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Internal Enriched Categories
Dissertation Summary

Enrico Ghiorzi

This dissertation introduces and develops the theory of internal enriched
categories, arising from the internalization of the theory of enriched categories.
Given an internal monoidal category V in an ambient category ℰ, we define the
notions of V-enriched category, functor and natural transformation. We then
develop such theory, which presents many of the good properties of standard
enriched category theory. Notably, under suitable conditions, the category of
internal V-enriched categories and their functors is monoidal closed.

Internal enriched categories admit a notion of internal weighted limit, anal-
ogously to how internal categories admit internal limits. Such theory of limits
constitutes a major focus point in the dissertation and yields fundamental
results such as the adjoint functor theorem. It is observed that internal catego-
ries are intrinsically small and some of them are non-trivial examples of small
complete categories, whereas the only standard small complete categories are
complete lattices. As a consequence, the internal theory is better behaved than
that of standard categories, particularly in relation with size issues, while still
featuring interesting examples.

Moreover, to frame it into a wider context, the notion of internal enriched
category is compared with related notions from the literature, such as those
of indexed enriched category and enriched generalized multicategory. It turns
out that internal enriched categories are indeed strongly connected with such
other notions, thus providing a novel approach to–and, possibly, insight into–
other topics in category theory.
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Introduction
It is a remarkable feature of the Effective Topos (Hyland 1982) that it contains
a small subcategory which is in some sense complete. That something of this
kind should be true was originally suggested by Eugenio Moggi as a way to
understand how realizability toposes give rise to models for impredicative
polymorphism. Concrete versions of such models already appeared in Girard
1972. The relevant subcategory identified within the Effective Topos has
been called the category of Modest Sets. The sense in which it is complete is a
delicate matter. That and other aspects of the situation are considered in detail
in Hyland, Robinson, and Rosolini 1990. For the purposes of this dissertation
however it will be enough to know that the Modest Sets form a small complete
subcategory of the Category of Assemblies (equivalently, the ¬¬-separated
objects in the Effective Topos, identified in Hyland 1982) in a sense which
we shall make precise in chapter 2. This notion of (strong) completeness is
related in a reasonably straightforward way—using the externalization of an
internal category—to the established notion for indexed categories (Paré and
Schumacher 1978). However we do not exploit this explicitly and keep the
exposition as internal as possible. There is a rough sketch of the indexed point
of view in Hyland 1982.

Aside from the applications to polymorphism, the existence of a small com-
plete category remains underexploited. Section 3.1 of Hyland 1988 contains a
little small complete category theory, inspired by the understanding of indexed
categories (Paré and Schumacher 1978), but even that has never been worked
through in any detail. We are not going to address that lack in this dissertation:
rather, we want to propose a different perspective, that of enriched category
theory.

This dissertation introduces the notion of internal enriched category theory,
that is, enriched category theory internal to a suitable ambient category ℰ.
Given a complete (and so co-complete) symmetric monoidal category 𝒱 within
ℰ, we consider categories enriched in 𝒱 and internal to ℰ. (These themselves
form a category indexed over ℰ.) Our aim is to develop an attractive theory of
such internal enriched categories.

Our leading example of such a situation is provided by taking 𝒱 to be the
internal category of modest sets within ℰ the Category of Assemblies. In that
case 𝒱 is an internal subcategory of ℰ and enriched categories are essentially
special categories internal to ℰ. Even within the Category of Assemblies, there
should be many other examples of our general situation where the enriched
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Introduction

categories are not simply special categories. In particular, if 𝑇 is a commutative
monad acting on 𝒱, then the category of 𝑇-algebras should give an internal
symmetric monoidal category in which one can enrich. We briefly address this
at the end of the dissertation.

The dissertation is organized as follows.
Some categorical background to the dissertation is presented in chapter 1.

The focus of the dissertation is on enriched category theory internal to a
suitable ambient category, so we discuss internal categories and internal
monoidal categories. However, when handling internal category theory, one
needs to consider from time to time e.g. all such categories and give definitions
which are not strictly within the internal logic. It is helpful to see such material
from the perspective of indexed category theory, as that gives a way to talk
about large categories over a base. While we shall not need to make this
perspective explicit throughout the dissertation, we include here a treatment
of indexed categories as motivating background for the main material of the
dissertation.

The usual setting for enriched category theory involves a symmetric monod-
ical closed category which is complete and cocomplete (Kelly 1982). We try
to follow essentially the same approach in our internal theory, so we have to
consider, in particular, the completeness of our enriching symmetric monoidal
categories. There is relatively little on this topic in the existing literature and
the fullest treatment (Hyland, Robinson, and Rosolini 1990) is concerned with
issues irrelevant to the context in which we develop our theory. Hence, in chap-
ter 2 we give a treatment of limits and completeness for internal categories.

In chapter 3 we introduce the main objects of study in the dissertation, that
is, internal categories enriched in an internal complete symmetric monoidal
closed category. We make the comparison with the indexed setting and then
introduce the basic machinery of the theory of enrichment, including a crucial
calculus of ends. A major topic is the construction and properties of the
exponential (or enriched category of functors) between enriched categories.
After we address that in some detail, we are then able to present a form of the
Yoneda lemma and Yoneda embedding.

We finally come to the focal point of the dissertation in chapter 4, in which
we discuss completeness and cocompleteness for internal enriched categories.
Here, we find a pleasing contrast with Kelly’s classical theory: there is no need
to consider matters of size, as all objects under consideration are internal and
can thus be thought of as small. So our results—for example the adjoint functor
theorem—appear clean and uncluttered by the usual delicate set-theoretic
considerations.

We have not developed the theory of internal enriched categories simply for
its own sake and in our concluding chapter 5, we suggest directions for future
work.

Finally, in appendix A we conduct a kind of sanity check on the notion of
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internal enriched category, by showing that it can be presented as an example
of Leinster’s notion of enriched generalised multicategory (Leinster 2002,
2004).
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1. Background
In this chapter we quickly recall, without any claim of completeness, some
topics in Category Theory which will be needed as background. Although
these topics are standard and well-known, it is useful to spell them out anyway
to set the notation. Aside from that, we assume the reader to be familiar with
the basic notions of Category Theory. In this respect, we shall regard Borceux
(1994) and Mac Lane (1989) as our main references.

In the context of this dissertation, let ℰ be a category with finite limits, which
we will regard as our ambient category. We also require ℰ to have a cartesian
monoidal structure, that is, a monoidal structure given by a functorial choice
of binary products ×ℰ ∶ ℰ × ℰ → ℰ and a chosen terminal object 𝟙ℰ.

Notice that, as a category with finite limits, ℰ is a model for cartesian
logic, or finite limit logic. So, we will frequently use its internal language to
ease the notation. The internal language will be extended to typed lambda-
calculus when we will further assume ℰ to be locally cartesian closed. There
are multiple accounts of the internal language of categories in the literature.
In particular, we shall follow Crole (1993) and Johnstone (2002), but, since
we only make a basic use of the internal language, other references would be
equally adequate.

1.1. Internal Categories
We start by giving the definitions of internal category, functor and natural
transformation using the internal language of ℰ as described before.

Definition 1.1.1 (internal category). An internal category (or category object)
𝑨 in ℰ is a diagram

𝐴0 𝐴1 𝐴1 s×t 𝐴1id𝑨

s𝑨

t𝑨

∘𝑨

in ℰ (where 𝐴1 s×t 𝐴1 is the pullback of s𝑨 and t𝑨) satisfying the usual axioms
for categories, which can be expressed in the internal language of ℰ as follows.

𝑎∶ 𝐴0 ⊢ s𝑨(id𝑨(𝑎)) = 𝑎∶ 𝐴0
𝑎∶ 𝐴0 ⊢ t𝑨(id𝑨(𝑎)) = 𝑎∶ 𝐴0

5



1. Background

(𝑔, 𝑓 ) ∶ 𝐴1 s×t 𝐴1 ⊢ s𝑨(𝑔 ∘𝑨 𝑓 ) = s𝑨(𝑓 ) ∶ 𝐴0
(𝑔, 𝑓 ) ∶ 𝐴1 s×t 𝐴1 ⊢ t𝑨(𝑔 ∘𝑨 𝑓 ) = t𝑨(𝑔)∶ 𝐴0

(ℎ, 𝑔, 𝑓 ) ∶ 𝐴1 s×t 𝐴1 s×t 𝐴1 ⊢ ℎ ∘𝑨 (𝑔 ∘𝑨 𝑓 ) = (ℎ ∘𝑨 𝑔) ∘𝑨 𝑓 ∶ 𝐴1
𝑓 ∶ 𝐴1 ⊢ 𝑓 ∘𝑨 id𝑨(s𝑨(𝑓 )) = 𝑓∶ 𝐴1
𝑓 ∶ 𝐴1 ⊢ id𝑨(t𝑨(𝑓 )) ∘𝑨 𝑓 = 𝑓 ∶ 𝐴1

We now define a notion of functor of internal categories with relative compo-
sition and identity, so that internal categories and their functors shall form a
category.

Definition 1.1.2 (internal functor). Let 𝑨 and 𝑩 be internal categories in
ℰ. A functor of internal categories 𝐹∶ 𝑨 → 𝑩 is given by a pair of arrows
𝐹0 ∶ 𝐴0 → 𝐵0 and 𝐹1 ∶ 𝐴1 → 𝐵1 such that

𝑓 ∶ 𝐴1 ⊢ s𝑩(𝐹1(𝑓 )) = 𝐹0(s𝑨(𝑓 ))∶ 𝐵0
𝑓 ∶ 𝐴1 ⊢ t𝑩(𝐹1(𝑓 )) = 𝐹0(t𝑨(𝑓 ))∶ 𝐵0

(𝑔, 𝑓 ) ∶ 𝐴1 s×t 𝐴1 ⊢ 𝐹1(𝑔 ∘𝑨 𝑓 ) = 𝐹1(𝑔) ∘𝑩 𝐹1(𝑓 ) ∶ 𝐵1.

The composition 𝐺 ∘ 𝐹 of two consecutive functors 𝑨 𝐹−→ 𝑩 𝐺−→ 𝑪 is defined by

𝑎∶ 𝐴0 ⊢ (𝐺 ∘ 𝐹)0(𝑎) ≔ 𝐺0(𝐹0(𝑎))∶ 𝐶0
𝑓 ∶ 𝐴1 ⊢ (𝐺 ∘ 𝐹)1(𝑓 ) ≔ 𝐺1(𝐹1(𝑓 ))∶ 𝐶1.

The identity functor id𝑨 ∶ 𝑨 → 𝑨 is defined by

𝑎∶ 𝐴0 ⊢ (id𝑨)0(𝑎) ≔ 𝑎∶ 𝐴0
𝑓 ∶ 𝐴1 ⊢ (id𝑨)1(𝑓 ) ≔ 𝑓∶ 𝐴1.

With the composition so defined, internal categories in ℰ and their func-
tors form a category Catℰ. In the following remark, we notice some useful
properties of Catℰ in relation to slicing and change of base.
Remark 1.1.3. Let ℰ′ be another category with finite limits, and 𝐹∶ ℰ → ℰ′ a
functor preserving finite limits. Then, there is a functor 𝐹∶ Catℰ → Catℰ′ (with
notation overload) applying 𝐹 to the underlying graph of internal categories.
Remark 1.1.4. Let 𝑖 ∶ 𝐽 → 𝐼 be an arrow in ℰ. Then, there is an adjunction
𝑖! ⊣ 𝑖∗ ∶ ℰ/𝐼 → ℰ/𝐽 where the functor 𝑖! ∶ ℰ/𝐽 → ℰ/𝐼 is given by post-composition
with 𝑖, and the functor 𝑖∗ ∶ ℰ/𝐼 → ℰ/𝐽 is given by pullback along 𝑖. This
adjunction extends to internal categories, yielding 𝑖! ⊣ 𝑖∗ ∶ Catℰ/𝐼 → Catℰ/𝐽.

In particular, the unique arrow !𝐼 ∶ 𝐼 → 𝟙ℰ yields an adjunction 𝐼! ⊣ 𝐼∗ ∶ Catℰ →
Catℰ/𝐼.
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1.1. Internal Categories

While correct, the use we made of the internal language is quite unwieldy,
especially when dealing with terms whose type is the object of arrows of an
internal category. We then introduce conventions to ease the use of the internal
language, by bringing it closer to the standard notation of category theory.

Notation 1.1.5. Given arrows 𝐹∶ 𝑋 → 𝐴1 and 𝑆, 𝑇∶ 𝑋 → 𝐴0, we shall write

𝑥∶ 𝑋 ⊢ 𝐹(𝑥)∶ 𝑆(𝑥) → 𝑇(𝑥)∶ 𝐴1 or 𝑥∶ 𝑋 ⊢ 𝑆(𝑥) 𝐹(𝑥)−−−→ 𝑇(𝑥)∶ 𝐴1

instead of 𝑥∶ 𝑋 ⊢ s𝑨𝐹(𝑥) = 𝑆(𝑥)∶ 𝐴0 and 𝑥∶ 𝑋 ⊢ t𝑨𝐹(𝑥) = 𝑇(𝑥)∶ 𝐴0. More-
over, given 𝐺∶ 𝑋 → 𝐴1 and 𝑈∶ 𝑋 → 𝐴0 such that 𝑥∶ 𝑋 ⊢ 𝐺(𝑥)∶ 𝑇(𝑥) →
𝑈(𝑥)∶ 𝐴1, we shall write

𝑥∶ 𝑋 ⊢ 𝑆(𝑥) 𝐹(𝑥)−−−→ 𝑇(𝑥) 𝐺(𝑥)−−−→ 𝑈(𝑥)∶ 𝐴1

instead of 𝑥∶ 𝑋 ⊢ 𝐺(𝑥)∘𝑨𝐹(𝑥)∶ 𝐴1. Finally, when we have a term 𝑎0, 𝑎1 ∶ 𝐴0, 𝑓 ∶ 𝐴1 ⊢
𝑡(𝑎0, 𝑎1, 𝑓 ) ∶ 𝐵 we shall write

(𝑓 ∶ 𝑎0 → 𝑎1)∶ 𝐴1 ⊢ 𝑡(𝑓 , 𝑎0, 𝑎1)∶ 𝐵

in place of 𝑓 ∶ 𝐴1 ⊢ 𝑡(s𝑨(𝑓 ), t𝑨(𝑓 ), 𝑓 ) ∶ 𝐵. Then, we can use the familiar notation
for commuting diagrams even in the internal language.

With the previous notation, it is easy to define natural transformations
between functors of internal categories, with relative horizontal and vertical
compositions and identity, so that internal categories with their functors and
the natural transformations between them shall form a 2-category.

Definition 1.1.6 (natural transformations). Let 𝐹, 𝐺∶ 𝑨 → 𝑩 be functors of
internal categories in ℰ. A natural transformation 𝛼∶ 𝐹 → 𝐺∶ 𝑨 → 𝑩 is given
by an arrow 𝛼∶ 𝐴0 → 𝐵1 such that

𝑎∶ 𝐴0 ⊢ 𝐹0(𝑎) 𝛼(𝑎)−−−→ 𝐺0(𝑎)∶ 𝐵1,

(𝑓 ∶ 𝑎 → 𝑎′)∶ 𝐴1 ⊢
𝐹0(𝑎) 𝐺0(𝑎)

𝐹0(𝑎′) 𝐺0(𝑎′)

𝛼(𝑎)

𝐹1(𝑓 ) 𝐺1(𝑓 )

𝛼(𝑎′)

∶ 𝐵1.

The vertical and horizontal compositions of natural transformations in

𝑪 𝑨 𝑩 𝑫𝐿

𝐹

𝐺

𝐻

𝛼

𝛽

𝑅
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1. Background

are given by

𝑎∶ 𝐴0 ⊢ (𝛼𝛽)(𝑎) ≔ 𝐹0(𝑎) 𝛼(𝑎)−−−→ 𝐺0(𝑎)
𝛽(𝑎)
−−−→ 𝐻0(𝑎)∶ 𝐵1

𝑐 ∶ 𝐶0 ⊢ (𝛼𝐿)(𝑎) ≔ 𝐹0(𝐿0(𝑐)) 𝛼(𝐿(𝑐))−−−−−→ 𝐺0(𝐿0(𝑐))∶ 𝐵1

𝑎∶ 𝐴0 ⊢ (𝑅𝛼)(𝑎) ≔ 𝑅0(𝐹0(𝑎))
𝑅1(𝛼(𝑎))
−−−−−−→ 𝑅0(𝐺0(𝑎))∶ 𝐷1.

The identity natural transformation id𝐹 ∶ 𝐹 → 𝐹∶ 𝑨 → 𝑩 is defined by

𝑎∶ 𝐴0 ⊢ id𝐹(𝑎) ≔ 𝐹0(𝑎)
id𝑨(𝐹0(𝑎))
−−−−−−−→ 𝐹0(𝑎)∶ 𝐵1.

With the compositions so defined, internal categories in ℰ with their functors
and the natural transformations between them form a 2-category Catℰ. Notice
that there is a notation overload, but context is usually sufficient to distinguish
between occurrences of Catℰ as a category or as a 2-category.

The category of internal categories is well-behaved with respect to slicing,
as the following remark makes clear.

The following proposition can be proved by a completely routine application
of the internal language of ℰ.

Proposition 1.1.7. The category Catℰ has finite limits induced point-wise
by the corresponding limits in ℰ. In particular, there is a terminal internal
category 𝟙Catℰ

and a binary product ×Catℰ of internal categories making Catℰ
a cartesian monoidal category.

There is also an obvious functor Catℰ → ℰ, given in the next definition.

Definition 1.1.8. The objects functor is the monoidal functor 𝑈∶ Catℰ → ℰ
sending an internal category 𝑨 into its object of objects 𝐴, and an internal
functor 𝐹∶ 𝑨 → 𝑩 into its object component 𝐹0 ∶ 𝐴 → 𝐵.

We now present a few remarkable examples of internal categories.
Example 1.1.9. Let 𝐴 be an object of ℰ. The discrete category 𝐝𝐢𝐬(𝐴) over 𝐴 is
given by

𝐝𝐢𝐬(𝐴)0 = 𝐴 𝐝𝐢𝐬(𝐴)1 = 𝐴 𝐝𝐢𝐬(𝐴)1 s×t 𝐝𝐢𝐬(𝐴)1 ≅ 𝐴
id𝐝𝐢𝐬(𝐴)1=

id𝐴

s𝐝𝐢𝐬(𝐴)1
=id𝐴

t𝐝𝐢𝐬(𝐴)1
=id𝐴

∘𝐝𝐢𝐬(𝐴)1
=id𝐴

This extends to a monoidal functor 𝐝𝐢𝐬∶ ℰ → Catℰ.
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1.2. Exponentials of Internal Categories

Example 1.1.10. Let 𝐴 be an object of ℰ. The indiscrete category 𝐢𝐧𝐝(𝐴) over
𝐴 is given by

𝐢𝐧𝐝(𝐴)0 = 𝐴 𝐢𝐧𝐝(𝐴)1 = 𝐴 × 𝐴
𝐢𝐧𝐝(𝐴)1 s×t 𝐢𝐧𝐝(𝐴)1

≅ 𝐴 × 𝐴 × 𝐴
id𝐢𝐧𝐝(𝐴)1=

𝛥𝐴

s𝐢𝐧𝐝(𝐴)1
=𝜋1

t𝐢𝐧𝐝(𝐴)1
=𝜋2

∘𝐢𝐧𝐝(𝐴)1=
(𝜋1,𝜋3)

This extends to a monoidal functor 𝐢𝐧𝐝∶ ℰ → Catℰ.
The above constructions yield the free and co-free internal categories over

an object of ℰ, as formally stated by the following proposition, whose proof is,
again, routine.

Proposition 1.1.11. There are monoidal adjunctions 𝐝𝐢𝐬 ⊣ 𝑈 ⊣ 𝐢𝐧𝐝.

As a further example, consider opposite categories.
Example 1.1.12. Let 𝑨 be an internal category in ℰ. The opposite category 𝑨𝐨𝐩

is obtained by switching the source and target arrows of 𝑨, so that s𝑨𝐨𝐩 = t𝑨
and t𝑨𝐨𝐩 = s𝑨. This extends to a monoidal functor (‐)𝐨𝐩 ∶ Catℰ → Catℰ.

Then, it is not difficult to prove the following result.

Proposition 1.1.13. The monoidal functor (‐)𝐨𝐩 is a self-adjoint automor-
phism.

1.2. Exponentials of Internal Categories
The functors between two categories form a set, meaning that Cat is enriched
over Set. Analogously, we would expect Catℰ to be enriched over ℰ. For that,
we need to assume that ℰ is cartesian closed. Then, the theory of categories
internal to ℰ becomes clearer from the perspective of enriched category theory.

In this section, let’s assume that ℰ is cartesian closed, meaning that its
internal language will be the simply typed lambda calculus extension of finite
limit logic.

Notation 1.2.1. If 𝐴 and 𝐵 are objects of ℰ, let eℰ ∶ 𝐵𝐴 × 𝐴 → 𝐵 be the
evaluation morphism. The notation for the evaluation arrow should also be
decorated with 𝐴 and 𝐵, but it is unnecessary as those are usually clear from
the context.

It is also useful to introduce a convention to denote subobjects yielded by an
equalizer.

9



1. Background

Notation 1.2.2. Given two terms 𝑎∶ 𝐴 ⊢ 𝑡(𝑎), 𝑡′(𝑎)∶ 𝐵 we can form the equal-
izer of the two parallel arrows 𝐴 → 𝐵 yielded by 𝑡 and 𝑡′. That is the subobject
of 𝐴 of those 𝑎∶ 𝐴 such that 𝑡(𝑎) = 𝑡′(𝑎).

We are now ready to prove that the intuition about Catℰ being enriched in
ℰ was correct, in the sense made precise by the statement of the following
proposition.

Proposition 1.2.3. There is a category enriched in ℰ (which shall be called
Catℰ with abuse of notation) whose underlying category is isomorphic to Catℰ
itself.

Proof. The hom-object HomCatℰ
(𝑨, 𝑩) of internal categories 𝑨 and 𝑩 repre-

sents the functors 𝑨 → 𝑩, and is defined as the subobject of 𝐵𝐴0
0 × 𝐵𝐴1

1 of those
𝐹 = (𝐹0, 𝐹1) satisfying the functoriality axioms, i.e. such that

𝜆(𝑓∶ 𝑎0 → 𝑎1)∶ 𝐴1. eℰ(𝐹0, 𝑎0)
eℰ(𝐹1,𝑓 )
−−−−−−→ eℰ(𝐹0, 𝑎1)

𝜆(𝑔, 𝑓 ) ∶ 𝐴1 s×t 𝐴1. eℰ(𝐹1, 𝑔 ∘𝑨 𝑓 ) = 𝜆(𝑔, 𝑓 ) ∶ 𝐴1 s×t 𝐴1. eℰ(𝐹1, 𝑔) ∘𝑩 eℰ(𝐹1, 𝑓 ).

The composition of internal categories 𝑨, 𝑩 and 𝑪 is the arrow

∘Catℰ
(𝑨, 𝑩, 𝑪)∶ HomCatℰ

(𝑩, 𝑪) × HomCatℰ
(𝑨, 𝑩) → HomCatℰ

(𝑨, 𝑪)

defined in context 𝐹∶ HomCatℰ
(𝑨, 𝑩), 𝐺∶ HomCatℰ

(𝑩, 𝑪) as

∘Catℰ
(𝑨, 𝑩, 𝑪)(𝐹, 𝐺)

0
≔ 𝜆𝑎∶ 𝐴0. eℰ(𝐺0, eℰ(𝐹0, 𝑎))∶ 𝐶0

𝐴0

∘Catℰ
(𝑨, 𝑩, 𝑪)(𝐹, 𝐺)

1
≔ 𝜆𝑓∶ 𝐴1. eℰ(𝐺1, eℰ(𝐹1, 𝑓 ))∶ 𝐶1

𝐴1.

The identity of the internal category 𝑨 is the arrow

idCatℰ
(𝑨)∶ 𝟙ℰ → HomCatℰ

(𝑨, 𝑨)

defined as

idCatℰ
(𝑨) ≔ (𝜆𝑎∶ 𝐴0. 𝑎, 𝜆𝑓 ∶ 𝐴1. 𝑓 ) ∶ HomCatℰ

(𝑨, 𝑨).

The verification that these data give an enrichment is a simple exercise in
the internal language.

The points of the hom-object HomCatℰ
(𝑨, 𝑩) are evidently in bijective corre-

spondence with functors 𝑨 → 𝑩.

The theory developed in section 1.1 extends to the context of enriched cate-
gory theory. For example, consider the following proposition.

Proposition 1.2.4. The adjunctions from proposition 1.1.11 are ℰ-enriched.

10



1.2. Exponentials of Internal Categories

Remark 1.2.5. For any object 𝐼 in ℰ we have that Catℰ/𝐼 is enriched over ℰ/𝐼.
Moreover, if 𝑢∶ 𝐼 → 𝐽 is an arrow in ℰ, then Catℰ/𝐽 has an enrichment on ℰ/𝐼
through 𝑢∗ ∶ ℰ/𝐽 → ℰ/𝐼, and (𝑢∗)∗ ∶ Catℰ/𝐽 → Catℰ/𝐼 is a ℰ/𝐼-enriched functor.

We can finally prove that Catℰ is cartesian closed. Moreover, as it is clear
from the following proof, if 𝑨 and 𝑩 are categories in ℰ, then the points of 𝑩𝑨

are in bijective correspondence with the functors 𝑨 → 𝑩.

Proposition 1.2.6. The category Catℰ is cartesian closed.

Proof. Let 𝑨 and 𝑩 be internal categories of ℰ. Let’s define the exponential
object 𝑩𝑨, representing the internal category of functors 𝑨 → 𝑩 and natural
transformations between them:

Object of objects (𝑩𝑨)0 is HomCatℰ
(𝑨, 𝑩), as defined in proposition 1.2.3.

Object of arrows (𝑩𝑨)1 is the subobject of (𝑩𝑨)0 × (𝑩𝑨)0 × 𝐵𝐴0
1 given, in

context (𝐹∶ (𝑩𝑨)0, 𝐺∶ (𝑩𝑨)0, 𝛼∶ 𝐵𝐴0
1 ), by the axiom

𝜆(𝑓∶ 𝑎 → 𝑏)∶ 𝐴1.
eℰ(𝐹0, 𝑎) eℰ(𝐺0, 𝑎)

eℰ(𝐹0, 𝑏) eℰ(𝐺0, 𝑏)

eℰ(𝛼,𝑎)

eℰ(𝐹0,𝑓 ) eℰ(𝐺0,𝑓 )

eℰ(𝛼,𝑏)

∶ 𝐵1.

Composition is the arrow ∘𝑩𝑨 ∶ (𝑩𝑨)1 s×t (𝑩𝑨)1 → (𝑩𝑨)1 defined, in context
((𝐺, 𝐻, 𝛽), (𝐹, 𝐺, 𝛼))∶ (𝑩𝑨)1 s×t (𝑩𝑨)1, as

(𝐺, 𝐻, 𝛽) ∘𝑩𝑨 (𝐹, 𝐺, 𝛼) ≔ (𝐹, 𝐻, 𝜆𝑎∶ 𝐴0. eℰ(𝛽, 𝑎) ∘𝑩 eℰ(𝛼, 𝑎))

Identity is the arrow id𝑩𝑨 ∶ (𝑩𝑨)0 → (𝑩𝑨)1 defined, in context 𝐹∶ (𝑩𝑨)0, as

id𝑩𝑨(𝐹) ≔ (𝐹, 𝐹, 𝜆𝑎∶ 𝐴0. id𝑩(𝐹0(𝑎))).

Then, a standard argument shows that there is an isomorphism

HomCatℰ
(𝑨′ ×Catℰ 𝑨, 𝑩) ≅ HomCatℰ

(𝑨′, 𝑩𝑨)

natural in 𝑨′.

Of course the fact that Catℰ is cartesian closed tells us that it is enriched in
itself. That extends the fact that it is enriched in ℰ. In fact the enrichment in
ℰ is essentially obtained from that in Catℰ by change of base along the objects
functor 𝑈∶ Catℰ → ℰ.

11



1. Background

1.3. Internal Monoidal Categories
We could not conceivably present a notion of enrichment without introducing
a suitable notion of monoidal category to serve as enriching category. We
introduce here the definitions, in the internal language of ℰ, of the notions
of monoidal category, functor and natural transformation. We also give the
definitions pertaining to the symmetric case, which is of most interest for the
sequel.

Definition 1.3.1 (internal monoidal category). An internal monoidal category
is an internal category 𝑽 in ℰ equipped with functors

Monoidal product ⊗𝑽 ∶ 𝑽 ×Catℰ 𝑽 → 𝑽, and

Monoidal unit 𝕀𝑽 ∶ 𝟙Catℰ
→ 𝑽,

and natural isomorphisms

Associator 𝛼𝑽 ∶ (𝜋1 ⊗𝑽 𝜋2) ⊗𝑽 𝜋3 → 𝜋1 ⊗𝑽 (𝜋2 ⊗𝑽 𝜋3)∶ 𝑽 × 𝑽 × 𝑽 → 𝑽,

Left unitor 𝜆𝑽 ∶ 𝕀𝑽 ⊗𝑽 id𝑽 → id𝑽 ∶ 𝑽 → 𝑽, and

Right unitor 𝜌𝑽 ∶ id𝑽 ⊗𝑽 𝕀𝑽 → id𝑽 ∶ 𝑽 → 𝑽,

such that, in context 𝑎, 𝑏, 𝑐, 𝑑∶ 𝑉0, the axioms

(𝑎 ⊗𝑽
0 𝕀𝑽) ⊗𝑽

0 𝑏 𝑎 ⊗𝑽
0 (𝕀𝑽 ⊗𝑽

0 𝑏)

𝑎 ⊗𝑽
0 𝑏

𝛼𝑽(𝑎,𝕀𝑽,𝑏)

𝜌𝑽(𝑎)⊗𝑽
1id𝑽(𝑏) id𝑽(𝑎)⊗𝑽

1𝜆𝑽(𝑏)
(Triangle)

((𝑎 ⊗𝑽
0 𝑏) ⊗𝑽

0 𝑐) ⊗𝑽
0 𝑑

(𝑎 ⊗𝑽
0 (𝑏 ⊗𝑽

0 𝑐)) ⊗𝑽
0 𝑑 (𝑎 ⊗𝑽

0 𝑏) ⊗𝑽
0 (𝑐 ⊗𝑽

0 𝑑)

𝑎 ⊗𝑽
0 ((𝑏 ⊗𝑽

0 𝑐) ⊗𝑽
0 𝑑) 𝑎 ⊗𝑽

0 (𝑏 ⊗𝑽
0 (𝑐 ⊗𝑽

0 𝑑))

𝛼𝑽(𝑎,𝑏,𝑐)⊗𝑽
0𝑑 𝛼𝑽(𝑎⊗𝑽

0𝑏,𝑐,𝑑)

𝛼𝑽(𝑎,𝑏⊗𝑽
0𝑐,𝑑) 𝛼𝑽(𝑎,𝑏,𝑐⊗𝑽

0𝑑)

𝑎⊗𝑽
0𝛼𝑽(𝑏,𝑐,𝑑)

(Pentagon)

hold.

The previous definition is a direct internalization of the standard definition
of monoidal category, and that alone should suffice to persuade us of its correct-
ness. If we were still skeptical, though, it could also be argued that, since small
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1.3. Internal Monoidal Categories

monoidal categories are pseudomonoids in the 2-category of categories, then
internal monoidal categories in ℰ must be pseudomonoids in the 2-category
Catℰ, which is what our definition amounts to.

We then proceed with the definition of monoidal functor.

Definition 1.3.2 (internal monoidal functor). An internal monoidal functor
(𝐹, 𝜖, 𝜇)∶ 𝑽 → 𝑾 is given by an internal functor 𝐹∶ 𝑽 → 𝑾 and coherence
natural isomorphisms

𝜖 ∶ 𝕀𝑾 → 𝐹𝕀𝑽 ∶ 𝕀Catℰ
→ 𝑾

and
𝜇∶ 𝐹 ⊗𝑾 𝐹 → 𝐹(‐ ⊗𝑽 ‐) ∶ 𝑽 × 𝑽 → 𝑾

such that, in context 𝑎, 𝑏, 𝑐 ∶ 𝑉0, the axioms

(𝐹0(𝑎) ⊗𝑾 𝐹0(𝑏)) ⊗𝑾 𝐹0(𝑐) 𝐹0(𝑎) ⊗𝑾 (𝐹0(𝑏) ⊗𝑾 𝐹0(𝑐))

𝐹0(𝑎 ⊗𝑽 𝑏) ⊗𝑾 𝐹0(𝑐) 𝐹0(𝑎) ⊗𝑾 𝐹0(𝑏 ⊗𝑽 𝑐)

𝐹0((𝑎 ⊗𝑽 𝑏) ⊗𝑽 𝑐) 𝐹0(𝑎 ⊗𝑽 (𝑏 ⊗𝑽 𝑐))

𝛼𝑾(𝐹0(𝑎),𝐹0(𝑏),𝐹0(𝑐))

𝜇(𝑎,𝑏)⊗𝑾
1 id𝑾(𝐹0(𝑐)) id𝑾(𝐹0(𝑎))⊗𝑽

1𝜇(𝑏,𝑐)

𝜇(𝑎⊗𝑽
0𝑏,𝑐) 𝜇(𝑎,𝑏⊗𝑽

0𝑐)

𝐹1(𝛼𝑽(𝑎,𝑏,𝑐))

𝕀𝑾 ⊗𝑾 𝐹0(𝑎) 𝐹0(𝑎)

𝐹0(𝕀𝑽) ⊗𝑾 𝐹0(𝑎) 𝐹0(𝕀𝑽 ⊗𝑽 𝑎)

𝜆𝑾(𝐹0(𝑎))

𝜖⊗𝑾𝐹0(𝑎)

𝜇(𝕀𝑽,𝑎)

𝐹1(𝜆𝑽(𝑎))

𝐹0(𝑎) ⊗𝑾 𝕀𝑾 𝐹0(𝑎)

𝐹0(𝑎) ⊗𝑾 𝐹0(𝕀𝑽) 𝐹0(𝑎 ⊗𝑽 𝕀𝑽)

𝜌𝑾(𝐹0(𝑎))

𝐹0(𝑎)⊗𝑾𝜖

𝜇(𝑎,𝕀𝑽)

𝐹1(𝜌𝑽(𝑎))

hold.

Then, we define natural trasformations of monoidal functors.

Definition 1.3.3 (internal monoidal natural transformation). An internal
monoidal natural transformation 𝛼∶ (𝐹, 𝜖𝐹, 𝜇𝐹) → (𝐺, 𝜖𝐺, 𝜇𝐺)∶ 𝑽 → 𝑾 is a
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1. Background

natural transformation 𝛼∶ 𝐹 → 𝐺∶ 𝑽 → 𝑾 such that, in context 𝑎, 𝑏, ∶ 𝑉0, the
axioms

𝐹0(𝑎) ⊗𝑾 𝐹0(𝑏) 𝐺0(𝑎) ⊗𝑾 𝐺0(𝑏)

𝐹0(𝑎 ⊗𝑽 𝑏) 𝐺0(𝑎 ⊗𝑽 𝑏)

𝛼(𝑎)⊗𝑾𝛼(𝑏)

𝜇𝐹(𝑎,𝑏) 𝜇𝐺(𝑎,𝑏)

𝛼(𝑎⊗𝑽𝑏)

𝐹0(𝕀𝑽) 𝐺0(𝕀𝑽)

𝕀𝑾

𝛼(𝕀𝑽)

𝜖𝐹 𝜖𝐺

hold.

While it is not necessary for the definition of the notion of enrichment,
in many situations it is required for the monoidal product of the enriching
category to be symmetric. We now define the notion of internal symmetric
monoidal category and functor. Notice that there is no need for a definition of
symmetric monoidal natural transformation, as the usual definition is already
adequate.

Definition 1.3.4 (internal symmetric monoidal category). An internal monoidal
category 𝑽 is a internal symmetric monoidal category if it comes equipped
with a symmetry, that is, a natural isomorphism 𝜎𝑽 ∶ 𝜋1 ⊗𝑽 𝜋2 → 𝜋2 ⊗𝑽

𝜋1 ∶ 𝑽 ×Catℰ 𝑽 → 𝑽 such that, in context 𝑎, 𝑏∶ 𝑉0, the following axioms

(𝑎 ⊗𝑽 𝑏) ⊗𝑽 𝑐 𝑎 ⊗𝑽 (𝑏 ⊗𝑽 𝑐)

(𝑏 ⊗𝑽 𝑎) ⊗𝑽 𝑐 (𝑏 ⊗𝑽 𝑐) ⊗𝑽 𝑎

𝑏 ⊗𝑽 (𝑎 ⊗𝑽 𝑐) 𝑏 ⊗𝑽 (𝑐 ⊗𝑽 𝑎)

𝜎𝑽(𝑎,𝑏)⊗𝑽𝑐

𝛼𝑽(𝑎,𝑏,𝑐)

𝜎𝑽(𝑎,𝑏⊗𝑽𝑐)

𝛼𝑽(𝑏,𝑎,𝑐) 𝛼𝑽(𝑏,𝑐,𝑎)

𝑏⊗𝑽𝜎𝑽(𝑎,𝑐)

(Hexagon)

𝑎 ⊗𝑽 𝑏 𝑎 ⊗𝑽 𝑏

𝑏 ⊗𝑽 𝑎
𝜎𝑽(𝑎,𝑏) 𝜎𝑽(𝑏,𝑎)

(Involution)

hold.
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1.3. Internal Monoidal Categories

Definition 1.3.5 (internal symmetric monoidal functor). An internal monoidal
functor (𝐹, 𝜖, 𝜇)∶ 𝑽 → 𝑾 between internal symmetric monoidal categories 𝑽
and 𝑾 is a internal symmetric monoidal functor if the axiom

𝐹0(𝑎 ⊗𝑽 𝑏) 𝐹0(𝑎) ⊗𝑾 𝐹0(𝑏)

𝐹0(𝑏 ⊗𝑽 𝑎) 𝐹0(𝑏) ⊗𝑾 𝐹0(𝑎)

𝐹1(𝜎𝑽(𝑎,𝑏))

𝜇(𝑎,𝑏)

𝜎𝑾(𝐹0(𝑎),𝐹0(𝑏))

𝜇(𝑏,𝑎)

holds.

It is routine to check in the internal language that the data above gives
2-categories, so we can give the following definitions.

Definition 1.3.6 (category of internal monoidal categories). Internal monoidal
categories and monoidal functors (and monoidal transformations) in ℰ form a
(2-)category MonCatℰ. Internal symmetric monoidal categories and symmetric
monoidal functors (and monoidal transformations) in ℰ form a (2-)category
SymMonCatℰ.

Remark 1.3.7. There is an underlying-monoidal-category (2-)functor

𝑈MonCatℰ
∶ SymMonCatℰ → MonCatℰ

sending symmetric monoidal categories and functors (and natural transfor-
mations) to, respectively, their underlying monoidal categories and functors
(and natural transformations).

There is an underlying-internal-category (2-)functor

𝑈Catℰ
∶ MonCatℰ → Catℰ

sending monoidal categories and functors (and natural transformations) to,
respectively, their underlying internal categories and functors (and natural
transformations).

The analogous result to proposition 1.2.6 does not hold for monoidal cate-
gories, as MonCatℰ is not generally cartesian closed even when ℰ is. However,
we can still extend the ideas about enrichment to the case of monoidal cate-
gories, and we have the following proposition, analogous to proposition 1.2.3
and proved in the same way.

Proposition 1.3.8. If ℰ is cartesian closed, then MonCatℰ (SymMonCatℰ) has
an enrichment on Catℰ (as a cartesian monoidal category) whose underlying
category is MonCatℰ (SymMonCatℰ) itself.

15



1. Background

Finally, in this dissertation we will also need a notion of monoidal closedness
for internal symmetric monoidal categories.

Definition 1.3.9 (monoidal closed internal category). An internal symmetric
monoidal categoy 𝑽 is monoidal closed if the functor in ℰ/𝑉0

𝑽 × 𝑉0 (𝑉0)∗𝑽

𝑉0

(𝜋2,⊗𝑽)

𝜋2 𝜋1

has a right adjoint [−, −]∶ (𝑉0)∗𝑽 → 𝑽. In this case, the unit and counit will
be internal natural transformations

𝜂∶ 𝜋1 → [𝜋2, 𝜋1 ⊗𝑽 𝜋2]∶ 𝑽 × 𝑉0 → 𝑽 × 𝑉0

and
𝜖 ∶ [𝜋1, 𝜋2] ⊗𝑽 𝜋1 → 𝜋2 ∶ (𝑉0)∗𝑽 → (𝑉0)∗𝑽,

the latter providing the evaluation e𝑽.

