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Abstract— Neural interfaces will pave the way for novel 

treatment methods for neural disorders, which are due to 

communication problems in nervous system. Such disorders 

include spinal cord injuries, Alzheimer’s and Multiple 

Sclerosis. In this work, we present a novel neural stimulator, 

which will act as the transmitter part of a neural interface. We 

perform in detail physical analysis of such a device for the first 

time, considering the electrostatic and capacitive effects. We 

also establish the stimulation requirements of the post-synaptic 

neuron and support our findings with COMSOL simulations. 

This work will pave the way to the design of more efficient 

neural stimulators. 

I. INTRODUCTION 

Monitoring local neuronal activity is becoming increasingly 

prevalent, paving way for novel treatment methods for 

neurological disorders such as spinal cord injury and neural 

interface for artificial limbs. Towards this purpose, 

electrophysiological recording techniques have attracted 

significant attention with their high temporal resolution, but 

lacking spatial resolution. To tackle this problem, different 

high density electrode arrays have been developed and tested 

[3, 4].  

For high density electrode arrays, there are three main 

methods to interface with neurons: (1) chemical stimulation 

via injecting neurotransmitters, (2) optical stimulation by 

placing genetically modified photo-active proteins 

(optogenetics) in neurons, (3) electrical stimulation via 

applying faradaic current or capacitive electric field (CES). 

While chemical and optical stimulation require altering 

physiological content of target cells, electrical stimulation can 

be performed without creating changes in the medium. In 

electrical stimulation, faradaic interfacing with the medium is 

undesirable due to increasing reaction probability on electrode 

surface and proteins in the cerebrospinal fluid (CSF). 

Therefore, electrode arrays are passivated with dielectric 

materials such that applied potential creates an electric field 

and potential difference are created by the movement of ions 

in CSF. Although passivated high density electrodes are tested 

for sensing neural signals from individual neurons, theoretical 

limitations of this method in stimulation is untouched.  

In this paper, we propose a theoretical model and simulation 

environment in COMSOL Multiphysics to determine 

performance and limitations of CES for the first time in the 

literature. By using the proposed approach, we demonstrate the 

feasibility of stimulating neurons via CES and determine 

critical design parameters such as achievable stimulation 

frequency, range and electrode dimensions. Therefore, this 

paper provides guidelines for future neural interfaces.  

The remainder of the paper is organised as follows. Section 

I includes the excitability threshold of neurons. Section II and 

III contain the theoretical analysis and simulation environment 

for capacitive electrical stimulation, respectively. Simulation 

results are presented in Section IV. The conclusions are 

discussed in Section V.  

II. STIMULATION OF NEURON 

Nervous system transmits information in the form of 

electrical signals, i.e. action potentials, which is all-or-none 

process. If a neuron stimulated above a certain threshold, the 

neuron will fire an action potential and stimulate all dendrites 

that are connected. Learning and information processing take 

place in synapses whose excitability threshold shows short-

term and long-term variability, also known as plasticity. In 

addition, physiological conditions such as distance from soma 

and neuron type have a direct effect on the threshold [1].  

Neural spikes are generally generated via voltage-gated 

sodium channels [2]. These channels slowly depolarise the cell 

membrane up to a certain threshold. Any stimulation 

exceeding this threshold causes a positive feedback, which 

results in an instability causing neighbouring sodium channels 

to open and this process ends up with an action potential. For 

CES, the critical point is exceeding this certain threshold to 

initiate an action potential. [1] presents an empirical model to 

estimate dynamic threshold for excitability of neurons. 

According to experimental observations and [1], excitability 

threshold of neuron is generally 20-30mV higher than resting 

potential of neuron membrane, which is -70mV on average. 

Thus, the excitability threshold to create an action potential, in 

this paper, is assumed as 30mV for the sake of simplicity. 

