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Abstract

Background: Norovirus, also known as the winter vomiting bug, is the
predominant cause of non-bacterial gastroenteritis worldwide. Disease
control is predicated on a robust innate immune response during the early
stages of infection. Double-stranded RNA intermediates generated during
viral genome replication are recognised by host innate immune sensors in
the cytoplasm, activating the strongly antiviral interferon gene programme.
Ifit proteins (interferon induced proteins with tetratricopeptide repeats),
which are highly expressed during the interferon response, have been
shown to directly inhibit viral protein synthesis as well as regulate innate
immune signalling pathways. Ifit1 is well-characterised to inhibit viral
translation by sequestration of eukaryotic initiation factors or by directly
binding to the 5' terminus of foreign RNA, particularly those with non-self
cap structures. However, noroviruses have a viral protein, VPg, covalently
linked to the 5' end of the genomic RNA, which acts as a cap substitute to
recruit the translation initiation machinery.

Methods: Ifit1 knockout RAW264.7 murine macrophage-like cells were
generated using CRISPR-Cas9 gene editing. These cells were analysed for
their ability to support murine norovirus infection, determined by virus yield,
and respond to different immune stimuli, assayed by quantitative PCR. The
effect of Ifit proteins on norovirus translation was also tested in vitro.
Results: Here, we show that VPg-dependent translation is completely
refractory to Ifit1-mediated translation inhibition in vitro and Ifit1 cannot bind
the 5' end of VPg-linked RNA. Nevertheless, knockout of Ifit1 promoted viral
replication in murine norovirus infected cells. We then demonstrate that Ifit1
promoted interferon-beta expression following transfection of synthetic
double-stranded RNA but had little effect on toll-like receptor 3 and 4
signalling.

Conclusions: Ifit1 is an antiviral factor during norovirus infection but cannot
directly inhibit viral translation. Instead, Ifit1 stimulates the antiviral state
following cytoplasmic RNA sensing, contributing to restriction of norovirus
replication.
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Introduction

The Caliciviridae family of small positive-sense RNA viruses
comprises 11 genera, including Norovirus and Sapovirus. Noro-
viruses are the leading cause of non-bacterial gastroenteritis
in humans, accounting for 18% of acute gastroenteric disease
worldwide'. While recent advancements in human intestinal
organoids have made it possible to study human noroviruses in
culture’, murine norovirus (MNV) remains a valuable model
for dissecting interactions between noroviruses and their host,
owing to readily cultivable permissive cell lines and a flexible
reverse genetics system’.

The innate immune response to viral infection is essential for
the control of norovirus replication and clearance®. Sensing of
calicivirus infection is predominantly mediated by cytoplasmic
double-stranded RNA sensors; both RIG-I and MDAS have
been implicated in controlling the innate immune response at
different stages of infection’~’. By contrast, TLR3, an endosomal
dsRNA sensor, has little effect on norovirus replication’. RIG-1
and MDAS signalling converge on the activation of the antiviral
signalling complex MAVS, which recruits TBK1 to induce the
phosphorylation of interferon regulatory factor (IRF)-3. Acti-
vated IRF-3 dimerises and translocates into the nucleus where
it promotes the transcription of type I interferon (IFN) and
early antiviral genes.

During the antiviral response, among the most strongly upregu-
lated IFN-stimulated genes are the IFIT family of RNA-binding
proteins*'’. In humans, IFIT1 directly inhibits the translation
of non-self RNAs at the initiation stage, by binding over the
57 terminus, occluding the recruitment of eukaryotic trans-
lation initiation factor (eIF) 4F'-". TIFIT1 binding is highly
specific for capped mRNA which lacks methylation at the
first or second cap-proximal nucleotides (cap0)'*. Murine Ifitl
similarly binds cap0 RNA and mediates the inhibition of capQ
viruses in vivo'"'>7'8, Tt is important to note, however, that
murine Ifitl and human IFIT1, which share 52% sequence
identity, have distinct evolutionary origins, with murine Ifitl being
more closely related to another gene family member, IFIT1B".

