (y) = Q(y). Any test achieving (4) is said to be
optimal in the Neyman-Pearson sense.

III. M -ARY HYPOTHESIS TESTING

Consider two random variables V and Y with joint dis-
tribution PV Y , where V takes values on a discrete alphabet
V of cardinality |V| = M , and Y takes values in a discrete
alphabet Y . We shall assume that the cardinality |V| is finite;

see Remark 1 in Section III-B for an extension to infinite
alphabets V . While throughout the article we use discrete
notation for clarity of exposition, the results directly generalize
to continuous alphabets Y; see Remark 2 in Section III-B.

The estimation of V given Y is an M -ary hypothesis-testing
problem. Since the joint distribution PV Y defines a prior dis-
tribution PV over the alternatives, the problem is naturally cast
within the Bayesian framework. An M -ary hypothesis test is
defined by a (possibly random) transformation PV̂ |Y : Y → V ,
where V̂ denotes the random variable associated to the test
output.1 We denote the average error probability of a test PV̂ |Y
by ε̄(PV̂ |Y ). This probability is given by

ε̄(PV̂ |Y ) , Pr
[
V̂ 6= V

]
(6)

= 1−
∑
v,y

PV Y (v, y)PV̂ |Y (v|y). (7)

Minimizing over all possible conditional distributions PV̂ |Y
gives the smallest average error probability, namely

ε̄ , min
PV̂ |Y

ε̄(PV̂ |Y ). (8)

An optimum test chooses the hypothesis v with largest poste-
rior probability PV |Y (v|y) given the observation y, that is the
Maximum a Posteriori (MAP) test. The MAP test that breaks
ties randomly with equal probability is given by

PMAP
V̂ |Y (v|y) =

{
1

|S(y)| , if v ∈ S(y),

0, otherwise,
(9)

where the set S(y) is defined as

S(y) ,

{
v ∈ V

∣∣ PV |Y (v|y) = max
v′∈V

PV |Y (v′|y)

}
. (10)

Substituting (9) in (7) gives

ε̄ = 1−
∑
v,y

PV Y (v, y)PMAP
V̂ |Y (v|y) (11)

= 1−
∑
y

max
v′

PV Y (v′, y). (12)

The next theorem introduces two alternative equivalent
expressions for the minimum error probability ε̄.

Theorem 1: The minimum error probability of an M -ary
hypothesis test (with possibly non-equally likely hypotheses)
can be expressed as

ε̄ = max
QY

α 1
M

(
PV Y , QV ×QY

)
(13)

= max
QY

sup
γ≥0

{
Pr

[
PV Y (V, Y )

QY (Y )
≤ γ

]
− γ
}
, (14)

where QV (v) , 1
M for all v ∈ V , and the probability in (14)

is computed with respect to PV Y . Moreover, a maximizing
distribution QY in both expressions is

Q?Y (y) ,
1

µ
max
v′

PV Y (v′, y), (15)

1While both binary and M -ary hypothesis tests are defined by conditional
distributions, to avoid confusion, we denote binary tests by T and M -ary tests
by PV̂ |Y .
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where µ ,
∑
y maxv′ PV Y (v′, y) is a normalizing constant.

Proof: See Section III-B.
Eq. (13) in Theorem 1 shows that the error probabil-

ity of Bayesian M -ary hypothesis testing can be expressed
as the best type-0 error probability of an induced binary
hypothesis test discriminating between the original distribu-
tion PV Y and an alternative product distribution QV × Q?Y
with type-1-error equal to 1

M . Eq. (14) in Theorem 1 pro-
vides an alternative characterization based on information-
spectrum measures, namely the generalized information den-
sity log PV Y (v,y)

QY (y) . By choosing QY = Q?Y and γ = µ, the

term Pr
[
PV Y (V,Y )
QY (Y ) ≤ γ

]
− γ can be interpreted as the error

probability of an M -ary hypothesis test that, for each v,
compares the posterior likelihood PV |Y (v|y) with a threshold
equal to max

v′
PV |Y (v′|y) and decides accordingly, i. e., this

test emulates the MAP test yielding the exact error probability.
The two alternative expressions provided in Theorem 1 are
not easier to compute than ε̄ in (12). To see this, note that the
normalization factor µ in Q?Y is such that µ = 1− ε̄.

For any fixed test PV̂ |Y , not necessarily MAP, using (8) it
follows that ε̄(PV̂ |Y ) ≥ ε̄. Therefore, Theorem 1 provides a
lower bound to the error probability of any M -ary hypothesis
test. This bound is expressed in (13) as a binary hypothesis
test discriminating between PV Y and an auxiliary distribution
QV Y = QV ×QY . Optimizing over general distributions QV Y
(not necessarily product) may yield tighter bounds for a fixed
test PV̂ |Y , as shown next.