III. SIMULATION ENVIRONMENT 

Electrical double layer (EDL) is an important phenomenon 

to describe surface interaction between electrolyte and 

electrode surface.  EDL means two charge layers in the vicinity 

of electrode surface as shown in Fig. 1. The first layer is caused 

by the charges on the electrode that have opposite sign. The 

second layer is formed due to the Coulomb force and 

electrically screen the first layer. According to the Gouy-

Chapman model (GCM), the charge distributions can be 

predicted with Maxwell–Boltzmann statistics, and decreases 

exponentially away from electrode with the rate of Debye 

length that can be calculated as  

                 𝑥𝐷 = √𝑅𝑇𝜀𝑏𝑢𝑙𝑘𝜀0/(2𝐹2𝑐𝑏𝑢𝑙𝑘),                  (1) 
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where 𝑅 is the gas constant, 𝑇 is the temperature in K, 𝜀0 is the  

 

permittivity of the free space, 𝜀𝑏𝑢𝑙𝑘 is the dielectric constant of 

the electrolyte, 𝐹 is the Faraday constant, and 𝑐𝑏𝑢𝑙𝑘 is the molar 

concentration of the electrolyte. In this way, the potential of the 

medium decreases exponentially and becomes approximately 

constant in the bulk solution in the steady state conditions (This 

requires certain time.). The Stern modification to GCM 

considers the plane closest to the electrode, which is one atom 

thick and have opposite charge to the surface of the electrode. 

The effect of this layer can be modelled as a Stern capacitance 

with constant dielectric of the electrolyte and Stern thickness of 

𝑥𝑠  (assumed as 0.5nm, in this paper). In CES, there is an 

additional capacitance due to the passivation of electrode 

surface. The dielectrics capacitance is in series with the Stern 

capacitance such that the total capacitance per area of the 

system can be calculated as  

         𝐶𝐷𝐿 =
𝐶𝑆𝑡𝑒𝑟𝑛𝐶𝑑𝑖𝑒

𝐶𝑠𝑡𝑒𝑟𝑛+𝐶𝑑𝑖𝑒
=

𝜀𝑏𝑢𝑙𝑘𝜀𝑃𝑀𝑀𝐴𝜀0

𝑥𝑠𝜀𝑃𝑀𝑀𝐴+𝜀𝑏𝑢𝑙𝑘𝑥𝑃𝑀𝑀𝐴 
,       (2) 

where 𝜀𝑃𝑀𝑀𝐴 is the dielectric constant of PMMA, and 𝑥𝑃𝑀𝑀𝐴 

is the length of the dielectric layer. Therefore, the electrode 

boundary is controlled by the following equation  

             𝜌𝑠𝑢𝑟𝑓 = (𝜑𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 − 𝜑𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒)𝐶𝐷𝐿 ,           (3) 

where 𝜑𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒  is the applied potential, and 𝜑𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒  is the 

potential of the electrolyte that can be described by Poisson 

equation. The electrolyte movement in the diffuse layer is 

described by diffusion in the presence of electrostatic forces. To 

this end, the Nernst-Planck equation is utilised to calculate the 

charge distribution in electrolyte, and this equation can be 

represented as  

                               𝐽𝑖 = −𝐷𝑖∇C𝑖 −
𝐷𝑧𝑒

𝑘𝐵𝑇
𝐶∇𝜑,          (4) 

where 𝐽𝑖  is the ion flux in mol/(m2.s), and 𝐷𝑖  is the diffusion 

coefficient in m2/s, C is the concentration in mol/m3, 𝑧 is the 

valance charge, 𝑒 is the electron charge, 𝑘𝐵  is the Boltzmann 

constant.  

In the COMSOL simulations, we model the electrolyte having 

positive and negative ions. For the sake of simplicity, ions are 

assumed to have the same concentration in the electrolyte with 

the same diffusion coefficients. Potential applied through the 

metal electrode with respect to the right of the container which 

is assumed as ground having open boundary such that positive 

and negative ions always have equal concentrations. Other 

three boundaries (bottom, left and top) are assumed as closed 

boundaries with no concentration flux. At the end, we monitor 

the total charge 𝜌 = 𝐶+ + 𝐶− , where 𝐶+  and 𝐶−  stand for 

positive and negative ions, and voltage changes in the medium 

to predict the performance of CES.  

