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It is a common saying that testing for conditional independence,
i.e., testing whether whether two random vectors X and Y are inde-
pendent, given Z, is a hard statistical problem if Z is a continuous
random variable (or vector). In this paper, we prove that conditional
independence is indeed a particularly difficult hypothesis to test for.
Valid statistical tests are required to have a size that is smaller than
a predefined significance level, and different tests usually have power
against a different class of alternatives. We prove that a valid test for
conditional independence does not have power against any alterna-
tive.

Given the non-existence of a uniformly valid conditional indepen-
dence test, we argue that tests must be designed so their suitability
for a particular problem may be judged easily. To address this need,
we propose in the case where X and Y are univariate to nonlinearly
regress X on Z, and Y on Z and then compute a test statistic based
on the sample covariance between the residuals, which we call the
generalised covariance measure (GCM). We prove that validity of
this form of test relies almost entirely on the weak requirement that
the regression procedures are able to estimate the conditional means
X given Z, and Y given Z, at a slow rate. We extend the methodol-
ogy to handle settings where X and Y may be multivariate or even
high-dimensional. While our general procedure can be tailored to the
setting at hand by combining it with any regression technique, we
develop the theoretical guarantees for kernel ridge regression. A sim-
ulation study shows that the test based on GCM is competitive with
state of the art conditional independence tests. Code is available as
the R package GeneralisedCovarianceMeasure on CRAN.

1. Introduction. Conditional independences lie at the heart of several
fundamental concepts such as sufficiency [21] and ancillarity [22, 23]; see
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also Jensen and Sørensen [28]. Dawid [17] states that “many results and
theorems concerning these concepts are just applications of some simple
general properties of conditional independence”. During the last few decades,
conditional independence relations have played an increasingly important
role in computational statistics, too, since they are the building blocks of
graphical models [32, 30, 37].

Estimating conditional independence graphs has been of great interest
in high-dimensional statistics, particularly in biomedical applications [e.g.
35, 18]. To estimate the conditional independence graph corresponding to a
random vector X ∈ Rd, edges may be placed between vertices corresponding
to Xj and Xk if a test for whether Xj is conditionally independent of Xk

given all other variables indicates rejection.
Conditional independence tests also play a key role in causal inference.

Constraint-based or independence-based methods [37, 47, 39] apply a series
of conditional independence tests in order to learn causal structure from
observational data. The recently introduced invariant prediction methodol-
ogy [38, 26] aims to estimate for a specified target variable Y , the set of
causal variables among potential covariates X1, . . . , Xd. Given data from
different environments labelled by a variable E, the method involves testing
for each subset S ⊆ {1, . . . , d}, the null hypothesis that the environment E
is conditionally independent of Y , given XS .

Given the importance of conditional independence tests in modern statis-
tics, there has been great deal of work devoted to developing conditional
independence tests; we review some important examples of tests in Sec-
tion 1.3. However one issue that conditional independence tests appear to
suffer from is that they can fail to control the type I error in finite samples,
which can have important consequences in downstream analyses.

In the first part of this paper, we prove this failure of type I error control
is in fact unavoidable: conditional independence is not a testable hypotheses.
To fix ideas, consider n i.i.d. observations corresponding to a triple of ran-
dom variables (X,Y, Z) where it is desired to test whether X is conditional
independent of Y given Z. We show that provided the joint distribution of
(X,Y, Z) ∈ RdX+dY +dZ is absolutely continuous with respect to Lebesgue
measure, any test based on the data whose size is less than a pre-specified
level α, has no power; more precisely, there is no alternative, for which the
test has power more than α. This result is perhaps surprising as it is in
stark contrast to unconditional independence testing, for which permuta-
tion tests allow for the correct calibration of any hypothesis test. Our result
implies that in order to perform conditional independence testing, some do-
main knowledge is required in order to select an appropriate conditional
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independence test for the particular problem at hand. This would appear
to be challenging in practice, as the validity of conditional independence
tests typically rests on properties of the entire joint distribution of the data,
which may be hard to model.

Our second main contribution aims to alleviate this issue by providing a
family of conditional independence tests whose validity relies on estimating
the conditional expectations E(X|Z = z) and E(Y |Z = z) via regressions,
in the setting where dX = dY = 1. These need to be estimated sufficiently
well using the data such that the product of mean squared prediction errors
from the two regressions is o(n−1). This is a relatively mild requirement
that allows for settings where the conditional expectations are as general as
Lipschitz functions, for example, and also encompasses settings where Z is
high-dimensional but the conditional expectations have more structure.

Our test statistic, which we call the generalised covariance measure (GCM)
is based on a suitably normalised version of the empirical covariance between
the residual vectors from the regressions. The practitioner is free to choose
the regression methods that appear most suitable for the problem of interest.
Although domain knowledge is still required to make an appropriate choice,
selection of regression methods is a problem statisticians are more familiar
with. We also extend the GCM to handle settings where X and Y are po-
tentially high-dimensional, though in this case our proof of the validity of
the test additionally requires the errors Xj − E(Xj |Z) and Yk − E(Yk|Z) to
obey certain moment restrictions for j = 1, . . . , dX and k = 1, . . . , dY and
slightly faster rates of convergence for the prediction errors.

As an example application of our results on the GCM, we consider the case
where the regressions are performed using kernel ridge regression, and show
that provided the conditional expectations are contained in a reproducing
kernel Hilbert space, our test statistic has a tractable limit distribution.

The rest of the paper is organised as follows. In Sections 1.1 and 1.2,
we first formalise the notion of conditional independence and relevant con-
cepts related to statistical hypothesis testing. In Section 1.3 we review some
popular conditional independence tests, after which we set out some nota-
tion used throughout the paper. In Section 2 we present our main result on
the hardness of conditional independence testing. We introduce the gener-
alised covariance measure in Section 3 first treating the univariate case with
dX = dY = 1 before extending ideas to the potentially high-dimensional
case. In Section 4 we apply the theory and methodology of the previous
section to study that particular example of generalised covariance measures
based on kernel ridge regression. We present numerical experiments in Sec-
tion 5 and conclude with a discussion in Section 6. All proofs are deferred
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to the appendix and supplementary material.

1.1. Conditional independence. Let us consider three random vectors X,
Y and Z taking values in RdX , RdY and RdZ , respectively, and let us assume,
for now that their joint distribution is absolutely continuous with respect to
Lebesgue measure with density p. For our deliberations only the continuity
in Z is necessary, see Remark 4. We say that X is conditionally independent
of Y given Z and write

X ⊥⊥ Y | Z

if for all x, y, z with p(z) > 0, we have p(x, y|z) = p(x|z)p(y|z), see, e.g.,
Dawid [17]. Here and below, statements involving densities should be under-
stood to hold (Lebesgue) almost everywhere. We now discuss an equivalent
formulation of conditional independence that has given rise to several hy-
pothesis tests, including the generalised covariance measure proposed in this
paper. Let therefore L2

X,Z denote the space of all functions f : RdX ×RdZ →
R such that Ef(X,Z)2 <∞ and define L2

Y,Z analogously. Daudin [16] proves
that X and Y are conditionally independent given Z if and only if

(1) Ef(X,Z)g(Y, Z) = 0

for all functions f ∈ L2
X,Z and g ∈ L2

Y,Z such that E[f(X,Z)|Z] = 0 and
E[g(Y,Z)|Z] = 0, respectively.

This may be viewed as an extension of the fact that for one-dimensional
X and Y , the partial correlation coefficient ρX,Y |Z (the correlation between
residuals of linear regressions of X on Z and Y on Z) is 0 if and only if
X ⊥⊥ Y | Z in the case where (X,Y, Z) are jointly Gaussian.

1.2. Statistical hypothesis testing and notation. We now introduce some
notation and relevant concepts related to statistical hypothesis testing. In
order to deal with composite null hypotheses where the probability of re-
jection must be controlled under a variety of different distributions for the
data to which our test is applied, we introduce the following notation. We
will write EP (·) for expectations of random variables whose distribution is
determined by P , and similarly PP (·) = EP1{·}.

Let P be a potentially composite null hypothesis consisting of a collection
of distributions for (X,Y, Z). For i = 1, 2, . . . let (xi, yi, zi) ∈ RdX+dY +dZ be
i.i.d. copies of (X,Y, Z) and let X(n) ∈ RdX ·n, Y(n) ∈ RdY ·n and Z(n) ∈ RdZ ·n
be matrices with ith rows xi, yi and zi respectively. Let ψn be a potentially
randomised test that can be applied to the data (X(n),Y(n),Z(n)); formally,

ψn : R(dX+dY +dZ)·n × [0, 1]→ {0, 1}
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is a measurable function whose last argument is reserved for a random vari-
able U ∼ U [0, 1] independent of the data which is responsible for the ran-
domness of the test.

Given a sequence of tests (ψn)∞n=1, the following validity properties will
be of interest; note the particular names given to these properties differ in
literature. Given a level α ∈ (0, 1) and null hypothesis P, we say that the
test ψn has

valid level at sample size n if sup
P∈P

PP (ψn = 1) ≤ α,

where the left-hand side is the size of the test; the sequence (ψn)∞n=1 has

uniformly asymptotic level if lim sup
n→∞

sup
P∈P

PP (ψn = 1) ≤ α,

pointwise asymptotic level if sup
P∈P

lim sup
n→∞

PP (ψn = 1) ≤ α.

In practice, we would like a test to have at least uniformly asymptotic level.
Otherwise, even for an arbitrarily large sample size n, there can exist null
distributions for which the size exceeds the nominal level by some fixed
amount.

Given a sequence of tests (ψn)∞n=1 each with valid level α ∈ (0, 1) and
alternative hypotheses Q, it is desirable for the power to be large uniformly
over Q, and to have infQ∈Q PQ(ψn = 1) → 1. In standard parametric set-
tings, we can certainly achieve this for any fixed alternative hypothesis and
indeed have uniform power against a sequence of

√
n alternatives. Nonpara-

metric problems are much harder and when Q contains all distributions
outside a small fixed total variation (TV) neighbourhood of P, we have

lim inf
n→∞

inf
Q∈Q

PQ(ψn = 1) < 1,

[33, 4, Prop. 2, Thm. 3]. To achieve power tending to 1, we need to restrict
Q by imposing certain smoothness conditions for example [3].

A class of even harder hypothesis testing problems may be defined as
those where no test with valid level achieves power at any alternative, so
supQ∈Q PQ(ψn = 1) ≤ α. In other words, for all n, tests ψn and alternative
distributions Q ∈ Q, we have

PQ(ψn = 1) ≤ sup
P∈P

PP (ψn = 1).

The hypothesis testing problem defined by the pair (P,Q) is then said to be
untestable [19]. In order to have power at even a single alternative, we need
to restrict the null P in some way. One of the main results of this paper is
that conditional independence is untestable.
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1.3. Related work. Our hardness result for conditional independence con-
tributes to an important literature on impossibility results in statistics and
econometrics starting with the work of Bahadur and Savage [2] which shows
that there is no non-trivial test for whether a distribution has mean zero.
Canay et al. [11] shows that certain problems arising in the context of iden-
tification of some nonparametric models are not testable. In these examples,
the null hypothesis is dense with respect to the TV metric in the alterna-
tive hypothesis, a property which implies untestability [45]. Interestingly,
our Proposition 5 shows that conditional independence testing is qualita-
tively different in that some distributions in the alternative are in fact well-
separated from the null. It has been suggested for some time that conditional
independence testing is a hard problem (see, e.g., [5], and several talks given
by Bernhard Schölkopf). To the best of our knowledge the conjecture that
conditional independence is not testable (cf. Corollary 3 with M = ∞) is
due to Arthur Gretton. We also note that when the conditional distribution
of X given Z is known, conditional independence is testable [e.g. 7].

We now briefly review several tests for conditional independence that bear
some relation to our proposal here.

Extensions of partial correlation. Ramsey [40] suggests regressing X on Z
and Y on Z and then testing for independence between the residuals. Fan
et al. [20] consider this approach in the setting where Z is potentially high-
dimensional and under the null hypothesis of X ⊥⊥ Y | Z, X = ZTβX + εX ,
Y = ZTβY + εY with εX ⊥⊥ Z and εY ⊥⊥ Z. The following simple example
however indicates where such methods can fail.

Example 1. Define NX , NY and Z to be i.i.d. random variables with
distribution N (0, 1) and define X := Z · NX , Y := Z · NY . This implies
X ⊥⊥ Y | Z. Since E[X|Z] = E[Y |Z] = 0, the (population) residuals equal
R1 := Z ·NX and R2 := Z ·NY ; they are uncorrelated but not independent
since, e.g., cov(R2

1, R
2
2) 6= 0. Consider regressing X on Z and Y on Z,

and then testing for independence of the residuals. If the regression method
outputs the true conditional means and the independence test has power
against the alternative cov(R2

1, R
2
2) 6= 0, the method will falsely reject the

null hypothesis of conditional independence with large probability.

Kernel-based conditional independence tests. The Hilbert-Schmidt inde-
pendence criterion (HSIC) equals the square of the Hilbert–Schmidt norm
of the cross-covariance operator, and is used in unconditional independence
testing [25]. Fukumizu et al. [24] extend this idea to conditional indepen-
dence testing. To construct a test for continuous variables Z, their work
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requires clustering of the values of Z and permuting X and Y values within
the same cluster component. Another extension is proposed by Zhang et al.
[50]. Their kernel conditional independence (KCI) test is stated to yield
pointwise asymptotic level control.

Estimation of expected conditional covariance. Though typically not thought
of as conditional independence tests, there are several approaches to esti-
mating the expected conditional covariance functional Ecov(X,Y |Z) in the
semiparametric statistics literature [42, 15, 36]. From (1) we see these may
be used as conditional independence tests and indeed the GCM test we pro-
pose falls under this category. We delay further discussion of such methods
to Section 3.1.2.

1.4. Notation. We now introduce some notation used throughout the
paper. If (VP,n)n∈N,P∈P is a family of sequences of random variables whose
distributions are determined by P ∈ P, we use VP,n = oP(1) and VP,n =
OP(1) to mean respectively that for all ε > 0,

sup
P∈P

PP (|VP,n| > ε)→ 0, and

there exists M > 0 such that sup
P∈P

sup
n∈N

PP (|VP,n| > M) < ε.

If (WP,n)n∈N,P∈P is a further family of sequences of random variables, VP,n =
oP(WP,n) and VP,n = OP(WP,n) mean VP,n = WP,nRP,n and respectively
that RP,n = oP(1) and RP,n = OP(1). If A is a c × d matrix, then Aj

denotes the jth column of A, j ∈ {1, . . . , d}.

2. No-free-lunch in Conditional Independence Testing. In this
section we show that, under certain conditions, no non-trivial test for condi-
tional independence with valid level exists. To state our result, we introduce
the following subsets of E0 defined to be the set of all distributions for
(X,Y, Z) absolutely continuous with respect to Lebesgue measure.

