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Abstract—This paper studies multiuser random coding tech-
niques for channel coding with a given (possibly suboptimal)
decoding rule. For the mismatched discrete memoryless multiple-
access channel, an error exponent is obtained that is tight with
respect to the ensemble average, and positive within the interior
of Lapidoth’s achievable rate region. This exponent proves the
ensemble tightness of the exponent of Liu and Hughes in the
case of maximum-likelihood decoding. An equivalent dual form of
Lapidoth’s achievable rate region is given, and the latter is shown
to extend immediately to channels with infinite and continuous
alphabets. In the setting of single-user mismatched decoding,
similar analysis techniques are applied to a refined version of
superposition coding, which is shown to achieve rates at least as
high as standard superposition coding for any set of random-
coding parameters.

Index Terms—Mismatched decoding, multiple-access channel,
superposition coding, random coding, error exponents, ensemble
tightness, Lagrange duality, maximum-likelihood decoding.

I. INTRODUCTION

The mismatched decoding problem [1]–[9] seeks to char-
acterize the performance of coded communication systems
when the decoding rule is fixed and possibly suboptimal.
This problem is of interest, for example, when the optimal
decoding rule is infeasible due to channel uncertainty or
implementation constraints. Finding a single-letter expression
for the mismatched capacity (i.e. the highest achievable rate
with mismatched decoding; see Section I-A for formal defini-
tions) remains an open problem even for single-user discrete
memoryless channels. The vast majority of existing works
have focused on achievability results via random coding.

The most notable early works are by Hui [1] and Csiszár
and Körner [2], who independently derived the achievable rate
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known as the LM rate, using random codes in which each
codeword has a constant or nearly-constant composition. A
generalization to infinite and continuous alphabets was given
by Ganti et al. [7] using cost-constrained coding techniques,
relying on a Lagrange dual formulation of the LM rate that
first appeared in [4]. In general, the LM rate can be strictly
smaller than the mismatched capacity [3], [6]. Motivated by
the lack of converse results, the concept of ensemble tightness
has been addressed in [4], [7], [8], where it has been shown
that, for any DMC, the LM rate is the best rate possible for
the constant-composition and cost-constrained random-coding
ensembles. In [3], Csiszár and Narayan showed that better
achievable rates can be obtained by applying the LM rate to the
second-order product channel, and similarly for higher-order
products. Random-coding error exponents for mismatched
decoding were given in [8], [10], [11], and ensemble tightness
was addressed in [8].

The mismatched multiple-access channel (MAC) was con-
sidered by Lapidoth [6], who obtained an achievable rate
region and showed the surprising fact that the single-user LM
rate can be improved by treating the single-user channel as a
MAC. Thus, as well as being of independent interest, network
information theory problems with mismatched decoding can
also provide valuable insight into the single-user mismatched
decoding problem. In recent work that developed indepen-
dently of ours, Somekh-Baruch [9] gave error exponents and
rate regions for the cognitive MAC (i.e. the MAC where one
user knows both messages and the other only knows its own)
using two multiuser coding schemes: superposition coding
and random binning. When applied to single-user mismatched
channels, these yield achievable rates that can improve on
those by Lapidoth when certain auxiliary variables are fixed.

In this paper, we build on the work of [6] and study
multiuser coding techniques for channels with mismatched
decoding. Our main contributions are as follows:

1) We develop a variety of tools for studying multiuser ran-
dom coding ensembles in mismatched decoding settings.
Broadly speaking, our techniques permit the derivations
of ensemble-tight error exponents for channels with finite
input and output alphabets, as well as generalizations to
continuous alphabets based on Lagrange duality analo-
gous to those for the single-user setting mentioned above.

2) By applying our techniques to the mismatched MAC, we
provide an alternative derivation of Lapidoth’s rate region
[6] that also yields the ensemble-tight error exponent,
and the appropriate generalization to continuous alpha-
bets. By specializing to the case of ML decoding, we
prove the ensemble tightness of the exponent given in
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[12] for constant-composition random coding, which was
previously unknown.

3) For the single-user channel, we introduce a refined ver-
sion of superposition coding that yields rates at least as
high as the standard version [9], [13] for any choice of
parameters, with strict improvements possible when the
input distribution is fixed.

To avoid overlap with [9], we have omitted the parts of our
work that appeared therein; however, these can also be found
in [13].

For mismatched DMCs, the results of this paper and various
previous works can be summarized by the following list of
random-coding constructions, in decreasing order of achiev-
able rate:

1) Refined superposition coding (Theorems 7 and 8),
2) Standard superposition coding (Theorems 5 and 6; see

[9], [13]),
3) Expurgated parallel coding [6],
4) Constant-composition or cost-constrained coding with

independent codewords (LM Rate [1], [2], [7]),
5) i.i.d. coding with independent codewords (generalized

mutual information [10]).
The gap between 1) and 2) can be strict for a given input
distribution; no examples are known where the gap between 2)
and 3) is strict; and the gaps between the remaining three can
be strict even for an optimized input distribution. Numerical
examples are provided in Section IV-B.

A. System Setup

Throughout the paper, we consider both the mismatched
single-user channel and the mismatched multiple-access chan-
nel. Here we provide a description of each.

1) Mismatched Single-User Channel: The input and output
alphabets are denoted by X and Y respectively, and the
channel transition law is denoted by W (y|x), thus yielding
an n-letter transition law given by

Wn(y|x) ,
n∏
i=1

W (yi|xi). (1)

If X and Y are finite, the channel is referred to as a discrete
memoryless channel (DMC). We consider length-n block
coding, in which a codebook C = {x(1), . . . ,x(M)} is known
at both the encoder and decoder. The encoder takes as input
a message m uniformly distributed on the set {1, . . . ,M},
and transmits the corresponding codeword x(m). The decoder
receives the vector y at the output of the channel, and forms
the estimate

m̂ = arg max
j∈{1,...,M}

qn(x(j),y), (2)

where n is the length of each codeword, and qn(x,y) ,∏n
i=1 q(xi, yi). The function q(x, y) is called the decoding

metric, and is assumed to be non-negative. In the case of
a tie, a codeword achieving the maximum in (2) is selected
uniformly at random. In the case that q(x, y) = W (y|x), the
decoding rule in (2) is that of optimal maximum-likelihood
(ML) decoding.

A rate R is said to be achievable if, for all δ > 0, there
exists a sequence of codebooks Cn with at least exp(n(R−δ))
codewords of length n such that limn→∞ pe(Cn) = 0 under
the decoding metric q. The mismatched capacity of a given
channel and metric is defined to be the supremum of all
achievable rates.

An error exponent E(R) is said to be achievable if there
exists a sequence of codebooks Cn with at least exp(nR)
codewords of length n such that

lim inf
n→∞

− 1

n
log pe(Cn) ≥ E(R). (3)

We let pe(n,M) denote the average error probability with
respect to a given random-coding ensemble that will be clear
from the context. A random-coding error exponent Er(R) is
said to exhibit ensemble tightness if

lim
n→∞

− 1

n
log pe(n, e

nR) = Er(R). (4)

For all of the cases of interest in this paper, the limit will exist.
With these definitions, the above-mentioned LM rate is

given as follows for an arbitrary input distribution Q:

ILM(Q) , min
P̃XY : P̃X=Q,P̃Y =PY

EP̃ [log q(X,Y )]≥EP [log q(X,Y )]

IP̃ (X;Y ), (5)

where PXY = Q×W . This rate can equivalently be expressed
as [4]

ILM(Q) = sup
s≥0,a(·)

E
[
log

q(X,Y )sea(X)

E[q(X,Y )sea(X) |Y ]

]
, (6)

where (X,Y,X) ∼ Q(x)W (y|x)Q(x). In the terminology of
[7], (5) is the primal expression and (6) is the dual expression.

2) Mismatched Multiple-Access Channel: We also con-
sider a 2-user memoryless MAC W (y|x1, x2) with in-
put alphabets X1 and X2 and output alphabet Y . In the
case that each alphabet is finite, the MAC is referred
to as a discrete memoryless MAC (DM-MAC). The de-
coding metric is denoted by q(x1, x2, y), and we write
Wn(y|x1,x2) ,

∏n
i=1W (yi|x1,i, x2,i) and qn(x1,x2,y) ,∏n

i=1 q(x1,i, x2,i, yi).
Encoder ν = 1, 2 takes as input a message mν uni-

formly distributed on the set {1, . . . ,Mν}, and transmits the
corresponding codeword x

(mν)
ν from the codebook Cν =

{x(1)
ν , . . . ,x

(Mν)
ν }. Given the output sequence y, the decoder

forms an estimate (m̂1, m̂2) of the message pair, given by

(m̂1, m̂2) = arg max
(i,j)∈{1,...,M1}×{1,...,M2}

qn(x
(i)
1 ,x

(j)
2 ,y). (7)

We assume that ties are resolved uniformly at random. Simi-
larly to the single-user case, optimal ML decoding is recovered
by setting q(x1, x2, y) = W (y|x1, x2).

An error is said to have occurred if the estimate (m̂1, m̂2)
differs from (m1,m2). The error probability for a given pair
of codebooks (C1, C2) is denoted by pe(C1, C2), and the error
probability for a given random-coding ensemble is denoted
by pe(n,M1,M2). We define achievable rate pairs, error
exponents, and ensemble tightness analogously to the single-
user setting.
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B. Notation

We use bold symbols for vectors (e.g. x1, y), and denote
the corresponding i-th entry using a non-bold symbol with a
subscript (e.g. x1,i, yi). All logarithms have base e. Moreover,
all rates are in units of nats except in the examples, where
bits are used. We define [c]+ = max{0, c}, and denote the
indicator function by 1{·}.

The symbol ∼ means “distributed as”. The set of all
probability distributions on an alphabet, say X , is denoted by
P(X ), and the set of all empirical distributions on a vector in
Xn (i.e. types [14, Ch. 2], [15]) is denoted by Pn(X ). Similar
notations P(Y|X ) and Pn(Y|X ) are used for conditional
distributions, with the latter adopting the convention that the
empirical distribution of y given x is uniform for values of x
that do not appear in x. For a given Q ∈ Pn(X ), the type class
Tn(Q) is defined to be the set of all sequences in Xn with type
Q. For a given joint type PXY ∈ Pn(X × Y) and sequence
x ∈ Tn(PX), the conditional type class Tnx (PXY ) is defined
to be the set of all sequences y such that (x,y) ∈ Tn(PXY ).

The probability of an event is denoted by P[·]. The marginals
of a joint distribution PXY (x, y) are denoted by PX(x) and
PY (y). We write PX = P̃X to denote element-wise equality
between two probability distributions on the same alphabet.
Expectation with respect to a joint distribution PXY (x, y)
is denoted by EP [·], or simply E[·] when the associated
probability distribution is understood from the context. Sim-
ilarly, mutual information with respect to PXY is written as
IP (X;Y ), or simply I(X;Y ). Given a distribution Q(x) and
conditional distribution W (y|x), we write Q ×W to denote
the joint distribution defined by Q(x)W (y|x).

For two positive sequences fn and gn, we write fn
.
= gn if

limn→∞
1
n log fn

gn
= 0, fn ≤̇ gn if lim supn→∞

1
n log fn

gn
≤ 0,

and analogously for ≥̇. We make use of the standard asymp-
totic notations O(·), o(·) and Ω(·). When studying the MAC,
we index the users as ν = 1, 2, and let νc denote the unique
index differing from ν.

II. MULTIPLE-ACCESS CHANNEL

In this section, we study the mismatched multiple-access
channel introduced in Section I-A. We consider random cod-
ing, in which each codeword of user ν = 1, 2 is generated in-
dependently according to some distribution PXν

. We let X(i)
ν

be the random variable corresponding to the i-th codeword of
user ν, yielding

(
{X(i)

1 }
M1
i=1, {X

(j)
2 }

M2
i=1

)
∼

M1∏
i=1

PX1(x
(i)
1 )

M2∏
j=1

PX2(x
(j)
2 ).

(8)

We assume without loss of generality that message (1, 1) is
transmitted, and write X1 and X2 in place of X(1)

1 and X
(1)
2 .

We write X1 and X2 to denote arbitrary codewords that are
generated independently of X1 and X2. The random sequence
at the output of the channel is denoted by Y . It follows that

(X1,X2,Y ,X1,X2) ∼ PX1
(x1)PX2

(x2)Wn(y|x1,x2)

× PX1
(x1)PX2

(x2). (9)

For clarity of exposition, we focus primarily on the case that
there is no time-sharing (e.g. see [12]). In Section II-D, we
discuss some of the corresponding results with time-sharing.

We study the random-coding error probability by consider-
ing the following events:

(Type 1)
qn(X

(i)
1 ,X2,Y )

qn(X1,X2,Y )
≥ 1 for some i 6= 1;

(Type 2)
qn(X1,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1 for some j 6= 1;

(Type 12)
qn(X

(i)
1 ,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1 for some i 6= 1, j 6= 1.

We refer to these as error events, though they do not neces-
sarily imply decoder errors when the inequalities hold with
equality, since we have assumed that the decoder resolves ties
uniformly at random.

The probabilities of the error events are denoted by
pe,1(n,M1), pe,2(n,M2) and pe,12(n,M1,M2), and the
overall random-coding error probability is denoted by
pe(n,M1,M2). Since breaking ties as errors increases the
error probability by at most a factor of two [16], we have

1

2
max{pe,1, pe,2, pe,12} ≤ pe ≤ pe,1 + pe,2 + pe,12. (10)

A. Exponents and Rates for the DM-MAC

In this subsection, we study the DM-MAC using the
constant-composition ensemble. For ν = 1, 2, we fix Qν ∈
P(Xν) and let PXν be the uniform distribution on Tn(Qν,n),
where Qν,n ∈ Pn(Xν) is a type with the same support as Qν
such that maxxν |Qν,n(xν)−Qν(xν)| ≤ 1

n . Thus,

PXν
(xν) =

1

|Tn(Qν,n)|
1
{
xν ∈ Tn(Qν,n)

}
. (11)

Our analysis is based on the method of types [14, Ch. 2].
Throughout the section, we write f(Q) to denote a quantity
f that depends on Q1 and Q2. Similarly, we write f(Qn) to
denote a quantity that depends on Q1,n and Q2,n.