Theorem 2: The error probability of an M -ary hypothesis
test PV̂ |Y satisfies

ε̄(PV̂ |Y ) = max
QV Y

αε1(QV Y ,PV̂ |Y )

(
PV Y , QV Y

)
(16)

= max
QV Y

sup
γ≥0

{
Pr

[
PV Y (V, Y )

QV Y (V, Y )
≤ γ

]

− γε1(QV Y , PV̂ |Y )

}
, (17)

where

ε1(QV Y , PV̂ |Y ) ,
∑
v,y

QV Y (v, y)PV̂ |Y (v|y). (18)

Proof: Let us consider the binary test T (0|v, y) =
PV̂ |Y (v|y). The type-0 and type-1 error probabilities of
this test are ε0(PV Y , T ) = ε̄(PV̂ |Y ) and ε1(QV Y , T ) =
ε1(QV Y , PV̂ |Y ) defined in (18), respectively. Therefore, from
the definition of α(·)(·) in (4) we obtain that, for any QV Y ,

ε̄(PV̂ |Y ) ≥ αε1(QV Y ,PV̂ |Y )

(
PV Y , QV Y

)
. (19)

For QV Y = PV Y , using that αβ(PV Y , PV Y ) = 1 − β,
the right-hand side of (19) becomes 1 − ε1(PV Y , PV̂ |Y ). As
1 − ε1(PV Y , PV̂ |Y ) = 1 − ε1(PV Y , T ) = ε0(PV Y , T ) =
ε̄(PV̂ |Y ), then (16) follows from optimizing (19) over QV Y .
To obtain (17) we apply to (16) the lower bound in Lemma 1
in Section III-B and we note that, for γ = 1, QV Y = PV Y ,
the bound holds with equality.

The proof of Theorem 2 shows that the auxiliary distribution
QV Y = PV Y maximizes (16) and (17) for any M -ary

hypothesis test PV̂ |Y . Nevertheless, the auxiliary distribution
optimizing (16) and (17) is is not unique in general, as seen
in Theorem 1 for the MAP test and as the next result shows
for arbitrary maximum-metric tests.

Consider the maximum-metric test P (q)

V̂ |Y
that chooses the

hypothesis v with largest metric q(v, y), where q(v, y) is an
arbitrary function of v and y. This test can be equivalently
described as

P
(q)

V̂ |Y
(v|y) =

{
1

|Sq(y)| , if v ∈ Sq(y),

0, otherwise,
(20)

where the set Sq(y) is defined as

Sq(y) ,

{
v ∈ V

∣∣∣ q(v, y) = max
v′∈V

q(v′, y)

}
. (21)

Corollary 1: For the maximum metric test PV̂ |Y = P
(q)

V̂ |Y
,

a distribution QV Y maximizing (16) and (17) is

Q
(q)
V Y (v, y) ,

PV Y (v, y)

µ′
maxv′ q(v

′, y)

q(v, y)
, (22)

where µ′ is a normalizing constant.
Proof: See Appendix A.

The expressions in Theorem 2 still depend on the specific
test through ε1(·), cf. (18). For the optimal MAP test, i. e.,
a maximum metric test with metric q(v, y) = PV |Y (v|y), we
obtain Q(q)

V Y = QV ×Q?Y with uniform QV and Q?Y defined
in (15). For uniform QV it holds that

ε1(QV ×QY , PV̂ |Y ) =
1

M
, (23)

for any QY , PV̂ |Y . As a result, for the optimal MAP test,
the expressions in Theorem 2 and the distribution defined in
Corollary 1 recover those in Theorem 1.

A. Example
To show the computation of the various expressions in

Theorem 1 let us consider the ternary hypothesis test examined
in [16, Figs. 1 and 2] and revisited in [17, Sec. III.A]. Let
V = Y = {0, 1, 2}, PV (v) = 1

3 , v = 0, 1, 2, and

PY |V (y|v) =


0.40, (v, y) = (0, 0), (1, 1) and (2, 2),

0.33, (v, y) = (0, 2), (1, 2) and (2, 0),

0.27, otherwise.
(24)

Direct calculation shows that the MAP estimate is v̂(y) = y,
and from (12) we obtain ε̄ = 0.6.

In order to evaluate the expressions in Theorem 1 we first
compute Q?Y in (15), which yields Q?Y (y) = 1

3 , y = 0, 1, 2.
According to (13) a binary hypothesis test between PV Y and
Q?V Y , where Q?V Y (v, y) = 1

9 , for all v, y, with type-1 error
ε1 = 1

3 , yields the minimum error probability

ε̄ = α 1
3

(
PV Y , Q

?
V Y

)
. (25)

Solving the Neyman-Pearson lemma from (5), we obtain γ =
1.2 and p = 1 and therefore

TNP(0|y) =

{
1, if PV Y (v, y) ≥ 2

15 ,

0, otherwise,
(26)
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Verdú-Han

Figure 1. Information-spectrum lower bounds to the minimum error probabil-
ity for the example in Section III-A, as a function of the bound parameter γ.

so that ε1(Q?V Y , TNP) = 1
3 . Hence, (25) yields

ε̄ = ε0(PV Y , TNP) (27)

= 1−
∑
v,y

PV Y (v, y)TNP(0|y) = 0.6. (28)

Similarly, to evaluate (14) in Theorem 1, we substitute Q?Y
to obtain

ε̄ = sup
γ≥0

{
Pr
[
PV Y (V, Y ) ≤ γ

3

]
− γ
}
. (29)