However, IFIT1 may have antiviral activity independent of its
RNA-binding capability. IFIT1 was reported to inhibit hepatitis
C virus replication””' by binding to eIF3 to prevent viral trans-
lation initiation”>**. Additionally, direct binding to the human
papilloma virus DNA helicase, E1, was reported to inhibit viral
DNA replication”?°. TIFIT1 also modulates different stages of
the host innate immune response during both viral and bacterial
infection”” and may regulate the inflammatory response in
human astrocytes®’. MNV can antagonise innate immune sens-
ing and was consequently shown to inhibit the expression of a
number of interferon-stimulated genes, including Ifit2°'. However,
associations between noroviruses and other members of the Ifit
family have not been established.

We investigated whether Ifitl played a role in the antiviral
response to calicivirus infection. We show that Ifitl knockout
promoted MNV replication in a macrophage cell line. How-
ever, calicivirus translation was not inhibited by Ifitl. Instead,
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we show that Ifitl knockout cells have impaired cytoplasmic
double-stranded RNA sensing, resulting in a weaker type I IFN
response, which permits increased viral replication.

Methods

Cells, viruses and plasmids

Murine macrophage RAW264.7, microglial BV2 and Crandell-
Rees feline kidney cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) with 10% (v/v) foetal calf serum
(FCS) and 1% penicillin/streptomycin (P/S). LLC-PK cells,
expressing bovine viral diarrhoea virus NPro to render them IFN-
deficient, were cultured in Eagle’s minimal essential medium
(EMEM) supplemented with 200 uM glycochenodeoxycholic
acid (GCDCA; Sigma), 2.5% FCS, and 1% P/S*. MNV-1
strain CW.1 was recovered from the pT7:MNV-G 3’Rz plas-
mid as described*. Feline calicivirus (FCV) strain Urbana was
recovered from the pQl14 full length infectious clone*. The
porcine sapovirus (PSaV) Cowden tissue culture adapted strain
was obtained from K. O. Chang (Kansas State University) and
recovered from the full-length infectious clone pCV4A*. For
lentivirus generation, psPAX2 (Addgene plasmid # 12260) and
pMD2.G (Addgene plasmid # 12259) were gifts from Didier
Trono. For bacterial expression, murine Ifitl (NM_008331.3),
Ifit2  (NM_008332.3) and Ifit3 (NM_010501.2) were cloned
between Ncol and Xhol sites in pTriExl.1, to contain a
C-terminal His, tag.

Knockout cells

First, five guide RNAs designed against the 5’ end of the sec-
ond exon of Ifitl (Table 1), were cloned into lentiCRISPR
v2%. Next, 3 pg guide RNA plasmid was cotranfected into
5 x 10° HEK293T cells with 3 pg psPAX2 packaging vector
and 1.5 pg pMD2.G VSV-G envelope vector using lipo-
fectamine 2000 (Invitrogen). Supernatants were harvested over
72 hours, pooled and used directly for transduction of subcon-
fluent RAW264.7 cells. After 3 days, transduced cells were
selected with puromycin for one week, before single cell clones
were generated by dilution in 96-well plates. Knockout was
verified by western blotting, as described below, after treatment
with murine IFNB for 12 hours and harvesting in passive
lysis buffer (Promega).

Table 1. Guide RNA sequences

for CRISPR-Cas9 knockout of

Ifit1. Guide RNAs were generated
using crispr.mit.edu and cloned into
LentiCRISPRv2%*. The 3’ protospacer
adjacent motif (PAM) sequences are
underlined in bold.

Guide RNA sequence
GGAGGTTGTGCATCCCCAATGGG
ATTGGGGATGCACAACCTCCTGG
CTTGACATCAAGAACCCATTGGG
GAAGCAGATTCTCCATGACCTGG
AAATAATGACATACCTGATTTIGG
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Infections

Cells were infected for 1 hour at 37°C at the multiplicity of
infection (MOI) indicated in the legend to Figure 1. Cells were
harvested by freezing at the indicated times and titres were
determined by 50% tissue culture infectious dose (TCID,)) in
BV2 cells, as described’, performed in technical quadruplicate.
Plates were scored by cytopathic effect after 5 days and titres
were calculated by the Reed and Muensch method?.