1) Error Exponents: The error exponents and achievable
rates are expressed in terms of the following sets (ν = 1, 2):

S(Q) ,
{
PX1X2Y ∈ P(X1 ×X2 × Y) :

PX1
= Q1, PX2

= Q2

}
(12)

Tν(PX1X2Y ) ,

{
P̃X1X2Y ∈ P(X1 ×X2 × Y) :

P̃Xν = PXν , P̃XνcY = PXνcY ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]

}
(13)

T12(PX1X2Y ) ,

{
P̃X1X2Y ∈ P(X1 ×X2 × Y) :

P̃X1
= PX1

, P̃X2
= PX2

, P̃Y = PY ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]

}
, (14)

where we recall that for ν = 1, 2, νc denotes the unique
element differing from ν.
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Theorem 1. For any mismatched DM-MAC, for the constant-
composition ensemble in (11) with input distributions Q1 and
Q2, the ensemble-tight error exponents are given as follows
for ν = 1, 2:

lim
n→∞

− 1

n
log pe,ν(n, enRν ) = Ecc

r,ν(Q, Rν) (15)

lim
n→∞

− 1

n
log pe,12(n, enR1 , enR2) = Ecc

r,12(Q, R1, R2), (16)

where

Ecc
r,ν(Q, Rν) , min

PX1X2Y
∈S(Q)

min
P̃X1X2Y

∈Tν(PX1X2Y
)

D(PX1X2Y ‖Q1 ×Q2 ×W ) +
[
IP̃ (Xν ;Xνc , Y )−Rν

]+
(17)

Ecc
r,12(Q, R1, R2) , min

PX1X2Y
∈S(Q)

min
P̃X1X2Y

∈T12(PX1X2Y
)

D(PX1X2Y ‖Q1 ×Q2 ×W ) +
[

max
{
IP̃ (X1;Y )−R1,

IP̃ (X2;Y )−R2, D
(
P̃X1X2Y ‖Q1 ×Q2 × PY

)
−R1 −R2

}]+
.

(18)

Proof: The random-coding error probabilities pe,1 and
pe,2 can be handled similarly to the single-user setting [8].
Furthermore, equivalent error exponents to (17) (ν = 1, 2)
were given in [17]. We therefore focus on pe,12, which requires
a more careful analysis. We first rewrite

pe,12

= E

[
P

[ ⋃
i 6=1,j 6=1

{
qn(X

(i)
1 ,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1

}∣∣∣∣X1,X2,Y

]]
.

(19)

in terms of the possible joint types of (X1,X2,Y ) and
(X

(i)
1 ,X

(j)
2 ,Y ). To this end, we define

Sn(Qn) ,
{
PX1X2Y ∈ Pn(X1 ×X2 × Y) :

PX1 = Q1,n, PX2 = Q2,n

}
(20)

T12,n(PX1X2Y ) , T12(PX1X2Y ) ∩ Pn(X1 ×X2 × Y). (21)

Roughly speaking, Sn is the set of possible joint
types of (X1,X2,Y ), and T12,n(PX1X2Y ) is the set
of types of (X

(i)
1 ,X

(j)
2 ,Y ) that lead to decoding er-

rors when (X1,X2,Y ) ∈ Tn(PX1X2Y ). The constraints
on PXν and P̃Xν arise from the fact that we are us-
ing constant-composition random coding, and the constraint
EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )] holds if and
only if qn(x1,x2,y) ≥ qn(x1,x2,y) for (x1,x2,y) ∈
Tn(PX1X2Y ) and (x1,x2,y) ∈ Tn(P̃X1X2Y ). Fixing
PX1X2Y ∈ Sn(Qn) and letting (x1,x2,y) be an arbitrary
triplet of sequences such that (x1,x2,y) ∈ Tn(PX1X2Y ), it
follows that the event in (19) can be written as⋃
i 6=1,j 6=1

⋃
P̃X1X2Y

∈T12,n

{
(X

(i)
1 ,X

(j)
2 ,Y ) ∈ Tn(P̃X1X2Y )

}
.

(22)

Expanding the probability and expectation in (19) in terms
of types, substituting (22), and interchanging the order of the
unions, we obtain

pe,12 =∑
PX1X2Y

∈Sn(Qn)

P
[
(X1,X2,Y ) ∈ Tn(PX1X2Y )

]
× P

[ ⋃
P̃X1X2Y

∈T12,n(PX1X2Y
)

⋃
i6=1,j 6=1{

(X
(i)
1 ,X

(j)
2 ,y) ∈ Tn(P̃X1X2Y )

}]
(23)

.
= max
PX1X2Y

∈Sn(Qn)
P
[
(X1,X2,Y ) ∈ Tn(PX1X2Y )

]
× max
P̃X1X2Y

∈T12,n(PX1X2Y
)
P

[ ⋃
i 6=1,j 6=1{

(X
(i)
1 ,X

(j)
2 ,y) ∈ Tn(P̃X1X2Y )

}]
, (24)

where y is an arbitrary element of Tn(PY ) (hence depending
implicitly on PX1X2Y ), and (24) follows from the union bound
and since the number of joint types is polynomial in n.

By a standard property of types [14, Ch. 2], the exponent of
the first probability in (24) is given by D(PX1X2Y ‖Q1×Q2×
W ), so it only remains to determine the exponential behavior
of the second probability. To this end, we make use of Lemma
2 in Appendix A with Z1(i) = X

(i)
1 , Z2(j) = X

(j)
2 , A =

Tny (P̃X1X2Y ), A1 = Tny (P̃X1Y ) and A2 = Tny (P̃X2Y ). Using
(A.10)–(A.11) and standard properties of types [14, Ch. 2], it
follows that the second probability in (24) has an exponent of

[
max

{
IP̃ (X1;Y )−R1, IP̃ (X2;Y )−R2,

D
(
P̃X1X2Y ‖Q1 ×Q2 × PY

)
−R1 −R2

}]+
. (25)

Upon substituting (25) into (24), it only remains to replace the
sets Sn and T12,n by S and T12 respectively. This is seen to be
valid since the underlying objective function is continuous in
P̃X1X2Y , and since any joint distribution has a corresponding
joint type which is within 1

n in each value of the probability
mass function. See the discussion around [18, Eq. (30)] for
the analogous continuity argument in the single-user setting.

Theorem 1 and (10) reveal that the overall ensemble-tight
error exponent is given by

Ecc
r (Q, R1, R2) , min

{
Ecc
r,1(Q, R1),

Ecc
r,2(Q, R2), Ecc

r,12(Q, R1, R2)
}
. (26)

The proof of Theorem 1 made use of the refined union
bound given in Lemma 2. If we had instead used the standard
truncated union bound in (A.1), we would have obtained the
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weaker type-12 exponent

Ecc′

r,12(Q, R1, R2) , min
PX1X2Y

∈S(Q)
min

P̃X1X2Y
∈T12(PX1X2Y

)

D(PX1X2Y ‖Q1 ×Q2 ×W ) +
[
D(P̃X1X2Y ‖Q1 ×Q2 × PY )

− (R1 +R2)
]+
, (27)

which coincides with an achievable exponent given in [17].
2) Achievable Rate Region: The following theorem is a

direct consequence of Theorem 1, and provides an alternative
proof of Lapidoth’s ensemble-tight achievable rate region [6].

Theorem 2. The overall error exponent Ecc
r (Q, R1, R2) in

(26) is positive for all rate pairs (R1, R2) in the interior
of RLM(Q), defined to be the set of all rate pairs (R1, R2)
satisfying the following for ν = 1, 2:

Rν ≤ min
P̃X1X2Y

∈Tν(Q1×Q2×W )
IP̃ (Xν ;Xνc , Y ) (28)

R1 +R2 ≤ min
P̃X1X2Y

∈T12(Q1×Q2×W )

IP̃ (X1;Y )≤R1, IP̃ (X2;Y )≤R2

D(P̃X1X2Y ‖Q1 ×Q2 × PY ). (29)

Proof: The conditions in (28)–(29) are obtained from
(17)–(18) respectively. Focusing on (29), we see that the
objective in (18) is always positive when D(PX1X2Y ‖Q1 ×
Q2 × W ) > 0, IP̃ (X1;Y ) > R1 or IP̃ (X2;Y ) > R2.
Moreover, by a similar argument to [3, Lemma 1], the right-
hand side of (18), with only the second minimization kept,
is continuous as a function of PX1X2Y when restricted to
distributions with the same support as Q1 ×Q2 ×W . Hence,
we may substitute Q1 × Q2 ×W for PX1X2Y (thus forcing
the first divergence to zero) and introduce the constraints
IP̃ (X1;Y ) ≤ R1 and IP̃ (X2;Y ) ≤ R2 to obtain the condition
in (29).

Using a time-sharing argument [6], [19] (see also Section
II-D), it follows from Theorem 2 that we can achieve any rate
pair in the convex hull of

⋃
QRLM(Q), where the union is

over all distributions Q1 and Q2 on X1 and X2 respectively.
Using a similar argument to the proof of Theorem 2, we

see that (27) yields the rate condition

R1+R2 ≤ min
P̃X1X2Y

∈T12(Q1×Q2×W )
D(P̃X1X2Y ‖Q1×Q2×PY ).

(30)
In Section IV-A, we compare (18) and (29) with the weaker
expressions in (27) and (30).

B. Exponents and Rates for General Alphabets

In this section, we present equivalent dual expressions
for the rates given in Theorem 2, and extend them to the
memoryless MAC with general alphabets. While we focus
on rates for brevity, dual expressions and continuous-alphabet
generalizations for the exponents in Theorem 1 can be ob-
tained similarly; see [13, Sec. 4.2] for details.

We use the cost-constrained ensemble [8], [11], defined as
follows. We fix Q1 ∈ P(X1) and Q2 ∈ P(X2), and choose

PXν
(xν) =

1

µν,n

n∏
i=1

Qν(xν,i)1
{
xν ∈ Dν,n

}
(31)

for ν = 1, 2, where µν,n is a normalizing constant, and

Dν,n ,

{
xν :

∣∣∣∣∣ 1n
n∑
i=1

aν,l(xν,i)− φν,l

∣∣∣∣∣ ≤ δ

n
,

l = 1, . . . , Lν

}
, (32)

where {aν,l}Lνl=1 are auxiliary cost functions, δ is a positive
constant, and φν,l , EQν [aν,l(Xν)]. Thus, the codewords for
user ν are constrained to satisfy Lν cost constraints in which
the empirical mean of aν,l(·) is close to the true mean. We
allow each of the parameters to be optimized, including the
cost functions. The case Lν = 0 should be understood as
corresponding to the case that Dν,n contains all xν sequences,
thus recovering the i.i.d. distribution studied in [20]. In the case
of finite input alphabets, the constant-composition ensemble
can also be recovered by setting Lν = |Xν | and letting each
auxiliary cost function be the indicator function of its argument
equaling a given input symbol [8].

The cost-constrained ensemble has primarily been used with
Lν = 1 [11], [21], but the inclusion of multiple cost functions
has proven beneficial in the mismatched single-user setting [8],
[22]. We will see that the use of multiple costs is beneficial for
both the matched and mismatched MAC. We note that system
costs (as opposed to the auxiliary costs used here) can easily
be handled (e.g. see [8, Sec. VII], [22]), but in this paper we
assume for simplicity that the channel is unconstrained.

The following proposition from [8] will be useful.

Proposition 1. [8, Prop. 1] For ν = 1, 2, fix the in-
put distribution Qν along with Lν and the auxiliary cost
functions {aν,l}Lνl=1. Then µν,n = Ω(n−Lν/2) provided that
EQν [aν,l(Xν)2] <∞ for l = 1, . . . , Lν .

The main result of this subsection is the following theorem.

Theorem 3. The region RLM(Q) in (28)–(29) can be ex-
pressed as the set of rate pairs (R1, R2) satisfying

R1 ≤ sup
s≥0,a1(·)

E

[
log

q(X1, X2, Y )sea1(X1)

E
[
q(X1, X2, Y )sea1(X1) |X2, Y

]]
(33)

R2 ≤ sup
s≥0,a2(·)

E

[
log

q(X1, X2, Y )sea2(X2)

E
[
q(X1, X2, Y )sea2(X2) |X1, Y

]] ,
(34)

and at least one of

R1 ≤ sup
ρ2∈[0,1],s≥0,a1(·),a2(·)

−ρ2R2

+ E

[
log

(
q(X1, X2, Y )sea2(X2)

)ρ2
ea1(X1)

E
[(

E
[
q(X1, X2, Y )sea2(X2)

∣∣X1

])ρ2
ea1(X1)

∣∣Y ]
]

(35)
R2 ≤ sup

ρ1∈[0,1],s≥0,a1(·),a2(·)
−ρ1R1

+ E

[
log

(
q(X1, X2, Y )sea1(X1)

)ρ1
ea2(X2)

E
[(

E
[
q(X1, X2, Y )sea1(X1)

∣∣X2

])ρ1
ea2(X2)

∣∣Y ]
]
,

(36)
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where (X1, X2, Y,X1, X2) is distributed as
Q1(x1)Q2(x2)W (y|x1, x2)Q1(x1)Q2(x2).

Moreover, this region is achievable for any memoryless
MAC (possibly having infinite or continuous alphabets) and
any pair (Q1, Q2), where each supremum is subject to
EQν [aν(Xν)2] < ∞ (ν = 1, 2). Any point in the region can
be achieved using cost-constrained coding with L1 = L2 = 3.

Proof: The equivalence of this rate region to (28)–(29)
is proved in Appendix C. Here we prove the second claim of
the theorem by providing a direct derivation.

