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Abstract

A recent definition of genericity for resistor-inductor-capacitor (RLC) networks is that the realisability set of the network has
dimension one more than the number of elements in the network. We prove that such networks are minimal in the sense that it is
not possible to realise a set of dimension n with fewer than n − 1 elements. We provide an easily testable necessary and sufficient
condition for genericity in terms of the derivative of the mapping from element values to impedance parameters, which is illustrated
by several examples. We show that the number of resistors in a generic RLC network cannot exceed k + 1 where k is the order
of the impedance. With an example, we show that an impedance function of lower order than the number of reactive elements
in the network need not imply that the network is non-generic. We prove that a network with a non-generic subnetwork is itself
non-generic. Finally we show that any positive-real impedance can be realised by a generic network. In particular we show that
sub-networks that are used in the important Bott-Duffin synthesis method are in fact generic.
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1. Introduction

In recent years, there has been a resurgence of research ac-
tivity in electric circuit theory, thanks in part to the invention
of the inerter and the resulting analogy between electric cir-
cuits and passive mechanical networks [18]. The research has
exposed several fundamental questions which have never been
fully resolved. Of particular interest and importance is the con-
cept of minimality. Notably, it is not known how to find an
electric circuit to realise an arbitrary given impedance function
minimally (i.e., using the least possible number of elements)
[4, 9, 12]. Surprisingly, well-known networks which are appar-
ently non-minimal in this sense, such as the Bott-Duffin reali-
sation and its simplifications, have in fact recently been shown
to be minimal for certain impedance functions [7, 8].

In this paper, we develop the notion of generic networks,
as defined in [14]. The impedance of a given resistor-inductor-
capacitor (RLC) network is the ratio of two polynomials

Z(s) =
ak sk + ak−1sk−1 + · · · + a0

bk sk + bk−1sk−1 + · · · + b0
, (1)

where all coefficients are non-negative and at least one coef-
ficient in the denominator is non-zero. Varying the element
values (resistances, inductances and capacitances) over the real
positive numbers generates a set of impedances characterised
by the vector of coefficients (a0, a1, . . . , ak, b0, b1, . . . , bk). This
set can be viewed as a (real semi-algebraic) subset of (2k + 2)-
dimensional Euclidean space, which we call the realisability set
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of the network. In Lemma 2, we show that the dimension of
the realisability set is no greater than one plus the number of
elements in the network. A network is called generic if the
dimension of the realisability set is exactly equal to one more
than the number of elements in the network (Definition 1). It
follows that generic networks are almost always minimal, in
the sense that almost all of the impedances realized by a given
generic network that contains n elements cannot also be real-
ized by a network that contains strictly fewer than n elements.1

In Theorem 1, we provide a necessary and sufficient condition
for genericity in terms of the derivative of the mapping from el-
ement values to impedance parameters. As a corollary, we show
that the number of resistors in a generic network is at most one
more than the order of the impedance. The genericity concept
is explored through several examples in Section V. Section VI
then considers interconnection, and it is proved that a network
with a non-generic subnetwork is itself non-generic (Theorem
2). Finally, we provide a proof that the Bott-Duffin networks
are generic, and conclude that any positive-real impedance can
be realised by a generic RLC network (Theorem 3).

We adopt the following notation throughout the paper:

R real numbers
R>0 positive real numbers
R≥0 non-negative real numbers
Rn (column) vectors of real numbers
(x1, . . . , xn) column vector

1More precisely, the set of impedances in the realizability set that can be
realized with strictly fewer elements is a subset of the realizability set whose
codimension is at least one.
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Figure 1: A network with non-coprime impedance polynomials.

2. Preliminaries

Consider an RLC two-terminal network N with m ≥ 1 el-
ements (resistors, capacitors or inductors) and corresponding
parameters E = (E1, . . . , Em). It follows from Kirchhoff’s tree
theorem [16, Section 7.2] that the driving-point impedance of
N is a function of the element parameters of the form

Z(E, s) =
f (E, s)
g(E, s)