Stimulation of RAW264.7 cells

Cells were treated with 10 ng/mL LPS (Sigma) or 1 ug/mL polyl:
C (Sigma), or transfected with 2 pg polyl:C using lipofectamine
2000 (Invitrogen). Cells were harvested by washing twice in
PBS before lysis in passive lysis buffer (Promega) and RNA
was extracted using TRIreagent (Sigma).

Reverse transcription-quantitative PCR (RT-gPCR)

For RT-qPCR analysis, cDNA was generated using Moloney
murine leukemia virus (M-MLV) reverse transcriptase (Promega)
with random hexamer primers. qPCR was performed on
cDNA using primers for murine IFNB*, TNFa*® and GAPDH,
using the qPCR core kit for SYBR green I with low ROX
passive reference (Eurogentec), using the manufacturer’s
recommended parameters: 95°C for 15 seconds then 60°C for 1
minute, for 50 cycles. Data were normalised against GAPDH,
expressed as fold change over mock (244¢9),

Western blotting

Cell lysates were separated in 12.5% SDS-PAGE and transferred
to 0.45-um nitrocellulose membrane by semi-dry blotting. Mem-
branes were blocked in 5% milk phosphate buffered saline with
0.1% tween-20 (PBS-T) and primary antibodies were incubated
in 5% BSA PBS-T at 4°C overnight. Anti-Ifitl (Santa Cruz,
sc-134949, rabbit polyclonal) was used at 1:500, anti-Ifit2/3
(ProteinTech, 12604-1-AP, rabbit polyclonal) was used at 1:800
and anti-GAPDH (Invitrogen, AM4300, mouse monoclonal)
was used at 1:8000. Blots were incubated with IRDye 680LT
Goat anti-Mouse IgG (Li-Cor, 926-68020) and IRDye 800CW
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Donkey anti-Rabbit IgG (Li-Cor, 926-32213) secondary anti-
bodies at 1:10000 in PBS-T, for 1 hour at room temperature,
then imaged on an Odyssey CLx Imaging System (Li-Cor).

RNA extraction and in vitro transcription

Preparation of VPg-linked RNA from MNV, FCV¥* and
PSaV** infected cells was performed as described using the
GenElute total RNA extraction kit (Sigma). In vitro transcribed
RNAs were generated with T7 polymerase (New England
Biosciences) from linearised plasmids and subsequently capped
using the ScriptCap Capping System (CellScript).

Recombinant protein purification

Recombinant Ifitl, Ifit2 and Ifit3 were expressed in BL21 (DE3)
Star Escherichia coli (Invitrogen). Cells were grown to an
OD600 of ~1.0 in 2x TY media at 37°C. Expression was induced
with 1 mM isopropyl b-D-1-thogalactopyranoside at 22°C
for 16 hours. Cells were harvested in a lysis buffer containing
400 mM KCI, 40 mM Tris pH 7.5, 5% glycerol, 2 mM DTT
and 0.5 mM phenylmethylsophonyl fluoride with 1 mg/mL
lysozyme. Proteins were purified by affinity chromatography
on NiNTA agarose (Qiagen), followed by FPLC on MonoQ
(GE Healthcare) as described”'.

In vitro translation

Using the Flexi Rabbit Reticulocyte Lysate system (Promega),
8 nM cap0 or 20 ng/uL VPg-linked RNA was translated in the
presence or absence of 1.5 uM Ifit proteins, including 5 uCi
EasyTag™ L-[*S]-Methionine (Perkin-Elmer). After 90 min at
30°C, reactions were terminated by addition of 50 mM EDTA
and 0.5 pg/uL RNaseA. Labelled proteins were separated by
12.5% PAGE and detected by autoradiography using an FLA7000
Typhoon Scanner (GE).