1.4. Indexed Categories
Indexed categories have been treated extensively in the literature, and the
main ideas are long established. However, we shall refer to the recent expo-
sition given in Shulman (2008, 2013), since these sources are also needed in
regard to the notion of enriched indexed category.

To begin with, we shall state the definition of indexed category.

Definition 1.4.1 (indexed category). An ℰ-indexed category is a pseudofunctor
𝒞∶ ℰ𝐨𝐩 → Cat, where Cat is the 2-category of categories, functors, and natural
transformations.

Consider the following, notable example, which will turn out to be useful
later on.
Example 1.4.2. The self-indexing of ℰ is the ℰ-indexed category whose fiber
over an object 𝑋 is the slice category ℰ/𝑋 and where the reindexing along
𝑓 ∶ 𝑋 → 𝑌 is given by pullback along 𝑓.

There is a strict relation between the theory of indexed categories and that
of fibration, as established by the following, classic result.

Theorem 1.4.3. An ℰ-indexed category 𝒞 is, via the Grothendieck construc-
tion, equivalent to a cloven fibration ∫ 𝒞 → ℰ.
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1.4. Indexed Categories

Now we want to extend the previous ideas to the context of monoidal cate-
gories.

We begin by giving the notion of indexed monoidal categories.

Definition 1.4.4 (indexed monoidal category). An ℰ-indexed monoidal cate-
gory is a pseudofunctor 𝒲∶ ℰ𝐨𝐩 → MonCat, where MonCat is the 2-category
of monoidal categories, strong monoidal functors, and monoidal transforma-
tions.

A suitable notion of monoidal fibration is required to establish a relation
with indexed monoidal categories, so we recall that in the following definition.

Definition 1.4.5 (monoidal fibration). Let 𝒱 be a monoidal category. A
monoidal fibration is a cloven fibration 𝒱 → ℰ such that the underlying
functor is strict monoidal (with ℰ cartesian monoidal) and the tensor product
in 𝒱 preserves the choice of cartesian arrows.

For a general monoidal base category ℰ′ the notions of ℰ′-indexed monoidal
category and of monoidal fibration do not correspond under the Grothendieck
construction. Indeed, if 𝒲∶ ℰ′𝐨𝐩 → MonCat is an ℰ′-indexed monoidal cate-
gory, then, in the cloven fibration ∫ 𝒲 → ℰ′, it is evident that ∫ 𝒲 has tensor
products only for objects in the same fiber, and the result is still an object
in that fiber. On the other hand, if 𝒱 → ℰ′ is a monoidal fibration, and 𝐴
and 𝐵 are objects of 𝒱 lying over the objects 𝑋 and 𝑌 of ℰ′ respectively, then
the tensor product 𝐴 ⊗𝒱 𝐵 lies over 𝑋 ⊗ℰ′ 𝑌. However, it is folklore that, in
case the monodial structure on ℰ′ is given by the product, i.e. ℰ′ is cartesian
monoidal, such as our ambient category ℰ is, then there is a correspondence.

We now introduce some convenient notation for use in the next result.

Notation 1.4.6. Let 𝐹∶ 𝒞 → ℰ be a cloven fibration, and 𝑓 ∶ 𝑋 → 𝑌 an arrow
in ℰ. Then, call 𝑓 ∗ ∶ 𝐹−1(𝑌) → 𝐹−1(𝑋) the lifting functor from the fiber along
𝐹 over 𝑌 to the fiber over 𝑋.

We then state and give a sketch proof of the theorem analogous to theo-
rem 1.4.3, in the context of monoidal categories.

Theorem 1.4.7. An ℰ-indexed monoidal category 𝒲 is, via the Grothendieck
construction, equivalent to a monoidal fibration ∫ 𝒲 → ℰ.

Proof (sketch). Let the pseudo-functor 𝒲∶ ℰ → MonCat be an index monoidal
category and ∫ 𝒲 → ℰ the fibration yielded by the Grothendieck construc-
tion. Then, ∫ 𝒲 has a monoidal structure. Indeed, 𝕀∫ 𝒲 = 𝕀𝒲(𝟙ℰ). Let 𝑋 and
𝑌 be objects of ℰ. Let 𝐴 be an object of 𝒲(𝑋) and 𝐵 one of 𝒲(𝑌). Then,

𝐴 ⊗∫ 𝒲 𝐵 = (𝜋𝑌)∗𝐴 ⊗𝒲(𝑋×𝑌) (𝜋𝑋)∗𝐵
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where 𝜋𝑌 ∶ 𝑋 × 𝑌 → 𝑋 and 𝜋𝑋 ∶ 𝑋 × 𝑌 → 𝑌. With this monoidal structure on
∫ 𝒲, the fibration ∫ 𝒲 → ℰ is strict monoidal.

Let 𝑉∶ 𝒱 → ℰ be a strict monoidal fibration and 𝒲∶ ℰ → Cat the pseud-
ofunctor defined by the fibers of 𝑉. Then, 𝒲 is an ℰ-indexed monoidal cat-
egory, that is, it restricts to 𝒲∶ ℰ → MonCat. Let 𝑋 be an object of ℰ, and
!𝑋 ∶ 𝑋 → 𝟙ℰ the unique such arrow. Then, 𝕀𝒲(𝑋) = (!𝑋)∗𝕀𝒱. Let 𝐴 and 𝐵 be
a objects of 𝒲(𝑋). Then,

𝐴 ⊗𝒲(𝑋) 𝐵 = 𝛥∗(𝐴 ⊗𝒱 𝐵)

where 𝛥∶ 𝑋 → 𝑋 × 𝑋.

Notice that the proof makes essential use of the assumption that ℰ has (at
least) finite products.

1.5. Externalization of Internal Categories
The next piece of background material that we present concerns the relation-
ship between internal and indexed categories, and makes an essential use of
the theory of indexed categories from section 1.4.

Let 𝑨 be a category in ℰ and 𝑋 an object of ℰ. We regard an arrow 𝑋 → 𝐴0
as representing an indexed family of objects of 𝑨 over the indexing object 𝑋.
Given two such indexed families 𝑥0, 𝑥1 ∶ 𝑋 → 𝐴0, consider the pullback

(𝑥0, 𝑥1)∗𝐴1 𝐴1

𝑋 𝐴0 × 𝐴0.

𝑝
⌟

(s𝑨,t𝑨)

(𝑥0,𝑥1)

Then, the sections of 𝑝 represent indexed families of arrows of 𝑨 with domain
𝑥0 and codomain 𝑥1. Given another family 𝑥2 ∶ 𝑋 → 𝐴0, the composition in 𝑨
restricts to an indexed composition

∘𝑨|𝑥0,𝑥1,𝑥2
∶ (𝑥1, 𝑥2)∗𝐴1 × (𝑥0, 𝑥1)∗𝐴1 → (𝑥0, 𝑥2)∗𝐴1

inducing a composition of indexed families of arrows: given two families of
arrows 𝑠0 ∶ 𝑋 → (𝑥0, 𝑥1)∗𝐴1 and 𝑠1 ∶ 𝑋 → (𝑥1, 𝑥2)∗𝐴1, their composition is
defined as

𝑠1 ∘[𝑨]𝑋 𝑠0 ≔ 𝑋
(𝑠1,𝑠0)
−−−−−→ (𝑥1, 𝑥2)∗𝐴1 × (𝑥0, 𝑥1)∗𝐴1

∘𝑨|𝑥0,𝑥1,𝑥2−−−−−−−→ (𝑥0, 𝑥2)∗𝐴1.

Moreover, a family of objects 𝑥∶ 𝑋 → 𝐴0 induces a family of identity arrows
id[𝑨]𝑋(𝑥)∶ 𝑋 → (𝑥, 𝑥)∗𝐴1. These data form the category [𝑨]𝑋 of indexed
families of objects and morphisms of 𝑨 over 𝑋.
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Given a reindexing 𝑢∶ 𝑋′ → 𝑋, precomposition reindexes a family of objects
𝑥∶ 𝑋 → 𝐴0 over 𝑋 the family 𝑥𝑢 over 𝑋′; a family of arrows 𝑠 ∶ 𝑋 → (𝑥0, 𝑥1)∗𝐴1
is reindexed to 𝑢∗𝑠 ∶ 𝑋′ → (𝑢𝑥0, 𝑢𝑥1)∗𝐴1 by pulling back the section 𝑠 along
(𝑥0, 𝑥1). That gives a functor 𝑢∗ ∶ [𝑨]𝑋 → [𝑨]𝑋′.

The above discussion leads to the following result.

Proposition 1.5.1. For 𝑨 an internal category in ℰ, there is an indexed category
[𝑨] given by [𝑨](𝑋) ≔ [𝑨]𝑋 and [𝑨](𝑢) ≔ 𝑢∗.

Remark 1.5.2. Notice that the indexed category arising from an internal one
is given by a strict (rather than merely a pseudo) functor ℰ𝐨𝐩 → Cat. Then,
evidently, internal categories yield rather special indexed categories, and not
all indexed categories can be obtained from an internal one.

Moreover, the construction extends to the monoidal context, as shown in the
following proposition.

Proposition 1.5.3. Let 𝑽 be an internal (symmetric) monoidal category in ℰ.
Then, [𝑽] is an indexed (symmetric) monoidal category on ℰ.

Proof. Let 𝑋 be an object in ℰ. Then, [𝑽]𝑋 has a monoidal structure induced
by that of 𝑽.

The monoidal product on objects is defined as

(𝑋 𝑥−→ 𝑉0) ⊗[𝑽]𝑋 (𝑋 𝑥′
−→ 𝑉0) ≔ 𝑋 (𝑥,𝑥′)−−−−→ 𝑉0 × 𝑉0

⊗𝑽
−−→ 𝑉0.

Let

(𝑋
𝑥0−→ 𝑉0)

𝑓 ∶ 𝑋→(𝑥0,𝑥1)∗𝑉1−−−−−−−−−−−−→ (𝑋
𝑥1−→ 𝑉0)

and

(𝑋
𝑥′

0−→ 𝑉0)
𝑓 ′ ∶ 𝑋→(𝑥′

0,𝑥′
1)∗𝑉1−−−−−−−−−−−−→ (𝑋

𝑥′
1−→ 𝑉0)

be arrows of [𝑽]𝑋, and notice that ⊗𝑽 restricts to

(𝑥0, 𝑥1)∗𝑉1 × (𝑥′
0, 𝑥′

1)∗𝑉1 → (𝑥0 ⊗[𝑽]𝑋 𝑥′
0, 𝑥1 ⊗[𝑽]𝑋 𝑥′

1)∗𝑉1.

Then, the monoidal product of arrows 𝑓 ⊗[𝑽]𝑋 𝑓 ′ is given by the arrow

𝑋
(𝑓 ,𝑓 ′)
−−−−→ (𝑥0, 𝑥1)∗𝑉1 × (𝑥′

0, 𝑥′
1)∗𝑉1

⊗𝑽
−−→ (𝑥0 ⊗𝑽 𝑥′

0, 𝑥1 ⊗𝑽 𝑥′
1)∗𝑉1.

The monoidal unit 𝕀[𝑽]𝑋 is defined by the constant family indexed by 𝑋 on
the monoidal unit of 𝑽.

The structural isomorphisms, associator and unitors (and, in case 𝑽 is
symmetric, the symmetry), are defined point-wise.

Moreover, reindexing preserves the monoidal product.
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Remark 1.5.4. The strictness of the monoidal products of the fibers of the
indexed monoidal category [𝑽] obtained from an internal monoidal category
𝑽 is the same as that of the original monoidal product of 𝑽, so it will generally
not be strict monoidal. Still, the reindexing functors for [𝑽] strictly preserve
the monoidal structure, regardless of how strict the monoidal product of 𝑽
is. That means that the (actually strict) functor [𝑽] ∶ ℰ → MonCat factorizes
through the 2-category of (non-necessarily-strict) monoidal categories, strict
monoidal functors and monoidal natural transformations. Such a category is
quite uncommon, since normally there is little use for strict monoidal functors,
especially between non-strict monoidal categories. Nonetheless, this shows
that the indexed monoidal categories arising from internal monoidal categories
are rather special ones.
Remark 1.5.5. The fiber [𝑨]𝑋 over an object 𝑋 is enriched over ℰ/𝑋:

Homset: Hom[𝑨]𝑋(𝑥0, 𝑥1) ≔ (𝑥0, 𝑥1)∗𝐴1
𝑝
−→ 𝑋.

Composition: ∘[𝑨]𝑋(𝑥0, 𝑥1, 𝑥2) ≔ ∘𝑨|𝑥0,𝑥1,𝑥2
.

Identity: id[𝑨]𝑋(𝑥).

Reindexing is compatible with this structure, in that the reindexing of the
homset is the same as the homset of the reindexing. More explicitly, given a
reindexing 𝑢∶ 𝑋′ → 𝑋, by pullback-pasting we have that

𝑢∗(𝑥0, 𝑥1)∗𝐴1 ≅ (𝑥0𝑢, 𝑥1𝑢)∗𝐴1.

In fact, the reindexing functor 𝑢∗ ∶ [𝑨]𝑋 → [𝑨]𝑋′ is a fully-faithful functor of
enriched categories.

Then, [𝑨] is an indexed enriched category over the self-indexing of ℰ (see
example 1.4.2). Equivalently, it is the locally internal category over ℰ whose
underlying indexed category is (up to natural isomorphism) [𝑨] as an indexed
category (Johnstone 2002; Shulman 2013).

As shown in section 1.4, indexed (monoidal) categories are equivalent to
cloven (monoidal) fibration.

Definition 1.5.6 (externalization). The externalization of an internal category
𝑨 is the total category for the fibration associated to the indexed category
[𝑨]. With abuse of notation, we denote the externalization of 𝑨 with [𝑨], and
context will usually suffice to distinguish between the use of the notation as a
fibration or as an indexed category.

Explicitly, the externalization of 𝑨 is the category given by the data

Objects: families of objects of 𝑨 indexed over objects of ℰ, that is, arrows
𝑋 → 𝐴0 with 𝑋 in ℰ.
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Morphisms: an arrow (𝑥∶ 𝑋 → 𝐴0) → (𝑦∶ 𝑌 → 𝐴0) is given by a reindexing
𝑢∶ 𝑋 → 𝑌 and a family of arrows 𝑥 → 𝑦𝑢, that is, a section of the projection
𝑝∶ (𝑥, 𝑦𝑢)∗𝐴1 → 𝑋.

Composition: the composition is given by

(𝑋 𝑥−→ 𝐴0)
(𝑋 𝑢−→𝑌,𝑋

𝑓−→(𝑥,𝑦𝑢)∗𝐴1)
−−−−−−−−−−−−−−−−→ (𝑌

𝑦
−→ 𝐴0)

(𝑌 𝑣−→𝑍,𝑌
𝑔−→(𝑦,𝑧𝑣)∗𝐴1)

−−−−−−−−−−−−−−−−→ (𝑍 𝑧−→ 𝐴0)

≔ (𝑋 𝑥−→ 𝐴0)
(𝑋 𝑢−→𝑌 𝑣−→𝑍,𝑢∗𝑔∘[𝑨]𝑋𝑓 ∶ 𝑋→(𝑥,𝑧𝑣𝑢)∗𝐴1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑍 𝑧−→ 𝐴0).

Identity: the family of identity arrows.

Let 𝐹∶ 𝑨 → 𝑩 be a functor of internal categories. Then, there is a functor of
fibered categories [𝐹] ∶ [𝑨] → [𝑩] defined on objects as

[𝐹](𝑋 𝑥−→ 𝐴0) ≔ 𝑋 𝑥−→ 𝐴0
𝐹0−−→ 𝐵0

and on morphisms as

[𝐹]((𝑋 𝑥−→ 𝐴0)
(𝑋 𝑢−→𝑌,𝑋

𝑓−→(𝑥,𝑦𝑢)∗𝐴1)
−−−−−−−−−−−−−−−−→ (𝑌

𝑦
−→ 𝐴0))

≔ (𝑋 𝑥−→ 𝐴0
𝐹0−−→ 𝐵0)

(𝑋 𝑢−→𝑌,𝑋
𝑓−→(𝑥,𝑦𝑢)∗𝐴1

𝐹1−−→(𝐹0𝑥,𝐹0𝑦𝑢)∗𝐵1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑌

𝑦
−→ 𝐴0

𝐹0−−→ 𝐵0)

which restricts to a functor on the fibers [𝐹]𝑋 ∶ [𝑨]𝑋 → [𝑩]𝑋.
Let 𝛼∶ 𝐹 → 𝐺∶ 𝑨 → 𝑩 be a natural transformation.Then, there is a natural

transformation of fibered categories [𝛼] ∶ [𝐹] → [𝐺] ∶ [𝑨] → [𝑩], defined as

[𝛼](𝑋 𝑥−→ 𝐴0) ≔ (𝑋 𝑥−→ 𝐴0
𝐹0−−→ 𝐵0)

(id𝑋,𝑋 𝑥−→𝐴0
𝛼−→(𝐹0𝑥,𝐺0𝑥)∗𝐵1)

−−−−−−−−−−−−−−−−−−−−−→ (𝑋 𝑥−→ 𝐴0
𝐺0−−→ 𝐵0)

which restricts to a natural transformation on the fibers [𝛼]𝑋 ∶ [𝐹]𝑋 → [𝐺]𝑋.
Remark 1.5.7. If 𝑽 is a (symmetric) monoidal category, then its externalization
[𝑽] has a (symmetric) monoidal structure induced by that of the indexed
(symmetric) monoidal category [𝑽]. The monoidal product on objects is given
by

(𝑋 𝑥−→ 𝑉0) ⊗[𝑽] (𝑌
𝑦
−→ 𝑉0) ≔ 𝑋 × 𝑌

𝑥×𝑦
−−→ 𝑉0 × 𝑉0

⊗𝑽
−−→ 𝑉0.

The monoidal product on arrows

(𝑋 𝑥−→ 𝑉0)
(𝑋 𝑢−→𝑌,𝑋

𝑓−→(𝑥,𝑦𝑢)∗𝑉1)
−−−−−−−−−−−−−−−−→ (𝑌

𝑦
−→ 𝑉0)
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and

(𝑍 𝑧−→ 𝑉0)
(𝑍 𝑣−→𝑊,𝑍

𝑔−→(𝑧,𝑤𝑣)∗𝑉1)
−−−−−−−−−−−−−−−−−→ (𝑊 𝑤−→ 𝑉0)

is indexed by 𝑋 × 𝑍 𝑢×𝑣−−−→ 𝑌 × 𝑊 and given by

𝑋 × 𝑍
𝑓⊗𝑽𝑔
−−−→ (𝑥 ⊗𝑽 𝑧, 𝑦𝑢 ⊗𝑽 𝑤𝑣)∗𝑉1.

The monoidal unit is 𝕀𝑽 ∶ 𝟙ℰ → 𝑉0. Finally, the structural isomorphisms are
induced by those of 𝑽.

1.6. Indexed Enriched Categories
Now that we have—at least for ℰ with products—a notion of indexed monoidal
category, we give, as the last piece of background material, the notion of
enrichment in such a category. This comes in two versions: a general indexed
version and a version which we call “small” (Shulman 2013). The latter is
in a sense a hybrid notion, having an internal as well as an indexed aspect.
The force of the definition will be clear in chapter 3, after we have (in the next
section) treated the relationship between internal and indexed categories.

In this section, let 𝒲 be an ℰ-indexed monoidal category.
Let’s introduce a convenient notation for use in the next definition.

Notation 1.6.1. If 𝑓 ∶ 𝐵 → 𝐴 is a morphism in ℰ and 𝐻 is an object in 𝒲(𝐴),
let’s write 𝐻(𝑓 ) for the object 𝒲(𝑓 )(𝐻) of 𝒲(𝐵).

First we give an outline of the definitions of the notions of small 𝒲-category,
of functors between such categories, and of natural transformations between
such functors. For brevity we will omit some diagrammatic axioms. We refer
to Shulman (ibid.) for those.

Definition 1.6.2 (small 𝒲-category). A small 𝒲-category 𝒜 consists of

• an object 𝐴 of ℰ;

• an object Hom𝒜 of 𝒲(𝐴 × 𝐴);

• a morphism id𝒜 ∶ 𝕀𝒲(𝐴) → Hom𝒜(𝛥) where 𝛥∶ 𝐴 → 𝐴 × 𝐴 is the
diagonal;

• A morphism of 𝒲(𝐴 × 𝐴 × 𝐴)

∘𝒜 ∶ Hom𝒜(𝜋2, 𝜋3) ⊗𝒲(𝐴×𝐴×𝐴) Hom𝒜(𝜋1, 𝜋2) → Hom𝒜(𝜋1, 𝜋2)

where 𝜋1, 𝜋2, 𝜋3 ∶ 𝐴 × 𝐴 × 𝐴 → 𝐴 are projections.
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satisfying the associativity and unitarity axioms (ibid.).
Definition 1.6.3 (functor of small 𝒲-categories). A functor of small 𝒲-
categories 𝐹∶ 𝒜 → ℬ consists of

• a morphism 𝐹0 ∶ 𝐴 → 𝐵 of ℰ;

• a morphism 𝐹1 ∶ Hom𝒜 → Homℬ(𝐹0, 𝐹0) of 𝒲(𝐴 × 𝐴);
satisfying the functoriality axioms (ibid.).
Definition 1.6.4 (natural transformation of small 𝒲-categories). A natu-
ral transformation of small 𝒲-categories 𝛼∶ 𝐹 → 𝐺∶ 𝒜 → ℬ consists of a
morphism

𝛼∶ 𝕀𝒲(𝐴) → Homℬ((𝐹0, 𝐺0)𝛥)
satisfying a naturality axiom.

Let’s introduce some convenient notations for use in the next definition.
Notation 1.6.5. Let 𝒱 and 𝒱′ be monoidal categories. If 𝐹∶ 𝒱 → 𝒱′ is a lax
monoidal functor and 𝒜 is a 𝒱-enriched category, then there is an induced
𝒱′-enriched category 𝐹•(𝒜). Moreover, if 𝐹 is a closed monoidal functor
(with 𝒱 and 𝒱′ closed monoidal), then in particular there is a fully faithful
𝒱′-functor 𝐹• ∶ 𝐹•(𝒱) → 𝒱′.

Now we present the hopefully more familiar definition of a general indexed
category enriched in an indexed monoidal category (ibid.).
Definition 1.6.6 (indexed 𝒲-category). An indexed 𝒲-category ℬ consists of

• for each 𝑋 object of ℰ, a 𝒲(𝑋)-category ℬ𝑋;

• for each 𝑓 ∶ 𝑋 → 𝑌 in ℰ, a fully faithful 𝒲(𝑋)-functor 𝑓 ∗ ∶ (𝑓 ∗)•(ℬ𝑌) → ℬ𝑋;

• for each 𝑓 ∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍 in ℰ, a 𝒲(𝑋)-natural isomorphism
(𝑔𝑓 )∗ ≅ 𝑓 ∘ (𝑓 ∗)•(𝑔) (where we implicitly identify (𝑓 ∗)•(𝑔∗)•ℬ𝑍 with
(𝑔𝑓 ∗)•ℬ𝑍 in the domains of these functors);

• for each 𝑋 object of ℰ, a 𝒲(𝑋)-natural isomorphism (id𝑋)∗ ≅ idℬ𝑋;
satisfying, for every 𝑓 ∶ 𝑋 → 𝑌, 𝑔∶ 𝑌 → 𝑍 and ℎ∶ 𝑍 → 𝐾 in ℰ, the axioms for
associativity and unitarity, analogous to those for ordinary indexed categories,
by making the following diagrams of isomorphisms commute.

(ℎ𝑔𝑓 )∗ 𝑓 ∗ ∘ (𝑓 ∗)•((ℎ𝑔)∗)

(𝑔𝑓 )∗ ∘ ((𝑔𝑓 )∗)•(ℎ∗) 𝑓 ∗ ∘ (𝑓 ∗)•(𝑔∗ ∘ (𝑔∗)•(ℎ∗))

𝑓 ∗ ∘ (𝑓 ∗)•(𝑔∗) ∘ ((𝑔𝑓 )∗)•(ℎ∗) 𝑓 ∗ ∘ (𝑓 ∗)•(𝑔∗) ∘ (𝑓 ∗)•(𝑔∗)•(ℎ∗)
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1. Background

(id𝒳)∗ ∘ ((id𝒳)∗)•(𝑓 ∗)

(𝑓id𝒳)∗ 𝑓 ∗

𝑓 ∗ ∘ (𝑓 ∗)•((id𝒴)∗)

(id𝒴𝑓 )∗ 𝑓 ∗

Definition 1.6.7 (functor of indexed 𝒲-categories). An indexed 𝒲-functor
ℱ∶ ℬ → ℬ′ consists, for every object 𝑋 of ℰ, of a 𝒲(𝑋)-enriched functor
ℱ𝑋 ∶ ℬ𝑋 → ℬ′𝑋 together with, for every 𝑓 ∶ 𝑋 → 𝑌, an isomorphism ℱ𝑋 ∘ 𝑓 ∗ ≅
𝑓 ∗ ∘ (𝑓 ∗)•(ℱ𝑌). Such data have to satisfy the functoriality axioms by making
the following diagrams of isomorphisms commute, for every 𝑓 ∶ 𝑋 → 𝑌 and
𝑔∶ 𝑌 → 𝑍 in ℰ.

ℱ𝐼 ∘ (𝑔𝑓 )∗ ℱ𝑋 ∘ 𝑓 ∗ ∘ (𝑓 ∗)•(𝑔∗)

(𝑔𝑓 )∗ ∘ ((𝑔𝑓 )∗)•(ℱ𝑍) 𝑓 ∗ ∘ (𝑓 ∗)•(ℱ𝑌) ∘ (𝑓 ∗)•(𝑔∗)

𝑓 ∗ ∘ (𝑓 ∗)•(𝑔∗) ∘ (𝑓 ∗)•((𝑔∗)•(ℱ𝑍)) 𝑓 ∗ ∘ (𝑓 ∗)•(ℱ𝑌 ∘ 𝑔∗)

𝑓 ∗ ∘ (𝑓 ∗)•(𝑔∗ ∘ (𝑔∗)•(ℱ𝑍))

ℱ𝑋 ∘ (id𝒳)∗ (id𝒳)∗ ∘ ((id𝒳)∗)•(ℱ𝑋)

ℱ𝑋

Definition 1.6.8 (natural transformation of indexed 𝒲-categories). An in-
dexed 𝒲-natural transformation 𝛼∶ ℱ → 𝒢∶ ℬ → ℬ′ consists, for every
object 𝑋 of ℰ, of a 𝒲(𝑋)-natural transformation 𝛼𝑋 ∶ ℱ𝑋 → 𝒢𝑋 ∶ ℬ𝑋 → ℬ′𝑋,
satisfying naturality axioms by making the following diagram commute, for
every 𝑓 ∶ 𝑋 → 𝑌.

ℱ𝑋 ∘ 𝑓 ∗ 𝑓 ∗ ∘ (𝑓 ∗)•(ℱ𝑌)

ℱ𝑋 ∘ 𝑓 ∗ 𝑓 ∗ ∘ (𝑓 ∗)•(ℱ𝑌)

With the data thus defined (plus the obvious notions of compositions and
identities) we can define a 2-category of indexed enriched categories.
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1.6. Indexed Enriched Categories

Definition 1.6.9 (category of indexed 𝒲-categories). We denote with 𝒲ICatℰ
the 2-category of indexed 𝒲-categories, their functors and the natural trans-
formations between them.

By abuse of notation, we shall denote with 𝒲ICatℰ also the mere 1-category
of indexed 𝒲-categories and their functors. Usually, the context is sufficient
to distinguish when the notation is being used referring to the 1-category or
the 2-category.

Finally, we briefly mention how to change the indexed monoidal category
in which we are enriching. Such operation, fundamental for every flavor of
enriched category theory, is called change of cosmos. For more details, we refer
to Shulman 2013.

First, we define the transformation between indexed monoidal categories.

Definition 1.6.10 (lax monoidal morphism). If 𝒲 is an ℰ-indexed monoidal
category, and 𝒲′ is an ℰ′-indexed monoidal category, then a lax monoidal
morphism 𝜙∶ 𝒲 → 𝒲′ is a commutative square

∫ 𝒲 ∫ 𝒲′

ℰ ℰ′

𝜙

𝜙

such that 𝜙∶ ℰ → ℰ′ preserves finite products and 𝜙∶ ∫ 𝒲 → ∫ 𝒲′ is lax
monoidal and preserves cartesian arrows.

If 𝜙∶ 𝒲 → 𝒲′ is a lax monoidal morphism, there are induced operations
𝜙• from small and indexed 𝒲-categories to the corresponding sort of 𝒲′-
categories, and similarly for functors, and natural transformations.
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2. Completeness of Internal
Categories

The aim of this dissertation is to develop a form of enriched category theory
internal to a suitable ambient category ℰ. What is perhaps unexpected in our
theory is that we seek enriching categories within ℰ that are complete. Of
course, when ℰ is the category of sets, there are relatively few small complete
categories in which we can usefully enrich: essentially, they are all quantales.
However, there are small complete internal categories within categories pro-
vided by realizability, such as the category of modest sets within the category
of assemblies (Hyland 1988).

As in the usual theory of enriched categories (Kelly 1982), two kinds of
completeness play a role in the theory: first, there is the completeness of the
enriching category; secondly, the completeness of the enriched categories. The
main focus of the dissertation is on the second notion, which is part of the
theory of internal enriched categories. However, to set the stage for that, we
have to consider the first notion. So, we need some preliminaries on complete
internal categories.

Sadly, the existing literature on internal complete categories is sparse. The
paper Hyland 1988, which presents a leading example, gives a sketch of how
the theory might develop. The more or less contemporaneous paper Hyland,
Robinson, and Rosolini 1990 discusses the definitions in light of a perspective
suggested by Freyd, but its main focus is on weak notions of completeness
which play no role in this dissertation. The basic idea is that one has a weak
limit when it is internally true that there exists a limit cone for the given
diagram, while the limit is strong when the choice of limit cone is given as
part of the structure. In this dissertation, though, we are not assuming that
the internal logic of our ambient category features existential quantification,
so the notion of weak limit is not even applicable.

As completeness of the enriching category is fundamental to the theory we
develop, we have decided to adopt and clarify the definition of strong complete-
ness given in ibid. Evidently, the use of the internal logic in ibid. is intended
to ensure that the property of being a limit cone is stable under pullback.
Although that makes the definition of completeness very concise, it also obfus-
cates its content. Instead, we will present the notion in a more explicit way,
by avoiding the use of the internal language.

In this chapter ℰ shall be a finitely complete, locally cartesian closed category.
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2. Completeness of Internal Categories

As a consequence, the internal language is now a dependent type theory (Seely
1984). In particular, these assumptions are necessary to ensure that the
notions we are going to define will be stable under pullback, which in turn is
necessary if we want them to be meaningful in the internal language.

2.1. Diagrams and Cones
As obvious as they might seem, we shall spell out the definitions of diagrams
and cones over diagrams in the internal context.

Definition 2.1.1 (diagram). Let 𝑨 and 𝑫 be internal categories in ℰ. A
diagram of shape 𝑫 in 𝑨 is an internal functor 𝐷∶ 𝑫 → 𝑨.

Definition 2.1.2 (cone). A cone over a diagram 𝐷∶ 𝑫 → 𝑨 with vertex 𝑇∶ 𝟙Catℰ
→

𝑨 is a natural transformation 𝛾∶ 𝛥𝑇 → ⌜𝐷⌝∶ 𝟙Catℰ
→ [𝑫, 𝑨], where 𝛥∶ 𝑨 →

[𝑫, 𝑨] is the diagonal functor. The situation is shown in the following diagram.

𝟙Catℰ
𝟙Catℰ

𝑨 [𝑫, 𝑨]
𝑇 ⌜𝐷⌝

𝛥

𝛾

Let 𝛾𝑖 ∶ 𝑇𝑖𝛥 → ⌜𝐷⌝∶ 𝟙Catℰ
→ [𝑫, 𝑨] for 𝑖 = 0, 1 be two cones over the

diagram 𝐷∶ 𝑫 → 𝑨 with tips 𝑇𝑖 ∶ 𝟙Catℰ
→ 𝑨 respectively. A morphism of

cones ℎ∶ 𝛾0 → 𝛾1 is given by a natural transformation ℎ∶ 𝑇0 → 𝑇1 such that
𝛾1 ∘ (𝛥 ∗ ℎ) = 𝛾0, as represented in the following diagram.

𝟙Catℰ
𝟙Catℰ

𝑨 [𝑫, 𝑨]

𝑇0 𝑇1
ℎ ⌜𝐷⌝

𝛥

𝛾1

=

𝟙Catℰ
𝟙Catℰ

𝑨 [𝑫, 𝑨]

𝑇0 ⌜𝐷⌝

𝛥

𝛾0

Dually, we can give the definition of cocone (which we sum up, but all the
considerations from the definition of cones apply).

Definition 2.1.3 (cocone). A cocone over a diagram 𝐷∶ 𝑫 → 𝑨 with vertex
𝑇∶ 𝟙Catℰ

→ 𝑨 is a natural transformation 𝛾∶ ⌜𝐷⌝ → 𝛥𝑇∶ 𝟙Catℰ
→ [𝑫, 𝑨].

Let 𝐼 be an object of ℰ, to be intended as an indexing object. We know
from remark 1.1.4 that there are two adjunctions, 𝐼! ⊣ 𝐼∗ ∶ ℰ → ℰ/𝐼 and
𝐼! ⊣ 𝐼∗ ∶ Catℰ → Catℰ/𝐼. Moreover, the canonical morphism 𝑖 ∶ 𝐼∗[𝑫, 𝑨] →
[𝐼∗𝑫, 𝐼∗𝑨] is an isomorphism because ℰ is locally cartesian closed. Then,
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2.1. Diagrams and Cones

given a diagram 𝐷∶ 𝑫 → 𝑨, we get a diagram 𝐼∗𝐷∶ 𝐼∗𝑫 → 𝐼∗𝑨, and, given a
cone

𝟙Catℰ
𝟙Catℰ

𝑨 [𝑫, 𝑨]
𝑇 ⌜𝐷⌝

𝛥

𝛾

over 𝐷, we get a cone

𝟙Catℰ/𝐼
𝟙Catℰ/𝐼

𝐼∗𝑨 𝐼∗[𝑫, 𝑨] [𝐼∗𝑫, 𝐼∗𝑨]
𝐼∗𝑇 𝐼∗⌜𝐷⌝

⌜𝐼∗𝐷⌝

𝐼∗𝛥

𝛥

𝑖∗𝐼∗𝛾

𝑖

over 𝐼∗𝐷. Notice that 𝐼∗ preserves the terminal object, 𝑖 ∘ 𝐼∗⌜𝐷⌝ = ⌜𝐼∗𝐷⌝ and
𝑖 ∘ 𝐼∗𝛥 = 𝛥. Then, we have a functor 𝐼∗ ∶ Cone𝐷 → Cone𝐼∗𝐷.

It is worth noting that the previous notions are all internal, in the sense that
they can be expressed by the internal language of ℰ. The internal category of
cones over a diagram 𝐷∶ 𝑫 → 𝑨 is given by the lax pullback

Cone𝐷 𝟙Catℰ

𝑨 [𝑫, 𝑨]

⌟
⌜𝐷⌝

𝛥

.

Then, the category of points of Cone𝐷 is the external category of cones over 𝐷
and their transformtions; in particular, any cone (𝑇, 𝛾) over 𝐷 corresponds
uniquely to a global sections (𝑇, 𝛾)∶ 𝟙Catℰ

→ Cone𝐷. Moreover, if 𝐼 is an object
of ℰ, an 𝐼-indexed family of cones over 𝐷 is given by a 2-cell

𝑰 𝟙Catℰ

𝑨 [𝑫, 𝑨]

𝑇 ⌜𝐷⌝

𝛥

𝛾 (2.1)

where 𝑰 is 𝐼!𝐼∗𝟙Catℰ
(intuitively, the discrete category over the object 𝐼). Analo-

gously, the category of all cones of shape 𝑫 over 𝑨 is given by the lax pullback

Cone𝑫 [𝑫, 𝑨]

𝑨 [𝑫, 𝑨]

⌟

𝛥

.
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2. Completeness of Internal Categories

Dually, the internal category of cocones over a diagram 𝐷∶ 𝑫 → 𝑨 is given by
the lax pullback

CoCone𝐷 𝟙Catℰ

𝑨 [𝑫, 𝑨]

⌟
⌜𝐷⌝

𝛥

.

2.2. Limits
As usual, we call universal a cone that is a terminal object in the category of
cones over the given diagrams. Though, we have to be careful about which
category of cones we are talking about, and what it means to be terminal in it.
Since our definition aims to be internal in essence, what we want is a terminal
object, as defined by the internal language, in the internal category of cones.
That is more than a terminal object in the external category of cones: there,
stability under pullback has to be enforced, thus realizing the intuition that,
if lim𝐷 is a limit for a diagram 𝐷∶ 𝑫 → 𝑨 and 𝐼 is an object of ℰ, then 𝐼∗ lim𝐷
should be a limit for 𝐼∗𝐷.

Definition 2.2.1 (universal cone/limit). A cone (𝑇, 𝛾) over a diagram 𝐷∶ 𝑫 →
𝑨 is universal if it is internally a terminal object for Cone𝐷; that means that,
for every object 𝐼 of ℰ, the cone 𝐼∗(𝑇, 𝛾) over 𝐼∗𝐷 is a terminal object in the
external category of cones over 𝐼∗𝐷. The vertex of a universal cone over 𝐷 is
also called the limit of 𝐷.

Dually, we give the definitions of universal cocone and colimit.

Definition 2.2.2 (universal cocone/colimit). A cocone (𝑇, 𝛾) over a diagram
𝐷∶ 𝑫 → 𝑨 is universal if it is internally an initial object for CoCone𝐷; that
means that, for every object 𝐼 of ℰ, the cocone 𝐼∗(𝑇, 𝛾) over 𝐼∗𝐷 is an initial
object in the external category of cocones over 𝐼∗𝐷. The vertex of a universal
cocone over 𝐷 is also called the colimit of 𝐷.

It is inconvenient that stability needs to be imposed, but such is the price of
doing everything concretely, without relying on the internal logic. However,
once the definition has been stabilized, we get all the desired consequences of
an internal definition. For example, the universal property does not merely
hold for cones, but for indexed families of cones as well: that is to say the
universal quantifier for all cones has the expected property.

Indeed, let 𝐷∶ 𝑫 → 𝑨 be a diagram admitting a limit (lim𝐷, 𝜋). Then, if 𝐼 is
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an object of ℰ, consider an 𝐼-indexed family of cones

𝑰 𝟙Catℰ

𝑨 [𝑫, 𝑨]

𝑇 ⌜𝐷⌝

𝛥

𝛾 . (2.2)

By applying 𝐼∗ and the properties of the adjunction, we get

𝟙Catℰ/𝐼
𝟙Catℰ/𝐼

𝐼∗𝑰 𝟙Catℰ/𝐼

𝐼∗𝑨 𝐼∗[𝑫, 𝑨] [𝐼∗𝑫, 𝐼∗𝑨]

𝜂(𝟙Catℰ/𝐼
)

𝐼∗𝑇 𝐼∗⌜𝐷⌝

⌜𝐼∗𝐷⌝

𝐼∗𝛥

𝛥

𝐼∗𝛾

𝑖

which is a cone over 𝐼∗𝐷. Let’s call ̄𝑇 = 𝐼∗𝑇 ∘ 𝜂(𝟙) and 𝛾̄ = 𝑖 ∗ 𝛾 ∗ 𝜂(𝟙). Then,
by the universal property, there exists a unique ℎ∶ ̄𝑇 → 𝐼∗ lim𝐷 such that the
above diagram is equal to

𝟙Catℰ/𝐼
𝟙Catℰ/𝐼

𝐼∗𝑨 𝐼∗[𝑫, 𝑨] [𝐼∗𝑫, 𝐼∗𝑨]

𝑇̄ 𝐼∗ lim𝐷
ℎ 𝐼∗⌜𝐷⌝

⌜𝐼∗𝐷⌝

𝐼∗𝛥

𝛥

𝐼∗𝜋

𝑖

.

On both squares, cancel the whiskering with 𝑖, which is possible because 𝑖 is
an isomorphism as ℰ is locally cartesian closed. Apply 𝐼! to the two squares
and then compose with the counit 𝜖; let ℎ̄ be 𝜖(𝑨) ∗ 𝐼!ℎ. Then, we get that the
square (2.2) is equal to

𝑰 𝟙Catℰ
𝟙Catℰ

𝑨 [𝑫, 𝑨]

𝑇

!