, (2)

with

f (E, s) = fk(E)sk + fk−1(E)sk−1 + · · · + f0(E),

g(E, s) = gk(E)sk + gk−1(E)sk−1 + · · · + g0(E),

where fi(E) = fi(E1, . . . , Em), g j(E) = g j(E1, . . . , Em) for 0 ≤
i, j ≤ k are polynomials in E1, . . . , Em with non-negative inte-
ger coefficients, at least one g j(E) is not identically zero, and
not both of fk(E) and gk(E) are identically zero. We refer to
the integer k as the order of the impedance, which cannot ex-
ceed the number of reactive elements (capacitors and inductors)
in the network. Following [16, Section 7.2], the polynomials
f (E, s) and g(E, s) are obtained as follows. Let N ′ be obtained
by connecting together the driving-point terminals in N , and
let f̃ (E, s) (resp., g̃(E, s)) be the Laurent polynomial given by
the sum over all spanning trees in N ′ (resp., N) of the prod-
uct of the admittances of all elements in each spanning tree.
Then f (E, s) (resp., g(E, s)) is obtained by multiplying f̃ (E, s)
(resp., g̃(E, s)) by the least common multiple of the denomina-
tors of the monomials in f̃ (E, s) and g̃(E, s). Note that f (E, s)
and g(E, s) are not guaranteed to be coprime. For example, the
network in Fig. 1 yields polynomials

f (E, s) = R2C1L1s2 + (L1 + R1R2C1)s + R1,

g(E, s) = R2C1s + 1,

whereupon g(E, s) divides f (E, s).
Now, consider the candidate impedance function (1), where

ai, b j ∈ R≥0 for 0 ≤ i, j ≤ k. For the network N to realise the
impedance function (1) it is necessary and sufficient that there
exist c ∈ R>0 and E0 ∈ Rm

>0 such that

ai = c fi(E0) and bi = cgi(E0) (i = 0, . . . , k). (3)

We define the realisability set of N to be the set

S = {(a0, . . . , ak, b0, . . . , bk) such that (3) holds,
E0 ∈ Rm

>0 and c ∈ R>0

}
.

Let x = (x1, . . . , xm+1) = (E1, . . . , Em, c) ∈ Rm+1
>0 and define the

function h : Rm+1
>0 → R2k+2

≥0 as follows:

h (x) = c ( f0, . . . , fk, g0, . . . , gk)

Then S is the image of Rm+1
>0 under h.

The set S can also be seen to be the projection onto the first
2k + 2 components of the real semi-algebraic set

S f = {(a0, . . . , ak, b0, . . . , bk,E0, c)

such that (3) holds, E0 ∈ Rm
>0 and c ∈ R>0

}
in R2k+m+3

≥0 . Hence S is a real semi-algebraic set using the
Tarski-Seidenberg theorem [2]. We use the notation π{r1,...,rp}(·)
to denote the projection of a real semi-algebraic set onto the
components with indices r1, . . . , rp. Thus, S = π{1,...,2k+2}(S f ).

3. A necessary and sufficient condition for genericity

The dimension dim(S) of a semi-algebraic set S is defined
as the largest d such that there exists a one-to-one smooth map
from the open cube (−1, 1)d ⊂ Rd into S [1].

Lemma 1. For a semi-algebraic set S ⊂ Rn let π = π{r1,...,rp} for
some indices r1, . . . , rp with p < n, then dim(π(S)) ≤ dim(S)
[1, Lemma 5.30].

Lemma 2. For an RLC two-terminal network N with m ≥ 1
elements and realisability set S then dim(S) ≤ m + 1.

Proof. Given Ei,0 > 0 for 1 ≤ i ≤ m and c0 > 0 there ex-
ists ε > 0 such that, for any given (x1, . . . , xm+1) ∈ (−1, 1)m+1,
then Ei = Ei,0 + εxi > 0 and c = c0 + εxm+1 > 0, whereupon
a0, . . . , ak, b0, . . . , bk are uniquely determined by the function h.
Since, in addition, f0, . . . , fk and g0, . . . , gk are all polynomials
in E1, . . . , Em, then it follows that there is a smooth one-to-one
mapping from (−1, 1)m+1 into some neighbourhood of any point
in S f , which means that dim(S f ) = m + 1. Note that this neigh-
bourhood contains all points in S f that are sufficiently close to
the given point in the Euclidean metric. Such a neighbourhood
in S f is homeomorphic to the unit cube in Rm+1, hence to the
unit sphere in Rm+1, hence not homeomorphic to a unit sphere
in any other dimension [6, Theorem 2.26]. The result now fol-
lows from Lemma 1.

We now state the definition of a generic network proposed
in [14]. We note that [17] introduces a similar notion of a “non-
redundant” system in the context of parameterized state space
equations.

Definition 1. An RLC two-terminal network N containing m
elements is generic if dim(S) = m + 1 where S is the realisabil-
ity set of the network.