The key initial step is to obtain the following non-
asymptotic bound on the type-12 error event, holding for any
codeword distributions PX1

and PX2
:

pe,12(n,M1,M2) ≤ min
ν=1,2

rcu12,ν(n,M1,M2), (37)

where for ν = 1, 2 we define

rcu12,ν(n,M1,M2) ,

E

[
min

{
1, (Mν − 1)E

[
min

{
1, (Mνc − 1)

P
[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣Xν

]} ∣∣∣∣X1,X2,Y

]}]
. (38)

To prove this, we first write

pe,12

= P

[ ⋃
i 6=1,j 6=1

{
qn(X

(i)
1 ,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1

}]
(39)

= E

[
P

[ ⋃
i 6=1,j 6=1

{
qn(X

(i)
1 ,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1

}∣∣∣∣∣X1,X2,Y

]]
.

(40)

We obtain the above-mentioned bounds by applying Lemma
1 in Appendix A to the union in (40) (with Z1(i) = X

(i)
1 and

Z2(j) = X
(j)
2 ), and then writing min{1, α, β} ≤ min{1, α}

and min{1, α, β} ≤ min{1, β}.
Define Qnν (xν) ,

∏n
i=1Qν(xν,i) for ν = 1, 2. Expanding

(38) and applying Markov’s inequality and min{1, α} ≤ αρ

(0 ≤ ρ ≤ 1), we obtain1

rcu12,1(n,M1)

≤
∑

x1,x2,y

PX1
(x1)PX2

(x2)Wn(y|x1,x2)

(
M1

∑
x1

PX1
(x1)

×
(
M2

∑
x2
PX2

(x2)qn(x1,x2,y)s

qn(x1,x2,y)s

)ρ2)ρ1
(41)

for any ρ1 ∈ [0, 1], ρ2 ∈ [0, 1] and s ≥ 0. For ν = 1, 2, we let
aν(x) be one of the three cost functions in the ensemble, and
we define anν (xν) ,

∑n
i=1 aν(xν,i) and φν , EQν [aν(Xν)].

In accordance with the theorem statement, we assume that

1In the case of continuous alphabets, the summations should be replaced
by integrals as necessary.

EQν [aν(Xν)]2 < ∞, so that Proposition 1 holds. Using the
bounds on the cost functions in (32), we can weaken (41) to

rcu12,1(n,M1) ≤ e2δ(ρ1+ρ1ρ2+1)

×
∑

x1,x2,y

PX1
(x1)PX2

(x2)Wn(y|x1,x2)

(
M1

∑
x1

PX1
(x1)

×
(
M2

∑
x2
PX2(x2)qn(x1,x2,y)sea

n
2 (x2)

qn(x1,x2,y)sea
n
2 (x2)

)ρ2 ean1 (x1)

ea
n
1 (x1)

)ρ1
.

(42)

We upper bound (42) by substituting (31) and replacing the
summations over Dν,n by summations over all sequences on
Xnν . Writing the resulting terms (e.g. Wn(y|x1,x2)) as a
product from 1 to n and taking the supremum over (s, ρ1, ρ2)
and the cost functions, we obtain a bound whose exponent is

max
ρ1∈[0,1],ρ2∈[0,1]

Ecost
0,12,1(Q, ρ1, ρ2)− ρ1(R1 + ρ2R2), (43)

where

Ecost
0,12,1(Q, ρ1, ρ2) , sup

s≥0,a1(·),a2(·)

− logE

[(
E
[(

E
[
q(X1, X2, Y )sea2(X2) |X1

]
q(X1, X2, Y )sea2(X2)

)ρ2
× ea1(X1)

ea1(X1)

∣∣∣∣X1, X2, Y

])ρ1]
(44)

We obtain the condition in (35) by taking the derivative of
Ecc

0,12,1 at zero, analogously to the proof of Theorem 3. We
obtain (36) analogously by starting with rcu12,2 in place
of rcu12,1, and we obtain (33)–(34) via a simpler analysis
following the standard single-user setting [8].

Finally, we note that L1 = L2 = 3 suffices due to the
fact that the cost functions used in deriving (35)–(36) may
coincide, since the theorem statement only requires one of the
two to hold.

Theorem 3 extends Lapidoth’s MAC rate region to general
alphabets, analogously to the extension of the single-user LM
rate to general alphabet by Ganti et al. [7]. Compared to
the single-user setting, the extension is non-trivial, requiring
refined union bounds, as well as a technique for handling the
two additional in constraints in (29) one at a time, thus leading
to two type-12 conditions in (35)–(36).

C. Matched MAC Error Exponent

Here we apply our results to the setting of ML decoding,
where q(x1, x2, y) = W (y|x1, x2). The best known exponent
for the constant-composition ensemble was derived by Liu and
Hughes [12], and was shown to yield a strict improvement over
Gallager’s exponent for the i.i.d. ensemble [20] even after the
optimization of the input distributions.

We have seen that for a general decoding metric, the overall
error exponent Ecc

r given in (26) may be reduced when Ecc′

r,12

in (27) is used in place of Ecc
r,12. The following result shows

that the resulting expressions are in fact identical in the
matched case.
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Theorem 4. Under ML decoding (i.e. q(x1, x2, y) =
W (y|x1, x2)), we have for any input distributions (Q1, Q2)
and rates (R1, R2) that

min
{
Ecc
r,1(Q, R1), Ecc

r,2(Q, R2), Ecc
r,12(Q, R1, R2)

}
= min

{
Ecc
r,1(Q, R1), Ecc

r,2(Q, R2), Ecc′

r,12(Q, R1, R2)
}
.

(45)

Thus, both the left-hand side and right-hand side of (45) equal
the overall ensemble-tight error exponent.

Proof: See Appendix C.
While it is possible that Ecc

r,12 > Ecc′

r,12 under ML decoding,
Theorem 4 shows that this never occurs in the region where
Ecc
r,12 achieves the minimum in (26). Thus, combining Theo-

rem 4 and Theorem 1, we conclude that the exponent given in
[12] is ensemble-tight for the constant-composition ensemble
under ML decoding.

In [13, Sec. 4.2.4], [23], we show that the error exponent
of [12] admits a dual form resembling the i.i.d. exponent
of Gallager [20], but with additional optimization parameters
a1(·) and a2(·) that are functions of the input alphabets X1

and X2. As usual, this dual form can also be derived directly
via the cost-constrained ensemble, with the analysis remaining
valid for infinite and continuous alphabets.

D. Time-Sharing
Thus far, we have focused on the standard random coding

ensemble described by (8), where the codewords are indepen-
dent. It is well-known that even in the matched case, the union
of the resulting achievable rate regions over all (Q1, Q2) may
be non-convex, and time-sharing is needed to achieve the rest
of the capacity region [24]. There are two distinct ways of
doing so: (i) With explicit time-sharing, one splits the block
of length n into two or more smaller blocks, and uses separate
codebooks within each block; (ii) With coded time-sharing,
one still generates a single codebook, but the codewords are
conditionally independent given some time-sharing sequence
U on a time-sharing alphabet U . In particular, in the case
of constant-composition random coding, one may let U be
uniform on a type class corresponding to QU ∈ P(U), and let
each Xν be uniform on a conditional type class corresponding
to Qν ∈ P(Xν | U).

While both of these schemes yield the entire capacity region
in the matched case [19, Ch. 4], the coded time-sharing
approach is generally preferable in terms of exponents [12].
Intuitively, this is because explicit time-sharing shortens the
effective block length, thus diminishing the exponent.

Surprisingly, however, explicit time-sharing can outperform
coded time-sharing in the mismatched case, even in terms
of the achievable rate region. This is most easily understood
via the dual-domain expressions, and for concreteness we
consider the case |U| = 2 with QU = (λ, 1−λ). Let I1(Q, s)
denote the right-hand side of (33) with a fixed value of s in
place of the supremum. Using explicit time-sharing with two
different input distribution pairs Q(1) and Q(2), the condition
corresponding to (33) is given by

R1 ≤ λ sup
s≥0

I1(Q(1), s) +
(
1− λ

)
sup
s≥0

I1(Q(2), s), (46)

whereas coded time-sharing only permits

R1 ≤ sup
s≥0

(
λI1(Q(1), s) +

(
1− λ

)
I1(Q(2), s)

)
. (47)

These are obtained using similar arguments to the case without
time-sharing; see [13, Sec. 4.2.5] for further details. Similar
observations apply for the other rate conditions, including the
parameters ρ1 and ρ2 in (35)–(36).

It is evident from (46) (and the other analogous rate con-
ditions) that explicit time-sharing between two points can be
used to obtain any pair (R1, R2) on the line connecting two
achievable pairs corresponding to Q(1) and Q(2). On the other
hand, the same is only true for coded time-sharing if there
exists a single parameter s simultaneously maximizing both
terms in the objective function of (47) (and similarly for the
other rate conditions), which is not the case in general.

Building on this insight, in the following section, we
compare two forms of superposition coding for single-user
channels. The standard version can be viewed as analogous to
coded time-sharing, whereas the refined version can be viewed
as analogous to explicit time-sharing. As a result, the latter can
lead to higher achievable rates.

III. SUPERPOSITION CODING

In this section, we turn to the single-user mismatched
channel introduced in Section I-A1, and consider multiuser
coding schemes that can improve on standard schemes with
independent codewords. Some numerical examples are given
in Section IV.

A. Standard Superposition Coding

We first discuss a standard form of superposition coding that
has had extensive application in degraded broadcast channels
[25]–[27] and other network information theory problems [19].
This ensemble was studied in the context of mismatched
decoding in [9], [13], so we do not repeat the details here.

The parameters of the ensemble are an auxiliary alphabet
U , an auxiliary codeword distribution PU , and a conditional
codeword distribution PX|U . We fix two rates R0 and R1. An
auxiliary codebook {U (i)}M0

i=1 with M0 , benR0c codewords
is generated at random, with each auxiliary codeword indepen-
dently distributed according to PU . For each i = 1, . . . ,M0,
a codebook {X(i,j)}M1

j=1 with M1 , benR1c codewords
is generated at random, with each codeword conditionally
independently distributed according to PX|U . The message
m at the input to the encoder is indexed as (m0,m1), and for
any such pair, the corresponding codeword is X(m0,m1).

The following achievable rate for DMCs is obtained us-
ing constant-composition coding with some input distribution
QUX ∈ P(U×X ), in which PU is the uniform distribution on
a type class corresponding to QU , and PX|U is the uniform
distribution on a conditional type class corresponding to QX|U .
We define the sets

S(QUX) ,
{
PUXY ∈ P(U×X ×Y) : PUX = QUX

}
(48)
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T0(PUXY ) ,
{
P̃UXY ∈ P(U × X × Y) : P̃UX = PUX ,

P̃Y = PY ,EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )]
}

(49)

T1(PUXY ) ,
{
P̃UXY ∈ P(U × X × Y) : P̃UX = PUX ,

P̃UY = PUY , EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )]
}
. (50)

Theorem 5. [9], [13] Suppose that W is a DMC. For any finite
auxiliary alphabet U , and input distribution QUX ∈ P(U ×
X ), the rate

R = R0 +R1 (51)

is achievable provided that (R0, R1) satisfy

R1 ≤ min
P̃UXY ∈T1(QUX×W )

IP̃ (X;Y |U) (52)

R0 +R1 ≤ min
P̃UXY ∈T0(QUX×W )

IP̃ (U ;Y )≤R0

IP̃ (U,X;Y ). (53)

This rate is also known to be tight with respect to the
ensemble average [9], [13]. It is known to be at least as high
as Lapidoth’s expurgated parallel coding rate [6], though it is
not known whether the improvement can be strict.

Using similar steps to those in the previous section, one can
obtain the following equivalent dual form, which also remains
valid in the case of continuous alphabets [13, Sec. 5.2.2].

Theorem 6. [13] The achievable rate conditions in (52)–(53)
can be expressed as

R1 ≤ sup
s≥0,a(·,·)

E

[
log

q(X,Y )sea(U,X)

E[q(X̃, Y )sea(U,X̃) |U, Y ]

]
(54)

R0 ≤ sup
ρ1∈[0,1],s≥0,a(·,·)

−ρ1R1

+ E

log

(
q(X,Y )sea(U,X)

)ρ1
E
[(

E
[
q(X,Y )sea(U,X)

∣∣U])ρ1 ∣∣Y ]
 , (55)

where (U,X, Y, X̃, U,X) is distributed as
QUX(u, x)W (y|x)QX|U (x̃|u)QUX(u, x).

We observe that superposition coding has some similarity
to the coded time-sharing ensemble discussed in Section II-D,
in that both involve generating codewords x conditionally on
auxiliary sequences u according to the uniform distribution on
a type class. We saw in Section II-D that better rates are in fact
achieved by explicit time-sharing, in which one splits the block
length into sub-blocks and codes individually on each one. We
now apply this approach to superposition coding, yielding a
refined ensemble that can lead to higher achievable rates than
the standard version.

B. Refined Superposition Coding

The ensemble is defined as follows. We fix a finite alphabet
U , an input distribution QU ∈ P(U) and the rates R0 and
{R1u}u∈U . We write M0 , benR0c and M1u , benR1uc.
We let PU (u) be the uniform distribution on the type class

x1 = aabc

u

x

1 3 2 1 3 2 3 3 2 1 1 2

a c b a a b a a b b cc

x2 = bbbc

x3 = caaa

Figure 1. The construction of the codeword from the auxiliary sequence
u and the partial codewords x1, x2 and x3 for refined SC. Here we have
U = {1, 2, 3}, X = {a, b, c}, n1 = n2 = n3 = 4, and n = 12.

