Reversible and selective interconversion of hydrogen and carbon dioxide into formate by a semi-artificial formate hydrogenlyase mimic

Katarzyna P. Sokol, ^{1,‡} William E. Robinson, ^{1,‡} Ana R. Oliveira, ² Sonia Zacarias, ² Chong-Yong Lee, ¹ Christopher Madden, ¹ Arnau Bassegoda, ³ Judy Hirst, ³ Inês A. C. Pereira, ² Erwin Reisner^{1,*}

- 1. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- 3. Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK

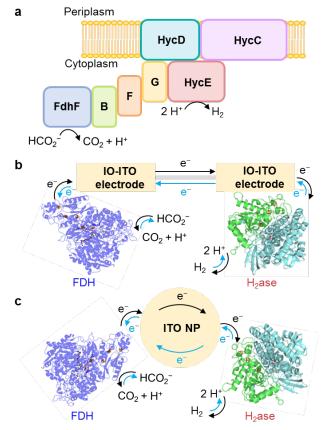
Supporting Information Placeholder

ABSTRACT: The biological formate hydrogenlyase (FHL) complex links a formate dehydrogenase (FDH) to a hydrogenase (H₂ase) and produces H₂ and CO₂ from formate via mixed-acid fermentation in *Escherichia coli*. Here, we describe an electrochemical and a colloidal semi-artificial FHL system that consists of an FDH and a H₂ase immobilized on conductive indium tin oxide (ITO) as an electron relay. These *in vitro* systems benefit from the efficient wiring of a highly active enzyme pair and allow for the reversible conversion of formate to H₂ and CO₂ under ambient temperature and pressure. The hybrid systems provide a template for the design of synthetic catalysts and surpass the FHL complex *in vivo* by storing and releasing H₂ on demand by interconverting CO₂/H₂ and formate with minimal bias in either direction.

Semi-artificial catalytic systems combine synthetic and biological units to drive challenging reactions and provide new concepts for catalyst design. Such solar-driven systems have already demonstrated coupling of water oxidation to the production of fuels (reduction of protons and $\rm CO_2$). However, storage and transport of energy vectors are also important components in energy production-utilization cycles and their development will benefit from more advanced concepts and model systems.

 H_2 is a promising fuel and its storage in formate allows for easier storage and transport; H_2 and formate are therefore an attractive energy vector pair. Furthermore, H_2 gas cleanly separates from dissolved formate, and their interconversion comes at little thermodynamic cost (Eq. 1-3). 6,7 However, achieving kinetic efficiency in HCO_2^{-}/H_2 interconversion remains a synthetic challenge. Artificial systems commonly compete between decomposition of formic acid to CO and H_2O (dehydration), and CO_2 and H_2 (dehydrogenation), and rely on precious metals, high temperature/pressure, organic solvents and light. $^{8-10}$

$$2 \text{ CO}_2 + 2 \text{ H}^+ \rightleftharpoons 2 \text{ HCO}_2^- (E^{0'} = -0.366 \text{ V vs. SHE, pH 6.5})$$
 Eq. 1


$$2 \text{ H}^+ \rightleftharpoons \text{H}_2 (E^{0'} = -0.382 \text{ V vs. SHE, pH 6.5})$$
 Eq. 2

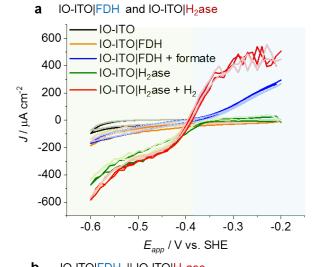
$$2 \text{ HCO}_2^- \rightleftharpoons 2 \text{ CO}_2 + \text{H}_2 (E_{rxn}^{\theta'} = U_{rxn}^{\theta'} = -0.016 \text{ V})$$
 Eq. 3