ℎ̄ lim𝐷 ⌜𝐷⌝

𝛥

𝜋

thus showing that even families of cones factorize through the limit.
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2. Completeness of Internal Categories

Moreover, any cone (𝑇, 𝛾) over 𝐷 corresponds uniquely to a global sections
(𝑇, 𝛾)∶ 𝟙Catℰ

→ Cone𝐷, and a cone is a limit if it is understood in the internal
logic as a terminal object for Cone𝐷. Again, it is essential that the notion is
stable under pullback, or it could not be expressed in the internal language.
Then, that of limit is a notion in the internal logic, and that allows us to use
the internal logic to argue about it.

2.3. Completeness
While completeness generally means to “just” have limits for all diagrams, in
the internal setting the treatment of the notion requires special care. The
category of diagrams of shape 𝑫 over 𝑨 is evidently the functor category [𝑫, 𝑨],
and the notion of functor category is stable under pullback. Then, we may
wish to say, in the internal language, that every such diagram has a limit
cone. However, limits are determined only up to (unique) isomorphism, and
we have no non-unique existential quantifier in the logic of a cartesian closed
category (this issue could be partially circumvented by treating completeness
as a structure rather than a property, and requiring a functorial choice of limits
on the internal category of diagrams). Even more limiting, while we have a
category of diagrams of a certain shape, there is no category of diagrams of
any shape. Thus, completeness cannot be a purely internal notion.

From an external perspective, it would look natural to call an (internal)
category complete if every diagram over it admits a limit. Again, it is necessary
to reconsider this intuition as the resulting notion would not be stable under
pullback. Indeed, even if every diagram over a category 𝑨 admits a limit, it is
still possible that not every diagram over 𝐼∗𝑨 does, for some indexing object 𝐼.

Definition 2.3.1 (completeness). An internal category 𝑨 in ℰ is (strongly)
complete if, for every object 𝐼 of ℰ, every diagram over 𝐼∗𝑨 admits a limit.

At this point, it is necessary to find out whether such definition of complete-
ness admits non-trivial examples. The first place to look into is the category
of sets.
Example 2.3.2. The internal complete categories in Set coincide with (the
categories associate to) complete lattices.

Thus, the internal complete categories in Set are precisely the small complete
categories. That means that the notion of internal completeness is compatible
with the standard one, as it should be.

While the examples in the category of sets are legitimate, they are a bit
disappointing: there are no small complete categories other than lattices.
Fortunately, and somewhat surprisingly, there are remarkable examples in
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other ambient categories. Maybe the most famous of these is the internal cat-
egory of the Modest Sets in the Category of Assemblies (Hyland 1988; Hyland,
Robinson, and Rosolini 1990). Such example is presented in section 5.2.

The dual notion of cocompleteness is as one would expect.

Definition 2.3.3 (cocompleteness). An internal category 𝑨 in ℰ is (strongly)
cocomplete if, for every object 𝐼 of ℰ, every diagram over 𝐼∗𝑨 admits a colimit.

A complete category has all indexed limits, and the object of diagrams of a
certain shape over it is a suitable indexing object. Following this intuition, we
can produce a functorial choice of limits in the form of a right adjoint to the di-
agonal functor. This shows some interesting facts. Firstly, that there exists an
internal, uniform (as in functorial) choice of limits, as opposed to the external
choice required by the definition of internal completeness. Secondly, that our
definition of completeness is consistent with the well-known characterization
of completeness via adjunctions. Finally, that the limit-choice functor comes
for free from the definition of completeness, whereas, for standard categories,
that would generally require the use of the axiom of choice. It is worth remark-
ing that the choice functor can only be defined over the object of diagrams of a
given shape, as there is no internal object of all diagrams of any shape.

Proposition 2.3.4. If 𝑨 is a complete internal category in ℰ, then for any
internal category 𝑫 in ℰ there is an internal functor lim𝑫 ∶ [𝑫, 𝑨] → 𝑨 which
is right adjoint to the diagonal functor 𝛥∶ 𝑨 → [𝑫, 𝑨].

Proof. The first step is to define the functor lim𝑫. We shall define the object
and arrow components separately, each by using the definition of limit for a
suitable diagram, in a suitable slice of 𝐸.

To define the object component of lim𝑫, consider Fun(𝑫, 𝑨) as the indexing
object. There is a diagram

𝜖 ∶ Fun(𝑫, 𝑨)∗𝑫 → Fun(𝑫, 𝑨)∗𝑨

in Catℰ/Fun(𝑫, 𝑨), defined as

𝐹∶ Fun(𝑫, 𝑨), 𝑑∶ 𝐷0 ⊢ 𝜖0(𝐹, 𝑑) ≔ (𝐹, eℰ(𝐹0, 𝑑))
𝐹∶ Fun(𝑫, 𝑨), 𝑓 ∶ 𝐷1 ⊢ 𝜖1(𝐹, 𝑓 ) ≔ (𝐹, eℰ(𝐹1, 𝑓 )).

Then, the diagram has a limit given by

(lim𝑫)0 ∶ 𝟙Catℰ/Fun(𝑫, 𝑨)
→ Fun(𝑫, 𝑨)∗𝑨,

corresponding to an arrow (lim𝑫)0 ∶ Fun(𝑫, 𝑨) → 𝐴0 yielding the object
component of lim𝑫. We also get the universal cone, let it be the natural
transformation

𝜋∶ (lim𝑫)0! → 𝜖∶ Fun(𝑫, 𝑨)∗𝑫 → Fun(𝑫, 𝑨)∗𝑨.
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To define the arrow component of lim𝑫, consider Nat(𝑫, 𝑨) as the indexing
object. There are diagrams 𝜖s, 𝜖t ∶ Nat(𝑫, 𝑨)∗𝑫 → Nat(𝑫, 𝑨)∗𝑨 in Catℰ/Nat(𝑫, 𝑨),
defined as

(𝛼∶ 𝐹 → 𝐺)∶ Nat(𝑫, 𝑨), 𝑑∶ 𝐷0 ⊢ (𝜖s)0(𝛼, 𝑑) ≔ (𝛼, eℰ(𝐹0, 𝑑))
(𝛼∶ 𝐹 → 𝐺)∶ Nat(𝑫, 𝑨), 𝑓 ∶ 𝐷1 ⊢ (𝜖s)1(𝛼, 𝑓 ) ≔ (𝛼, eℰ(𝐹1, 𝑓 ))

and
(𝛼∶ 𝐹 → 𝐺)∶ Nat(𝑫, 𝑨), 𝑑∶ 𝐷0 ⊢ (𝜖t)0(𝛼, 𝑑) ≔ (𝛼, eℰ(𝐺0, 𝑑))
(𝛼∶ 𝐹 → 𝐺)∶ Nat(𝑫, 𝑨), 𝑓 ∶ 𝐷1 ⊢ (𝜖t)1(𝛼, 𝑓 ) ≔ (𝛼, eℰ(𝐺1, 𝑓 )),

and there is also a natural transformation ̄𝜖 ∶ 𝜖s → 𝜖t defined as
(𝛼∶ 𝐹 → 𝐺)∶ Nat(𝑫, 𝑨), 𝑑∶ 𝐷0 ⊢ ̄𝜖(𝛼, 𝑑) ≔ (𝛼, eℰ(𝛼, 𝑑)).

Then, the diagram 𝜖t has a limit given by
𝐿∶ 𝟙Catℰ/Nat(𝑫, 𝑨)

→ Nat(𝑫, 𝑨)∗𝑨,

corresponding to an arrow 𝐿∶ Nat(𝑫, 𝑨) → 𝐴0, and a universal cone
𝑝∶ 𝐿! → 𝜖t ∶ Nat(𝑫, 𝑨)∗𝑫 → Nat(𝑫, 𝑨)∗𝑨.

Observe that, in context 𝑑∶ 𝐷0, (𝛼∶ 𝐹 → 𝐺)∶ Nat(𝑫, 𝑨), we have 𝐿(𝛼) =
(lim𝑫)0(𝐺) and 𝑝(𝛼, 𝑑) = 𝜋(𝐺, 𝑑). Consider 𝐿′ ∶ 𝟙Catℰ/Nat(𝑫, 𝑨)

→ Nat(𝑫, 𝑨)∗𝑨
given by 𝐿′(𝛼) ≔ (lim𝑫)0(𝐹), and the natural transformations 𝑝′ ∶ 𝐿′! → 𝜖s
defined as

𝑝′(𝛼, 𝑑) ≔ (𝛼, (lim𝑫)0(𝐹) 𝜋(𝐹,𝑑)−−−−−→ 𝜖(𝐹, 𝑑)).
Let 𝑝″ ≔ ̄𝜖𝑝′ ∶ 𝐿! → 𝜖t. Then, by the universal property of the limit, there is a
unique natural transformation

(lim𝑫)1 ∶ 𝐿′ → 𝐿∶ 𝟙Catℰ/Nat(𝑫, 𝑨)
→ Nat(𝑫, 𝑨)∗𝑨

such that 𝑝″ = 𝑝(lim𝑫)1 and whose underlying arrow in ℰ is a morphism
(lim𝑫)1 ∶ Nat(𝑫, 𝑨) → 𝐴1. That yields the arrow component of lim𝑫.

We shall now give the unit and counit for the adjunction 𝛥 ⊣ lim𝑫. Define the
unit 𝜂∶ id(𝑨) → lim𝑫 𝛥∶ 𝑨 → 𝑨 as the unique natural isomorphism yielded by
the universal property of the limit. Define the counit 𝜇∶ 𝛥 lim𝑫 → id([𝑫, 𝑨])
as the natural transformation induced by the universal cone 𝜋, which can
be regarded as an arrow Fun(𝑫, 𝑨) → Nat(𝑫, 𝑨). That is natural because,
in context (𝛼∶ 𝐹 → 𝐺)∶ Nat(𝑫, 𝑨) and 𝑑∶ 𝐷0, the equation 𝑝″ = 𝑝(lim𝑫)1
implies that the square

(lim𝑫)0(𝐹) 𝜖(𝐹, 𝑑) = eℰ(𝐹0, 𝑑)

(lim𝑫)0(𝐺) 𝜖(𝐺, 𝑑) = eℰ(𝐺0, 𝑑)

𝜋(𝐹,𝑑)

(lim𝑫)1(𝛼) eℰ(𝛼,𝑑)
𝜋(𝐺,𝑑)
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commutes. These data yield the required adjunction.

Together, the functor lim𝑫 and the counit of the adjunction 𝛥 lim𝑫 → id[𝑫,𝑨]
induce an internal functor [𝑫, 𝑨] → Cone𝑫 which is a right adjoint of the
projection 𝑝∶ Cone𝑫 → [𝑫, 𝑨]. Likewise, we could produce the functor lim𝑫
from the right adjoint of 𝑝. In other words, the two formulations of a limit
functor in terms of a right adjoint to 𝑝∶ Cone𝑫 → [𝑫, 𝑨] and in terms of a
right adjoint to 𝛥∶ 𝑨 → [𝑫, 𝑨] are equivalent. Such equivalence is just a
matter of routine 2-category-theory calculations.

Notice that the limit functor is stable under pullback, as it is the right adjoint
of the diagonal functor, which is a stable notion in a locally cartesian closed
category. More precisely, 𝐼∗ lim𝑫 ≅ lim𝐼∗𝑫 ∶ 𝑨 → [𝑫, 𝑨] for every indexing
object 𝐼 of ℰ.

The strength of the notion of internal completeness is constrained by the
shapes of the diagrams we can build in ℰ. For example, if ℰ doesn’t have a
coproduct 𝟙 + 𝟙, we are unable to build a diagram with a pair of objects. That
means that an internal category may in principle be complete, but not have
binary products. Even more strikingly, if ℰ does not have an initial object,
we are unable to build the degenerate diagram having the terminal object as
its limit. Fortunately, it is possible to express the concepts of terminal object,
internal binary product and equalizer independently of the notion of internal
limits.

Firstly, we treat the terminal object.

Definition 2.3.5 (internal terminal object). An internal category 𝑨 in ℰ has
terminal object if the functor ! ∶ 𝑨 → 𝟙Catℰ

has a right adjoint.

Proposition 2.3.6. If ℰ has initial object and 𝑨 is a complete internal category
in ℰ, then 𝑨 has terminal object.

Proof. Let 𝟘Catℰ
be the initial object in Catℰ, built from the initial object 𝟘ℰ

of ℰ. Then, 𝛥∶ 𝑨 → [𝟘Catℰ
, 𝑨] is ! ∶ 𝑨 → 𝟙Catℰ

, and the limit functor of 𝑨 from
proposition 2.3.4 yields the right adjoint.

Secondly, we turn our attention to binary products.

Definition 2.3.7 (internal binary product). An internal category 𝑨 in ℰ has
binary products if the functor 𝛥∶ 𝑨 → 𝑨 ×Catℰ 𝑨 has a right adjoint.

It turns out that when one can give a natural definition in terms of diagrams,
then it coincides with the general definition.

Proposition 2.3.8. If ℰ has binary coproducts and 𝑨 is a complete internal
category in ℰ, then 𝑨 has binary products.

35



2. Completeness of Internal Categories

Proof. Let 𝔻 = 𝟙Catℰ
+Catℰ 𝟙Catℰ

be the internal category with just two objects
(let them be called 0 and 1) and their identity arrows. Consider the diagram
in the slice ℰ/𝐴0 × 𝐴0

𝐷∶ (𝐴0 × 𝐴0)∗𝔻 → (𝐴0 × 𝐴0)∗𝑨

defined, in context 𝑎0, 𝑎1 ∶ 𝐴0, as 𝐷0(𝑎0, 𝑎1, 𝑖) ≔ (𝑎0, 𝑎1, 𝑎𝑖) for 𝑖 = 0, 1. Then,
the limit of 𝐷 yields the right adjoint to 𝛥.

Finally, we treat the case of equalizers. Consider the object (𝑨p)0 of pairs
of parallel arrows in 𝑨, defined by means of the internal language as the
subobject of 𝐴1 × 𝐴1 given, in context (𝑓 , 𝑔)∶ 𝐴1 × 𝐴1, by s𝑨(𝑓 ) = s𝑨(𝑔) and
t𝑨(𝑓 ) = t𝑨(𝑔). Analogously, there is an object of commutative squares between
pairs of parallel arrows in 𝑨, which is the subobject of (𝑨p)0 × (𝑨p)0 × 𝐴1 × 𝐴1
given, in context ((𝑓 , 𝑔), (𝑓 ′, 𝑔′), ℎ0, ℎ1), by

𝑋0 𝑋1

𝑌0 𝑌1

𝑓

𝑔
ℎ0 ℎ1

𝑓 ′

𝑔′

where ℎ1 ∘𝑨 𝑓 = 𝑓 ′ ∘𝑨 ℎ0 and ℎ1 ∘𝑨 𝑔 = 𝑔′ ∘𝑨 ℎ0. Thus we get the category 𝑨p
of parallel arrows of 𝑨. There is also a delta functor 𝛥∶ 𝑨 → 𝑨p sending an
object of 𝑨 into the pair given by its identity arrow (twice).

Definition 2.3.9 (internal equalizer). An internal category 𝑨 in ℰ has equal-
izers if the functor 𝛥∶ 𝑨 → 𝑨p has a right adjoint.

Again, when we can give a definition in terms of diagrams it coincides with
the general definition.

Proposition 2.3.10. If ℰ has binary coproducts and 𝑨 is a complete internal
category in ℰ, then 𝑨 has equalizers.

Proof. Let ℙ be the internal category in ℰ with two objects (let them be called
0 and 1) and two parallel arrows between them (let them be called 0⃗ and ⃗1).
Consider the diagram in the slice ℰ/(𝑨p)0

𝐷∶ (𝑨p)∗
0ℙ → (𝑨p)∗

0𝑨

defined, in context 𝑃 = (𝑓0, 𝑓1 ∶ 𝑎0 → 𝑎1)∶ (𝑨p)0 as 𝐷0(𝑃, 𝑖) ≔ 𝑎𝑖 for 𝑖 = 0, 1,
and 𝐷1(𝑃, ⃗𝚤) ≔ 𝑓𝑖 for 𝑖 = 0, 1. sending pairs of parallel arrows of 𝑨 into the
corresponding diagram, yields the right adjoint to 𝛥.
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Notice that the previous notions are all stable under pullback, as they are
defined as the right adjoint of the diagonal functor, which is a stable notion
in a locally cartesian closed category. Moreover, we could similarly define the
dual special colimits: initial object, binary sum and coequalizer.

It is part of the folklore of category theory that, were it not for issues of size,
completeness and cocompleteness would be equivalent notions. For example,
the thought plays a manifest role in the proof of the General Adjoint Functor
Theorem. In the context of internal categories the size issues disappear and
there is an equivalence. This important fact is alluded to in Hyland (1988),
but there is no written account of which we are aware, so we think it useful to
indicate full details of a proof in a modern categorical style. The proof of the
equivalence is a consequence of the following remarkable propositions.

Proposition 2.3.11. Let 𝑨 be a category in ℰ. If the identity idCatℰ
(𝑨)∶ 𝑨 → 𝑨

has a limit, then that limit is an initial object in 𝑨.

Proof. Let the functor 𝐼 ∶ 𝟙Catℰ
→ 𝑨 be the limit of idCatℰ

(𝑨), and the natural
transformation 𝜋∶ 𝐼!𝑨 → idCatℰ

(𝑨)∶ 𝑨 → 𝑨 be its universal cone. We want to
prove that 𝐼 is the left adjoint of !𝑨, with 𝜋 as the counit of the adjunction (the
unit being the obvious degenerate natural transformation). Then, the only
non-trivial triangular equation (after canceling the identity terms) requires us
to prove that 𝜋 ∗ 𝐼 = id(𝐼). Observe that the interchange law of composition
applied to the natural transformations

𝟙Catℰ

𝑨 𝑨 𝑨

𝟙Catℰ

𝐼
𝜋

𝐼
𝜋

says that 𝜋 = 𝜋(𝜋 ∗ 𝐼!) (given that 𝐼! ∗ 𝜋 is an identity as it factors through
𝟙Catℰ

). Then, by the universal property of the limit, there is a unique ℎ∶ 𝐼 → 𝐼
such that 𝜋(ℎ∗!) = 𝜋, which is obviously id(𝐼). But, by the previous observa-
tion, also 𝜋 ∗ 𝐼 features such property, and then it must be that 𝜋 ∗ 𝐼 = id(𝐼),
which is the required triangular equation.

Proposition 2.3.12. Let 𝑨 be a complete category in ℰ and 𝐷∶ 𝑫 → 𝑨 a
diagram over it. Then, CoCone𝐷 is complete too.

Proof. Let 𝐷′ ∶ 𝑫′ → CoCone𝐷 be a diagram over CoCone𝐷. Observe that, by
composition with the projection 𝑇∶ CoCone𝐷 → 𝑨, we have a diagram 𝑇𝐷′
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2. Completeness of Internal Categories

over 𝑨. By hypothesis, 𝑇𝐷′ has a limit lim𝑇𝐷′ ∶ 𝟙Catℰ
→ 𝑨 with universal cone

𝜋∶ 𝛥 lim𝑇𝐷′ → ⌜𝑇𝐷′⌝. The situation is as follows.

𝑫′ CoCone𝐷 𝟙Catℰ

𝟙Catℰ
𝑨 [𝑫, 𝑨]

𝐷′

𝑇
⌟

⌜𝐷⌝

lim𝑇𝐷′

𝜋

𝛥

𝛾

Because 𝛥 preserves limits, lim𝛥𝑇𝐷′ is (isomorphic to) 𝛥 lim𝑇𝐷′ and its uni-
versal cone is (isomorphic to) 𝛥 ∗ 𝜋. But 𝛾 ∗ 𝐷′ ∶ ⌜𝐷⌝! → 𝛥𝑇𝐷′ is a cone over
𝛥𝑇𝐷′ with vertex ⌜𝐷⌝, so, by the universal property of the limit, there is a
unique natural transformation ℎ∶ ⌜𝐷⌝ → 𝛥 lim𝑇𝐷′ such that (𝛥 ∗ 𝜋)(ℎ∗!) =
𝛾 ∗ 𝐷′. Then, by the universal property of the lax pullback, there is a unique
𝐿∶ 𝟙Catℰ

→ CoCone𝐷 such that 𝑇𝐿 ≅ lim𝑇𝐷′ and (up to this isomorphism)
𝛾 ∗ 𝐿 = ℎ. Moreover, observe that by the defining properties of ℎ and 𝐿 it holds
𝛾 ∗ 𝐷′ = (𝛥 ∗ 𝜋)(𝛾 ∗ 𝐿!). Then, by the 2-dimensional universal property of
the lax pullback, there is a unique 𝑝∶ 𝐿! → 𝐷′ such that 𝑇 ∗ 𝑝 = 𝜋.

We claim (𝐿, 𝑝) is a limit for 𝐷′. We need to show that, for any other cone
(𝐿′, 𝑝′) on 𝐷′, there is a unique 𝛽∶ 𝐿′ → 𝐿 such that 𝑝(𝛽∗!) = 𝑝′.

Let’s produce 𝛽. To begin with, notice that 𝑇 ∗ 𝑝′ ∶ 𝑇𝐿′! → 𝑇𝐷′ is a cone
on 𝑇𝐷′ and thus, by the universal property of the limit, there exists a unique
𝑘∶ 𝑇𝐿′ → lim𝑇𝐷′ such that 𝜋(𝑘∗!) = 𝑇∗ 𝑝′. Then, observe that (𝛥∗ 𝑘)(𝛾∗ 𝐿′)
is ℎ, as it has the same unique property:

(𝛥 ∗ 𝜋)((𝛥 ∗ 𝑘)(𝛾 ∗ 𝐿′)∗!)
= (𝛥 ∗ 𝜋)(𝛥 ∗ 𝑘∗!)(𝛾 ∗ 𝐿′!)
= (𝛥 ∗ (𝜋(𝑘∗!)))(𝛾 ∗ 𝐿′!)

(by the unique property of 𝑘) = (𝛥𝑇 ∗ 𝑝′)(𝛾 ∗ 𝐿′!)
(by the interchange law of composition) = (𝛾 ∗ 𝐷′)(⌜𝐷⌝! ∗ 𝑝′)

(because ⌜𝐷⌝! ∗ 𝑝′ factors through 𝟙Catℰ
) = 𝛾 ∗ 𝐷′.

Finally, by the 2-dimensional universal property of the lax pullback, there is a
unique 𝛽∶ 𝐿′ → 𝐿 such that 𝑇 ∗ 𝛽 = 𝑘.

Now we need to show that 𝑝′ factorizes through 𝑝, i.e. that 𝑝(𝛽∗!) = 𝑝′.
Notice that 𝛾∗𝐷′ = (𝛥∗(𝜋(𝑘∗!)))(𝛾∗𝐿′!) (it is the same calculation as before).
Then, there is a unique 𝑞∶ 𝐿′! → 𝐷′ such that 𝑇 ∗ 𝑞 = 𝜋(𝑘∗!). But both 𝑝(𝛽∗!)
and 𝑝′ have this unique property. Indeed, 𝑇 ∗ (𝑝(𝛽∗!)) = (𝑇 ∗ 𝑝)(𝑇 ∗ 𝛽∗!) and
that, because of the unique properties of 𝑝 and 𝛽, is 𝜋(𝑘∗!); and for 𝑝′ it holds
because the unique property of 𝑘. But then, 𝑝(𝛽∗!) = 𝑝′.

To conclude, let’s prove that 𝛽 is unique with its property. Let 𝛽′ ∶ 𝐿′ → 𝐿 be
such that 𝑝(𝛽′∗!) = 𝑝′. To prove that 𝛽′ is 𝛽, we need to show that it has the
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same unique property, i.e. that 𝑇∗𝛽′ = 𝑘. Likewise, to prove that 𝑇∗𝛽′ is 𝑘, we
need show that it has the same unique property, i.e. that 𝜋(𝑇 ∗ 𝛽′∗!) = 𝑇 ∗ 𝑝′.
But that follows from (𝑇 ∗ 𝑝)(𝑇 ∗ 𝛽′∗!) = 𝑇 ∗ 𝑝′, by applying the unique
property of 𝑝.

We can now finally prove the result.

Theorem 2.3.13. Let 𝑨 be a category in ℰ. Then, 𝑨 is complete if and only if it
is cocomplete.

Proof. By duality, it is enough to show only one direction of the equivalence.
Assume 𝑨 is complete, and let’s prove that it is also cocomplete. Consider

the diagram 𝐷∶ 𝑫 → 𝑨. A colimit of 𝐷 is by definition an initial object in
CoCone𝐷, which is, by proposition 2.3.11, the identity on CoCone𝐷. Such limit
exists because, by proposition 2.3.12, CoCone𝐷 is complete.

The equivalence of completeness and cocompleteness is, essentially, a gen-
eralization of the well-known fact that complete lattices are also cocomplete.
We can now retrieve such fact by recalling that complete lattices are complete
internal categories in Set (example 2.3.2) and applying theorem 2.3.13.

Another immediate consequence is that the category of Modest Sets in the
Category of Assemblies is cocomplete.
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3. Internal Enriched Categories
In this chapter we introduce the notion of internal enriched category, abstract-
ing both the notions of internal and enriched category. After giving the main
definitions, we develop the foundations of such theory by presenting a selection
of standard categorical topics in the new setting. That shows that our theory
parallels standard (enriched) category theory and it has many of its features.
Moreover, we compare the new notion to that of enriched indexed category,
showing that the two are closely related.

It is worth remarking that standard category theory has an intrinsic bias
towards sets, in that (small) categories are implicitly enriched over the (large)
category of sets. In the internal context, there is no immediate notion of large
category: the usual substitute is via a theory of indexed categories, but that
has the disadvantage that the notion of large is not intrinsic to the situation.
As a result, a considerable portion of standard category theory is problematic
from the internal point of view. After all one cannot even state the Yoneda
Lemma internally. However having an internal enriching category obviates
these difficulties. Thus, the theory of internal enriched categories has many of
the features of the standard theory of categories, while retaining the generality
of the theory of internal categories.

In this chapter, let ℰ be a category with finite limits, and 𝑽 be an internal
monoidal category in ℰ.

3.1. Internal Enriched Categories
Let’s define a notion of internal enrichment in 𝑽, substantially by translating
the standard notion of enriched category in the internal language of ℰ.

Definition 3.1.1 (internal enriched category). An internal 𝑽-enriched category
𝑿 in ℰ, or 𝑽-category, is given by

Underlying object: an object 𝑋 of ℰ;

Internal hom: a morphism Hom𝑿 ∶ 𝑋 × 𝑋 → 𝑉0;

Composition: a morphism ∘𝑿 ∶ 𝑋×𝑋×𝑋 → 𝑉1 such that, in context 𝑥0, 𝑥1, 𝑥2 ∶ 𝑋,

∘𝑿(𝑥0, 𝑥1, 𝑥2)∶ Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1) → Hom𝑿(𝑥0, 𝑥2);
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Identity: a morphism id𝑿 ∶ 𝑋 → 𝑉1 such that, in context 𝑥∶ 𝑋,

id𝑿 ∶ 𝕀𝑽 → Hom𝑿(𝑥, 𝑥);

satisfying, in context 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∶ 𝑋, the axioms of 3.1, 3.2, and 3.3.

(Hom𝑿(𝑥2, 𝑥3) ⊗𝑽 Hom𝑿(𝑥1, 𝑥2)) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1) Hom𝑿(𝑥1, 𝑥3) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥2, 𝑥3) ⊗𝑽 (Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1))

Hom𝑿(𝑥2, 𝑥3) ⊗𝑽 Hom𝑿(𝑥0, 𝑥2) Hom𝑿(𝑥0, 𝑥3)

𝛼𝑽(Hom𝑿(𝑥2,𝑥3),Hom𝑿(𝑥1,𝑥2),Hom𝑿(𝑥0,𝑥1))

∘𝑿(𝑥1,𝑥2,𝑥3)⊗𝑽Hom𝑿(𝑥0,𝑥1)

∘𝑿(𝑥0,𝑥1,𝑥3)

Hom𝑿(𝑥2,𝑥3)⊗𝑽∘𝑿(𝑥0,𝑥1,𝑥2)

∘𝑿(𝑥0,𝑥2,𝑥3)
(3.1)

𝕀𝑽 ⊗𝑽 Hom𝑿(𝑥0, 𝑥1) Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥1, 𝑥1) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1)

𝜆𝑽(Hom𝑿(𝑥0,𝑥1))

id𝑿(𝑥1)⊗𝑽Hom𝑿(𝑥0,𝑥1) ∘𝑿(𝑥0,𝑥1,𝑥1)

(3.2)

Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 𝕀𝑽 Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥0, 𝑥0) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1)

𝜌𝑽(Hom𝑿(𝑥0,𝑥1))

Hom𝑿(𝑥0,𝑥1)⊗𝑽id𝑿(𝑥0) ∘𝑿(𝑥0,𝑥0,𝑥1)

(3.3)

Notice how the conventions on the internal language of ℰ allow one to express
those axioms in a form very close to that used to define standard enriched
categories.
Example 3.1.2. Let 𝒱 be a small monoidal category. Then, 𝒱 is an internal
category in Set, and internal 𝒱-enriched categories in Set are standard (small)
𝒱-enriched categories.

Continuing in the style of the previous definition, we give a notion of inter-
nal enriched functor, by translating the standard definition into the internal
language.
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Definition 3.1.3 (internal enriched functor). Let 𝑿 and 𝒀 be 𝑽-enriched cate-
gories. A 𝑽-enriched functor, or 𝑽-functor, 𝐹∶ 𝑿 → 𝒀 is given by

Objects component: an arrow 𝐹0 ∶ 𝑋 → 𝑌;

Morphisms component: an arrow 𝐹1 ∶ 𝑋 × 𝑋 → 𝑉1 of shape

𝑥0, 𝑥1 ∶ 𝑋 ⊢ 𝐹1(𝑥0, 𝑥1)∶ Hom𝑿(𝑥0, 𝑥1) → Hom𝒀(𝐹0(𝑥0), 𝐹0(𝑥1))∶ 𝑉1;

satisfying, in context 𝑥0, 𝑥1, 𝑥2 ∶ 𝑋, the axiom 3.4.

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1) Hom𝑿(𝑥0, 𝑥2)

Hom𝒀(𝐹0(𝑥1), 𝐹0(𝑥2)) ⊗𝑽 Hom𝒀(𝐹0(𝑥0), 𝐹0(𝑥1)) Hom𝒀(𝐹0(𝑥0), 𝐹0(𝑥2))

𝐹1(𝑥1,𝑥2)⊗𝑽
1𝐹1(𝑥0,𝑥1)

∘𝑿(𝑥0,𝑥1,𝑥2)

𝐹1(𝑥0,𝑥2)

∘𝒀(𝐹0(𝑥0),𝐹0(𝑥1),𝐹0(𝑥2))
(3.4)

We would expect the definition above to provide a category of internal 𝑽-
enriched categories and functors. We present the relevant data for that.

The composition of 𝑽-functors 𝐺 ∘ 𝐹∶ 𝑿 𝐹−→ 𝒀 𝐺−→ 𝒁 is defined by

(𝐺 ∘ 𝐹)0 ≔ 𝐺0𝐹0 ∶ 𝑋 → 𝑍
and

𝑥0, 𝑥1 ∶ 𝑋 ⊢ (𝐺 ∘ 𝐹)1(𝑥0, 𝑥1) ≔

Hom𝑿(𝑥0, 𝑥1)

Hom𝒀(𝐹0(𝑥0), 𝐹0(𝑥1))

Hom𝒁(𝐺0𝐹0(𝑥0), 𝐺0𝐹0(𝑥1))

𝐹1(𝑥0,𝑥1)

𝐺1(𝐹0(𝑥0),𝐹0(𝑥1))

∶ 𝑉1.

The identity 𝑽-functor id𝑿 ∶ 𝑿 → 𝑿 on 𝑿 is defined by

(id𝑿)0 ≔ idℰ(𝑋)∶ 𝑋 → 𝑋
and

(id𝑿)1 ≔ 𝑋
Hom𝑿−−−−→ 𝑉0

id𝑽−−→ 𝑉1.

It is just an exercise in the internal language to prove that the data so
defined yield a category, as stated in the following proposition.
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Proposition 3.1.4. Composition and identity of internal enriched functors
strictly satisfy associativity and unitarity. Then, 𝑽-enriched categories and
functors form a category 𝑽Catℰ.
Example 3.1.5. There is an underlying-object functor 𝑈∶ 𝑽Catℰ → ℰ sending
𝑽-enriched categories to their underlying object, and 𝑽-enriched functors to
their object-component.
Example 3.1.6. Let 𝑋 be an object of ℰ. The indiscrete 𝑽-enriched category
𝐢𝐧𝐝(𝑋) on 𝑋 is given by

Hom𝐢𝐧𝐝(𝑋) ≔ 𝑋 × 𝑋 !−→ 𝟙ℰ
𝕀𝑽−→ 𝑉0.

The rest of the structure follows from that. Analogously, a morphism 𝑓 ∶ 𝑋 → 𝑌
induces an indiscrete 𝑽-enriched functor 𝐢𝐧𝐝(𝑓 )∶ 𝐢𝐧𝐝(𝑋) → 𝐢𝐧𝐝(𝑌). Then,
there is a functor 𝐢𝐧𝐝∶ ℰ → 𝑽Catℰ.
Remark 3.1.7. To define the discrete 𝑽-enriched category over an object of ℰ,
we would need to assume some extra hypothesis. Firstly, we would need to be
able to tell whether two elements of the underlying object of the 𝑽-enriched
category are equal. Secondly, we would need an initial object in 𝑽 to be the
homset of non-equal elements of the underlying object. Both hypothesis do not
hold in general. For example, the first one does not hold in the Effective Topos.

Finally, again by translating the standard definition into the internal lan-
guage, we give the definition of internal enriched natural transformation.
Definition 3.1.8 (internal enriched natural transformation). Let 𝑿 and 𝒀 be 𝑽-
enriched categories, and 𝐹 and 𝐺 be 𝑽-enriched functors 𝑿 → 𝒀. A 𝑽-enriched
natural transformation, or 𝑽-natural transformation, 𝛼∶ 𝐹 → 𝐺∶ 𝑿 → 𝒀 is
given by an arrow 𝛼∶ 𝑋 → 𝑉1 of shape

𝑥∶ 𝑋 ⊢ 𝛼(𝑥)∶ 𝕀𝑽 → Hom𝒀(𝐹0(𝑥), 𝐺0(𝑥))∶ 𝑉1

satisfying, in context 𝑥0, 𝑥1 ∶ 𝑋, the axiom 3.5.

𝕀𝑽 ⊗𝑽 Hom𝑿(𝑥0, 𝑥1) Hom𝒀(𝐹0(𝑥1), 𝐺0(𝑥1)) ⊗𝑽 Hom𝒀(𝐹0(𝑥0), 𝐹0(𝑥1))

Hom𝑿(𝑥0, 𝑥1) Hom𝒀(𝐹0(𝑥0), 𝐺0(𝑥1))

Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 𝕀𝑽 Hom𝒀(𝐺0(𝑥0), 𝐺0(𝑥1)) ⊗𝑽 Hom𝒀(𝐹0(𝑥0), 𝐺0(𝑥0))

𝛼(𝑥1)⊗𝑽𝐹1(𝑥0,𝑥1)

∘𝒀(𝐹0(𝑥0),𝐹0(𝑥1),𝐺0(𝑥1))𝜆−1
𝑽 (Hom𝑿(𝑥0,𝑥1))

𝜌−1
𝑽 (Hom𝑿(𝑥0,𝑥1))

𝐺1(𝑥0,𝑥1)⊗𝑽𝛼(𝑥0)

∘𝒀(𝐹0(𝑥0),𝐺0(𝑥0),𝐺0(𝑥1))

(3.5)
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We would expect the definition above to provide a 2-category of internal
𝑽-enriched categories, functors and natural transformations. We present the
relevant data for that.

Consider 𝑽-categories, 𝑽-functors and 𝑽-natural transformations as shown
in the diagram:

𝑾 𝑿 𝒀 𝒁𝐿

𝐹

𝐺

𝐻

𝛼

𝛽

𝑅

Vertical composition of 𝑽-natural transformations 𝛽 ∘ 𝛼∶ 𝐹 → 𝐻∶ 𝑋 → 𝑌 is
defined by

𝑥∶ 𝑋 ⊢ (𝛽 ∘ 𝛼)(𝑥) ≔

𝕀𝑽 ≅ 𝕀𝑽 ⊗𝑽 𝕀𝑽

Hom𝑿(𝐺0(𝑥), 𝐻0(𝑥)) ⊗𝑽 Hom𝑿(𝐹0(𝑥), 𝐺0(𝑥))

Hom𝑿(𝐹0(𝑥), 𝐻0(𝑥))

𝛽(𝑥)⊗𝑽𝛼(𝑥)

∘𝒀(𝐹0(𝑥),𝐺0(𝑥),𝐻0(𝑥))

∶ 𝑉1.

The left whiskering 𝛼 ∗ 𝐿∶ 𝐹 ∘ 𝐿 → 𝐺 ∘ 𝐿∶ 𝑾 → 𝒀 is defined by

𝑤∶ 𝑊 ⊢ (𝛼 ∗ 𝐿)(𝑤) ≔ 𝛼(𝐿0(𝑤))∶ 𝑉1.

The right whiskering 𝑅 ∗ 𝛽∶ 𝑅 ∘ 𝐺 → 𝑅 ∘ 𝐻∶ 𝑿 → 𝒁 is defined by

𝑥∶ 𝑋 ⊢ (𝑅 ∗ 𝛽)(𝑥) ≔

𝕀𝑽

Hom𝒀(𝐺0(𝑥), 𝐻0(𝑥))

Hom𝒁(𝑅0𝐺0(𝑥), 𝑅0𝐻0(𝑥))

𝛽(𝑥)

𝑅1(𝐺0(𝑥),𝐻0(𝑥))

∶ 𝑉1.

The identity 𝑽-natural transformation id𝐹 ∶ 𝐹 → 𝐹∶ 𝑿 → 𝒀 is defined as

id𝐹 ≔ 𝑋
𝐹0−−→ 𝑌

id𝒀−−→ 𝑉1.

It is just an exercise in the internal language to prove that a pair of 𝑽-
enriched categories yield a category of functors and natural transformations,
as stated in the following proposition.
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Proposition 3.1.9. Vertical composition and identity of internal enriched
natural transformation strictly satisfy associativity and unitarity. Then, given
𝑽-enriched categories 𝑿 and 𝒀, the 𝑽-enriched functors 𝑿 → 𝒀 and natural
transformations between them form a category 𝑽Catℰ(𝑿, 𝒀).

Moreover, with the horizontal composition defined before, the above assign-
ment turns out to yield an enrichment in Cat. Equivalently, internal enriched
categories, functors and natural transformations form a 2-category, as stated
in the following result, whose proof is again an exercise in the internal lan-
guage.

Proposition 3.1.10. Horizontal and vertical composition of 𝑽-enriched nat-
ural transformations satisfy the interchange laws. So, 𝑽-enriched categories,
functors, and natural transformations form a strict 2-category 𝑽Catℰ.

By abuse of notation, we called by 𝑽Catℰ both the category of 𝑽-enriched
categories and their functors, and the 2-category of 𝑽-enriched categories,
their functors and their natural transformations. As a consequence, given
two 𝑽-enriched categories 𝑿 and 𝒀, we will denote by 𝑽Catℰ(𝑿, 𝒀) both the
hom-set of 𝑽-enriched functors 𝑿 → 𝒀 and the hom-category of 𝑽-enriched
functors 𝑿 → 𝒀 and their natural transformations. Context will usually suffice
to determine in which sense the notation is being used.
Remark 3.1.11. Let 𝑿 be a 𝑽-enriched category. There is an underlying ℰ-
category 𝑈(𝑿), such that 𝑈(𝑿)0 ≔ 𝑋 and 𝑈(𝑿)1 is the subobject of 𝑋× 𝑋× 𝑉1
given by

(𝑥0, 𝑥1, 𝑓 ) ∶ 𝑈(𝑿)1 ⊢ 𝑓∶ 𝕀𝑽 → Hom𝑿(𝑥0, 𝑥1)∶ 𝑉1

with the first and second projections as source and target. The composition is
defined, in context (𝑥1, 𝑥2, 𝑔), (𝑥0, 𝑥1, 𝑓 ) ∶ 𝑈(𝑿)1 s×t 𝑈(𝑿)1, as

(𝑥1, 𝑥2, 𝑔) ∘𝑈(𝑿) (𝑥0, 𝑥1, 𝑓 ) ≔ (𝑥0, 𝑥2, ∘𝑿(𝑥0, 𝑥1, 𝑥2) ∘𝑽 (𝑔 ⊗𝑽 𝑓 ))∶ 𝑈(𝑿)1.

