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Abstract— Communication among neurons is the most 

promising technique for biocompatible nanonetworks. This 

necessitates the thorough communication theoretical analysis 

of information transmission among neurons. The information 

flow in neuro-spike communication channel is regulated by the 

ability of neurons to change their synaptic strengths over time, 

i.e. synaptic plasticity. Thus, the performance evaluation of the 

nervous nanonetwork is incomplete without considering the 

influence of synaptic plasticity. Hence, in this paper, we 

provide a comprehensive model for multiple-input single-

output (MISO) neuro-spike communication by integrating the 

spike timing dependent plasticity (STDP) into existing channel 

model. We simulate this model for a realistic scenario with 

correlated inputs and varying spiking threshold. We show that 

plasticity is strengthening the correlated input synapses at the 

expense of weakening the synapses with uncorrelated inputs. 

Moreover, a nonlinear behavior in signal transmission is 

observed with changing spiking threshold. 

I. INTRODUCTION 

Synaptic plasticity is a fundamental property of the 
mammalian brain and refers to the capability of synapses to 
change their strength [1]. It is involved in the control of 
information flow between neurons on different temporal scales 
and can be divided into two main categories, (i) short-term 
plasticity, which lasts on the order of milliseconds to several 
minutes [2], and (ii) long-term plasticity, which refers to 
changes that can last from hours to the lifetime of the synapse 
and is thought to play a central role in the mechanisms involved 
in memory and learning [1]. Moreover, aberrant synaptic 
plasticity contributes to several neuropsychiatric disorders [1], 
[3]. Hence, studying synaptic plasticity in both healthy and 
diseased conditions is an important step towards understanding 
brain functions and the development of novel diagnostic and 
treatment techniques.  

Neuro-spike communication is one of the most promising 
nanoscale communication paradigms. Hence, several studies 
have focused on modeling processes involved and evaluating 
its performance [4]-[8]. However, while the short-term 
plasticity is considered in [4], [8], none of the existing studies 
in the literature have considered the impact of long-term 
synaptic plasticity on the performance of this communication 
channel. Our main motivation in this work is to study learning 
and memory processes that are based on the changes in strength 
and connectivity of neural networks. Hence, in this paper, for 
the first time in the literature, we study the impact of the long-

term synaptic plasticity on multiple access communication 
channel among hippocampal-cortical neurons. Long-term 
plasticity can be expressed in two forms, (i) long-term 
potentiation (LTP), which refers to an enhancement in the 
strength of the synapse, and (ii) long-term depression (LTD), in 
which the synaptic strength is decreased over time [1]. Thus, in 
this paper, we are using bidirectional spike timing dependent 
plasticity (STDP) model that either depresses or strengthens the 
synapses depending on the temporal correlation between pre- 
and post-synaptic spikes [9].  

Learning occurs through cooperation between synaptic 
inputs and the plasticity rules select inputs which are correlated 
with other inputs [10]. Thus, we analyze the influence of 
correlation among pre-synaptic spike trains on the 
strengthening of synapses and its impacts on the signal 
transmission over this channel.  Moreover, impacts of variation 
in spiking threshold, which happens in real scenarios [10], is 
studied on the probability of spike generation in output neuron.  

The remainder of this paper is organized as follows. In 

Section II, the MISO neuro-spike communication channel 

model is explained. Then, STDP and its impact on the synaptic 

channel strength is explained in Section III. Finally, the 

performance evaluation is provided in Section IV and the paper 

is concluded in Section V. 

II. MISO NEURO-SPIKE COMMUNICATION CHANNEL  

This study is based on a MISO synaptic channel, where a 

single post-synaptic neuron receives and processes information 

from multiple pre-synaptic neurons as shown in Fig. 1. 