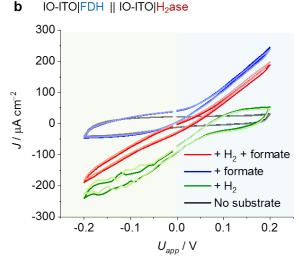
FHL complexes are biological machines for HCO_2^-/H_2 interconversion¹¹ that are either membrane-associated complexes composed of a multisubunit [NiFe]-H₂ase coupled to a FDH, ¹¹⁻¹³ or smaller soluble complexes of an [FeFe]-H₂ase and an FDH. ^{14,15} The *Escherichia coli* FHL-1 complex, composed of the membrane-bound [NiFe]-H₂ase 3 (HYD-3/HycE) and FDH-H (FdhF; Figure 1a) represents a well-studied FHL, evolving H₂ under fermentative conditions. ^{11,12} The constituent enzymatic units of FHL-1 have been demonstrated to be reversible electrocatalysts, ^{16–20} but the complex is catalytically biased toward H₂ production from formate. ^{14,15,19} Interconversion of HCO₂-/H₂ has also been reported in whole-cell studies, ^{14,20} notably in sulfate-reducing bacteria in the absence of sulfate. ^{21,22} *Desulfovibrio vulgaris* Hildenborough can grow by converting formate to H₂, ²³ with formate oxidation catalyzed by a periplasmic FDH, and H₂ produced either via a direct pathway (periplasmic H₂ase) or via transmembrane electron transfer (cytoplasmic H₂ase). ²⁴

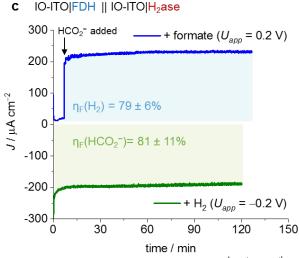
Redox biocatalysts, including H_2 ases and FDHs, have been coupled to other enzymatic processes via electron relays. H_2 ases have been connected to nitrate and fumarate reductases, 25 diaphorase modules, 26 nicotinamide reductase and alcohol dehydrogenase 27 via graphitic particles. Coupling a H_2 ase to carbon monoxide dehydrogenase efficiently catalyzed the water-gas shift reaction. Enzymatic cascades have linked FDH with formaldehyde and alcohol dehydrogenases for methanol production. 29,30 However, the reversible interconversion of substrate and product has not been previously accomplished with such coupled enzymes *in vitro*.

Here, a semi-artificial FHL complex mimic is presented by rewiring $FDH^{31,32}$ and H_2ase^{33} from $\emph{D. vulgaris}$ Hildenborough into electrochemical and colloidal systems (Figure 1b,c). These systems rely on efficient electrical contact of the [W/Se]-FDH active-site via four [Fe_4S_4] clusters and the [NiFeSe]-H_2ase active-site via three [Fe_4S_4] clusters with nanostructured ITO.

Figure 1. (a) Biological *E. coli* FHL-1 complex. FdhF, [Mo]-FDH; B/F/G, Fe-S cluster-containing proteins; HycE, [NiFe]-H₂ase; HycD/C, membrane proteins. ¹⁷ (b) IO-ITO|FDH|IO-ITO|H₂ase cell: IO-ITO|FDH wired to IO-ITO|H₂ase electrode. (c) FDH-ITO-H₂ase nanoparticle (NP) system with enzymes immobilized onto ITO NP in solution. Species size not drawn to scale.


Macro-mesoporous inverse opal (IO) ITO electrodes (20 μm film thickness; 0.25 cm² geometrical surface area) were assembled as previously reported.³⁴ IO-ITO|FDH and IO-ITO|H₂ase electrodes were prepared by drop-casting an FDH solution (2 µL, 19 μM with 50 mM DL-dithiothreitol, incubated for 15 min) and a H₂ase solution (2 μL, 5 μM), onto IO-ITO. ^{31,34} Protein film voltammetry (PFV) was recorded using a three-electrode configuration (Figure 2a and S1) in CO₂/NaHCO₃ solution. Current densities (*J*) of $-185 \,\mu\text{A cm}^{-2}$ (CO₂ reduction to formate by FDH) and $-450 \,\mu\text{A}$ cm⁻² (H⁺ reduction to H₂ by H₂ase) were observed at an applied potential (E_{app}) of -0.6 V vs. standard hydrogen electrode (SHE). Addition of sodium formate (20 mM) to the IO-ITO|FDH system resulted in formate oxidation to CO_2 and 300 μA cm⁻² was reached at -0.2 V vs. SHE. After purging the IO-ITO|H₂ase system with H₂ (0.4 bar), H₂ oxidation to H⁺ was observed and 440 μA cm⁻² was reached at -0.2 V vs. SHE. The voltammograms cut through zero current around the formal redox potentials (Eq. 1,2), demonstrating reversible electrocatalysis for both enzymes.⁶