We introduce the matrix D(E) defined by:

D(E) =



∂ f0
∂E1

· · ·
∂ f0
∂Em

f0
...

...
...

∂ fk
∂E1

· · ·
∂ fk
∂Em

fk
∂g0
∂E1

· · ·
∂g0
∂Em

g0
...

...
...

∂gk
∂E1

· · ·
∂gk
∂Em

gk


(4)
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and note that the derivative of h satisfies D(E) diag(c, . . . , c, 1) =

h′(x). The next theorem provides a easily testable method for
determining the genericity of a given RLC network using the
matrix D(E). We note that [17, Proposition 1] provides a sim-
ilar necessary and sufficient condition for a system to be “non-
redundant”.

Theorem 1. Let N be an RLC two-terminal network compris-
ing m ≥ 1 elements with parameters E = (E1, . . . , Em). ThenN
is generic if and only if there exists E0 = (E1,0, . . . , Em,0) ∈ Rm

>0
such that rank(D(E0)) = m + 1.

Proof. Assume there exists E0 ∈ Rm
>0 such that rank(D(E0)) =

m+1 and note that rank(h′(x0)) = m+1 for x0 = (E0, c) for any
c > 0. Let A be a square submatrix of h′(x0) consisting of rows
l1, . . . , lm+1 for which det(A) , 0. Let ĥ(x) be the restriction of
h(x) to the components l1, . . . , lm+1. Then, by the inverse func-
tion theorem [15, Theorem 9.24], ĥ(x) is a one-to-one mapping
from a neighbourhood of x0 into Rm+1

>0 , which means that h(x)
is a smooth one-to-one mapping from a neighbourhood of x0
into S. Hence dim(S) = m + 1 which means that N is generic.

Conversely, assume that dim(S) = m + 1. Then there ex-
ists x0 = (E1,0, . . . , Em,0, c0) ∈ Rm+1

>0 such that h(x) is a smooth
one-to-one mapping from a neighbourhood of x0 into S. Then
there exists a differentiable inverse w(y) from a neighbourhood
of y0 = h(x0) within S into a neighbourhood of x0. In particular
w(h(x)) = x in a neighbourhood of x0. Using the chain rule [15,
Theorem 9.15] w′(y0)h′(x0) = I, so rank(h′(x0)) = m+1. Writ-
ing x0 = (E0, c) then rank(D(E0)) = m+1, which completes the
proof.

In the next corollary, we provide an alternative necessary
and sufficient condition for genericity in terms of the matrix

H(E, s) =

 ∂ f
∂E1

∂ f
∂E2

· · ·
∂ f
∂Em

f
∂g
∂E1

∂g
∂E2

· · ·
∂g
∂Em

g

 . (5)

Corollary 1. If an RLC two-terminal network N contains ele-
ments with parameters E = (E1, . . . , Em) and has impedance
f (E, s)/g(E, s), then N is generic if and only if there exists
E0 = (E1,0, . . . , Em,0) ∈ Rm

>0 such that

x ∈ Rm+1 and H(E0, s)x = 0 ⇒ x = 0 . (6)

Proof. It can be easily verified that H(E0, s)x is a vector com-
prising two polynomials in s whose coefficients are given by the
entries in the vector D(E0)x, where D(E) is defined in (4). In
order for both polynomials in H(E0, s)x to be zero, each coeffi-
cient of each power of s has to be zero, from which we can con-
clude that H(E0, s)x = 0 if and only if D(E0)x = 0. By Theo-
rem 1, the networkN is generic if and only if the matrix D(E) in
(4) has full column rank for some E0 = (E1,0, . . . , Em,0) ∈ Rm

>0.
This is equivalent to

x ∈ Rm+1 and D(E0)x = 0 ⇒ x = 0 .

Hence N is generic if and only if (6) holds.

Corollary 2. LetN be a generic RLC network whose impedance
takes the form of (2). Then the number of resistors in N is less
than or equal to k + 1.

Proof. Let n be the number of resistors inN and m be the total
number of elements. Then in order that rank(D(E0)) = m + 1
it is necessary that 2k + 2 ≥ m + 1. Given that k ≤ m − n (the
number of reactive elements in N), the result follows.