A. Input spike trains and axonal transmission 

The synaptic communication begins with spike arrival in 
pre-synaptic neurons. The spike train in 𝑖 th pre-synaptic 
terminal can be modeled by Poisson process as 𝑆𝑖(𝑡) =
𝑃𝑜𝑖𝑠𝑠(𝜆𝑖), where 𝜆𝑖  is the spike rate, 𝑖 𝜖[1, 𝑀] and 𝑀  is the 
number of pre-synaptic neurons [5]. By discretizing time into 
windows of equal length, i.e., ∆𝑡, the spiking probability in 𝑖th 
pre-synaptic neuron at 𝑛th time step is modeled as 𝑃{𝑆𝑖[𝑛] =
1} = 1 − exp(−𝜆𝑖  Δ 𝑡) , where 𝑆𝑖[𝑛] = 1  indicates spike 
arrival [4]. Moreover, after firing one spike, the neuron is not 
able to generate another spike for a certain time duration called 

refractory period, 𝜏𝑟𝑒𝑓  [11]. Hence, 𝑃{𝑆𝑖[𝑛] = 1} = 0 for 
𝜏𝑟𝑒𝑓

Δ𝑡
 

consecutive time steps after firing one spike. Furthermore, since 
spikes propagate reliably through axons in hippocampal 
neurons [6], we model axonal transmission as ideal all pass 
filter with zero transmission delay. 
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B. Vesicle Release Process 

The spike arrival at each pre-synaptic terminal causes 
vesicle release with probability 𝑝𝑖  modeled in [5] as follows,  

𝑃{𝑉𝑖[𝑛] = 1|𝑆𝑖[𝑛] = 1} = 1 − 𝑒𝑥𝑝(−𝛼𝑖𝑁𝑖) ≜  𝑝𝑖 , 

where 𝛼𝑖 = 0.06 √𝑁𝑖  is the rate at which vesicles are fused 

with the membrane to get released [12], 𝑁𝑖  is the number of 
available vesicles for release and 𝑉𝑖[𝑛] = 1 indicate the vesicle 
release from 𝑖th pre-synaptic terminal. 

C. Post-synaptic Response at Each Synapse 

After each release, the post-synaptic potential caused by 𝑖th 
synapse is modeled in [5] as  

𝑒𝑖(𝑡) = 𝑤𝑖(𝑡)ℎ𝑖
𝑡

𝑡𝑝
exp(1 −

𝑡

𝑡𝑝
),                  (1) 

where  𝑡𝑝  is the time to reach the peak amplitude of EPSP, 

𝑤𝑖(𝑡)ℎ𝑖  is the peak EPSP amplitude at 𝑖th synapse and 𝑤𝑖(𝑡) is 
the synaptic weight, which can increase or decrease according 
to the synaptic activity. 

D. Spike Generation 

The total membrane potential 𝐸(𝑡) at post-synaptic neuron 
contributed by all the inputs is given as 

𝐸(𝑡) = 𝑣𝑟𝑒𝑠𝑡 + ∑ ∑ 𝑉𝑖[𝑛]𝑒𝑖(𝑡 − 𝑡𝑛)∀𝑛: 𝑡𝑛≤𝑡 
𝑀
𝑖=1 + 𝑔(𝑡),  (2) 

where 𝑣𝑟𝑒𝑠𝑡is the membrane resting potential, 𝑛th time window 
starts at 𝑡𝑛 and 𝑔(𝑡) is the synaptic noise modeled by Gaussian 
distribution with zero mean and variance 𝜎𝑛

2 [5]. A spike occurs 
in the output, i.e.,  𝑌[𝑛]  =  1, when 𝐸(𝑡) ≥ 𝜃, where 𝜃 is the 
spiking threshold and (𝑛 − 1)∆𝑡 ≤  𝑡 < 𝑛∆𝑡. 

III. SPIKE TIMING DEPENDENT PLASTICITY 

Strong depolarization of post-synaptic neuron is required 
for induction of LTP while weaker depolarization leads to LTD. 
Therefore, the change in synaptic efficacy is driven by temporal 
correlations between pre-synaptic spike arrival and post-
synaptic firing and it is termed as STDP. STDP is order 
dependent, i.e., if the pre-synaptic spike arrives before post-
synaptic spike, the synapse is strengthened, while the opposite 
order weakens the synapse. This kind of long-term synaptic 
plasticity is prevalent in cortical neurons especially in 
excitatory hippocampal pyramidal neurons [13]. Hence, in this 
section, we provide the model for updating the synaptic 
weights, governed by the variable 𝑤𝑖(𝑡), using STDP model. 