Let P0 ⊂ E0 be the subset of distributions under which X ⊥⊥ Y | Z.
Further, for any M ∈ (0,∞], let E0,M ⊆ E0 be the subset of all distributions
with support contained strictly within an `∞ ball of radius M . Here we take
E0,∞ = E0. We also define Q0 = E0 \ P0 and set P0,M = E0,M ∩ P0, and
Q0,M = E0,M ∩ Q0. Consider the setup of Section 1.2 with null hypothesis
P = P0,M . Our first result shows that with this null hypothesis, any test ψn
with valid level at sample size n has no power against any alternative.

Theorem 2 (No-free-lunch). Given any n ∈ N, α ∈ (0, 1), M ∈ (0,∞],
and any potentially randomised test ψn that has valid level α for the null
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hypothesis P0,M , we have that PQ(ψn = 1) ≤ α for all Q ∈ Q0,M . Thus ψn
cannot have power against any alternative.

A proof is given in the appendix. Note that taking M to be finite ensures
all the random vectors (xi, yi, zi) are bounded. Thus, for example, aver-
ages will converge in distribution to Gaussian limits uniformly over P0,M ;
however, as the result shows, this does not help in the construction of a
non-trivial test for conditional independence. An immediate corollary to
Theorem 2 is that there is no non-trivial test for conditional independence
with uniformly asymptotic level.

Corollary 3. For all M ∈ (0,∞] and for any sequence (ψn)∞n=1 of
tests we have

sup
Q∈Q0,M

lim sup
n→∞

PQ(ψn = 1) ≤ lim sup
n→∞

sup
P∈P0,M

PP (ψn = 1).

This result is in stark contrast to unconditional independence testing,
where a permutation test can always be used to control the size of any
testing procedure. As a consequence, there exist tests with valid level at
sample size n and non-trivial power. For example, Hoeffding [27] introduces
a rank-based test in the case of univariate random variables and proves that
it maintains uniformly asymptotic level and has asymptotic power against
each fixed alternative. For the multivariate case, Berrett and Samworth [6]
consider a test based on mutual information and prove level guarantees, as
well as uniform power results against a wide class of alternatives. Thus while
independence testing remains a hard problem in that it is only possible to
have uniform power against certain subsets of alternatives, this is different
to conditional independence testing where we can only hope to control the
size uniformly over certain subsets of the null hypothesis.

Remark 4. Inspection of the proof shows that Theorem 2 also holds
in the case where the variables X and Y have marginal distributions that
are absolutely continuous with respect to counting measure, for example.
Theorem 2 therefore contains an impossibility result for testing the equality
of two conditional distributions (by taking Y to be an indicator specifying
the distribution). The continuity of Z, however, is necessary. If Z only takes
values in {1, 2}, for example, one can reduce the problem of conditional
independence testing to unconditional independence testing by combining the
tests for X ⊥⊥ Y | Z = 1 and X ⊥⊥ Y | Z = 2.

The null hypothesis being dense with respect to TV distance among the al-
ternative hypothesis is a sufficient condition for the problem to be untestable
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[45]. Proposition 5, proved in the supplementary material, illustrates that
this is not the case here: at least for M ∈ (0,∞), there exists an alternative,
for which there is no distribution from the null that is arbitrarily close.

Proposition 5. For P,Q ∈ E0, the total variation distance is given by

‖P −Q‖TV := sup
A∈B
|PP ((X,Y, Z) ∈ A)− PQ((X,Y, Z) ∈ A)|,

where B is the Borel σ-algebra on RdX+dY +dZ . For each M ∈ (0,∞), there
exists Q ∈ Q0,M satisfying

inf
P∈P0,M

‖P −Q‖TV ≥ 1/24.

In Proposition 16 in the appendix, we also show that the null and alter-
native hypotheses are well-separated in the sense of KL divergence. On the
other hand, it is known that if a problem is untestable, the convex closure
of the null must contain the alternative [31, 8, Theorem 5 and Corollary 1,
respectively]. The problem of conditional independence testing therefore has
the interesting property of the null being separated from the alternative, but
its convex hull is TV-dense in the alternative.

A practical implication of the negative result of Theorem 2 is that domain
knowledge is needed to select a conditional independence test appropriate for
the data at hand. However guessing the form of the entire joint distribution
in order to apply a test with the appropriate type I error control seems
challenging. In Section 3 we introduce a form of test that instead relies
on selecting regression methods that have sufficiently low prediction error
when regressing Y(n) and X(n) on Z(n), thereby converting the problem of
finding an appropriate test to the more familiar task of prediction. Before
discussing this methodology, we first sketch some of the main ideas of the
proof of Theorem 2 below.

2.1. Proof ideas of Theorem 2. Consider the case where dX = dY =
dZ = 1 and where the test is required to be non-randomised. First suppose
that for Q ∈ Q0,M , we have a test with rejection region R := ψ−1

n (1) ⊆ R3·n

such that PQ((X(n),Y(n),Z(n)) ∈ R) > α. Let us suppose for now that R
has the particularly simple form of a finite union of boxes. Our argument
now proceeds by showing that one can construct a distribution P ∈ P0,M

from the null such that there is a coupling of Pn and Qn where samples
from each distribution are ε close in `∞-norm. For a sufficiently small ε, we
will have PP ((X(n),Y(n),Z(n)) ∈ R) > α as well, giving the result.
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X

YZ

graphical model for Q

XX̊

X̊

YZZ̊

deterministic relationships

XX̃

Y ỸZZ̃

graphical model for the new distribution Q̃

Fig 1. Illustration of the main idea of the proof of Theorem 2. Left: We start with a
distribution Q ∈ Q0,M over (X,Y, Z). In general, the Q is Markov only to a fully connected
graphical model. Middle: After discretising X to X̊, we are able to “hide” variable X̊ in Z̊ =
f(Z, X̊) such that variable Z̊ is close to Z in `∞-norm and X̊ can be reconstructed from
Z̊. Thus, X̊, does not contain any “additional information” about Y when conditioning
on Z̊. Right: We then consider noisy versions of the variables to guarantee that the new
distribution P (over X̃, Ỹ , Z̃) is absolutely continuous with respect to Lebesgue measure,
and has X̃ ⊥⊥ Ỹ | Z̃. (The noise in Z̃ is such that it still allows us to reconstruct X̊
from Z̃.)

Figure 1 sketches the main components in our construction of P , which is
laid out formally in Lemmas 13 and 14 in the appendix. The key idea is as
follows. Given (X,Y, Z) ∼ P , we consider a binary expansion of (X,Y, Z),
which we truncate at some point to obtain (X̊, Y̊ , Z̊). We then concatenate
the digits of X̊ and Z̊ placing the former at the end of the binary expansion,
thereby embedding X̊ within Z̊. This way, X̊ can be reconstructed from
Z̊, and adding noise gives a distribution that is absolutely continuous with
respect to Lebesgue measure. By making the truncation point sufficiently
far down the expansions, we can ensure the ε proximity required.

For a general rejection region, we first approximate it using a finite union
of boxes R]. The argument sketched above gives us PP ((X(n),Y(n),Z(n)) ∈
R]) > α, but in order to conclude the final result, we must argue that we
can construct P such that PP ((X(n),Y(n),Z(n)) ∈ R] \ R) is sufficiently
small. To do this, we consider a large number of potential embeddings for
which the supports of the resulting distributions have little overlap. Using a
probabilistic argument, we can then show that at least one embedding yields
a distribution P such that the above is satisfied.

3. The Generalised Covariance Measure. We have seen how con-
ditional independence testing is not possible without restricting the null
hypothesis. In this section we give a general construction for a conditional
independence test based on regression procedures for regressing Y(n) and
X(n) on Z(n). In the case where dX = dY = 1, which we treat in the next
section, the basic form of our test statistic is a normalised covariance between
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the residuals from these regressions. Because of this, we call our test statistic
the generalised covariance measure (GCM). In Section 3.2 we show how to
extend the approach to handle cases where more generally dX , dY ≥ 1.

3.1. Univariate X and Y . Given a distribution P for (X,Y, Z), we can
always decompose

X = fP (Z) + εP , Y = gP (Z) + ξP ,

where fP (z) = EP (X|Z = z) and gP (z) = EP (Y |Z = z). Similarly, for
i = 1, 2, . . . we define εP,i and ξP,i by xi−fP (zi) and yi−gP (zi) respectively.
Also let uP (z) = EP (ε2

P |Z = z) and vP (z) = EP (ξ2
P |Z = z).

Let f̂ (n) and ĝ(n) be estimates of the conditional expectations fP and gP
formed, for example, by regressing X(n) and Y(n) on Z(n). For i = 1, . . . , n,
we compute the product between residuals from the regressions:

(2) Ri = {xi − f̂(zi)}{yi − ĝ(zi)}.

Here, and in what follows, we have sometimes suppressed dependence on n
and P for simplicity of presentation. We then define T (n) to be a normalised
sum of the Ri’s:

(3) T (n) =

√
n · 1

n

∑n
i=1Ri(

1
n

∑n
i=1R

2
i −

(
1
n

∑n
r=1Rr

)2)1/2
=:

τ
(n)
N

τ
(n)
D

.

Our final test can be based on |T (n)| with large values suggesting rejection.
Note that the introduction of notation for the numerator and denominator
in the definition of T (n) are for later use in Theorem 8.

In the case where f̂ and ĝ are formed through linear regressions, the test
is similar to one based on partial correlation, and would be identical were
the denominator in (3) to be replaced by the the product of the empirical
standard deviations of the vectors (xi − f̂(zi))

n
i=1 and (yi − ĝ(zi))

n
i=1. This

approach however would fail for Example 1 despite f and g being linear (in
fact both equal to the zero function) as the product of the variances of the
residuals would not in general equal the variance of their product. Indeed,
the reader may convince herself using pcor.test from the R package ppcor

[29], for example, that common tests for vanishing partial correlation do not
yield the correct size in this case.

The following result gives conditions under which when the null hypoth-
esis of conditional independence holds, we can expect the asymptotic distri-
bution of T (n) to be a standard normal.
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Theorem 6. Define the following quantities:

Af :=
1

n

n∑
i=1

{fP (zi)− f̂(zi)}2, Bf :=
1

n

n∑
i=1

{fP (zi)− f̂(zi)}2vP (zi),

Ag :=
1

n

n∑
i=1

{gP (zi)− ĝ(zi)}2, Bg :=
1

n

n∑
i=1

{gP (zi)− ĝ(zi)}2uP (zi).

We have the following results:

(i) If for P ∈ P0, AfAg = oP (n−1), Bf = oP (1), Bg = oP (1) and also
0 < EP (ε2

P ξ
2
P ) <∞, then

sup
t∈R
|PP (T (n) ≤ t)− Φ(t)| → 0.

(ii) Let P ⊂ P0 be a class of distributions such that AfAg = oP(n−1),
Bf = oP(1), Bg = oP(1). If in addition infP∈P E(ε2

P ξ
2
P ) ≥ c1 and

supP∈P EP {(εP ξP )2+η} ≤ c2 for some c1, c2 > 0 and η > 0, then

sup
P∈P

sup
t∈R
|PP (T (n) ≤ t)− Φ(t)| → 0.

Remark 7. Applying the Cauchy–Schwarz inequality and Markov’s in-
equality, we see the requirement that AfAg = oP (n−1) is fulfilled if

(4) n EP
(

1

n

n∑
i=1

{fP (zi)− f̂(zi)}2
)

EP
(

1

n

n∑
i=1

{gP (zi)− ĝ(zi)}2
)
→ 0.

Thus if in addition we have EPBf , EPBg → 0, this is sufficient for all
conditions required in (i) to hold.

If EPBf , EPBg and the left-hand side of (4) converges to 0 uniformly
over all P ∈ P, then the conditions in (ii) will hold provided the moment
condition on εP ξP is also satisfied.

A proof is given in the supplementary material. We see that under con-
ditions largely to do with the mean squared prediction error (MSPE) of f̂
and ĝ, T (n) can be shown to be asymptotically standard normal (i), and
if the prediction error is uniformly small, the convergence to the Gaussian
limit is correspondingly uniform (ii). A key point is that the requirement
on the predictive properties of f̂ and ĝ is reasonably weak: for example,
provided their MSPEs are o(n−1/2), we have that the condition on AfAg
is satisfied. If in addition maxni=1 |vP (zi)| and maxni=1 |uP (zi)| are OP (

√
n),
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then the conditions on Bf and Bg will be automatically satisfied. The latter
conditions would hold if EPu2

P (Z) <∞ and EP v2
P (Z) <∞, for example.

Note that the rate of convergence requirement on Af and Ag is a slower
rate of convergence than the rate obtained when estimating Lipschitz regres-
sion functions when dZ = 1, for example. Furthermore, we show in Section 4
that f and g being in a reproducing kernel Hilbert space (RKHS) is enough
for them to be estimable at the required rate.

In the setting where Z is high-dimensional and f and g are sparse and
linear, standard theory for the Lasso [48, 10] shows that it may be used to
obtain estimates f̂ and ĝ satisfying the required properties under appropriate
sparsity conditions. In fact, in this case our test statistic is closely related to
that involved in the ANT procedure of Ren et al. [41] and the so-called RP
test introduced in Shah and Bühlmann [46], which amount to a regularised
partial correlation. A difference is that the denominator in (3) means the
GCM test would not require εP ⊥⊥ ξP unlike the ANT test and the RP test.

We now briefly sketch the reason for the relatively weak requirement on
the MSPEs. In the following we suppress dependence on P for simplicity of
presentation. We have

1√
n

n∑
i=1

Ri =
1√
n

n∑
i=1

{f(zi)− f̂(zi) + εi}{g(zi)− ĝ(zi) + ξi}

= (b+ νg + νf ) +
1√
n

n∑
i=1

εiξi,(5)

where

b :=
1√
n

n∑
i=1

{f(zi)− f̂(zi)}{g(zi)− ĝ(zi)},

νg :=
1√
n

n∑
i=1

εi{g(zi)− ĝ(zi)} νf :=
1√
n

n∑
i=1

ξi{f(zi)− f̂(zi)}.

The summands in the final term in (5) are i.i.d. with zero mean provided
P ∈ P0, so the central limit theorem dictates that these converge to a
standard normal. We also see that the simple form of the GCM gives rise
to the term b involving a product of bias-type terms from estimating f and
g, so each term is only required to converge to 0 at a slow rate such that
their product is of smaller order than the variance of the final term. The
summands in νg are, under the null, mean zero conditional on (Y(n),Z(n)).
This term and similarly νf are therefore both relatively well-behaved, and
give rise to the weak conditions on Bf and Bg.
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3.1.1. Power of the GCM. We now present a result on the power of
a version of the GCM. We may view our test statistic as a normalised
version of the conditional covariance EP (εP ξP ) = EP covP (X,Y |Z), where
covP (X,Y |Z) = EP (XY |Z)−EP (X|Z)EP (Y |Z). This is always zero under
the null, see Equation (1), and does not necessarily need to be non-zero
under an alternative; we can only hope to have power against alternatives
where this conditional covariance is non-zero.