Note that if rank(D(E0)) = m + 1 for some E0 ∈ Rm
>0,

then rank(D(E0)) = m + 1 for almost all E0 ∈ Rm
>0. More

specifically, the set of all E0 ∈ Rm
>0 such that rank(D(E0)) <

m + 1 is a subset of Rm
>0 of codimension greater than or equal

to one. This follows since rank(D(E0)) < m + 1 if and only if
det((D(E0))T D(E0)) = 0. But det((D(E))T D(E)) is a polyno-
mial in E1, . . . , Em, so it either vanishes identically or it van-
ishes on a subset of Rm

>0 of codimension greater than or equal
to one.

Similarly, it can be shown that if there exist E0 ∈ Rm
>0 such

that (6) holds, then (6) holds for almost all E0 ∈ Rm
>0.

4. Examples

The necessary and sufficient condition in Theorem 1, to-
gether with the necessary condition in Corollary 2, provides an
efficient way of verifying genericity of RLC networks which
does not rely on obtaining the realisability conditions of the net-
works. Throughout this section we will say that rank(D) = p,
where the general expression for D(E) is given in (4), if p =

maxE0∈Rm
>0

(rank(D(E0))).

Example 1. The network in Fig. 2 is a first trivial example of a
non-generic network. This can be verified through Corollary 2
or by considering that the network can be reduced to a network
consisting of a single resistor, which defines a realisability set
of dimension two.

1

Figure 2: A simple non-generic network.

Example 2. The so-called “Ladenheim catalogue” is the set of
all essentially distinct RLC networks with at most five elements
of which at most two are reactive [13] [14]. To obtain the set,
all basic graphs with at most five edges are listed and popu-
lated with the three types of components. A number of net-
works which contain a series or parallel connection of the same
type of component are then trivially simplified: it can be shown
in a similar way to Example 1 that such networks are all non-
generic. This initial enumeration leads to 148 networks, out of
which another 40 networks are eliminated which are capable of
being “reduced” to simpler networks. An example of one of
these 40 networks eliminated in the last step is shown in Fig. 3.
The impedance of this network is a biquadratic, with

f2 = C1C2(R1R2 + R1R3 + R2R3) , g2 = C1C2(R2 + R3) ,
f1 = C1(R1 + R3) + C2(R2 + R3) , g1 = C1 ,
f0 = 1 , g0 = 0 .

Since g0 = 0, it follows that D(E) contains one row that is iden-
tically zero. Therefore rank(D) ≤ 5 and from Theorem 1 the
network is non-generic. It can also be seen, through a Zobel

3



R1
C1

R3

R2
C2
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Figure 3: Non-generic network.

transformation (see [14]), that the network reduces to a generic
four-element network. The remaining 108 networks in the cat-
alogue have been shown to be generic in [14, Theorem 7.3] by
directly determining the dimension of the realisability set of the
networks. Using Theorem 1 it is possible to give an alternative
proof of this result. For this it is sufficient to verify that the ma-
trix D(E) in (4) has full rank for one network in each of the 24
subfamilies in the Ladenheim catalogue. By way of illustration
we prove here and in Example 3 the genericity of two networks
from the catalogue. The impedance of the network in Fig. 4(a)
(which has also been studied in [11]) is a biquadratic and it can
be easily computed that the determinant of the 6×6 matrix D(E)
is

−C1L1
(
C1R1R2(R1R2 + R2R3) + L1R3(R2 + R3)

)
×

(
C1R1R2(R2 + 2R3)(R1 + R3) − L1(R2 + R3)(2R1 + R3)

)
,

which is not identically zero, hence rank(D) = 6. Therefore,
the network is generic by Theorem 1 and defines a realisability
set S of dimension six.

C1 R1

L1

R2 R3

R1
C1

R2 L1

(a) (b)

1

Figure 4: Two generic networks (networks #95 and #97, respectively) from the
Ladenheim catalogue [14].

Example 3. The four-element network in Fig. 4(b) is another
generic network from the Ladenheim catalogue which realises a
biquadratic impedance. The determinant of the 5× 5 submatrix
obtained from D(E) by removing the last row is equal to

R2C1(R1R2C1 − L1) ,

which is not identically zero, hence rank(D) = 5. Therefore,
the network is generic by Theorem 1 and defines a realisability
set S of dimension five. Since all six impedance coefficients are
non-zero, this means that they must be interdependent. We can
in fact show (as also derived in [14]) that

( f2g0 + f0g2)( f2g0 + f0g2 − f1g1) + f0 f2g2
1 = 0 .