Tn(QU,n), where QU,n is a type with the same support as QU
such that maxu |QU,n(u)−QU (u)| ≤ 1

n . We set

PU (u) =
1

|Tn(QU,n)|
1
{
u ∈ Tn(QU,n)

}
(56)

and generate the length-n auxiliary codewords {U (i)}M0
i=1

independently according to PU . The difference compared to
standard superposition coding is that the codewords are not
generated conditionally independently given U (i). Instead, we
generate a number of partial codewords, and construct the
length-n codeword by placing the entries of a partial codeword
in the indices where U takes a particular value.

More precisely, for each u ∈ U , we define

nu , QU,n(u)n (57)

and fix a partial codeword distribution PXu
∈ P(Xnu). For

each i = 1, . . . ,M0 and u ∈ U , we generate the length-nu
partial codewords {X(i,ju)

u }M1u
ju=1 independently according to

PXu . For example, when U = {1, 2} we have{(
U (i),

{
X

(i,j1)
1

}M11

j1=1
,
{
X

(i,j2)
2

}M12

j2=1

)}M0

i=1

∼
M0∏
i=1

(
PU (u(i))

M11∏
j1=1

PX1
(x

(i,j1)
1 )

M12∏
j2=1

PX2
(x

(i,j2)
2 )

)
.

(58)

The message m at the encoder is indexed as
(m0,m11, . . . ,m1|U|). To transmit a given message, we
treat U (m0) as a time-sharing sequence; at the indices where
U (m0) equals u, we transmit the symbols of X(m0,m1u)

u .
There are M = M0

∏
uM1u codewords, and hence the rate is

R = R0 +
∑
uQU,n(u)R1u. An example of the construction

of the codeword x from the auxiliary sequence u and partial
codewords x1, x2 and x3 is shown in Figure 1, where we
have U = {1, 2, 3} and X = {a, b, c}.

While our main result is stated for an arbitrary finite
alphabet U , the analysis will be presented for U = {1, 2}
for clarity. We proceed by presenting several definitions for
this specific choice. We let Ξ(u,x1,x2) denote the function
for constructing the length-n codeword from the auxiliary
sequence and partial codewords, and we write

X(i,j1,j2) , Ξ(U (i),X
(i,j1)
1 ,X

(i,j2)
2 ). (59)
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We let yu(u) denote the subsequence of y corresponding to
the indices where u equals u, and similarly for Yu(u).

We assume without loss of generality that (m0,m1,m2) =
(1, 1, 1). We let U , X1, X2 and X be the codewords
corresponding to (1, 1, 1), yielding X = Ξ(U ,X1,X2).
We let U , X1 and X2 be the codewords corresponding
to an arbitrary message with m0 6= 1. For the index i

corresponding to U , we write X
(j1)

1 , X
(j2)

2 and X
(j1,j2) in

place of X(i,j1)
1 , X(i,j2)

2 and X(i,j1,j2) respectively. It follows
that X

(j1,j2)
= Ξ(U ,X

(j1)

1 ,X
(j2)

2 ).
Upon receiving a realization y of the output sequence Y ,

the decoder forms the estimate

(m̂0, m̂1, m̂2)

= arg max
(i,j1,j2)

qn(x(i,j1,j2),y) (60)

= arg max
(i,j1,j2)

qn1
(
x
(i,j1)
1 ,y1(u(i))

)
qn2
(
x
(i,j2)
2 ,y2(u(i))

)
,

(61)

where the objective in (61) follows by separating the in-
dices where u = 1 from those where u = 2. By writ-
ing the objective in this form, we see that for any given
i, the pair (j1, j2) with the highest metric is the one for
which j1 maximizes qn1(x

(i,j1)
1 ,y1(u(i))) and j2 maximizes

qn2(x
(i,j2)
2 ,y2(u(i))). We thus consider three error events:

(Type 0)
qn(X(i,j1,j2),Y )

qn(X,Y )
≥ 1 for some i 6= 1, j1, j2;

(Type 1)
qn1(X

(1,j1)

1 ,Y1(U))

qn1(X1,Y1(U))
≥ 1 for some j1 6= 1;

(Type 2)
qn2(X

(1,j2)

2 ,Y2(U))

qn2(X2,Y2(U))
≥ 1 for some j2 6= 1.

The corresponding probabilities are denoted by
pe,0(n,M0,M11,M12), pe,1(n,M11) and pe,2(n,M12)
respectively. Analogously to (10), the overall random-coding
error probability pe(n,M0,M11,M12) satisfies

1

2
max{pe,0, pe,1, pe,2} ≤ pe ≤ pe,0 + pe,1 + pe,2. (62)

While our analysis of the error probability will yield non-
asymptotic bounds and error exponents as intermediate steps,
we focus on the resulting achievable rates for clarity.

C. Rates for DMCs

In this subsection, we assume that the channel is a DMC.
We fix a joint distribution QUX , and let QUX,n be a corre-
sponding type with maxu,x |QUX,n(u, x)−QUX(u, x)| ≤ 1

n .
We let PXu

be the uniform distribution on the type class
Tnu

(
QX|U,n(·|u)

)
, yielding

PXu
(xu)

=
1∣∣Tnu(QX|U,n(·|u)

)∣∣1{xu ∈ Tnu(QX|U,n(·|u)
)}
. (63)

Combining this with (56), we have by symmetry that each pair
(U (i),X(i,j1,j2)) is uniformly distributed on Tn(QUX).

The main result of this section is stated in the following
theorem, which makes use of the LM rate defined in (5) and
the set T0 defined in (49).

Theorem 7. For any finite set U and input distribution QUX ,
the rate

R = R0 +
∑
u

QU (u)R1u (64)

is achievable provided that R0 and {R1u}|U|u=1 satisfy

R1u ≤ ILM
(
QX|U (·|u)

)
, u ∈ U (65)

R0 ≤ min
P̃UXY ∈T0(QUX×W )

IP̃ (U ;Y )+[
max

K⊆U,K6=∅

∑
u∈K

QU (u)
(
IP̃ (X;Y |U = u)−R1u

)]+
. (66)

Proof: As mentioned above, the proof is presented only
for U = {1, 2}; the same arguments apply in the general case.
Observe that the type-1 error event corresponds to the error
event for the standard constant-composition ensemble with rate
R11, length n1 = nQU (1), input distribution QX|U (·|1), and
ties treated as errors. A similar statement holds for the type-2
error probability pe,2, and the analysis for these error events
is identical to the LM rate derivation [1], [2], yielding (65).

The error probability for the type-0 event is given by

pe,0 = P

[ ⋃
i 6=1

⋃
j1,j2

{
qn(X(i,j1,j2),Y )

qn(X,Y )
≥ 1

}]
, (67)

where (Y |X = x) ∼ Wn(·|x). Writing the probability as
an expectation given (U ,X,Y ) and applying the truncated
union bound, we obtain

pe,0 = c0E

[
min

{
1, (M0 − 1)

×E

[
P
[ ⋃
j1,j2

{
qn(X

(j1,j2)
,Y )

qn(X,Y )
≥ 1

} ∣∣∣∣U]
∣∣∣∣∣U ,X,Y

]}]
,

(68)

where c0 ∈ [ 12 , 1], since for independent events the truncated
union bound is tight to within a factor of 1

2 [28, Lemma A.2].
We have written the probability of the union over j1 and j2
as an expectation given U .

Let the joint types of (U ,X,Y ) and (U ,X
(j1,j2)

,Y ) be
denoted by PUXY and P̃UXY respectively. We claim that

qn(X
(j1,j2)

,Y )

qn(X,Y )
≥ 1 (69)

can be written as

P̃UXY ∈ T0,n(PUXY ) , T0(PUXY )∩Pn(U ×X ×Y), (70)

where T0 is defined in (49). The constraint P̃UX = PUX
follows from the construction of the random coding ensemble,
P̃Y = PY follows since (U ,X,Y ) and (U ,X

(j1,j2)
,Y )

share the same Y sequence, and EP̃ [log q(X,Y )] ≥
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EP [log q(X,Y )] coincides with the condition in (69). Thus,
expanding (68) in terms of types, we obtain

pe,0 = c0
∑
PUXY

P
[(
U ,X,Y

)
∈ Tn(PUXY )

]
×min

{
1, (M0−1)

∑
P̃UXY ∈T0,n(PUXY )

P
[(
U ,y

)
∈ Tn(P̃UY )

]

× P
[ ⋃
j1,j2

{(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY )

}]}
, (71)

where we write (u,y) to denote an arbitrary pair such that y ∈
Tn(PY ) and (u,y) ∈ Tn(P̃UY ); note that these sequences
implicitly depend on PUXY and P̃UXY .

Similarly to the discussion following (61), we ob-
serve that

(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY ) if and only if(

X
(ju)

u ,yu(u)
)
∈ Tnu(P̃XY |U (·, ·|u)) for u = 1, 2. Thus,

applying Lemma 2 in Appendix A with Z1(j1) = X
(j1)
1 ,

Z2(j2) = X
(j2)
2 , A1 = Tn1

y1(u)(P̃XY |U (·, ·|1)), A2 =

Tn2

y2(u)(P̃XY |U (·, ·|2)), and A =
{

(X1,X2) : Xu ∈
Tnuyu(u)(P̃XY |U (·, ·|u)), u = 1, 2

}
, we obtain

P
[ ⋃
j1,j2

{(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY )

}]
= (72)

ζ ′0 min

{
1, min
u=1,2

M1uP
[(
Xu,yu(u)

)
∈ Tnu

(
P̃XY |U (·, ·|u)

)]
,

M11M12P
[ ⋂
u=1,2

{(
Xu,yu(u)

)
∈ Tnu

(
P̃XY |U (·, ·|u)

)}]}
,

(73)

where ζ ′0 ∈ [ 14 , 1]. This is a minimization of four terms
corresponding to the four subsets of {1, 2}.

Substituting (73) into (71) and applying standard properties
of types [14, Ch. 2], we obtain

lim
n→∞

− 1

n
log pe,0 = min

PUXY :PUX=QUX

min
P̃UXY ∈T0(PUXY )

D(PUXY ‖QUX ×W ) +

[
IP̃ (U ;Y )+[

max
K⊆U,K6=∅

∑
u∈K

QU (u)
(
IP̃ (X;Y |U = u)−R1u

)]+
−R0

]+
,

(74)

where we have replaced the minimizations over types by
minimizations over all distributions in the same way as the
proof of Theorem 1. By a similar argument to [2, Lemma 1],
the right-hand side of (74), with only the second minimization
kept, is continuous as a function of PUXY when restricted to
distributions whose support is the same as that of QUX ×W .
It follows that the right-hand side of (74) is positive whenever
(66) holds with strict inequality.

The proof of Theorem 7 gives an exponentially tight analy-
sis yielding the exponent in (74). This does not prove that
the resulting rate is ensemble-tight, since a subexponential
decay of the error probability to zero is possible in principle.
However, the changes required to prove the tightness of

the rate are minimal. We saw that each condition in (64)
corresponds to an error event with independent constant-
composition codewords and a reduced block length, and hence
it follows from existing analyses [4], [6] that pe,1 → 1 when
R11 fails this condition, and analogously for pe,2 and R12.
To see that pe,0 → 1 when (66) fails, we let Ei be the
event that qn(X(i,j1,j2),Y ) ≥ qn(X,Y ) for some (j1, j2),
let I0(PUXY ) denote the right-hand side of (66) with PUXY
in place of Q1 ×Q2 ×W , and write

pe,0 = P
[ ⋃
i 6=1

Ei
]

(75)

=
∑
PUXY

P[(U ,X,Y ) ∈ Tn(PUXY )]

×
(

1−
(
1− P[E2 |PUXY ])M0−1

)
(76)

≥
∑
PUXY

P[(U ,X,Y ) ∈ Tn(PUXY )]

×
(

1−
(
1− p0(n)e−nI0(PUXY ))M0−1

)
, (77)

where (76) follows since the events Ei are conditionally
i.i.d. given that (U ,X,Y ) has a given joint type PUXY , and
(77) holds for some subexponential factor p0(n) by (74). Next,
we observe from the law of large numbers that the joint type
of (U ,X,Y ) approaches Q1×Q2×W with high probability
as n → ∞. Moreover, by the same argument as that of the
LM rate [3, Lemma 1], I0(PUXY ) is continuous in PUXY .
Combining these observations, we readily obtain from (77)
that pe,0 → 1 if R0 > I0(Q1 ×Q2 ×W ), as desired.

D. Comparison to Standard Superposition Coding

In this subsection, we show that the conditions in (65)–(66)
can be weakened to (52)–(53) upon identifying

R1 =
∑
u

QU (u)R1u. (78)

Proposition 2. For any finite auxiliary alphabet U and
input distribution QUX , the rate maxR0,R11,...,R1|U| R0 +∑
uQU (u)R1u resulting from Theorem 7 is at least as high

as the rate maxR0,R1 R0 +R1 resulting from Theorem 5.

Proof: We begin by weakening (66) to (53). We lower
bound the right-hand side of (66) by replacing the maximum
over K by the particular choice K = U , yielding

R0 ≤ min
P̃UXY ∈T0(QUX×W )

IP̃ (U ;Y ) +
[
IP̃ (X;Y |U)−R1

]+
,

(79)
where we have used (78) and the definition of conditional mu-
tual information. We can weaken (79) to (53) using the chain
rule for mutual information, and noting that (79) is always sat-
isfied when the minimizing P̃UXY satisfies IP̃ (U ;Y ) > R0.