Let 𝐹∶ 𝑿 → 𝒀 be a 𝑽-enriched functor. There is an underlying functor
𝑈(𝐹)∶ 𝑈(𝑿) → 𝑈(𝒀) in ℰ, with 𝑈(𝐹)0 defined as 𝐹0 and 𝑈(𝐹)1(𝑥0, 𝑥1, 𝑓 ),
in context (𝑥0, 𝑥1, 𝑓 ) ∶ 𝑈(𝑿)1, as the tuple

(𝐹0(𝑥0), 𝐹0(𝑥1), 𝕀𝑽
𝑓
−→ Hom𝑿(𝑥0, 𝑥1)

𝐹1(𝑥0,𝑥1)
−−−−−−−→ Hom𝑿(𝐹0(𝑥0), 𝐹0(𝑥1)))

in 𝑈(𝒀)1.
Let 𝛼∶ 𝐹 → 𝐺∶ 𝑿 → 𝒀 be a 𝑽-enriched natural transformation. There is an

underlying natural transformation 𝑈(𝛼)∶ 𝑈(𝐹) → 𝑈(𝐺)∶ 𝑈(𝑿) → 𝑈(𝒀) in
ℰ, defined as

𝑥∶ 𝑈(𝑿)0 ⊢ 𝑈(𝛼)(𝑥) ≔ (𝐹0(𝑥), 𝐺0(𝑥), 𝛼(𝑥))∶ 𝑈(𝒀)1.

Those data yield the underlying-category-in-ℰ 2-functor 𝑈∶ 𝑽Catℰ → Catℰ.
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It is an established practice in enriched category theory to focus on en-
richment in symmetric monoidal closed category. Inter alia this provides a
self-enrichment. We check that this happens in our internal setting.

Proposition 3.1.12. If 𝑽 is symmetric and monoidal closed, then it has an
internal 𝑽-category structure such that (with abuse of notation) 𝑈(𝑽) = 𝑽.

Proof. Let 𝑉0 be the underlying object. Define

𝑎, 𝑏∶ 𝑉0 ⊢ Hom𝑽(𝑎, 𝑏) ≔ [𝑎, 𝑏]∶ 𝑉0.

Let the composition

𝑎, 𝑏, 𝑐 ∶ 𝑉0 ⊢ ∘𝑽(𝑎, 𝑏, 𝑐) ∶ Hom𝑽(𝑏, 𝑐) ⊗ Hom𝑽(𝑎, 𝑏) → Hom𝑽(𝑎, 𝑐)∶ 𝑉1

be the exponential transpose of

Hom𝑽(𝑏, 𝑐) ⊗ Hom𝑽(𝑎, 𝑏) ⊗ 𝑎
Hom𝑽(𝑏,𝑐)⊗e(𝑎,𝑏)
−−−−−−−−−−−−−→ Hom𝑽(𝑏, 𝑐) ⊗ 𝑏

e(𝑏,𝑐)
−−−−→ 𝑐

and the identity

𝑎∶ 𝑉0 ⊢ id𝑽(𝑎)∶ 𝕀 → Hom𝑽(𝑎, 𝑎)∶ 𝑉1

be the exponential transpose of the identity id𝑽(𝑎)∶ 𝑎 → 𝑎. (Notice again that
there is some notation overload.)

The 𝑽-category axioms hold because of the defining property of monoidal
closure.

We now consider the issue of the change of base. In this context, though,
there are two sensible such notions, one coming from internal category the-
ory and one from enriched category theory. Indeed, we can change both the
ambient category and the enriching category.

To begin with, let’s state the internal version of the standard result changing
the enriching category.

Proposition 3.1.13. Let 𝑽′ be another monoidal category in ℰ, and 𝐹∶ 𝑽 → 𝑽′

a monoidal functor. Then there is an induced 2-functor 𝐹∗ ∶ 𝑽Catℰ → 𝑽′Catℰ.

Proof. Let 𝑿 be a 𝑽-category. Define a 𝑽′-category 𝐹∗(𝑿) on 𝑋 given by

Internal hom: Hom𝐹∗(𝑿) ≔ 𝑋 × 𝑋
Hom𝑿−−−−→ 𝑉0

𝐹0−−→ 𝑉 ′
0;

Composition: ∘𝐹∗(𝑿) ≔ 𝑋 × 𝑋 × 𝑋
∘𝑿−→ 𝑉1

𝐹1−−→ 𝑉 ′
1;

Identity: id𝐹∗(𝑿) ≔ 𝑋
Hom𝑿−−−−→ 𝑉1

𝐹1−−→ 𝑉 ′
1.
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3. Internal Enriched Categories

Let 𝐺∶ 𝑿 → 𝒀 be a 𝑽-functor. Define a 𝑽′-functor 𝐹∗(𝐺)∶ 𝐹∗(𝑿) → 𝐹∗(𝒀),
with the same object component as 𝐺 and arrow component given by

(𝐹∗(𝐺))1 ≔ 𝑋 × 𝑋
𝐺1−−→ 𝑉1

𝐹1−−→ 𝑉 ′
1.

Let 𝛼∶ 𝐺 → 𝐺′ ∶ 𝑿 → 𝒀 be a 𝑽-natural transformation. Define a 𝑽′-natural
transformation 𝐹∗(𝛼)∶ 𝐹∗(𝐺) → 𝐹∗(𝐺′)∶ 𝐹∗(𝑿) → 𝐹∗(𝒀) as

𝐹∗(𝛼) ≔ 𝑋 𝛼−→ 𝑉1
𝐹1−−→ 𝑉 ′

1.

The axioms for the above definitions hold because of the functoriality of
𝐹.

Then, let’s check that changing the ambient category induces a 2-functorial
operation on internal enriched categories, just as it does on internal categories.

Proposition 3.1.14. Let ℰ′ be another finitely complete category and 𝐹∶ ℰ → ℰ′

a functor preserving finite limits. Then there is an induced monoidal category
𝐹(𝑽) in ℰ′ and a 2-functor 𝐹∗ ∶ 𝑽Catℰ → 𝐹(𝑽)Catℰ′.

Proof. Let 𝑿 be a 𝑽-category. Define a 𝐹(𝑽)-category 𝐹∗(𝑿) on 𝐹(𝑋) by
applying the functor 𝐹 to the structural arrows Hom𝑿, ∘𝑿 and id𝑿 of 𝑿. That
gives a 𝐹(𝑽)-enriched category because 𝐹 preserves finite-limit logic, in terms
of which internal enriched categories are defined. Analogously, define 𝐹∗ on
𝑽-enriched functors and natural transformations.

3.2. Comparison with Indexed Enriched Categories
We now establish the connection between internal enriched categories and the
notions from section 1.4. Recall that the externalization of 𝑽 is a monoidal
indexed category [𝑽] over ℰ. Thus, we will investigate which relationship
subsists between 𝑽-enriched categories, small [𝑽]-categories and indexed
[𝑽]-categories.

The most immediate fact is that 𝑽-enriched categories and small [𝑽]-
categories are the same thing, in a very strict sense: their definitions coincide!

Proposition 3.2.1. To give a 𝑽-enriched category (functor, natural transfor-
mation) is to give a small [𝑽]-category (functor, natural transformation).

Proof. A small [𝑽]-category 𝑿 is yielded by

• an object 𝑋 of ℰ;

• an object Hom𝑿 ∶ 𝑋 × 𝑋 → 𝑉0 of [𝑽]𝑋×𝑋;
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3.2. Comparison with Indexed Enriched Categories

• a morphism of [𝑽]

(𝑋
!𝑋−→ 𝟙ℰ

𝕀𝑽−→ 𝑉0)
(𝑋

𝛥𝑋−−→𝑋×𝑋,𝑋
id𝑿−−→(𝕀𝑽!𝑋,Hom𝑿𝛥𝑋)∗𝑉1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑋×𝑋
Hom𝑿−−−−→ 𝑉0);

• a morphism of [𝑽]

(𝑋 × 𝑋 × 𝑋
Hom𝑿(𝜋2,𝜋3)⊗𝑽Hom𝑿(𝜋1,𝜋2)
−−−−−−−−−−−−−−−−−−−−−→ 𝑉0) → (𝑋 × 𝑋

Hom𝑿−−−−→ 𝑉0)

over 𝑋 × 𝑋 × 𝑋
(𝜋1,𝜋3)
−−−−−−→ 𝑋 × 𝑋, given by

𝑋 × 𝑋 × 𝑋
∘𝑿−→ (Hom𝑿(𝜋2, 𝜋3) ⊗𝑽 Hom𝑿(𝜋1, 𝜋2), Hom𝑿(𝜋1, 𝜋3))∗𝑉1

satisfying associativity and unitarity axioms. But these are precisely the same
data that yield an internal 𝑽-enriched category.

Analogously, to give a functor or a natural transformation of small [𝑽]-
categories is to give a functor or a natural transformation of internal 𝑽-
enriched categories.

The relationship between 𝑽-enriched categories and indexed [𝑽]-categories
is more complicated. We will prove that 𝑽-enriched categories are a sub-case
of indexed [𝑽]-categories, in the sense precisely stated in propositions 3.2.2
and 3.2.3.

First, we give the construction yielding an indexed [𝑽]-category from a 𝑽-
enriched category. Let 𝑿 be a 𝑽-enriched category and let’s define an indexed
[𝑽]-category [𝑿]. Given an indexing object 𝐼 of ℰ, define the [𝑽]𝐼-enriched
category [𝑿]𝐼 as

Objects: 𝐼-indexed families 𝑥∶ 𝐼 → 𝑋 of elements of 𝑋;

Internal hom: Hom[𝑿]𝐼(𝑥0 ∶ 𝐼 → 𝑋, 𝑥1 ∶ 𝐼 → 𝑋) ≔ 𝐼
(𝑥0,𝑥1)
−−−−−→ 𝑋 × 𝑋

Hom𝑿−−−−→ 𝑉0;

Composition: ∘[𝑿]𝐼(𝑥0, 𝑥1, 𝑥2) ≔ 𝐼
(𝑥0,𝑥1,𝑥1)
−−−−−−−→ 𝑋 × 𝑋 × 𝑋

∘𝑿−→ 𝑉1;

Identity: id[𝑿]𝐼(𝑥) ≔ 𝐼 𝑥−→ 𝑋
id𝑿−−→ 𝑉1.

Let 𝑓 ∶ 𝐼 → 𝐽 be a re-indexing. Define the [𝑽]𝐼-functor 𝑓 ∗ ∶ (𝑓 ∗)•([𝑿]𝐽) → [𝑿]𝐼

as

𝑓 ∗
0 (𝐽 𝑥−→ 𝑋) ≔ 𝐼

𝑓
−→ 𝐽 𝑥−→ 𝑋

𝑓 ∗
1 (𝐽

𝑥0−→ 𝑋, 𝐽
𝑥1−→ 𝑋) ≔ Hom(𝑓 ∗)•([𝑿]𝐽)(𝑥0, 𝑥1)

id
−→ Hom[𝑿]𝐼(𝑥0𝑓 , 𝑥1𝑓 ).
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Since 𝑓 ∗
1 (𝑥0, 𝑥1) is the identity of Hom𝑿(𝑥0𝑓 , 𝑥1𝑓 ) as an object of [𝑽]𝐼, then 𝑓 ∗

is full and faithful, as required by the definition. The rest of the structure is
given by canonical isomorphisms verifying the axioms.

Secondly, let 𝐹∶ 𝑿 → 𝒀 be a 𝑽-enriched functor and let’s define an indexed
[𝑽]-enriched functor [𝐹] ∶ [𝑿] → [𝒀] induced by 𝐹. For an indexing object 𝐼,
define the [𝑽]𝐼-enriched functor [𝐹]𝐼 ∶ [𝑿]𝐼 → [𝒀]𝐼 as

Objects component: [𝐹]𝐼(𝐼 𝑥−→ 𝑋) ≔ 𝐼 𝑥−→ 𝑋
𝐹0−−→ 𝑌;

Morphisms component: [𝐹]𝐼(𝐼
𝑥0−→ 𝑋, 𝐼

𝑥1−→ 𝑋) ≔ 𝐼
(𝑥0,𝑥1)
−−−−−→ 𝑋 × 𝑋

𝐹1−−→ 𝑉1

Notice that, for any reindexing 𝑓 ∶ 𝐼 → 𝐽, we have an equality [𝐹]𝐼 ∘ 𝑓 ∗ =
𝑓 ∗ ∘ (𝑓 ∗)•([𝐹]𝐽), meaning that the axioms for indexed [𝑽]-enriched functors
are automatically satisfied.

Finally, let 𝛼∶ 𝐹 → 𝐺∶ 𝑿 → 𝒀 be a 𝑽-enriched natural transformation and
let’s define an indexed [𝑽]-natural transformation [𝛼] ∶ [𝐹] → [𝐺] ∶ [𝑿] →
[𝒀] induced by 𝛼. Let 𝐼 be an indexing object. Then, define the [𝑽]𝐼-enriched
natural transformation [𝛼]𝐼 ∶ [𝐹]𝐼 → [𝐺]𝐼 ∶ [𝑿]𝐼 → [𝒀]𝐼 as

[𝛼]𝐼(𝐼 𝑥−→ 𝑋) ≔ 𝐼 𝑥−→ 𝑋 𝛼−→ 𝑉1.

The naturality condition for indexed [𝑽]-natural transformations is trivially
satisfied because the defining isomorphisms of indexed [𝑽]-functors [𝐹] and
[𝐺] are identities.

With the data previously defined, we have the following proposition.

Proposition 3.2.2. There is a 2-functor [‐] from 𝑽Catℰ to the 2-category of
indexed [𝑽]-categories [𝑽]ICatℰ.

The previous result is extremely weak. Indeed, we would like to better
understand the 2-functor [‐].

Observe that there is a construction inducing 𝑽-enriched functors from
indexed [𝑽]-functors. Let ℱ∶ [𝑿] → [𝒀] be a [𝑽]-functor. Define the 𝑽-
functor ℱ̄∶ 𝑿 → 𝒀 as

ℱ̄0 ≔ (ℱ𝑋)0(id(𝑋))∶ 𝑋 → 𝑌
ℱ̄1 ≔ 𝜙 ∘𝒀 (ℱ𝑋×𝑋)1(𝜋1, 𝜋2)∶ 𝑋 × 𝑋 → 𝑉1.

The isomorphism appearing in the definition of the morphism component
requires some explanation. The source and target of (ℱ𝑋×𝑋)1(𝜋1, 𝜋2) are,
respectively, (ℱ𝑋×𝑋)0(𝜋1) and (ℱ𝑋×𝑋)0(𝜋2), while we need an arrow from
(ℱ𝑋)0(id(𝑋))𝜋1 to (ℱ𝑋)0(id(𝑋))𝜋2 to match the definition of ℱ̄ on objects.
We fix this issue by introducing a suitable isomorphism. By the definition of
[𝑽]-functor, we have an isomorphism

ℱ𝑋×𝑋 ∘ 𝜋𝑖
∗ ≅ 𝜋𝑖

∗ ∘ (𝜋𝑖
∗)•(ℱ𝑋)∶ (𝜋𝑖

∗)•([𝑿]𝑋) → [𝑿]𝑋×𝑋
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which we apply to the object id(𝑋) of (𝜋𝑖
∗)•([𝑿]𝑋) to get an isomorphism

𝜙𝑖 ∶ (ℱ𝑋×𝑋)0(𝜋𝑖) ≅ (ℱ𝑋)0(id(𝑋))𝜋𝑖

in [𝑿]𝑋×𝑋. From 𝜙1 and 𝜙2 we get the isomorphism 𝜙 that we need.
Moreover, there is also a construction inducing 𝑽-enriched natural transfor-

mations from indexed [𝑽]-natural transformations. Let 𝛼∶ ℱ → 𝒢∶ [𝑿] →
[𝒀] be an indexed [𝑽]-natural transformation. Define the 𝑽-enriched natural
transformation ̄𝛼 ∶ ℱ̄ → 𝒢̄∶ 𝑿 → 𝒀 as

̄𝛼 ≔ 𝛼𝑋(id(𝑋))∶ 𝑋 → 𝑉1.

It is clear that, for a 𝑽-enriched functor 𝐹∶ 𝑿 → 𝒀, we have 𝐹 = [𝐹], and for
a 𝑽-enriched natural transformation 𝛼∶ 𝐹 → 𝐺∶ 𝑿 → 𝒀, we have 𝛼 = [𝛼]. This
provides a strengthening of proposition 3.2.2, in that it shows that 𝑽Catℰ is a
sub-2-category of [𝑽]ICatℰ. Moreover, as proved in the following proposition,
𝑽Catℰ is a full sub-2-category, meaning that there is an equivalence of hom-
categories.

Proposition 3.2.3. The 2-category 𝑽Catℰ is a full sub-2-category of [𝑽]ICatℰ,
and [‐] is the relative inclusion.

Proof. Consider indexed [𝑽]-categories [𝑿] and [𝒀]. We need to show that
there is an equivalence of categories

Cat𝑽(𝑿, 𝒀) ≣ Cat[𝑽]([𝑿], [𝒀]).

Let ℱ∶ [𝑿] → [𝒀] be a [𝑽]-functor, and consider the indexed [𝑽]-functor
[ℱ̄] ∶ [𝑿] → [𝒀]. We need to prove that there is a [𝑽]-natural isomorphism
ℱ ≅ [ℱ̄]. Let 𝐼 be an indexing object in ℰ. Then we need a natural isomor-
phism ℱ𝐼 ≅ [ℱ̄]𝐼. Let 𝑥∶ 𝐼 → 𝑋 be an object of [𝑿]𝐼. By the definition of
[𝑽]-functor, we have an isomorphism

ℱ𝐼 ∘ 𝑥∗ ≅ 𝑥∗ ∘ (𝑥∗)•(ℱ𝑋)∶ (𝑥∗)•([𝑿]𝑋) → [𝑿]𝐼

which we apply to the object id(𝑋) of (𝑥∗)•([𝑿]𝑋) to get an isomorphism

ℱ𝐼
0(𝑥) ≅𝑥 ℱ𝑋

0 (id(𝑋)) ∘ 𝑥

in [𝑿]𝐼. Then, we take that as the definition of the isomorphism ℱ𝐼 ≅ [ℱ̄]𝐼

on 𝑥∶ 𝐼 → 𝑋.
We need to prove that the isomorphism just defined is natural. Let 𝐼 be an

indexing object in ℰ and 𝑥1, 𝑥2 ∶ 𝐼 → 𝑋 objects of [𝑿]𝐼. By the definition of
[𝑽]-functor, we have an isomorphism

ℱ𝐼∘(𝑥1, 𝑥2)∗ ≅ (𝑥1, 𝑥2)∗∘((𝑥1, 𝑥2)∗)•(ℱ𝑋×𝑋)∶ ((𝑥1, 𝑥2)∗)•([𝑿]𝑋×𝑋) → [𝑿]𝐼
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which we apply to the objects 𝜋𝑖 of ((𝑥1, 𝑥2)∗)•([𝑿]𝑋×𝑋) to get an isomorphism

ℱ𝐼
0(𝑥𝑖) ≅ ℱ𝑋×𝑋

0 (𝜋𝑖) ∘ (𝑥1, 𝑥2)

in [𝑿]𝐼. Then, consider the following diagram.

ℱ𝐼
0(𝑥1) ℱ𝑋×𝑋

0 (𝜋1) ∘ (𝑥1, 𝑥2) ℱ𝑋
0 (id(𝑋)) ∘ 𝑥1

ℱ𝐼
0(𝑥2) ℱ𝑋×𝑋

0 (𝜋2) ∘ (𝑥1, 𝑥2) ℱ𝑋
0 (id(𝑋)) ∘ 𝑥1

≅

ℱ𝐼
1(𝑥1,𝑥2)

≅

ℱ𝑋×𝑋
1 (𝜋1,𝜋2)∘(𝑥1,𝑥2) [ℱ̄]𝐼

1(𝑥1,𝑥2)

≅ ≅

Firstly, the left-hand-side square commutes because of the naturality of the
isomorphism. Secondly, the right-hand-side square commutes because such is
the definition of [ℱ̄]. Finally, the composition of the consecutive isomorphisms
ℱ𝐼

0(𝑥𝑖) → ℱ𝑋
0 (id(𝑋)) ∘ 𝑥𝑖 is the isomorphism ℱ𝐼 ≅ [ℱ̄]𝐼 computed on 𝑥𝑖,

because of the functoriality axiom for [𝑽]-functors applied to the functor
ℱ and the composition 𝜋𝑖 ∘ (𝑥1, 𝑥2) = 𝑥𝑖. But then the outer square is the
naturality diagram, and we have shown that it commutes.

Then, we need to prove that the isomorphism ℱ ≅ [ℱ̄] satisfies the natu-
rality condition for [𝑽]-natural transformations. Let 𝑓 ∶ 𝐼 → 𝐽 be a reindexing
and 𝑥∶ 𝐽 → 𝑋 an object of [𝑿]. Then the naturality diagram for the reindexing
𝑓 and computed on 𝑥 is

ℱ𝐼
0(𝑗 ∘ 𝑓 ) ℱ𝐼

0(𝑥) ∘ 𝑓

[ℱ̄]𝐼
0(𝑥 ∘ 𝑓 ) = ℱ𝑋

0 (id(𝑋)) ∘ 𝑥 ∘ 𝑓
≅𝑥∘𝑓

≅𝑓

≅𝑥∘𝑓

which commutes thanks to the functoriality axiom for [𝑽]-functors applied to
the functor ℱ and the composition of 𝑓 and 𝑥.

Finally, we need to prove that, for any indexed [𝑽]-natural transformation
𝛼∶ ℱ → 𝒢∶ [𝑿] → [𝒀], the following square commute.

ℱ 𝒢

[ℱ̄] [𝒢̄]

𝛼

≅ ≅
[𝛼̄]

Let 𝐼 be an indexing object in ℰ and 𝑥∶ 𝐼 → 𝑋 an object of [𝑿]𝐼, and compute the
𝐼-th component of the above diagram on 𝑥. We get a commutative square, as it is
an instance of the naturality axiom for the indexed [𝑽]-natural transformation
𝛼, relative to the reindexing 𝑥 and computed on id(𝑋).
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Remark 3.2.4. The converse of proposition 3.2.3 does not seem to hold, that is,
indexed [𝑽]-categories don’t canonically induce internal 𝑽-enriched categories.
In particular, the categories [𝑿]𝐼 are small, as their object of objects is the
homset ℰ(𝐼, 𝑋), but that is not generally the case for indexed [𝑽]-categories.

We then straightforwardly get the following corollary.

Corollary 3.2.5. The 2-category of small [𝑽]-categories, functors and natu-
ral transformations is a full sub-2-category of the 2-category of indexed [𝑽]-
categories, functors and natural transformations.

To conclude, we look at the interplay between externalization and the un-
derlying category of points.

Proposition 3.2.6. Let 𝑿 be a 𝑽-enriched category. Then, there is a natural
isomorphism of indexed categories 𝑈([𝑿]) ≅ [𝑈(𝑿)] between the underlying
indexed category of the indexed [𝑽]-enriched category [𝑿] and the externaliza-
tion of the underlying ℰ-category 𝑈(𝑿).

Proof. Let 𝐼 be an indexing object. We need to prove that there is an isomor-
phism 𝑈([𝑿]𝐼) ≅ [𝑈(𝑿)]𝐼 between the underlying standard category of the
[𝑽]𝐼-enriched category [𝑿]𝐼 and the fiber over 𝐼 of the externalization of the
underlying ℰ-category 𝑈(𝑿). Moreover, for any reindexing 𝑓 ∶ 𝐽 → 𝐼 in ℰ, the
square

𝑈([𝑿]𝐼) [𝑈(𝑿)]𝐼

𝑈([𝑿]𝐽) [𝑈(𝑿)]𝐽

≅

𝑈(𝑓 ∗([𝑿])) 𝑓 ∗([𝑈(𝑿)])

≅

has to commute.
For both categories, the objects are 𝐼-indexed families of objects of 𝑿, and

the arrows (𝐼
𝑥0−→ 𝑋) → (𝐼

𝑥1−→ 𝑋) are the sections of the projection

(𝕀𝑽!𝑋, Hom𝑿(𝑥0, 𝑥1))∗𝑉1 → 𝐼,

so that the categories are clearly isomorphic to each other, and the square
commutes trivially.

The previous result can be extended to the following proposition.

Proposition 3.2.7. The following diagram of 2-functors commutes.

𝑽Catℰ Catℰ

[𝑽]ICatℰ ICatℰ

𝑈

[‐] [‐]
𝑈
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3. Internal Enriched Categories

3.3. Categories of Functors
Analogously to the treatment of internal categories, we now look at the enrich-
ment of 𝑽Catℰ over Catℰ. That is, we show how two 𝑽-enriched categories
give rise to a category in ℰ of the functors between them and their natural
transformations. That will be propaedeutic to the investigation regarding
the monoidal closure of 𝑽Catℰ, whereas, instead of an internal category of
functors and natural transformations, we will need an internally enriched one.

In this section, we shall assume that ℰ is cartesian closed.
Let 𝑿 and 𝒀 be 𝑽-categories. Define Fun(𝑿, 𝒀) as the object representing

the 𝑽-enriched functors 𝑿 → 𝒀; that is, the subobject of 𝑌𝑋 × 𝑉1
𝑋×𝑋 of those

𝐹 = (𝐹0 ∶ 𝑌𝑋, 𝐹1 ∶ 𝑉1
𝑋×𝑋) such that, in the context 𝑥0, 𝑥1, 𝑥2 ∶ 𝑋, the axioms

e(𝐹1, (𝑥0, 𝑥1))∶ Hom𝑿(𝑥0, 𝑥1) → Hom𝒀(e(𝐹0, 𝑥0), e(𝐹0, 𝑥1))∶ 𝑉1
and

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1) Hom𝑿(𝑥0, 𝑥2)

Hom𝒀(e(𝐹0, 𝑥1), e(𝐹0, 𝑥2))
⊗𝑽 Hom𝒀(e(𝐹0, 𝑥0), e(𝐹0, 𝑥1)) Hom𝒀(e(𝐹0, 𝑥0), e(𝐹0, 𝑥2))

e(𝐹1,(𝑥1,𝑥2))⊗𝑽
1e(𝐹1,(𝑥0,𝑥1))

∘𝑿(𝑥0,𝑥1,𝑥2)

e(𝐹1,(𝑥0,𝑥2))

∘𝒀(e(𝐹0,𝑥0),e(𝐹0,𝑥1),e(𝐹0,𝑥2))

hold.
We shall now validate the intuition that Fun(𝑿, 𝒀) is indeed an internal

representation of 𝑽-enriched functors 𝑿 → 𝒀, or, in other words, that 𝑽-
enriched functors 𝑿 → 𝒀 correspond to the global sections of Fun(𝑿, 𝒀). That
suggests that Fun(‐, ‐) may actually yield the hom-objects for an enriched
category extending 𝑽Catℰ.

Proposition 3.3.1. There is an ℰ-enriched category whose underlying category
is isomorphic to 𝑽Catℰ (and, with abuse of notation, it shall be called in the
same way). That is, for all 𝑽-enriched categories 𝑿 and 𝒀, there is a natural
bijection between the hom-sets

ℰ(𝟙ℰ, Hom𝑽Catℰ
(𝑿, 𝒀)) ≅ 𝑽Catℰ(𝑿, 𝒀). (3.6)

Proof. Let 𝑿, 𝒀 and 𝒁 be 𝑽-categories. Define the enrichment of 𝑽Catℰ in ℰ:

Hom-object: Hom𝑽Catℰ
(𝑿, 𝒀), the hom-object of 𝑿 and 𝒀, is Fun(𝑿, 𝒀).

Composition: The composition of 𝑿, 𝒀 and 𝒁 is given by the arrow

∘𝑽Catℰ
(𝑿, 𝒀, 𝒁)∶ Hom𝑽Catℰ

(𝑿, 𝒀)×Hom𝑽Catℰ
(𝑿, 𝒀) → Hom𝑽Catℰ

(𝑿, 𝒁)
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where, in context 𝐹∶ Hom𝑽Catℰ
(𝑿, 𝒀), 𝐺∶ Hom𝑽Catℰ

(𝒀, 𝒁), the compo-
nent ∘𝑽Catℰ

(𝑿, 𝒀, 𝒁)(𝐹, 𝐺)
0

∶ 𝑍𝑋 is defined as 𝜆𝑥∶ 𝑋. eℰ(𝐺0, eℰ(𝐹0, 𝑥))
and the component ∘𝑽Catℰ

(𝑿, 𝒀, 𝒁)(𝐹, 𝐺)
1

∶ 𝑉1
𝑋×𝑋 as

𝜆𝑥0, 𝑥1 ∶ 𝑋.

Hom𝑿(𝑥0, 𝑥1)

Hom𝒀(e(𝐹0, 𝑥0), e(𝐹0, 𝑥1))

Hom𝒁(e(𝐺0, e(𝐹0, 𝑥0)), e(𝐺0, e(𝐹0, 𝑥1)))

eℰ(𝐹1,(𝑥0,𝑥1))

eℰ(𝐺1,(eℰ(𝐹0,𝑥0),(eℰ(𝐹0,𝑥1))))

.

Identity: The identity of 𝑿 is the arrow

id𝑽Catℰ
(𝑿)∶ 𝟙ℰ → Hom𝑽Catℰ

(𝑿, 𝑿)

where the component id𝑽Catℰ
(𝑿)

0
∶ 𝑋𝑋 is defined as 𝜆𝑥∶ 𝑋. 𝑥 and the

component id𝑽Catℰ
(𝑿)

1
∶ 𝑉1

𝑋×𝑋 as 𝜆𝑥0, 𝑥1 ∶ 𝑋. id𝑽(Hom𝑿(𝑥0, 𝑥1)).

Finally, the bijection (3.6) is obtained straightforwardly by applying the
exponential transpose.

Let 𝑿 and 𝒀 be 𝑽-categories. Let’s define Nat(𝑿, 𝒀) as the object represent-
ing the 𝑽-enriched natural transformations 𝑿 → 𝒀; that is, the subobject of
Fun(𝑿, 𝒀) × Fun(𝑿, 𝒀) × 𝑉1

𝑋 of those

(𝐹∶ Fun(𝑿, 𝒀), 𝐺∶ Fun(𝑿, 𝒀), 𝛼∶ 𝑉1
𝑋)

such that, in context 𝑥, 𝑥0, 𝑥1 ∶ 𝑋, the axioms

e(𝛼, 𝑥)∶ 𝕀𝑽 → Hom𝒀(e(𝐹0, 𝑥), e(𝐹0, 𝑥))∶ 𝑉1
and

Hom𝑿(𝑥0, 𝑥1) Hom𝒀(e(𝐹0, 𝑥1), e(𝐺0, 𝑥1))
⊗𝑽 Hom𝒀(e(𝐹0, 𝑥0), e(𝐹0, 𝑥1))

Hom𝒀(e(𝐺0, 𝑥0), e(𝐺0, 𝑥1))
⊗𝑽 Hom𝒀(e(𝐹0, 𝑥0), e(𝐺0, 𝑥0)) Hom𝒀(e(𝐹0, 𝑥0), e(𝐺0, 𝑥1))

e(𝐺1,(𝑥0,𝑥1))⊗𝑽e(𝛼,𝑥0)

e(𝛼,𝑥1)⊗𝑽e(𝐹1,(𝑥0,𝑥1))

∘𝒀(e(𝐹0,𝑥0),e(𝐹0,𝑥1),e(𝐺0,𝑥1))

∘𝒀(e(𝐹0,𝑥0),e(𝐺0,𝑥0),e(𝐺0,𝑥1))
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hold.
As before, we now validate the intuition that Nat(𝑿, 𝒀) represents the

object of 𝑽-natural transformations 𝑿 → 𝒀. By doing that, we prove that the
enrichment of 𝑽Catℰ over ℰ extends to an enrichment over Catℰ; in other
words, that two 𝑽-enriched categories yield an internal category in ℰ whose
underlying standard category is that of 𝑽-functors between them and their
natural transformations.

Proposition 3.3.2. There is a Catℰ-enriched category whose underlying cat-
egory is isomorphic to 𝑽Catℰ (and, with abuse of notation, it shall be called
in the same way). Such enrichment extends that of proposition 3.3.1. That is,
for all 𝑽-enriched categories 𝑿 and 𝒀, the natural bijection (3.6) extends to an
isomorphism of categories

Catℰ(𝟙Catℰ
, Hom𝑽Catℰ

(𝑿, 𝒀)) ≅ 𝑽Catℰ(𝑿, 𝒀). (3.7)

Proof. Let 𝑿, 𝒀 and 𝒁 be 𝑽-categories. Let’s define the category Hom𝑽Catℰ
(𝑿, 𝒀)

in ℰ as:

Object of objects: let Hom𝑽Catℰ
(𝑿, 𝒀)

0
be Fun(𝑿, 𝒀).

Object of arrows: let Hom𝑽Catℰ
(𝑿, 𝒀)

1
be Nat(𝑿, 𝒀) with the first and second

projections as source and target, respectively.

Composition: In context (𝐹, 𝐺, 𝛼), (𝐺, 𝐻, 𝛽)∶ Nat(𝑿, 𝒀), composition is de-
fined as

𝛽 ∘Hom𝑽Catℰ
(𝑿,𝒀) 𝛼 ≔ (𝐹, 𝐻, 𝜆𝑥∶ 𝑋. e(𝛽, 𝑥) ∘𝑽 e(𝛼, 𝑥)∶ 𝑉1)∶ Nat(𝑿, 𝒀).

Identity: in context 𝐹∶ Fun(𝑿, 𝒀), identity is defined as

idHom𝑽Catℰ
(𝑿,𝒀)(𝐹) ≔ (𝐹, 𝐹, 𝜆𝑥∶ 𝑋. id𝒀(e(𝐹0, 𝑥))∶ 𝑉1)∶ Nat(𝑿, 𝒀).

The composition

∘𝑽Catℰ
(𝑿, 𝒀, 𝒁)∶ Hom𝑽Catℰ

(𝒀, 𝒁) ×Catℰ Hom𝑽Catℰ
(𝑿, 𝒀) → Hom𝑽Catℰ

(𝑿, 𝒁)

is the functor which, on the object component, acts as the composition of
functors in proposition 3.3.1. On the morphism component,

(𝐹′, 𝐺′, 𝛽)(∘𝑽Catℰ
)

1
(𝐹, 𝐺, 𝛼) ≔

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐹′(∘𝑽Catℰ
)

0
𝐹,

𝐺′(∘𝑽Catℰ
)

0
𝐺,

𝜆𝑥∶ 𝑋. e(𝛽, e(𝐺0, 𝑥)) ∘𝒁 e(𝐹0, e(𝛼, 𝑥))

⎞⎟⎟⎟⎟⎟⎟
⎠
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3.4. Profunctors and Extranatural Transformations

(which is one out of two equivalent ways to define composition of natural
transformations).

The identity

id𝑽Catℰ
(𝑿)∶ 𝕀𝑽Catℰ

→ Hom𝑽Catℰ
(𝑿, 𝑿)

targets the identity functor in Fun(𝑿, 𝑿) and the identity natural transfor-
mation on it in Nat(𝑿, 𝑿).

Finally, the object and morphism components of the isomorphism (3.7) are
obtained by applications of the exponential transpose.

There is abuse of notation in that 𝑽Catℰ is enriched both in ℰ and in
Catℰ, and thus Hom𝑽Catℰ

(𝑿, 𝒀) can either be an object or an internal cate-
gory in ℰ. Moreover, Hom𝑽Catℰ

(𝑿, 𝒀) as an object is the object of objects of
Hom𝑽Catℰ

(𝑿, 𝒀) as an internal category in ℰ.

3.4. Profunctors and Extranatural
Transformations

In the following, we will need the notion of end. In order to properly define
ends, though, it is useful to dedicate some time to the treatment of profunctors
and extranatural transformations, which will be the main topic of the present
section. This will allow for a very general and elegant theory of ends, requiring
no unnecessary assumptions.

In standard enriched category theory, profunctor are normally defined as
certain functors into the enriching category. Such a notion, though, is well-
defined only if the enriching category is monoidal closed and thus enriched
over itself. The same situation presents itself in the internal context. Luckily,
by stating the definitions carefully, it is possible to introduce profunctors,
extranatural transformations and ends without requiring extra assumptions
on the enriching category.

Definition 3.4.1 (profunctor). Let 𝑿 and 𝒀 be 𝑽-enriched categories. A 𝑽-
enriched profunctor 𝑃∶ 𝑿 ↛ 𝒀 is given by

Object component: an arrow 𝑃0 ∶ 𝑌 × 𝑋 → 𝑉0;

Morphism component: an arrow 𝑃1 ∶ (𝑌 × 𝑋) × (𝑌 × 𝑋) → 𝑉1 of shape

𝑥0, 𝑥1 ∶ 𝑋, 𝑦0, 𝑦1 ∶ 𝑌 ⊢ 𝑃1((𝑦0, 𝑥0), (𝑦1, 𝑥1))∶
Hom𝒀(𝑦1, 𝑦0) ⊗ 𝑃0(𝑦0, 𝑥0) ⊗ Hom𝑿(𝑥0, 𝑥1) → 𝑃0(𝑦1, 𝑥1)∶ 𝑉1;
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3. Internal Enriched Categories

satisfying, in context 𝑥, 𝑥0, 𝑥1, 𝑥2 ∶ 𝑋, 𝑦, 𝑦0, 𝑦1, 𝑦2 ∶ 𝑌, the axioms

Hom𝒀(𝑦2, 𝑦1) ⊗ Hom𝒀(𝑦1, 𝑦0)
⊗ 𝑃0(𝑦0, 𝑥0)⊗

Hom𝑿(𝑥0, 𝑥1) ⊗ Hom𝑿(𝑥1, 𝑥2)

Hom𝒀(𝑦2, 𝑦1)
⊗ 𝑃0(𝑦1, 𝑥1)⊗
Hom𝑿(𝑥1, 𝑥2)

Hom𝒀(𝑦2, 𝑦0)
⊗ 𝑃0(𝑦0, 𝑥0)⊗
Hom𝑿(𝑥0, 𝑥2)

𝑃0(𝑦2, 𝑥2)

∘𝒀(𝑦0,𝑦1,𝑦2)⊗𝑃0(𝑦0,𝑥0)⊗∘𝑿(𝑥0,𝑥1,𝑥2)

Hom𝒀(𝑦2,𝑦1)⊗𝑃1((𝑦0,𝑥0),(𝑦1,𝑥1))⊗Hom𝑿(𝑥1,𝑥2)

𝑃1((𝑦1,𝑥1),(𝑦1,𝑥1))

𝑃1((𝑦0,𝑥0),(𝑦2,𝑥2))

and

𝑃0(𝑦, 𝑥) 𝑃0(𝑦, 𝑥)

Hom𝒀(𝑦, 𝑦) ⊗ 𝑃0(𝑦, 𝑥) ⊗ Hom𝑿(𝑥, 𝑥)

id𝒀(𝑦)⊗𝑃0(𝑦,𝑥)⊗id𝑿(𝑥)

id

𝑃1((𝑦,𝑥),(𝑦,𝑥))
.

Remark 3.4.2. Given a profunctor 𝑃∶ 𝑿 ′ ↛ 𝒀 ′ and functors 𝐹∶ 𝑿 → 𝑿 ′ and
𝐺∶ 𝒀 → 𝒀 ′, there is a composite profunctor 𝑃(𝐺, 𝐹)∶ 𝑿 ↛ 𝒀 defined, in context
𝑥0, 𝑥1 ∶ 𝑋, 𝑦0, 𝑦1 ∶ 𝑌, as

(𝑃(𝐺, 𝐹))0 ≔ 𝑌 × 𝑋 𝐹×𝐺−−−→ 𝑌 ′ × 𝑋′ 𝑃−→ 𝑉0
(𝑃(𝐺, 𝐹))1((𝑦0, 𝑥0), (𝑦1, 𝑥1)) ≔

Hom𝒀(𝑦1, 𝑦0) ⊗ (𝑃(𝐺, 𝐹))0(𝑦0, 𝑥0) ⊗ Hom𝑿(𝑥0, 𝑥1)

Hom𝒀′(𝐺0(𝑦1), 𝐺0(𝑦0)) ⊗ 𝑃0(𝐺0(𝑦0), 𝐹0(𝑥0)) ⊗ Hom𝑿′(𝐹0(𝑥0), 𝐹0(𝑥1))

𝑃0(𝐺0(𝑦1), 𝐹0(𝑥1)) = (𝑃(𝐺, 𝐹))0(𝑦1, 𝑥1).