IV. THEORETICAL ANALYSIS 

In this section, we analyse the generation of the required 

potential difference to stimulate the neuron. The induction of 

potential difference can be investigated in two parts: Instant 

electrostatic induction, and charge accumulation. 

A. Instant Electrostatic Induction  

When a potential difference is applied to the conducting 

plate, the potential difference instantly effects its surroundings. 

Since the net charge distribution in the vicinity of the stimulator 

is zero, the system can be described with a boundary problem: 

           𝜑 = 𝑉0, in 0 < 𝑥 < 𝑥𝑙 , 0 < 𝑦 < 𝑦𝑙 , 𝑧 = 0,  (5) 
                                 𝜑 = 0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.                                 (6) 

where the target is at (𝑥𝑙/2, 𝑦𝑙/2, 𝑧), i.e., directly above the 

stimulator at a distance z. In order to solve this problem, we 

look for potential functions of product form such that we can 

use separation of variables, i.e., 

                        𝜑(x, y, z) = X(x)Y(y)Z(z),                        (7) 

and the Laplace Equation becomes 

                                 
1

𝑋

𝑑2𝑋

𝑑𝑥2 +
1

𝑌

𝑑2𝑌

𝑑𝑦2 +
1

𝑍

𝑑2𝑍

𝑑𝑧2 = 0.                      (8) 

Solution to (8) is obtained by assigning all parts of (8) to a 

constant such that the summation of the constants is equal to 

zero, i.e., 

                                           
1

𝑋

𝑑2𝑋

𝑑𝑥2 = 𝐶𝑥 ,                         (9) 

                                           
1

𝑌

𝑑2𝑌

𝑑𝑦2 = 𝐶𝑦,                                   (10) 

                                           
1

𝑍

𝑑2𝑍

𝑑𝑧2 = 𝐶𝑧 .                                        (11) 

We solve (5-7) by choosing 𝐶𝑥 = −𝑘2 , 𝐶𝑦 = −𝑙2 . As a 

result, 𝐶𝑧 = 𝑘2 + 𝑙2, and the solutions to (5-7) becomes 

                      X(x) = A sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥,                          (12) 

                      Y(y) = C sin 𝑙𝑦 + 𝐷 cos 𝑙𝑦,                            (13) 

                   Z(z) = E 𝑒√𝑘2+𝑙2𝑧 + 𝐹 𝑒−√𝑘2+𝑙2𝑧.              (14) 

In order to solve (12-14), we assume that the voltage change 

due to the stimulator only occurs within the region closed by 

semi-infinite rectangular prism with base on the x-y plane 

bounded by 0 < 𝑥 < 𝑥𝑙, 0 < 𝑦 < 𝑦𝑙  and voltage is for z →∞. 

Note that these assumptions are perfectly valid for near-fields, 

i.e., z ≪ 𝑥𝑙 , 𝑦𝑙 . Hence, the constants B, D and E vanishes and 

  
 

Fig. 1. Schematic representation of a double layer on CES. 



k = 𝑛𝜋 𝑥𝑙⁄ ,  l = 𝑚𝜋 y𝑙⁄  and the form of the general solution for 

the boundary problem becomes 

𝜑𝑚,𝑛 = 𝐹𝑚,𝑛 𝑒−𝜋𝑧√(𝑛/𝑥𝑙)2+(𝑚/𝑦𝑙)2
 

                                ×  sin(𝑛𝜋𝑥/𝑥𝑙) sin(𝑚𝜋𝑦/𝑦𝑙).        (15) 

where 𝐹𝑛,𝑚 is a constant depending on the applied voltage 𝑉0 

and n, m. 