Next, we show that highest value of R1 permitted by the
|U| conditions in (65), denoted by R∗1, can be lower bounded
by the right-hand side of (52). From (78) and (65), we have

R∗1 =
∑
u

QU (u)IP̃∗(X;Y |U = u), (80)
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where P̃ ∗XY |U (·, ·|u) is the distribution that achieves the min-
imum in (5) under QX|U (·|u). Defining the joint distribution
P̃ ∗UXY accordingly with P̃ ∗U = QU , we can write (80) as

R∗1 = IP̃∗(X;Y |U). (81)

Therefore, we can lower bound R∗1 by the right-hand side of
(52) provided that P̃ ∗UXY ∈ T1(QUX ×W ). The constraints
P̃ ∗UX = QUX and P̃ ∗UY = PUY in (50) are satisfied since we
have chosen P̃ ∗U = QU , and since the constraints in (5) imply
P̃ ∗X|U (·|u) = QX|U (·|u) and P̃ ∗Y |U (·|u) = PY |U (·|u) for all
u ∈ U . The constraint EP̃∗ [log q(X,Y )] ≥ EP [log q(X,Y )]
is satisfied since, from (5), we have EP̃∗ [log q(X,Y ) |U =
u] ≥ EP [log q(X,Y ) |U = u] for all u ∈ U .

Intuitively, one can think of the gain of the refined su-
perposition coding ensemble as being due to a stronger de-
pendence among the codewords. For standard SC, the code-
words {X(i,j)}M1

j=1 are conditionally independent given U (i),
whereas for refined superposition coding this is generally not
the case. The additional structure leads to further constraints
in the minimizations, and maxima over more terms in the
objective functions, both leading to higher overall rates.

It should be noted, however, that the exponents for standard
superposition coding may be higher, particularly at low to
moderate rates. In particular, we noted in the proof of Theorem
7 that the type-1 and type-2 error events are equivalent to a
single-user channel, but the corresponding block lengths are
only n1 and n2. Thus, if either QU (1) or QU (2) is close to
zero, the corresponding exponent is small.

Finally, we recall that the standard superposition coding rate
is at least as high as Lapidoth’s expurgated parallel coding rate
[9], though no example of strict improvement is known.

E. Dual Expressions and General Alphabets

In this subsection, we present a dual expression for the
rate given in Theorem 7 in the case that |U| = 2, as well
as extending the result to general alphabets X and Y .

With U = {1, 2}, the condition in (66) is given by

R0 ≤ min
P̃UXY ∈T0(QUX×W )

IP̃ (U ;Y )

+
[

max
{
QU (1)

(
IP̃ (X;Y |U = 1)−R11

)
,

QU (2)
(
IP̃ (X;Y |U = 2)−R12

)
, IP̃ (X;Y |U)−R1

}]+
,

(82)

where
R1 ,

∑
u

QU (u)R1u. (83)

Since the right-hand side of (65) is the LM rate, we can use
the dual expression in (6). The main result of this subsection
gives a dual expression for (82), and extends its validity to
memoryless MACs with infinite or continuous alphabets.

We again use cost-constrained random coding. We consider
the ensemble given in (58), with PXu

given by

PXu
(xu) =

1

µu,nu

nu∏
i=1

QX|U (xu,i|ui)1
{
xu ∈ Du,nu

}
, (84)

where

Du,nu ,

{
xu :

∣∣∣∣∣ 1

nu

nu∑
i=1

au,l(xu,i)− φu,l

∣∣∣∣∣ ≤ δ

nu
,

l = 1, . . . , Lu

}
(85)

φu,l , EQu
[
au,l(Xu) |U = u

]
, (86)

and where µu,nu , {au,l} and δ are defined analogously to (32),
and nu is defined in (57).

Theorem 8. The condition in (82) holds if and only if the
following holds for at least one of u = 1, 2:

R0 ≤ sup
s≥0,ρ1∈[0,1],ρ2∈[0,1],a(·,·)

−
∑
u′=1,2

ρu(u′)QU (u′)R1u′

+ E

log

(
q(X,Y )su(U)ea(U,X)

)ρu(U)

E
[(

E
[
q(X,Y )su(U)ea(U,X)

∣∣U])ρu(U) ∣∣∣Y ]

(87)

where

ρ1(1) = ρ1, ρ1(2) = ρ1ρ2, s1(1) = ρ2s, s1(2) = s (88)
ρ2(1) = ρ1ρ2, ρ2(2) = ρ2, s2(1) = s, s2(2) = ρ1s (89)

and (U,X, Y, U,X) ∼ QUX(u, x)W (y|x)QUX(u, x).
Moreover, for any mismatched memoryless channel (possi-

bly having infinite or continuous alphabets) and input distribu-
tion QUX (U = 1, 2), the rate R = R0+

∑
u=1,2QU (u)R1u is

achievable for any triplet (R0, R11, R12) satisfying (65) (with
ILM defined in (6)) and (87) for at least one of u = 1, 2.
The supremum in (6) is subject to EQ[a(X)2] <∞, and that
in (87) is subject to EQ[a(U,X)2] < ∞. Furthermore, the
rate is achievable using cost-constrained coding in (84) with
L1 = L2 = 2.

Proof: Both the proof of the primal-dual equivalence is
and the direct derivation of (87) are given in Appendix D. The
choice L1 = L2 = 2 suffices since for u = 1, 2, one cost is
required for (65) and another for (87). It suffices to let the
cost functions for (87) with u = 1 and u = 2 coincide, since
the theorem only requires that one of the two hold.

The condition in (87) bears a strong resemblance to the
standard superposition coding condition in (55); the latter can
be recovered by setting ρ2 = 1 in the condition with u = 1,
or or ρ1 = 1 in the condition with u = 2.

IV. NUMERICAL EXAMPLES

A. Error Exponent for the Multiple-Access Channel

We revisit the parallel BSC example given by Lapidoth
[6], consisting of binary inputs X1 = X2 = {0, 1} and a
pair of binary outputs Y = {0, 1}2. The output is given
by Y = (Y1, Y2), where for ν = 1, 2, Yν is generated
by passing Xν through a binary symmetric channel (BSC)
with some crossover probability δν < 0.5. The mismatched
decoder assumes that both crossover probabilities are equal to
δ < 0.5. The decoder assumes that both crossover probabilities
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Figure 2. Error exponents Ecc
r,1 (dotted), Ecc

r,2 (dash-dot), Ecc
r,12 (solid)

and Ecc′
r,12 (dashed) for the parallel channel using δ1 = 0.05, δ2 = 0.25

and equiprobable input distributions on {0, 1}. The rate pair is given by
(R1, R2) = (αC1, αC2).

are equal. The corresponding decoding rule is equivalent to
minimizing sum of t1 and t2, where tν is the number of bit
flips from the input sequence xν to the output sequence yν .
As noted in [6], this decision rule is in fact equivalent to ML.

We let both Q1 and Q2 be equiprobable on {0, 1}. With this
choice, it was shown in [6] that the right-hand side of (30) is
no greater than

2

(
1−H2

(
δ1 + δ2

2

))
bits/use, (90)

where H2(·) is the binary entropy function in bits. In fact,
this is the same rate that would be obtained by considering
the corresponding single-user channel with X = (X1, X2),
and applying the LM rate with a uniform distribution on the
quaternary input alphabet [6].

On the other hand, the refined condition in (29) can be used
to prove the achievability of any (R1, R2) within the rectangle
with corners (0, 0) and (C1, C2), where Cν , 1−H2(δν) [6].
This implies that the mismatched capacity region coincides
with the (matched) capacity region.

We evaluate the error exponents using the optimization
software YALMIP [29]. Figure 2 plots each of the exponents as
a function of α, where the rate pair is (R1, R2) = (αC1, αC2).
While the overall error exponent Ecc

r (Q, R1, R2) in (26) is
unchanged at low to moderate values of α when Ecc′

r,12 in (27)
is used in place of Ecc

r,12, this is not true for high values of α.
Furthermore, consistent with the preceding discussion, Ecc′

r,12

is non-zero only for α < 0.865, whereas Ecc
r,12 is positive for

all α < 1. The fact that Ecc
r,12 and Ecc′

r,12 coincide at low values
of α is consistent with [17, Cor. 5], which states that Ecc′

r,12 is
ensemble-tight at low rates.

B. Achievable Rates for Single-User Channels

In this subsection, we provide examples comparing the two
versions of superposition coding and the LM rate. We do not
explicitly give values for Lapidoth’s rate [6], since for each

example given, we found it to coincide with the superposition
coding rate (see Theorem 5).

1) Sum Channel: We first consider a sum-channel analog
of the parallel-channel example given in Section IV-A. Given
two channels (W1,W2) respectively defined on the alphabets
(X1,Y1) and (X2,Y2), the sum channel is defined to be the
channel W (y|x) with |X | = |X1|+ |X2| and |Y| = |Y1|+ |Y2|
such that one of the two subchannels is used on each transmis-
sion [30]. One can similarly combine two metrics q1(x1, y1)
and q2(x2, y2) to form a sum metric q(x, y). Assuming without
loss of generality that X1 and X2 are disjoint and Y1 and Y2
are disjoint, we have

q(x, y) =


q1(x1, y1) x1 ∈ X1 and y1 ∈ Y1
q2(x2, y2) x2 ∈ X2 and y2 ∈ Y2
0 otherwise,

(91)

and similarly for W (y|x). Let Q̂1 and Q̂2 be the distribu-
tions that maximize the LM rate in (5) on the respective
subchannels. We set U = {1, 2}, QX|U (·|1) = (Q̂1,0) and
QX|U (·|2) = (0, Q̂2), where 0 denotes the zero vector. We
leave QU to be specified.

Combining the constraints P̃UX = QUX and
EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )] in (49), we find
that the minimizing P̃UXY in (66) only has non-zero values
for (u, x, y) such that (i) u = 1, x ∈ X1 and y ∈ Y1, or (ii)
u = 2, x ∈ X2 and y ∈ Y2. It follows that U is a deterministic
function of Y under the minimizing P̃UXY , and hence

IP̃ (U ;Y ) = H(QU )−HP̃ (U |Y ) = H(QU ). (92)

Therefore, the right-hand side of (66) is lower bounded by
H(QU ). Using (64), it follows that we can achieve the rate

H(QU ) +QU (1)ILM1 (Q̂1) +QU (2)ILM2 (Q̂2)

= log
(
eI

LM
1 (Q̂1) + eI

LM
2 (Q̂2)

)
(93)

where ILMν is the LM rate for subchannel ν, and the equality
follows by optimizing QU in the same way as [30, Sec.
16], yielding QU (1) = eI

LM
1 (Q̂1)

eI
LM
1 (Q̂1)+eI

LM
2 (Q̂2)

. Using similar
arguments to [6], it can be shown that the LM rate with an
optimized input distribution can be strictly less than (93) even
for simple examples (e.g. binary symmetric subchannels).

2) Zero Undetected Error Capacity: It was shown by
Csiszár and Narayan [3] that two special cases of the mis-
matched capacity are the zero-undetected erasures capacity
[31] and the zero-error capacity [32]. Here we consider the
zero-undetected erasures capacity, defined to be the highest
achievable rate in the case that the decoder is required to
know with certainty whether or not an error has occurred. For
any DMC, the zero-undetected erasures capacity is equal to
the mismatched capacity under the decoding metric q(x, y) =
1{W (y|x) > 0} [3].

We consider an example from [33], where X = Y =
{0, 1, 2}, and the channel is described by the entries of

W =

 0.75 0.25 0
0 0.75 0.25

0.25 0 0.75

 (94)
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where x indexes the rows and y indexes the columns.
Using an exhaustive search to three decimal places, we

found the optimized LM rate to be R∗LM = 0.599 bits/use,
using the input distribution Q = (0.449, 0.551, 0). It was
stated in [33] that the rate obtained by considering the
second-order product of the channel and metric (see [3]) is
equal to R∗LM2 = 0.616 bits/use. Using local optimization
techniques, we verified that this rate is achieved with Q =
(0, 0.250, 0, 0.319, 0, 0, 0, 0.181, 0.250), where the order of the
inputs is (0, 0), (0, 1), (0, 2), (1, 0), . . . , (2, 2).

The global optimization of (52)–(53) over U and QUX
appears to be difficult. Setting |U| = 2 and applying local
optimization techniques using a number of starting points,
we obtained an achievable rate of R∗sc = 0.695 bits/use,
with QU = (0.645, 0.355), QX|U (·|1) = (0.3, 0.7, 0) and
QX|U (·|2) = (0, 0, 1). Thus, superposition coding not only
yields an improvement over the single-letter LM rate, but also
over the two-letter version. Note that since the decoding metric
is the erasures-only metric, applying the LM rate to the k-th
order product channel achieves the mismatched capacity in the
limit as k → ∞ [3]; however, in this example, a significant
gap remains for k = 2.

3) A Case where Refined Superposition Coding Outper-
forms Standard Superposition Coding: Here we consider the
channel and decoding metric described by the entries of

W =


0.99 0.01 0 0
0.01 0.99 0 0
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

 (95)

q =


1 0.5 0 0

0.5 1 0 0
0.05 0.15 1 0.05
0.15 0.05 0.5 1

 . (96)

We have intentionally chosen a highly asymmetric channel and
metric, since such examples often yield larger gaps between
the various achievable rates. Using an exhaustive search to
three decimal places, we found the optimized LM rate to
be R∗LM = 1.111 bits/use, which is achieved by the input
distribution Q∗X = (0.403, 0.418, 0, 0.179).

Setting |U| = 2 and applying local optimization tech-
niques using a number of starting points, we obtained an
achievable rate of R∗rsc = 1.313 bits/use, with QU =
(0.698, 0.302), QX|U (·|1) = (0.5, 0.5, 0, 0) and QX|U (·|u) =
(0, 0, 0.528, 0.472). We denote the corresponding input distri-
bution by Q(1)

UX .
Applying similar techniques to the standard superposi-

tion coding rate, we obtained an achievable rate of R∗sc =
1.236 bits/use, with QU = (0.830, 0.170), QX|U (·|1) =
(0.435, 0.450, 0.115, 0) and QX|U (·|2) = (0, 0, 0, 1). We de-
note the corresponding input distribution by Q(2)

UX .
The achievable rates for this example are summarized in

Table I, where Q
(LM)
UX denotes the distribution in which U

is deterministic and the X-marginal maximizes the LM rate.
While the achievable rate of Theorem 7 coincides with that
of Theorem 5 under Q(2)

UX , the former is significantly higher
under Q(1)

UX . Both types of superposition coding yield a strict
improvement over the LM rate.