𝐺1(𝑦1,𝑦0)⊗(𝑃(𝐺,𝐹))0(𝑦0,𝑥0)⊗𝐹1(𝑥0,𝑥1)

𝑃1((𝐺0(𝑦0),𝐹0(𝑥0)),(𝐺0(𝑦1),𝐹0(𝑥1)))

Example 3.4.3. Any 𝑽-enriched category 𝑿 has an associated profunctor in-
duced by the internal hom, Hom𝑿 ∶ 𝑿 ↛ 𝑿, where (Hom𝑿)0 is the internal
hom of 𝑿 and (Hom𝑿)1 is given by the composition in 𝑿.
Example 3.4.4. Let 𝐹∶ 𝑿 → 𝒀 be a 𝑽-enriched functor. Then, there is a 𝑽-
enriched profunctor Hom𝒀(‐, 𝐹)∶ 𝑿 ↛ 𝒀 given by the composition of Hom𝒀
and 𝐹. Analogously, there is a 𝑽-enriched profunctor Hom𝒀(𝐹, ‐) ∶ 𝒀 ↛ 𝑿.
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Example 3.4.5. The 𝑽-enriched profunctors 𝕀𝑽Catℰ
↛ 𝕀𝑽Catℰ

are the same
thing as the internal functors 𝕀Catℰ

→ 𝑽.
We shall now give a definition of extranatural transformation in the context

of internal enriched categories. That is, a transformation between profunctors
that is (ordinary-)natural in some variables and extranatural in others (the
meaning of which is clarified in the definition). Notice that some occurrences
of identity arrows of enriched categories (such as id𝑿(𝑥, 𝑥)) have been omitted
in the definition’s axioms to improve clarity.
Definition 3.4.6 (extranatural transformation). Let 𝑃∶ 𝑿⊗ 𝒀 ↛ 𝒀 and 𝑄∶ 𝑿⊗
𝒁 ↛ 𝒁 be 𝑽-enriched profunctors. A 𝑽-enriched extranatural transformation
𝜖 ∶ 𝑃 → 𝑄 is given by a morphism 𝜖 ∶ 𝑋 × 𝑌 × 𝑍 → 𝑉1 of shape

𝑥∶ 𝑋, 𝑦∶ 𝑌, 𝑧 ∶ 𝑍 ⊢ 𝜖(𝑥, 𝑦, 𝑧) ∶ 𝑃0(𝑥, 𝑦, 𝑦) → 𝑄0(𝑥, 𝑧, 𝑧) ∶ 𝑉1

satisfying, in context 𝑥0, 𝑥1 ∶ 𝑋, 𝑦 ∶ 𝑌, 𝑧 ∶ 𝑍, the axiom

𝑃0(𝑥0, 𝑦, 𝑦) ⊗ Hom𝑿(𝑥0, 𝑥1) 𝑄0(𝑥0, 𝑧, 𝑧) ⊗ Hom𝑿(𝑥0, 𝑥1)

𝑃0(𝑥1, 𝑦, 𝑦) 𝑄0(𝑥1, 𝑧, 𝑧)

𝑃1((𝑥0,𝑦,𝑦),(𝑥1,𝑦,𝑦))

𝜖(𝑥0,𝑦,𝑧)⊗Hom𝑿(𝑥0,𝑥1)

𝑄1((𝑥0,𝑧,𝑧),(𝑥1,𝑧,𝑧))

𝜖(𝑥1,𝑦,𝑧)

(naturality in 𝑿); in context 𝑥∶ 𝑋, 𝑦0, 𝑦1 ∶ 𝑌, 𝑧 ∶ 𝑍, the axiom

𝑃0(𝑥, 𝑦0, 𝑦1) ⊗ Hom𝒀(𝑦0, 𝑦1) 𝑃0(𝑥, 𝑦1, 𝑦1)

𝑃0(𝑥, 𝑦0, 𝑦0) 𝑄0(𝑥, 𝑧, 𝑧)

𝑃1((𝑥,𝑦0,𝑦1),(𝑥,𝑦0,𝑦0))

𝑃1((𝑥,𝑦0,𝑦1),(𝑥,𝑦1,𝑦1))

𝜖(𝑥,𝑦1,𝑧)

𝜖(𝑥,𝑦0,𝑧)

(extranaturality in 𝒀); and, in context 𝑥∶ 𝑋, 𝑦∶ 𝑌, 𝑧0, 𝑧1 ∶ 𝑍, the axiom

𝑃0(𝑥, 𝑦, 𝑦) ⊗ Hom𝒁(𝑧0, 𝑧1) 𝑄0(𝑥, 𝑧1, 𝑦1) ⊗ Hom𝒁(𝑧0, 𝑧1)

𝑄0(𝑥, 𝑧0, 𝑧0) ⊗ Hom𝒁(𝑧0, 𝑧1) 𝑄0(𝑥, 𝑧0, 𝑧1)

𝜖(𝑥,𝑦,𝑧0)⊗Hom𝒁(𝑧0,𝑧1)

𝜖(𝑥,𝑦,𝑧1)⊗Hom𝒁(𝑧0,𝑧1)

𝑄1((𝑥,𝑧1,𝑧1),(𝑥,𝑧0,𝑧1))

𝑄1((𝑥,𝑧0,𝑧0),(𝑥,𝑧0,𝑧1))

(extranaturality in 𝒁).
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The definition of extranatural transformation supports the calculus of ends
and coends (as defined in the next section). For applications, it is impor-
tant to have definitions parametrized by an additional category representing
“ordinary-natural” variables (that is 𝑿 in our definition). However, we shall not
draw further attention to this parametrization in our use of ends and coends,
as those are defined relatively to profunctors having “extra-natural” variables
only (that are 𝒀 and 𝒁 in our definition).

Notice that there are many special cases of this definition.
Example 3.4.7. An extranatural transformation 𝜖∶ 𝐴 → 𝑃 between the pro-
functors 𝐴∶ 𝕀𝑽Catℰ

↛ 𝕀𝑽Catℰ
(or, equivalently, a functor 𝐴∶ 𝟙Catℰ

→ 𝑽) and
𝑃∶ 𝑿 ↛ 𝑿 only needs to satisfy the extranaturality axiom on 𝑿.
Example 3.4.8. An extranatural transformation 𝜖∶ 𝑃 → 𝑄 between the pro-
functors 𝑃, 𝑄∶ 𝑿 ↛ 𝕀𝑽Catℰ

only needs to satisfy the naturality axiom on 𝑿.
In standard category theory, profunctors and extranatural transformations

form a bicategory. Defining the composition of profunctors requires the use
of coends, which have not yet been introduced. Anyway, we are not going to
need such general composition, but it will be useful to define just a few special
cases, for use in the following sections.

Given a 𝑽-enriched profunctor 𝑃∶ 𝑿 ↛ 𝑿, a functor 𝐴∶ 𝟙Catℰ
→ 𝑽, a 𝑽-

enriched functor 𝐹∶ 𝒀 → 𝑿, and a 𝑽-enriched extranatural transformation
𝜖 ∶ 𝐴 → 𝑃, there is an horizontal composition 𝜖 ∗ 𝐹∶ 𝐴 → 𝑃(𝐹, 𝐹) given by

𝑦∶ 𝑌 ⊢ (𝜖𝐹)(𝑦) ≔ 𝐴
𝜖(𝐹0(𝑦))
−−−−−−→ 𝑃0(𝐹0(𝑦), 𝐹0(𝑦))∶ 𝑉1.

Moreover, given a 𝑽-enriched profunctor 𝑃∶ 𝑿 ↛ 𝑿, a functor 𝐴∶ 𝟙Catℰ
→ 𝑽,

a 𝑽-enriched extranatural transformation 𝜖∶ 𝐴 → 𝑃, and a natural transfor-
mation ℎ∶ 𝐴′ → 𝐴∶ 𝟙Catℰ

→ 𝑽, there is an horizontal composition 𝜖 ∘ ℎ∶ 𝐴′ → 𝑃
given by

𝑦∶ 𝑌 ⊢ (𝜖 ∘𝑽 ℎ)(𝑦) ≔ 𝐴′ ℎ−→ 𝐴
𝜖(𝑦)
−−−→ 𝑃0(𝑦, 𝑦)∶ 𝑉1.

Finally, given 𝑽-enriched profunctors 𝑃, 𝑄∶ 𝑿 ↛ 𝕀𝑽Catℰ
, a 𝑽-enriched ex-

tranatural transformation 𝜖 ∶ 𝑃 → 𝑄 and a 𝑽-enriched functor 𝐹∶ 𝒀 → 𝑿, there
is an horizontal composition 𝜖 ∗ 𝐹∶ 𝑃𝐹 → 𝑄𝐹 given by

𝑦∶ 𝑌 ⊢ (𝜖𝐹)(𝑦) ≔ 𝑃0(𝐹0(𝑥))
𝜖(𝐹0(𝑥))
−−−−−−→ 𝑄0(𝐹0(𝑥))∶ 𝑉1.

3.5. Ends
Equipped with the tools defined in the previous section, and informed by the
discussion from chapter 2, we are now ready to introduce the notion of end,
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which will turn out to be essential to the treatment of exponentials of internal
enriched categories and their weighted limits.

Definition 3.5.1 (universal extranatural transformation). Let 𝑃∶ 𝑿 ↛ 𝑿 a
𝑽-enriched profunctor and 𝐸∶ 𝟙Catℰ

→ 𝑽 an internal functor. An extranatural
transformation 𝜖 ∶ 𝐸 → 𝑃 is universal if, given another functor 𝐸′ ∶ 𝕀𝑽Catℰ

→ 𝑽
and another extranatural transformation 𝜖′ ∶ 𝐸′ → 𝑃, there exists a unique
natural transformation ℎ∶ 𝐸′ → 𝐸 such that 𝜖′ = 𝜖 ∘ ℎ.

By duality, we also have the definition of couniversal natural transformation
(so called for lack of better terminology in the literature).

Definition 3.5.2 (couniversal extranatural transformation). Let 𝑃∶ 𝑿 ↛ 𝑿 a
𝑽-enriched profunctor and 𝐸∶ 𝟙Catℰ

→ 𝑽 an internal functor. An extranatural
transformation 𝜖 ∶ 𝑃 → 𝐸 is couniversal if, given another functor 𝐸′ ∶ 𝕀𝑽Catℰ

→
𝑽 and another extranatural transformation 𝜖′ ∶ 𝑃 → 𝐸′, there exists a unique
natural transformation ℎ∶ 𝐸 → 𝐸′ such that 𝜖′ = ℎ ∘ 𝜖.

Analogously to what happens in chapter 2, the definition of universal ex-
tranatural transformation is not stable under pullback. So, we shall enforce
stability explicitly in the definition of end.

Definition 3.5.3 (end). Let 𝑃∶ 𝑿 ↛ 𝑿 a 𝑽-enriched profunctor. An end for
𝑃 is given by an internal functor ∫𝑿 𝑃∶ 𝟙Catℰ

→ 𝑽 and an extranatural trans-
formation 𝜋∶ ∫𝑿 𝑃 → 𝑃 such that, for any object 𝐼 of ℰ, the extranatural
transformation 𝐼∗𝜋∶ 𝐼∗ ∫𝑿 𝑃 → 𝐼∗𝑃 is universal.

Definition 3.5.4 (coend). Let 𝑃∶ 𝑿 ↛ 𝑿 a 𝑽-enriched profunctor. A coend
for 𝑃 is given by an internal functor ∫𝑿 𝑃∶ 𝟙Catℰ

→ 𝑽 and an extranatural
transformation 𝜋∶ 𝑃 → ∫𝑿 𝑃 such that, for any object 𝐼 of ℰ, the extranatural
transformation 𝐼∗𝜋∶ 𝐼∗𝑃 → 𝐼∗ ∫𝑿 𝑃 is universal.

Analogously to the definition of complete internal category, we say a category
has all ends (for lack of better terminology from the literature) if, in every slice,
every profunctor has an end, so that the notion is forcefully made stable under
pullback.

Definition 3.5.5 (category with all (co)ends). We say that 𝑽 has all (co)ends if,
for every object 𝐼 in ℰ and every 𝐼∗𝑽-enriched category 𝑿, every 𝐼∗𝑽-enriched
profunctor 𝑃∶ 𝑿 ↛ 𝑿 has a (co)end.

Let’s note down (without proof) a few properties of ends and coends.
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Proposition 3.5.6. It is possible to swap ends (and coends) with each other
(that is the so-called Fubini theorem):

∫
𝑦∶ 𝑌

∫
𝑥∶ 𝑋

𝑃0((𝑥, 𝑦), (𝑥, 𝑦)) ≅ ∫
𝑥∶ 𝑋

∫
𝑦∶ 𝑌

𝑃0((𝑥, 𝑦), (𝑥, 𝑦)) ≅ ∫
𝑝∶ 𝑋×𝑌

𝑃0(𝑝, 𝑝)

∫
𝑦∶ 𝑌

∫
𝑥∶ 𝑋

𝑃0((𝑥, 𝑦), (𝑥, 𝑦)) ≅ ∫
𝑥∶ 𝑋

∫
𝑦∶ 𝑌

𝑃0((𝑥, 𝑦), (𝑥, 𝑦)) ≅ ∫
𝑝∶ 𝑋×𝑌

𝑃0(𝑝, 𝑝).

Moreover, if 𝑽 is monoidal closed, there is an interchange between the exponen-
tial objects and (co)ends:

Hom𝑽(𝑣, ∫
𝑥∶ 𝑋

𝑃0(𝑥, 𝑥)) ≅ ∫
𝑥∶ 𝑋

Hom𝑽(𝑣, 𝑃0(𝑥, 𝑥))

Hom𝑽( ∫
𝑥∶ 𝑋

𝑃0(𝑥, 𝑥), 𝑣) ≅ ∫
𝑥∶ 𝑋

Hom𝑽(𝑃0(𝑥, 𝑥), 𝑣).

Let’s introduce a notation for products in 𝑽 indexed over some object of ℰ
which will be helpful in the future.

Notation 3.5.7 (product). Let 𝑓 ∶ 𝑋 → 𝑉0 be a morphism. Consider the discrete
category 𝐝𝐢𝐬(𝑋) (see example 1.1.9) and the diagram 𝐝𝐢𝐬(𝐹)∶ 𝐝𝐢𝐬(𝑋) → 𝑽.
The limit of that diagram, if it exists, is the product of 𝑓, and we write it as
∏𝑥∶ 𝑋 𝑓 (𝑥)∶ 𝑉0.

Proposition 3.5.8. Assume 𝑽 is symmetric, complete (in the internal sense)
and monoidal closed, and it has equalizers. Then, 𝑽 has all ends.

Proof. Notice that all the hypothesis are stable under slicing. Then, the proof
reduces to show that, given the above assumptions, any 𝑽-enriched profunctor
𝑃∶ 𝑿 ↛ 𝑿 has an end.

There are two morphisms

𝜙, 𝜓∶ ∏
𝑥∶ 𝑋

𝑃0(𝑥, 𝑥) → ∏
𝑥0,𝑥1 ∶ 𝑋

Hom𝑽(Hom𝑿(𝑥0, 𝑥1), 𝑃0(𝑥0, 𝑥1))

which we define component-wise as

𝜙(𝑥0, 𝑥1)∶

∏𝑥∶ 𝑋 𝑃0(𝑥, 𝑥)

Hom𝑿(𝑥0, 𝑥0) ⊗𝑽 𝑃0(𝑥0, 𝑥0)

Hom𝑽(Hom𝑿(𝑥0, 𝑥1), 𝑃0(𝑥0, 𝑥1))

id𝑿(𝑥0)⊗𝑽𝜋(𝑥0)

𝑃1((𝑥0,𝑥0),(𝑥0,𝑥1))
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where 𝑃1((𝑥0, 𝑥0), (𝑥0, 𝑥1)) is the exponential transpose of 𝑃1((𝑥0, 𝑥0), (𝑥0, 𝑥1)),
and

𝜓(𝑥0, 𝑥1)∶

∏𝑥∶ 𝑋 𝑃0(𝑥, 𝑥)

Hom𝑿(𝑥1, 𝑥1) ⊗𝑽 𝑃0(𝑥1, 𝑥1)

Hom𝑽(Hom𝑿(𝑥0, 𝑥1), 𝑃0(𝑥0, 𝑥1))

id𝑿(𝑥1)⊗𝑽𝜋(𝑥1)

𝑃1((𝑥1,𝑥1),(𝑥0,𝑥1))

where 𝑃1((𝑥1, 𝑥1), (𝑥0, 𝑥1)) is the exponential transpose of 𝑃1((𝑥1, 𝑥1), (𝑥0, 𝑥1)).
Notice that an extra-natural transformation 𝜖 ∶ 𝐸 → 𝑃 induces a morphism

𝑒 ∶ 𝐸 → ∏𝑥∶ 𝑋 𝑃0(𝑥, 𝑥). Then, 𝜖 being extranatural is equivalent to 𝑒 equalizing
𝜙 and 𝜓.

We claim that the equalizer 𝐸 of 𝜙 and 𝜓 is the end of 𝑃, and the projection
is given by the extranatural transformation

𝑥∶ 𝑋 ⊢ 𝜖(𝑥) ≔ 𝐸 𝑒−→ ∏
𝑥∶ 𝑋

𝑃0(𝑥, 𝑥) 𝜋(𝑥)−−−→ 𝑃0(𝑥, 𝑥).

Indeed, notice that the product and equalizer used to construct the above
extranatural transformation are stable under pullback, so stability will not be
a concern. Then, let 𝐸′ ∶ 𝑉0 and 𝜖′ ∶ 𝐸′ → 𝑃 be another extranatural transfor-
mation. There is an induced equalizing arrow 𝑒′ ∶ 𝐸 → ∏𝑥∶ 𝑋 𝑃0(𝑥, 𝑥). Then,
define ℎ∶ 𝐸′ → 𝐸 as the unique arrow making the equalizer 𝑒 commute with 𝑒′.
But, by construction, ℎ is also the unique arrow making 𝜖 and 𝜖′ commute.

We could also derive the dual result.

Proposition 3.5.9. Assume 𝑽 is symmetric, cocomplete (which it is, by the-
orem 2.3.13, if and only if it is complete) and monoidal closed, and it has
coequalizers. Then, 𝑽 has all coends.

3.6. Monoidal Product of Enriched Categories
Standard enriched categories have a monoidal product induced by that of
their enriching category, if that is symmetric monoidal. Indeed, symmetry is
necessary to define the composition of the product category. The situation is
analogous in the setting of internal enriched categories.

Proposition 3.6.1. If 𝑽 is a symmetric monoidal category, then so is 𝑽Catℰ.

Proof. Let 𝑿 and 𝒀 be 𝑽-categories. The monoidal product 𝑿 ⊗𝑽Catℰ
0 𝒀 is the

𝑽-category given by the data:
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Underlying object: 𝑋 × 𝑌;

Internal hom: in context (𝑥0, 𝑦0), (𝑥1, 𝑦1)∶ 𝑋 × 𝑌, define

Hom
𝑿⊗𝑽Catℰ𝒀

((𝑥0, 𝑦0), (𝑥1, 𝑦1)) ≔ Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1);

Composition: in context (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2)∶ 𝑋 × 𝑌, define

∘
𝑿⊗𝑽Catℰ𝒀

((𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2)) ≔

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝒀(𝑦1, 𝑦2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦1, 𝑦2) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom𝑿(𝑥0, 𝑥2) ⊗𝑽 Hom𝒀(𝑦0, 𝑦2)

Hom𝑿(𝑥1,𝑥2)⊗𝑽𝜎𝑽(Hom𝒀(𝑦1,𝑦2),Hom𝑿(𝑥0,𝑥1))⊗𝑽Hom𝒀(𝑦0,𝑦1)

∘𝑿(𝑥0,𝑥1,𝑥2)⊗𝑽∘𝒀(𝑦0,𝑦1,𝑦2)

;

Identity: in context (𝑥, 𝑦)∶ 𝑋 × 𝑌, define id
𝑿⊗𝑽Catℰ𝒀

(𝑥, 𝑦) ≔ id𝑿(𝑥) ⊗𝑽 id𝒀(𝑦).

As it can be straightforwardly checked by using the internal logic, these data
satisfy the axioms 3.1 to 3.3.

Let 𝐹∶ 𝑿 → 𝒀 and 𝐺∶ 𝑾 → 𝒁 be 𝑽-enriched functors. Define the monoidal
product 𝐹 ⊗𝑽Catℰ

1 𝐺 as:

Object component: (𝐹 ⊗𝑽Catℰ
1 𝐺)0 ≔ 𝐹0 × 𝐺0 ∶ 𝑋 × 𝑊 → 𝑌 × 𝑍;

Morphism component: in context (𝑥0, 𝑤0), (𝑥1, 𝑤1)∶ 𝑋 × 𝑊, define

(𝐹 ⊗𝑽Catℰ
1 𝐺)1((𝑥0, 𝑤0), (𝑥1, 𝑤1)) ≔ 𝐹1(𝑥0, 𝑥1) ⊗𝑽 𝐺1(𝑤0, 𝑤1).

which satisfy the axiom 3.4.
That gives a functor ⊗𝑽Catℰ ∶ 𝑽Catℰ × 𝑽Catℰ → 𝑽Catℰ satisfying the asso-

ciativity axiom up to a suitable associator isomorphism.
The monoidal unit 𝕀𝑽Catℰ

is the 𝑽-category given by the data:

Underlying object: 𝟙𝒞;

Internal hom: 𝕀ℳ ∶ 𝟙𝒞 × 𝟙𝒞 ≅ 𝟙𝒞 → 𝑉0;

Composition: 𝜌𝑽(𝕀𝑽) ∘𝑽 (𝜌𝑽(𝕀𝑽) ⊗𝑽
1 id𝑽(𝕀𝑽))∶ 𝟙𝒞 ×𝒞 𝟙𝒞 ×𝒞 𝟙𝒞 → 𝑉1;

Identity: id𝑽(𝕀𝑽)∶ 𝟙𝒞 → 𝑉1.
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The unit satisfies the unitarity axioms up to left/right unitor isomorphisms.
Given 𝑽-categories 𝑿 and 𝒀, their symmetry

𝜎𝑽Catℰ
(𝑿, 𝒀)∶ 𝑿 ⊗𝑽Catℰ 𝒀 → 𝒀 ⊗𝑽Catℰ 𝑿

is defined as

(𝑥, 𝑦)∶ 𝑋 × 𝑌 ⊢ 𝜎𝑽Catℰ
(𝑿, 𝒀)

0
(𝑥, 𝑦) ≔ (𝑦, 𝑥)∶ 𝑌 × 𝑋

(𝑥0, 𝑦0), (𝑥1, 𝑦1)∶ 𝑋 × 𝑌 ⊢ 𝜎𝑽Catℰ
(𝑿, 𝒀)

1
((𝑥0, 𝑦0), (𝑥1, 𝑦1))

≔

Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom𝒀(𝑦0, 𝑦1) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1).

𝜎𝑽(Hom𝑿(𝑥0,𝑥1),Hom𝒀(𝑦0,𝑦1)) ∶ 𝑉1.

That satisfies the monoidal symmetry axioms.

3.7. Exponentials of Internal Enriched Categories
Remember that in section 3.3 we showed how, given two 𝑽-enriched categories
𝑿 and 𝒀, there is an object Fun(𝑿, 𝒀) in ℰ representing 𝑽-enriched functors
𝑿 → 𝒀, yielding an enrichment of 𝑽Catℰ in ℰ. Then, we extended the previ-
ous argument assigning to 𝑿 and 𝒀 an object Nat(𝑿, 𝒀) in ℰ of 𝑽-enriched
natural transformations between 𝑽-enriched functors 𝑿 → 𝒀. We thus have
an internal category in ℰ of 𝑽-enriched functors and their 𝑽-enriched natural
transformations, yielding an enrichment of 𝑽Catℰ in Catℰ.

We now prove that the category of internal 𝑽-enriched categories is monoidal
closed with respect to the monoidal product defined in section 3.6. That re-
quires associating to 𝑿 and 𝒀 an internal 𝑽-enriched category whose under-
lying object is Fun(𝑿, 𝒀), and whose hom-morphism represents 𝑽-enriched
natural transformations as an object of 𝑽. As in standard enriched Category
Theory, that is provided by an end.

In this section, assume ℰ is locally cartesian closed and 𝑽 is symmetric
monoidal (so that 𝑽Catℰ is too, by proposition 3.6.1) and it has all ends.

Let’s begin by defining a suitable candidate to be the exponential of two
internal enriched categories.

Definition 3.7.1 (exponential 𝑽-category). Let 𝑿 and 𝒀 be 𝑽-categories. The
exponential of 𝑿 and 𝒀 is the 𝑽-enriched category [𝑿, 𝒀] defined as follows.

Underlying object: is given by Fun(𝑿, 𝒀), the object of 𝑽-enriched functors
between 𝑿 and 𝒀.
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Hom: is given by

𝐹, 𝐺∶ Fun(𝑿, 𝒀) ⊢ Hom[𝑿,𝒀](𝐹, 𝐺) ≔ ∫
𝑥∶ 𝑋

Hom𝒀(e(𝐹0, 𝑥), e(𝐺0, 𝑥))∶ 𝑉0

and it comes with an extranatural transformation

𝑥∶ 𝑋, 𝐹, 𝐺∶ Fun(𝑿, 𝒀) ⊢
𝜋(𝐹, 𝐺, 𝑥) ≔ Hom[𝑿,𝒀](𝐹, 𝐺) → Hom𝒀(e(𝐹0, 𝑥), e(𝐺0, 𝑥))∶ 𝑉1.

Composition: is given by an arrow

𝐹, 𝐺, 𝐻∶ Fun(𝑿, 𝒀) ⊢
∘[𝑿,𝒀](𝐹, 𝐺, 𝐻)∶ Hom[𝑿,𝒀](𝐺, 𝐻)⊗𝑽Hom[𝑿,𝒀](𝐹, 𝐺) → Hom[𝑿,𝒀](𝐹, 𝐻)

defined as the unique arrow induced by the end on the extranatural
transformation

𝐹, 𝐺, 𝐻∶ Fun(𝑿, 𝒀), 𝑥 ∶ 𝑿 ⊢

Hom[𝑿,𝒀](𝐺, 𝐻) ⊗𝑽 Hom[𝑿,𝒀](𝐹, 𝐺)

Hom𝒀(e(𝐺0, 𝑥), e(𝐻0, 𝑥)) ⊗𝑽 Hom𝒀(e(𝐹0, 𝑥), e(𝐺0, 𝑥))

Hom𝒀(e(𝐹0, 𝑥), e(𝐻0, 𝑥))

𝜋𝑥⊗𝑽𝜋𝑥

∘𝒀(e(𝐹0,𝑥),e(𝐺0,𝑥),e(𝐻0,𝑥))

∶ 𝑉1.

Identity: is given by an arrow

𝐹∶ Fun(𝑿, 𝒀) ⊢ id[𝑿,𝒀](𝐹)∶ 𝕀𝑽 → Hom[𝑿,𝒀](𝐹, 𝐹)

defined as the unique arrow induced by the end on the extranatural
transformation

𝐹∶ Fun(𝑿, 𝒀), 𝑥 ∶ 𝑋 ⊢ 𝕀𝑽
id𝒀(e(𝐹0,𝑥))
−−−−−−−−−→ Hom𝒀(e(𝐹0, 𝑥), e(𝐹0, 𝑥))∶ 𝑉1.

Often in this dissertation we have omitted routine calculations, but in this
case it seems instructional to spell out the calculations in detail.

Let 𝑿, 𝒀 and 𝒁 be 𝑽-categories. To prove that [𝒀, 𝒁] is indeed the exponential
object of 𝒀 and 𝒁, we need to show that 𝑽-enriched functors 𝑿 ⊗𝑽Catℰ 𝒀 → 𝒁
correspond to 𝑽-enriched functors 𝑿 → [𝒀, 𝒁]. That is, that there is a natural
bijection

𝑽Catℰ(𝑿 ⊗𝑽Catℰ 𝒀, 𝒁) ≅ 𝑽Catℰ(𝑿, [𝒀, 𝒁]).
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We shall first give the two constructions yielding the correspondence, and then
show that these are mutually inverse.

Let’s first give the construction of

̄(‐) ∶ 𝑽Catℰ(𝑿 ⊗𝑽Catℰ 𝒀, 𝒁) → 𝑽Catℰ(𝑿, [𝒀, 𝒁]).

Let 𝐹∶ 𝑿 ⊗𝑽Catℰ 𝒀 → 𝒁 be a 𝑽-enriched functor. Define the transposed 𝑽-
enriched functor ̄𝐹 ∶ 𝑿 → [𝒀, 𝒁] as follows.

Object component: is given by

𝑥∶ 𝑋 ⊢ ̄𝐹0(𝑥)0 ≔ 𝜆𝑦∶ 𝑌. 𝐹0(𝑥, 𝑦)∶ 𝑍
and

𝑥∶ 𝑋 ⊢ ̄𝐹0(𝑥)1 ≔ 𝜆𝑦0, 𝑦1 ∶ 𝑌.

Hom𝒀(𝑦0, 𝑦1)

Hom𝑿(𝑥, 𝑥) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom𝒁(𝐹0(𝑥, 𝑦0), 𝐹0(𝑥, 𝑦1))

id𝑿(𝑥)⊗𝑽id

𝐹1((𝑥,𝑦0),(𝑥,𝑦1))

∶ 𝑉1.

Morphism component: is an arrow of shape

𝑥0, 𝑥1 ∶ 𝑋 ⊢ ̄𝐹1(𝑥0, 𝑥1)∶ Hom𝑿(𝑥0, 𝑥1) → Hom[𝒀,𝒁]( ̄𝐹0(𝑥0), ̄𝐹0(𝑥1))∶ 𝑉1

defined, in context 𝑥0, 𝑥1 ∶ 𝑋, 𝑦 ∶ 𝑌, as the arrow yielded by the end over
the extranatural transformation

Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦, 𝑦) = Hom
𝑿⊗𝑽Catℰ𝒀

((𝑥0, 𝑦), (𝑥1, 𝑦))

Hom𝒁(𝐹0(𝑥0, 𝑦), 𝐹0(𝑥1, 𝑦)) = Hom𝒁(e( ̄𝐹0(𝑥0), 𝑦), e( ̄𝐹0(𝑥1), 𝑦))

id⊗𝑽id𝒀(𝑦)

𝐹1((𝑥0,𝑦),(𝑥1,𝑦))

so that the above arrow is the composition 𝜋( ̄𝐹0(𝑥0), ̄𝐹0(𝑥1), 𝑦) ̄𝐹1(𝑥0, 𝑥1).
Note that here, by the definitions, we have genuine equality of objects,
not mere isomorphisms.
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Let’s prove that ̄𝐹 is functorial. In context 𝑥0, 𝑥1, 𝑥2 ∶ 𝑋, 𝑦 ∶ 𝑌, consider the
following composite.

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1)

Hom[𝒀,𝒁]( ̄𝐹0(𝑥1), ̄𝐹0(𝑥2)) ⊗𝑽 Hom[𝒀,𝒁]( ̄𝐹0(𝑥1), ̄𝐹0(𝑥2))

Hom[𝒀,𝒁]( ̄𝐹0(𝑥0), ̄𝐹0(𝑥2))

Hom𝒁(e( ̄𝐹0(𝑥0), 𝑦), e( ̄𝐹0(𝑥2), 𝑦))

𝐹̄1(𝑥1,𝑥2)⊗𝑽𝐹̄1(𝑥1,𝑥2)

∘[𝒀,𝒁](𝐹̄0(𝑥0),𝐹̄0(𝑥1),𝐹̄0(𝑥2))

𝜋(𝐹̄0(𝑥0),𝐹̄0(𝑥2),𝑦)

By definition of ∘[𝒀,𝒁] and ̄𝐹0, the previous map is equal to the composite

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1)

Hom[𝒀,𝒁]( ̄𝐹0(𝑥1), ̄𝐹0(𝑥2)) ⊗𝑽 Hom[𝒀,𝒁]( ̄𝐹0(𝑥0), ̄𝐹0(𝑥1))

Hom𝒁(𝐹0(𝑥1, 𝑦), 𝐹0(𝑥2, 𝑦)) ⊗𝑽 Hom𝒁(𝐹0(𝑥0, 𝑦), 𝐹0(𝑥1, 𝑦))

Hom𝒁(𝐹0(𝑥0, 𝑦), 𝐹0(𝑥2, 𝑦))

𝐹̄1(𝑥1,𝑥2)⊗𝑽𝐹̄1(𝑥0,𝑥1)

𝜋(𝐹̄0(𝑥1),𝐹̄0(𝑥2),𝑦)⊗𝑽𝜋(𝐹̄0(𝑥0),𝐹̄0(𝑥1),𝑦)

∘𝒁(𝐹0(𝑥0,𝑦),𝐹0(𝑥1,𝑦),𝐹0(𝑥2,𝑦))

which, by definition of ̄𝐹1, is equal to the composite

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝒀(𝑦, 𝑦) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦, 𝑦)

Hom𝒁(𝐹0(𝑥1, 𝑦), 𝐹0(𝑥2, 𝑦)) ⊗𝑽 Hom𝒁(𝐹0(𝑥0, 𝑦), 𝐹0(𝑥1, 𝑦))

Hom𝒁(𝐹0(𝑥0, 𝑦), 𝐹0(𝑥2, 𝑦))

id⊗𝑽id𝒀(𝑦)⊗𝑽id⊗𝑽id𝒀(𝑦)

𝐹1((𝑥1,𝑦),(𝑥2,𝑦))⊗𝑽𝐹1((𝑥0,𝑦),(𝑥1,𝑦))

∘[𝒀,𝒁](𝐹0(𝑥0,𝑦),𝐹0(𝑥1,𝑦),𝐹0(𝑥2,𝑦))
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which, by functoriality of 𝐹, is equal to the composite

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥0, 𝑥2)

Hom𝑿(𝑥0, 𝑥2) ⊗𝑽 Hom𝒀(𝑦, 𝑦)

Hom𝒁(𝐹0(𝑥0, 𝑦), 𝐹0(𝑥2, 𝑦))

∘𝑿(𝑥0,𝑥1,𝑥2)

id⊗𝑽id𝒀(𝑦)

𝐹1((𝑥0,𝑦),(𝑥2,𝑦))

.

By applying the argument backwards, we get that the map we started from is
equal to

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥0, 𝑥2)

Hom[𝒀,𝒁]( ̄𝐹0(𝑥0), ̄𝐹0(𝑥2))

Hom𝒁(e( ̄𝐹0(𝑥0), 𝑦), e( ̄𝐹0(𝑥2), 𝑦))

∘𝑿(𝑥0,𝑥1,𝑥2)

𝐹̄1(𝑥0,𝑥2)

𝜋(𝐹̄0(𝑥0),𝐹̄0(𝑥2),𝑦)

and with this we have proved functoriality.
Let’s now give the construction of

̂(‐) ∶ 𝑽Catℰ(𝑿, [𝒀, 𝒁]) → 𝑽Catℰ(𝑿 ⊗𝑽Catℰ 𝒀, 𝒁).

Let 𝐺∶ 𝑿 → [𝒀, 𝒁] be a 𝑽-enriched functor. Define the transposed functor
𝐺̂ ∶ 𝑿 ⊗𝑽Catℰ 𝒀 → 𝒁 as follows.

Object component: is the arrow 𝐺̂0 ∶ 𝑋 × 𝑌 → 𝑍 defined as

𝑥∶ 𝑋, 𝑦∶ 𝑌 ⊢ 𝐺̂0(𝑥, 𝑦) ≔ e(𝐺0(𝑥)0, 𝑦)∶ 𝑍.

Morphism component: is the arrow 𝐺̂1 ∶ 𝑋 × 𝑌 × 𝑋 × 𝑌 → 𝑉1 defined as

𝑥0, 𝑥1 ∶ 𝑋, 𝑦0, 𝑦1 ∶ 𝑌 ⊢ 𝐺̂1((𝑥0, 𝑦0), (𝑥1, 𝑦1)) ≔

69



3. Internal Enriched Categories

Hom
𝑿⊗𝑽Catℰ𝒀

((𝑥0, 𝑦0), (𝑥1, 𝑦1)) = Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom[𝒀,𝒁](𝐺0(𝑥0), 𝐺0(𝑥1)) ⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥0)0, 𝑦1))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦1), e(𝐺0(𝑥1)0, 𝑦1)) ⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥0)0, 𝑦1))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦1)) = Hom𝒁(𝐺̂0(𝑥0, 𝑦0), 𝐺̂0(𝑥1, 𝑦1)).

𝐺1(𝑥0,𝑥1)⊗𝑽e(𝐺0(𝑥0)1,(𝑦0,𝑦1))

𝜋(𝐺0(𝑥0),𝐺0(𝑥1),𝑦1)⊗𝑽id

∘𝒁(e(𝐺0(𝑥0)0,𝑦0),e(𝐺0(𝑥0)0,𝑦1),e(𝐺0(𝑥1)0,𝑦1))

Let’s prove that 𝐺̂ is functorial. In context 𝑥0, 𝑥1, 𝑥2 ∶ 𝑋, 𝑦0, 𝑦1, 𝑦2 ∶ 𝑌, consider
the composite

Hom
𝑿⊗𝑽Catℰ𝒀

((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ⊗𝑽 Hom
𝑿⊗𝑽Catℰ𝒀

((𝑥0, 𝑦0), (𝑥1, 𝑦1))

Hom𝒁(𝐺̂0(𝑥1, 𝑦1), 𝐺̂0(𝑥2, 𝑦2)) ⊗𝑽 Hom𝒁(𝐺̂0(𝑥0, 𝑦0), 𝐺̂0(𝑥1, 𝑦1))

Hom𝒁(𝐺̂0(𝑥0, 𝑦0), 𝐺̂0(𝑥2, 𝑦2)).

𝐺̂1((𝑥1,𝑦1),(𝑥2,𝑦2))⊗𝑽𝐺̂1((𝑥0,𝑦0),(𝑥1,𝑦1))

∘𝒁(𝐺̂0(𝑥0,𝑦0),𝐺̂0(𝑥1,𝑦1),𝐺̂0(𝑥2,𝑦2))
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By definition of 𝐺̂, that is equal to the composite arrow

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝒀(𝑦1, 𝑦2)
⊗𝑽 Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom[𝒀,𝒁](𝐺0(𝑥1), 𝐺0(𝑥2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥1)0, 𝑦1), e(𝐺0(𝑥1)0, 𝑦2))
⊗𝑽 Hom[𝒀,𝒁](𝐺0(𝑥0), 𝐺0(𝑥1))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥1)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦1))

Hom𝒁(e(𝐺0(𝑥1)0, 𝑦2), e(𝐺0(𝑥2)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥1)0, 𝑦1), e(𝐺0(𝑥1)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦0))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥1)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦1))

Hom𝒁(e(𝐺0(𝑥1)0, 𝑦1), e(𝐺0(𝑥2)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦1))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥2)0, 𝑦2)).