𝐹𝑚,𝑛 coefficients can be obtained using (15) and using the 

orthogonality of sin(𝑛𝜋𝑥/𝑥𝑙)  and sin(𝑚𝜋𝑥/𝑦𝑙)  with 

sin(𝑛′𝜋𝑥/𝑥𝑙)  and sin(𝑚′𝜋𝑥/𝑦𝑙) . The final result with 

applied 𝑉0 then becomes 

𝜑𝑉0
(𝑥, 𝑦, 𝑧) = ∑ ∑

16𝑉0

𝜋2𝑛𝑚

∞

𝑚=1

∞

𝑛=1

 𝑒−𝜋𝑧√(𝑛/𝑥𝑙)2+(𝑚/𝑦𝑙)2
 

                × sin(𝑛𝜋𝑥/𝑥𝑙) sin(𝑚𝜋𝑦/𝑦𝑙)  for odd n, m.  (16) 

B. Charge Accumulation 

Due to the potential difference generated by applying a 

voltage on the plate, the free charges in the vicinity move close 

to the plate. Therefore, the electrode forms a capacitor where 

the PMMA coating acts as a dielectric. Since the amount charge 

accumulated in the capacitor is the time integral of current we 

find that 

    Q(t) = ∑ 𝑐𝑖(𝑥, 𝑦, 𝑧)𝑧𝑖𝜇𝑖𝑥𝑙𝑦𝑙 ∫ 𝐸(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑡′
𝑡

0𝑖 ,       (17) 

where 𝑐𝑖(𝑥, 𝑦, 𝑧) is the concentration, 𝑧𝑖  is the charge, and 𝜇𝑖 is 
the charge mobility for a certain ion type. Since (17) is very 

hard to solve as it is, we make several assumptions: 

1. The charge density is considered constant. 

2. 𝐸(𝑥, 𝑦, 𝑧, 𝑡) does not depend on x and y. 

3. 𝐸(𝑥, 𝑦, 𝑧, 𝑡) is constant for ∆z. 

4. The movement of ions is largely influenced by E, 

rather than concentration gradient. 

Note that 1 and 4 are very similar and hold accurately as 

long as the charge accumulated on the capacitor is negligible 

compared to the charge concentration. 2 only negates the 

currents in the x and y directions which are simply oscillations 

in the harmonics constituting (12), which vanish for large m and 

n. Finally, 3 is a valid assumption for short ∆z. 

Under these assumptions, the voltage on the capacitor 

becomes 

                   𝑉𝐶(𝑡) =
𝑄(𝑡)

𝐶
=

∑ 𝑐𝑖𝑧𝑖𝜇𝑖𝑥𝑙𝑦𝑙 ∫ 𝐸(𝑡)𝑑𝑡′
𝑡

0𝑖

𝜀0𝜀𝑟
𝑥𝑙𝑦𝑙

𝑑

,              (18) 

                         𝑉𝐶(𝑡) =
𝑑

𝜀0𝜀𝑟
∑ 𝑐𝑖𝑧𝑖𝜇𝑖 ∫ 𝐸(𝑡)𝑑𝑡′

𝑡

0𝑖 ,                 (19) 

where 𝑑 is the thickness of the dielectric and 𝜀𝑟 is the relative 

permittivity of the PMMA. Hence, the potential becomes 

                     φ(t) = φ(𝑉0−𝑉𝑐)(𝑡) + φ𝑑𝑖𝑝𝑜𝑙𝑒(t),                 (20) 

where the first term is calculated by substituting 𝑉0 − 𝑉𝑐 instead 

of 𝑉0 in (12) and the second term is the dipole potential due to 

the charges on the capacitor given by 

 φ𝑑𝑖𝑝𝑜𝑙𝑒(x, y, z, t) = −
𝑧𝑑𝑄(𝑡)

4𝜋𝜀0𝑥𝑙𝑦𝑙
∫ ∫

𝑑𝑥′𝑑𝑦′

[(𝑥−𝑥′)2+(𝑦−𝑦′)2+𝑧2]3/2

𝑦𝑙

0

𝑥𝑙

0
. 