Control of the term b in (5) under the alternative can proceed in exactly
the same way as under the null. However control of the terms νf and νg typ-
ically requires additional conditions (for example Donsker-type conditions)
on the estimators f̂ and ĝ as under the alternative both the errors εi and
ĝ can depend on Y(n). A notable exception is when f and g are sparse lin-
ear functions; in this setting alternative arguments can be used to show the
GCM with Lasso regressions has optimal power when Z has a sparse inverse
covariance [41, 46].

To state a general result avoiding additional conditions, here we will sup-
pose that f̂ and ĝ have been constructed from an auxiliary training sample,
independent of the data (X(n),Y(n),Z(n)) (e.g. through sample-splitting);
see, for example, [42, 51]. A drawback however, compared to the original
GCM, is that the corresponding prediction error terms Af and Ag are here
out-of-sample prediction errors. These are typically more sensitive to the
distribution of Z and larger than the in-sample prediction errors featuring
in Theorem 6. For this reason we consider the sample splitting approach to
be more of a tool to facilitate theoretical analysis and would usually recom-
mend using the original GCM in practice due to its typically better type I
error control.

Theorem 8. Consider the setup of Theorem 6 but with the following
differences: f̂ and ĝ have been constructed using auxiliary data independent
of (X(n),Y(n),Z(n)); the null hypothesis P0 is replaced by E0 the set of all
distributions absolutely continuous with respect to Lebesgue measure; and
conditions involving εP ξP are replaced by those involving the centred version
εP ξP − EP (εP ξP ). Define

ρP = EP covP (X,Y |Z) and σP =
√

varP (εP ξP ).

Then under the conditions of (i) in Theorem 6 we have

sup
t∈R

∣∣∣∣∣PP
(
τ

(n)
N −

√
nρP

τ
(n)
D

≤ t

)
− Φ(t)

∣∣∣∣∣→ 0, τ
(n)
D − σP = oP (1),

with τ
(n)
N and τ

(n)
D defined as in (3).
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Under the conditions of (ii) in Theorem 6 we have

sup
P∈P

sup
t∈R

∣∣∣∣∣PP
(
τ

(n)
N −

√
nρP

τ
(n)
D

≤ t

)
− Φ(t)

∣∣∣∣∣→ 0, τ
(n)
D − σP = oP(1).

A proof is given in the supplementary material. We see that we achieve
optimal

√
n rates for estimating ρP .

3.1.2. Relationship to semiparametric models. In viewing τ
(n)
N /
√
n as an

estimator of the functional ρP , our GCM test connects to a vast literature
in semiparametric statistics. In particular, the requirement of estimating
nonparametric quantities (in our case

√
Af and

√
Ag) at a o(n−1/4) rate is

common for estimators of functionals based on estimating equations involv-
ing influence functions [9]. Our requirement on prediction error necessitates
that at least one of fP and gP is Hölder β-smooth with β/(2β + dZ) ≥ 1/4.
Estimators of the expected conditional covariance functional requiring min-
imal possible smoothness conditions may be derived using the theory of
higher order influence functions [42, 43, 34, 44]; these estimators are how-
ever significantly more complicated. Newey and Robins [36] study another
approach to estimation of the functional based on a particular spline-based
regression method. The work of Chernozhukov et al. [15] uses related ideas
to ours here to obtain 1/

√
n convergent estimates and confidence intervals

for parameters such as average treatment effects in causal inference settings.
A distinguishing feature of our work here is that we only require in-sample
prediction error bounds under the null of conditional independence, which
is advantageous in our setting for the reasons mentioned in the previous
section.

3.2. Multivariate X and Y . We now consider the more general setting
where dX , dY ≥ 1, and will assume for technical reasons that dXdY ≥ 3.

We let T
(n)
jk be the univariate GCM based on data (X

(n)
j ,Y

(n)
k ,Z(n)) and

regression methods f̂j and ĝk. (As described in Section 1.4, the subindex
selects a column.) More generally, we will add subscripts j and k to certain
terms defined in the previous subsection to indicate that the quantities are
based on Xj and Yk rather than X and Y . Thus, for example, εP,j is the
difference of Xj and its conditional expectation given Z.

We define our aggregated test statistic to be

Sn = max
j=1,...,dX , k=1,...,dY

|T (n)
jk |.
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There are other choices for how to combine the test statistics in T(n) :=
(T

(n)
jk )j,k ∈ RdX ·dY into a single test statistic. Under similar conditions to

those in Theorem 6, one can show that if dX and dY are fixed, T(n) will
converge in distribution to a multivariate Gaussian limit with a covariance
that can be estimated. The continuous mapping theorem can then be used

to deduce the asymptotic limit distribution of the sum of squares of T
(n)
jk ,

for example. However, one advantage of the maximum is that the bias com-

ponent of Sn will be bounded by the maximum of the bias terms in T
(n)
jk .

A sum of squares-type statistic would have a larger bias component, and
tests based on it may not maintain the level for moderate to large dX or dY .
Furthermore, Sn will tend to exhibit good power against alternatives where
conditional independence is only violated for a few pairs (Xj , Yk), i.e., when
the set of (j, k) such that Xj 6⊥⊥ Yk|Z is small.

In order to understand what values of Sn indicate rejection, we will com-
pare Sn to

Ŝn = max
j=1,...,dX , k=1,...,dY

|T̂ (n)
jk |

where T̂(n) ∈ RdX ·dY is mean zero multivariate Gaussian with a covariance
matrix Σ̂ ∈ RdX ·dY ×dX ·dY determined from the data as follows. Let Rjk ∈ Rn
be the vector of products of residuals (2) involved in constructing the test

statistic T
(n)
jk . We set Σ̂jk,lm to be the sample correlation between Rjk ∈ Rn

and Rlm:

Σ̂jk,lm =
RT
jkRlm − R̄jkR̄lm(

‖Rjk‖22/n− R̄2
jk

)1/2(‖Rlm‖22/n− R̄2
lm

)1/2 .
Here R̄jk is the sample mean of the components of Rjk.

Let Ĝ be the quantile function of Ŝn. This is a random function that
depends on the data (X(n),Y(n),Z(n)) through Σ̂. Note that given the Rjk,

we can approximate Ĝ to any degree of accuracy via Monte Carlo.
The ground-breaking work of Chernozhukov et al. [14] gives conditions

under which Ĝ can well-approximate the quantile function of a version of
Sn where all bias terms, that is terms corresponding to b, νg and νf are all
equal to 0. We will require that those conditions are met by εP,jξP,k for all
j = 1, . . . , dX , k = 1, . . . , dY and P ∈ P. Below, we lay out these conditions,
which take two possible forms.

(A1a) maxr=1,2 EP (|εP,jξP,k|2+r/Crn) + EP (exp(|εP,jξP,k|/Cn)) ≤ 4;

(A1b) maxr=1,2 EP (|εP,jξP,k|2+r/C
r/2
n ) + EP (maxj,k |εP,jξP,k|4/C2

n) ≤ 4;
(A2) C4

n(log(dXdY n))7/n ≤ Cn−c for some constants C, c > 0 independent
of P ∈ P.
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The result below shows that under the moment conditions above, provided
the prediction error following the regressions goes to zero sufficiently fast, Ĝ
closely approximates the quantile function of Sn and therefore may be used
to correctly calibrate our test.

Theorem 9. Suppose for P ⊂ P0, that one of (A1a) and (A2b) hold,
and that (A2) holds. Suppose that

max
j,k

Af,jAg,k = oP

(
n−1{log(dXdY )}−1/2

)
,(6)

max
j
Bf,j = oP(log(dXdY )−2), and max

k
Bg,k = oP

(
{log(dXdY )}−2

)
.

(7)

Suppose further that there exist sequences (τf,n)n∈N, (τg,n)n∈N such that

max
i,j
|εP,ij | = OP(τg,n), max

k
Ag,k = oP(τ−2

g,n log(dXdY )−3)(8)

max
i,k
|ξP,ik| = OP(τf,n), max

j
Af,j = oP

(
τ−2
f,n{log(dXdY )}−3

)
.(9)

Then
sup
P∈P

sup
α∈(0,1)

|PP {Sn ≤ Ĝ(α)} − α| → 0

A proof is given in the supplementary material.

Remark 10. If the errors {εP,j}dXj=1 and {ξP,k}dYk=1 are all sub-Gaussian
with parameters bounded above by some constant M uniformly across P ∈ P,
we may easily see that both (A1a) and (A1b) are satisfied with Cn a constant;
see Chernozhukov et al. [14] for further discussion.

If additionally we have Af,j , Ag,k = oP
(
n−1/2{log(dXdY n)}−4

)
, (6), (8)

and (9) will all be satisfied.

Theorem 9 allows for dX and dY to be large compared to n. However the
use of this result is not limited to these cases. However the result can be of use
even when faced with univariate data. In this case, or more generally when
dX and dY are small, one can consider mappings fX : RdX+dZ → Rd̃X and
fY : RdY +dZ → Rd̃Y where d̃X and d̃Y are potentially large. Provided these
mappings are not determined from the data, we will have for X̃ := fX(X,Z)
and Ỹ := fY (Y,Z) that X̃ ⊥⊥ Ỹ | Z if X ⊥⊥ Y | Z (see equation (1)). Thus we
may apply the methodology above to the mapped data, potentially allowing
the test to have power against a more diverse set of alternatives. In view
of Theorem 8, successful mappings should have the equivalent of ρP large,
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but also E(X̃|Z = ·) and E(Ỹ |Z = ·) should not be so complex that it is
impossible to estimate them well. We leave further investigation of this topic
to further work.

4. GCM Based on Kernel Ridge Regression. We now apply the
results of the previous section to a GCM based on estimating the conditional
expectations via kernel ridge regression. For simplicity, we consider only the
univariate case where dX = dY = 1. In the following, we make use of the
notation introduced in Section 3.1.

Given P ⊂ P0, suppose that the conditional expectations fP , gP satisfy
fP , gP ∈ H for some RKHS (H, ‖ · ‖H) with reproducing kernel k : RdZ ×
RdZ → R. Let K ∈ Rn×n have ijth entry Kij = k(zi, zj)/n and denote the
eigenvalues of K by µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂n ≥ 0. We will assume that under
each P ∈ P, k admits an eigen-expansion of the form

(10) k(z, z′) =

∞∑
j=1

µP,jeP,j(z)eP,j(z
′)

with orthonormal eigenfunctions {eP,j}∞j=1, so EP eP,jeP,k = 1{k=j}, and
summable eigenvalues µP,1 ≥ µP,2 ≥ · · · ≥ 0. Such an expansion is guar-
anteed under mild conditions by Mercer’s theorem.

Consider forming estimates f̂ = f̂ (n) and ĝ = ĝ(n) through kernel ridge
regressions of X(n) and Y(n) on Z(n) in the following way. For λ > 0, let

f̂λ = argmin
h∈H

{
1

n

n∑
i=1

{xi − h(zi)}2 + λ‖h‖2H
}
.

We will consider selecting a final tuning parameter λ̂ in the following data-
dependent way:

λ̂ = argmin
λ>0

{
1

n

n∑
i=1

µ̂2
i

(µ̂i + λ)2
+ λ

}
.

The term minimised on the RHS is an upper bound on the mean-squared
prediction error omitting constant factors depending on σ2 (defined below
in Theorem 11) and ‖fP ‖2H or ‖gP ‖2H. Because of the hidden dependence on
these quantities, this is not necessarily a practically effective way of selecting
λ: our use of it here is simply to facilitate theoretical analysis. Finally define
f̂ = f̂λ̂, and define ĝ analogously. We will write T (n) for the test statistic

formed as in (3) with these choices of f̂ and ĝ.
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Theorem 11. Let P be such that uP (z), vP (z) ≤ σ2 for all z and P ∈ P.

(i) For any P ∈ P, supt∈R |PP (T (n) ≤ t)− Φ(t)| → 0.
(ii) Suppose supP∈P EP {(εP ξP )2+η} ≤ c for some c ≥ 0 and η > 0. Sup-

pose further that supP∈P max(‖fP ‖H, ‖gP ‖H) <∞ and

(11) lim
λ↓0

sup
P∈P

∞∑
j=1

min(µP,j , λ) = 0.

Then
sup
P∈P

sup
t∈R
|PP (T (n) ≤ t)− Φ(t)| → 0.

A proof is given the supplementary material.

Remark 12. An application of dominated convergence theorem shows
that a sufficient condition for (11) to hold is that

∑∞
j=1 supP∈P µP,j <∞.

The proof proceeds by first showing that the ridge regression estimators f̂
and ĝ satisfy AfAg = oP (n−1) and then applies Theorem 6. The requirement
that fP and gP lie in an RKHS satisfying (10) is a rather weak regularity
condition on the conditional expectations. For example, taking the first-order
Sobolev kernel shows that it is enough that the conditional expectations are
Lipschitz when dZ = 1, P(Z ∈ [0, 1]) = 1 and the marginal density of Z is
bounded above [1]. However, the uniformity offered by (ii) above requires
L := supP∈P max(‖fP ‖H, ‖gP ‖H) <∞ and a large value of L will require a
large sample size in order for T (n) to have a distribution close to a standard
normal. We investigate this, and evaluate the empirical performance of the
GCM in the next section.

5. Experiments. Section 3 proposes the generalised covariance mea-
sure (GCM). Although we provide detailed computations for kernel ridge
regression in Section 4, the technique can be combined with any regression
method. In practice, the choice may depend on external knowledge of the
specific application the user has in mind. In this section, we study the empir-
ical performance of the GCM with boosted regression trees as the regression
method. In particular, we use the R package xgboost [13, 12] with a ten-fold
cross-validation scheme over the parameter maxdepth.

5.1. No-free-lunch in Conditional Independence Testing. Theorem 2
states that if a conditional independence test has power against an alter-
native at a given sample size, then there is a distribution from the null
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Fig 2. Graphs of the function fa for a = 6 (left) and a = 18 (right). This function is used
as the conditional mean that needs to be estimated from data. The RKHS norm increases
exponentially with a, see (12).

that is rejected with probability larger than the significance level. We now
illustrate the no-free-lunch theorem empirically.

Let us fix an RKHS H that corresponds to a Gaussian kernel with band-
width σ = 1. We now compute for different sample sizes the rejection rates
for data sets generated from the following model: Z = NZ , Y = fa(Z)+NY ,
and X = fa(Z) + NX , with NX , NY , NZ ∼ N (0, 1), i.i.d., and fa(z) :=
exp(−z2/2) sin(az) defining a function fa ∈ H. Figure 2 shows a plot of fa
for a = 6 and a = 18. Clearly, for any a, we have X ⊥⊥ Y | Z, but for large
values of a the independence will be harder to detect from data. We now
fix three different sample sizes n = 100, n = 1000, and n = 10000. For any
of such sample size n, we can find an a, i.e., a distribution from the null,
such that the probability of (falsely) rejecting X ⊥⊥ Y | Z is larger than
the prespecified level α. Figure 3 shows the results for the GCM test with
boosted regression trees and the significance level α = 0.05: for any sample
size, there exists a distribution from the null, for which the test rejects the
null hypothesis of conditional independence. For n = 100, we can choose
a = 6, for n = 1000, we choose a = 12, and for n = 10000, a = 18.