Multiple PFV scans of IO-ITO|FDH and IO-ITO|H₂ase (Figure S2) showed minimal desorption/activity losses. Controlled-potential electrolysis (CPE) of IO-ITO|FDH and IO-ITO|H₂ase was performed to measure H⁺/CO₂ reduction ($E_{app} = -0.6$ V) as well as H₂/formate oxidation ($E_{app} = -0.2$ V) (Figure S3). Both electrodes retaining >90% of the initial current after 24 h in both directions. Faradaic efficiencies (η_F) for formate and H₂ production were determined to be 76 and 77%, respectively. Efficiency losses may be attributed to capacitive background current of porous IO-ITO, ³⁴ undetected trapped product and a contribution from ITO/FTO degradation. ^{36,37}

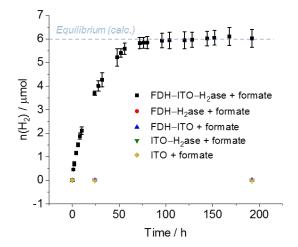

The comparable formal redox potentials of H^+/H_2 and CO_2/HCO_2^- conversion (Eq. 1-3), reversible catalysis of the individual enzymes, high and matching current densities, and good stability make this enzyme pair a promising candidate for assembling a reversible HCO_2^-/H_2 interconversion system.⁶ Thus, the IO-ITO|FDH (working electrode) was wired to the IO-ITO|H $_2$ ase (counter electrode) in a two-electrode configuration (Figure 2b). When no additional substrate was present (only buffering CO_2 and H^+), only a non-catalytic (capacitive) current was observed. Upon addition of formate, an oxidative current was observed (formate oxidation to CO_2 and H^+ reduction to H_2) at a positive applied voltage (U > 0 V); 250 μ A cm⁻² was reached at U = 0.2 V. Addition of H_2 resulted in a reductive current (H_2 oxidation to H^+ and CO_2 reduction to formate) with $-250~\mu$ A cm⁻² obtained at U = -0.2 V.

To achieve reversible formate/ H_2 interconversion (Eq. 3) both formate and H_2 were added in addition to CO_2 and H^+ . A reversible voltammogram was observed, with zero current at approximately $U^{0'}$ at 0.02 V. A marginally more positive or negative voltage drives the reaction in either direction, demonstrating reversible unbiased electrocatalysis, as opposed to that demonstrated for $E.\ coli$ FHL-1. 19 200 μA cm $^{-2}$ and $-200\ \mu A$ cm $^{-2}$ were reached at $U=0.2\ V$ and $-0.2\ V$, respectively. Multiple PFV scans of the IO-ITO|FDH||IO-ITO|H2ase cell (Figure S4) showed stability of the system with marginal losses. Control experiments with IO-ITO|FDH (or ITO|H2ase) wired to IO-ITO (Figure S5) gave only a small capacitive current in the presence and absence of substrates.

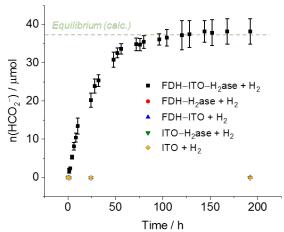
CPE during 2 h at $U_{app}=0.2$ V with the IO-ITO|FDH||IO-ITO|H₂ase cell with formate present (Figure 2c) produced H₂ (5.84 \pm 0.88 μ mol cm⁻²) with η_F of (79 \pm 11)%. Similarly, CPE at $U_{app}=-0.2$ V for 2 h with H₂ present generated formate (5.00 \pm 0.80 μ mol cm⁻²) with η_F of (81 \pm 15)%. This semi-artificial system exhibited good stability, retaining >95% of its initial activity after 2 h in both directions. After equilibration, the cell exhibited high bidirectional stability for >1 day (Figure S6). For formate oxidation ($U_{app}=0.2$ V), H₂ (36.28 μ mol cm⁻²) was detected with $\eta_F=72$ %. For H₂ oxidation ($U_{app}=-0.2$ V), formate (42.80 μ mol cm⁻²) was detected with $\eta_F=77$ %. Similarly to the three-electrode systems, capacitive currents and FTO/ITO dissolution^{36,37} might have decreased the product yield.