Fig. 1 shows the argument of (29) with respect to γ ∈ [0, 1]
compared to the exact error probability ε̄, shown in the plot
with an horizontal line. For comparison, we also include the
Verdú-Han lower bound [15, Th. 4], the Poor-Verdú lower
bound [16, Th. 1] and the lower bound proposed by Chen
and Alajaji in [17, Th. 1]. The Chen-Alajaji lower bound [17,
Th. 1] is parametrized by θ ≥ 0 and, for θ = 1, it reduces
to the Poor-Verdú lower bound. We observe that (29) gives
the exact error probability ε̄ = 0.6 at γ = 1 − ε̄. The Verdú-
Han and the Poor-Verdú lower bounds both coincide and yield
ε̄ ≥ 0.574. For this example, as shown in [17], the Chen-
Alajaji lower bound is tight for θ → ∞. For θ = 25 the
bound is still ε̄ ≥ 0.579.

As an application of Theorem 2 and Corollary 1 we study
now a variation of the previous example. For a hypothesis
v ∈ V , let (y1, y2) ∈ Y2 denote two independent ob-
servations of the random variable Y distributed according
to PY |V=v in (24). We consider the suboptimal hypothesis
test that decides on the source message v maximizing the
metric q(v, y1, y2) = PY |V (y1|v). That is, for equiprobable
hypotheses, this test applies the MAP rule based on the
first observation, ignoring the second one. The expressions in
Theorem 1 do not depend on the decoder and yield the MAP
error probability ε̄ = 0.592. Then, for the decoder P (q)

V̂ |Y1Y2
in

(20), it holds that ε̄
(
P

(q)

V̂ |Y1Y2

)
≥ 0.592.

Let us choose the auxiliary distribution

QV Y1Y2
(v, y1, y2) =

1

9
PY |V (y2|v). (30)

Using that P (q)

V̂ |Y1Y2
(v|y1, y2) = 1

{
v = y1

}
is independent

of y2, we obtain

ε1
(
QV Y1Y2

,P
(q)

V̂ |Y1Y2

)
=

1

9

∑
v,y1,y2

PY |V (y2|v)P
(q)

V̂ |Y1Y2
(v|y1, y2) (31)

=
1

9

∑
v,y1

1
{
v = y1

}
(32)

=
1

3
. (33)

Therefore, the bound implied in Theorem 2 for this specific
choice of QV Y1Y2

yields

ε̄
(
P

(q)

V̂ |Y1Y2

)
≥ α 1

3

(
PV Y1Y2

, QV Y1Y2

)
. (34)

Since the marginal corresponding to Y2 is the same for PV Y1Y2

and QV Y1Y2
in (30), this component does not affect to the

binary test and can be eliminated from (34). Therefore, the
right-hand side in (34) coincides with that of (25), and yields
the lower bound ε̄

(
P

(q)

V̂ |Y1Y2

)
≥ 0.6. It can be checked that an

application of (17) in Theorem 2 yields the same result. We
conclude that allowing joint distributions QV Y1Y2 we obtain
decoder-specific bounds.

B. Proof of Theorem 1

We first prove the equality between the left- and right-hand
sides of (13) by showing the equivalence of the optimization
problems (8) and (13). From (8) we have that

ε̄ = min
PV̂ |Y :

∑
v PV̂ |Y (v|y)≤1,y∈Y

∑
v,y

PV Y (v, y)
(

1−PV̂ |Y (v|y)
)

(35)

= max
λ(·)≥0

min
PV̂ |Y

{∑
v,y

PV Y (v, y)
(

1− PV̂ |Y (v|y)
)

+
∑
y

λ(y)

(∑
v

PV̂ |Y (v|y)− 1

)}
, (36)

where in (35) we wrote explicitly the (active) constraints
resulting from PV̂ |Y being a conditional distribution; and (36)
follows from introducing the constraints into the objective via
the Lagrange multipliers λ(y) ≥ 0, y ∈ Y .
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Similarly, we write (13) as

max
QY

α 1
M

(PV Y , QV ×QY )

= max
QY

min
T :

∑
v,y

1
MQY (y)T (0|v,y)≤ 1

M

{∑
v,y

PV Y (v, y)

× T (1|v, y)

}
(37)

= max
η≥0

max
QY

min
T

{∑
v,y

PV Y (v, y)
(

1− T (0|v, y)
)

+ η

(∑
v,y

QY (y)T (0|v, y)− 1

)}
(38)

= max
λ̄(·)≥0

min
T

{∑
v,y

PV Y (v, y)
(

1− T (0|v, y)
)

+
∑
y

λ̄(y)

(∑
v

T (0|v, y)− 1

)}
, (39)

where in (37) we used the definitions of QV and αβ(·); (38)
follows from introducing the constraint into the objective via
the Lagrange multiplier η; and (39) follows by noting that
η and QY only appear in the objective function of (38) as
ηQY (y), y ∈ Y , hence we may optimize (38) over λ̄(y) ,
ηQY (y) instead.

Comparing (36) and (39), it is readily seen that the op-
timization problems (8) and (13) are equivalent. Hence, the
first part of the theorem follows.