Considering 𝑆𝑖(𝑡) and 𝑌(𝑡) as pre- and post-synaptic spike 
trains, respectively, the change in weight of 𝑖th synapse is given 
as,  

𝑑𝑤𝑖(𝑡)

𝑑𝑡
= 𝑎0 + 𝑆𝑖(𝑡) (𝑎1

𝑝𝑟𝑒
+ ∫ 𝑎2

𝑝𝑟𝑒,𝑝𝑜𝑠𝑡
(𝑡′

∞

0

)𝑌(𝑡 − 𝑡′)𝑑𝑡′) 

+𝑌(𝑡)(𝑎1
𝑝𝑜𝑠𝑡

+ ∫ 𝑎2
𝑝𝑜𝑠𝑡,𝑝𝑟𝑒

(𝑡′∞

0
)𝑆𝑖(𝑡 − 𝑡′)𝑑𝑡′),   (3) 

where 𝑆𝑖(𝑡) = ∑ 𝛿(𝑡 − 𝑡𝑖,𝑝𝑟𝑒
𝑓

)𝑓 , 𝑌(𝑡) = ∑ 𝛿(𝑡 − 𝑡𝑝𝑜𝑠𝑡
𝑓

𝑓 )  and 

𝑡′ = 𝑡𝑖,𝑝𝑟𝑒
𝑓

− 𝑡𝑝𝑜𝑠𝑡
𝑓

 is the time difference between pre- and post-

synaptic spikes. The parameter 𝑎0 < 0 represents an activity 
independent constant decrease in the synaptic weight, i.e., 
irrespective of the presence of a spike on pre- and post-synaptic 

terminal. Moreover, 𝑎1
𝑝𝑟𝑒

 and 𝑎1
𝑝𝑜𝑠𝑡

 represent the non-Hebbian 

effect on synaptic weight resulting due to the occurrence of pre- 

and post-synaptic spike, respectively. 𝑎2
𝑝𝑟𝑒,𝑝𝑜𝑠𝑡

(𝑡′) governs the 

weight change that depends on the time difference between the 
current pre-synaptic spike and the last post-synaptic spike 
occurrence. This factor is responsible for reducing the weight 
according to Hebbian learning. On the other hand, if a post-
synaptic spike occurs at a certain time instant, the time since 
last pre-synaptic spike arrival dictates strengthening of the 

synapse with the factor 𝑎2
𝑝𝑜𝑠𝑡,𝑝𝑟𝑒

(𝑡′) . 𝑎2
𝑝𝑟𝑒,𝑝𝑜𝑠𝑡

(𝑡′)  and 

𝑎2
𝑝𝑜𝑠𝑡,𝑝𝑟𝑒

(𝑡′) together describe a learning window 𝑊(𝑡′), i.e., a 

rule for updating synaptic weights, as follows [9], 

𝑊(𝑡′) = {
𝑎2

𝑝𝑜𝑠𝑡,𝑝𝑟𝑒(𝑡′) = 𝐴+ exp(𝑡′/𝜏1),     𝑖𝑓 𝑡′ < 0

𝑎2
𝑝𝑟𝑒,𝑝𝑜𝑠𝑡

(𝑡′) = 𝐴−exp (−𝑡′/𝜏2), 𝑖𝑓 𝑡′ > 0
  (4) 

where 𝑡′ < 0  shows the arrival of pre-synaptic spike before 

post-synaptic spike and 𝑡′ > 0 shows otherwise.  

IV. PERFORMANCE EVALUATION 

In this section, we evaluate the neuro-spike communication 
channel considering 𝑀 pre-synaptic neurons making only one 
synapse each with the output neuron as shown in Fig. 1. We 
utilize parameters given in Table I and simulate three different 
scenarios defined as follows for 1000 time steps: 

• When there is no STDP, thus, synaptic weights are 
constant at 𝑤𝑟𝑒𝑠𝑡 . 