Figure 2. (a) Three-electrode PFV ($v = 5 \text{ mV s}^{-1}$, 1^{st} and 5^{th} scan, increasing transparency) using IO-ITO|FDH or IO-ITO|H₂ase working, Ag/AgCl (KCl_{sat}) reference, Pt counter electrode. (b) Two-electrode PFV ($v = 5 \text{ mV s}^{-1}$, 1^{st} and 5^{th} scan) of IO-ITO|FDH wired to IO-ITO|H₂ase. (c) Two-electrode CPE of IO-ITO|FDH wired to IO-ITO|H₂ase. Conditions: CO₂/NaHCO₃ (100 mM), KCl (50 mM), 1 bar CO₂ or 0.4/0.6 bar H₂/CO₂, pH_{initial} = 6.5-6.7, T = 25 °C, stirring. Substrates: formate (20 mM) and/or 0.4/0.6 bar H₂/CO₂.

To further investigate the system's reversibility without electrochemical wiring, FDH and H_2 ase were co-assembled on ITO NPs (0.3 mg mL $^{-1}$) (Figure 3 and S7) dispersed in solution (see Supporting Information). Solutions of FDH (19 nM, incubated as above) and H_2 ase (3.4 nM) were added to the vessel, which was sealed and purged with CO $_2$. Either formate or H_2 was introduced to the vessel. FDH: H_2 ase molar ratios (Figure S8) and total concentrations (Figure S9a,b) were screened for optimum H_2 evolution rate. The optimal system contained an enzyme loading of approximately 40 FDH and 7 H_2 ase particles per ITO NP, based on the adsorption surface area of 27 m 2 g $^{-1}$, \sim 31,400 nm 2 per NP (assuming a 50 nm diameter sphere) and an enzyme footprint of \sim 100 nm 2 .


Upon formate addition to the FDH–ITO–H₂ase system (Figure 3a), H₂ was produced with a rate (Figure S9c) of 0.24 ± 0.01 µmol H₂ h⁻¹ during the first 8 h [turnover number, TON = $(23.0 \pm 1.5) \times 10^3$ and turnover frequency, TOF = 6.4 ± 0.4 s⁻¹ for the H₂ase], after which the rate started to decrease (Table S1). Equilibrium was reached after ~72 h (5.82 ± 0.24 µmol H₂, pH 6.88, T = 23 °C), in agreement with calculations (5.95 µmol, 2.97 mM of H₂, see Supporting Information).⁷

In the presence of H_2 , the FDH–ITO– H_2 ase system (Figure 3b), produced formate with an initial reaction rate of $1.33\pm0.01~\mu mol$ formate h^{-1} [TON = $(15.8\pm5.4)\times10^3$ and TOF = $4.4\pm1.5~s^{-1}$ for the FDH] for the first 8 h (Figure S9d). Equilibrium was reached after ~96 h $(36.16\pm1.47~\mu mol$ formate, pH 6.99, T = 23 °C), consistent with calculations $(37.11~\mu mol, 18.56~mM$ of formate). Control experiments with no ITO NPs, omitting an enzyme or with denatured enzymes (Figure S10) showed only negligible H_2 and formate production (<0.2 μ mol) (Table S2 and S3). Therefore, the ITO NPs act as a semi-heterogeneous electron relay facilitating electron transfer between electroactive FDH and H_2 ase.