We need the following result to prove identity (14).
Lemma 1: For any pair of distributions {P,Q} over Y and

any γ′ ≥ 0, it holds

αβ
(
P,Q

)
≥ P

[
P (Y )

Q(Y )
≤ γ′

]
− γ′β. (40)

Proof: The bound (40) with the term P
[
P (Y )
Q(Y ) ≤ γ′

]
replaced by P

[
P (Y )
Q(Y ) < γ′

]
corresponds to [9, Eq. (102)]. The

proof of the lemma follows the steps in [18, Eq. (2.71)-(2.74)]
and is included in Appendix B for completeness.

Applying (40) to (13) with γ′ = γM , P ← PV Y and
Q← QV ×QY and optimizing over γ we obtain

ε̄ ≥ max
QY

sup
γ≥0

{
Pr

[
PV Y (V, Y )

QY (Y )
≤ γ

]
− γ
}
. (41)

By using the distribution QY = Q?Y in (15) and by choosing
γ = µ, the probability term in (41) becomes

Pr

[
PV Y (V, Y )

Q?Y (Y )
≤ µ

]
= Pr

[
PV |Y (V |Y ) ≤ max

v′
PV |Y (v′|Y )

]
= 1. (42)

Substituting QY = Q?Y , γ = µ, and using (42) in (41) we

obtain

ε̄ ≥ max
QY

sup
γ≥0

{
Pr

[
PV Y (V, Y )

QY (Y )
≤ γ

]
− γ
}

(43)

≥ 1− µ (44)

= 1−
∑
y

max
v′

PV Y (v′, y) (45)

= ε̄, (46)

where in (45) we used the definition of µ and (46) follows
from (12). The identity (14) in the theorem is due to (43)-(46),
where it is readily seen that QY = Q?Y is a maximizer of (14).
Moreover, since Q?Y is a maximizer of (14), and Lemma 1
applies for a fixed QY , it follows that Q?Y is also an optimal
solution to (13). The second part of the theorem thus follows
from (43)-(46).

Remark 1: A simple modification of Theorem 1 generalizes
the result to countably infinite alphabets V . We define Q̄V
to be the counting measure, i. e., Q̄V (v) = 1 for all v. The
function αβ(·) in (4) is defined for arbitrary σ-finite measures,
not necessarily probabilities. Then, by substituting QV by Q̄V ,
the type-1 error measure is ε1(Q̄V × QY , T ) = 1 for any T ,
and (13) becomes

ε̄ = max
QY

α1

(
PV Y , Q̄V ×QY

)
. (47)

Since (14) directly applies to both finite or countably infinite
V , so does Theorem 1 with (13) replaced by (47).

Remark 2: For continuous observation alphabets Y , the
constraint of PV̂ |Y being a conditional distribution∑

v

PV̂ |Y (v|y) ≤ 1, y ∈ Y, (48)

can be equivalently described as

max
QY

∫ ∑
v

PV̂ |Y (v|y) dQY (y) ≤ 1. (49)

The fact that (48) implies (49) trivially follows by averaging
both sides of (48) over an arbitrary QY , and in particular, for
the one maximizing (49). To prove that (49) implies (48), let
us assume that (48) does not hold, i. e.,

∑
v PV̂ |Y (v|ȳ) > 1

for some ȳ ∈ Y . Let Q̄Y be the distribution that concentrates
all the mass at ȳ. Since for QY = Q̄Y the condition (49) is
violated, so happens for the maximizing QY . As a result, (49)
implies (48), as desired, and the equivalence between both
expressions follows.

By using (49) instead of (48) in (35)-(36), and after replac-
ing the sums by integrals where needed, we obtain

ε̄ = max
η≥0

min
PV̂ |Y

{∫ ∑
v

PV |Y (v|y)
(

1− PV̂ |Y (v|y)
)

dPY (y)

+ η

(
max
QY

∫ ∑
v

PV̂ |Y (v|y) dQY (y)− 1

)}
. (50)

For fixed QY the argument in (50) is linear with respect
to PV̂ |Y , and for fixed PV̂ |Y is linear with respect to QY .
Therefore, applying Sion’s minimax theorem [19, Cor. 3.5]
to interchange minPV̂ |Y

and maxQY
, (50) becomes (38). The
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first part of the theorem thus holds for continuous alphabets
Y . Since Lemma 1 applies to arbitrary probability spaces, so
does (41). Therefore, for continuous alphabets Y , the second
part of the theorem follows from (41), (42) and (43)-(46) after
replacing the sum by an integral in (45).

Remark 3: The optimality of Q?Y in (13) can also be proved
constructively. Consider the binary hypothesis testing problem
between PV Y and QV ×Q?Y . We define a test

TMAP(0|v, y) ,

{
1

|S(y)| , if v ∈ S(y),

0, otherwise.
(51)

For QV uniform, the type-1 error probability of this test is
ε1(QV × Q?Y , TMAP) = 1

M . Using that the MAP test is a
maximum metric test with q(v, y) = PV Y (v, y), according
to the proof of Corollary 1 in Appendix A, the type-0 error
probability of TMAP is precisely α 1

M

(
PV Y , QV ×Q?Y

)
. More-

over, since ε̄ = ε0(PV Y , TMAP) we conclude that QY = Q?Y
is an optimizer of (13). While both TMAP and TNP attain
the Neyman-Pearson performance, in general they are not the
same test, as they may differ in the set of points that lead to
a MAP test tie, i.e., the values of y such that |S(y)| > 1.