This sequence of distributions violates one of the assumptions that we
require for the GCM test to obtain uniform asymptotic level guarantee.
Intuitively, for large a, the conditional expectations z 7→ E[X|Z = z] and
z 7→ E[Y |Z = z] are too complex to be estimated reliably from the data.
More formally, the RKHS norm of the functions fa are defined as:

‖fa‖2H =

∫ ∞
−∞

Fa(ω)2 exp(σ2ω2/2) dω =
√

8π ·
(

exp(a2) + exp(−a2)
)
,(12)

where
Fa(ω) = exp

(
− (ω − a)2/2

)
+ exp

(
− (ω + a)2/2

)
is the Fourier transform of fa. Equation (12) shows that a null hypothesis P
containing all of the above models for a > 0, violates one of the assumptions
in Theorem 11: for this choice of RKHS and null hypothesis there is no M
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Fig 3. Illustration of the no-free-lunch theorem, see Section 5.1. No sample size is large
enough to ensure the correct level for all distributions from the null: there is always a
distribution from the null which yields a type I error that is larger than the prespecified
significance level of 0.05. The shaded area indicates the area in which we accept the null
hypothesis that the size of the test is less than 0.05.

such that supP∈P max(‖fP ‖H, ‖gP ‖H) < M . (Note that not all sequences of
functions with growing RKHS norm also yield a violation of level guaran-
tees: some functions with large RKHS norm, e.g., modifications of constant
functions, can be easily learned from data.) Other conditional independence
tests fail on the examples in Figure 3, too, for a similar reason. However most
of these other methods are less transparent in the underlying assumptions,
since they do not come with uniform level guarantees.

5.2. On Level and Power. It is of course impossible to provide an exhaus-
tive simulation-based level and power analysis. We therefore concentrate on
a small choice of distributions from the null and the alternative. In the fol-
lowing, we compare the GCM with three other conditional independence
tests: KCI [50] with its implementation from CondIndTests [26], and the
residual prediction test [26, 46]. We also compare to a test that performs
the same regression as GCM, but then tests for independence between the
residuals, rather than vanishing correlation, using HSIC [25]. (This proce-
dure is similar to the one that Fan et al. [20] propose to use in the case of
additive noise models.) As we discuss in Example 1, we do not expect this
test to hold level in general. We then consider the following distributions
from the null:

(a) Z ∼ N (0, 1), X = fa(Z) + 0.3N (0, 1), Y = fa(Z) + 0.3N (0, 1), a = 2;
(b) the same as (a) but with a = 4;
(c) Z1, Z2 ∼ N (0, 1) independent, X = f1(Z1) − f1(Z2) + 0.3N (0, 1), Y =
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f1(Z1) + f1(Z2) + 0.3N (0, 1);
(d) Z ∼ N (0, 1), X1 = f1(Z) + 0.3N (0, 1), X2 = f1(Z) + X1 + 0.3N (0, 1),

Y1 = f1(Z) + 0.3N (0, 1), Y2 = f1(Z) + Y1 + 0.3N (0, 1); and
(e) Z ∼ N (0, 1), Y = f2(Z) · N (0, 1), X = f2(Z) · N (0, 1).

In the remainder of this section, we refer to these settings as (a) “a = 2”, (b)
“a = 4”, (c) “biv. Z”, (d) “biv. X,Y ”, and (e) “multipl. noise”, respectively.
For each of the sample sizes 50, 100, 200, 300, and 400, we first generate 100
data sets, and then compute rejection rates of the considered conditional
independence tests. The results are shown in Figure 4. For rejection rates
below 0.11 the hypothesis “the size of the test is less than 0.05” is not rejected
at level 0.01 (pointwise). The GCM indeed has promising behaviour in terms
of type I error control. As expected, however, it requires the sample size to
be big enough to obtain a reliable estimate for the conditional mean.
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Fig 4. Level analysis: the GCM can hold the level if the sample size is large enough to
reliably estimate the conditional mean. Testing for independence between residuals does
not hold the level (third plot).

We then investigate the tests’ power by altering the data generating pro-
cesses (a)–(e), described above. Each equation for Y receives an additional
term +0.2X, which yields X 6⊥⊥ Y | Z (for (d), we add the term +0.2X2 to
the equation of Y2). Figure 5 shows empirical rejection rates. All methods,
except for RPT, are able to correctly reject the hypothesis that the dis-
tribution is from the null, particularly with increasing sample size. In our
experimental setup, it is the level analysis, that poses a greater challenge for
the methods other than GCM.
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Fig 5. Power analysis: most of the methods are able to detect if the distribution does not
satisfy conditional independence, in particular if the sample size increases.

6. Discussion. A key result of this paper is that conditional indepen-
dence testing is hard: non-trivial tests that maintain valid level over the
entire class of distributions satisfying conditional independence and that
are absolutely continuous with respect to Lebesgue measure cannot exist. In
unconditional independence testing, control of type I error is straightforward
and research efforts have focussed on power properties of tests. Our result
indicates that in conditional independence testing, the basic requirement of
type I error control deserves further attention. We argue that as domain
knowledge is necessary in order to select a conditional independence test
appropriate for a particular setting, there is a need to develop conditional
independence tests whose suitability is reasonably straightforward to judge.

In this work we have introduced the GCM framework to address this need.
The ability for the GCM to maintain the correct level relies almost exclu-
sively on the predictive properties of the regression procedures upon which
it is based. Selecting a good regression procedure, whilst mathematically an
equally impossible problem, can at least be usefully informed by domain
knowledge. We hope to see further applications of GCM-based tests in the
future. On the theoretical side, it would be interesting to understand more
precisely the tradeoff between the type I and type II errors in conditional
independence testing. Often, work on testing fixes a null and then considers
what sorts of classes of alternative distributions it is possible, or impossible
to maintain power against. In the context of conditional independence test-
ing, the problem set is even richer, in that one must also consider subclasses
of null distributions, and can then study power properties associated with
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that null.
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APPENDIX A: PROOF OF THEOREM 2

The proof of Theorem 2 relies heavily on Lemma 13 in Section A.2, which
shows that given any distribution Q where (X,Y, Z) ∼ Q, one can construct
(X̃, Ỹ , Z̃) with X̃ ⊥⊥ Ỹ | Z̃ where (X̃, Ỹ , Z̃) and (X,Y, Z) are arbitrarily
close in `∞-norm with arbitrarily high probability.

In the proofs of Theorem 2 and Lemma 13 below, we often suppress
dependence on n to simplify the presentation. Thus for example, we write
X for X(n). We use the following notation. We write s = (dX +dY +dZ) and
will denote by V ∈ Rs the triple (X,Y, Z). Furthermore, V := (X,Y,Z). We
denote by pX,Y,Z the density of (X,Y, Z) with respect to Lebesgue measure.
We will use µ to denote Lebesgue measure on Rns+1 and write 4 for the
symmetric difference operator.

A.1. Proof of Theorem 2. Suppose, for a contradiction, that there
exists a Q with support strictly contained in an `∞-ball of radius M under
which X 6⊥⊥ Y | Z but PQ(ψn(V;U) = 1) = β > α. We will henceforth
assume that V ∼ Q and V := (X,Y,Z) are i.i.d. copies of V . Thus we may
omit the subscript Q applied to probabilities and expectations in the sequel.
Denote the rejection region by

R = {(x,y, z;u) ∈ Rns × [0, 1] : ψn(x,y, z;u) = 1}.

Our proof strategy is as follows. Using Lemma 13 we will create Ṽ :=
(X̃, Ỹ , Z̃) such that X̃ ⊥⊥ Ỹ | Z̃ but Ṽ is suitably close to V such that a cor-
responding i.i.d. sample Ṽ := (X̃, Ỹ, Z̃) ∈ Rns satisfies P((Ṽ, U) ∈ R) > α,
contradicting that ψn has valid level α. How close Ṽ needs to be to V in
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order for this argument to work depends on the rejection region R. As an
arbitrary Borel subset of Rns× [0, 1], R can be arbitrarily complex. In order
to get a handle on it we will construct an approximate version R] of R that
is a finite union of boxes; see Lemma 15.

Let η = (β − α)/7 > 0. Since {(x, y, z) : pX,Y,Z(x, y, z) > m} =: Bm ↓ ∅
as m ↑ ∞, there exists M1 such that P((X,Y, Z) ∈ Bc

M1
) > 1 − η/n. Let

Ω1 be the event that (xi, yi, zi) ∈ Bc
M1

for all i = 1, . . . , n. (Here and below,
an event refers to an element in the underlying σ-algebra. Recall that xi,
yi, and zi denote rows of X, Y, and Z, respectively, i.e., they are random
vectors.) Then by a union bound we have P(Ω1) ≥ 1− η.

Let M2 be such that P(‖V‖∞ > M2) < η and let Ω2 be the event that
‖V‖∞ ≤M2. Further define

Ř = {(x,y, z, u) ∈ R : ‖(x,y, z)‖∞ ≤M2}.

Note that

P((V, U) ∈ Ř) ≥ β − P((V, U) ∈ R \ Ř) > β − η.(13)

Let L = L(η) be as defined in Lemma 13 (taking δ = η). From Lemma 15
applied to Ř, we know there exists a finite union R] of hypercubes each of
the form ∏

k=1,...,ns+1

(ak, bk]

such that µ(R]4Ř) < η/max(L,Mn
1 ). Now on the region Bc

M1
defining Ω1

we know that the density of (V, U) is bounded above by Mn
1 . Thus we have

that

(14) P({(V, U) ∈ Ř \R]} ∩ Ω1) < η.

Now for r ≥ 0 and v ∈ Rns+1 let Br(v) ⊂ Rns+1 denote the `∞ ball with
radius r > 0 and center v. Define

Rr = {v ∈ R : Br(v) ⊆ R]}.

Then since Rr ↑ R] as r ↓ 0, there exists r0 > 0 such that µ(R] \ Rr0) <
η/Mn

1 .
For ε = r0 and B = R] \ Ř, the statement of Lemma 13 provides us with

Ṽ := (X̃, Ỹ, Z̃) which satisfies P((Ṽ, U) ∈ R] \ Ř) < Lµ(R] \ Ř) < η and
with which we argue as follows. Let Ω3 be the event that ‖V − Ṽ‖∞ < r0,
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so P(Ω3) ≥ 1− η.

P((Ṽ, U) ∈ R) ≥ P((Ṽ, U) ∈ Ř) ≥ P((Ṽ, U) ∈ R])− P((Ṽ, U) ∈ R] \ Ř)

> P({(Ṽ, U) ∈ R]} ∩ Ω3)− η > P((V, U) ∈ Rr0)− 2η

≥ P((V, U) ∈ R])− P({(V, U) ∈ R] \Rr0} ∩ Ω1)− P(Ωc
1)− 2η

> P((V, U) ∈ R])− 4η.

Now

P((V, U) ∈ R]) ≥ P((V, U) ∈ Ř)− P({(V, U) ∈ Ř \R]} ∩ Ω1)− P(Ωc
1)

> P((V, U) ∈ Ř)− 2η > β − 3η

using (14) and (13). Putting things together, we have P((Ṽ, U) ∈ R) >
β − 7η > α, completing the proof.

A.2. Auxilliary Lemmas.

Lemma 13. Let (X,Y, Z) have a (dX+dY +dZ)-dimensional distribution
in Q0,M for some M ∈ (0,∞]. Let (X(n),Y(n),Z(n)) be a sample of n i.i.d.
copies of (X,Y, Z). Given δ > 0, there exists L = L(δ) such that for all ε > 0
and all Borel subsets B ⊆ Rn·(dX+dY +dZ) × [0, 1], it is possible to construct
n i.i.d. random vectors (X̃(n), Ỹ(n), Z̃(n)) with distribution P ∈ P0,M where
the following properties hold:

(i) P(‖(X(n),Y(n),Z(n))− (X̃(n), Ỹ(n), Z̃(n))‖∞ < ε) > 1− δ;
(ii) If U ∼ U [0, 1] independently of (X̃(n), Ỹ(n), Z̃(n)) then

P((X̃(n), Ỹ(n), Z̃(n), U) ∈ B) ≤ Lµ(B).

Proof. We will first describe the construction of Ṽ := (X̃, Ỹ , Z̃) from
V := (X,Y, Z). The corresponding n-sample Ṽ := (X̃(n), Ỹ(n), Z̃(n)) will
have observation vectors formed in the same way from the corresponding
observation vectors in V. The proof proceeds in three steps. We begin by
creating a bounded version V̌ = (X̌, Y̌ , Ž) of V supported on a grid 2−rZ,
for which we can control an upper bound on the probability mass func-
tion. Next, we apply Lemma 14 to obtain transforms V̊ (1), . . . , V̊ (K!) of V̌
for arbitrarily large K where X̌ has been ‘embedded’ in the last compo-
nent. Then we create noisy versions {Ṽ (m)}K!

m=1 by adding uniform noise
such that truncation of their binary expansions yields the discrete versions
{V̊ (m)}K!

m=1. Each of these are potential candidates for the random vector Ṽ ,
but we must ensure that the corresponding n-fold product obeys (ii). This is
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problematic as the embedding procedure necessarily creates near-degenerate
random vectors that fall within small regions with large probability. To over-
come this issue, we employ in the final step, a probabilistic argument that
exploits the property, supplied by Lemma 14, that the K! embeddings have
supports with little overlap.

Step 1: Define s := dX + dY + dZ . Since {(x, y, z) ∈ Rs : pX,Y,Z(x, y, z) >
t} =: Bt ↓ ∅ as t ↑ ∞, there exists M1 such that the event Λ1 = {(X,Y, Z) ∈
Bc
M1
} has P(Λ1) ≥ 1 − δ/(2n). Next, let M2 < M be such that P(‖V ‖∞ >

M2) < δ/(2n), and let Λ2 be the event that ‖V ‖∞ ≤ M2. For later use, we
define the events

Ω1 = {(xi, yi, zi) ∈ Bc
M1

for all i = 1, . . . , n} and Ω2 = {‖V‖∞ ≤M2}.

Note that union bounds give P((Ω1 ∩ Ω2)c) < δ.
Let E(1) be uniformly distributed on [−M2,M2]s. Let r ∈ N be such that

2−r < min(ε/3, (M −M2)/3, 1/n) and define

V̌ := (X̌, Y̌ , Ž) := 2−r
⌊
2r(V 1Λ1∩Λ2 + E(1)

1(Λ1∩Λ2)c)
⌋
.

Here, the floor function is applied componentwise. Note that V̌ takes values
in a grid (2−rZ)s and satisfies

(15) ‖(V̌ − V )1Λ1∩Λ2‖∞ ≤ 2−r < ε/3.