In *D. vulgaris* cells, the two periplasmic enzymes exchange electrons through the type-I cytochrome c_3 (TpI c_3) electron acceptor. ²⁴ We therefore studied the activity of these enzymes in solution with TpI c_3 . A high concentration of the cytochrome (1.9 μ M, 100-fold excess vs FDH) was required to achieve comparable kinetics of H₂ and formate production (Fig. S11a,b), revealing the superiority of co-immobilizing the two enzymes on synthetic ITO to achieve efficient electron transfer.

In summary, we have presented how semi-artificial systems consisting of FDH and H₂ase from *D. vulgaris* wired to ITO can mimic the biological FHL complex. The semi-artificial FHL systems are based on a bottom-up design that employs a pair of reversible redox enzymes immobilized on conductive scaffolds to enable an overall catalytic reaction to proceed to thermodynamic equilibrium. The semi-artificial FHL concept can be deployed in either an electrochemical cell or a self-assembled colloidal suspension, providing versatility for applications in different contexts. The design concept of linking two half-reactions via a conductive scaffold also provides a blueprint to develop improved synthetic H₂/formate cycling catalysts in future development.

a H₂ generation

b Formate generation

Figure 3. Colloidal FDH–ITO– H_2 ase NP system using ITO NPs (0.3 mg mL⁻¹), FDH (19.0 nM) and H_2 ase (3.4 nM). (a) H_2 production in the presence of 10 mM formate and 1 bar CO₂. $V_{headspace}$ = 1.72 mL. (b) Formate production in the presence of 0.4/0.6 bar H_2/CO_2 . $V_{solution}$ = 2 mL. Conditions: $CO_2/NaHCO_3$ (100 mM), KCl (50 mM), 1 bar CO_2 or 0.4/0.6 bar H_2/CO_2 , $pH_{initial}$ = 6.5-6.7, T = 23 °C, stirring.

ASSOCIATED CONTENT

Supporting Information

Materials, experimental methods, Figures and Tables. This material is available free of charge via the ACS Publications website at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

reisner@ch.cam.ac.uk

Author Contributions

‡These authors contributed equally.

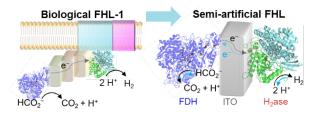
Notes

The authors declare no competing interests.

ACKNOWLEDGMENTS

This work was supported by ERC Consolidator Grant "MatEnSAP" (682833), BBSRC (BB/J000124/1, BB/I026367/1),

EPSRC (EP/L015978/1, EP/G037221/1, nanoDTC and a DTA studentship to K.P.S.), Marie Curie IntraEuropean Fellowship (PIEF-GA-2013-625034), Fundação para a Ciência e Tecnologia (Portugal) fellowship SFRH/BD/116515/2016, grants PTDC/BIA-MIC/2723/2014, PTDC/BBB-BEP/2885/2014, R&D units UID/Multi/04551/2013 (Green-IT) and LISBOA-01-0145-FEDER-007660 (MostMicro), cofunded by FCT/MCTES and FEDER funds through COMPETE2020/POCI, and European Union's Horizon 2020 (No 810856).