IV. CONNECTION TO PREVIOUS CONVERSE RESULTS

We next study the connection between Theorem 1 and
previous converse results in the literature:

1) The meta-converse bound: In channel coding, one of M
equiprobable messages is to be sent over a channel with one-
shot law PY |X . The encoder maps the source message v ∈
{1, . . . ,M} to a codeword x(v) using a specific codebook C.
Since there is a codeword for each message, the distribution
PV induces a distribution P CX over the channel input. At
the decoder, the decision among the M possible transmitted
codewords based on the channel output y is equivalent to
an M -ary hypothesis test with equiprobable hypotheses. The
smallest error probability of this test for a codebook C is
denoted as ε̄(C).

Fixing an arbitrary QY in (13) and considering the code-
word set instead of the message set, we obtain

ε̄(C) ≥ α 1
M

(
P CX × PY |X , P CX ×QY

)
, (52)

namely the meta-converse bound of [9, Th. 26] for a given
codebook and the choice QXY = P CX ×QY . Theorem 1 thus
shows that the meta-converse bound is tight for a fixed code-
book after optimization over the auxiliary distribution QY .

Upon optimization over QY and minimization over code-
books we obtain

min
C
ε̄(C) = min

PC
X

max
QY

{
α 1

M

(
P CX×PY |X , P CX×QY

)}
(53)

≥ min
PX

max
QY

{
α 1

M

(
PX×PY |X , PX×QY

)}
. (54)

The minimization in (53) is done over the set of distributions
induced by all possible codes, while the minimization in (54)
is done over the larger set of all possible distributions over the
channel inputs. The bound in (54) coincides with [9, Th. 27].

Fig. 2 depicts the minimum error probability for the trans-
mission of M = 4 messages over n independent, identically
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Figure 2. Channel coding error probability bounds for a BSC with cross-over
probability 0.1 and M = 4 codewords.

distributed channel uses of a memoryless binary symmetric
channel (BSC) with single-letter cross-over probability 0.1.
We also include the meta-converse (53), computed for the
best code [20, Th. 37] and QY = Q?Y , and the lower
bound in (54). Here, we exploited the fact that for the BSC
the saddlepoint in (54) is attained for uniform PX , QY [21,
Th. 22]. The computation of (53) and (54) follows similar steps
to those presented in Section III-A for a different example. It is
interesting to observe that while (53) characterizes the exact
error probability, the weakening (54) yields a much looser
bound.

2) Lower bound based on a bank of M binary tests:
Eq. (13) relates the error probability ε̄ to the type-0 error
probability of a binary test between distributions PV Y and
Q?V × QY . Instead of a single binary test, it is also possible
to consider a bank of M binary hypothesis tests between
distributions PY |V=v and QY [10]. In this case, we can also
express the average error probability of M -ary hypothesis
testing as

ε̄ = max
QY

{∑
v

PV (v)αQ?
V̂

(v)

(
PY |V=v, QY

)}
(55)

where Q?
V̂

(v) ,
∑
y QY (y)PMAP

V̂ |Y (v|y); see Appendix C.
If instead of fixing Q?

V̂
, we minimize (55) with respect to

an arbitrary QV̂ , (55) then recovers the converse bound [10,
Lem. 2] for almost-lossless joint source-channel coding. This
lower bound is not tight in general as the minimizing distri-
bution QV̂ need not coincide with the distribution induced by
the MAP decoder.

3) Verdú-Han lower bound: Weakening the identity in (14)
for an arbitrary QY we obtain

ε̄ ≥ sup
γ≥0

{
Pr

[
PV Y (V, Y )

QY (Y )
≤ γ

]
− γ
}
. (56)

By choosing QY = PY in (56) we recover the Verdú-Han
lower bound in the channel [15, Th. 4] and joint source-
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channel coding settings [22, Lem. 3.2]. The bound (56) with
arbitrary QY coincides with the Hayashi-Nagaoka lemma for
classical-quantum channels [23, Lem. 4], with its proof steps
following exactly those of [15, Th. 4]. Theorem 1 shows that,
by properly choosing QY , this bound is tight in the classical
setting.

4) Wolfowitz’s strong converse: If we consider the hypoth-
esis v with smallest error probability in (14), i. e.,

ε̄ = max
QY

sup
γ≥0

{∑
v

PV (v) Pr

[
PY |V (Y |v)PV (v)

QY (Y )
≤γ
]
− γ

}
(57)

≥ max
QY

sup
γ≥0

inf
v

{
Pr

[
PY |V (Y |v)PV (v)

QY (Y )
≤ γ

]
− γ
}
, (58)

we recover Wolfowitz’s channel coding strong converse [24].
Hence, this converse bound is tight as long as the bracketed
term in (58) does not depend on v for the pair {QY , γ}
optimizing (57).

5) Poor-Verdú lower bound: By applying the following
lemma, we recover the Poor-Verdú lower bound [16] from
Theorem 1. Let us denote by P[E ] (resp. Q[E ]) the probability
of the event E with respect to the underlying distribution P
(resp. Q).