𝐺1(𝑥1,𝑥2)⊗𝑽e(𝐺0(𝑥1)1,(𝑦1,𝑦2))

⊗𝑽𝐺1(𝑥0,𝑥1)⊗𝑽e(𝐺0(𝑥1)1,(𝑦0,𝑦1))

𝜋(𝐺0(𝑥1),𝐺0(𝑥2),𝑦2)⊗𝑽id⊗𝑽𝜋(𝐺0(𝑥0),𝐺0(𝑥1),𝑦0)⊗𝑽id

∘𝒁(e(𝐺0(𝑥1)0,𝑦1),e(𝐺0(𝑥1)0,𝑦2),e(𝐺0(𝑥2)0,𝑦2))

⊗𝑽∘𝒁(e(𝐺0(𝑥0)0,𝑦0),e(𝐺0(𝑥1)0,𝑦0),e(𝐺0(𝑥1)0,𝑦1))

∘𝒁(e(𝐺0(𝑥0)0,𝑦0),e(𝐺0(𝑥1)0,𝑦1),e(𝐺0(𝑥2)0,𝑦2))

By shuffling the compositions, we get another composite equal to the previous
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one,

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝒀(𝑦1, 𝑦2)
⊗𝑽 Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom[𝒀,𝒁](𝐺0(𝑥1), 𝐺0(𝑥2)) ⊗𝑽 Hom𝒁(e(𝐺0(𝑥1)0, 𝑦1), e(𝐺0(𝑥1)0, 𝑦2))
⊗𝑽 Hom[𝒀,𝒁](𝐺0(𝑥0), 𝐺0(𝑥1)) ⊗𝑽 Hom𝒁(e(𝐺0(𝑥1)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦1))

Hom𝒁(e(𝐺0(𝑥1)0, 𝑦2), e(𝐺0(𝑥2)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥1)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦0))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥2)0, 𝑦2))

𝐺1(𝑥1,𝑥2)⊗𝑽e(𝐺0(𝑥1)1,(𝑦1,𝑦2))
⊗𝑽𝐺1(𝑥0,𝑥1)⊗𝑽e(𝐺0(𝑥1)1,(𝑦0,𝑦1))

𝜋(𝐺0(𝑥1),𝐺0(𝑥2),𝑦2)⊗𝑽𝜋(𝐺0(𝑥0),𝐺0(𝑥1),𝑦0)
⊗𝑽∘𝒁(e(𝐺0(𝑥1)0,𝑦0),e(𝐺0(𝑥1)0,𝑦1),e(𝐺0(𝑥1)0,𝑦2))

∘𝒁(e(𝐺0(𝑥0)0,𝑦0),e(𝐺0(𝑥1)0,𝑦0),e(𝐺0(𝑥1)0,𝑦2),e(𝐺0(𝑥2)0,𝑦2))

which, by functoriality of 𝐺, is equal to

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝒀(𝑦1, 𝑦2)
⊗𝑽 Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom[𝒀,𝒁](𝐺0(𝑥1), 𝐺0(𝑥2)) ⊗𝑽 Hom𝒀(𝑦0, 𝑦2)
⊗𝑽 Hom[𝒀,𝒁](𝐺0(𝑥0), 𝐺0(𝑥1))

Hom𝒁(e(𝐺0(𝑥1)0, 𝑦2), e(𝐺0(𝑥2)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥1)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥1)0, 𝑦0))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥2)0, 𝑦2))

𝐺1(𝑥1,𝑥2)⊗𝑽∘𝒀(𝑦0,𝑦1,𝑦2)⊗𝑽𝐺1(𝑥0,𝑥1)

𝜋(𝐺0(𝑥1),𝐺0(𝑥2),𝑦2)⊗𝑽e(𝐺0(𝑥1)1,(𝑦0,𝑦2))
⊗𝑽𝜋(𝐺0(𝑥0),𝐺0(𝑥1),𝑦0)

∘𝒁(e(𝐺0(𝑥0)0,𝑦0),e(𝐺0(𝑥1)0,𝑦0),e(𝐺0(𝑥1)0,𝑦2),e(𝐺0(𝑥2)0,𝑦2))
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which, by extranaturality of 𝜋, is equal to

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝒀(𝑦1, 𝑦2)
⊗𝑽 Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom[𝒀,𝒁](𝐺0(𝑥1), 𝐺0(𝑥2))
⊗𝑽 Hom[𝒀,𝒁](𝐺0(𝑥0), 𝐺0(𝑥1))

⊗𝑽 Hom𝒀(𝑦0, 𝑦2)

Hom𝒁(e(𝐺0(𝑥1)0, 𝑦2), e(𝐺0(𝑥2)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦2), e(𝐺0(𝑥1)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥0)0, 𝑦2))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥2)0, 𝑦2)).

𝐺1(𝑥1,𝑥2)⊗𝑽𝐺1(𝑥0,𝑥1)⊗𝑽∘𝒀(𝑦0,𝑦1,𝑦2)

𝜋(𝐺0(𝑥1),𝐺0(𝑥2),𝑦2)⊗𝑽𝜋(𝐺0(𝑥0),𝐺0(𝑥1),𝑦2)
⊗𝑽e(𝐺0(𝑥0)1,(𝑦0,𝑦2))

∘𝒁(e(𝐺0(𝑥0)0,𝑦0),e(𝐺0(𝑥0)0,𝑦2),e(𝐺0(𝑥1)0,𝑦2),e(𝐺0(𝑥2)0,𝑦2))

By definition of composition in [𝒀, 𝒁], and again by functoriality of 𝐺, the
previous composite is equal to

Hom𝑿(𝑥1, 𝑥2) ⊗𝑽 Hom𝒀(𝑦1, 𝑦2)
⊗𝑽 Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom𝑿(𝑥0, 𝑥2) ⊗𝑽 Hom𝒀(𝑦0, 𝑦2)

Hom[𝒀,𝒁](𝐺0(𝑥0), 𝐺0(𝑥2)) ⊗𝑽 Hom𝒀(𝑦0, 𝑦2)

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦2), e(𝐺0(𝑥2)0, 𝑦2))
⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥0)0, 𝑦2))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦0), e(𝐺0(𝑥2)0, 𝑦2))

∘𝑿(𝑥0,𝑥1,𝑥2)⊗𝑽∘𝒀(𝑦0,𝑦1,𝑦2)

𝐺1(𝑥0,𝑥2)⊗𝑽Hom𝒀(𝑦0,𝑦2)

𝜋(𝐺0(𝑥0),𝐺0(𝑥2),𝑦2)⊗𝑽e(𝐺0(𝑥0)1,(𝑦0,𝑦2))

∘𝒁(e(𝐺0(𝑥0)0,𝑦0),e(𝐺0(𝑥0)0,𝑦2),e(𝐺0(𝑥2)0,𝑦2))
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which is equal to

Hom
𝑿⊗𝑽Catℰ𝒀

((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ⊗𝑽 Hom
𝑿⊗𝑽Catℰ𝒀

((𝑥0, 𝑦0), (𝑥1, 𝑦1))

Hom
𝑿⊗𝑽Catℰ𝒀

((𝑥0, 𝑦0), (𝑥2, 𝑦2))

Hom𝒁(𝐺̂0(𝑥0, 𝑦0), 𝐺̂0(𝑥2, 𝑦2))

∘
𝑿⊗𝑽Catℰ𝒀

((𝑥0,𝑦0),(𝑥1,𝑦1),(𝑥2,𝑦2))

𝐺̂1((𝑥0,𝑦0),(𝑥2,𝑦2))

thus showing that 𝐺̂ is functorial.
The final and most fundamental part of the argument is showing that the

two constructions yield a bijection. That is the content of the next proposition.

Proposition 3.7.2. The constructions ̂(‐) and ̄(‐) are mutually inverse.

Proof. Let’s prove that ̂̄𝐹 = 𝐹. On the object component, we simply have the
following chain of equalities,

𝑥∶ 𝑋, 𝑦∶ 𝑌 ⊢ ̂̄𝐹0(𝑥, 𝑦) = e( ̄𝐹0(𝑥)0, 𝑦) = 𝐹0(𝑥, 𝑦)∶ 𝑍.

On the morphism component, in context 𝑥0, 𝑥1 ∶ 𝑋, 𝑦0, 𝑦1 ∶ 𝑌, we have by defini-
tion of ̂̄𝐹 that ̂̄𝐹1((𝑥0, 𝑦0), (𝑥1, 𝑦1)) is

Hom
𝑿⊗𝑽Catℰ𝒀

((𝑥0, 𝑦0), (𝑥1, 𝑦1)) = Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom[𝒀,𝒁]( ̄𝐹0(𝑥0), ̄𝐹0(𝑥1)) ⊗𝑽 Hom𝒁(e( ̄𝐹0(𝑥0)0, 𝑦0), e( ̄𝐹0(𝑥0)0, 𝑦1))

Hom𝒁(e( ̄𝐹0(𝑥0)0, 𝑦1), e( ̄𝐹0(𝑥1)0, 𝑦1)) ⊗𝑽 Hom𝒁(e( ̄𝐹0(𝑥0)0, 𝑦0), e( ̄𝐹0(𝑥0)0, 𝑦1))

Hom𝒁(e( ̄𝐹0(𝑥0)0, 𝑦0), e( ̄𝐹0(𝑥1)0, 𝑦1)) = Hom𝒁( ̂̄𝐹0(𝑥0, 𝑦0), ̂̄𝐹0(𝑥1, 𝑦1))

𝐹̄1(𝑥0,𝑥1)⊗𝑽e(𝐹̄0(𝑥0)1,(𝑦0,𝑦1))

𝜋(𝐹̄0(𝑥0),𝐹̄0(𝑥1),𝑦1)⊗𝑽id

∘𝒁(e(𝐹̄0(𝑥0)0,𝑦0),e(𝐹̄0(𝑥0)0,𝑦1),e(𝐹̄0(𝑥1)0,𝑦1))
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which, by definition of ̄𝐹1, and by definition of ̄𝐹0(𝑥0)1, is equal to

Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦1, 𝑦1) ⊗𝑽 Hom𝑿(𝑥0, 𝑥0) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom𝒁(𝐹0(𝑥0, 𝑦1), 𝐹0(𝑥1, 𝑦1)) ⊗𝑽 Hom𝒁(𝐹0(𝑥0, 𝑦0), 𝐹0(𝑥0, 𝑦1))

Hom𝒁(𝐹0(𝑥0, 𝑦0), 𝐹0(𝑥1𝑦1)).

id⊗𝑽id𝒀(𝑦1)⊗𝑽id𝑿(𝑥0)⊗𝑽id

𝐹1((𝑥0,𝑦1),(𝑥1,𝑦1))⊗𝑽𝐹1((𝑥0,𝑦0),(𝑥0,𝑦1))

∘𝒁(𝐹0(𝑥0,𝑦0),𝐹0(𝑥0,𝑦1),𝐹0(𝑥1,𝑦1))

By functoriality, swap the application of the functor 𝐹 and the composition;
then, apply the unit law. This way, it remains only the application of 𝐹1.

Let’s prove that ̄𝐺̂ = 𝐺. On the object component we have, in context 𝑥∶ 𝑋,
the chain of equalities

̄𝐺̂0(𝑥)0 = 𝜆𝑦∶ 𝑌. 𝐺̂0(𝑥, 𝑦) = 𝜆𝑦∶ 𝑌. e(𝐺0(𝑥), 𝑦) = 𝐺0(𝑥)∶ 𝑍

whereas, in context 𝑥∶ 𝑋, 𝑦0, 𝑦1 ∶ 𝑌, we have that eℰ( ̄𝐺̂0(𝑥)1, (𝑦0, 𝑦1)) is the
composite arrow

Hom𝒀(𝑦0, 𝑦1)

Hom𝑿(𝑥, 𝑥) ⊗𝑽 Hom𝒀(𝑦0, 𝑦1)

Hom[𝒀,𝒁](𝐺0(𝑥), 𝐺0(𝑥)) ⊗𝑽 Hom𝒁(e(𝐺0(𝑥)0, 𝑦0), e(𝐺0(𝑥)0, 𝑦1))

Hom𝒁(e(𝐺0(𝑥)0, 𝑦1), e(𝐺0(𝑥)0, 𝑦1)) ⊗𝑽 Hom𝒁(e(𝐺0(𝑥)0, 𝑦0), e(𝐺0(𝑥)0, 𝑦1))

Hom𝒁(e(𝐺0(𝑥)0, 𝑦0), e(𝐺0(𝑥)0, 𝑦1)).

id𝑿(𝑥)⊗𝑽id

𝐺1⊗𝑽e(𝐺0(𝑥)1,(𝑦0,𝑦1))

𝜋(𝐺0(𝑥),𝐺0(𝑥),𝑦1)⊗𝑽id

∘𝒁(e(𝐺0(𝑥)0,𝑦0),e(𝐺0(𝑥)0,𝑦1),e(𝐺0(𝑥)0,𝑦1))

But 𝜋(𝑦1) ∘𝑽 𝐺1 ∘𝑽 id𝑿(𝑥) is equal to id𝒁(e(𝐺0(𝑥)0, 𝑦0)), thus the above
composite arrow is equal to 𝐺0(𝑥)1 applied to (𝑦0, 𝑦1). On the morphism
component, in context 𝑥0, 𝑥1 ∶ 𝑋, 𝑦 ∶ 𝑌, the 𝑦-component of ̄𝐺̂1(𝑥0, 𝑥1), that is,
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the composition 𝜋( ̄𝐺̂0(𝑥0), ̄𝐺̂0(𝑥1), 𝑦) ̄𝐺̂1(𝑥0, 𝑥1), is:

Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥0, 𝑥1) ⊗𝑽 Hom𝒀(𝑦, 𝑦)

Hom[𝒀,𝒁](𝐺0(𝑥0), 𝐺0(𝑥1)) ⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦), e(𝐺0(𝑥0)0, 𝑦))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦), e(𝐺0(𝑥1)0, 𝑦)) ⊗𝑽 Hom𝒁(e(𝐺0(𝑥0)0, 𝑦), e(𝐺0(𝑥0)0, 𝑦))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦), e(𝐺0(𝑥1)0, 𝑦))

Hom𝑿(𝑥0,𝑥1)⊗𝑽id𝒀(𝑦)

𝐺1(𝑥0,𝑥1)⊗𝑽𝐺0(𝑥0)1(𝑦,𝑦)

𝜋(𝐺0(𝑥0),𝐺0(𝑥1),𝑦)⊗𝑽Hom𝒁(… )

∘𝒁(e(𝐺0(𝑥0)0,𝑦),e(𝐺0(𝑥0)0,𝑦),e(𝐺0(𝑥1)0,𝑦))

which, by the extranaturality of 𝜋, is

Hom𝑿(𝑥0, 𝑥1)

Hom[𝒀,𝒁](𝐺0(𝑥0), 𝐺0(𝑥1))

Hom𝒁(e(𝐺0(𝑥0)0, 𝑦), e(𝐺0(𝑥1)0, 𝑦))

𝐺1(𝑥0,𝑥1)

𝜋(𝐺0(𝑥0),𝐺0(𝑥1),𝑦)

that is, the 𝑦-component of 𝐺1(𝑥0, 𝑥1).

Now at last we have proved the following.

Theorem 3.7.3. The category 𝑽Catℰ is monoidal closed.

3.8. Yoneda Lemma for Internal Enriched
Categories

No theory of enriched categories can do without a suitable form of the Yoneda
lemma. The major concern in our context is not to prove the result, as the
proof just works out by means of the usual arguments, but rather to correctly
express the statement in an internal way. Indeed, while there is a tradition to
view the Yoneda lemma for internal categories in terms of indexed categories,
the point of the dissertation is that internal enrichment avoids all that.
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In this section, let’s work under the hypothesis that ℰ is locally cartesian
closed, 𝑽 is symmetric, monoidal closed (and thus 𝑽-enriched itself) and it has
all ends (so that 𝑽Catℰ is monoidal closed, by theorem 3.7.3).

We begin by defining the Yoneda embedding.

Definition 3.8.1 (Yoneda embedding). Let 𝑿 be a 𝑽-category. The Yoneda
embedding for 𝑿 is the 𝑽-enriched functor Y ∶ 𝑿 → [𝑿𝐨𝐩, 𝑽] which is the
exponential transpose in 𝑽Catℰ of the hom-functor Hom𝑿 ∶ 𝑿𝐨𝐩 ⊗ 𝑿 → 𝑽.

We now give a version of the Yoneda Lemma for 𝑽-enriched categories.
Notice how the statement is different from its usual form, as it has to capture
the fundamentally internal nature of the result.

Theorem 3.8.2 (Yoneda Lemma). The functor

𝑿𝐨𝐩 ⊗ [𝑿𝐨𝐩, 𝑽]
Y𝐨𝐩⊗[𝑿𝐨𝐩,𝑽]
−−−−−−−−−→ [𝑿𝐨𝐩, 𝑽]𝐨𝐩 ⊗ [𝑿𝐨𝐩, 𝑽]

Hom[𝑿𝐨𝐩,𝑽]−−−−−−−−→ 𝑽

is naturally isomorphic to the evaluation functor.

Proof. Define the natural transformation

𝑥∶ 𝑋, 𝐹∶ [𝑿𝐨𝐩, 𝑽] ⊢ y𝑥,𝐹 ∶ e(𝐹0, 𝑥) → Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥), 𝐹)∶ 𝑉1

on the projections

𝑥, 𝑥′ ∶ 𝑋, 𝐹∶ [𝑿𝐨𝐩, 𝑽] ⊢ 𝜋𝑥′y𝑥,𝐹 ∶ e(𝐹0, 𝑥) → Hom𝑽(Hom𝑿(𝑥′, 𝑥), e(𝐹0, 𝑥′))∶ 𝑉1

as the exponential transpose of e(𝐹1, (𝑥, 𝑥′)), meaning that

e𝑽 ∘𝑽 (𝜋𝑥′y𝑥,𝐹 ⊗ id𝑽(Hom𝑿(𝑥′, 𝑥))) = e𝑽 ∘𝑽 (e(𝐹1, (𝑥, 𝑥′)) ⊗ id𝑽(e(𝐹0, 𝑥))).

Define the natural transformation y−1 as

𝑥∶ 𝑋, 𝐹∶ [𝑿𝐨𝐩, 𝑽] ⊢ y−1
𝑥,𝐹 ∶ Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥), 𝐹) → e(𝐹0, 𝑥)

≔

Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥), 𝐹)

Hom𝑽(Hom𝑿(𝑥, 𝑥), e(𝐹0, 𝑥)) ⊗ Hom𝑿(𝑥, 𝑥)

e(𝐹0, 𝑥)

𝜋𝑥⊗id𝑿(𝑥)

e𝑽

∶ 𝑉1 (3.8)
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3. Internal Enriched Categories

Let’s prove that y−1y = id. In context 𝑥∶ 𝑋, 𝐹∶ [𝑿𝐨𝐩, 𝑽], we have by defini-
tion that y−1

𝑥,𝐹y𝑥,𝐹 is

e(𝐹0, 𝑥)

Hom𝑽(Hom𝑿(𝑥, 𝑥), e(𝐹0, 𝑥)) ⊗ Hom𝑿(𝑥, 𝑥)

e(𝐹0, 𝑥)

𝜋𝑥′y𝑥,𝐹⊗id𝑿(𝑥)

e𝑽

which, again expanding the definition, is

e(𝐹0, 𝑥)

e(𝐹0, 𝑥) ⊗ Hom𝑿(𝑥, 𝑥)

e(𝐹0, 𝑥) ⊗ Hom𝑽(e(𝐹0, 𝑥), e(𝐹0, 𝑥))

e(𝐹0, 𝑥)

e(𝐹0,𝑥)⊗id𝑿(𝑥)

e(𝐹0,𝑥)⊗e(𝐹1,(𝑥,𝑥))

e𝑽

which, by functoriality of 𝐹1, is

e(𝐹0, 𝑥)

e(𝐹0, 𝑥) ⊗ Hom𝑽(e(𝐹0, 𝑥), e(𝐹0, 𝑥))

e(𝐹0, 𝑥)

e(𝐹0,𝑥)⊗id𝑽(e(𝐹0,𝑥))

e𝑽

and that amounts to id𝑽(e(𝐹0, 𝑥)).
Let’s prove that yy−1 = id. In context 𝑥, 𝑥′ ∶ 𝑋, 𝐹∶ [𝑿𝐨𝐩, 𝑽], the exponential
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transpose of 𝜋𝑥′y𝑥,𝐹y−1
𝑥,𝐹 is

Hom𝑿(𝑥′, 𝑥) ⊗ Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥), 𝐹)

Hom𝑿(𝑥′, 𝑥) ⊗ Hom𝑽(Hom𝑿(𝑥, 𝑥), e(𝐹0, 𝑥)) ⊗ Hom𝑿(𝑥, 𝑥)

Hom𝑿(𝑥′, 𝑥) ⊗ e(𝐹0, 𝑥)

Hom𝑿(𝑥′, 𝑥) ⊗ Hom𝑽(Hom𝑿(𝑥′, 𝑥), e(𝐹0, 𝑥′))

e(𝐹0, 𝑥′)

Hom𝑿(𝑥′,𝑥)⊗𝜋𝑥⊗id𝑿(𝑥)

Hom𝑿(𝑥′,𝑥)⊗e𝑽

Hom𝑿(𝑥′,𝑥)⊗𝜋𝑥′y𝑥,𝐹

e𝑽

.

By definition of y, the above morphism is equal to

Hom𝑿(𝑥′, 𝑥) ⊗ Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥), 𝐹)

Hom𝑿(𝑥′, 𝑥) ⊗ Hom𝑽(Hom𝑿(𝑥, 𝑥), e(𝐹0, 𝑥)) ⊗ Hom𝑿(𝑥, 𝑥)

Hom𝑽(e(𝐹0, 𝑥), e(𝐹0, 𝑥′)) ⊗ e(𝐹0, 𝑥)

e(𝐹0, 𝑥′)

Hom𝑿(𝑥′,𝑥)⊗𝜋𝑥⊗id𝑿(𝑥)

e(𝐹1,(𝑥,𝑥′))⊗e𝑽

e𝑽

which, by naturality, is

Hom𝑿(𝑥′, 𝑥) ⊗ Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥), 𝐹)

Hom𝑿(𝑥, 𝑥) ⊗ Hom𝑽(Hom𝑿(𝑥, 𝑥), Hom𝑿(𝑥′, 𝑥)) ⊗ Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥), 𝐹)

Hom𝑿(𝑥′, 𝑥) ⊗ Hom𝑽(Hom𝑿(𝑥′, 𝑥), e(𝐹0, 𝑥′))

e(𝐹0, 𝑥′)

id𝑿(𝑥)⊗e(e(Y0,𝑥)1,(𝑥,𝑥′))⊗Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥),𝐹)

e𝑽⊗𝜋𝑥′

e𝑽

.
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Then, the above composite arrow computes to

Hom𝑿(𝑥′, 𝑥) ⊗ Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥), 𝐹)

Hom𝑿(𝑥′, 𝑥) ⊗ Hom𝑽(Hom𝑿(𝑥′, 𝑥), e(𝐹0, 𝑥′))

e(𝐹0, 𝑥′)

Hom𝑿(𝑥′,𝑥)⊗𝜋𝑥′

e𝑽

which is the exponential transpose of 𝜋𝑥′.

There are some immediate consequences of the Yoneda Lemma. For a start,
that the Yoneda embedding is a full and faithful functor.

Corollary 3.8.3. Let 𝑿 be a 𝑽-enriched category. Then, in context 𝑥0, 𝑥1 ∶ 𝑋,

Y1(𝑥0, 𝑥1)∶ Hom𝑿(𝑥0, 𝑥1) → Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥0), Y0(𝑥1))

is an isomorphism.

Proof. By Yoneda lemma (theorem 3.8.2)

Hom[𝑿𝐨𝐩,𝑽](Y0(𝑥0), Y0(𝑥1)) ≅ Y0(𝑥1)(𝑥0) = Hom𝑿(𝑥0, 𝑥1).

It follows that also post-composition by the Yoneda embedding is a full and
faithful functor.

Corollary 3.8.4. Let 𝑿 be a 𝑽-enriched category and 𝐹, 𝐺∶ 𝒀 → 𝑿 be 𝑽-
enriched functors. There is a natural bijection between natural transformations
Y𝐹 → Y𝐺 and natural transformations 𝐹 → 𝐺, which internalizes to an
isomorphism

Hom[𝒀,𝑿](𝐹, 𝐺) ≅ Hom[𝒀,[𝑿𝐨𝐩,𝑽]](Y𝐹, Y𝐺).

Proof. Any natural transformation Y𝐹 → Y𝐺 yields one 𝐹 → 𝐺 by composing
each component with the isomorphism of corollary 3.8.3,

𝑦∶ 𝑌 ⊢ Hom[𝑿𝐨𝐩,𝑽](Y0(𝐹0(𝑦)), Y0(𝐺0(𝑦))) ≅ Hom𝑿(𝐹0(𝑦), 𝐺0(𝑦)),

and vice-versa.

In particular, that applies to natural isomorphisms, which is a fact we will
need later on.

Corollary 3.8.5. Let 𝐹, 𝐺∶ 𝒀 → 𝑿 be 𝑽-enriched functors. If there is a natural
isomorphism 𝜙∶ Y𝐹 ≅ Y𝐺, then there is a natural isomorphism 𝜓∶ 𝐹 ≅ 𝐺 such
that Y𝜓 = 𝜙.
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Finally, we get the classic density result characterizing presheaves as colim-
its of representable presheaves. Proposition 3.5.9 reminds us that, for coends
to exist, in addition to the hypothesis already made at the beginning of the
section the enriching category also has to have coequalizers.

Corollary 3.8.6 (density of presheaves). Assume 𝑽 has coequalizers and let 𝑿
be a 𝑽-category. Then, in context 𝐹∶ [𝑿𝐨𝐩, 𝑽], 𝑥 ∶ 𝑋, there is a natural isomor-
phism

e(𝐹0, 𝑥) ≅ ∫
𝑥′ ∶ 𝑋

Hom𝑿(𝑥, 𝑥′) ⊗𝑽 e(𝐹0, 𝑥′). (3.9)

Proof. Adding 𝑣∶ 𝑉0 to the context, we have

Hom𝑽( ∫
𝑥′ ∶ 𝑋

Hom𝑿(𝑥, 𝑥′) ⊗𝑽 e(𝐹0, 𝑥′), 𝑣)
≅ ∫

𝑥′ ∶ 𝑋
Hom𝑽(Hom𝑿(𝑥, 𝑥′) ⊗𝑽 e(𝐹0, 𝑥′), 𝑣)

≅ ∫
𝑥′ ∶ 𝑋

Hom𝑽(Hom𝑿(𝑥, 𝑥′), Hom𝑽(e(𝐹0, 𝑥′), 𝑣))
= Hom[𝑿𝐨𝐩,𝑽](Hom𝑿(𝑥, ‐), Hom𝑽(e(𝐹0, ‐), 𝑣))
≅ Hom𝑽(e(𝐹0, 𝑥), 𝑣)

where the last step is an application of theorem 3.8.2. But then, by corol-
lary 3.8.5, we obtain the isomorphism (3.9).
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In this chapter, we develop the theory of weighted (co)limits and (co)complete-
ness for internal enriched categories.

With regards to limits and completeness, the notion of size plays an im-
portant role. Particularly, one should be clear about what is the size of the
diagrams in respect to which a category is said to be complete. In standard
category theory, we generally mean that a category is complete with respect
to small diagrams, even when such a category is large. One needs to look no
further then to the category of sets to find an instance of this phenomenon.
That, indeed, is a large category which we say complete, meaning with respect
to small diagrams, while it is certainly not so with respect to large diagrams.
For example, the product of all non-empty sets is not a set, but a proper class.

It is also worth noting that all small complete categories are, essentially,
complete lattices. These feature a most remarkable behavior. For example, for
lattices, completeness and cocompleteness are equivalent. That is just another
way to look at the classic result for which a lattice has all meets if and only
if it has all joins. Moreover, the adjoint functor theorem for complete lattices
does away with size conditions, as those are trivially satisfied.

It is essential to note that the notion of internal enriched category is fun-
damentally “small” with respect to the given environment, in that underlying
objects are objects of the ambient category. That is in sharp contrast with
the standard theory of enriched categories, which are allowed to be “large”
(as in having a proper class of objects). This consideration suggests that in-
ternal enriched categories should be treated as analogous to small enriched
categories over a small monoidal enriching category. Moreover, for those that
are complete, we should also expect to get the same kind of results holding for
small complete categories.

In the internal setting there are non-trivial (as in other than lattices) ex-
amples of complete small categories. A most notable example is the internal
category of modest sets in the category of assemblies (Hyland 1988). Such
category is not only complete, but it also has a symmetric monoidal product
(the categorical product) with respect to which it is closed (that is to say, it
is a cartesian closed category). This provides a setting featuring all the good
properties we need, thus guaranteeing that our theory of internal enriched
categories is well-founded.

For the extent of this chapter, we shall assume that ℰ is locally cartesian
closed, and 𝑽 is a symmetric monoidal closed category in ℰ with all ends.
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4.1. Complete Categories
In this section we define the notion of internal weighted limits, following that
for internal limits (see definition 2.2.1). Then, we derive a few standard results
which will be instrumental in the following sections.

We begin by defining internal weighted limits.

Definition 4.1.1 (weighted limits for 𝑽-categories). Let 𝑿 and 𝑲 be 𝑽-enriched
categories and 𝐹∶ 𝑲 → 𝑿 and 𝑊∶ 𝑲 → 𝑽 be 𝑽-enriched functors. A weighted
limit over 𝐹 with respect to the weight 𝑊 is given by a 𝑽-enriched functor
{𝑊; 𝐹}∶ 𝕀𝑽Catℰ

→ 𝑿 and a 𝑽-enriched natural isomorphism

𝜙∶ Hom𝑿(‐, {𝑊; 𝐹}) ≅−→ Hom[𝑲,𝑽](𝑊, Hom𝑿(‐, 𝐹))∶ 𝑿𝐨𝐩 → 𝑽.

Notice that, unlike the notions of internal limit and end, that of internal
weighted limit is automatically stable under pullback, being defined through
a natural isomorphism between homsets. For completeness, though, we have
to enforce stability again.

Definition 4.1.2 (completeness for 𝑽-categories). We say 𝑿 is complete if, for
every 𝐼 object of ℰ, 𝐼∗𝑽-enriched category 𝑲, 𝐼∗𝑽-enriched functors 𝐹∶ 𝑲 → 𝐼∗𝑿
and 𝑊∶ 𝑲 → 𝐼∗𝑽, the limit of 𝐹 with respect to the weight 𝑊 exists.

By duality, we have the notions of colimits and cocompleteness as well.

Definition 4.1.3 (weighted colimits for 𝑽-categories). Let 𝑿 and 𝑲 be 𝑽-
enriched categories and 𝐺∶ 𝑲 → 𝑿 and 𝑊∶ 𝑲𝐨𝐩 → 𝑽 be 𝑽-enriched functors. A
weighted colimit over 𝐺 with respect to the weight 𝑊 is given by a 𝑽-enriched
functor 𝐹 ⋅ 𝑊∶ 𝕀𝑽Catℰ

→ 𝑿 and a 𝑽-enriched natural isomorphism

𝜙∶ Hom𝑿(𝐺 ⋅ 𝑊, ‐) ≅−→ Hom[𝑲𝐨𝐩,𝑽](𝑊, Hom𝑿(𝐺, ‐))∶ 𝑿 → 𝑽.

Definition 4.1.4 (cocompleteness for 𝑽-categories). We say 𝑿 is cocomplete
if, for every 𝐼 object of ℰ, 𝐼∗𝑽-enriched category 𝑲, 𝐼∗𝑽-enriched functors
𝐺∶ 𝑲 → 𝐼∗𝑿 and 𝑊∶ 𝑲𝐨𝐩 → 𝐼∗𝑽, the colimit of 𝐺 with respect to the weight 𝑊
exists.

As a sanity check, we make sure that the previous definitions of limit and
colimit yield a pair of dual notions.
Remark 4.1.5. Colimits in a 𝑽-enriched category 𝑿 are, equivalently, limits in
𝑿𝐨𝐩. Indeed, let 𝐹 ⋅ 𝑊∶ 𝕀𝑽Catℰ

→ 𝑿 be the colimit of 𝐺∶ 𝑲 → 𝑿 with respect to
the weight 𝑊∶ 𝑲𝐨𝐩 → 𝑽, and Hom𝑿(𝐺 ⋅ 𝑊, ‐) ≅ Hom[𝑲𝐨𝐩,𝑽](𝑊, Hom𝑿(𝐺, ‐))
the associated isomorphism. That can, equivalently, be regarded as an isomor-
phism

Hom𝑿𝐨𝐩(‐, (𝐺 ⋅ 𝑊)𝐨𝐩) ≅ Hom[𝑲𝐨𝐩,𝑽](𝑊, Hom𝑿𝐨𝐩(‐, 𝐺𝐨𝐩)),
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showing that (𝐺 ⋅ 𝑊)𝐨𝐩 ∶ 𝕀𝑽Catℰ
→ 𝑿𝐨𝐩 (which corresponds to the same point

of 𝑋 as 𝐺 ⋅ 𝑊 does) is the limit of 𝐺𝐨𝐩 ∶ 𝑲𝐨𝐩 → 𝑿𝐨𝐩 with respect to the weight
𝑊.

Limits are often thought of in terms of their universal property, which we
can indeed derive from the definition.

Remark 4.1.6. Let 𝐹∶ 𝑲 → 𝑿 and 𝑊∶ 𝑲 → 𝑽 be 𝑽-enriched functors. Then, in
context 𝑥∶ 𝑋, by the Yoneda Lemma (theorem 3.8.2), we have an isomorphism

Hom[𝑿𝐨𝐩,𝑽](Y(𝑥), Hom[𝑲,𝑽](𝑊, Hom𝑿(‐, 𝐹))) ≅ Hom[𝑲,𝑽](𝑊, Hom𝑿(𝑥, 𝐹)).

The previous remark, applied to the definition of weighted limit, suggests
the following proposition.

Proposition 4.1.7. Let 𝐹∶ 𝑲 → 𝑿 and 𝑊∶ 𝑲 → 𝑽 be 𝑽-enriched functors. If
the weighted limit {𝑊; 𝐹} exists, then by remark 4.1.6 there is an associated 𝑽-
enriched natural transformation

𝜋∶ 𝑊 → Hom𝑿({𝑊; 𝐹}, 𝐹)∶ 𝑲 → 𝑽

which is called the universal cone for the limit {𝑊; 𝐹}. Then, given another
𝑽-enriched functor 𝐿∶ 𝕀𝑽Catℰ

→ 𝑿 and another 𝑽-enriched natural transfor-
mation 𝑝∶ 𝑊 → Hom𝑿(𝐿, 𝐹), there is a unique ℎ∶ 𝐿 → {𝑊; 𝐹} such that
Hom𝑿(ℎ, 𝐹)𝜋 = 𝑝.

Proof. The natural transformation 𝑝 has an associated 𝑽-enriched natural
transformation

𝛼∶ Hom𝑿(‐, 𝐿) → Hom[𝑲,𝑽](𝑊, Hom𝑿(‐, 𝐹))∶ 𝑿𝐨𝐩 → 𝑽.

Then, ℎ is given by
𝕀

Hom𝑿(𝐿, 𝐿)

Hom[𝑲,𝑽](𝑊, Hom𝑿(𝐿, 𝐹))

Hom𝑿(𝐿, {𝑊; 𝐹}).

id𝑿(𝐿)

𝛼(𝐿)

𝜙−1(𝐿)
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Notice that 𝛼(𝐿)id𝑿(𝐿) is the exponential transpose of 𝑝, and that

𝑊 ⊗ Hom[𝑲,𝑽](𝑊, Hom𝑿(𝐿, 𝐹))

Hom𝑿({𝑊; 𝐹}, 𝐹) ⊗ Hom𝑿(𝐿, {𝑊; 𝐹})

Hom𝑿(𝐿, 𝐹)

𝜋⊗𝜙−1(𝐿)

∘

is the evaluation on 𝑊. Then, Hom𝑿(ℎ, 𝐹)𝜋 = 𝑝.

Remark 4.1.8. It is not generally true that the converse of proposition 4.1.7
holds, that is, that the 𝑽-enriched natural transformation associated to a
universal cone is necessarily an isomorphism, and it thus yields a weighted
limit. The same issue arises in standard enriched category theory and, in
that context, the classic approach involves the notion of conservative category
(Kelly 1982). It is likely that the same could be done in our context, but in this
dissertation we shall not pursue this topic any further.

As an immediate consequence of the limit’s universal property, we have their
uniqueness property.

Proposition 4.1.9 (uniqueness of weighted limits). A weighted limit, if it
exists, is unique up to isomorphism.

Using proposition 2.3.4 as an analogy, we would like to have a choice-of-
limits functor which, in a suitable sense, yields limits for internal functors
relative to internal weights.

Notation 4.1.10. We shall now define a functor {‐; ‐} ∶ [𝑲, 𝑽]𝐨𝐩 ⊗ [𝑲, 𝑿] → 𝑿
for which it will be convenient to use an infix notation. We shall thus write
{𝑊; 𝐹} for ({‐; ‐})0(𝑊, 𝐹) and {𝑊0, 𝑊1; 𝐹0, 𝐹1} for ({‐; ‐})1((𝑊0, 𝐹0), (𝑊1, 𝐹1)).

Proposition 4.1.11 (weighted limits functor). If 𝑿 is a complete 𝑽-enriched
category, then there is a 𝑽-enriched functor

{‐; ‐} ∶ [𝑲, 𝑽]𝐨𝐩 ⊗ [𝑲, 𝑿] → 𝑿

inducing a 𝑽-enriched isomorphism

Hom𝑿(𝑥, {𝑊; 𝐹}) ≅ Hom[𝑲,𝑽](𝑊, Hom𝑿(𝑥, 𝐹)) (4.1)

natural in 𝑥∶ 𝑋, 𝑊∶ [𝑲, 𝑽] and 𝐹∶ [𝑲, 𝑿].
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Proof. Consider an indexing object 𝐼 = Fun(𝑲, 𝑽) × Fun(𝑲, 𝑿). In context
𝑊∶ [𝑲, 𝑽], 𝐹∶ [𝑲, 𝑿], 𝑘, 𝑘0, 𝑘1 ∶ 𝐾, let 𝑊̄ ∶ 𝐼∗𝑲 → 𝐼∗𝑽 be the 𝐼∗𝑽-enriched func-
tor defined by 𝑊̄0(𝑊, 𝐹, 𝑘) ≔ e(𝑊0, 𝑘) and 𝑊̄1(𝑊, 𝐹, 𝑘0, 𝑘1) ≔ e(𝑊1, (𝑘0, 𝑘1)).
Let ̄𝐹 ∶ 𝐼∗𝑲 → 𝐼∗𝑿 be the 𝐼∗𝑽-enriched functor defined by ̄𝐹(𝑊, 𝐹, 𝑘) ≔
e(𝐹0, 𝑘) and ̄𝐹1(𝑊, 𝐹, 𝑘0, 𝑘1) ≔ e(𝐹1, (𝑘0, 𝑘1)).

Then, the limit of ̄𝐹 with respect to the weight 𝑊̄ yields an arrow {‐; ‐} ∶ 𝐼 → 𝑋
and a family of 𝑽-enriched natural isomorphisms

𝜙𝑊,𝐹 ∶ Hom𝑿(‐, {𝑊; 𝐹}) → Hom[𝑲,𝑽](𝑊, Hom𝑿(‐, 𝐹))∶ 𝑿𝐨𝐩 → 𝑽

inducing universal cones 𝜋𝑊,𝐹 ∶ 𝑊 → Hom𝑿({𝑊; 𝐹}, 𝐹). Let {𝑊0, 𝑊1; 𝐹0, 𝐹1}
be the arrow

Hom[𝑲,𝑽](𝑊1, 𝑊0) ⊗ Hom[𝑲,𝑿](𝐹0, 𝐹1)

Hom[𝑲,𝑽](𝑊1, Hom𝑿({𝑊0; 𝐹0}, 𝐹0)) ⊗ Hom[𝑲,𝑿](𝐹0, 𝐹1)

Hom[𝑲,𝑽](𝑊1, Hom𝑿({𝑊0; 𝐹0}, 𝐹1))

Hom𝑿({𝑊0; 𝐹0}0, {𝑊1; 𝐹1}0).

Hom[𝑲,𝑽](𝑊1,𝜋𝑊0,𝐹0)⊗Hom[𝑲,𝑿](𝐹0,𝐹1)

∘[𝑲,𝑿]

𝜙−1
𝑊1,𝐹1

({𝑊0;𝐹0})

Then, the isomorphism 4.1 holds point-wise and is natual in 𝑥∶ 𝑋. We have to
show that it is natural in 𝑊∶ [𝑲, 𝑽] and 𝐹∶ [𝑲, 𝑿]. That is, that the diagram

Hom𝑿(𝑥, {𝑊0; 𝐹0})
⊗ Hom[𝑲,𝑿](𝐹0, 𝐹1)
⊗ Hom[𝑲,𝑽](𝑊1, 𝑊0)

Hom[𝑲,𝑽](𝑊0, Hom𝑿(𝑥, 𝐹0))
⊗ Hom[𝑲,𝑿](𝐹0, 𝐹1)

⊗ Hom[𝑲,𝑽](𝑊1, 𝑊0)

Hom𝑿(𝑥, {𝑊0; 𝐹0})
⊗ Hom𝑿({𝑊0; 𝐹0}, {𝑊1; 𝐹1})

Hom𝑿(𝑥, {𝑊1; 𝐹1}) Hom[𝑲,𝑽](𝑊1, Hom𝑿(𝑥, 𝐹1))

𝜙𝑊0,𝐹0(𝑥)⊗…

Hom𝑿(𝑥,{𝑊0;𝐹0})⊗{𝑊0,𝑊1;𝐹0,𝐹1}

∘

∘𝑿(𝑥,{𝑊0;𝐹0},{𝑊1;𝐹1})
𝜙𝑊1,𝐹1(𝑥)
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commutes. But that follows from the fact that

Hom𝑿(𝑥, {𝑊0; 𝐹0}) ⊗ Hom[𝑲,𝑽](𝑊1, Hom𝑿({𝑊0; 𝐹0}, 𝐹1))

Hom𝑿(𝑥, {𝑊0; 𝐹0}) ⊗ Hom𝑿({𝑊0; 𝐹0}, {𝑊1; 𝐹1})

Hom𝑿(𝑥, {𝑊1; 𝐹1})

Hom[𝑲,𝑽](𝑊1, Hom𝑿(𝑥, 𝐹1))

Hom𝑿(𝑥,{𝑊0;𝐹0})⊗𝜙−1
𝑊1,𝐹1

({𝑊0;𝐹0})

∘𝑿(𝑥,{𝑊0;𝐹0},{𝑊1;𝐹1})

𝜙𝑊1,𝐹1(𝑥)

is the composition replacing {𝑊0; 𝐹0} with 𝑥, by the naturality of 𝜙.