Example 4. Fig. 5 can be obtained by adding a resistor to the
generic network of Fig. 4(a). This network is no longer generic,
by Corollary 2. In fact, it can be computed that the impedance
is a biquadratic, so D(E) has 6 rows, hence rank(D) ≤ 6. This
network has been considered in [10], [19].

1

Figure 5: Non-generic network.

R2
C2

L1

R1

C1

1

Figure 6: Three-reactive five-element generic network.

1

Figure 7: Three-reactive five-element non-generic network.

Example 5. The impedance of the three-reactive five-element
network in Fig. 6 (which has been analysed in [11]) is a bicubic.
The determinant of the 6 × 6 submatrix obtained by removing
the last two rows of D(E) is equal to

R3
1L2

1C2
1C3

2(R1R2C1 − R2
2C2 − L1) ,

which is not identically zero, hence rank(D) = 6. Therefore,
the network is generic by Theorem 1 and defines a realisability
set of dimension six.

Example 6. The impedance of the three-reactive five-element
network in Fig. 7 is a biquadratic, with g0 = 0. This is an
example where the order of the impedance k = 2 is strictly
less than the number of reactive elements. In this case, D(E)
contains one row that is identically zero (as g0 = 0), hence
rank(D) ≤ 5 necessarily, and the network is non-generic by
Theorem 1.

Example 7. The seven-element network in Fig. 8 (see Fig. 3
in [7]) is another example where the order of the impedance
(k = 4) is strictly less than the number of reactive elements
in the network, as pointed out in [7]. This loss of order can be
seen from Kirchhoff’s tree theorem (see [16, Section 7.2]) since
there can be no spanning tree of the network which contains all
three capacitors. In this case it can be verified that rank(D) = 8.
Hence the network is generic and defines a realisability set of
dimension eight. Note that this means that a lower than ex-
pected order of the impedance need not imply that the network
is non-generic.
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1

Figure 8: Five-reactive element generic network from [7] of fourth order.

C3

L3

L1
C1

R1

L2

C2

R2

1

Figure 9: Bott-Duffin network for the realisation of a biquadratic.

N0 N 0

N

1

Figure 10: Two-terminal network N with a two-terminal subnetwork N ′.

Example 8. The network in Fig. 9 has the same structure as
the Bott-Duffin construction for the biquadratic minimum func-
tion Z(s) with Z( jω1) = jω1X1, where ω1 > 0 and X1 > 0
[3]. Assuming that all network elements can vary freely, it is
interesting to see whether the network is generic. The network
has eight elements and its impedance is of sixth order. It can
be computed that rank(D) = 9, hence the network is generic
and defines a realisability set of dimension nine. It can also be
verified that by adding a resistor in series or in parallel to the
network in Fig. 9 the resulting network is still generic (with a
realisability set of dimension ten).

5. Interconnection of generic networks

In this section we look at the genericity of interconnections
of networks, and prove: (i) the result that having a non-generic
subnetwork embedded within a network leads to non-genericity
of the overall network; and (ii) that any positive-real impedance
can be realised by a generic network.

Lemma 3. Consider an RLC two-terminal network N with
the structure shown in Fig. 10, in which the network N0 com-
prises m ≥ 1 elements with parameters Ê = (Ê1, . . . , Êm) and
the network N ′ comprises n ≥ 1 elements with parameters

Ē = (Ē1, . . . , Ēn), whereuponN comprises n + m elements with
parameters E = (Ê, Ē). If the driving-point impedance of N ′ is
f (Ē, s)/g(Ē, s), then the impedance of N takes the form

Z(E, s) =
u(Ê, s) f (Ē, s) + v(Ê, s)g(Ē, s)
w(Ê, s) f (Ē, s) + z(Ê, s)g(Ē, s)

, (7)

where u(Ê, s), v(Ê, s), w(Ê, s) and z(Ê, s) are polynomials in s
whose coefficients are polynomials in Ê1, . . . , Êm, while f (Ē, s)
and g(Ē, s) are polynomials in s whose coefficients are polyno-
mials in Ē1, . . . , Ēn.

Proof. Let G be the undirected graph with edges corresponding
to the network elements Ê1, . . . , Êm of N and one edge corre-
sponding to network N ′. Let G̃ be the graph obtained by con-
necting together the vertices corresponding to the driving-point
terminals in G. Denote by fG(E, s) the Laurent polynomial
given by the sum over all spanning trees in G of the product
of the admittances of all edges in each spanning tree, and simi-
larly for fG̃(E, s). Then, by Kirchhoff’s matrix tree theorem, the
impedance of N is equal to fG̃(E, s)/ fG(E, s). Given that the
admittance of one of the edges in G and G̃ is g(Ē, s)/ f (Ē, s), it
follows that the impedance of N takes the form (7).