Lemma 2: For a pair of discrete distributions {P,Q} defined
over Y and any γ′ ≥ 0, such that

0 ≤ β ≤
Q
[
P (Y )
Q(Y ) > γ′

]
P
[
P (Y )
Q(Y ) > γ′

] , (59)

the following result holds,

αβ
(
P,Q

)
≥ (1− γ′β)P

[
P (Y )

Q(Y )
≤ γ′

]
. (60)

Proof: See Appendix B.
Using Lemma 2 with γ′ = γM , P ← PV Y and Q ←

QV ×QY where QV is uniform, via (13), we obtain

ε̄ ≥ (1− γ) Pr

[
PV Y (V, Y )

QY (Y )
≤ γ

]
, (61)

provided that QY and γ ≥ 0 satisfy

∑
v,y

PV Y (v, y)1

{
PV Y (v, y)

QY (y)
> γ

}
≤
∑
v,y

QY (y)1

{
PV Y (v, y)

QY (y)
> γ

}
. (62)

This condition is fulfilled for any γ ≥ 0 if QY = PY or QY =
Q?Y as defined in (15). However, there exist pairs {γ,QY } for
which (62) does not hold. For QY = PY , and optimizing over
γ ≥ 0, (61) recovers the Poor-Verdú bound [16, Th. 1]. For
QY = Q?Y in (15), optimizing over γ ≥ 0, (61) provides an
expression similar to those in Theorem 1:

ε̄ = max
γ≥0

{
(1− γ) Pr

[
PY |V (Y |V )PV (V )

Q?Y (Y )
≤ γ

]}
. (63)

6) Lossy source coding: Finally, we consider a fixed-length
lossy compression scenario, for which a converse based on
hypothesis testing was recently obtained in [25, Th. 8]. The
output of a general source v with distribution PV is mapped
to a codeword w in a codebook C = {w1, w2, . . . , wM}
with w1, w2, . . . , wM belonging to the reconstruction alphabet
W . We define a non-negative real-valued distortion mea-
sure d(v, w) and a maximum allowed distortion D. The
excess distortion probability is thus defined as εd(C, D) ,
Pr
[
d(V,W ) > D

]
. Consider an encoder that maps the source

message v to codeword w with smallest pairwise distortion.
The distortion associated to the source message v is then

d(v, C) , min
w∈C

d(v, w). (64)

Consequently, the excess distortion probability is given by

εd(C, D) =
∑
v

PV (v)1
{
d(v, C) > D

}
. (65)

Given the possible overlap between covering regions, there
is no straightforward equivalence between the excess distortion
probability and the error probability of an M -ary hypothesis
test. We may yet define an alternative binary hypothesis test as
follows. Given an observation v, we choose H0 if the encoder
meets the maximum allowed distortion and H1 otherwise, i.e.
the test is defined as

TLSC(0|v) = 1
{
d(v, C) ≤ D

}
. (66)

Particularizing (1) and (2) with this test, yields

ε0(PV , TLSC) =
∑
v

PV (v)1
{
d(v, C) > D

}
, (67)

ε1(QV , TLSC) =
∑
v

QV (v)1
{
d(v, C) ≤ D

}
. (68)

As (65) and (67) coincide, εd(C, D) can be lower-bounded
by the type-0 error of a Neyman-Pearson test, i.e.,

εd(C, D) ≥ max
QV

{
αQ[d(V,C)≤D]

(
PV , QV

)}
, (69)

where Q[E ] denotes the probability of the event E with respect
to the underlying distribution QV .

Moreover, the bound (69) holds with equality, as the next
result shows.

Theorem 3: The excess distortion probability of lossy source
coding with codebook C and maximum distortion D satisfies

εd(C, D) = max
QV

{
αQ[d(V,C)≤D]

(
PV , QV

)}
(70)

≥ max
QV

{
αM supw∈W Q[d(V,w)≤D]

(
PV , QV

)}
. (71)

Proof: See Appendix D.
The right-hand-side of (70) still depends on the codebook

C through ε1(·). This dependence disappears in the relaxation
(71), recovering the converse bound in [25, Th. 8]. The
weakness of (71) comes from relaxing the type-1 error in the
bound to M times the type-1-error contribution of the best
possible codeword belonging to the reconstruction alphabet.

In almost-lossless coding, D = 0, the error events for
different codewords no longer overlap, and the problem natu-
rally fits into the hypothesis testing paradigm. Moreover, when
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QV is assumed uniform we have that Q {d(V,w) ≤ 0} =
Q {V = w} = 1

|V| for any w and, therefore, (71) is an equality.
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APPENDIX A
PROOF OF COROLLARY 1

For a binary hypothesis testing problem between the distri-
butions PV Y and Q(q)

V Y in (22) we define the test Tq(0|v, y) ,
P

(q)

V̂ |Y
(v|y). We now show that the test Tq achieves the same

type-I and type-II error probability as a NP test TNP in (5). To
this end, let us fix γ = µ′ and

p =

∑
y

∑
v∈Sq(y)

1
|Sq(y)|PV Y (v, y)∑

y

∑
v∈Sq(y) PV Y (v, y)

(72)

=

∑
y

∑
v∈Sq(y)

1
|Sq(y)|Q

(q)
V Y (v, y)∑

y

∑
v∈Sq(y)Q

(q)
V Y (v, y)

, (73)

where equality between (72) and (73) holds since PV Y (v, y) =

µ′Q
(q)
V Y (v, y) for all y, v ∈ Sq(y).