Observe that limits and the limit-functor behave consistently with respect
to parameters, in the sense made precise by the following remark.
Remark 4.1.12. Let 𝑿 be a complete category, and 𝐹∶ 𝑲 × 𝑳 → 𝑿 and 𝑊∶ 𝑲 → 𝑽
be 𝑽-enriched functors. Consider the exponential transposes ̂𝐹 ∶ 𝑲 → [𝑳, 𝑿]
and ̄𝐹 ∶ 𝑳 → [𝑲, 𝑿]. Then, the limit {𝑊; ̂𝐹} is a 𝑽-enriched functor 𝕀𝑽Catℰ

→
[𝑳, 𝑿] or, equivalently, a 𝑽-enriched functor 𝑳 → 𝑿. Moreover, we can consider
the composition of ̄𝐹 and the identity of 𝑊 with the limit-functor for 𝑿, and get
a functor {𝑊; ̄𝐹}∶ 𝑳 → 𝑿. Then, {𝑊; ̂𝐹} ≅ {𝑊; ̄𝐹}, indeed, in context 𝐺∶ [𝑳, 𝑿]

Hom[𝑳,𝑿](𝐺, {𝑊; ̂𝐹})
≅ Hom[𝑲,𝑽](𝑊, Hom[𝑳,𝑿](𝐺, ̂𝐹))
= ∫

𝑘∶ 𝐾
∫

𝑙 ∶ 𝐿
Hom𝑽(𝑊0(𝑘), Hom𝑿(e(𝐺0, 𝑙), e( ̂𝐹0(𝑘), 𝑙)))

= ∫
𝑘∶ 𝐾

∫
𝑙 ∶ 𝐿

Hom𝑽(𝑊0(𝑘), Hom𝑿(e(𝐺0, 𝑙), e( ̄𝐹0(𝑙), 𝑘)))

≅ Hom[𝑲,𝑽](𝑊, Hom[𝑳,𝑿](𝐺, ̄𝐹))
≅ Hom[𝑳,𝑿](𝐺, {𝑊; ̄𝐹}).

In particular, in context 𝑙 ∶ 𝐿, we have that {𝑊; ̂𝐹}0(𝑙) ≅ {𝑊; ̄𝐹0(𝑙)}.
The enriching internal category 𝑽 itself has a 𝑽-enrichment when it is

monoidal closed (see proposition 3.1.12). In that case, it is legitimate to ask
whether it is complete as a 𝑽-enriched category. Unintuitively, that does not
(directly) depend on 𝑽 being complete as an internal category, but on its having
all ends (even though that is connected to completeness, see proposition 3.5.8).

Proposition 4.1.13. The category 𝑽 is complete as a 𝑽-enriched category,
and its limits for diagrams of shape 𝑲 are given by the hom of the functor
category [𝑲, 𝑽].
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Proof. All hypothesis are stable under slicing, so we can assume 𝐼 = 𝟙ℰ. Let
𝑲 be a 𝑽-category, and 𝐹, 𝑊∶ 𝑲 → 𝑽 be 𝑽-enriched functors. Then, the limit
is Hom[𝑲,𝑽](𝑊, 𝐹). Indeed, in context 𝑣∶ 𝑉0,

Hom𝑽(𝑣, Hom[𝑲,𝑽](𝑊, 𝐹))
= Hom𝑽(𝑣, ∫

𝑘∶ 𝐾
Hom𝑽(𝑊0(𝑘), 𝐹0(𝑘)))

≅ ∫
𝑘∶ 𝐾

Hom𝑽(𝑣, Hom𝑽(𝑊0(𝑘), 𝐹0(𝑘)))

≅ ∫
𝑘∶ 𝐾

Hom𝑽(𝑊0(𝑘), Hom𝑽(𝑣, 𝐹0(𝑘)))
= Hom[𝑲,𝑽](𝑊, Hom𝑽(𝑣, 𝐹)).

The previous result produces a first example of complete 𝑽-enriched category.
We can produce further examples by means of the following proposition.

Proposition 4.1.14. Let 𝑿 and 𝒀 be 𝑽-enriched categories. If 𝒀 is complete,
then [𝑿, 𝒀] is complete and its weighted limits are computed point-wise.

Proof. All hypothesis are stable under slicing, so we can assume we are slicing
over the terminal object. Moreover, by proposition 4.1.11, there is a 𝑽-enriched
functor {‐; ‐} ∶ [𝑲, 𝑽]𝐨𝐩 ⊗ [𝑲, 𝒀] → 𝒀 yielding weighted limits in 𝒀.

Let 𝑲 be a 𝑽-category, and 𝐹∶ 𝑲 → [𝑿, 𝒀] and 𝑊∶ 𝑲 → 𝑽 be 𝑽-enriched
functors. The limit of 𝐹 with respect to the weight 𝑊 has to be a point of
Fun(𝑿, 𝒀), which is equivalent to a 𝑽-enriched functor 𝑿 → 𝒀. Moreover,
consider the exponential transpose ̄𝐹 ∶ 𝑿 → [𝑲, 𝒀] of 𝐹. Then, let’s define such
a functor {𝑊; 𝐹} as

𝑥∶ 𝑋 ⊢ {𝑊; 𝐹}0(𝑥) ≔ {𝑊; ̄𝐹0(𝑥)}
𝑥0, 𝑥1 ∶ 𝑋 ⊢ {𝑊; 𝐹}1(𝑥0, 𝑥1) ≔ {𝑊; ̄𝐹0(𝑥0), ̄𝐹0(𝑥1)}.

Let’s prove that, in context 𝐻∶ [𝑿, 𝒀], there is a natural isomorphism

Hom[𝑿,𝒀](𝐻, {𝑊; 𝐹})) ≅ Hom[𝑲,𝑽](𝑊, Hom[𝑿,𝒀](𝐻, 𝐹)).
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That is yielded by the following chain of equalities and natural isomorphims,

Hom[𝑿,𝒀](𝐻, {𝑊; 𝐹}))
= ∫

𝑥∶ 𝑋
Hom𝒀(e(𝐻0, 𝑥), {𝑊; 𝐹}0(𝑥))

= ∫
𝑥∶ 𝑋

Hom𝒀(e(𝐻0, 𝑥), {𝑊; ̄𝐹0(𝑥)})

≅ ∫
𝑥∶ 𝑋

Hom[𝑲,𝑽](𝑊, Hom𝒀(e(𝐻0, 𝑥), ̄𝐹0(𝑥)))

≅ ∫
𝑥∶ 𝑋

∫
𝑘∶ 𝐾

Hom𝑽(𝑊0(𝑘), Hom𝒀(e(𝐻0, 𝑥), e( ̄𝐹0(𝑥)0, 𝑘)))

= ∫
𝑥∶ 𝑋

∫
𝑘∶ 𝐾

Hom𝑽(𝑊0(𝑘), Hom𝒀(e(𝐻0, 𝑥), e(𝐹0(𝑘)0, 𝑥)))

≅ ∫
𝑘∶ 𝐾

Hom𝑽(𝑊0(𝑘), ∫
𝑥∶ 𝑋

Hom𝒀(e(𝐻0, 𝑥), e(𝐹0(𝑘)0, 𝑥)))

= ∫
𝑘∶ 𝐾

Hom𝑽(𝑊0(𝑘), Hom[𝑿,𝒀](𝐻, 𝐹0(𝑘)))
= Hom[𝑲,𝑽](𝑊, Hom[𝑿,𝒀](𝐻, 𝐹)).

As an immediate consequence of the previous results, we have that categories
of presheaves are complete. That is a fundamental fact of standard category
theory, and it was legitimate to expect it would hold in our context as well.

Corollary 4.1.15. Let 𝑿 be a 𝑽-enriched category. Then, the category [𝑿𝐨𝐩, 𝑽]
of presheaves over 𝑿 is complete.

Proof. It follows from propositions 4.1.13 and 4.1.14.

Finally, we mention that weighted limits endow complete 𝑽-enriched cate-
gories with a cotensor on 𝑽.

Remark 4.1.16. If 𝑿 is a complete 𝑽-enriched category, there is a cotensor
{‐; ‐} ∶ 𝑽𝐨𝐩 ⊗ 𝑿 → 𝑿 yielding, in context 𝑣∶ 𝑉0, 𝑥, 𝑥′ ∶ 𝑋, a natural isomorphism

Hom𝑿(𝑥, {𝑣; 𝑥′}) ≅ Hom𝑽(𝑣, Hom𝑿(𝑥, 𝑥′)).

Such a cotensor and its associate isomorphism are obtained by composing the
limit-yielding functor {‐; ‐} ∶ [𝕀𝑽Catℰ

, 𝑽]𝐨𝐩 ⊗ [𝕀𝑽Catℰ
, 𝑿] → 𝑿 with the obvious

equivalences 𝑿 → [𝕀𝑽Catℰ
, 𝑿] and 𝑽 → [𝕀𝑽Catℰ

, 𝑽].
In the special case of a presheaf category [𝑿𝐨𝐩, 𝑽], which is complete because

of corollary 4.1.15, we have a very concrete representation of the cotensor.
Indeed, in context 𝑣∶ 𝑉0, 𝐹∶ [𝑿𝐨𝐩, 𝑽], we have

{𝑣; 𝐹} ≅ Hom𝑽(𝑣, ‐) ∘ 𝐹.

Essentially, this is a special case of proposition 4.1.14, but explicitely we see
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that, in context 𝐻∶ [𝑿𝐨𝐩, 𝑽],

Hom[𝑿𝐨𝐩,𝑽](𝐻, Hom𝑽(𝑣, ‐) ∘ 𝐹)
= ∫

𝑥∶ 𝑋
Hom𝑽(e(𝐻0, 𝑥), Hom𝑽(𝑣, eℰ(𝐹0, 𝑥)))

≅ ∫
𝑥∶ 𝑋

Hom𝑽(𝑣, Hom𝑽(e(𝐻0, 𝑥), eℰ(𝐹0, 𝑥)))

≅ Hom𝑽(𝑣, ∫
𝑥∶ 𝑋

Hom𝑽(e(𝐻0, 𝑥), eℰ(𝐹0, 𝑥)))
= Hom𝑽(𝑣, Hom[𝑿𝐨𝐩,𝑽](𝐻, 𝐹)).

4.2. Limit-Preserving Functors
The concept of a limit-preserving functor will be particularly helpful in the
next section, so we shall dedicate some space to the definition and study of
such a notion.

As a terminology remark, notice that, since internal categories are intrinsi-
cally small, to preserve limits is the same as to preserve small limits. Then,
it would also be appropriate to call limit-preserving functors as continuous
functors (which, in the standard terminology, denotes functors preserving
small limits).

Definition 4.2.1 (limit-preserving functor). Let 𝐻∶ 𝑿 → 𝒀 be a 𝑽-enriched
functor. We say 𝐻 preserves weighted limits if, for every indexing object 𝐼
in ℰ, 𝐼∗𝑽-enriched category 𝑲 and 𝐼∗𝑽-enriched functors 𝐹∶ 𝑲 → 𝐼∗𝑿 and
𝑊∶ 𝑲 → 𝐼∗𝑽, the evident 𝑽-enriched natural transformation determined by
universality (𝐼∗𝐻){𝑊; 𝐹} → {𝑊; (𝐼∗𝐻)𝐹} is an isomorphism.

In the rest of the chapter we sometimes have to prove that a functor is limit-
preserving. In such situation, we will show the existence of an isomorphism,
but omit the routine and tedious check that such isomorphism is indeed the
correct one, i.e. the one determined by universality.

A first example of weighted limits-preserving 𝑽-enriched functor is given by
covariant and controvariant representable presheaves.

Proposition 4.2.2. Representable 𝑽-enriched covariant presheaves preserve
weighed limits.

Proof. Let 𝑿 and 𝑲 be 𝑽-enriched categories, and 𝑥∶ 𝕀𝑽Catℰ
→ 𝑿 an object of

𝑿. Let’s show that Hom𝑿(𝑥, ‐) ∶ 𝑿 → 𝑽 preserves limits. Let 𝐹∶ 𝑲 → 𝑿 and
𝑊∶ 𝑲 → 𝑽 be 𝑽-functors, and {𝑊; 𝐹}∶ 𝕀𝑽Catℰ

→ 𝑿 the weighted limit of 𝐹 with
respect to the weight 𝑊. Then, by proposition 4.1.13, we have that

{𝑊; Hom𝑿(𝑥, ‐) ∘ 𝐹} ≅ Hom[𝑲,𝑽](𝑊, Hom𝑿(𝑥, ‐) ∘ 𝐹) ≅ Hom𝑿(𝑥, {𝑊; 𝐹}).
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Proposition 4.2.3. Representable controvariant 𝑽-enriched presheaves pre-
serve weighed limits.

Proof. Let 𝑿 and 𝑲 be 𝑽-enriched categories, and 𝑥∶ 𝕀𝑽Catℰ
→ 𝑿 an object of

𝑿. Let’s show that Hom𝑿(‐, 𝑥)∶ 𝑿𝐨𝐩 → 𝑽 preserves limits. Let 𝐹∶ 𝑲 → 𝑿𝐨𝐩

and 𝑊∶ 𝑲 → 𝑽 be 𝑽-functors, and {𝑊; 𝐹}∶ 𝕀𝑽Catℰ
→ 𝑿𝐨𝐩 the weighted limit of

𝐹 with respect to the weight 𝑊. Then, by proposition 4.1.13, we have that

{𝑊; Hom𝑿(‐, 𝑥) ∘ 𝐹}
≅ Hom[𝑲,𝑽](𝑊, Hom𝑿𝐨𝐩(𝑥, ‐) ∘ 𝐹)
≅ Hom𝑿𝐨𝐩(𝑥, {𝑊; 𝐹})
= Hom𝑿({𝑊; 𝐹}, 𝑥).

Then, by duality, we get that representable presheaves also preserve colimits.
The following corollary sums up the situation.

Corollary 4.2.4. Covariant and controvariant representable presheaves pre-
serve both limits and colimits.

The Yoneda embedding is another notable example of limit-preserving func-
tor.

Proposition 4.2.5. Let 𝑿 be a 𝑽-enriched category. Then, the Yoneda embed-
ding Y ∶ 𝑿 → [𝑿𝐨𝐩, 𝑽] preserves weighted limits.

Proof. All hypothesis are stable under slicing and, for an indexing object 𝐼, we
have that 𝐼∗Y is the Yoneda embedding of 𝐼∗𝑿. So, we can assume 𝐼 = 𝟙ℰ.

Let 𝐹∶ 𝑲 → 𝑿 and 𝑊∶ 𝑲 → 𝑽 be 𝑽-enriched functors, such that it exists the
limit of 𝐹 with respect to the weight 𝑊. Then,

Hom[𝑿𝐨𝐩,𝑽](𝐻, Y{𝑊; 𝐹})
= ∫

𝑥∶ 𝑋
Hom𝑽(𝐻0(𝑥), Hom𝑿(𝑥, {𝑊; 𝐹}))

≅ ∫
𝑥∶ 𝑋

Hom𝑽(𝐻0(𝑥), Hom[𝑲,𝑽](𝑊, Hom𝑿(𝑥, 𝐹)))

= ∫
𝑥∶ 𝑋

Hom𝑽(𝐻0(𝑥), ∫
𝑘∶ 𝐾

Hom𝑽(𝑊0(𝑘), Hom𝑿(𝑥, 𝐹0(𝑘))))

≅ ∫
𝑘∶ 𝐾

Hom𝑽(𝑊0(𝑘), ∫
𝑥∶ 𝑋

Hom𝑽(𝐻0(𝑥), Hom𝑿(𝑥, 𝐹0(𝑘))))

= ∫
𝑘∶ 𝐾

Hom𝑽(𝑊0(𝑘), Hom[𝑿𝐨𝐩,𝑽](𝐻, Y0(𝐹0(𝑘))))
= Hom[𝑲,𝑽](𝑊, Hom[𝑿𝐨𝐩,𝑽](𝐻, Y𝐹))

meaning that {𝑊; Y𝐹} exists and it is Y{𝑊; 𝐹}.

It is worth noticing that we cannot internalize the notion of limit-preserving
functor (meaning that we have no object of all limit-preserving functors), as
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the relative defining condition spans over all possible diagrams, and there
is no internal representation of the object of all diagrams (just as there is
no set of all sets). Still, fixed a diagram shape (other than a domain and a
codomain 𝑽-categories), it is possible to consider an internal representation
of all functors (with the given domain and codomain) preserving limits of
diagrams of the given shape.
Remark 4.2.6. Let 𝑲 be a 𝑽-enriched category. Then, there is in ℰ an object
of 𝑲-limit-preserving functors 𝑿 → 𝒀, denoted by LPFun𝑲(𝑿, 𝒀), which
also tracks the required isomorphisms. This induces a 𝑽-enriched category
[𝑿, 𝒀]LP(𝑲).

Analogously to the case of completeness for 𝑽-enriched categories, a limit-
preserving functor 𝐻∶ 𝑿 → 𝒀 induces, for each 𝑽-enriched category 𝑲, an
internal choice of isomorphisms witnessing its property of preserving the
limits of 𝑽-enriched functors 𝑲 → 𝑿 with respect to weights 𝑲 → 𝑽.

4.3. Adjoint Functor Theorem
In this section, we prove some further results about internal weighted limits
and completeness, notably the adjoint functor theorem, by taking advantage
of the intrinsic smallness of internal enriched categories. The results in
this section will then be analogous to those that can be obtained for lattices,
regarded as small categories.

The next, fundamental proposition establishes a link between limits and
representability of functors, and it will be the base upon which we will build
all of the following results.

Proposition 4.3.1. Let 𝑿 be a 𝑽-enriched category and 𝐹∶ 𝑿 → 𝑽 a limit-
preserving 𝑽-functor. If the limit of id𝑽Catℰ

(𝑿) relative to the weight 𝐹, denoted
by {𝐹; 𝑿}, exists, then

Hom𝑿({𝐹; 𝑿}, ‐) ≅ 𝐹
(that is, 𝐹 is representable).

Proof. Let 𝑝̄ ∶ 𝐹 → Hom𝑿({𝐹; 𝑿}, ‐) be the universal cone for the limit {𝐹; 𝑿},
which we shall take as one side of the isomorphism.

Since 𝐹 preserves limits, 𝐹0({𝐹; 𝑿}) is (isomorphic to) the limit {𝐹; 𝐹}.
Because of that, the natural transformation

𝐹1({𝐹; 𝑿}, ‐) ∶ Hom𝑿({𝐹; 𝑿}, ‐) → Hom𝑽({𝐹; 𝐹}, 𝐹(‐))∶ 𝑿 → 𝑽

yields the universal cone of {𝐹; 𝐹},

𝑞̄ = 𝐹
𝑝̄
−→ Hom𝑿({𝐹; 𝑿}, ‐)

𝐹1({𝐹;𝑿},‐)
−−−−−−−−→ Hom𝑽({𝐹; 𝐹}, 𝐹(‐)).
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Consider the identical natural transformation id(𝐹)∶ 𝐹 → 𝐹 ≅ Hom𝑽(𝕀𝑽, 𝐹).
By the universality of the cone 𝑞̄, there is a (unique) 𝜇∶ 𝕀𝑽 → {𝐹; 𝐹} such that

𝐹
𝑞̄
−→ Hom𝑽({𝐹; 𝐹}, 𝐹)

Hom𝑽(𝜇,𝐹)
−−−−−−−−→ Hom𝑽(𝕀𝑽, 𝐹) ≅ 𝐹 (4.2)

is the identity on 𝐹. That suggests that the natural transformation 𝑝̄−1 that
we need is

Hom𝑿({𝐹; 𝑿}, ‐)
𝐹1({𝐹;𝑿},‐)
−−−−−−−−→ Hom𝑽({𝐹; 𝐹}, 𝐹(‐))

Hom𝑽(𝜇,𝐹)
−−−−−−−−→ 𝐹.

Let’s prove that

Hom𝑿({𝐹; 𝑿}, ‐)
𝑝̄−1
−−→ 𝐹

𝑝̄
−→ Hom𝑿({𝑿; 𝐹}, ‐) = id. (4.3)

The diagram

Hom𝑿({𝐹; 𝑿}, {𝐹; 𝑿}) ⊗𝑽 Hom𝑿({𝐹; 𝑿}, ‐) Hom𝑿({𝐹; 𝑿}, ‐)

Hom𝑽({𝐹; 𝐹}, {𝐹; 𝐹}) ⊗𝑽 Hom𝑿({𝐹; 𝑿}, ‐) Hom𝑽({𝐹; 𝐹}, ‐)𝐹

𝐹0({𝐹; 𝑿}) ⊗𝑽 Hom𝑿({𝐹; 𝑿}, ‐) 𝐹

Hom𝑿({𝐹; 𝑿}, {𝐹; 𝑿}) ⊗𝑽 Hom𝑿({𝐹; 𝑿}, ‐) Hom𝑿({𝐹; 𝑿}, ‐)

∘𝑿

𝐹1({𝐹;𝑿},{𝐹;𝑿})⊗𝑽id 𝐹1({𝐹;𝑿},‐)∘𝑿(id⊗𝑽𝐹1({𝐹;𝑿},‐))

Hom𝑽(𝜇,{𝐹;𝐹})⊗𝑽id Hom𝑽(𝜇,‐)

∘𝑿(id⊗𝑽𝐹1)

𝑝̄{𝐹;𝑿}⊗𝑽id 𝑝̄

∘𝑿

commutes because of functoriality of 𝐹, associativity of composition and natu-
rality of 𝑝̄. Notice that 𝑝̄{𝐹;𝑿}𝜇∶ 𝕀𝑽 → Hom𝑽({𝐹; 𝑿}, {𝐹; 𝑿}) yields a natural
transformation

Hom𝑿(𝑝̄{𝐹;𝑿}𝜇, ‐) ∶ Hom𝑿({𝐹; 𝑿}, ‐) → Hom𝑿({𝐹; 𝑿}, ‐).

By diagram-chasing id𝑿({𝐹; 𝑿}), we get that

𝑝̄Hom𝑽(𝜇, {𝐹; 𝐹})𝐹1({𝐹; 𝑿}, ‐) = Hom𝑿(𝑝̄{𝐹;𝑿}𝜇, ‐). (4.4)

By pre-composing with 𝑝̄ and using eq. (4.2), it follows that

Hom𝑿(𝑝̄{𝐹;𝑿}𝜇, ‐)𝑝̄ = 𝑝̄Hom𝑽(𝜇, {𝐹; 𝐹})𝐹1({𝐹; 𝑿}, ‐)𝑝̄ = 𝑝̄.

But, by the universal property of the limit, the only such arrow {𝐹; 𝑿} → {𝐹; 𝑿}
is the identity, which means that eq. (4.4) yields eq. (4.3).
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We would like to internalize proposition 4.3.1 to get an isomorphism that is
natural over the object of limit-preserving functors. That could be achieved
by internalizing the whole proof by using, in particular, the internal limit-
functor for a complete category from proposition 4.1.11 and the internal choice
of isomorphisms from remark 4.2.6. Still, the result would be hard to read
and provide little insight. Instead, we provide a proof via indexing over the
object of limit-preserving functors, and then applying the external version of
the result.

Notice how, in the proof of proposition 4.3.1, the only limits the functor needs
to truly preserve are those of diagrams with shape 𝑿. Of course, since the
functor turns out to be (isomorphic to) a presheaf, it indeed preserves all limits.
This observation, though, is useful for internalizing the result, since internally
we can represent the object of functors preserving limits of diagrams with
shape 𝑿, but not general limit-preserving functors.

Corollary 4.3.2. Let 𝑿 be a complete 𝑽-enriched category. Then there is a 𝑽-
enriched isomorphism Hom𝑿({𝐹; 𝑿}, ‐) ≅ 𝐹 natural in 𝐹∶ LPFun𝑿(𝑿, 𝑽) (see
remark 4.2.6).

Proof. In the slice category of ℰ over LPFun𝑿(𝑿, 𝑽), consider the diagram

e ∶ LPFun𝑿(𝑿, 𝑽)∗𝑿 → LPFun𝑿(𝑿, 𝑽)∗𝑽

defined, in context 𝐹∶ LPFun𝑿(𝑿, 𝑽), 𝑥 ∶ 𝑋, as e(𝐹, 𝑥) = (𝐹, eℰ(𝐹0, 𝑥)). Such
functor preserves limits because it is indexed over the object of limit-preserving
functors, so we can apply proposition 4.3.1 to get an isomorphism

HomLPFun𝑿(𝑿,𝑽)∗𝑿({LPFun𝑿(𝑿, 𝑽)∗𝑿; e}(𝐹), (𝐹, 𝑥)) ≅ (𝐹, eℰ(𝐹0, 𝑥)).

Notice that the weighted limit {LPFun𝑿(𝑿, 𝑽)∗𝑿; e} with parameter 𝐹 will
be a pair (𝐹, 𝑙) where 𝑙 ∶ 𝑋. Then, the chain of isomorphisms

(𝐹, Hom𝑿(𝑥′, 𝑙))
= HomLPFun𝑿(𝑿,𝑽)∗𝑿((𝐹, 𝑥′), (𝐹, 𝑙))
= HomLPFun𝑿(𝑿,𝑽)∗𝑿((𝐹, 𝑥′), {LPFun𝑿(𝑿, 𝑽)∗𝑿; e}(𝐹))
≅ HomLPFun𝑿(𝑿,𝑽)∗[𝑿,𝑿](LPFun𝑿(𝑿, 𝑽)∗𝑿, HomLPFun𝑿(𝑿,𝑽)∗𝑿((𝐹, 𝑥′), e(𝐹)))
= (𝐹, Hom[𝑿,𝑿](𝑿, HomLPFun𝑿(𝑿,𝑽)∗𝑿(𝑥′, 𝐹)))

shows that 𝑙 is {𝑿; 𝐹}. But then, eℰ(𝐹0, 𝑥) ≅ Hom𝑿(‐, {𝑿; 𝐹}).

By corollary 4.3.2, a presheaf on a 𝑽-enriched category 𝑿 that preserves
limits of shape 𝑿 is representable. We know that representable presheaves
preserves all limits, so it may be tempting to say that LPFun𝑿(𝑿, 𝑽) is the
object of limit-preserving presheaves over 𝑿. There is, though, a philosophical
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issue: LPFun𝑿(𝑿, 𝑽) tracks, for each presheaf it contains and each diagram
of shape 𝑿, the isomorphism witnessing that the limit of such diagram is
preserved by such presheaf, but it does not do the same for diagrams of other
shapes, as an object representing limit-preserving functors should.

Remarkably, corollary 4.3.2 provides a pseudo-inverse of the Yoneda em-
bedding. Unexpectedly, it is then possible to establish an equivalence be-
tween a 𝑽-enriched category 𝑿 and the 𝑽-enriched category of limit-preserving
presheaves over it.

Corollary 4.3.3. Let 𝑿 be a complete 𝑽-enriched category. Then there is an
equivalence of 𝑽-enriched categories

𝑿 ≣ [𝑿, 𝒀]LP(𝑲).

Proof. It follows from corollaries 3.8.5 and 4.3.2 and proposition 4.2.3.

From the previous results, it follows that, in the context of internal enriched
categories, completeness implies cocompleteness.

Corollary 4.3.4. Complete 𝑽-enriched categories are cocomplete.

Proof. Let 𝑿 be a complete 𝑽-enriched category, and 𝑊∶ 𝑲𝐨𝐩 → 𝑽 and 𝐺∶ 𝑲 →
𝑿 be 𝑽-enriched functors. Define

𝐹 ≔ Hom[𝑲𝐨𝐩,𝑽](𝑊, Hom𝑿(𝐺, ‐))∶ 𝑿 → 𝑽.

By propositions 4.1.14 and 4.2.5, 𝐹 preserves limits. Then, the weighted colimit
𝑊 ⋅ 𝐺 is given by the weighted limit {𝐹; 𝑿}. Indeed, from proposition 4.3.1, we
get

Hom𝑿({𝐹; 𝑿}, ‐) ≅ 𝐹 = Hom[𝑲𝐨𝐩,𝑽](𝑊, Hom𝑿(𝐺, ‐)).

By duality we also get the converse, so that completeness and cocompleteness
are equivalent in the context of 𝑽-enriched categories.

Corollary 4.3.5. Cocomplete 𝑽-enriched categories are complete.

We have an immediate consequence by applying the previous result to cate-
gories of presheaves.

Corollary 4.3.6. All 𝑽-enriched categories of presheaves are co-complete.

Proof. It follows from corollaries 4.1.15 and 4.3.4.

We also have a version of the adjoint functor theorem. What is remarkable
about it is that it doesn’t require any size-related hypothesis, such as the
solution set condition.
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Corollary 4.3.7 (adjoint functor theorem). Let 𝑿 and 𝒀 be 𝑽-enriched cate-
gories, of which 𝑿 is complete, and 𝐹∶ 𝑿 → 𝒀 a limit-preserving 𝑽-enriched
functor. Then, 𝐹 has a left adjoint.

Proof. Consider the functor ̃𝐹 ≔ Hom𝒀(‐, 𝐹)∶ 𝒀𝐨𝐩 → [𝑿, 𝑽]. Notice that, in
context 𝑦∶ 𝑌, the functor ̃𝐹0(𝑦)∶ LPFun𝑿(𝑿, 𝑽) preserves limits. Then, the
functor

𝐺 ≔ 𝒀
𝐹̃𝐨𝐩⊗id𝑽Catℰ

(𝑿)
−−−−−−−−−−−→ [𝑿, 𝑽]𝐨𝐩 ⊗𝑽 [𝑿, 𝑿] {‐;‐}−−−→ 𝑿

is left adjoint to 𝐹. Indeed, in context 𝑥∶ 𝑋 and 𝑦∶ 𝑌,

Hom𝑿(𝐺0(𝑦), 𝑥) = Hom𝑿({ ̃𝐹0(𝑦); 𝑿}, 𝑥) ≅ e( ̃𝐹0(𝑦), 𝑥) = Hom𝒀(𝑦, 𝐹0(𝑥))

by corollary 4.3.2.

By duality, we also get a version of the adjoint functor theorem for colimits.

Corollary 4.3.8. Let 𝑿 and 𝒀 be 𝑽-enriched categories, of which 𝑿 is cocomplete,
and 𝐹∶ 𝑿 → 𝒀 a colimit-preserving 𝑽-enriched functor. Then, 𝐹 has a right
adjoint.

Finally, the previous results can be applied to categories of presheaves.

Corollary 4.3.9. The Yoneda embedding for a complete 𝑽-enriched category
has a left adjoint.

Proof. It follows from proposition 4.2.5 and corollary 4.3.7.

Remark 4.3.10. It would be way too good if, analogously to corollary 4.3.5, a
𝑽-enriched functor preserved limits if and only if it preserved colimits. Sadly,
counter-examples are easy to find: frames are complete lattices (and thus
they are complete Set-enriched categories) satisfying an infinite distributive
law, whose homomorphisms preserve arbitrary joins (so preserve limits) and
finite meets, but do not necessarily preserve arbitrary meets (and so do not
necessarily preserve colimits). The lattice of open sets of topologies provides
examples of such frames, and the inverse-image of continuous functions yields
frame homomorphisms, which notoriously preserve arbitrary joins (unions
of opens sets) and finite meets (intersections of open sets), but not arbitrary
meets (interiors of intersections of open sets).
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5. Future Work
In this dissertation, we developed the foundations of the theory of internal
enriched categories. This merging of the separate subjects of internal and
enriched category theory raises many issues. In particular one would like to
investigate how the theory plays out in examples and exploit the theory in
application areas. In this chapter we suggest what seem to be promising areas
for future research.

5.1. Sets
Within the category of sets, our theory corresponds to the standard theory of
enriched categories (with the restriction that both the enriched categories and
the enriching monoidal categories are small).

With regards to completeness of the enriching category, the small com-
plete symmetric monoidal closed categories are—up to equivalence—what are
known as commutative unital quantales. There is some existing theory of
quantale enriched categories which has been studied in particular by Dirk
Hofmann, and it would be of interest to consider this subject from the point
of view of this dissertation. On the one hand, the theorems which we give
can be read as the elementary results of that theory. On the other hand, one
might try to generalize developments of that theory to our context, such as
the duality theory given in Hofmann and Waszkiewicz (2012).

5.2. Modest Sets
The internal category of modest sets in the effective topos (or better, its subcat-
egory of assemblies) represents the leading example for the theory of internal
enriched categories, as it fits all the requirements we need to develop the
theory presented in this dissertation.

Let’s recall the definition of the effective topos, Eff (Hyland 1982).

Definition 5.2.1 (effective topos). An object (𝑋, [‐ =𝑋 ‐]) of the effective topos
is a set 𝑋 with a non-standard equality predicate [‐ =𝑋 ‐] on 𝑋 × 𝑋, that is, a
function 𝑋 × 𝑋 → 𝒫(ℕ), such that the axioms

Symmetry: [𝑥 =𝑋 𝑥′] ⟹ [𝑥′ =𝑋 𝑥], and
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Transitivity: [𝑥 =𝑋 𝑥′] ∧ [𝑥′ =𝑋 𝑥″] ⟹ [𝑥 =𝑋 𝑥″]

are valid.
Let’s denote the term [𝑥 =𝑋 𝑥] with [𝑥 ∈ 𝑋], since, in a way, it represents

the set of witnesses to the belonging of 𝑥 to 𝑋.
An arrow (𝑋, [‐ =𝑋 ‐]) → (𝑌, [‐ =𝑌 ‐]) of the effective topos is a class of

equivalence of functional relations 𝑋 → 𝑌, that is, functions 𝑓 ∶ 𝑋 × 𝑌 → 𝒫(ℕ)
such that the axioms

Relational: 𝑓 (𝑥, 𝑦) ∧ [𝑥 =𝑋 𝑥′] ∧ [𝑦 =𝑌 𝑦′] ⟹ 𝑓 (𝑥′, 𝑦′),

Strict: 𝑓 (𝑥, 𝑦) ⟹ [𝑥 ∈ 𝑋] ∧ [𝑦 ∈ 𝑌],

Single-valued: 𝑓 (𝑥, 𝑦) ∧ 𝑓 (𝑥, 𝑦′) ⟹ [𝑦 =𝑌 𝑦′], and

Total: [𝑥 ∈ 𝑋] ⟹ ∃𝑦∶ 𝑌. 𝑓 (𝑥, 𝑦)

are valid, and where who such functional relations 𝑓 and 𝑔 are equivalent if
𝑓 (𝑥, 𝑦) ⟺ 𝑔(𝑥, 𝑦) is valid.

Given two morphisms

(𝑋, [‐ =𝑋 ‐])
[𝑓 ]
−−→ (𝑌, [‐ =𝑌 ‐])

[𝑔]
−−→ (𝑍, [‐ =𝑍 ‐]),

the composition is given by the class of equivalence of the predicate

(𝑔 ∘ 𝑓 )(𝑥, 𝑧) ≔ ∃𝑦∶ 𝑌. 𝑓 (𝑥, 𝑦) ∧ 𝑔(𝑦, 𝑧).

The identity for an object is given by the non-standard equality predicate of
the object.

There is a functor 𝛥∶ Set → Eff sending a set 𝑋 to the object (𝑋, 𝛿𝑋), where
𝛿𝑋(𝑥, 𝑥′) = ℕ if 𝑥 = 𝑥′ and ∅ otherwise.

Let’s now define the internal category of modest sets Mod in the effective
topos (Hyland 1988).

Definition 5.2.2 (modest sets). A modest set is an object (𝑋, [‐ =𝑋 ‐]) in Eff
such that [𝑥 =𝑋 𝑥′] = [𝑥 ∈ 𝑋] ∩ [𝑥′ ∈ 𝑋] and [𝑥 =𝑋 𝑥′] ≠ ∅ implies 𝑥 = 𝑥′ for
all 𝑥, 𝑥′ ∈ 𝑋.

Modest sets are, equivalently, partial equivalence relations on ℕ. Let PER
be the category of partial equivalence relations on ℕ.

Definition 5.2.3 (category of modest sets). The object of objects of the internal
category Mod in Eff is Mod0 = 𝛥(PER0). The object of arrows of Mod is
the subobject of 𝛥(PER1) with existence predicate given by [𝑓 ∈ Mod1] =
{ 𝑛 ∣ 𝑛 is an index for 𝑓 }.
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In the effective topos, Mod is weakly complete, in the sense of Hyland, Robin-
son, and Rosolini 1990. Sadly that is not much use for the purposes of this
dissertation. However we can restrict attention to the quasi-topos of separated
objects for the double-negation topology, which is, equivalently, the category
of assemblies.

Definition 5.2.4 (assemblies). An assembly is an object (𝑋, [‐ =𝑋 ‐]) of Eff
such that [𝑥 =𝑋 𝑥′] ≠ ∅ implies 𝑥 = 𝑥′ for all 𝑥, 𝑥′ ∈ 𝑋. Let’s call Asm the full
subcategory of assemblies in the effective topos.

Then, Mod is an internal strongly complete category in Asm (ibid.). Moreover,
the cartesian product in Mod makes it a symmetric monoidal closed category.
Then, we can then consider Mod-enriched categories in Asm, and the theory
developed in this dissertation will hold in that context.

5.3. Groupoids
The original suggestion that there should be an internal enrichment over the
category of Modest Sets came from a discussion with Rosolini on the topic of
categorical models of type theory, in an attempt to formalize the intuition of a
groupoid-like object whose hom-sets look like modest sets.

In the early stages of the research, I abandoned the attempt to develop a
theory for groupoids, focusing instead on the mere enrichment over an internal
monoidal category. The reason is that, to define an enriched groupoid, the
enriching category has to be cartesian monoidal, an that would have much
reduced the generality of the argument. Indeed, the internal logic of a monoidal
category does not even allow to express a formula of the kind 𝑓 ∘ 𝑓 −1 = id!

Still, the leading example of the category of Modest Sets is cartesian monoidal
(other then cartesian closed and complete), so it would support a notion of
groupoid enriched over it. It would then be interesting to specialize the present
theory to groupoids enriched over a cartesian monoidal category, and then
apply that theory to the category of Modest Sets.

5.4. Monads
Monads are an essential tool in category theory, and have found wide appli-
cation in the area of theoretical computer science (Moggi 1991). It is then
opportune to develop a theory of monads in the context of internal enriched
categories. There two aspects of monads which seem worth following up from
the point of view of this dissertation.

First note that the category of modest sets just discussed is cartesian closed
and we might wish to have examples of more general complete symmetric
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monoidal closed internal categories. One way to do that is by using the theory
of commutative monads as developed by Anders Kock (Kock 1970, 1971a,b,
1972a,b). Suppose we have an internal complete cartesian closed or even
symmetric monoidal closed category and an internal commutative monad T on
it. Then we would expect the category of T-algebras to be complete symmetric
monoidal closed. Typically algebraic theories where there is a natural tensor
product on algebras are commutative. There are many mathematical examples
and if anything more examples have been studied in connection with Moggi’s
approach to computational effects. There will surely be versions of such monads
acting on modest sets and that will give a large collection of examples of the
theory presented in this dissertation.

Secondly we might develop a theory of internal enriched monads. We sketch
the basic framework. Assume 𝑽 is an internal symmetric monoidal category
in ℰ with equalizer.

Definition 5.4.1 (internal enriched monad). Let 𝑿 be a 𝑽-enriched category.
A monad 𝑇 on 𝑿 is a triple

(𝑇∶ 𝑿 → 𝑿, 𝜂∶ id(𝑿) → 𝑇, 𝜇∶ 𝑇2 → 𝑇)

such that 𝜇(𝜂𝑇) = id(𝑇)∶ 𝑇 → 𝑇 and 𝜇(𝜇𝑇) = 𝜇(𝑇𝜇)∶ 𝑇3 → 𝑇.
The object of algebras on 𝑇 is the subobject of 𝑋 × 𝑉1 of those (𝑥∶ 𝑋, ℎ∶ 𝑉1)

such that

ℎ∶ 𝕀𝑽 → Hom𝑿(𝑇0(𝑥), 𝑥),

Hom𝑿(𝑇0(𝑥), 𝑥) ⊗ Hom𝑿(𝑥, 𝑇0(𝑥))

𝕀𝑽 Hom𝑿(𝑥, 𝑥)

∘𝑿(𝑥,𝑇0(𝑥),𝑥)ℎ⊗𝜂(𝑥)

id𝑿(𝑥)

and

𝕀𝑽
Hom𝑿(𝑇0(𝑥), 𝑥)

⊗ Hom𝑿(𝑇0(𝑥), 𝑥)

Hom𝑿(𝑇0(𝑇0(𝑥)), 𝑇0(𝑥))
⊗ Hom𝑿(𝑇0(𝑥), 𝑥)

Hom𝑿(𝑇0(𝑇0(𝑥)), 𝑇0(𝑥))
⊗ Hom𝑿(𝑇0(𝑥), 𝑥) Hom𝑿(𝑇0(𝑇0(𝑥)), 𝑥).