REFERENCES

- Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P.; Reisner, E. Interfacing Nature's Catalytic Machinery with Synthetic Materials for Semi-Artificial Photosynthesis. Nat. Nanotechnol. 2018, 13, 890–899.
- (2) Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. Efficient and Clean Photoreduction of CO₂ to CO by Enzyme-Modified TiO₂ Nanoparticles Using Visible Light. J. Am. Chem. Soc. 2010, 132, 2132–2133.
- (3) Liu, C.; Gallagher, J. J.; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.; Chang, M. C. Y.; Yang, P. Nanowire-Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals. Nano Lett. 2015, 15, 3634–3639.
- (4) Sokol, K. P.; Robinson, W. E.; Warnan, J.; Kornienko, N.; Nowaczyk, M. M.; Ruff, A.; Zhang, J. Z.; Reisner, E. Bias-Free Photoelectrochemical Water Splitting with Photosystem II on a Dye-Sensitized Photoanode Wired to Hydrogenase. Nat. Energy 2018, 3, 944–951.
- (5) Brown, K. A.; Wilker, M. B.; Boehm, M.; Dukovic, G.; King, P. W. Characterization of Photochemical Processes for H₂ Production by CdS Nanorod-[FeFe] Hydrogenase Complexes. J. Am. Chem. Soc. 2012, 134, 5627–5636.
- (6) Armstrong, F. A.; Hirst, J. Reversibility and Efficiency in Electrocatalytic Energy Conversion and Lessons from Enzymes. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14049–14054.
- (7) Reda, T.; Plugge, C. M.; Abram, N. J.; Hirst, J. Reversible Interconversion of Carbon Dioxide and Formate by an Electroactive Enzyme. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 10654–10658.
- (8) Loges, B.; Boddien, A.; Junge, H.; Beller, M. Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H₂/O₂ Fuel Cells. Angew. Chem. Int. Ed. 2008, 47, 3962–3965.
- (9) Kuehnel, M. F.; Wakerley, D. W.; Orchard, K. L.; Reisner, E. Photocatalytic Formic Acid Conversion on CdS Nanocrystals with Controllable Selectivity for H₂ or CO. Angew. Chem. Int. Ed. 2015, 54, 9627–9631.
- (10) Sordakis, K.; Tang, C.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem. Rev. 2018, 118, 377–433
- (11) Finney, A. J.; Sargent, F. In Advances in Microbial Physiology; Academic Press: London, 2019; Vol. 74.
- (12) Pinske, C. In Advances in Microbial Physiology; Academic Press: London, 2019; Vol. 74.
- (13) Lim, J. K.; Mayer, F.; Kang, S. G.; Muller, V. Energy Conservation by Oxidation of Formate to Carbon Dioxide and Hydrogen via a Sodium Ion Current in a Hyperthermophilic Archaeon. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 11497–
- (14) Schuchmann, K.; Müller, V. Direct and Reversible Hydrogenation of CO₂ to Formate by a Bacterial Carbon Dioxide Reductase. Science. **2013**, 342, 1382–1386.
- (15) Schwarz, F. M.; Schuchmann, K.; Müller, V. Hydrogenation of CO₂ at Ambient Pressure Catalyzed by a Highly Active Thermostable Biocatalyst. Biotechnol. Biofuels 2018, 11, 237.
- (16) Bassegoda, A.; Madden, C.; Wakerley, D. W.; Reisner, E.; Hirst, J. Reversible Interconversion of CO₂ and Formate by a Molybdenum-Containing Formate Dehydrogenase. J. Am. Chem. Soc. 2014, 136, 15473–15476.
- (17) McDowall, J. S.; Murphy, B. J.; Haumann, M.; Palmer, T.; Armstrong, F. A.; Sargent, F. Bacterial Formate Hydrogenlyase Complex. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, E3948– E3956.