The choice of r ensures that V̌ ∈ (−M ′,M ′)s where M ′ = M−2(M−M2)/3.
Furthermore, the inclusion of the 1Λ1∩Λ2 term and E(1) ensures that the
probability it takes any given value is bounded above by M32−sr where
M3 := max(M1, (M2/2)−s) is independent of ε. Indeed for any fixed k ∈ Zs,
writing A = [k2−r, (k + 1)2−r) we have

P(V ∈ A|Λ1 ∩ Λ2) ≤M12−rs and P(E(1) ∈ A|(Λ1 ∩ Λ2)c) = 2−rs/(2M2)s.

As P(V̌ = k2−r) is a convex combination of these probabilities, it must be
at most their maximum.

Step 2: We can now apply Lemma 14 with W = (Y̌ , Ž) and N = X̌. This
gives us K! random vectors V̊ (1), . . . , V̊ (K!) where K > 2r > n; for each
m = 1, . . . ,K!, V̊ (m) = (X̊(m), Y̊ (m), Z̊(m)) satisfies

(a) P(|V̊ (m)
s − V̌s| ≤ 2−r) = 1 and V̊

(m)
j = V̌j for j ≤ s− 1;

(b) X̊(m) may be recovered from Z̊(m) via X̊(m) = g̊m(Z̊(m)) for some func-
tion g̊m;

(c) V̊
(m)
s takes values in K−22−rZ and the probability it takes any given

value is bounded above by 2−srK−1M3;
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and, additionally,

(d) the supports S̊1, . . . , S̊K! of V̊ (1), . . . , V̊ (K!) obey the following structure:
there exists a collection of K2 disjoint sets {G̊jk}Kj,k=1 and an enumera-
tion π1, . . . , πK! of the permutations of {1, . . . ,K}
such that S̊m = ∪Kk=1G̊kπm(k) and P(V̊ (m) ∈ G̊jπm(j)) = K−1 for all
m = 1, . . . ,K! and j = 1, . . . ,K.

We now create a noisy version of the V̊ (m) that obeys similar properties to
the above, but is absolutely continuous with respect to Lebesgue measure.
To this end, we introduce E(2) = (EX , EY , EZ) ∈ (0, 1)s with independent
U(0, 1) components. Then let Ṽ (m) ∈ Rs be defined by

Ṽ
(m)
j =

{
K−22−rE

(2)
s + V̊

(m)
s for j = s

2−rE
(2)
j + V̊

(m)
j otherwise.

This obeys

(a’) P(‖Ṽ (m) − V̊ (m)‖∞ ≤ 2−r) = 1;
(b’) X̊(m) may be recovered from Z̃(m) via X̃(m) = gk(Z̃

(m)) for some func-
tion gm, which depends on K and r;

(c’) the density of Ṽ (m) with respect to Lebesgue measure is bounded above
by KM3 (indeed, using (c), we have that it is bounded by 2rsK2 ·
2−srK−1M3 = KM3);

(d’) the supports S1, . . . , SK! of the {Ṽ (m)}K!
m=1 obey property (d) with the

disjoint sets G̊jk above replaced by the Minkowski sum Gjk = G̊jk +
2−r((0, 1)s−1 × (0,K−2)).

Note that (b’) holds as we can first construct Z̊(m) from Z̃(m) and then
apply (b). The former is done by removing the additive noise component by

truncating the binary expansion appropriately: Z̊(m) := K−22−r
⌊
K22rZ̃(m)

⌋
.

A consequence of this property is that decomposing (X̃(m), Ỹ (m), Z̃(m)) =
Ṽ (m), we have X̃(m) ⊥⊥ Ỹ (m) | Z̃(m). To see this we argue as follows. Let us
write pA and pA|B for the densities of A and A given B respectively when A
and B are random vectors. Suppressing dependence on m temporarily, we
have that for any z̃ with pZ̃(z̃) > 0,

pX̃,Ỹ ,Z̃(x̃, ỹ|z̃) = pEX ,Ỹ |Z̃(x̃− g(z̃), ỹ|z̃) = pEX
(x̃− g(z̃)) pỸ |Z̃(ỹ|z̃)

= pX̃|Z̃(x̃|z̃) pỸ |Z̃(ỹ|z̃),

so X̃ ⊥⊥ Ỹ | Z̃.
Property (d’) follows as the support of each V̊ (m) is contained in 2−r(Zs−1×

K−2Z) (see (a) and (c)).
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From (a’), by the triangle inequality we have that

(16) P(‖(Ṽ (m) − V )1{Λ1∩Λ2}‖∞ ≤ ε) = 1

and Ṽ (m) ∈ (−M,M)s. Let {Ṽ(m)}K!
m=1 be the corresponding n-sample ver-

sions of {Ṽ (m)}K!
m=1. Then for any m, (16) gives P(‖(Ṽ(m)−V)1Ω1∩Ω2‖∞ ≤

ε) = 1. Thus P(‖Ṽ(m) −V‖∞ ≤ ε) > 1 − δ. We see that any Ṽ(m) satisfies
all requirements of the result except potentially (ii).

Step 3: In order to pick an m for which (ii) is satisfied, we use the so-called
probabilistic method. First note we may assume 0 < µ(B) <∞ or otherwise
any m will do. Define Tm := Snm × [0, 1] to be the support set of (Ṽ(m), U)
where U ∼ U [0, 1] independently of {Ṽ(m)}K!

m=1.
For j ∈ {1, . . . ,K} let Gj := ∪Kk=1Gjk. Let J be the set of n-tuples

(j1, . . . , jn) of distinct elements of {1, . . . ,K}. Now define

(17) C :=
⋃

(j1,...,jn)∈J

n∏
l=1

Gjl

and let D = C × [0, 1]. Fix (jl)
n
l=1 ∈ J and (kl)

n
l=1 ∈ {1, . . . ,K}n, and set

G :=
∏n
l=1Gjlkl . Then G has non-empty intersection with a given Snm if and

only if kl = πm(jl) for all l. Thus if (kl)
n
l=1 /∈ J , G is disjoint from all Snm.

On the other hand if (kl)
n
l=1 ∈ J , the number of Snm that intersect G is

(K−n)!, the number of permutations of {1, . . . ,K} whose outputs are fixed
at n points. We therefore have that all but at most (K − n)! of the support
sets Tm are disjoint from G× [0, 1], whence

K!∑
m=1

µ {(G× [0, 1]) ∩B ∩ Tm} ≤ (K − n)!µ {(G× [0, 1]) ∩B} .

Now the set C is the disjoint union of all sets
∏n
l=1Gjlkl with (jl)

n
l=1 ∈ J

and (kl)
n
l=1 ∈ {1, . . . ,K}n. Thus summing over all such sets we obtain

K!∑
m=1

µ(D ∩B ∩ Tm) ≤ (K − n)!µ(D ∩B) ≤ (K − n)!µ(B).

This gives that there exists at least one m = m∗ with

µ(B ∩D ∩ Tm∗) ≤
(K − n)!

K!
µ(B).

Next, observe that the number of cells
∏n
l=1Gkl where at least two of

k1, . . . , kn are the same is Kn − K(K − 1) · · · (K − n + 1). As P(Ṽ (m) ∈
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Gj) = K−1 for all j, using (17) we have

P((Ṽ(m), U) /∈ D) = K−n{Kn −K(K − 1) · · · (K − n+ 1)} = O(K−1).

for every m. Putting things together, we have that there must exist an m∗

with

P((Ṽ(m∗), U) ∈ B) ≤ P((Ṽ(m∗), U) ∈ B ∩D) + P((Ṽ(m∗), U) /∈ D)

≤ KnMn
3

(K − n)!

K!
µ(B) +O(K−1) ≤ 2Mn

3 µ(B)

for K sufficiently large, which can be arranged by taking r sufficiently large.

Lemma 14. Let W ∈ Rl, N ∈ Rd be random vectors. Suppose that N
is bounded and there is some r ∈ N such that both W and N have com-
ponents taking values in the grid 2−rZ. Suppose further that the probability
that (N,W ) takes any particular value is bounded by 2−(m+d)rM for some
M > 0. Then there exists a K ∈ N with K > 2r and a set of K! functions
{f1, . . . , fK!} where

(Wl, N) 7→ fm(Wl, N) =: W̊
(m)
l ∈ R

such that for each m = 1, . . . ,K!,

(i) P(|Wl − W̊
(m)
l | ≤ 2−r) = 1;

(ii) there is some function gm : R→ Rd such that N = gm(W̊
(m)
l );

(iii) W̊
(m)
l has components taking values in a grid K−22−rZ.

Moreover, defining W̊ (m) = (W1, . . . ,Wl−1, W̊
(m)
l ),

(iv) the probability that (N, W̊ (m)) takes any value is bounded above by
K−12−(m+d)rM ;

(v) the supports S1, . . . , SK! of (N, W̊ (1)), . . . , (N, W̊ (K!)) obey the follow-
ing structure: there exists K2 disjoint sets {Gjk}Kj,k=1 and an enumera-
tion π1, . . . , πK! of the permutations of {1, . . . ,K} such that for all m,
Sm = ∪Kk=1Gkπm(k), and for all m and k, P((N, W̊ (m)) ∈ Gkπm(k)) =
K−1.

Proof. As N is bounded, by replacing gm(·) by gm(·)+v where v ∈ Rd is
appropriately chosen with components in 2−rZ, we may assume that N has
non-negative components. Let t ∈ N be such that 2t > 2r max(1, ‖N‖∞).
We shall prove the result with K = 2dt.
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Define the random variable N̊ by

N̊ = 2r
d−1∑
j=0

2tjNj+1.

This is a concatenation of the binary expansions of 2rNj ∈ {0, 1, 2, . . . , 2t−1}
for j = 1, . . . , d. Observe that N̊ ∈ {0, 1, . . . ,K − 1} and that Nj may be
recovered from N̊ by examining its binary expansion. Indeed, 2rNj is the

residue modulo 2t of
⌊
N̊/2t(j−1)

⌋
.

For j = {0, 1, . . . ,K − 1}, let Ñj be the residue of N̊ + j modulo K, so
Ñj ∈ {0, 1, . . . ,K − 1}. Also, for k = {0, 1, . . . ,K − 1} let Ñj,k = Ñj +Kk.
Note that Ñj,k takes values in {0, . . . ,K2 − 1}. Let the random variable
E be uniformly distributed on {0, 1, . . . ,K − 1} independently of all other
quantities. Now let π1, . . . , πK! be an enumeration of the permutations of
{0, . . . ,K − 1}. Finally, let N̊m = ÑE,πm(E) for m = 1, . . . ,K!.

One important feature of this construction is that we can recover E from

N̊m (and m) via πm(E) =
⌊
N̊m/K

⌋
, and thereby determine E, which then

reveals N̊ and each of the individual Nj . In summary, this gives us K!
different embeddings of the vector N into a single random variable.

We may now define fm by

fm(Wl, N) = Wl + 2−rK−2N̊m.

It is easy to see that (i) and (iii) are satisfied. To deduce (ii), observe that
we may recover Wl via 2−r b2rfm(Wl, N)c =: cm(fm(Wl, N)), and thus also
determine N̊m which, as discussed above, also gives us N and E. Let gm
and hm be the functions that when applied to fm(Wl, N), yield N and
E respectively. Let us introduce the notation that for a vector v ∈ Rs,
v−j ∈ Rs−1 for j = 1, . . . , s is the subvector of v where the jth component
is omitted. Then we have

P(N = n, W̊ (m) = ẘ)

= P(W−l = ẘ−l,Wl = cm(ẘl), N = n,E = hm(ẘl))1{gm(ẘl)=n}

= K−1P(W−l = ẘ−l,Wl = cm(ẘl), N = n)1{gm(ẘl)=n}

≤ K−12−(l+d)rM,

using the independence of E in the second line above. This gives (iv).
Note that the supports of the (N, Ñj,k) are all disjoint as (j, k) can be

recovered from (N, Ñj,k). For j, k = 0, 1, . . . ,K − 1 let Gjk be the support
set of

(N, W̃j,k) := (N,W1, . . . ,Wl−1,Wl + 2−rK−2Ñj,k).
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From the above, we see that the {Gjk}K−1
j,k=0 are all disjoint. Property (v)

follows from noting that W̊ (m) = W̃E,πm(E).

The following well-known result appears for example in Weaver [49, The-
orem 2.19].

Lemma 15. Given any bounded Borel subset B of Rd and any ε > 0,
there exists a finite union of boxes of the form

B] =

N⋃
i=1

d∏
k=1

(ai,k, bi,k]

such that µ(B4B]) ≤ ε, where µ denotes Lebesgue measure and 4 denotes
the symmetric difference operator.

APPENDIX B: KL-SEPARATION OF NULL AND ALTERNATIVE

For distributions P1, P2 ∈ E0, let KL(P1||P2) denote the KL divergence
from P2 to P1, which we define to be +∞ when P1 is not absolutely con-
tinuous with respect to P2. The following result, which is proved in the
supplementary material, shows that it is possible to choose Q ∈ Q0 that is
arbitrarily far away from P0 (by picking σ2 > 0 to be sufficiently small).

Proposition 16. Consider the distribution Q over the triple (X,Y, Z) ∈
R3 defined in the following way: Y = X + N with X ∼ N (0, 1), N ∼
N (0, σ2) and X ⊥⊥ N . The variable Z ∼ N (0, 1) is independent of (X,Y ).
Thus X 6⊥⊥ Y | Z, i.e., Q ∈ Q0, and we have

inf
P∈P0

KL(Q||P ) =
1

2
log

(
1 + σ2

σ2

)
= inf

P∈P0

KL(P ||Q).
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Supplementary material

This supplementary material contains the proofs of results omitted in the appendices A and
B in the main paper.

C Proof of additional results in Sections 2 and B

C.1 Results on the separation between the null and alternative hypotheses

In this section we provide proofs of Propositions 5 and 16.

C.1.1 Proof of Proposition 5

The proof of Proposition 5 makes frequent use of the following lemma.

Lemma 17. Let probability measures P and Q be defined on [−M,M ]. Then

|EPW − EQW | ≤ 2M‖P −Q‖TV.

Proof. First note that

EW =

∫ 2M

0
P(W +M ≥ t)dt−M.

Thus

EPW − EQW =

∫ 2M

0
PP (W +M ≥ t)− PQ(W +M ≥ t)dt ≤ 2M‖P −Q‖TV.

Repeating the argument with P and Q interchanged gives EQW −EPW ≤ 2M‖P −Q‖TV and
hence the result.

We now turn to the proof of Proposition 5. By scaling we may assume without loss of
generality that M = 1. We will frequently use the following fact. Let P1, P2 be two probability
laws on Rd and suppose U ∼ P1 and V ∼ P2. Then for any measurable function f : Rd → Rc,
if P̃1 and P̃2 are the laws of f(U) and f(V ) respectively, ‖P̃1 − P̃2‖TV ≤ ‖P1 − P2‖TV. It thus
suffices to consider the case dX = dY = dZ = 1.