ℎ⊗ℎ

𝜇(𝑥)⊗ℎ

𝑇1(𝑇0(𝑥),𝑥)⊗id

∘𝑿(𝑇0(𝑇0(𝑥)),𝑇0(𝑥),𝑥)

∘𝑿(𝑇0(𝑇0(𝑥)),𝑇0(𝑥),𝑥)
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The homset in the context of algebras (𝑥0, ℎ0) and (𝑥1, ℎ1) is the equalizer of

Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥0, 𝑥1) ⊗ Hom𝑿(𝑇0(𝑥0), 𝑥0)

Hom𝑿(𝑇0(𝑥0), 𝑥1)

id⊗ℎ0

∘𝑿(𝑇0(𝑥0),𝑥0,𝑥1)

and

Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑇0(𝑥1), 𝑥1) ⊗ Hom𝑿(𝑇0(𝑥0), 𝑇0(𝑥1))

Hom𝑿(𝑇0(𝑥0), 𝑥1)

ℎ0⊗𝑇1(𝑥0,𝑥1)

∘𝑿(𝑇0(𝑥0),𝑇0(𝑥1),𝑥1)

and the identity in the context of algebra (𝑥, ℎ) is id𝑿(𝑥). With this data, we
have an internal 𝑽-enriched category of algebras Alg𝑇.

There are some standard definitions and results which would now have to be
proved, such as the characterization of monadic functors. Of particular interest
would be to prove that categories of algebras Alg𝑇 are complete. This would
imply that categories of algebras are cocomplete too. In standard category
theory, it is not generally true that if a category is cocomplete then so is a
category of algebras over it. Although there are various circumstances in which
such categories are cocomplete, these require individual attention. Even the
case of algebras over sets is non-trivial.

A theory of monads in the enriched setting is one notable omission in Kelly’s
treaties on enriched categories and rather little seems to be have appeared in
the classical literature. There may be good reason for this. For example, in
his consideration of the related topics of adjoint lifting in the enriched setting,
John Power explicitly remarks (Power 1988) that he conducts his arguments
essentially in the context of Street’s Formal Theory of Monads (Street 1972).
Perhaps because of this intellectual history it would be instructive to develop
the theory of enriched monads on an internal enriched category. One would
expect initial problems e.g. as to whether the category of algebras is cocomplete
to evaporate. But would one now be able to refer to Street’s theory as a suitable
background?

5.5. Cubical Sets
There is currently much interest in models for Type Theory (especially for
Homotopy Type Theory) in categories of presheaves. Because of its seeming
simplicity, internal enriched category theory should provide an ideal setting
for this kind of investigations.

We shall comment on the possibility of developing a theory of cubical sets
(M. Grandis and Mauri 2003) in the context of modest sets. Indeed, cubical
sets have been successfully used to yield univalent models for homotopy type
theory (Bezem, Coquand, and Huber 2014), and a theory of “modest” cubical
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sets would provide a potentially interesting variation of those models. In
particular, it would be interesting to investigate how the properties of the
effective topos, especially those regarding representability, affect such models.

To begin with, it would be necessary to define a suitable cube category � in
Asm. It could seem tempting to just use the set-theoretic definition, via the
embedding 𝛥, but likely that would not be the best choice: the set of object of
the cube category is ℕ, but 𝛥(ℕ) is not the natural number object of Eff. A
better idea would probably be to consider the natural number object of Eff as
the object of objects, and a suitable subobject of ℕℕ (whose underlying set is,
notably, the set of recursive functions ℕ → ℕ, see Hyland 1982, Lemma 10.1)
as the object of arrows. Then, the internal category of “modest” cubical sets,
[�𝐨𝐩, Mod], would be a complete symmetric monoidal closed category.

Moreover, we can consider [�𝐨𝐩, Mod]-enriched categories, which provide an
interesting take on higher category theory and have potential applications as
models for type theory. It is an under-developed idea that categories enriched
over cubical sets may be, essentially, types.

It is also worth noticing that there is a category of cubical categories (Marco
Grandis 2009) which is (according to preliminary investigations) monadic on
the category of cubical sets. This again should translate to the language of
internal categories, so that we may get an internal category of “modest” cubical
categories which is still complete and cartesian closed.
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Concluding Remarks
This dissertation introduces the notion of internal enriched category, whose
definition is a straightforward internalization of that of standard enriched
category. This turns out to be a special case of other well-known notions,
notably those of indexed enriched category (Shulman 2013) and enriched
generalized multicategory (Leinster 2004).

The methodical study of internal enriched categories in the spirit of Kelly
(1982) shows that they feature many of the good properties of standard enriched
categories. In particular, under suitable conditions, the category of internal
enriched categories and their functors is monoidal closed, in close analogy to
what happens in the external setting. That makes it possible to derive an
internalized version of the Yoneda lemma.

Moreover, a notion of completeness, compatible with that of strong internal
completeness as given in Hyland, Robinson, and Rosolini (1990), applies to
internal enriched categories. This is remarkable because there are interest-
ing examples of internal complete categories, such as, notably, the internal
category of Modest Sets inside the category of Assemblies (a subcategory of
the Effective Topos, see Hyland (1982)).

We argue that the the theory of internal enriched categories is particularly
nice to work with and suitable for applications in areas where the use of
standard category theory turns out to be problematic, thanks to its remarkable
combination of features. Indeed, as shown in the course of this dissertation,
the theory follows the familiar patterns from standard enriched category
theory, while offering the generality and wide array of examples of internal
category theory. Moreover, internal enriched categories are especially well-
behaved in regard to size issues, as they are always small with respect to the
ambient category; as a result, many size-related issues and inconveniences
that traditionally plague the treatment of completeness, especially in relation
to presheaves categories, disappear.

In particular, the theory developed herein is meant to find application in the
setting of categorical models of type theory. For example, internal enrichment
over the category of Modest Sets in the category of Assemblies could provide a
natural environment for the development of models with attractive computa-
tional features. This is a broad area of research well outside the scope of this
dissertation, though nevertheless a worthy investigation for future work.

More generally, the approach taken in this thesis is designed to facilitate
applications. In particular, note that many type theorists start with the idea of
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models in locally cartesian closed categories, as in Seely (1984). Even though
in our leading example of the Modest Sets in the category of Assemblies we do
in fact have some existential quantification (after all, as they are a category of
separated objects, Assemblies form a quasitopos—see for example Johnstone
(2002)), we have been careful to present the whole theory without reference
to that. Hence traditional type theorists can exploit the theory here just as it
stands.
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A. Enriched Generalized
Multicategories

The notion of internally enriched category is an occurrence of Leinster’s more
general notion of enriched generalized multicategory (Leinster 2002, 2004).
This section will follow Leinster 2004’s notation.

A.1. Generalized Multicategories
Let ℰ be a finitely complete category. In addition to the usual assumption, we
shall need to also assume that the forgetful functor 𝑈∶ Catℰ → Graphℰ has
a left adjoint, the free-category-on-a-graph functor ℱ∶ Graphℰ → Catℰ. In
particular, that is true if ℰ has countable products and finite coproducts.
Definition A.1.1 (cartesian monad, ibid., definition 4.1.1). Call cartesian

• a category, if it has pullbacks;

• a functor, if it preserves pullbacks;

• a natural transformation, if all of its naturality squares are pullbacks;

• a monad (𝑇, 𝜂, 𝜇) on ℰ, if the category ℰ, the functor 𝑇, and the natural
transformations 𝜇 and 𝜂 are all cartesian.

Let idℰ be the identity monad on ℰ. This is a cartesian monad, since ℰ is
finitely complete (and thus, in particular, cartesian).
Definition A.1.2 (generalized multicategory, ibid., definition 4.2.2). Let 𝑇 be
a cartesian monad on ℰ. A 𝑇-graph is a diagram

𝐶1

𝑇(𝐶0) 𝐶0

𝜎𝒞 𝜏𝒞

in ℰ. A (generalized) 𝑇-multicategory is a monad in the category of 𝑇-algebras
ℰ(𝑇). Explicitely, a 𝑇-multicategory 𝒞 consists of a 𝑇-graph (as above) together
with arrows

⋅𝒞 ∶ 𝐶1 ×𝑇(𝐶0) 𝑇(𝐶1) → 𝐶1 (A.1)

107



A. Enriched Generalized Multicategories

and
i𝒞 ∶ 𝐶0 → 𝐶1 (A.2)

satisfying associativity and unitarity axioms.
Remark A.1.3. Observe that Multicatidℰ

= Catℰ and Graphidℰ
= Graphℰ.

Consider the forgetful functor 𝑈∶ Multicatidℰ
→ Graphidℰ

, that is, 𝑈∶ Catℰ →
Graphℰ, and its left adjoint ℱ. The adjunction (ℱ, 𝑈, 𝜂, 𝜖) is monadic, and
it induces the monad (ℱ = 𝑈ℱ, 𝜂, • = 𝑈𝜖ℱ) over Graphℰ (Leinster 2004,
theorem 6.5.2).

Given an object 𝑋 of ℰ, there exists a unique ℰ-category structure on the
ℰ-graph

𝑋 × 𝑋

𝑋 𝑋

𝜋1 𝜋2

which is called 𝐢𝐧𝐝(𝑋), the indiscrete category over 𝑋. Composition is given
by

(𝑋 × 𝑋) 𝜋1×𝜋2 (𝑋 × 𝑋)
(𝜋1𝑝2,𝜋2𝑝1)
−−−−−−−−−→ (𝑋 × 𝑋)

(where 𝑝1 and 𝑝2 are the pullback’s projections), and identity is given by the
diagonal 𝛥∶ 𝑋 → 𝑋 × 𝑋.

The (underlying ℰ-graph of the) indiscrete ℰ-category 𝐢𝐧𝐝(𝑋) has an ℱ-
algebra structure

∘𝐢𝐧𝐝(𝑋) = 𝑈𝜖𝐢𝐧𝐝(𝑋) ∶ ℱ𝐢𝐧𝐝(𝑋) → 𝐢𝐧𝐝(𝑋)
given by the counit of the adjunction. Then, there is a (unique) ℱ-multicategory
structure 𝐢𝐧𝐝(𝑋)+ (ibid., example 4.2.22) given by a ℱ-graph

ℱ𝐢𝐧𝐝(𝑋)

ℱ𝐢𝐧𝐝(𝑋) 𝐢𝐧𝐝(𝑋)

s=id t=∘𝐢𝐧𝐝(𝑋)

and operations

⋅𝐢𝐧𝐝(𝑋)+ = ℱ𝐢𝐧𝐝(𝑋) ×ℱ𝐢𝐧𝐝(𝑋) ℱℱ𝐢𝐧𝐝(𝑋)
𝜋2−−→ ℱℱ𝐢𝐧𝐝(𝑋)

•𝐢𝐧𝐝(𝑋)−−−−−→ ℱ𝐢𝐧𝐝(𝑋)
and

i𝐢𝐧𝐝(𝑋)+ = 𝐢𝐧𝐝(𝑋)
𝜂𝐢𝐧𝐝(𝑋)−−−−−→ ℱ𝐢𝐧𝐝(𝑋)

satisfying associativity and unitarity.
Intuitively, the composition of 𝐢𝐧𝐝(𝑋)+ collapses a list of lists of elements

of 𝑋 into a single list:
(𝑥0, … , 𝑥𝑛)⋅𝐢𝐧𝐝(𝑋)+((𝑥0, … , 𝑥1), … , (𝑥𝑛−1, … , 𝑥𝑛)) = (𝑥0, … , 𝑥1, … , 𝑥𝑛−1, … , 𝑥𝑛).
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Definition A.1.4 (enriched generalized multicategory, ibid., definition 6.8.1).
Let 𝒱 be an ℱ-multicategory. A 𝒱-enriched idℰ-multicategory is an object 𝑋
of ℰ together with a map 𝐢𝐧𝐝(𝑋)+ → 𝒱 of ℱ-multicategories.

A.2. The ℱ-multicategory 𝒱
Given the monoidal ℰ-category 𝑽, there is a ℱ-multicategory (a ℱ-operad, to
be more specific) 𝒱, constructed as follows.

Let 𝑽0 be the ℰ-graph 𝟙ℰ ⇇ 𝑉0. Consider the ℰ-category (𝑽0, ⊗𝑽, 𝕀𝑽) given
by the monoidal structure on 𝑽. Then, by adjunction, there is a morphism of
ℰ-categories

⊗0 ∶ ℱ(𝑽0) → (𝑽0, ⊗𝑽, 𝕀𝑽),

induced by the morphism of ℰ-graphs id𝑽0. On the underlying graph, that
is a morphism ⊗0 ∶ ℱ(𝑽0) → 𝑽0, which is non-trivial only on the arrow’s
component.

Let 𝑽1 = 𝑉+
0 ⇇ 𝑉+

1 be the pullback of ℰ-graphs

𝑽1 𝟙ℰ ⇇ 𝑉1

ℱ(𝑽0) 𝑽0

𝜋2

𝜋1

⌟
(!,s𝑽)

⊗0

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑉+
0 𝟙ℰ

𝟙ℰ 𝟙ℰ

𝜋2

𝜋1
⌟ ⇇

𝑉+
1 𝑉1

ℱ(𝑽0)1 𝑉0

𝜋2

𝜋1

⌟
sℳ

⊗0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Notice that 𝑉+
0 = 𝟙ℰ. In the internal language of ℰ, the pullback 𝑉+

1 has
elements those pairs ((𝐴𝑖)∶ ℱ(𝑽0)1, 𝑓 ∶ 𝑉1) such that s𝑽(𝑓 ) = ⊗0(𝐴𝑖). Thus,
informally speaking, 𝑽1 is the graph with one vertex and arrows 𝑓 ∶ 𝐴0 ⊗𝑽

… ⊗𝑽 𝐴𝑛 → 𝐴 of 𝑽 as edges, remembering the sequence 𝐴0 … 𝐴𝑛 yielding the
domain of 𝑓.

There is an ℰ-category structure (𝑽1, ∘𝑽1, id𝑽1) where composition is defined
as

𝑉+
1 × 𝑉+

1 𝑉1 × 𝑉1

𝑉+
1 𝑉1

ℱ(𝑽0)1 × ℱ(𝑽0)1 ℱ(𝑽0)1 𝑉0

𝜋2×𝜋2

∘𝑽1

𝜋1×𝜋1

⊗𝑽

𝜋2

𝜋1

⌟
sℳ

∘ℱ(𝑽0) ⊗0
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and identity as

𝟙ℰ

𝑉+
1 𝑉1

𝑉0 ℱ(𝑽0)1 𝑉0

id𝑽𝕀𝑽

id𝑽1

𝕀𝑽
𝜋2

𝜋1

⌟
s𝑽

(𝜂𝑽0)
1 ⊗0

.

In the internal language,

(𝐴𝑖, 𝑓 ), (𝐵𝑗, 𝑔) ∶ 𝑉+
1 ⊢ (𝐵𝑗, 𝑔) ∘𝑽1 (𝐴𝑖, 𝑓 ) = (𝐴𝑖 ∘ℱ(𝑽0) 𝐵𝑗, 𝑓 ⊗𝑽 𝑔).

Informally speaking,

(𝐴0⊗…⊗𝐴𝑛
𝑓
−→ 𝐴)∘𝑽1(𝐵0⊗…⊗𝐵𝑚

𝑔
−→ 𝐵) = (𝐴0⊗…⊗𝐴𝑛⊗𝐵0⊗…⊗𝐵𝑚

𝑓⊗𝑔
−−→ 𝐴⊗𝐵).

By adjunction, there is a morphism of 𝑽-categories

⊗1 ∶ ℱ(𝑽1) → (𝑽1, ∘𝑽1, id𝑽1)

induced by the morphism of ℰ-graphs id𝑽1.
There is a ℱ-multicategory 𝒱 with structure given by

𝑽1

ℱ(𝑽0) 𝑽0

𝜋1 (!,t𝑽𝜋2) .

The composition ⋅𝒱 ∶ 𝑽1 ×ℱ(𝑽0) ℱ(𝑽1) → 𝑽1 is given by

𝑽1 ×ℱ(𝑽0) ℱ(𝑽1) 𝑽1 ×𝑽0 𝑽1 𝟙ℰ ⇇ 𝑉1 ×𝑉0 𝑉1

ℱ(𝑽1) 𝑽1 𝟙ℰ ⇇ 𝑉1

ℱℱ(𝑽0) ℱ(𝑽0) 𝑽0

𝑽1×𝑽0⊗1

⋅𝒱𝜋2

𝜋2×𝜋2

(!,∘ℳ)

ℱ(𝜋1)

𝜋2

𝜋1

⌟
(!,s𝑽)

•𝑽0 ⊗0

,
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and the identity i𝒱 ∶ 𝑽0 → 𝑽1 given by

𝑽0

𝑽1 𝟙ℰ ⇇ 𝑉1

ℱ(𝑽0) 𝑽0

(!,id𝑽)

i𝒱

𝜂𝑽0

𝜋2

𝜋1

⌟
(!,s𝑽)

⊗0

.

Observe that only the edges’ part is non-trivial. In the internal language,
given (𝐴𝑖, 𝑓 ) ∶ 𝑉+

1 and ((𝐴𝑗)𝑖, 𝑓𝑖)∶ ℱ(𝑽1)1 such that 𝐴𝑖 = t𝑽(𝑓𝑖)∶ ℱ(𝑽0)1,
multi-category composition on the arrows’ component is defined as

(𝐴𝑖, 𝑓 )(⋅𝒱)1((𝐴𝑗)𝑖, 𝑓𝑖) ≔ (𝐴(𝑖,𝑗), 𝑓 ∘𝑽 ⊗1(𝑓𝑖))∶ 𝑉+
1

where 𝐴(𝑖,𝑗) = (•𝑽0)1((𝐴𝑗)𝑖)∶ ℱ(𝑽0)1 (and it is trivial on the object compo-
nent). Informally, 𝑓 ⋅𝒱 (𝑓0, … , 𝑓𝑛) is

𝐴0
0 ⊗ … ⊗ 𝐴0

𝑚0 … 𝐴𝑛
0 ⊗ … ⊗ 𝐴𝑛

𝑚𝑛

𝐴0 ⊗ … ⊗ 𝐴𝑛

𝐴.

𝑓0 ⊗ … ⊗ 𝑓𝑛

𝑓

A.3. Internal Enrichment to Enriched Generalized
Multicategories

Let 𝑿 be a 𝑽-enriched category. We shall build a 𝒱-enriched id-multicategory
𝒳 out of it. That is given by an object of ℰ, let’s choose 𝑋, and a morphism
𝐢𝐧𝐝(𝑋)+ → 𝒱 of ℱ-categories; that means a commutative diagram in Graphℰ

ℱ𝐢𝐧𝐝(𝑋)

ℱ𝐢𝐧𝐝(𝑋) 𝐢𝐧𝐝(𝑋)

𝑽1

ℱ(𝑽0) 𝑽0

∘𝐢𝐧𝐝(𝑋)

𝒳1

ℱ𝒳0 𝒳0
s𝒱 t𝒱

(A.3)
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such that the diagrams

𝐢𝐧𝐝(𝑋) ℱ𝐢𝐧𝐝(𝑋)

𝑽0 𝑽1

i𝐢𝐧𝐝(𝑋)+

𝒳0 𝒳1

i𝒱

(A.4)

and

ℱ𝐢𝐧𝐝(𝑋) ×ℱ𝐢𝐧𝐝(𝑋) ℱℱ𝐢𝐧𝐝(𝑋) ℱ𝐢𝐧𝐝(𝑋)

𝑽1 ×ℱ(𝑽0) ℱ(𝑽1) 𝑽1

⋅𝐢𝐧𝐝(𝑋)+

𝒳1×ℱ𝒳1 𝒳1

⋅𝒱

(A.5)

commute.

Let 𝒳0 be 𝐢𝐧𝐝(𝑋)
(!,Hom𝑿)
−−−−−−→ 𝑽0.

The arrow 𝒳1 ∶ ℱ𝐢𝐧𝐝(𝑋) → 𝑽1 requires a two-step construction. Consider
the ℰ-graph 𝑽𝑿 ∶ (𝑽𝑿)0 ⇇ (𝑽𝑿)1, given by

𝑽𝑿 𝑽1

𝐢𝐧𝐝(𝑋) 𝑽0

𝜋2

𝜋1

⌟
(!,t𝑽𝜋2)

𝒳0

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(𝑽𝑿)0 𝟙𝒞

𝑋 𝟙𝒞

𝜋2

𝜋1
⌟ ⇇

(𝑽𝑿)1 𝑉+
1

𝑋 × 𝑋 𝑉0

𝜋2

𝜋1
⌟

t𝑽𝜋2

Hom𝑿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and notice that (𝑽𝑿)0 = 𝑋, while, in the internal language, (𝑽𝑿)1 has el-
ements those tuples (𝑥0 ∶ 𝑋, 𝑥1 ∶ 𝑋, (𝐴𝑖)∶ ℱ(𝑽0)1, 𝑓 ∶ 𝑉1) such that s𝑽(𝑓 ) =
⊗0(𝐴𝑖) and t𝑽(𝑓 ) = Hom𝑿(𝑥0, 𝑥1). Informally, 𝑽𝑿 is the graph with elements
of 𝑋 as vertices, and arrows 𝑓 ∶ 𝐴0 ⊗ … ⊗ 𝐴𝑛 → Hom𝑿(𝑥0, 𝑥1) as edges from
the vertex 𝑥0 to the vertex 𝑥1.

There is a ℰ-category structure (𝑽𝑿, ∘𝑽𝑿
, id𝑽𝑿

). Composition ∘𝑽𝑿
∶ (𝑽𝑿)1 ×𝑋
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(𝑽𝑿)1 → (𝑽𝑿)1 is given by

𝑉1 𝑉1 ×𝑉0 𝑉1 𝑉1

𝑉1 × 𝑉1 𝑉1

𝑉+
1 × 𝑉+

1 ℱ(𝑽0)1 × ℱ(𝑽0)1 ℱ(𝑽0)1

(𝑽𝑿)1 ×𝑋 (𝑽𝑿)1 (𝑽𝑿)1 𝑉+
1

𝑋 × 𝑋 × 𝑋 𝑋 × 𝑋 𝑉0

𝜋2

𝜋1

∘𝑽

⊗𝑽

𝜋2×𝜋2

𝜋1×𝜋1
∘ℱ(𝑽0)

(𝜋2)1×(𝜋2)1

(𝜋1)1×𝑋(𝜋1)1

∘𝑽𝑿
(𝜋2)1

(𝜋1)1

⌟

𝜋2

𝜋1

t𝑽𝜋2

(𝜋1,𝜋3)

∘𝑿

Hom𝑿

.

Identity id𝑽𝑿
∶ 𝑋 → (𝑽𝑿)1 is given by

𝑋

(𝑽𝑿)1 𝑉+
1

𝑋 × 𝑋 𝑉0

(𝜂(𝑉0)𝕀𝑽!,id𝑿)

𝛥𝑋

id𝑽𝑿
(𝜋2)1

(𝜋1)1
⌟

t𝑽𝜋2

Hom𝑿

.

In the internal language, the composition is given by

(𝑥1, 𝑥2, 𝐵𝑗, 𝑔) ∘𝑽𝑿
(𝑥0, 𝑥1, 𝐴𝑖, 𝑓 ) ≔ (𝑥0, 𝑥2, 𝐴𝑖 ∘ℱ(𝑽0) 𝐵𝑗, ∘𝑿(𝑥0, 𝑥1, 𝑥2)(𝑓 ⊗𝑽 𝑔).

Informally, the composition is given by

𝐵0 ⊗ … ⊗ 𝐵𝑚 𝐴0 ⊗ … ⊗ 𝐴𝑛

Hom𝑿(𝑥1, 𝑥2) ⊗ Hom𝑿(𝑥0, 𝑥1)

Hom𝑿(𝑥0, 𝑥2).

𝑔 𝑓

∘𝑿(𝑥0,𝑥1,𝑥2)
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𝑽-functors ℱ𝐢𝐧𝐝(𝑋) → 𝑽𝑿 correspond bijectively, by adjointness, to mor-
phisms 𝐢𝐧𝐝(𝑋) → 𝑽𝑿 of ℰ-graphs (by abuse of notation, the same sym-
bol is being used for both a ℰ-category and its underlying ℰ-graph). Let
∘𝑿 ∶ ℱ𝐢𝐧𝐝(𝑋) → 𝑽𝑿 extend the morphism of ℰ-categories

𝐢𝐧𝐝(𝑋)
(id𝐢𝐧𝐝(𝑋),Hom𝑽)
−−−−−−−−−−−→ 𝐢𝐧𝐝(𝑋)×𝑽0 𝑽0

id𝐢𝐧𝐝(𝑋)×(𝜂𝑽0,id𝑽)
−−−−−−−−−−−−−→ 𝐢𝐧𝐝(𝑋)×𝑽0 𝑽1 ≅ 𝑽𝑿

that is, intuitively, the functor sending 𝑥 to id𝑿(𝑥) and (𝑥0, 𝑥1) to id𝑽(Hom𝑿(𝑥0, 𝑥1)).
Then,

∘𝑿(𝑥0, … , 𝑥𝑛) = Hom𝑿(𝑥𝑛−1, 𝑥𝑛) ⊗ … ⊗ Hom𝑿(𝑥0, 𝑥1)
∘𝑿−→ Hom𝑿(𝑥0, 𝑥𝑛).

By applying the forgetful functor, let’s consider ∘𝑿 as a mere morphism of
ℰ-graphs. Let then 𝒳1 ∶ ℱ𝐢𝐧𝐝(𝑋) → 𝑽1 be the composition of ∘𝑿 with the
morphism of ℰ-graphs 𝜋2 ∶ 𝑽𝑿 → 𝑽1.

Diagram (A.3) commutes. To prove this, consider the diagram

𝐢𝐧𝐝(𝑋)

ℱ𝐢𝐧𝐝(𝑋)

ℱ𝐢𝐧𝐝(𝑋) 𝑽𝑿 𝐢𝐧𝐝(𝑋)

𝑽1

ℱ(𝑽0) 𝑽0

𝜂𝐢𝐧𝐝(𝑋)

∘𝐢𝐧𝐝(𝑋)∘𝑿

ℱ(𝒳0)

𝜋2

𝜋1

𝒳0
s𝒱 t𝒱

.

Consider the two morphisms ℱ𝐢𝐧𝐝(𝑋) → 𝑽0 of ℰ-graphs forming the right
square. Direct calculation shows that the square at the bottom commutes.
The triangle on top is the underlying diagram of ℰ-graphs of a diagram of
ℰ-categories. Restricted by precomposition on 𝐢𝐧𝐝(𝑋), the two ℰ-graph paths
commute. Both the paths ℱ𝐢𝐧𝐝(𝑋) → 𝐢𝐧𝐝(𝑋) extend those to ℰ-functors,
and as such they must coincide by adjunction.

Consider the two morphisms ℱ𝐢𝐧𝐝(𝑋) → ℱ(𝑽0) of ℰ-graphs forming the
right square. Direct calculation shows that the two paths, restricted on 𝐢𝐧𝐝(𝑋),
commute. Moreover, they are functors of ℰ-categories. Both morphisms of ℰ-
graphs extend that to ℰ-functors on ℱ𝐢𝐧𝐝(𝑋), and as such they must coincide
by adjunction.
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Diagram (A.4) commutes, because

𝐢𝐧𝐝(𝑋) ×𝑽0 𝑽0 𝑽𝑿

𝐢𝐧𝐝(𝑋) ℱ𝐢𝐧𝐝(𝑋) 𝑽1

𝑽0

id𝐢𝐧𝐝(𝑋)×i𝒱

𝜋2(id𝐢𝐧𝐝(𝑋),𝒳0)
i𝐢𝐧𝐝(𝑋)+

𝜂𝐢𝐧𝐝(𝑋)
=

𝒳0

𝒳1

i𝒱

.

Diagram (A.5) commutes. To begin with, define ⋅𝑽𝑿
∶ 𝑽𝑿×ℱ(𝑽0)ℱ(𝑽𝑿) → 𝑽𝑿

as

𝑽𝑿 ×ℱ(𝑽0) ℱ(𝑽𝑿) 𝑽1 ×ℱ(𝑽0) ℱ(𝑽1)

𝑽𝑿 𝑽1

𝑽𝑿 𝐢𝐧𝐝(𝑋) 𝑽0

𝜋1

𝜋2×ℱ(𝜋2)

⋅𝑽𝑿
⋅𝒱

𝜋2

𝜋1

⌟
(!,t𝑽𝜋2)

𝜋1 𝒳0

.

In the internal language, given (𝑥0, 𝑥1, 𝐴𝑖, 𝑓 ) ∶ (𝑽𝑿)1 and (𝑥𝑖
0, 𝑥𝑖

1, (𝐴𝑗)𝑖, 𝑓𝑖)∶ ℱ(𝑽𝑿)1
such that 𝐴𝑖 = Hom𝑿(𝑥𝑖

0, 𝑥𝑖
1)∶ ℱ(𝑽0)1, multi-category composition on the ar-

rows’ component is defined as

(𝑥0, 𝑥1, 𝐴𝑖, 𝑓 )(⋅𝑽𝑿
)1(𝑥𝑖

0, 𝑥𝑖
1, (𝐴𝑗)𝑖, 𝑓𝑖) ≔ (𝑥0, 𝑥1, 𝐴(𝑖,𝑗), 𝑓 ∘𝑽 ⊗1(𝑓𝑖))∶ (𝑽𝑿)1.

Intuitively, the composition 𝑓 ⋅𝑽𝑿
(𝑓0, … , 𝑓𝑛) is given by

𝐴0
0 ⊗ … ⊗ 𝐴0

𝑚0 … 𝐴𝑛
0 ⊗ … ⊗ 𝐴𝑛

𝑚𝑛

Hom𝑿(𝑥0
0, 𝑥0

1) ⊗ … ⊗ Hom𝑿(𝑥𝑛
0 , 𝑥𝑛

1)

Hom𝑿(𝑥0, 𝑥1)

𝑓0 ⊗ … ⊗ 𝑓𝑛

𝑓

so that ⋅𝑽𝑿
is an extension of ⋅𝒱.

The morphism of ℰ-graphs ⋅𝑽𝑿
is a functor of ℰ-categories, where 𝑽𝑿 is
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given the ℰ-category structure (𝑽𝑿, ∘𝑽𝑿
, id𝑽𝑿

). This means that the diagrams

(𝑽𝑿 ×ℱ(𝑽0) ℱ(𝑽𝑿))
0

(𝑽𝑿 ×ℱ(𝑽0) ℱ(𝑽𝑿))
1

(𝑽𝑿)0 (𝑽𝑿)1

(⋅𝑽𝑿
)

0

id𝑽𝑿×ℱ(𝑽𝑿)

(⋅𝑽𝑿
)

1

id𝑽𝑿

(A.6)

and

(𝑽𝑿 ×ℱ(𝑽0) ℱ(𝑽𝑿))
1

×𝑋 (𝑽𝑿 ×ℱ(𝑽0) ℱ(𝑽𝑿))
1

(𝑽𝑿 ×ℱ(𝑽0) ℱ(𝑽𝑿))
1

(𝑽𝑿)1 ×𝑋 (𝑽𝑿)1 (𝑽𝑿)1

(⋅𝑽𝑿
)

1
×(⋅𝑽𝑿

)
1

∘(𝑽𝑿×ℱ(𝑽𝑿))

(⋅𝑽𝑿
)

1

∘𝑽𝑿
(A.7)

commute.
Then, to prove that (A.5) commutes is to prove that

ℱ𝐢𝐧𝐝(𝑋) ×ℱ𝐢𝐧𝐝(𝑋) ℱℱ𝐢𝐧𝐝(𝑋) ℱ𝐢𝐧𝐝(𝑋)

𝑽𝑿 ×ℱ(𝑽0) ℱ(𝑽𝑿) 𝑽𝑿

⋅𝐢𝐧𝐝(𝑋)+

∘𝑿×ℱ∘𝑿 ∘𝑿

⋅𝑽𝑿

(A.8)

commutes. All morphisms in (A.8) are functors of ℰ-categories. Thus, it
suffices to show that the paths commute on the generators of

ℱ𝐢𝐧𝐝(𝑋) ×ℱ𝐢𝐧𝐝(𝑋) ℱℱ𝐢𝐧𝐝(𝑋) ≅ ℱ(𝐢𝐧𝐝(𝑋) ×𝐢𝐧𝐝(𝑋) ℱ𝐢𝐧𝐝(𝑋)).

Also, notice that 𝐢𝐧𝐝(𝑋) ×𝐢𝐧𝐝(𝑋) ℱ𝐢𝐧𝐝(𝑋) ≅ ℱ𝐢𝐧𝐝(𝑋). With this in mind,
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the diagram

𝑽𝑿

ℱ𝐢𝐧𝐝(𝑋)

ℱ𝐢𝐧𝐝(𝑋) 𝐢𝐧𝐝(𝑋) ×𝐢𝐧𝐝(𝑋) ℱ𝐢𝐧𝐝(𝑋) ℱ𝐢𝐧𝐝(𝑋) ×ℱ𝐢𝐧𝐝(𝑋) ℱℱ𝐢𝐧𝐝(𝑋)

(𝐢𝐧𝐝(𝑋) × 𝑽0) ×𝑽0 𝑽𝑿 𝑽𝑿 ×ℱ(𝑽0) ℱ(𝑽𝑿)

𝑽𝑿

∘𝑿

(∘𝐢𝐧𝐝(𝑋),idℱ𝐢𝐧𝐝(𝑋))

∘𝑿

𝜋2

𝜂𝐢𝐧𝐝(𝑋)×𝜂ℱ𝐢𝐧𝐝(𝑋)

(id𝐢𝐧𝐝(𝑋)×Hom𝑿)×∘𝑿

⋅𝐢𝐧𝐝(𝑋)+

∘𝑿×ℱ∘𝑿

(id𝐢𝐧𝐝(𝑋)×i𝒱)×𝜂𝑽𝑿

𝜋2

⋅𝑽𝑿

proves that (A.8) commutes.

Remark A.3.1. For the notion of natural transformation of functors of 𝑇-
multicategory, and of 𝒱-enriched functor, see Leinster 2002.

Given a functor 𝐹∶ 𝑿 → 𝒀 of 𝑽-enriched categories, there is a 𝒱-enriched
ℱ-functor 𝒳 → 𝒴 given by 𝐹0 ∶ 𝑋0 → 𝑌0, and 𝐹1 ∶ 𝐢𝐧𝐝(𝑋) → 𝑽1 induced by
𝐹1 ∶ 𝑋 × 𝑋 → 𝑉1.

A.4. Enriched Generalized Multicategories to
Internal Enrichment

Let 𝒳∶ 𝐢𝐧𝐝(𝑋)+ → 𝒱 be a 𝒱-enriched ℱ-multicategory as in eq. (A.3).
Then there is a 𝑽-category 𝑿 on 𝑋 whose hom is Hom𝑿 = (𝒳0)1 ∶ 𝑋 × 𝑋 =

117



A. Enriched Generalized Multicategories

𝐢𝐧𝐝(𝑋)1 → 𝑉0, whose composition is

𝑋 × 𝑋 × 𝑋 ≅ 𝐢𝐧𝐝(𝑋)1 s𝐢𝐧𝐝(𝑋)
×t𝐢𝐧𝐝(𝑋)

𝐢𝐧𝐝(𝑋)1

(ℱ𝐢𝐧𝐝(𝑋))1 sℱ𝐢𝐧𝐝(𝑋)
×tℱ𝐢𝐧𝐝(𝑋)

(ℱ𝐢𝐧𝐝(𝑋))1

(ℱ𝐢𝐧𝐝(𝑋))1

(𝑽1)1

𝑉1

(𝜂𝐢𝐧𝐝(𝑋))1×(𝜂𝐢𝐧𝐝(𝑋))1

∘ℱ𝐢𝐧𝐝(𝑋)

(𝒳1)1

(𝜋2)1

,

and whose identity id𝑿 is

𝑋 = 𝐢𝐧𝐝(𝑋)0
(𝜂)0−−−→ (ℱ𝐢𝐧𝐝(𝑋))0

iℱ𝐢𝐧𝐝(𝑋)−−−−−−→ (ℱ𝐢𝐧𝐝(𝑋))1
(𝒳1)1−−−−→ (𝑽1)1

(𝜋2)1−−−−→ 𝑉1.

Given a ℱ-enriched functor 𝐹∶ 𝑿 → 𝒀 of ℱ-enriched categories, there is a
functor of 𝑽-categories given by 𝐹0 ∶ 𝑋0 → 𝑌0, and 𝐹1 ∶ 𝑋 × 𝑋 → 𝑉1 induced by
𝐹1 ∶ 𝐢𝐧𝐝(𝑋) → 𝑽1.

A.5. Equivalence
Finally, let’s show that the constructions defined in the previous sections are
mutually inverse (up to isomorphism), meaning that 𝒱-enriched id-multicategories
and 𝑽-enriched categories are equivalent notions.

Proposition A.5.1. Let 𝑿 be a 𝑽-enriched category, 𝒳 the 𝒱-enriched id-
multicategory associated to 𝑿, and 𝑿̄ the 𝑽-enriched category associated to 𝒳.
Then, 𝑿 ≅ 𝑿̄.

Proof. Observe that Hom𝑿 = Hom𝑿̄. The composition

(ℱ𝐢𝐧𝐝(𝑋))1 s×t (ℱ𝐢𝐧𝐝(𝑋))1
∘ℱ𝐢𝐧𝐝(𝑋)−−−−−−→ (ℱ𝐢𝐧𝐝(𝑋))1

(𝒳1)1−−−−→ (𝑽1)1

is equal to

(ℱ𝐢𝐧𝐝(𝑋))1 s×t (ℱ𝐢𝐧𝐝(𝑋))1
(𝒳1)1×(𝒳1)1−−−−−−−−−−→ (𝑽1)1 × (𝑽1)1

∘𝑽1−−→ (𝑽1)1.
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Then, the composition ∘𝑿̄ of 𝑿̄ is

𝐢𝐧𝐝(𝑋)1 s×t 𝐢𝐧𝐝(𝑋)1

(ℱ𝐢𝐧𝐝(𝑋))1 s×t (ℱ𝐢𝐧𝐝(𝑋))1

(𝑽1)1 × (𝑽1)1

(𝑽1)1

𝑉1

(𝜂𝐢𝐧𝐝(𝑋))1×(𝜂𝐢𝐧𝐝(𝑋))1

(𝒳1)1×(𝒳1)1

∘𝑽1

(𝜋2)1

=

𝐢𝐧𝐝(𝑋)1 s×t 𝐢𝐧𝐝(𝑋)1

(ℱ𝐢𝐧𝐝(𝑋))1 s×t (ℱ𝐢𝐧𝐝(𝑋))1

(𝑽1)1 × (𝑽1)1

𝑉1 ×𝑋 𝑉1

𝑉1

(𝜂𝐢𝐧𝐝(𝑋))1×(𝜂𝐢𝐧𝐝(𝑋))1

(𝒳1)1×(𝒳1)1

(𝜋2)1×(𝜋2)1

∘𝑿(𝜋1⊗𝜋2)

which is ∘𝑿.

Proposition A.5.2. Let 𝒳 be a 𝒱-enriched id-multicategory, 𝑿 the 𝑽-enriched
category associated to 𝒳, and 𝒳̄ the 𝒱-enriched id-multicategory associated
to 𝑿. Then, 𝒳 ≅ 𝒳̄.

Proof. Observe that 𝒳0 = 𝒳̄0. Then, it’s enough to check (𝒳1)1 = (𝒳̄1)1
(up to canonical isomorphism) on the generators of the free category ℱ𝐢𝐧𝐝(𝑋),
that is, on

𝐢𝐧𝐝(𝑋)1 s𝐢𝐧𝐝(𝑋)
×t𝐢𝐧𝐝(𝑋)

𝐢𝐧𝐝(𝑋)1

(ℱ𝐢𝐧𝐝(𝑋))1 sℱ𝐢𝐧𝐝(𝑋)
×tℱ𝐢𝐧𝐝(𝑋)

(ℱ𝐢𝐧𝐝(𝑋))1

(ℱ𝐢𝐧𝐝(𝑋))1

(𝜂𝐢𝐧𝐝(𝑋))1×(𝜂𝐢𝐧𝐝(𝑋))1

∘ℱ𝐢𝐧𝐝(𝑋)

but that means to check that ∘𝑿 is equal to the composition of the 𝑽-enriched
category associated to 𝒳̄, which has already been proven in the previous
proposition.
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