Primer extension inhibition

Primer extension inhibition assays were performed as described'.
Briefly, 1 nM capO or VPg-linked RNA were incubated with 1.5 uM
Ifit proteins for 10 minutes at 37°C in reactions containing
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Figure 1. Ifit1 decreases MNV infection in RAW264.7 cells. (A) Ifit1 knockout RAW264.7 cells were generated by CRISPR-Cas9 gene
editing. Cells were stimulated with IFN for 12 hours then analysed by western blotting against Ifit1 and Ifit2/Ifit3. GAPDH was included as a
loading control for each membrane. (B, C) Infection of wild-type (WT) and Ifit1 knockout (KO) RAW264.7 cells at (B) high or (C) low multiplicity
of infection (MOI) with murine norovirus (MNV-1). Viral titres were determined by 50% tissue culture infectious dose (TCID, ) in BV2 cells and
expressed as log, -transformed values. At late time points, indicated, severe cytopathic effect (cpe) was visible. Graphs show the mean and
the standard error of three biological replicates. Titres were compared between WT and KO cells for each time point by two-tailed Student’s
t-test. Asterisks indicate that a statistically significant difference (p < 0.05) was observed for both KO cell lines.
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20 mM Tris pH 7.5, 100 mM KCI, 2.5 mM MgCl,, 1 mM ATP,
0.2 mM GTP, 1| mM DTT and 0.25 mM spermidine. RT was
carried out using 2.5 U avian myeloblastosis virus (AMV)
reverse transcriptase (Promega) and a 3?P-labelled primer in
the presence of 4 mM MgCl, and 0.5 mM dNTPs. Primer
sequences used for RT were CCTGCTCAGGAGGGGTCATG
(MNV-1), GTCATAACTGGCACAAGAAGG (FCV) and GTCGT-
GGGGTGCCAGAAATC (PSaV). Sequencing reactions were
performed using the Sequenase Version 2.0 DNA Sequencing
Kit (ThermoFisher) in the presence of *S-labelled ATP. cDNA
products were resolved on 6% denaturing PAGE and detected
by autoradiography using an FLA7000 Typhoon Scanner (GE).

Statistical analysis

Log viral titres and RT-qPCR fold changes were analysed by
two-tailed Student’s t-test, assuming unequal variance, using
Microsoft Excel (Microsoft Office 2013, Version 15.0.5119.1000).
Values were compared between wildtype cells and each knockout
cell line, for each time point. Where both knockout cell lines
were significantly different to wildtype (p < 0.05), this is
indicated in the figure with an asterisk. Graphs were generated
in GraphPad Prism 7 (Version 7.03). Full statistics are available
as Underlying data*.

An earlier version of this article can be found on bioRxiv
(doi: https://doi.org/10.1101/611236).

Results

Ifit1 inhibits MNV in RAW264.7 cells

We examined the effect of Ifitl on calicivirus replication, using
MNV as a model. Ifitl knockout RAW264.7 cell lines were
generated by CRISPR-Cas9 gene editing and complete knock-
out was verified by western blotting. Images of all uncropped
blots are available as Underlying data®. Ifitl expression was
undetectable in two independent Ifitl” clones after 12 hours
treatment with IFNf, while expression of Ifit2 and Ifit3 was
maintained (Figure 1A). Wild-type and Ifitl RAW264.7
cells were then infected with MNV-1 at low or high MOI and
samples were harvested by freezing at the indicated time points.
Viral titres were determined by TCID, assay in BV2 cells.
Raw viral titres are available as Underlying data™.

In Ifitl" cells infected at a high multiplicity of infection, MNV-1
titres were slightly higher than wild-type cells at 6-8 hours
post infection (Figure 1B). By 12-14 hours post infection,
viral titres from wild-type and knockout cells were similar. At
these times, a high degree of cytopathic effect was observed,
hence infection did not progress any further. When infected at
low multiplicity, the differences between wild-type and Ifitl™”
cells were more apparent (Figure 1C). Infection of Ifitl” cells
resulted in up to 20x higher MNV-1 yields compared to wild-
type cells over the course of the infection, suggesting that Ifitl has
antiviral activity during norovirus infection.

Ifit1 cannot inhibit VPg-dependent translation

Ifitl primarily mediates its antiviral activity by binding to the
57 cap of non-self RNA, to occlude translation factor recruit-
ment and prevent viral translation. However, members of the
Caliciviridae family possess a viral protein, VPg, covalently
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linked to the 5” end of the genome which promotes viral trans-
lation, in place of a 57 cap®¥*.  Since knockout of Ifitl
promoted MNYV replication in vitro, this suggests that Ifitl may
restrict. MNV replication directly, by inhibiting viral transla-
tion, or indirectly, by creating a cellular environment which is
less permissive to infection. To differentiate these possibilities,
we first examined whether Ifitl could inhibit calicivirus trans-
lation in vitro. A similar in vitro translation approach was
originally used by Guo et al. to describe the activity of IFIT
proteins®, and since has been successfully used to investigate
IFIT1 translation inhibition on human parainfluenza virus*’ and
Zika virus model RNAs*'.