Theorem 2. LetN andN ′ be as in Lemma 3. If the subnetwork
N ′ is non-generic then N is non-generic.

Proof. Let f (Ē, s), g(Ē, s), u(Ê, s), v(Ê, s), w(Ê, s) and z(Ê, s)
be as in Lemma 3. Then the impedance Z(E, s) = a(E, s)/b(E, s)
of N takes the form (7), and we can write(

a(E, s)
b(E, s)

)
= M(Ê, s)

(
f (Ē, s)
g(Ē, s)

)
, (8)

where

M(Ê, s) =

(
u(Ê, s) v(Ê, s)
w(Ê, s) z(Ê, s)

)
is a matrix of polynomials in s whose coefficients are polynomi-
als in Ê = (Ê1, . . . , Êm), while f (Ē, s) and g(Ē, s) are polynomi-
als in s whose coefficients are polynomials in Ē = (Ē1, . . . , Ēn).
By Corollary 1, the network N is generic if and only if there
exists E0 = (Ê0, Ē0) ∈ Rm+n

>0 such that

x ∈ Rm+n+1 and H(E0, s)x = 0 ⇒ x = 0 , (9)

where

H(E, s) =

 ∂a
∂Ê1

· · · ∂a
∂Êm

∂a
∂Ē1

· · · ∂a
∂Ēn

a
∂b
∂Ê1

· · · ∂b
∂Êm

∂b
∂Ē1

· · · ∂b
∂Ēn

b

 .
Since M(Ê, s) is independent of Ē, it follows from (8) that

H(E, s) =
(
∗

∣∣∣ M(Ê, s)H̄(Ē, s)
)
,

where the first block of the matrix corresponds to the partial
derivatives of a(E, s) and b(E, s) with respect to Ê1, . . . , Êm, and

H̄(Ē, s) =

 ∂ f
∂Ē1

· · ·
∂ f
∂Ēn

f
∂g
∂Ē1

· · ·
∂g
∂Ēn

g

 .
5



Since N ′ is non-generic, given any Ē0 ∈ Rn
>0 there exists 0 ,

y ∈ Rn+1 such that H(Ē0, s)y = 0. It follows that, for any given
E0 ∈ Rm+n

>0 , there exists 0 , y ∈ Rn+1 such that

H(E0, s)
(
0
y

)
=

(
∗

∣∣∣ M(Ê0, s)H̄(Ē0, s)
) (0

y

)
= 0 ,

which contradicts (9). Therefore N is non-generic.

Corollary 3. A necessary condition for the series or parallel
connection of two networksN1 andN2 to be generic is thatN1
and N2 are generic.

Proof. This follows from Theorem 2.

It is worth noting that the necessary condition in Corollary 3
is not sufficient for a series connection of two networks to be
generic. The networks in Figs. 2 and 3 are simple examples of
non-generic networks consisting of a series connection of two
generic networks.

We now prove three lemmas that are needed in the proof of
Theorem 3.

Lemma 4. Consider an RLC two-terminal networkN with the
structure shown in Fig. 11, where the subnetworkN1 is generic
and does not have an impedance zero at the origin. Then N is
generic.

Proof. Denote the element parameters inN1 by Ê = (Ê1, . . . , Êm),
and let the impedance of N1 be f (Ê, s)/g(Ê, s). Then N com-
prises elements with parameters E = (R, L, Ê), and the impedance
of N takes the form Z(E, s) = a(E, s)/b(E, s) where

a(E, s) = R( f (Ê, s) + sLg(Ê, s)) + sL f (Ê, s), and

b(E, s) = f (Ê, s) + sLg(Ê, s) .