• In the presence of STDP with no correlation among 
pre-synaptic spike trains generated by Poisson 
processes with the same rate, i.e., 𝜆𝑖 =  𝜆. 

• In the presence of STDP with correlated inputs. 
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Fig. 1. Communication among one pre-synaptic neuron and the post-synaptic neuron in MISO synaptic channel. 



 

 

Changes in synaptic efficacy using STDP model are defined 

using (3) and (4) and the learning window is shown in Fig. 2. 

To induce realistic synaptic plasticity, we need to ensure that 

synaptic weights remain in certain bounds. Thus, we consider 

initial values of 𝑤𝑖(0) = 𝑤𝑟𝑒𝑠𝑡  and restrict the synaptic weights 

in the interval [0,1] according to [15]. Moreover, the parameters 

of STDP model are selected according to studies fitting the 

STDP model to experimental data [16]. 

A. Correlation among Inputs and Synaptic Strength 

For introducing correlation among the pre-synaptic spike 
trains, we divide inputs into five groups {𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝐺5}, 
where 𝐺1  to 𝐺4  have ten members each and the remaining 
neurons are in 𝐺5 . Let 𝑇𝑖~𝑃𝑜𝑖𝑠𝑠(𝜆𝑖) , where 𝜆𝑖 =  𝜆  for 
𝑖 𝜖[1, 𝑀],  be independent random variables. For inputs 
assigned to 𝐺𝑙 with 𝑙 𝜖 [1,4] the spike trains are defined as 𝑆𝑖 =
𝑇𝑖 + 𝐶𝑙, where 𝑖𝜖𝐺𝑙 and 𝐶𝑙~𝑃𝑜𝑖𝑠𝑠(𝜆𝐶𝑙

). Hence, the correlation 

coefficient among any two neurons in these groups is calculated 
as, 

𝜌𝑖𝑗 =  𝑐𝑜𝑟𝑟(𝑆𝑖 , 𝑆𝑗) = {

𝜆𝐶𝑙

𝜆+𝜆𝐶𝑙
            𝑖𝑓 𝑖 ≠ 𝑗

1                       𝑖𝑓 𝑖 = 𝑗
,             (5) 

where 𝑖, 𝑗 𝜖 𝐺𝑙  and 𝑙 𝜖 [1,4]. We select 𝜆𝑐1 = 20 Hz, 𝜆𝑐2 = 50 
Hz, 𝜆𝑐3 = 70  Hz and 𝜆𝑐4 = 100  Hz. For neurons in 𝐺5  the 

spike trains are defined as 𝑆𝑖 = 𝑇𝑖 . Note that spike trains of 
neurons assigned to different groups are independent. 

The change in synaptic weights over a period of time is 
calculated by (3) and the ratio of strengthened or potentiated 
synapses in each group at the end of simulation time are plotted 
in Fig. 3 for different values of spiking threshold 𝜃. As shown 
in Fig. 3, the ratio of potentiated users, 𝑅𝑙 , increases as the 
correlation among the users in the same group increases. 
However, according to (5), the correlation factor reduces with 
the increase in 𝜆, thus, the number of potentiated inputs for 
different groups approach the uncorrelated scenario. 

As 𝜆  increases, the probability of input spike increases, 
however, moderate values of 𝜆 are unable to generate enough 
number of post-synaptic spikes. Hence, the negative effect of 

𝑎2
𝑝𝑟𝑒,𝑝𝑜𝑠𝑡

(𝑡′) is dominant compared to the positive impact of 

𝑎2
𝑝𝑜𝑠𝑡,𝑝𝑟𝑒

(𝑡′) on synaptic strength. Thus, a drop in the value of 

𝑅𝑙  is observed. Further increase in 𝜆  generates more post-

synaptic spikes increasing the effect of 𝑎2
𝑝𝑜𝑠𝑡,𝑝𝑟𝑒

(𝑡′) , thus, 

improving the potentiation of the synapses. 

When spiking threshold, 𝜃 , increases more pre-synaptic 

spikes, thus, higher value of 𝜆, is required to generate a post-

synaptic spike. Hence, the drop in 𝑅𝑙  is shifting to the right 

from moderate towards higher values of 𝜆 as shown in Fig. 3. 