The type-0 error probability of the NP test (5) with these
values of γ and p is given by

ε0(PV Y , TNP) = 1−
∑
v,y

PV Y (v, y)TNP(0|v, y) (74)

= 1−
∑
y

∑
v∈Sq(y)

pPV Y (v, y) (75)

= 1−
∑
y

∑
v∈Sq(y)

1

|Sq(y)|
PV Y (v, y) (76)

= 1−
∑
v,y

PV Y (v, y)Tq(0|v, y) (77)

= ε0(PV Y , Tq), (78)

where in (75) we used the definition of TNP in (5) with P ←
PV Y and Q← Q

(q)
V Y and the definition of Sq(y) in (22); (76)

follows from (72), and (77) follows from the definition of Tq .
Analogously, the type-1 error probability of the NP test is

ε1(Q
(q)
V Y , TNP) =

∑
y

∑
v∈Sq(y)

pQ
(q)
V Y (v, y) (79)

=
∑
y

∑
v∈Sq(y)

1

|Sq(y)|
Q

(q)
V Y (v, y) (80)

=
∑
v,y

Q
(q)
V Y (v, y)Tq(0|v, y) (81)

= ε1(Q
(q)
V Y , Tq), (82)

where (80) follows from (73); and (81) follows from the
definition of Tq .

Then, using (74)-(78) and (79)-(82), we obtain

α
ε1

(
Q

(q)
V Y ,Tq

)(PV Y , Q(q)
V Y

)
= ε0(PV Y , TNP) (83)

= ε0(PV Y , Tq). (84)

Noting that ε̄
(
P

(q)

V̂ |Y

)
and ε0(PV Y , Tq) coincide by definition,

then (16) holds with equality for QV Y = Q
(q)
V Y .

Applying Lemma 1 to (16) and fixing QV Y = Q
(q)
V Y yields

ε̄
(
P

(q)

V̂ |Y

)
≥ sup
γ′≥0

{
Pr

[
PV Y (V, Y )

Q
(q)
V Y (V, Y )

≤ γ′
]

− γ′ε1
(
Q

(q)
V Y , P

(q)

V̂ |Y

)}
. (85)

Choosing γ′ = µ′ in (85) direct computation shows that

Pr

[
PV Y (V, Y )

Q
(q)
V Y (V, Y )

≤µ′
]

= Pr
[
q(V, Y )≤max

v′
q(v′, Y )

]
(86)

= 1 (87)

and

µ′ε1

(
Q

(q)
V Y , P

(q)

V̂ |Y

)
=
∑
v,y

PV Y (v, y)
maxv′ q(v

′, y)

q(v, y)
P

(q)

V̂ |Y
(v|y) (88)

=
∑
v,y

PV Y (v, y)P
(q)

V̂ |Y
(v|y), (89)

where in (89) we have used that P (q)

V̂ |Y
(v|y) 6= 0 implies

q(v, y) = maxv′ q(v
′, y). Therefore, substituting (86)-(87) and

(88)-(89) in (85), and using the definition of ε̄(PV̂ |Y ) in (7),
we conclude that (85) holds with equality, and so does (17)
with QV Y = Q

(q)
V Y .

APPENDIX B
PROOF OF LEMMAS 1 AND 2

Consider a binary hypothesis test between distributions P
and Q defined over the alphabet Y . Let us denote by P[E ]
the probability of the event E with respect to the underlying
distribution P , and Q[E ] that with respect to Q.

For the sake of clarity we assume that, for a given type-
1 error β, the term p in (5) is equal to zero. The proof
easily extends to arbitrary p, although with more complicated
notation. Then, there exists γ? such that

β = Q
[
P (Y )

Q(Y )
> γ?

]
, (90)

and the NP lemma yields

αβ(P,Q) = P
[
P (Y )

Q(Y )
≤ γ?

]
. (91)

For 0 ≤ γ′ < γ?, P
[
P (Y )
Q(Y ) ≤ γ

′
]
≤ P

[
P (Y )
Q(Y ) ≤ γ

?
]

=

αβ(P,Q). Then both Lemmas 1 and 2 hold trivially.
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For γ′ ≥ γ? it follows that

αβ(P,Q) = P
[
P (Y )

Q(Y )
≤γ′

]
− P

[
γ?<

P (Y )

Q(Y )
≤ γ′

]
(92)

≥ P
[
P (Y )

Q(Y )
≤γ′

]
− γ′Q

[
γ?<

P (Y )

Q(Y )
≤ γ′

]
(93)

= P
[
P (Y )

Q(Y )
≤γ′

]
− γ′

(
Q
[
P (Y )

Q(Y )
> γ?

]

−Q
[
P (Y )

Q(Y )
> γ′

])
, (94)

where (93) follows by noting that in the interval considered
P (y) < γ′Q(y). Lemma 1 follows from (94) by lower
bounding Q

[
P (Y )
Q(Y ) > γ′

]
≥ 0 and using (90). In order to prove

Lemma 2, we shall use in (94) the tighter lower bound

Q
[
P (Y )

Q(Y )
> γ′

]
≥ βP

[
P (Y )

Q(Y )
> γ′

]
, (95)

which holds by the assumption in (59).