Table I
ACHIEVABLE RATES (BITS) FOR THE MISMATCHED CHANNEL (95)–(96).

Input Distribution Refined SC Standard SC

Q
(1)
UX 1.313 1.060

Q
(2)
UX 1.236 1.236

Q
(LM)
UX 1.111 1.111

Our parameters may not be globally optimal, and thus we
cannot conclude from this example that refined superposition
coding yields a strict improvement over standard superposition
coding (and hence over Lapidoth’s rate [6]) after optimizing U
and QUX . However, improvements for a fixed set of random-
coding parameters are still of interest due to the fact that global
optimizations are prohibitively complex in general.

V. CONCLUSION

We have provided techniques for studying multiuser
random-coding ensembles for channel coding problems with
mismatched decoding. The key initial step in each case is
the application of a refined bound on the probability of a
multiply-indexed union (cf. Appendix A), from which one can
apply constant-composition coding and the method of types
to obtain primal expressions and prove ensemble tightness, or
cost-constrained random coding to obtain dual expressions and
continuous-alphabet generalizations. We have demonstrated
our techniques on both the mismatched MAC and the single-
user channel with refined superposition coding, with the latter
providing a new achievable rate at least as good as all previous
rates in the literature.

After the initial preparation of this work, the superposition
coding rate from Theorems 5–6 was used to find an example
for which the LM rate is strictly smaller than the mismatched
capacity for a binary-input DMC [34], thus providing a
counter-example to the converse reported in [35]. Another
work building on this paper is [36], which considers the
matched relay channel, and shows that the utility of our refined
union bounds is not restricted to mismatched decoders.

APPENDIX A
UPPER AND LOWER BOUNDS ON THE PROBABILITY OF A

MULTIPLY-INDEXED UNION

Bounds on the random-coding error probability in channel
coding problems are often obtained using the truncated union
bound, which states that for any set of events {Ai}Ni=1,

P
[⋃
i

Ai

]
≤ min

{
1,
∑
i

P[Ai]
}
. (A.1)

In this paper, we are also interested in lower bounds on the
probability of a union, which are used to prove ensemble
tightness results. In particular, we make use of de Caen’s lower
bound [37], which states that

P
[⋃
i

Ai

]
≥
∑
i

P[Ai]
2∑

i′ P[Ai ∩Ai′ ]
. (A.2)
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In the case that the events are pairwise independent and
identically distributed, (A.2) proves the tightness of (A.1) to
within a factor of 1

2 ; see the proof of [38, Thm. 1].
In this section, we provide a number of upper and lower

bounds on the probability of a multiply-indexed union. In
several cases of interest, the upper and lower bounds coincide
to within a constant factor, and generalize the above-mentioned
tightness result of [38] to certain settings where pairwise
independence need not hold.

Lemma 1. Let {Z1(i)}N1
i=1 and {Z2(j)}N2

j=1 be independent
sequences of identically distributed random variables on the
alphabets Z1 and Z2 respectively, with Z1(i) ∼ PZ1 and
Z2(j) ∼ PZ2

. For any set A ⊆ Z1 ×Z2, we have:
1) A general upper bound is given by

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≤ min

{
1,

N1E
[

min
{

1, N2P
[
(Z1, Z2) ∈ A

∣∣Z1

]}]
,

N2E
[

min
{

1, N1P
[
(Z1, Z2) ∈ A

∣∣Z2

]}]}
(A.3)

where (Z1, Z2) ∼ PZ1
× PZ2

.
2) If {Z1(i)}N1

i=1 and {Z2(j)}N2
j=1 are pairwise independent,

then we have the lower bound

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≥ 1

4
min

{
1,

N1

P
[
(Z1, Z2) ∈ A

]2
P
[
(Z1, Z2) ∈ A ∩ (Z1, Z ′2) ∈ A

] , (A.4)

N2

P
[
(Z1, Z2) ∈ A

]2
P
[
(Z1, Z2) ∈ A ∩ (Z ′1, Z2) ∈ A

] ,
N1N2P

[
(Z1, Z2) ∈ A

]}
, (A.5)

where (Z1, Z
′
1, Z2, Z

′
2) ∼ PZ1(z1)PZ1(z′1)PZ2(z2)PZ2(z′2).

Proof: We first prove (A.3). Applying the union bound
to the union over i gives

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≤ N1P

[⋃
j

{(
Z1, Z2(j)

)
∈ A

}]
(A.6)

= N1E
[
P
[⋃

j

{(
Z1, Z2(j)

)
∈ A

} ∣∣∣∣Z1

]]
. (A.7)

Applying the truncated union bound to the union over j, we
recover the second term in the outer minimization in (A.3).
The third term is obtained similarly by applying the union
bounds in the opposite order, and the first term is trivial.

To prove (A.5), we make use of de Caen’s bound in (A.2).
Noting by symmetry that each term in the outer summation is
equal, and splitting the inner summation according to which

of the (i, j) indices coincide with (i′, j′), we obtain

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≥ N1N2P

[
(Z1, Z2) ∈ A

]2
×
(

(N1 − 1)(N2 − 1)P
[
(Z1, Z2) ∈ A

]2
+ (N2 − 1)P

[
(Z1, Z2) ∈ A ∩ (Z1, Z

′
2) ∈ A

]
+ (N1 − 1)P

[
(Z1, Z2) ∈ A ∩ (Z ′1, Z2) ∈ A

]
+ P

[
(Z1, Z2) ∈ A

])−1
. (A.8)

The lemma follows by upper bounding Nν − 1 by Nν for
ν = 1, 2, and upper bounding the four terms in the (·)−1 by
four times the maximum of those terms.

The following lemma gives conditions under which a weak-
ened version of (A.3) matches (A.5) to within a factor of four.
Recall that νc denotes the item in {1, 2} differing from ν

Lemma 2. Let {Z1(i)}N1
i=1 and {Z2(j)}N2

j=1 be independent
sequences of identically distributed random variables on the
alphabets Z1 and Z2 respectively, with Z1(i) ∼ PZ1

and
Z2(j) ∼ PZ2

. Fix a set A ⊆ Z1 ×Z2, and define

Aν ,
{
zν ∈ Zν : (z1, z2) ∈ A for some zνc ∈ Zνc

}
(A.9)

for ν = 1, 2.

1) A general upper bound is given by

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≤ min

{
1,

N1P
[
Z1 ∈ A1

]
, N2P

[
Z2 ∈ A2

]
, N1N2P

[
(Z1, Z2) ∈ A

]}
,

(A.10)

where (Z1, Z2) ∼ PZ1
× PZ2

.
2) If (i) {Z1(i)}N1

i=1 are pairwise independent, (ii)
{Z2(j)}N2

j=1 are pairwise independent, (iii) P
[
(z1, Z2) ∈

A
]

is the same for all z1 ∈ A1, and (iv) P
[
(Z1, z2) ∈ A

]
is the same for all z2 ∈ A2, then

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≥ 1

4
min

{
1,

N1P
[
Z1 ∈ A1

]
, N2P

[
Z2 ∈ A2

]
, N1N2P

[
(Z1, Z2) ∈ A

]}
.

(A.11)

Proof: We obtain (A.10) by weakening (A.3) in multiple
ways. The second term in (A.10) follows since the inner
probability in the second term of (A.3) is zero whenever
P[Z1 /∈ A], and since min{1, ζ} ≤ 1. The third term in (A.10)
is obtained similarly, and the fourth term follows from the fact
that min{1, ζ} ≤ ζ.

The lower bound in (A.11) follows from (A.5), and since
the additional assumptions in the second part of the lemma
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statement imply

P
[
(Z1, Z2) ∈ A

]2
P
[
(Z1, Z2) ∈ A ∩ (Z1, Z ′2) ∈ A

]
=

P
[
Z1 ∈ A1

]2P[(z1, Z2) ∈ A
]2

P
[
Z1 ∈ A1

]
P
[
(z1, Z2) ∈ A

]2 , (A.12)

= P
[
Z1 ∈ A1

]
(A.13)

where z1 is an arbitrary element of A1. The third term in the
minimization in (A.5) can be handled similarly.

A generalization of Lemma 2 to the probability of a union
indexed by K values can be found in [13, Appendix D].

APPENDIX B
EQUIVALENT FORMS OF CONVEX OPTIMIZATION

PROBLEMS

The achievable rates and error exponents derived in this
paper are presented in both primal and dual forms, analogously
to the LM rate in (5)–(6). The corresponding proofs of
equivalence are more involved than that of the LM rate (see
[4]). Here we provide two lemmas that are useful in proving
the equivalences. The following lemma generalizes the result
that (5) and (6) are equivalent, and is proved using Lagrange
duality [39, Ch. 5].

Lemma 3. Fix the finite alphabets Z1 and Z2, the non-
negative functions f(z1, z2) and g(z1, z2), the distributions
PZ1 ∈ P(Z1) and PZ2 ∈ P(Z2), and a constant β. Then

min
P̃Z1Z2

: P̃Z1
=PZ1

,P̃Z2
=PZ2

,

EP̃ [log f(Z1,Z2)]≥β

IP̃ (Z1;Z2)− EP̃ [log g(Z1, Z2)]

(B.1)
is equal to

sup
λ≥0,µ1(·)

∑
z1

PZ1
(z1)µ1(z1) + λβ

−
∑
z2

PZ2
(z2) log

∑
z1

PZ1
(z1)f(z1, z2)λg(z1, z2)eµ1(z1),

(B.2)

where the supremum over µ1(·) is taken over all real-valued
functions on Z1.

Proof: The Lagrangian [39, Sec. 5.1.1] of the optimiza-
tion problem in (B.1) is given by

L =
∑
z1,z2

P̃Z1Z2
(z1, z2)

(
log

P̃ (z1, z2)

PZ1
(z1)PZ2

(z2)
− log g(z1, z2)

− λ log f(z1, z2)

)
+
∑
z1

µ1(z1)
(
PZ1(z1)− P̃Z1(z1)

)
+
∑
z2

µ2(z2)
(
PZ2

(z2)− P̃Z2
(z2)

)
+ λβ, (B.3)

where λ ≥ 0, µ1(·) and µ2(·) are Lagrange multipliers. Since
the objective in (B.1) is convex and the constraints are affine,
the optimal value is equal to L for some choice of P̃Z1Z2 and
the Lagrange multipliers satisfying the Karush-Kuhn-Tucker
(KKT) conditions [39, Sec. 5.5.3].

We proceed to simplify (B.3) using the KKT conditions.
Setting ∂L

∂P̃ (z1,z2)
= 0 yields

1 + log
P̃Z1Z2(z1, z2)

PZ1
(z1)PZ2

(z2)f(z1, z2)λg(z1, z2)

− µ1(z1)− µ2(z2) = 0. (B.4)

Solving for P̃Z1Z2
(z1, z2) applying the constraint P̃Z2

= PZ2
,

and then solving for µ2(z2), we obtain

µ2(z2) = 1− log
∑
z1

PZ1
(z1)f(z1, z2)λg(z1, z2)eµ1(z1).

(B.5)
Substituting (B.4) into (B.3) yields

L = −1 +
∑
z1

µ1(z1)PZ1(z1) +
∑
z2

µ2(z2)PZ2(z2) + λβ,

(B.6)
and applying (B.5) yields (B.2) with the supremum omitted.
It follows that (B.2) is an upper bound to (B.1).

To obtain a matching lower bound, we make use of the
log-sum inequality [40, Thm. 2.7.1] similarly to [4, Appendix
A]. For any P̃Z1Z2

satisfying the constraints in (B.1), we can
lower bound the objective in (B.1) as follows:∑

z1,z2

P̃Z1Z2
(z1, z2) log

P̃ (z1, z2)

PZ1(z1)PZ2(z2)g(z1, z2)
(B.7)

≥
∑
z1,z2

P̃Z1Z2
(z1, z2)

× log
P̃ (z1, z2)

PZ1
(z1)PZ2

(z2)f(z1, z2)λg(z1, z2)
+ λβ (B.8)

=
∑
z1,z2

P̃Z1Z2(z1, z2)

× log
P̃ (z1, z2)

PZ1(z1)PZ2(z2)f(z1, z2)λg(z1, z2)eµ1(z1)

+
∑
z1

PZ1
(z1)µ1(z1) + λβ, (B.9)

where (B.8) holds for any λ ≥ 0 due to the constraint
EP̃ [log f(Z1, Z2)] ≥ β, and (B.9) holds for any µ1(·) by an
expansion of the logarithm. Applying the log-sum inequality,
we can lower bound (B.9) by the objective in (B.2). Since
λ ≥ 0 and µ1(·) are arbitrary, the proof is complete.

When using Lemma 3, we will typically be interested the
case that either g(·, ·) = 1, or f(·, ·) = 1 and β = 0.

The following lemma will allow certain convex optimiza-
tion problems to be expressed in a form where, after some
manipulations, Lemma 3 can be applied.

Lemma 4. Fix a positive integer d and let D be a convex
subset of Rd. Let f(z), g(z), g1(z) and g2(z) be convex
functions mapping Rd to R such that

g1(z) + g2(z) ≤ g(z) (B.10)

for all z ∈ D. Then

min
z∈D

f(z) +
[

max
{
g1(z), g2(z), g(z)

}]+
(B.11)
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is equal to

max

{
min
z∈D

f(z) +
[

max
{
g1(z), g(z)

}]+
,

min
z∈D

f(z) +
[

max
{
g2(z), g(z)

}]+}
. (B.12)

Proof: We define the following functions (ν = 1, 2):

Φ0(z) , f(z) +
[
g(z)

]+
(B.13)

Φν(z) , f(z) +
[

max
{
gν(z), g(z)

}]+
. (B.14)

Since f(·), g(·), g1(·) and g2(·) are convex by assumption,
it follows from the composition rules in [39, Sec. 3.2.4] that
Φ0(·), Φ1(·) and Φ2(·) are also convex.