Moreover, the value of 𝑅𝑙 at its drop is decreasing by increasing 

𝜃 since the negative impact of 𝑎2
𝑝𝑟𝑒,𝑝𝑜𝑠𝑡

(𝑡′) is stronger because 

of existence of more pre-synaptic spikes.  

B. Probability of Spike Generation at Output Neuron 

The synaptic weights, 𝑤𝑖(𝑡), have a direct impact on the 

amplitude of EPSP as given by (1). Thus, change in 𝑤𝑖(𝑡) 

directly affects the probability of spike generation on post-

synaptic terminal. As depicted in Fig. 3(a), more than 50% of 

input neurons have synaptic weights greater than 𝑤𝑟𝑒𝑠𝑡  for 

almost all values of 𝜆. Hence, spike generation probability is 

higher in the neuro-spike communication channel with STDP 

at this spiking threshold as depicted in Fig. 4(a). Moreover, 

since the synapses for correlated inputs are strengthened more 

than uncorrelated ones, the probability of spike generation is 

also higher for the system with correlated inputs. Same pattern 

is observed for low values of 𝜆  at 𝜃 =  20 mV and 𝜃 =  25 

mV in Fig. 4(b-c). However, as shown in Fig. 3(b-c), more than 

50% of the synapses are depressed for moderate values of 𝜆 in 

the system with STDP at these spiking thresholds. Thus, the 

probability of output spike generation in this system is less than 

the system without STDP for moderate values of 𝜆. As shown 

in Fig. 4(b-c), the system with STDP again outperforms the 

system without STDP for higher values of 𝜆 since the 

percentage of potentiated synapses increases.   

V. CONCLUSION 

In this paper, we studied the impact of STDP on the 
performance of multiple access neuro-spike communication 
channel for correlated as well as uncorrelated input spike trains. 
As observed in the simulation results, correlation among inputs 
improves the probability of signal transmission over the 
channel as a result of strengthening the synapses of the 

 
Fig. 2. Learning window. 

TABLE I. Simulation parameters.  
 

Parameters Symbols Values 

Normalized EPSP amplitude ℎ𝑖𝑤𝑟𝑒𝑠𝑡 1 mV [5] 

Initial synaptic weight 𝑤𝑟𝑒𝑠𝑡 0.5 

Time to reach EPSP peak 𝑡𝑝 0.1 ms [7] 

Number of available vesicles  𝑁𝑖 for all 𝑖 10 [14] 

Resting potential 𝑣𝑟𝑒𝑠𝑡 -65 mV 

Noise standard deviation 𝜎𝑛 0.1 mV [5] 

Refractory period 𝜏𝑟𝑒𝑓  2 ms [11] 

Number of inputs 𝑀 300 

 
 

STDP parameters 

𝑎0, 𝑎1
𝑝𝑟𝑒

, 𝑎1
𝑝𝑜𝑠𝑡

 -1, 0.01, 0 

𝐴+, 𝐴− 0.24, -0.1 

𝜏1, 𝜏2 12.2, 13.6 ms 

 



 

 

correlated inputs. Furthermore, it is observed that the changes 
in the spiking threshold, which happens in real scenario, have 
nonlinear impacts on the probability of signal transmission over 
this communication channel. Thus, our analysis signifies the 
importance of a comprehensive model for neuro-spike 
communication channel consisting of long-term plasticity to 
fully evaluate the performance of the nanonetwork using neuro-
spike communication paradigm as well as for getting insights 
into the functionality of the brain. 
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(a) 𝜃 = 15 mV                                                    (b) 𝜃 = 20 mV                                                   (c) 𝜃 = 25 mV            
 

Fig. 3. Ratio of synaptic weights greater than 𝑤𝑟𝑒𝑠𝑡, i.e., potentiated synapses, for different spiking thresholds. 

 

 
 

(a) 𝜃 = 15 mV                                                    (b) 𝜃 = 20 mV                                                   (c) 𝜃 = 25 mV            
 

Fig. 4. Probability of spike generation in output for different spiking thresholds. 