To generate VPg-linked RNA for examination, total RNA
was extracted from cells infected with MNV, PSaV or FCV.
For PSaV and FCV, translation from VPg-linked RNA pre-
pared in this way predominantly consists of VP1, the major
viral capsid protein, which is translated from a highly abundant
subgenomic RNA (Figure 2A)*>*. VPg-linked RNAs were trans-
lated in rabbit reticulocyte lysate in the presence or absence of
recombinantly expressed and purified murine Ifitl, Ifit2 and Ifit3.
3S-Met-labelled translation products were separated by SDS-
PAGE and detected by autoradiography. Full-length in vitro
transcribed cap0 RNA was included as a positive control for
Ifitl activity (Figure 2A). As expected, Ifitl strongly inhibited
the translation of artificial capO viral RNA'?, but had no effect
on the translation of VPg-linked RNAs (Figure 2B). Addition of
Ifit2 and Ifit3 did not enhance translation inhibition on any RNA
tested.

Consistently, we observed no evidence of direct Ifitl binding to
VPg-linked RNA when examined in a primer extension inhi-
bition assay, an approach we have used previously to quantify
IFIT binding to different RNAs'>*!. Ifitl, alone or with Ifit2 and
Ifit3, was incubated with viral RNA before reverse transcription
from a radiolabelled primer specific for the full-length genomic
RNA of each virus. cDNA products were resolved by denaturing
polyacrylamide gel electrophoresis. Ifitl was capable of forming
a toeprint 6-7 nt downstream of the full-length cDNA product
on artificial cap0 RNAs, consistent with binding to the 5” end
(Figure 2C). However, VPg-linked RNAs derived from infected
cells were not bound by Ifitl. Addition of Ifit2 and Ifit3
did not affect Ifit] binding.

Ifit1 knockout cells have defective innate immune sensing
Ifitl was previously shown to regulate different stages during
innate immune signalling, including signalling downstream of
MAVS and TLR3?***. Therefore, we hypothesised that Ifitl
may mediate its antiviral activity during norovirus infection by
promoting the innate immune response to infection. We therefore
tested our knockout cell lines for their ability to respond to differ-
ent stimuli. Wild-type and Ifitl”- RAW264.7 cells were incubated
with LPS or polyl:C, or transfected with polyl:C, to stimulate
TLR4, TLR3 or cytoplasmic RNA sensing pathways, respec-
tively. Samples were taken up to 24 hours post infection and RNA
or protein was extracted for analysis.

When polyl:C was transfected, to stimulate cytoplasmic RNA
sensing, IFNP expression was strongly upregulated 3 to 9 hours
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Figure 2. Calicivirus translation is resistant to Ifit1 inhibition. (A) Schematic representations of in vitro transcribed capO genomic RNA
or VPg-linked genomic and subgenomic RNAs, purified from infected cells, used for in vitro translation and toeprint assays. (B) In vitro
translation of cap0 or VPg-linked RNA from murine norovirus (MNV), porcine sapovirus (PSaV) and feline calicivirus (FCV). VP1, the dominant
protein product produced from the VPg-linked subgenomic RNA, is indicated. (C). Toeprint analysis of MNV, PSaV and FCV VPg-linked and
cap0 RNA. Ifit1 binding is indicated by a cDNA product 6-7 nt shorter than the full-length signal (FL), indicated by black arrowheads. Red
arrowheads indicate a 1-2 nt shorter full-length signal on VPg-linked RNAs.

post transfection, decreasing by 12 to 24 hours (Figure 3A).
Expression was 4- to 10-fold higher in wild-type cells during
the peak of expression, compared to Ifitl” cells. TNFo was
induced to a much lesser extent and expression was compa-
rable between all cell lines (Figure 3B). We observed weak
induction of both IFNP and TNFo when polyl:C was added to
the cell culture medium, rather than transfected, and expres-
sion levels were comparable between all cell lines tested
(Figure 3C-D). This indicates that the differential response in
Ifitl” cells is specific to cytoplasmic, rather than endosomal,
RNA sensing. Cells treated with LPS showed little upregulation of
IFNPB mRNA expression when analysed by RT-qPCR (Figure 3E).
However, TNFo. was strongly upregulated 3 to 6 hours post
LPS treatment in all cell lines, returning to near baseline expres-
sion by 9 hours post treatment (Figure 3F). At 6 hours, TNFo

expression was 2- to 3-fold higher in IFIT1" cells compared to
wild type, consistent with a recent report”. Raw gene expression
data are available as Underlying data*.