Let (X,Y, Z) ∈ R3 is a random triple be a random triple. We define Q ∈ Q0,1 in the
following way: if (X,Y, Z) ∼ Q, Z ⊥⊥ (X,Y ), Z ∼ U(−1, 1), and (X,Y ) is uniformly distributed
on (0, 1)2 ∪ (−1, 0)2. We note, for later use, that EQX = EQY = 0 and EQXY = 1/4.

Next take P ∈ P0,M and let functions f, g : (−1, 1) → (−1, 1) be defined by f(z) =
EP (X|Z = z) and g(z) = EP (Y |Z = z). Let ψ : (−1, 1)3 → R be given by

ψ(x, y, z) = {x− f(z)}{y − g(z)}.

Note that ψ as x − f(z), y − g(z) ∈ (−2, 2), ψ takes values in (−4, 4). Also EPψ(X,Y, Z) = 0
and EP f(Z)g(Z) = EPXY as EP (X − f(Z))g(Z) = 0 and EP f(Z)(Y − g(Z)) = 0.

Let ‖Q− P‖TV = δ. Then

EQψ(X,Y, Z) = EQXY + EQf(Z)g(Z)

≥ 1/4 + EP f(Z)g(Z)− 2δ

= 1/4 + EPXY − 2δ

≥ 1/4 + EQXY − 4δ = 1/2− 4δ,

1



where we have used Lemma 17 in the second and last lines above. We now apply Lemma 17
once more to give

1/2− 4δ ≤ |EQψ(X,Y, Z)− EPψ(X,Y, Z)| ≤ 8δ,

whence δ ≥ 1/24.

C.1.2 Proof of Proposition 16

Proof. Let qXY Z be the density of Q and denote by qXY the marginal density of (X,Y ) under
Q and similarly for qX etc. To prove (i), we will consider minimising KL(Q||P ) over distribu-
tions P ∈ P0. Let P ′0 be the set of densities of distributions in P0 with respect to Lebesgue
measure with the added restriction that for p ∈ P ′0, with a slight abuse of notation we have
KL(qXY Z ||p) < ∞. The proof will show that P ′0 is non-empty. Given any p ∈ P ′0, the con-
ditional independence implies the factorisation p(x, y, z) = p1(x|z)p2(y|z)p3(z), i.e., we can
minimise over the individual (conditional) densities pj , j ∈ {1, 2, 3}. Adding and subtracting
terms that do not depend on p, we obtain

argmin
P∈P0

KL(Q||P )

= argmin
p∈P ′0

{
−
∫
qXY Z(x, y, z) log p(x, y, z) dx dy dz +

∫
qXY Z(x, y, z) log qXY Z(x, y, z) dx dy dz

}
= argmin

p∈P ′0

{
−
∫
qXY (x, y)qZ(z) log p1(x|z) dx dy dz −

∫
qXY (x, y)qZ(z) log p2(y|z) dx dy dz

−
∫
qXY (x, y)qZ(z) log p3(z) dx dy dz

}
= argmin

p∈P ′0

{
−
∫
qX(x)qZ(z) log{p1(x|z)qZ(z)} dx dz −

∫
qY (y)qZ(z) log{p2(y|z)qZ(z)} dy dz

−
∫
qZ(z) log p3(z) dz

}
.

Note that the fact that P ′0 contains only densities p such that KL(qXY Z ||p) < ∞ ensures that
all of the integrands above are integrable, which permits the use of the additivity property of
integrals. From Gibbs’ inequality, we know the expression in the last display is minimised by
p∗1(x|z) = qX(x), p∗2(y|z) = qY (y), and p∗3(z) = qZ(z). This implies

inf
P∈P0

KL(Q||P ) =

∫
qXY (x, y) log

qXY (x, y)

qX(x)qY (y)
= IQ(X;Y ) = −1

2
log(1− ρ2

Q),

where IQ(X,Y ) denotes the mutual information between X and Y , and ρQ is the correlation
coefficient of the bivariate Gaussian (X,Y ), both under Q.

For the second equality sign, we now minimise KL(P ||Q) with respect to P . Let us redefine
P ′0 to now be the set of densities of distributions in P0 with the additional restriction that for
p ∈ P ′0, we have KL(p||qXY Z) <∞. For such p, we have

KL(p||qXY Z) =

∫
p3(z)

∫
p1(x|z)p2(y|z) log

p1(x|z)p2(y|z)
qXY (x, y)

dx dy dz +

∫
p3(z) log

p3(z)

qZ(z)
dz,

(17)

again noting that finiteness of KL(p||qXY Z) ensures Fubini’s theorem and additivity may be
used. We will first consider, for a fixed z, the optimisation over p1 and p2. From variational

2



Bayes methods we know that

p∗1(x|z) ∝ exp

(∫
y
p∗2(y|z) log qXY Z(x, y, z) dy

)
∝ exp

(∫
y
p∗2(y|z) log qXY (x, y) dy

)
p∗2(y|z) ∝ exp

(∫
x
p∗1(x|z) log qXY Z(x, y, z) dx

)
∝ exp

(∫
x
p∗1(x|z) log qXY (x, y) dx

)
.

Straightforward calculations (Section 10.1.2 of Bishop [1]) show that p∗1(x|z) = p∗1(x) and
p∗2(y|z) = p∗2(y) are Gaussian densities with mean zero and variances Σ11 := (Σ−1

Q )−1
11 =

σ2/(σ2 + 1) and Σ22 := (Σ−1
Q )−1

22 = σ2, respectively, where ΣQ is the covariance matrix of
the bivariate distribution for (X,Y ) under Q. It then follows from (17) that p∗3(z) = qZ(z).
Thus we have,

KL(p∗||qXY Z) =

∫
p∗(x, y) log{p∗(x, y)/qXY (x, y)} dx dy

=
1

2

(
tr(Σ−1

Q Σ)− 2 + log
detΣQ

detΣ

)
=

1

2
log

(
1 + σ2

σ2

)
.

D Proofs of Results in Section 3

In this section, we will use a . b as shorthand for a ≤ Cb for some constant C ≥ 0, where what
C is constant with respect to will be clear from the context.

D.1 Proof of Theorem 6

First observe that by scaling we may assume without loss of generality that EP ((εP ξP )2) = 1
for all P .

We begin by proving (i). We shall suppress the dependence on P and n at times to lighten
the notation. Recall the decomposition,

τN =
1√
n

n∑
i=1

Ri =
1√
n

n∑
i=1

{f(zi)− f̂(zi) + εi}{g(zi)− ĝ(zi) + ξi}

= (b+ νf + νg) +
1√
n

n∑
i=1

εiξi, (18)

where

b :=
1√
n

n∑
i=1

{f(zi)− f̂(zi)}{g(zi)− ĝ(zi)},

νg :=
1√
n

n∑
i=1

εi{g(zi)− ĝ(zi)}, νf :=
1√
n

n∑
i=1

ξi{f(zi)− f̂(zi)}.

Now
E(εiξi) = E{E(εiξi|Y,Z)} = E{ξiE(εi|Z)} = 0.

Thus the summands ε‘iξi in the final term of (18) are i.i.d. mean zero with finite variance, so
the central limit theorem dictates that this converges to a standard normal distribution. By
the Cauchy–Schwarz inequality, we have

|b| ≤
√
nA

1/2
f B

1/2
f

P→ 0. (19)

3



We now turn to νf and νg. Conditional on Y and Z, νg is a sum of mean-zero independent
terms and

var(εi{g(zi)− ĝ(zi)}|Y,Z) = {g(zi)− ĝ(zi)}2u(zi).

Thus our condition on Bg gives us that E(ν2
g |Y,Z)

P→ 0. Thus given ε > 0

P(ν2
g ≥ ε) = P(ν2

g ∧ ε ≥ ε)
≤ ε−1E{E(ν2

g ∧ ε|Y,Z)}
≤ ε−1E{E(ν2

g |Y,Z) ∧ ε} → 0 (20)

using bounded convergence (Lemma 25).

Using Slutsky’s lemma, we may conclude that τN
d→ N (0, 1). We now argue that the

denominator τD will converge to 1 in probability, which will give us Tn
d→ N (0, 1) again by

Slutsky’s lemma.

First note that from the above we have in particular that (b + νf + νg)/n
P→ 0. Thus∑n

i=1Ri/n
P→ 0 by the weak law of large numbers (WLLN). It suffices therefore to show that∑n

i=1R
2
i /n

P→ 1. Now

|R2
i − ε2

i ξ
2
i | ≤[{f(zi)− f̂(zi)}2 + 2|εi{f(zi)− f̂(zi)}|] [{g(zi)− ĝ(zi)}2 + 2|ξi{g(zi)− ĝ(zi)}|]

+ ε2
i [{g(zi)− ĝ(zi)}2 + 2|ξi{g(zi)− ĝ(zi)}|]

+ ξ2
i [{f(zi)− f̂(zi)}2 + 2|εi{f(zi)− f̂(zi)}|]

=Ii + IIi + IIIi.

Multiplying out and using the inequality 2|ab| ≤ a2 + b2 we have

Ii ≤3{f(zi)− f̂(zi)}2{g(zi)− ĝ(zi)}2 + ε2
i {g(zi)− ĝ(zi)}2 + ξ2

i {f(zi)− f̂(zi)}2

+ 4|εiξi{f(zi)− f̂(zi)}{g(zi)− ĝ(zi)}|

Now
1

n

n∑
i=1

{f(zi)− f̂(zi)}2{g(zi)− ĝ(zi)}2 ≤ nAfAg
P→ 0.

Next note that for any ε > 0,

E

(
ε ∧ 1

n

n∑
i=1

ε2
i {g(zi)− ĝ(zi)}2

∣∣∣Y,Z

)
= E(ν2

g ∧ ε|Y,Z),

so
1

n

n∑
i=1

ε2
i {g(zi)− ĝ(zi)}2

P→ 0 (21)

by the same argument as used to show νg
P→ 0. Similarly, we also have that the corresponding

term involving f , f̂ and ξ2
i tends to 0 in probability. For the final term in Ii, we have

1

n

n∑
i=1

|εiξi{f(zi)− f̂(zi)}{g(zi)− ĝ(zi)}| ≤
(

1

n

n∑
i=1

ε2
i ξ

2
i

)1/2( 1

n

n∑
i=1

{f(zi)− f̂(zi)}2{g(zi)− ĝ(zi)}2
)1/2

.

The first term above converges to {E(ε2
i ξ

2
i )}1/2 by the WLLN and the final term is bounded

above by
√
nAfAg

P→ 0.

4



Turning now to IIi, we have

1

n

n∑
i=1

ε2
i |ξi{g(zi)− ĝ(zi)}| ≤

(
1

n

n∑
i=1

ε2
i ξ

2
i

)1/2( 1

n

n∑
i=1

ε2
i {g(zi)− ĝ(zi)}2

)1/2
P→ 0

by WLLN and (21). Similarly we also have
∑n

i=1 IIIi/n
P→ 0. As

∑n
i=1 ε

2
i ξ

2
i /n

P→ E(ε2
i ξ

2
i ) = 1

by WLLN, we have τD
P→ 1 as required.

The uniform result (ii) follows by an analogous argument to the above, the only differences
being that all convergence in probability statements must be uniform, and the convergence
in distribution via the central limit theorem must also be uniform over P. These stronger
properties follow easily from the stronger assumptions given in the statement of the result;
that they suffice for uniform versions of the central limit theorem, WLLN and the particular
applications of Slutsky’s lemma required here to hold is shown in Lemmas 18, 19 and 20 below.

D.2 Uniform convergence results

Lemma 18. Let P be a family of distributions for a random variable ζ ∈ R and suppose
ζ1, ζ2, . . . are i.i.d. copies of ζ. For each n ∈ N let Sn = n−1/2

∑n
i=1 ζi. Suppose that for all

P ∈ P we have EP (ζ) = 0 and EP (|ζ|2+η) < c for some η, c > 0. We have that

lim
n→∞

sup
P∈P

sup
t∈R
|PP (Sn ≤ t)− Φ(t)| = 0.

Proof. For each n, let Pn ∈ P satisfy

sup
P∈P

sup
t∈R
|PP (Sn ≤ t)− Φ(t)| ≤ sup

t∈R
|PPn(Sn ≤ t)− Φ(t)|+ n−1. (22)

By the central limit theorem for triangular arrays [8, Proposition 2.27], we have

lim
n→∞

sup
t∈R
|PPn(Sn ≤ t)− Φ(t)| = 0,

thus taking limits in (22) immediately yields the result.

Lemma 19. Let P be a family of distributions for a random variable ζ ∈ R and suppose
ζ1, ζ2, . . . are i.i.d. copies of ζ. For each n ∈ N let Sn = n−1

∑n
i=1 ζi. Suppose that for all P ∈ P

we have EP (ζ) = 0 and EP (|ζ|1+η) < c for some η, c > 0. We have that for all ε > 0,

lim
n→∞

sup
P∈P

PP (|Sn| > ε) = 0.

Proof. Given M > 0 (to be fixed at a later stage), let ζ< := ζ1{|ζ|≤M} and ζ> := ζ1{|ζ|>M}.
Define ζ<i and ζ>i analogously, and let S<n be the average of ζ<1 , . . . , ζ

<
n with S>n defined similarly.

Note that by Chebychev’s inequality, we have

sup
P∈P

PP (|S<n − EP ζ<| ≥ t) ≤
M2

nt2
.

Also, by Markov’s inequality and then the triangle inequality, we have

sup
P∈P

PP (|S>n | ≥ t) ≤
supP∈P EP |S>n |

t
≤ supP∈P EP |ζ>|

t
.
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We now proceed to bound EP |ζ>| in terms of M . We have

EP (|ζ>|) = EP (|ζ|1{|ζ|>M}) ≤ EP (|ζ|1+η){PP (|ζ| > M)}η/(1+η) ≤ c1/(η+1){PP (|ζ| > M)}η/(1+η)

using Hölder’s inequality. By Markov’s inequality, we have

PP (|ζ| > M) ≤ EP |ζ|
M

≤ c

M
.

We may therefore conclude that supP∈P EP (|ζ>|) = o(M−1) and hence supn supP∈P PP (|S>n | ≥
t) = o(M−1) for each fixed t. Note further that as EP ζ = 0 we have

sup
P∈P
|EP ζ<| = sup

P∈P
|EP ζ>| ≤ sup

P∈P
EP |ζ>| = o(M−1).

Now given ε, δ > 0, let M be such that supP∈P |EP ζ<| < ε/3 and supn supP∈P PP (|S>n | ≥ ε/3) <
δ/2. Next we choose N ∈ N such that 9M2/(Nε2) < δ/2. Then for all n ≥ N and all P ∈ P,
we have

PP (|Sn| > ε) ≤ PP (|S<n | > 2ε/3) + PP (|S>n | > ε/3)

≤ PP (|S<n − EP ζ<| > ε/3) + δ/2 ≤ δ.