We wish to show that

min
z∈D

max
{

Φ1(z),Φ2(z)
}

= max

{
min
z∈D

Φ1(z),min
z∈D

Φ2(z)

}
.

(B.15)
We define the following regions for ν = 1, 2:

Rν =
{
z : Φν(z) > Φ0(z)

}
. (B.16)

The key observation is thatR1 andR2 are disjoint. To see this,
we observe from (B.13)–(B.14) that any z ∈ R1∩R2 satisfies
g1(z) > g(z) and g2(z) > g(z). Combined with (B.10), these
imply g1(z) < 0 and g2(z) < 0, and it follows from (B.13)–
(B.14) that Φ0(z) = Φ1(z) = Φ2(z), in contradiction with
the assumption that z ∈ R1 ∩ R2. Thus, R1 ∩ R2 is empty,
which implies that g1(z) and g2(z) cannot simultaneously be
the unique maximizers in (B.14) for both ν = 1 and ν = 2.
Combining this with (B.13), we obtain

Φ0(z) = min
{

Φ1(z),Φ2(z)
}
. (B.17)

To prove (B.15), we use a proof by contradiction. Let the
left-hand side and right-hand side be denoted by f∗ and f̃∗

respectively. The inequality f∗ ≥ f̃∗ holds by definition, so
we assume that f∗ > f̃∗. Let z∗1 and z∗2 minimize Φ1 and Φ2

respectively on the right-hand side of (B.15), so that

f̃∗ = max
{

Φ1(z∗1),Φ2(z∗2)
}
. (B.18)

The assumption f∗ > f̃∗ implies that

Φ2(z∗1) > Φ1(z∗1) (B.19)
Φ1(z∗2) > Φ2(z∗2). (B.20)

Next, we define

Φ̂ν(λ) , Φν
(
λz∗1 + (1− λ)z∗2

)
(B.21)

for λ ∈ [0, 1] and ν = 0, 1, 2. Since any convex function
is also convex when restricted to a straight line [39, Section
3.1.1], it follows that Φ̂0, Φ̂1 and Φ̂2 are convex in λ. From
(B.19)–(B.20), we have

Φ̂2(1) > Φ̂1(1) (B.22)

Φ̂1(0) > Φ̂2(0). (B.23)

Since Φ̂1 and Φ̂2 are convex, they are also continuous (at least
in the region that they are finite), and it follows that the two
must intersect somewhere in (0, 1), say at λ∗. Therefore,

Φ̂0(λ∗) = min
{

Φ̂1(λ∗), Φ̂2(λ∗)
}

(B.24)

= max
{

Φ̂1(λ∗), Φ̂2(λ∗)
}

(B.25)

≥ min
z∈D

max
{

Φ1(z),Φ2(z)
}

(B.26)

= f∗, (B.27)

where (B.24) follows from (B.17). Finally, we have the follow-
ing contradiction: (i) Combining (B.27) with the assumption
that f∗ > f̃∗, we have

Φ̂0(λ∗) > f̃∗ = max{Φ̂1(1), Φ̂2(0)}, (B.28)

where the equality follows from (B.18); (ii) From (B.17),
we have Φ̂0(λ) = min{Φ̂1(λ), Φ̂2(λ)}, and it follows from
(B.22)–(B.23) that Φ̂0(1) = Φ̂1(1) and Φ̂0(0) = Φ̂2(0). Using
the convexity of Φ̂0 and Jensen’s inequality, we have

Φ̂0(λ∗) ≤ λ∗Φ̂1(1) + (1− λ∗)Φ̂2(0) (B.29)

≤ max{Φ̂1(1), Φ̂2(0)}. (B.30)

APPENDIX C
MULTIPLE-ACCESS CHANNEL PROOFS

A. Preliminary Lemma for Proving Theorem 3

The following lemma expresses (29) in a form that is more
amenable to Lagrange duality techniques.

Lemma 5. The achievable rate condition in (29) holds if the
following holds for at least one of ν = 1, 2:

R1 +R2 ≤ min
P̃X1X2Y

∈T12(Q1×Q2×W )

IP̃ (Xν ;Y )≤Rν

D(P̃X1X2Y ‖Q1 ×Q2 × PY ) (C.1)

Proof: We first write the condition in (29) as

0 ≤ min
P̃X1X2Y

∈T12(Q1×Q2×W )
max

{
D(P̃X1X2Y ‖Q1×Q2×PY )

− (R1 +R2), IP̃ (X1;Y )−R1, IP̃ (X2;Y )−R2

}
, (C.2)

where the equivalence is seen by noting that this condition is
always satisfied when the minimizer satisfies IP̃ (X1;Y ) > R1

or IP̃ (X2;Y ) > R2. Next, we claim that this condition is
equivalent to the following holding for at least one of ν = 1, 2:

0 ≤ min
P̃X1X2Y

∈T12(Q1×Q2×W )
max

{
D(P̃X1X2Y ‖Q1×Q2×PY )−(R1+R2), IP̃ (Xν ;Y )−Rν

}
.

(C.3)

This is seen by applying Lemma 4 with the following identi-
fications (ν = 1, 2):

f(z) = 0 (C.4)

g(z) = D
(
P̃X1X2Y ‖Q1 ×Q2 × PY

)
−R1 −R2 (C.5)

gν(z) = IP̃ (Xν ;Y )−Rν . (C.6)
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From the last two lines and the identity

D
(
P̃X1X2Y ‖Q1 ×Q2 × PY

)
= IP̃ (X1;Y )

+ IP̃ (X2;Y ) + IP̃ (X1;X2|Y ), (C.7)

which holds under the constraints present in the definition of
T12 in (14), we see that the condition in (B.10) is satisfied.

Finally, the lemma follows from (C.3) by reversing the step
used to obtain (C.2).

B. Proof of First Part of Theorem 3

Each expression in the theorem statement is derived simi-
larly, so we focus on (35). We claim that (C.1) holds if and
only if

R1 ≤ max
ρ2∈[0,1]

min
P̃X1X2Y

∈T12(PX1X2Y
)
IP̃ (X1;Y )

+ ρ2IP̃ (X2;X1, Y )− ρ2R2, (C.8)

where here and in the remainder of the proof we write
PX1X2Y , Q1 × Q2 × W . To see this, we first note that
by the identity

D
(
PX1X2Y ‖Q1 ×Q2 × PY

)
= IP (X1;Y ) + IP (X2;X1, Y ),

(C.9)
(C.3) (with ν = 1) is equivalent to

R1 ≤ min
P̃X1X2Y

∈T12(Q1×Q2×W )
IP̃ (X1;Y )

+
[
IP̃ (X2;X1, Y )−R2

]+
. (C.10)

Next, we apply the identity [α]+ = max0≤ρ1≤1 ρ1α. The
resulting objective is linear in ρ1 and jointly convex in
(PX1X2Y , P̃X1X2Y ), so we can apply Fan’s minimax theorem
[41] to interchange the maximization and minimizations, thus
yielding (C.8).

We define the sets

T ′12(PX1X2Y , P̂X1Y ) ,
{
P̃X1X2Y ∈ P(X1 ×X2 × Y) :

P̃X2
= PX2

, P̃X1Y = P̂X1Y ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}

(C.11)
T ′′12(PX1X2Y ) ,

{
P̂X1Y ∈ P(X1 × Y) :

P̂X1
= PX1

, P̂Y = PY

}
. (C.12)

It follows that P̃X1X2Y ∈ T12(PX1X2Y ) (see (14)) if and
only if P̃X1X2Y ∈ T ′12(PX1X2Y , P̂X1Y ) for some P̂X1Y ∈
T ′′12(PX1X2Y ). We can therefore replace the minimization over
P̃X1X2Y ∈ T12(PX1X2Y ) in (C.8) with minimizations over
P̂X1Y ∈ T ′′12(PX1X2Y ) and P̃X1X2Y ∈ T ′12(PX1X2Y , P̂X1Y ).

We prove the theorem by performing the minimization in
several steps, and performing multiple applications of Lemma
3. Each such application will yield an overall optimization
of the form sup min sup{·}, and we will implicitly use Fan’s
minimax theorem [41] to obtain an equivalent expression of
the form sup sup min{·}. Thus, we will leave the optimization
of the dual variables (i.e. the suprema) until the final step.

Step 1: We first consider the minimization of the term
IP̃ (X1;X2, Y ) over P̃X1X2Y when PX1X2Y ∈ S(Q) and
P̂X1Y ∈ T ′′12(PX1X2Y ) are fixed, and thus all of the terms
in the objective in (C.8) other than IP̃ (X1;X2, Y ) are fixed.
The minimization is given by

F1 , min
P̃X1X2Y

∈T ′12(PX1X2Y
,P̂X1Y

)
IP̃ (X1;X2, Y ). (C.13)

Applying Lemma 3 with PZ1
= PX2

, PZ2
= P̂X1Y and

µ1(·) = a2(·), we obtain the dual expression

F1 = −
∑
x1,y

P̂X1Y (x1, y) log
∑
x2

PX2(x2)q(x1, x2, y)sea2(x2)

+ s
∑

x1,x2,y

PX1X2Y (x1, x2, y) log q(x1, x2, y)+∑
x2

PX2
(x2)a2(x2). (C.14)

Step 2: After Step 1, the overall objective (see (C.8)) is
given by

IP̂ (X1;Y ) + ρ2F1 − ρ2R2, (C.15)

where we have replaced IP̃ (X1;Y ) by IP̂ (X1;Y ) due to the
constraint P̃X1Y = P̂X1Y in (C.11). Since the only terms
involving P̂X1Y are IP̂ (X1;Y ) and the first term in (C.14),
we consider the minimization

F2 , min
P̂X1Y

∈T ′′12(PX1X2Y
)
IP̂ (X1;Y )− ρ2

∑
x1,y

P̂X1Y (x1, y)

× log
∑
x2

PX2
(x2)q(x1, x2, y)sea2(x2). (C.16)

Applying Lemma 3 with PZ1
= PX1

, PZ2
= PY and µ1(·) =

a1(·), we obtain

F2 =
∑
x1

PX1(x1)a1(x1)−
∑
y

PY (y) log
∑
x1

PX1(x1)

×
(∑

x2

PX2(x2)q(x1, x2, y)sea2(x2)

)ρ2
ea1(x1). (C.17)

Step 3: From (C.14), (C.15) and (C.17), the overall objec-
tive is now given by

F3 , F2 − ρ2R2

+ ρ2
∑

x1,x2,y

PX1X2Y (x1, x2, y) log q(x1, x2, y)sea2(x2).

(C.18)

Substituting (C.17) and performing some rearrangements, we
obtain the objective in (35), and conclude the proof by taking
the supremum over ρ2, s, a1(·) and a2(·).

C. Proof of Theorem 4

We begin with the following proposition, which shows that
the exponents (Ecc

r,1, E
cc
r,2, E

cc′

r,12) (see (17) and (27)) under
ML decoding coincide with those by Liu and Hughes in the
absence of time-sharing [12].
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Proposition 3. Under ML decoding (i.e. q(x1, x2, y) =
W (y|x1, x2)), Ecc

r,ν and Ecc′

r,12 can be expressed as

Ecc
r,ν(Q, Rν) = min

PX1X2Y
∈S(Q)

D(PX1X2Y ‖Q1 ×Q2 ×W )

+
[
IP (Xν ;Xνc , Y )−Rν

]+
(C.19)

Ecc′

r,12(Q, R1, R2) = min
PX1X2Y

∈S(Q)
D(PX1X2Y ‖Q1 ×Q2 ×W )

+
[
D(PX1X2Y ‖Q1 ×Q2 × PY )− (R1 +R2)

]+
. (C.20)

Proof: The proof is similar to that of [15, Lemma 9],
so we provide only an outline, and we focus on the type-
12 exponent. Consider any pair (PX1X2Y , P̃X1X2Y ) satisfying
the constraints of (27). If D(P̃X1X2Y ‖Q1 × Q2 × PY ) ≥
D(PX1X2Y ‖Q1×Q2×PY ), we can lower bound the objective
of (27) by that of (C.20). In the remaining case, we may
use the constraint EP̃ [logW ] ≥ EP [logW ] to lower bound
the objective in (27) by that of (C.20) with P̃X1X2Y in
place of PX1X2Y . This proves that (C.20) lower bounds (27),
and the matching upper bound follows immediately from the
fact that P̃X1X2Y = PX1X2Y satisfies the constraints of the
minimization in (27).

We know that Ecc
r,12 ≥ Ecc′

r,12 always holds, and hence the
left-hand side of (45) is greater than or equal to the right-
hand side. It remains to prove the reverse inequality. From
the definition of T12(PX1X2Y ), P̃X1X2Y = PX1X2Y always
satisfies the constraints of (18), and hence

Ecc
r,12(Q, R1, R2) ≤ F12(Q, R1, R2), (C.21)

where

F12(Q, R1, R2) , min
PX1X2Y

∈S(Q)
D(PX1X2Y ‖Q1 ×Q2 ×W )

+
[

max
{
IP (X1;Y )−R1, IP (X2;Y )−R2,

D
(
PX1X2Y ‖Q1 ×Q2 × PY

)
−R1 −R2

}]+
. (C.22)

We will prove (45) by showing that

min
{
Ecc
r,1(Q, R1), Ecc

r,2(Q, R2), F12(Q, R1, R2)
}

≤ min
{
Ecc
r,1(Q, R1), Ecc

r,2(Q, R2), Ecc′

r,12(Q, R1, R2)
}
.

(C.23)

It suffices to show that whenever F12 exceeds Ecc′

r,12, F12 also
greater than or equal to either Ecc

r,1 or Ecc
r,2. Comparing (C.20)

and (C.22), the objective in (C.22) only exceeds that of (C.20)
when the maximum in (C.22) is achieved by IP (X1;Y )−R1

or IP (X2;Y )− R2. We show that the former implies F12 ≥
Ecc
r,2; it can similarly be shown that the latter implies F12 ≥

Ecc
r,1. If IP (X1;Y )−R1 achieves the maximum, we have

IP (X1;Y )−R1 ≥ D
(
PX1X2Y ‖Q1 ×Q2 × PY

)
−R1 −R2.