Discussion

Noroviruses replicate in the cytoplasm, where they establish
membrane-associated replication complexes in which the viral
genome is replicated via a dsRNA intermediate. Cytoplasmic
double-stranded RNA sensors, RIG-I and MDAS, are princi-
pally responsible for detecting replicating calicivirus RNA,
activating the type I IFN response’”. This rapid and robust
antiviral programme is necessary for viral clearance’. Here, we
demonstrated that the antiviral protein Ifitl promotes type I IFN
responses in RAW264.7 cells and as such contributes to the
host antiviral response to restrict murine norovirus infection.
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Figure 3. Ifit1 promotes type | IFN expression following cytoplasmic RNA sensing. (A-F) Wild-type (WT) and Ifit1 knockout (KO) RAW264.7
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induction was compared between WT and KO cells for each time point by two-tailed Student’s t-test. Asterisks indicate that a statistically

significant difference (p < 0.05) was observed for both KO cell lines.

We observed that Ifitl” RAW264.7 cells were more susceptible
to MNV infection. In most cells, Ifitl is not expressed to detect-
able levels under basal conditions, but expression is induced
within a few hours of IFN treatment or viral infection®**. As
such, we noticed a more pronounced difference between wild-type
and Ifitl-deficient cells following a low multiplicity infection,
since type I IFN from infected cells will induce naive cells to
establish an antiviral state, including the upregulation of Ifitl
expression.

IFIT proteins have been implicated in regulating different
stages of the antiviral and inflammatory responses (reviewed
by Mears and Sweeney’’). In humans, IFIT1 was shown to pro-
mote type I IFN expression during alphavirus infection®.
Consistently, a recent study in human and murine macrophages
has shown that IFIT1 stimulates type I IFN expression, but
represses the inflammatory gene programme, in the acute response
following a number of different stimuli®. The authors suggest
that a small population of nuclear IFIT1 can modulate the
activity of transcription regulatory complex Sin3A-HDAC?2,
which is responsible for downregulating both type I IFN and
inflammatory gene expression.

Another study has suggested that cytoplasmic IFIT1 downregu-
lates IFN expression by disrupting the MAVS-TBKI1-STING
signalling axis*. Together, these studies present a model by
which a low level of nuclear IFIT1 promotes type I IFN responses

by modulating transcriptional activity. Later in infection,
when IFIT1 is highly expressed in the cytoplasm, IFIT1 prevents
induction of type I IFN by interfering with MAVS signalling.
Consistent with this hypothesis, we observed strong IFNf
expression 3 to 9 hours post stimulation in wild-type cells,
which sharply decreased from 9 to 24 hours. In Ifitl” cells,
IFNB expression was induced to a lesser extent, but remained
constant up to 24 hours post stimulation, indicating that Ifitl
may be necessary both to switch on and switch off IFN induction
at different stages of the immune response.

In caliciviruses, VPg acts as a substitute for the mRNA 5” cap,
by interacting directly with components of the elF4F complex,
to promote ribosome recruitment via elF3*>¥%  Additionally,
the VPg of MNV and Norwalk virus, the prototypic strain
of human norovirus, may also interact with elF3 to promote
efficient translation initiation’'*>. IFIT proteins have been reported
to interact with elF3 and inhibit translation initiation on certain
mRNA transcripts”~*. Human IFIT1 binds to the e subunit of
elF3* and can inhibit translation from the hepatitis C virus inter-
nal ribosome entry site (IRES)’'. However, IFIT1 cannot inhibit
translation from the elF3-dependent encephalomyocarditis virus
IRES”. Murine Ifitl and Ifit2 have both been shown to bind
to different domains of the elF3c subunit, causing transla-
tion inhibition on luciferase reporter mRNA at micromolar
concentrations**. However, while Ifit3 was also reported to bind to
elF3c, it has no impact on translation’.
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We have demonstrated that 5° VPg renders calicivirus genomic
RNA resistant to Ifitl-mediated translation inhibition. We saw
no effect on translation of either capped or VPg-linked RNA
when Ifit2 and Ifit3 were added to in vitro translation lysates,
indicating that neither of these proteins can inhibit transla-
tion, despite their potential to interact with elF3. Therefore,
it remains to be determined how IFIT-eIF3 interactions can inhibit
translation initiation on some transcripts but not on others.