Lemma 20. Let P be a family of distributions that determines the law of a sequences (Vn)n∈N
and (Wn)n∈N of random variables. Suppose

lim
n→∞

sup
P∈P

sup
t∈R
|PP (Vn ≤ t)− Φ(t)| = 0.

Then we have the following.

(a)
If Wn = oP(1) we have lim

n→∞
sup
P∈P

sup
t∈R
|PP (Vn +Wn ≤ t)− Φ(t)| = 0.

(b)
If Wn = 1 + oP(1) we have lim

n→∞
sup
P∈P

sup
t∈R
|PP (Vn/Wn ≤ t)− Φ(t)| = 0.

Proof. We prove (a) first. Given ε > 0, let N be such that for all n ≥ N and for all P ∈ P

sup
t∈R
|PP (Vn ≤ t)− Φ(t)| < ε/3 and P(|Wn| > ε/3) < ε/3.

Then

PP (Vn +Wn ≤ t)− Φ(t) ≤ PP (Vn ≤ t+ ε/3)− Φ(t) + P(|Wn| > ε/3)

≤ ε/3 + Φ(t+ ε/3)− Φ(t) + ε/3 < ε,

and

PP (Vn +Wn ≤ t)− Φ(t) ≥ PP (Vn ≤ t− ε/3)− Φ(t)

≤ ε/3 + Φ(t− ε/3)− Φ(t) < ε.

Thus for all n ≥ N and for all P ∈ P,

sup
t∈R
|PP (Vn +Wn ≤ t)− Φ(t)| < ε

6



as required. Turning to (b), first let ζ ∼ N (0, 1) and note that for any sequence (εn)n∈N with
εn ↓ 0, we have (1 + εn)−1ζ converges in distribution to ζ, whence supt |Φ(t(1 + εn))−Φ(t)| → 0
and similarly supt |Φ(t(1 − εn)) − Φ(t)| → 0; note that we may take a supremum over t here
follows from Vaart [8, Lemma 2.11]. Now, given ε > 0, let δ be such that for all 0 ≤ δ′ ≤ δ,
supt |Φ(t(1+δ′))−Φ(t(1−δ′))| ≤ ε/3. Next choose N such that for all n ≥ N and for all P ∈ P

sup
t∈R
|PP (Vn ≤ t)− Φ(t)| < ε/3 and P(|Wn| > δ) < ε/3.

Then for all n ≥ N and for all P ∈ P, for t ≥ 0

PP (Vn/Wn ≤ t)− Φ(t) ≤ PP (Vn ≤ t(1 + δ))− Φ(t) + P(|Wn| > δ)

≤ ε/3 + Φ(t(1 + δ))− Φ(t) + ε/3 < ε.

Similarly when t ≤ 0, replacing 1 + δ with 1 − δ in the above argument gives the equivalent
result. The inequality PP (Vn/Wn ≤ t) − Φ(t) > ε may be proved analogously. Putting things
together then gives part (b) of the result.

D.3 Proof of Theorem 8

The proof of this result is very similar to that of Theorem 6, and we will adopt the same notation
here. We shall suppress the dependence on P and n at times to lighten the notation. We shall
denote the auxiliary dataset by A. We begin by proving (i). We have

τN −
√
nρP = (b+ νf + νg) +

1√
n

n∑
i=1

(εiξi − ρ). (23)

Thus the summands εiξi − ρ in the final term are i.i.d. mean zero with finite variance, so the
central limit theorem dictates that this converges to a standard normal distribution.

Control of the term b is identical to that in the proof of Theorem 6. Turning to νf and νg,
Conditional on Z and the auxiliary dataset A, νg is a sum of mean-zero independent terms and

var(εi{g(zi)− ĝ(zi)}|A,Z) = {g(zi)− ĝ(zi)}2u(zi).

That νg
P→ 0 follows exactly as in the argument preceding (20), and similarly for νf . Using

Slutsky’s lemma, we may conclude that τN −
√
nρP

d→ N (0, 1).

The argument that τD
P→ σ proceeds similarly to that in the proof of Theorem 6, but with

conditioning on X or Y replaced by conditioning on A. The uniform result (ii) follows by an
analogous argument, see the comments at the end of the proof of Theorem 6.

D.4 Proof of Theorem 9

The proof of Theorem 9 relies heavily on results from Chernozhukov et al. [3] which we state
in the next section for convenience, after which we present the proof Theorem 9.

D.4.1 Results from Chernozhukov et al. [3]

In the following, W ∼ Np(0,Σ) where Σjj = 1 for j = 1, . . . , p and p ≥ 3. Set V =
maxj=1,...,p |Wj |. In addition, let w̃1, . . . , w̃n ∈ Rp be independent random vectors having the
same distribution as a random vector W̃ with EW̃ = 0 and covariance matrix Σ.

Consider the following conditions.
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(B1a) maxk=1,2 E(|W̃j |2+k/Ckn) + E(exp(|W̃j |/Cn)) ≤ 4 for all j;

(B1b) maxk=1,2 E(|W̃j |2+k/C
k/2
n ) + E(maxj=1,...,p |W̃j |4/C2

n) ≤ 4 for all j;

(B2) C4
n(log(pn))7/n ≤ Cn−c for some constants C, c > 0.

We will assume that W̃ satisfies one of (B1a) and (B1b), and also satisfies (B2).
Let

Ṽ = max
j=1,...,p

∣∣∣∣ 1√
n

n∑
i=1

w̃ij

∣∣∣∣.
The labels of the corresponding results in Chernozhukov et al. [3] are given in brackets.

A slight difference between our presentation of these results here and the statements in Cher-
nozhukov et al. [3] is that we consider the maximum absolute value rather than the maximum.

Lemma 21 (Lemma 2.1). There exists a constant C ′ > 0 such that for all t ≥ 0,

sup
w≥0

P(| max
j=1,...,p

Wj − w| ≤ t) ≤ C ′t(
√

2 log(p) + 1).

Theorem 22 (Corollary 2.1). Then there exists constant c′, C > 0 such that

sup
t∈R
|P(Ṽ ≤ t)− P(V ≤ t)| . n−c.

The following result includes a slight variant of Lemma 3.2 of Chernozhukov et al. [3] whose
proof follows in exactly the same way.

Lemma 23 (Lemmas 3.1 and 3.2). Let U ∈ Rp be a centred Gaussian random vector with
covariance matrix Θ ∈ Rp×p and let ∆0 = maxj,k=1,...,p |Σjk − Θjk|. Define q(θ) := θ1/3(1 ∨
log(p/θ))2/3. There exists a constant C ′ > 0 such that the following hold.

(i)
sup
t∈R
|P( max

j=1,...,p
Uj ≤ t)− P(V ≤ t)| ≤ C ′q(∆0).

(ii) Writing GΣ and GΘ for the quantile functions of W and U respectively,

GΘ(α) ≤ GΣ(α+ C ′q(∆0)) and GΣ(α) ≤ GΘ(α+ C ′q(∆0))

for all α ∈ (0, 1).

Lemma 24 (Lemma C.1 and the proof of Corollary 3.1). Let Σ̃ be the empirical covariance
matrix formed using w̃1, . . . , w̃n, so Σ̃ =

∑n
i=1 w̃iw̃

T
i /n. Then

log(p)2E‖Σ̃−Σ‖∞ . n−c
′

log(p)2E
(

max
j=1,...,p

∣∣∣∣ 1n
n∑
i=1

w̃ij

∣∣∣∣) . Cn−c
′
.

for some constants c′ > 0.

Note the second inequality does not appear in Chernozhukov et al. [3] but follows easily in
a similar manner to the first inequality.
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D.4.2 Proof of Theorem 9

We will assume, without loss of generality, that varP (εP,jξP,k) = 1 for all P ∈ P. Furthermore,
we will suppress dependence on P and n at times in order to lighten the notation. We will use
C ′ to denote a positive constant that may change from line to line.

Note that we have E(εjξk) = 0. Let us decompose
√
nR̄jk = δjk + T̃jk where

T̃jk =
1√
n

n∑
i=1

εijξik.

Furthermore, let us write the denominator in the definition of Tjk as (‖Rjk‖22/n − R̄2
jk)

1/2 =

1 + ∆jk We thus have Tjk = (T̃jk + δjk)/(1 + ∆jk). Let S̃n = maxj,k |T̃jk|.
Let Σ ∈ RdX ·dY ×dX ·dY be the matrix with columns and rows indexed by pairs jk = (j, k) ∈

{1, . . . , dX} × {1, . . . , dY } and entries given by Σjk,lm = E(εjεlξkξm). Let W ∈ RdX ·dY be a
centred Gaussian random vector with covariance Σ and let Vn be the maximum of the absolute
values of components of W . We write G for the quantile function of Vn. Note that from
Lemma 21, we have in particular that Vn has no atoms, so P(Vn ≤ G(α)) = α for all α ∈ [0, 1].

Let
κP = sup

t≥0
|PP (Sn ≤ t)− P(Vn ≤ t)|.

We will first obtain a bound on

vP (α) = |PP (Sn ≤ Ĝ(α))− α|

in terms of κP , and later bound κP itself. Fixing P ∈ P and suppressing dependence on this,
we have

v(α) ≤ |P(Sn ≤ Ĝ(α))− P(Sn ≤ G(α))|+ |P(Sn ≤ G(α))− P(Vn ≤ G(α))|
≤ P({Sn ≤ Ĝ(α)} 4 {Sn ≤ G(α)}) + κ

where we have used the fact that |P(A) − P(B)| ≤ P(A4 B). Now from Lemma 23 we know
that on the event {‖Σ− Σ̂‖∞ ≤ uΣ}, we have G(α−Cq(uΣ)) ≤ Ĝ(α) ≤ G(α+Cq(uΣ)). Thus

P({Sn ≤ Ĝ(α)} 4 {Sn ≤ G(α)}) ≤ P{G(α− C ′q(uΣ))

≤ Sn ≤ G(α+ C ′q(uΣ))}+ P(‖Σ− Σ̂‖∞ > uΣ)

≤ 2κ+ P{G(α− C ′q(uΣ)) ≤ Vn ≤ G(α+ C ′q(uΣ))}+ P(‖Σ− Σ̂‖∞ > uΣ)

= 2κ+ 2C ′q(uΣ) + P(‖Σ− Σ̂‖∞ > uΣ).

This gives
v(α) . κ+ q(uΣ) + P(‖Σ− Σ̂‖∞ > uΣ).

Now let Ω be the event that maxj,k |δjk| ≤ uδ and maxj,k |∆jk| ≤ u∆.

κ ≤ sup
t≥0
{|P(S̃n ≤ t(1 + u∆) + uδ)− P(Vn ≤ t)|+ |P(S̃n ≤ t(1− u∆)− uδ)− P(Vn ≤ t)|}+ P(Ωc)

≤ sup
t≥0
{|P(S̃n ≤ t)− P{Vn ≤ (t− uδ)/(1 + u∆)}|+ |P(S̃n ≤ t)− P{Vn ≤ (t+ uδ)/(1− u∆)}|}+ P(Ωc).

Now

|P(S̃n ≤ t)− P{Vn ≤ (t− uδ)/(1 + u∆)}|
≤|P(S̃n ≤ t)− P(Vn ≤ t)|+ |P(Vn ≤ t− uδ)− P((1 + u∆)Vn ≤ t− uδ)|+ |P(t− uδ ≤ Vn ≤ t)|
≤I + II + III.
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From Theorem 22, we have I = o(1). Lemma 23 gives

II + III . q(u∆) + uδ
√

log(dXdY ).

Similarly,

|P(S̃n ≤ t)− P{Vn ≤ (t+ uδ)/(1− u∆)}| . q(u∆) + uδ
√

log(dXdY ) + o(1).

Putting things together, we have

v(α) . P(‖Σ− Σ̂‖∞ > uΣ) + q(uΣ) + P(max
j,k
|δjk| > uδ) + uδ

√
log(dXdY )

+ P(max
j,k
|∆jk| > u∆) + q(u∆) + o(1).

We thus see that writing an = log(dXdY )−2, if maxj,k |δjk| = oP(a
1/4
n ), maxj,k |∆jk| = oP(an)

and ‖Σ − Σ̂‖∞ = oP(an), then we will have supP∈P supα∈(0,1) vP (α) → 0. These remaining
properties are shown in Lemma 26.

D.5 Auxiliary Lemmas

Lemma 25. Let P be a family of distributions determining the distribution of a sequence of
random variables (Wn)n∈N. Suppose Wn = oP(1) and |Wn| < C for some C > 0. Then
E|Wn| → 0.

Proof. Given ε > 0, there exists N such that supP∈P PP (|Wn| > ε) < ε for all n ≥ N . Thus for
such n,

EP |Wn| = EP (|Wn|1{|Wn|≤ε}) + EP (|Wn|1{|Wn|>ε}) ≤ ε+ Cε.

As ε was arbitrary, we have supP∈P EP |Wn| → 0.

Lemma 26. Consider the setup of Theorem 9 and its proof (Section D.4.2). Let an = log(dXdY )−2.
We have that

(i) maxj,k |δjk| = oP(a
1/4
n );

(ii) maxj,k |∆jk| = oP(an);

(iii) ‖Σ− Σ̂‖∞ = oP(an).

Proof. The arguments here are similar to those in the proof of Theorem 6, but with the added
complication of requiring uniformity over expressions corresponding to different components of
X and Y . We will at times suppress the dependence of quantities on P to lighten notation.

We begin by showing (i). Let us decompose each δjk as δjk = bjk + νg,jk + νf,jk, these terms

being defined as the analogues of b, νg and νf but corresponding to the regression of X
(n)
j and

Y
(n)
j on to Z(n).

By the Cauchy–Schwarz inequality, we have bjk ≤
√
nA

1/2
f,j A

1/2
g,k = oP(a

1/4
n ) using (6). Let

us write ωik = gk(zi) − ĝk(zi). In order to control maxj,k |νg,jk| we will use Lemma 29. Given
ε > 0, we have

PP (max
j,k
|νg,jk|/a1/4

n ≥ ε) .
√
τ log(dXdY )EP

{
ε ∧
(

max
k

1

na
1/2
n

n∑
i=1

ω2
ik

)1/4}
+ PP (max

i,j
|εij | > τ)

(24)
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for all τ ≥ 0. As maxi,j |εij | = OP(τn), we know that given δ, there exists C > 0 such that
supP∈P PP (maxi,j |εij | > Cτg,n) < δ for all n. By bounded convergence (Lemma 25) and (8),
we then have that

sup
P∈P

√
τg,n log(dXdY )EP

{
ε ∧
(

max
k

1

na
1/2
n

n∑
i=1

ω2
ik

)1/4}
→ 0,

whence maxj,k |νg,jk| = oP(a
1/4
n ). Similarly maxj,k |νf,jk| = oP(a

1/4
n ), which completes the proof

of (i).
Turning to (ii), we see that

max
j,k
|(1 + ∆jk)

2 − 1| ≤ max
j,k
|‖Rjk‖22/n− 1|+ max

j,k
|R̄jk|.