SinceN1 is generic, it follows from Corollary 1 that there exists
Ê0 = (Ê1,0, . . . , Êm,0) ∈ Rm

>0 such that

y ∈ Rm+1 and Ĥ(Ê0, s)y = 0 ⇒ y = 0 , (10)

where

Ĥ(Ê, s) =

 ∂ f
∂Ê1

· · ·
∂ f
∂Êm

f
∂g
∂Ê1

· · ·
∂g
∂Êm

g

 . (11)

To prove that N is generic we need to show that there exists
E0 = (R0, L0, Ê0) ∈ Rm+2

>0 such that

x ∈ Rm+3 and H(E0, s)x = 0 ⇒ x = 0 , (12)

where

H(E, s) =

 ∂a
∂R

∂a
∂L

∂a
∂Ê1

· · · ∂a
∂Êm

a
∂b
∂R

∂b
∂L

∂b
∂Ê1

· · · ∂b
∂Êm

b

 .
To show this, we note that since a(E, s) and b(E, s) depend on Ê
through f (Ê, s) and g(Ê, s), by the chain rule (12) is equivalent
to

x ∈ Rm+3 and M(E0, s)
(

I2 0
0 Ĥ(Ê0, s)

)
x = 0 ⇒ x = 0 (13)

R

L

N1

1

Figure 11: Two-terminal network with a generic subnetwork N1.

R

L

C N1

1

Figure 12: Two-terminal network with a generic subnetwork N1.

where I2 is the two-by-two identity matrix, and M(E, s) takes
the form(

sLg(Ê, s) + f (Ê, s) (Rg(Ê, s) + f (Ê, s))s sL + R sRL
0 sg(Ê, s) 1 sL

)
.

Since (10) holds, it then suffices to show that, for any given real
scalars u, v and polynomials w(s), z(s) of degree less than or
equal to n, then

u(sLg(Ê0, s) + f (Ê0, s)) + v(Rg(Ê0, s) + f (Ê0, s))s
+ w(s)(sL + R) + sRLz(s) = 0 and (14)

svg(Ê0, s) + w(s) + sLz(s) = 0 (15)

imply that u = v = w(s) = z(s) = 0. Subtracting (15) multiplied
by R from (14) we obtain

u(sLg(Ê0, s) + f (Ê0, s)) + vs f (Ê0, s) + sLw(s) = 0 . (16)

We let s = 0 in (15) and (16) to conclude that w(0)=0 and u=0
(since f (Ê0, 0) , 0). Equation (16) now reduces to v f (Ê0, s) +

Lw(s) = 0, and again by setting s = 0 we can conclude that
v = 0. Finally, w(s) = z(s) = 0 easily follows from (15) and
(16). We have thus shown that (13) holds, and it follows thatN
is generic.

Lemma 5. Consider an RLC two-terminal networkN with the
structure shown in Fig. 12, where the subnetworkN1 is generic.
Then N is generic.

Proof. Denote the element parameters inN1 by Ê = (Ê1, . . . , Êm),
and let the impedance of N1 be f (Ê, s)/g(Ê, s). Then N com-
prises elements with parameters E = (R, L,C, Ê), and the impedance
of N takes the form Z(E, s) = a(E, s)/b(E, s) where

a(E, s) = R(Lsg(Ê, s) + (1 + αs2) f (Ê, s)), and

b(E, s) = Lsg(Ê, s) + (1 + αs2)( f (Ê, s) + Rg(Ê, s)),

where α = LC. By Corollary 1,N is generic if and only if there
exists E0 = (R0, L0,C0, Ê0) such that

x ∈ Rm+4 and H(E0, s)x = 0 ⇒ x = 0 , (17)
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where

H(E, s) =

 ∂a
∂R

∂a
∂L

∂a
∂C

∂a
∂Ê1

· · · ∂a
∂Êm

a
∂b
∂R

∂b
∂L

∂b
∂C

∂b
∂Ê1

· · · ∂b
∂Êm

b

 .
We let

U =

(
1 0
−1 R

)
, V =

1 0 0
0 1 0
0 C L

 , and W =

(
V−1 0

0 Im+1

)
,

where Im+1 is the m + 1 by m + 1 identity matrix, and we note
that F(E, s) = UH(E, s)W where

F(E, s) =

 ∂a
∂R

∂a
∂L

∂a
∂α

∂a
∂Ê1

· · · ∂a
∂Êm

a
∂c
∂R − b ∂c

∂L
∂c
∂α

∂c
∂Ê1

· · · ∂c
∂Êm

c

 ,
and where

c(E, s) = Rb(E, s) − a(E, s) = R2(1 + αs2)g(Ê, s).

It follows that N is generic if and only if there exists E0 =

(R0, L0,C0, Ê0) such that

x ∈ Rm+4 and F(E0, s)x = 0 ⇒ x = 0 . (18)

SinceN1 is generic, then there exists Ê0 = (Ê1,0, . . . , Êm,0) ∈
Rm
>0 such that (10) holds, where Ĥ(Ê, s) is as in (11). Similar to

Lemma 4, by applying the chain rule we find that

F(E, s) = M(E, s)
(

I3 0
0 Ĥ(Ê, s)

)
,

where M(E, s) takes the form(
a(E, s)/R Rsg(Ê, s) Rs2 f (Ê, s) R(1+αs2) RLs
−b(E, s) 0 R2s2g(Ê, s) 0 R2(1+αs2)

)
.