(21) 

IV. NUMERICAL RESULTS 

In this section, we present numerical results for our analysis 

and simulation. A potential difference of 30mV is enough for 

generating action potential.  

 

Fig. 2. Induced voltage ratio for plates of different sizes vs distance 

from the centre of the stimulator. 

  

 First, we utilised the analytical model to calculate the 

excitation limit unburdened by ion movements, i.e. 

instantaneously rising voltage. As we can see in Fig. 2, the 

induced voltage drops linearly with distance from the centre of 

the stimulator. Since a voltage of 30mV is necessary for 

stimulation, assuming 5μm  distance from the center of the 

stimulator to the neuron, 𝑧0, even applying 70mV is enough if 

the simulator dimensions are 20μm × 20μm. The COMSOL 

results for instantaneous induction is calculated by using very 

low rise time (0.1𝑢𝑠).  

According to our results, the simulated CES can stimulate a 

neuron even applying 70mV. However, instantaneous rising 

voltage is not realisable in the real-world scenarios. Hence, we 

use a finite rise time in COMSOL simulations. The maximum 

percent difference between our theoretical analysis and 

simulations is 26.53% for 15μm × 15μm stimulator. This is 

most probably due to our assumptions not holding perfectly for 

smaller size plates. The rest of the results fit our theoretical 

analysis quite well, with error values between 1.61% for 

20μm × 20μm , 1.71% for 25μm × 25μm  and 3.74% for 

25μm × 25μm plates. 

 



Since this device is to be implanted in body, the distance and 

orientation may not be adjusted perfectly. We can calculate 

the potential in case the centre is shifted 𝑥0 and 𝑦0, we can 

easily use (12) to calculate the potential at φ(𝑥𝑙/2 −
𝑥0, 𝑦𝑙/2 − 𝑦0, z0). The percent change due to the deviations 

in x direction for a target at 10 μm is given in Fig. 3. As we 

can see in Fig 3, even for small size stimulators, the percent 

difference is reasonable and manageable. Note that a 50% 

extra attenuation due to orientation and distance deviations 

can be negated by increasing the applied voltage two folds. 

 
Fig. 3. Percent potential change at the target due to the deviations 

in the x direction 

 In case the deviation is not in the orientation of the 

stimulator with respect to the target but in the distance to the 

target, we can use a similar approach to calculate the percent 

potential change at the target. We present the effects of small 

deviations from the intended 10 μm target distance for different 

stimulator sizes in Fig. 4. As you can see in Fig. 4, small 

deviations for tolerable, even for small stimulators. 

  

Fig. 4. Percent potential change at the target due to the deviations 

in the z direction 

In COMSOL simulations, potential difference at the target 

point is created by the movement of ions as explained in 

Section III. We applied a gradually rising potential difference 

of one volt at the electrode at 1ms in order to analyse the 

transient response of the neural interface. As seen Fig. 5, 

decreasing rise time significantly increases the maximum 

potential difference generated on the target neuron. In 

addition, the duration of stimulation is increasing with the 

increasing rise time at the expense of maximum generated 

voltage. Hence, there is a significant trade-off between applied 

voltage and stimulation duration. 

   

Fig. 5 Induced Potential at the target for different rise times 

 CONCLUSION 

 In this work, we have calculated the exact potential due 

to a capacitive electrical neural interface at a target. We have 

demonstrated that such devices are capable of inducing the 

necessary potential difference for neural stimulation. We 

have also shown that capacitive electrical interfaces can 

tolerate the small deviations in their operation medium. We 

also started analysing the factors that will affect the 

stimulation period, such as charging of the capacitor.  

 In our future works, we will fully analyse the charging 

of the capacitor and its effects in the rate of change of voltage 

and fully demonstrate the excitability of neurons using such 

a device. We will also calculate the energy per use and 

maximum operating frequency of such a device. 
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