(C.24)
Using the identity (C.9), we can write (C.24) as
IP (X2;X1, Y ) ≤ R2. For any PX1X2Y satisfying this
property, the objective in (C.19) (with ν = 2) equals
D(PX1X2Y ‖Q1 × Q2 × W ), and thus cannot exceed the
objective in (C.22). It follows that F12 ≥ Ecc

r,2.

APPENDIX D
REFINED SUPERPOSITION CODING PROOFS

A. A Preliminary Lemma

Similarly to Lemma 5 for the MAC, the following lemma
gives an alternative expression for (82) that is more amenable
to Lagrange duality techniques.

Lemma 6. The condition in (82) holds if and only if the
following holds for at least one of u = 1, 2:

R0 ≤ min
P̃UXY ∈T0(QUX×W )

IP̃ (U ;Y ) +
[

max
{

QU (u)
(
IP̃ (X;Y |U = u)−R1u

)
, IP̃ (X;Y |U)−R1

}]+
(D.1)

Proof: This is a special case of Lemma 4 in Appendix B
with the following identifications (u = 1, 2):

f(z) = IP̃ (U ;Y ) (D.2)
g(z) = IP̃ (X;Y |U)−R1 (D.3)

gu(z) = QU (u)
(
IP̃ (X;Y |U = u)−R1u

)
, (D.4)

where we recall that R1 =
∑
uQU (u)R1u. In this case, the

condition in (B.10) holds with equality.

B. Proof of First Part of Theorem 8

We show the equivalence of (D.1) (ν = 1) and (87) (u =
1); identical arguments apply for ν = u = 2. The primal
expression is written in terms of a minimization over P̃UXY . It
is convenient to “split” this distribution into three distributions:
P̃UY , P̂XY , P̃XY |U (·, ·|1) and ˆ̂

PXY , P̃XY |U (·, ·|2). Using
a similar argument to the start of Section C-B, we can write
the right-hand side of (D.1) as

sup
ρ1∈[0,1],ρ2∈[0,1]

min
P̃UY ,P̂XY ,

ˆ̂
PXY

IP̃ (U ;Y ) + ρ1QU (1)IP̂ (X;Y )

+ ρ1ρ2QU (2)I ˆ̂
P

(X;Y )− ρ1R11 − ρ1ρ2R12. (D.5)

Defining PUXY , QUX × W , the minimization is subject
to the constraints (i) P̃U = QU , (ii) P̂X = QX|U (·|1), (iii)
ˆ̂
PX = QX|U (·|2), (iv) P̃Y = PY , (v) P̂Y = P̃Y |U (·|1),

(vi) ˆ̂
PY = P̃Y |U (·|2), (vii) QU (1)EP̂ [log q(X,Y )] +

QU (2)E ˆ̂
P

[log q(X,Y )] ≥ EP [log q(X,Y )].
Similarly to Section C-B, we apply the minimization in

several steps, making repeated use of Lemma 3. We implicitly
apply Fan’s minimax theorem [41] after each step, so that the
supremum over the dual variables can be left until the end.
We provide less detail than the amount given in Section C-B,
since the general steps are similar.

Step 1: For given joint distributions P̃UY and P̂XY , the
minimization min ˆ̂

PXY
I ˆ̂
P

(X;Y ) subject to the constraints
(iii), (vi) and (vii) has a dual expression given by

F1 , −F1,1 + F1,2 + F1,3 − sQU (1)F1,4, (D.6)
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where

F1,1 ,
∑
y

P̃Y |U (y|2) log
∑
x

QX|U (x|2)q(x, y)sQU (2)ea2(x)

(D.7)

F1,2 ,
∑
x2

QX|U (x|2)a2(x) (D.8)

F1,3 , s
∑
x,y

PXY (x, y) log q(x, y) (D.9)

F1,4 ,
∑
x,y

P̂XY (x, y) log q(x, y), (D.10)

and where s ≥ 0 and a2(·) are dual variables.
Step 2: For a given joint distribution P̃UY , the minimization

minP̂XY IP̂ (X;Y )− sρ2QU (2)F1,4(P̂XY ) subject to (ii) and
(v) has a dual expression given by

F2 , −F2,1 + F2,2, (D.11)

where

F2,1 ,
∑
y

P̃Y |U (y|1) log
∑
x

QX|U (x|1)q(x, y)sρ2QU (2)ea1(x)

(D.12)

F2,2 ,
∑
x

QX|U (x|1)a1(x), (D.13)

and where a1(·) is a dual variable.
Step 3: Next, we consider the minimization

minP̃UY IP̃ (U ;Y ) − ρ1QU (1)F2,1 − ρ1ρ2QU (2)F1,1 subject
to (i) and (iv). The objective can equivalently be expressed as

F3 , IP̃ (U ;Y )−
∑
u

ρ1(u)
∑
y

P̃UY (u, y)

× log
∑
x

QX|U (x|u)q(x, y)s1(u)ea(u,x) (D.14)

using the definitions in (88) along with a(u, x) , au(x). The
dual expression is given by

F3 =
∑
u

QU (u)b(u)−
∑
y

PY (y) log
∑
u

QU (u)

×
(∑

x

QX|U (x|u)q(x, y)s1(u)ea(u,x)
)ρ1(u)

eb(u), (D.15)

where b(·) is a dual variable.
Step 4: The final objective is given by

F4 , F3 + ρ1QU (1)F2,1 + ρ1ρ2QU (2)
(
F1,2 + F1,3)

−
∑
u=1,2

ρ1(u)QU (u)R1u. (D.16)

After applying some algebraic manipulations, we obtain the
dual expression

−
∑
u=1,2

ρ1(u)QU (u)R1u +
∑
u,x,y

PUXY (u, x, y)

×log

(
q(x, y)s1(u)ea(u,x)

)ρ1(u)
eb(u)∑

uQU (u)
(∑

xQX|U (x|u)q(x, y)s1(u)ea(u,x)
)ρ1(u)

eb(u)
.

(D.17)

To conclude the proof, we show that the variable b(u) can
be removed from the numerator and denominator in (D.17)
without affecting the dual optimization. For ρ1 > 0 and
ρ2 > 0, this follows by factoring b(u) into a(u, x). Using the
identity E[eb(U)] ≥ eE[b(U)] (by Jensen’s inequality), we find
that the optimal value of the objective is zero when ρ1 = 0,
regardless of whether b(u) is present. For the remaining case,
namely ρ1 > 0 and ρ2 = 0, the objective depends on a(u, x)
only for u = 1. Moreover, since (D.17) depends on b(·) only
through the difference b(2) − b(1), we may set b(2) = 0
without loss of generality. The remaining parameter b(1) can
be factored into a(1, x).

C. Proof of Second Part of Theorem 8
We focus on the derivation of (87) with u = 1, since the case

u = 2 is handled similarly. The ideas used in the derivation
are similar to those for the MAC (see the proof of Theorem
3), but the details are more involved.

Applying Lemma 1 to the union in (68), with Z1(i) =

X
(1,i)
1 and Z2(j) = X

(1,j)
2 , we obtain

pe,0 ≤ E

[
min

{
1, (M0 − 1)E

[
min

{
1,M11E

[
min

{
1,

M12P
[
qn
(
X,Y

)
qn(X,Y )

≥ 1
∣∣∣X1

]} ∣∣∣U]} ∣∣∣∣∣U ,X,Y

]}]
.

(D.18)

Using (61), Markov’s inequality, and min{1, ζ} ≤ ζρ (ρ ∈
[0, 1]), we obtain2

pe,0 ≤ (M0M
ρ1
11M

ρ1ρ2
12 )ρ0

∑
u,x1,x2

PU (u)PX1(x1)PX2(x2)

×
∑
y

Wn(y|Ξ(u,x1,x2))

(∑
u

PU (u)

×
(∑

x1

PX1
(x1)

(
qn1
(
x1,y1(u))

qn1(x1,y1(u))

)ρ2s)ρ1
×
(∑

x2

PX2
(x2)

(
qn2
(
x2,y2(u))

qn2(x2,y2(u))

)s)ρ1ρ2)ρ0
, (D.19)

where s ≥ 0 and ρ1, ρ2 ∈ [0, 1] are arbitrary. Using the
definition of the ensemble in (84)–(86), we obtain

pe,0 ≤̇ (M0M
ρ1
11M

ρ1ρ2
12 )ρ0

×
∑

u,x1,x2

PU (u)PX1(x1)PX2(x2)
∑
y

Wn(y|Ξ(u,x1,x2))

×

(∑
u

PU (u)

(∑
x1

PX1(x1)

×
(
qn1
(
x1,y1(u))

qn1(x1,y1(u))

)ρ2s ean1
1 (x1)

ea
n1
1 (x1)

)ρ1
×
(∑

x2

PX2
(x2)

(
qn2
(
x2,y2(u))

qn2(x2,y2(u))

)s
ea
n2
2 (x2)

ea
n2
2 (x2)

)ρ1ρ2)ρ0
,

(D.20)

2In the case of continuous alphabets, the summations should be replaced
by integrals as necessary.
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where for u = 1, 2, au(·) is one of the Lu = 2 cost functions in
(85), and anuu (xu) ,

∑nu
i=1 au(xu,i). For each (u,x1,x2,y),

we write the argument to the summation over y in (D.20) as
a product of two terms, namely

T1 ,Wn(y|Ξ(u,x1,x2))

×
(
qn1(x1,y1(u))−ρ1ρ2se−ρ1a

n1
1 (x1)

× qn2(x2,y2(u))−ρ1ρ2se−ρ1ρ2a
n2
2 (x2)

)ρ0
(D.21)

T2 ,

(∑
u

PU (u)

×
(∑

x1

PX1(x1)qn1
(
x1,y1(u))ρ2sea

n1
1 (x1)

)ρ1
×
(∑

x2

PX2
(x2)qn2

(
x2,y2(u))sea

n2
2 (x2)

)ρ1ρ2)ρ0
. (D.22)

Since PXu
(xu) is upper bounded by a subexponential pref-

actor times
∏n
i=1QX|U (xu,i|u) for u = 1, 2 (see Proposition

1), we have∑
x1

PX1
(x1)qn1

(
x1,y1(u))ρ2sea

n1
1 (x1)

≤̇
n1∏
i=1

∑
x1

QX|U (x1|1)q(x1, y1,i(u))ρ2sea1(x1) (D.23)∑
x2

PX2(x2)qn2
(
x2,y2(u))sea

n2
2 (x2)

≤̇
n2∏
i=1

∑
x2

QX|U (x2|2)q(x2, y2,i(u))sea2(x2), (D.24)

where for u = 1, 2, yu,i(u) is the i-th entry of yu(u).
Using the definitions in (88) along with a(u, x) , au(x), we
therefore obtain(∑

x1

PX1
(x1)qn1

(
x1,y1(u))ρ2sea

n1
1 (x1)

)ρ1
×
(∑

x2

PX2
(x2)qn2

(
x2,y2(u))sea

n2
2 (x2)

)ρ1ρ2
(D.25)

≤̇
( n1∏
i=1

∑
x1

QX|U (x1|1)q(x1, y1,i(u))ρ2sea1(x1)

)ρ1
×
( n2∏
i=1

∑
x2

QX|U (x2|2)q(x2, y2,i(u))sea2(x2)

)ρ1ρ2
(D.26)

=

n∏
i=1

(∑
x

QX|U (x|ui)q(x, yi)s1(ui)ea(ui,x)
)ρ1(ui)

. (D.27)

Hence, and using the fact that PU (u) ≤̇QnU (u) (see [14,
Ch. 2]), we obtain

T2 ≤̇
n∏
i=1

(∑
u

QU (u)

×
(∑

x

Q(x|u)q(x, yi)
s1(u)ea(u,x)

)ρ1(u))ρ0
. (D.28)

A similar argument (without the need for the ≤̇ steps) gives

T1 =

n∏
i=1

W (yi|xi)
(
q(xi, yi)

−ρ1(ui)s1(ui)e−ρ1(ui)a(ui,xi)
)ρ0

,

(D.29)
where we have used the fact that Wn(y|Ξ(u,x1,x2)) =
Wn1(y1(u)|x1)Wn2(y2(u)|x2). Substituting (D.28) and
(D.29) into (D.20), we obtain

pe,0 ≤̇ (M0M
ρ1
11M

ρ1ρ2
12 )ρ0

∑
u,x

PUX(u,x)

n∏
i=1

∑
y

W (y|xi)

×
(∑

u

QU (u)

(∑
x

QX|U (x|ui)

×
(
q(x, yi)

q(xi, yi)

)s1(ui) ea(ui,x)
ea(ui,xi)

)ρ1(ui))ρ0
, (D.30)

where

PUX(u,x) ,
∑
x1,x2

PU (u)PX1
(x1)PX2

(x2)

× 1{x = Ξ(u,x1,x2)}. (D.31)

If PUX were i.i.d. on QUX , then (D.30) would yield an error
exponent that is positive when (87) (u = 1) holds with strict
inequality, by taking ρ0 → 0 similarly to Theorem 3. The
same can be done in the present setting by upper bounding
PUX by a subexponential prefactor times QnUX , analogously
to (D.23)–(D.24). More precisely, we have

PUX(u,x)

≤̇
∑
x1,x2

PU (u)

( n∏
i=1

QX|U (x1,i|1)

)

×
( n∏
i=1

QX|U (x2,i|2)

)
1{x = Ξ(u,x1,x2)} (D.32)

= PU (u)QnX|U (x|u) (D.33)

≤̇ QnU (u)QnX|U (x|u) = QnUX(u,x). (D.34)
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