In summary, despite calicivirus RNA being refractory to trans-
lation inhibition by Ifit proteins, we have shown that Ifitl
knockout cells support a higher degree of MNYV infection
compared to wild-type cells. We observed that Ifitl promoted
type I IFN expression downstream of cytoplasmic dsRNA
sensing, suggesting it may play a role in potentiating the host
antiviral state. This work contributes to a growing body of evi-
dence that IFIT proteins can modulate innate immune signalling,
complementing their role in translation inhibition.

Data availability

Underlying data

Figshare: Original gels used for making figures. https://doi.
org/10.6084/m9.figshare.7998521.v1*,

References

Wellcome Open Research 2019, 4:82 Last updated: 29 JUL 2019

Figshare: Raw and processed data used to generate viral titre
and host gene expression figures. https://doi.org/10.6084/
m9.figshare.7998563.v14.

This project contains the following underlying data:

¢ FIGIBC_TCID50_RAW_MNVxIsx (containing raw data
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e FIG3_gPCR_RAW_LPSpolyIC.xlsx (containing raw qPCR
data for gene expression).
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?

Megan T. Baldridge
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO,
USA

Mears et al. describe an analysis of the role of canonical ISG IFIT1 in regulation of murine norovirus
infection in RAW264.7 cells. Enhanced MNV-1 viral titers were observed in 2 distinct cell lines lacking
Ifit1, and the authors convincingly demonstrate that inhibition of viral replication by IFIT1 is independent of
regulation of VPg-dependent translation. The authors suggest an alternate mechanism of regulation via
promotion of type | IFN expression by IFIT1, though this is not explored in depth. Overall, this is a
well-written manuscript, the data is robust, and this is an important contribution to the understanding of
ISG-mediated control of norovirus infection.

Comments:
1. It would be appropriate to reference the B cell model for human norovirus cultivation in addition to
HIEs in the introduction’.

2. InFigure 1A, IFIT1 is convincingly absent in KO1/2 lines. However, IFIT2 and IFIT3 levels also
appear to be somewhat decreased. Can the authors please comment, especially as this may be
related to the putative mechanism of suppression of IFN signaling in IFIT1 KO cells?

3. Could the authors please comment in figure legends on the number of experiments performed, and
number of blots for which figures are representative? Are replicates within a single experiment or
across multiple experiments?

4. The statement in the first paragraph of the discussion, "Ifit1 promotes type | IFN responses in
RAW264.7 cells and as such contributes to the host antiviral response to restrict murine norovirus
infection”, is somewhat overstated, as the authors do not provide any direct evidence that IFN
levels are differentially regulated by MNV in the presence or absence of Ifit1. The polylC data is
suggestive, but transfection of MNV RNA or analysis of IFN levels after infection at a variety of MOI
would be helpful. If the authors can provide this data, this would be welcome addition to the study,
or the conclusion should be softened.
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The manuscript from Mears et al., examines the role of murine Ifit1 as an antiviral factor for RNA viruses
that utilize a VPg protein on the 5’ end of their RNAs in place of a cap structure. By generating two Ifit1 KO
RAW264.7 (murine macrophage) cell lines, the authors show that Ifit1 suppresses murine norovirus
(MNV) replication. Ifit1 has been shown previously to block the translation of capped mRNAs by
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interacting with the cellular translation machinery. However, using an in vitro translation assay, the authors
demonstrate that IFIT1, as well as IFIT2 and IFIT3 do not inhibit translation of VPg-associated MNV, feline
calicivirus (FCV) or porcine sapovirus (PSaV) RNAs. Cap0-associated RNAs are included as an important
positive control for these assays. Evidence is also presented that, while IFIT1 can bind to
Cap0-associated viral RNAs, IFIT1, IFIT2 or IFIT3 cannot bind to VPg-bound viral RNAs. Previous studies
have shown that IFIT1 can regulate interferon (IFN) induction downstream of TLR3, TLR4 and MAVS. The
authors confirm that IFIT1-deficiency impairs IFN induction after activation of intracellular RNA sensors by
polyl:C transfection. However, they are unable to detect differences in IFN induction after stimulation of
TLR3 or TLR4 with polyl:C or LPS treatment of WT and IFIT1 KO RAW cells. Overall, the experiments are
well-controlled and the data are mostly convincing with multiple viruses tested. While the demonstration
that IFIT1 controls MNV replication but cannot inhibit translation of VPg-RNAs is novel, the modulation of
IFN induction by IFIT1 has been demonstrated by several other studies, and no further mechanistic
insight is provided. The connection between IFIT1-mediated IFN induction after RNA sensing and
regulation of MNV replication is inferred, but not demonstrated in this study.