- (18) Mcdowall, J. S.; Hjersing, M. C.; Palmer, T.; Sargent, F. Dissection and Engineering of the Escherichia Coli Formate Hydrogenlyase Complex. FEBS Lett. 2015, 589, 3141–3147.
- (19) Pinske, C.; Sargent, F. Exploring the Directionality of Escherichia Coli Formate Hydrogenlyase: A Membrane-Bound Enzyme Capable of Fixing Carbon Dioxide to Organic Acid. Microbiol. Open 2016, 5, 721–737.
- (20) Roger, M.; Brown, F.; Gabrielli, W.; Sargent, F. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia Coli. Curr. Biol. 2018, 28, 140–145.
- (21) da Silva, S. M.; Voordouw, J.; Leitão, C.; Martins, M.; Voordouw, G.; Pereira, I. A. C. Function of Formate Dehydrogenases in Desulfovibrio Vulgaris Hildenborough Energy Metabolism. Microbiology. 2013, 159, 1760–1769.
- (22) Mourato, C.; Martins, M.; da Silva, S. M.; Pereira, I. A. C. A Continuous System for Biocatalytic Hydrogenation of CO₂ to Formate. Bioresour. Technol. 2017, 235, 149–156.
- (23) Martins, M.; Mourato, C.; Pereira, I. A. C. Desulfovibrio Vulgaris Growth Coupled to Formate-Driven H₂ Production. Environ. Sci. Technol. **2015**, 49, 14655–14662.
- (24) Martins, M.; Mourato, C.; Morais-Silva, F. O.; Rodrigues-Pousada, C.; Voordouw, G.; Wall, J. D.; Pereira, I. A. C. Electron Transfer Pathways of Formate-Driven H₂ Production in Desulfovibrio. Appl. Microbiol. Biotechnol. 2016, 100, 8135–8146.
- (25) Vincent, K. A.; Li, X.; Blanford, C. F.; Belsey, N. A.; Weiner, J. H.; Armstrong, F. A. Enzymatic Catalysis on Conducting Graphite Particles. Nat. Chem. Biol. 2007, 3, 761–762.
- (26) Reeve, H. A.; Lauterbach, L.; Ash, P. A.; Lenz, O.; Vincent, K. A. A Modular System for Regeneration of NAD Cofactors Using Graphite Particles Modified with Hydrogenase and Diaphorase Moieties. Chem. Commun. 2012, 48, 1589–1591.
- (27) Reeve, H. A.; Lauterbach, L.; Lenz, O.; Vincent, K. A. Enzyme-Modified Particles for Selective Biocatalytic Hydrogenation by Hydrogen-Driven NADH Recycling. ChemCatChem 2015, 7, 3480–3487
- (28) Lazarus, O.; Woolerton, T. W.; Parkin, A.; Lukey, M. J.; Reisner, E.; Seravalli, J.; Pierce, E.; Ragsdale, S. W.; Sargent, F.; Armstrong, F. A. Water-Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets. J. Am. Chem. Soc. 2009, 131, 14154–14155.
- (29) Nam, D. H.; Kuk, S. K.; Choe, H.; Lee, S.; Ko, J. W.; Son, E. J.;

- Choi, E. G.; Kim, Y. H.; Park, C. B. Enzymatic Photosynthesis of Formate from Carbon Dioxide Coupled with Highly Efficient Photoelectrochemical Regeneration of Nicotinamide Cofactors. Green Chem. 2016, 18, 5989–5993.
- (30) Kuk, S. K.; Singh, R. K.; Nam, D. H.; Singh, R.; Lee, J. K.; Park, C. B. Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade. Angew. Chem. Int. Ed. 2017, 56, 3827–3832.
- (31) Sokol, K. P.; Robinson, W. E.; Oliveira, A. R.; Warnan, J.; Nowaczyk, M. M.; Ruff, A.; Pereira, A. C.; Reisner, E. Photoreduction of CO₂ with a Formate Dehydrogenase Driven by Photosystem II Using a Semi-Artificial Z- Scheme Architecture. J. Am. Chem. Soc. 2018, 140, 16418–16422.
- (32) Miller, M.; Robinson, W. E.; Oliveira, A. R.; Heidary, N.; Kornienko, N.; Warnan, J.; Pereira, I. A. C.; Reisner, E. Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide. Angew. Chem. Int. Ed. 2019, 58, 4601–4605.
- (33) Marques, M. C.; Tapia, C.; Gutiérrez-Sanz, O.; Ramos, A. R.; Keller, K. L.; Wall, J. D.; De Lacey, A. L.; Matias, P. M.; Pereira, I. A. C. The Direct Role of Selenocysteine in [NiFeSe] Hydrogenase Maturation and Catalysis. Nat. Chem. Biol. 2017, 13, 544–550.
- (34) Mersch, D.; Lee, C.-Y.; Zhang, J. Z.; Brinkert, K.; Fontecilla-Camps, J. C.; Rutherford, A. W.; Reisner, E. Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water-Splitting, J. Am. Chem. Soc. 2015, 137, 8541–8549.
- (35) Léger, C.; Bertrand, P. Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies. Chem. Rev. 2008, 108, 2379–2438.
- (36) Benck, J. D.; Pinaud, B. A.; Gorlin, Y.; Jaramillo, T. F. Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte. PLoS One 2014, 9, 1–13.
- (37) Geiger, S.; Kasian, O.; Mingers, A. M.; Mayrhofer, K. J. J.; Cherevko, S. Stability Limits of Tin-Based Electrocatalyst Supports. Sci. Rep. 2017, 7, 3–9.

Table of Contents artwork