APPENDIX C
ONE TEST VERSUS MULTIPLE TESTS

In this appendix, we prove the equivalence between the
optimization problems in (13) and (55). First, note that the
argument of the maximization in (55) can be written in terms
of tests Tv for fixed v as∑

v

PV (v)αQV̂ (v)

(
PY |V=v, QY

)
=
∑
v

PV (v) min
Tv :ε1(QY ,Tv)≤QV̂ (v)

{
ε0(PY |V=v, Tv)

}
(96)

=
∑
v

PV (v) max
λ(v)≥0

min
Tv

{∑
y

PY |V (y|v)Tv(H1|y)

− λ(v)

(∑
y′

QY (y′)Tv(H0|y′)−QV̂ (v)

)}
, (97)

where (96) follows from the definition of α(·)(·), and in (97)
we used the definitions of the type-0 and type-1 errors and
introduced the constraints into the objective by means of the
Lagrange multipliers λ(v).

Similarly, from (13) we have that

max
QY

α 1
M

(PV Y , Q
?
V ×QY )

= max
QV ×QY

αε1(QV ×QY ,TMAP) (PV Y , QV ×QY ) (98)

= max
QY

max
η≥0

max
QV

min
T

{∑
v,y

PV Y (v, y)T (H1|v, y)

+ η

(∑
v′,y′

QV (v′)QY (y′)
(
T (H0|v′, y′)− PMAP

V̂ |Y (v′|y′)
))}
(99)

= max
QY

∑
v

PV (v) max
λ̄(v)≥0

min
T

{∑
y

PY |V (y|v)T (H1|v, y)

+ λ̄(v)

(∑
y′

QY (y′)T (H0|v, y′)−QV̂ (v)

)}
, (100)

where (98) follows as Q?V is a maximizer of the RHS of
(98); in (99) used the definition of α(·)(·), and introduced
the constraint into the objective by means of the Lagrange
multiplier η; and in (100) we rearranged terms and defined

λ̄(v) ,
ηQV (v)

PV (v)
. (101)

The result follows from (97) and (100) by optimizing (97)
over QY and identifying T (Hi|v, y) ≡ Tv(Hi|y).

APPENDIX D
PROOF OF THEOREM 3

We define

QCV (v) ,
1

µ′′
1
{
d(v, C) > D

}
, (102)

with µ′′ a normalization constant.
The NP test (5) with P ← PV , Q ← QCV , γ = µ′′, p = 1,

particularizes to

TNP(0|v) =

{
1, if PV (v) ≥ 1

{
d(v, C) > D

}
,

0, otherwise.
(103)

Assuming that PV (v) < 1 for all v, eq. (103) reduces to

TNP(0|v) = 1
{
d(v, C) ≤ D

}
(104)

= TLSC(0|v). (105)

That is, for QV = QCV , the test TLSC defined in (66) is optimal
in the Newman-Pearson sense. Then it holds that

max
QV

{
αε1(QV ,TLSC)

(
PV , QV

)}
≥ αε1(QC

V ,TLSC)

(
PV , Q

C
V

)
(106)

= ε0
(
PV , TLSC

)
(107)

= εd(C, D), (108)

where the last step follows since (65) and (67) coincide.
From (69) and (106)-(107), the equality (70) follows by

noting that ε1(QV , TLSC) = Q[d(V, C) ≤ D].
Let PW |V denote the encoder that maps the source message

v to the codeword w ∈ C with smallest pairwise distortion. The
lower bound (71) follows from the fact that

ε1(QV , TLSC) =
∑
v

QV (v)1 {d(v, C) ≤ D} (109)

=
∑
v

QV (v)
∑
w

PW |V (w|v)

× 1 {d(v, w) ≤ D} (110)

≤
∑
w∈C

∑
v

QV (v)1 {d(v, w) ≤ D} (111)

≤M sup
w∈C

∑
v

QV (v)1 {d(v, w) ≤ D} (112)

≤M sup
w∈W

∑
v

QV (v)1 {d(v, w) ≤ D} , (113)

where in (111) we used that PW |V (w|v) = 0 for w /∈ C
and that PW |V (w|v) ≤ 1 for w ∈ C; (112) follows from
considering the largest term in the sum, and in (113) we
relaxed the set over which the maximization is performed.
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Catalunya (UPC), Barcelona, Spain, the M. Sc. in Electrical Engineering
from Stanford University, U.S., in 2009 and the Ph.D in Engineering from
University of Cambridge, U.K., in 2011. From 2013 to 2015 he was a Marie
Curie Intra-European Research Fellow with Universitat Pompeu Fabra. Before,
he was a post-doctoral researcher at Universitat Pompeu Fabra and at the
Department of Engineering, University of Cambridge, under the Engineering
and Physical Sciences Research Council (EPSRC) Doctoral Prize programme.

He has held research appointments at the University of South Australia
(UNISA), Adelaide, Australia, Telefónica Research Labs, Barcelona, Spain,
and visiting appointments at the Università degli Studi di Cassino, Cassino,
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