Major comments:

1. The authors conclude that IFIT1 modulation of the interferon response contributes to the restriction
of MNV replication. However, no direct evidence is provided either that IFN induction after MNV
infection is controlled by IFIT1, or that a defective IFN response is responsible for enhanced MNV
replication in IFIT1 KO cells. Does IFNb treatment of cells restore control of MNV replication in
IFIT1 KO cells? Since this study focuses of the anti-viral role of IFIT1 during calicivirus infection, it
would be beneficial to measure IFN induction after MNV infection, particularly since the authors
have shown previously that MNV-1 expresses an ORF that antagonizes the interferon response.
Alternatively, the authors could revise this conclusion.

2. The figure legends state that statistical significance was assessed by t-tests. However, t-tests can
only be used to compare two groups. One-way ANOVA is required for three groups (1WT and
2KO).

Minor comments:

1. The authors should clarify the nature of the WT RAW cells. Are they a polyclonal population, or a
single clone derived at the same time as the two KO clones? Individual clonal cell populations can
behave very differently. Does complementation of the KO cells with IFIT1 restore control of MNV
replication or interferon induction?

2. In Figure 1 B and C, the authors demonstrate that MNV replicates to higher titers within 6-8 hours
post-infection. However, viral titers at the time of infection are not shown. Is viral binding and entry
equal in WT and KO cells?

3. For Figure 3, the doses of polyl:C and LPS used do not appear to be well optimized. 2 ug polyl:C is
a large amount to transfect into cells (is this per mI?). A lower dose (0.2 pug) may allow larger
differences in IFN induction to be observed. The IFN response to polyl:C and LPS treatment
appears to be too minimal to detect differences in induction between the WT and KO cells and to
draw conclusions from the data. Larger doses may be required.

4. The authors state that IFIT1 is not detectably-expressed in basal conditions and is induced within a
few hours. The authors should consider how the timing of IFIT1 induction, differences in IFN
induction (in Figure 3A or during MNV infection, which may take longer), and differences in MNV
replication (Figure 1B and C) fit into their model.
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5. The description of the experiments in Figure 3 in the text state that protein was extracted for
analysis, but the data are not presented.
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Yogesh Karpe
Nanobioscience Group, Agharkar Research Institute, Pune, India

Authors Mears et al. in their manuscript have investigated the antiviral role of IFIT1/ISG56 in response to
calicivirus infection. Authors have shown that Ifit1 knockdown promoted MNV replication in a macrophage
cell line. Finally, the authors demonstrated that Ifit1 knockdown cells have impaired cytoplasmic dsRNA
sensing and weak type | interferon response. Overall this is a well-written manuscript containing results
which merit indexing.

Specific comments:
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1. Comments should be made on the relevance of RAW264.7 cells for MNV infection studies.
Why authors' selected this particular cells for their studies?

2. Inthis work, authors have purified recombinant Ifit1, Ifit2, and Ifit3. These recombinant proteins
were used for in-vitro translation and primer extension inhibition assays. So please indicate the

purity of the recombinant proteins used for the assay. Also please include the gel images of
purified recombinant proteins in the manuscript.
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