Lemma 27 shows that the first term on the RHS is oP(an). For the second term we have

max
j,k
|R̄jk| ≤ max

j,k
|δjk|/

√
n+ max

j,k

1

n

n∑
i=1

εijξik = oP(an)

from (i) and Lemma 24, noting that (A2) implies in particular that log(dXdY )3 = o(n). Thus
applying Lemma 28, we have that maxj,k |∆jk| = oP(an).

We now consider (iii). Let Σ̃ ∈ RdXdY ×dXdY be the matrix with rows and columns indexed
by pairs jk = (j, k) ∈ {1, . . . , dX} × {1, . . . , dY } and entries given by

Σ̃jk,lm =
1

n

n∑
i=1

εijξikεilξim.

We know from Lemma 24 that ‖Σ−Σ̃‖∞ = oP(an). It remains to show that ‖Σ̂−Σ̃‖∞ = oP(an).
From Lemma 27 we have that

max
j,k,l,m

|RT
jkRlm/n− R̄jkR̄lm − Σ̃jk,lm| = oP(an).

It suffices to show that

max
j,k,l,m

|{(1 + ∆jk)(1 + ∆lm)}−1 − 1| = oP(an). (25)

We already know that maxj,k |∆jk| = oP(an) so applying Lemma 28, we see that maxj,k |(1 +
∆jk)

−1 − 1| = oP(an). It is then straightforward to see that (25) holds. This completes the
proof of (iii).

Lemma 27. Consider the setup of Theorem 9 and its proof (Section D.4.2) as well as that of
Lemma 26. We have that

max
j,k,l,m

|RT
jkRlm/n− Σ̃jk,lm| = oP(an).

Proof. Fix i and consider Rjk,iRlm,i − εijξikεilξim. Writing ηj = fj(zi) − f̂j(zi) and ωk =
gk(zi)− ĝk(zi), and suppressing dependence on i (so e.g. εij = εj) we have

Rjk,iRlm,i − εijξikεilξim = (ηj + εj)(ωk + ξk)(ηl + εl)(ωm + ξm)− εjξkεlξm
= ηjωkηlωm

+ ηjωkηlξm + ηjωkωmεl + ηjηlωmξk + ωkηlωmεj

+ ηjωkεlξm + ηjηlξkξm + ηjωmξkεl + ωkηlεjξm + ωkωmεjεl + ηlωmεjξk

+ ηjξkεlξm + ωkεjεlξm + ηlεjξkξm + ωmεjξlεl.
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We see that the sum on the RHS contains terms of four different types of which ηjωkηlωm,
ηjωkηlξm, ηjωkεlξm and ηjξkεlξm are representative examples. We will control the sizes of each of
these when summed up over i. Turning first to ηjωkηlωm, note that 2|ηjωkηlωm| ≤ η2

jω
2
k+η2

l ω
2
m.

The argument of (19) combined with (6) shows that

max
j,k

1

n

n∑
i=1

η2
ijω

2
ik = oP(an).

Next we have 2|ηjωkηlξm| ≤ η2
jω

2
k + η2

l ξ
2
m. The argument of (20) combined with (7) shows

that

max
l,m

1

n

n∑
i=1

η2
ilξ

2
im = oP(a2

n) = oP(an).

Considering the third term, we have 2|ηjωkεlξm| ≤ η2
j ξ

2
m + ω2

kε
2
l , so this term is also controlled

in the same way.
Finally, turning to the fourth term,

max
j,k,l,m

1

n

∣∣∣∣ n∑
i=1

ηijξikεilξim

∣∣∣∣ ≤ max
l,m

(
1

n

n∑
i=1

ε2
ilξ

2
im

)1/2

max j, k

(
1

n

n∑
i=1

η2
ijξ

2
ik

)1/2

= OP(1)oP(an) = oP(an).

This completes the proof of the result.

Lemma 28. Let P be a family of distributions determining the distribution of a triangular array

of random variables W (n) ∈ Rpn. Suppose that for some sequence (an)n∈N, maxj=1,...,pn W
(n)
j =

oP(an) as n → ∞. Then if D ⊂ R contains an open neighbourhood of 0 and the function
f : D → R is continuously differentiable at 0 with f(0) = c, we have

max
j=1,...,pn

{f(W
(n)
j )− c} = oP(an).

Proof. Let ε, δ > 0. As f ′ is continuous at 0, it is bounded on a sufficiently small interval
(−δ′, δ′) ⊆ D. Let M = supx∈(−δ′,δ′) |f ′(x)| and set η = min(δ′, δ/M). Note by the mean-value
theorem we have the inequality |f(x)− c| ≤M |x| ≤ δ for all x ∈ (−η, η). Thus

an max
j
|f(W

(n)
j )− c| > δ ⊆ an max

j
|W (n)

j | > η.

Now we have that there exists N such that for all n ≥ N , PP (an maxj |W (n)
j | > η) < ε for all

P ∈ P, so from the display above we have that for such n, PP (an maxj |f(W
(n)
j )−c| > δ) < ε.

Lemma 29. Let W ∈ Rn×dW , V ∈ Rn×dV be random matrices such that E(W |V ) = 0 and the
rows of W are independent conditional on V . Then for ε > 0

εP
(

max
j

∣∣∣∣ 1√
n

n∑
i=1

WijVij

∣∣∣∣ > ε

)
.
√
λ log(p)E

{
ε ∧
(

max
j

1

n

n∑
i=1

V 2
ij

)1/4}
+ εP(‖W‖∞ > λ)

for any λ ≥ 0.
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Proof. We have from Markov’s inequality

εP
(

max
j

∣∣∣∣ 1√
n

n∑
i=1

WijVij

∣∣∣∣ > ε

)
≤ E

{
E
(
ε ∧max

j

∣∣∣∣ 1√
n

n∑
i=1

WijVij

∣∣∣∣ |V )}.
We will apply a symmetrisation argument to the inner conditional expectation. To this end,
introduce W ′ such that W ′ and W have the same distribution conditional on V and such that
W ′ ⊥⊥W | V . In addition, let S1, . . . , Sn be i.i.d. Rademacher random variables independent of
all other quantities. The RHS of the last display is equal to

E
{
E
(
ε ∧max

j

∣∣∣∣ 1√
n

n∑
i=1

(
Wij − E(W ′ij |W,V )

)
Vij

∣∣∣∣ |V )}

≤E
[
E
{
ε ∧ E

(
max
j

∣∣∣∣ 1√
n

n∑
i=1

(
Wij −W ′ij)

)
Vij

∣∣∣∣ |V,W)|V}]

≤E
{
ε ∧ E

(
max
j

∣∣∣∣ 1√
n

n∑
i=1

(Wij −W ′ij)Vij
∣∣∣∣ |V )}

=E
{
ε ∧ E

(
max
j

∣∣∣∣ 1√
n

n∑
i=1

Si(Wij −W ′ij)Vij
∣∣∣∣ |V )}

≤ 2E
{
ε ∧ E

(
max
j

∣∣∣∣ 1√
n

n∑
i=1

SiWijVij

∣∣∣∣ |V )}
using the triangle inequality in the final line. Now fixing a λ ≥ 0, define W̃ij = Wij1{‖W‖∞≤λ}.
Half the final expression in the display above is at most

E
{
ε ∧ E

(
max
j

∣∣∣∣ 1√
n

n∑
i=1

SiW̃ijVij

∣∣∣∣ |V )}+ εP(‖W‖∞ > λ).

Note that SiW̃ij ∈ [−λ, λ] and conditional on V , {SiW̃ij}ni=1 are independent. Thus conditional

on V ,
∑n

i=1 SiW̃ijVij/
√
n is sub-Gaussian with parameter λ

(∑n
i=1 V

2
ij/n

)1/2
. Using a standard

maximal inequality for sub-Gaussian random variables (see Theorem 2.5 in Boucheron et al.
[2]), we have

E
(

max
j

∣∣∣∣ 1√
n

n∑
i=1

SiW̃ijVij

∣∣∣∣ |V ) ≤√2λ log(p) max
j

(
n∑
i=1

V 2
ij/n

)1/4

which then gives the result.

E Proof of Theorem 11

We will prove (ii) first. From Theorem 6 and Remark 7, it is enough to show that

sup
P∈P

EP
(

1

n

n∑
i=1

{fP (zi)− f̂(zi)}2
)

= o(
√
n), (26)

and an analogous result for ĝ. We know from Lemma 30 that

1

n

n∑
i=1

EP [{fP (zi)− f̂(zi)}2|Z(n)] ≤ max(σ2, ‖fP ‖2H) inf
λ>0

{
1

nλ

n∑
i=1

min(µ̂i/4, λ) + λ/4

}
.
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Lemma 31 then gives us

EP min
λ>0

{
1

nλ

n∑
i=1

min(µ̂i/4, λ) + λ/4

}
≤ inf

λ>0

{
1

nλ

n∑
i=1

EP min(µ̂i/4, λ) + λ/4

}

≤ inf
λ>0

{
C

nλ

∞∑
j=1

min(µP,j , λ) + λ

}
for a constant C > 0. Note that the first inequality in the last display allows us to effectively
move from a fixed design with a design-dependent tuning parameter λ to a random design but
where λ is fixed since the minimum is outside the expectation. For P ∈ P, let φP : [0,∞) →
[0,∞) be given by

φP (λ) =

∞∑
j=1

min(µP,j , λ).

Observe that φP is increasing and limλ↓0 supP∈P φP (λ) = 0 by (11). Let λP,n = n−1/2
√
φP (n−1/2)

so supP∈P λP,n = o(n−1/2). Thus for n sufficiently large φP (λP,n) ≤ φP (n−1/2), whence for such
n we have

sup
P∈P

inf
λ>0
{φP (λ)/(nλ) + λ} ≤ sup

P∈P

φP (λP,n)

nλP,n
+ λP,n

≤ sup
P∈P

√
φP (n−1/2)/

√
n = o(n−1/2).

Putting things together gives (26).
To show (i), set P = {P} in the preceding argument and note that limλ↓0 φP (λ) = 0 by

dominated convergence theorem using the summability of the eigenvalues i.e. (11) always holds.

E.1 Auxiliary Lemmas

The following result gives a bound on the prediction error of kernel ridge regression with fixed
design. The arguments are similar to those used in the analysis of regular ridge regression, see
for example Dhillon et al. [4].

Lemma 30. Let z1, . . . , zn ∈ Z (for some input space Z) be deterministic and suppose

xi = f(zi) + εi.

Here var(εi) ≤ σ2, cov(εi, εj) = 0 for j 6= i and f ∈ H for some RKHS (H, ‖ · ‖H) with
reproducing kernel k : Z × Z → R. Consider performing kernel ridge regression with tuning
parameter λ > 0:

f̂λ = argmin
h∈H

{
1

n

n∑
i=1

{xi − h(zi)}2 + λ‖f‖2H
}
.

Let K ∈ Rn×n have ijth entry Kij = k(zi, zj)/n and denote the eigenvalues of K by µ̂1 ≥ µ̂2 ≥
· · · ≥ µ̂n ≥ 0. Then we have

1

n
E
{ n∑
i=1

{f(zi)− f̂λ(zi)}2
}
≤ σ2

n

n∑
i=1

µ̂2
i

(µ̂i + λ)2
+ ‖f‖2H

λ

4
(27)

≤ σ2

λ

1

n

n∑
i=1

min(µ̂i/4, λ) + ‖f‖2H
λ

4
.
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Proof. Let X = (x1, . . . , xn)T . We know from the representer theorem [5, 7] that(
f̂λ(z1), . . . , f̂λ(zn)

)T
= K(K + λI)−1X.

We now show that (
f(z1), . . . , f(zn)

)T
= Kα,

for some α ∈ Rn, and moreover that ‖f‖2H ≥ αTKα/n.
Let V = span{k(·, z1), . . . , k(·, zn)} ⊆ H and write f = u + v where u ∈ V and v ∈ V ⊥.

Then
f(zi) = 〈f, k(·, zi)〉 = 〈u, k(·, zi)〉,

where 〈·, ·〉 denotes the inner product of H. Write u =
∑n

i=1 αik(·, zi). Then

f(zi) =
n∑
j=1

αj〈k(·, zj), k(·, zi)〉 =
n∑
j=1

αjk(zj , zi) = KT
i α,

where Ki is the ith column (or row) of K. Thus Kα =
(
f(z1), . . . , f(zn)

)T
. By Pythagoras’

theorem
‖f‖2H = ‖u‖2H + ‖v‖2H ≥ ‖u‖2H = αTKα/n.

Now let the eigendecomposition of K be given by K = UDUT with Dii = µ̂i and define
θ = UTKα. We see that n times the left-hand side of (27) is

E‖K(K + λI)−1(Uθ + ε)− Uθ‖22 = E‖DUT (UDUT + λI)−1(Uθ + ε)− θ‖22
= E‖D(D + λI)−1(θ + UT ε)− θ‖22
= ‖{D(D + λI)−1 − I}θ‖22 + E‖D(D + λI)−1UT ε‖22.

Let Σ ∈ Rn×n be the diagonal matrix with ith diagonal entry var(εi) ≤ σ2. To compute the
second term, we argue as follows.

E‖D(D + λI)−1UT ε‖22 = E[{D(D + λI)−1UT ε}TD(D + λI)−1UT ε]

= E[tr{D(D + λI)−1UT εεTUD(D + λI)−1}]
= tr{D(D + λI)−1UTΣUD(D + λI)−1}
= tr{UD2(D + λI)−2UTΣ}
≤ σ2tr{D2(D + λI)−2}

= σ2
n∑
i=1

µ̂2
i

(µ̂i + λ)2
.

For the first term, we have

‖{D(D + λI)−1 − I}θ‖22 =
n∑
i=1

λ2θ2
i

(µ̂i + λ)2
.

Now as θ = DUTα note that θi = 0 when di = 0. Let D+ be the diagonal matrix with ith
diagonal entry equal to D−1

ii if Dii > 0 and 0 otherwise. Then∑
i:µ̂i>0

θ2
i

µ̂i
= ‖
√
D+θ‖22 = αTKUD+UTKα = αTUDD+DUTα = αTKα ≤ n‖f‖2H.
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Next

n∑
i=1

θ2
i

µ̂i

µ̂iλ
2

(µ̂i + λ)2
≤ n‖f‖2H max

i=1,...,n

µ̂iλ
2

(µ̂i + λ)2
≤ λn‖f‖2H/4,

using the inequality (a+ b)2 ≥ 4ab in the final line. Finally note that

µ̂2
i

(µ̂i + λ)2
≤ min{1, µ̂2

i /(4µ̂iλ)} = min(λ, µ̂i/4)/λ.

Putting things together gives the result.

The following result is an immediate consequence of Propositions 3.3 and 3.4 of Koltchinskii
[6].

Lemma 31. Consider the setup of Theorem 11. There exists an absolute constant C > 0 such
that for all r > 0,

E
(

1

n

n∑
i=1

min(µ̂i/4, r)

)
≤ C

n

∞∑
i=1

min(µi/4, r).
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