It therefore suffices to show that, for any given real scalars u, v,
w and polynomials y(s), z(s) of degree less than or equal to n,
then there exists R0, L0, α0 ∈ R such that

(L0sg(Ê0, s) + (1 + α0s2) f (Ê0, s))u + R0sg(Ê0, s)v

+ R0s2 f (Ê0, s)w + R0(1 + α0s2)y(s) + R0L0sz(s) = 0, and
(19)

− (L0sg(Ê0, s) + (1 + α0s2)( f (Ê0, s) + R0g(Ê0, s)))u

+ R2
0s2g(Ê0, s)w + R2

0(1 + α0s2)z(s) = 0, (20)

imply that u = v = w = y(s) = z(s) = 0. Since g(Ê0, s) cannot
vanish identically on the imaginary axis, then we can pick α0 >
0 such that g(Ê0, j/

√
α0) , 0. Substituting s = j/

√
α0 in (20)

we obtain −g(Ê0, j/
√
α0)(L0 ju + R2

0w/
√
α0) = 0, the only real

solution of which is u = w = 0. From (20) it now follows that
z(s) = 0. Equation (19) now reduces to

R0sg(Ê0, s)v + R0(1 + α0s2)y(s) = 0

from which we conclude, by substituting s = j/
√
α0, that v = 0.

From the same equation we then conclude that y(s) = 0. We
have therefore shown that (18) holds, hence N is generic.

R

C

N1

L

N d
1

| {z }
f(s)/g(s)

| {z }
f̂(s)/ĝ(s)

1

Figure 13: Two-terminal network with generic subnetworks N1 and Nd
1 .

Our final lemma show that the network of Fig. 13 is generic
if N1 is generic and has no impedance pole at the origin.

Lemma 6. Let N be an RLC two-terminal network with the
structure shown in Fig. 13, whereNd

1 denotes the network dual
ofN1. LetN1 comprise elements with parameters Ẽ = (Ẽ1, . . . Ẽm),
and let the impedance of N1 take the form q(Ẽ, s)/d(Ẽ, s). If
there exists Ẽ0 ∈ Rm

>0 such that (i) deg(q(Ẽ0, s)) ≥ deg(d(Ẽ0, s));
(ii) d(Ẽ0, 0) , 0; (iii) d(Ẽ0, s) and q(Ẽ0, s) are coprime polyno-
mials; and (iv) x ∈ Rm+1 and H̃(Ẽ0, s)x = 0⇒ x = 0, where

H̃(Ẽ, s) =

 ∂q
∂Ẽ1

· · ·
∂q
∂Ẽm

q
∂d
∂Ẽ1

· · · ∂d
∂Ẽm

d

 ,
then N is generic.

Proof. Let Ē = (Ē1, . . . , Ēm) denote the parameters of the ele-
ments in Nd

1 . Since the network dual of Nd
1 is N1, then there

exists Ē0 ∈ Rm
>0 such that the impedance of Nd

1 takes the form
q̄(Ē, s)/d̄(Ē, s) where q̄(Ē0, s) and d̄(Ē0, s) are coprime and
q̄(Ē0, s)/d̄(Ē0, s) = d(Ẽ0, s)/q(Ẽ0, s). It is then easily shown
that

y ∈ Rm+1 and H̄(Ē0, s)y = 0 ⇒ y = 0,

where

H̄(Ē, s) =

 ∂q̄
∂Ē1

· · ·
∂q̄
∂Ēm

q̄
∂d̄
∂Ē1

· · · ∂d̄
∂Ēm

d̄

 .
Next, let Ĕ = (R,C, Ẽ), Ê = (L, Ē) and E = (R,C, L, Ẽ, Ē),

and note that the impedance ofN takes the form a(E, s)/b(E, s)
where

a(E, s) = f (Ĕ, s)ĝ(Ê, s) + f̂ (Ê, s)g(Ĕ, s)

b(E, s) = g(Ĕ, s)ĝ(Ê, s),

where f (Ĕ, s)/g(Ĕ, s) and f̂ (Ê, s)/ĝ(Ê, s) are the impedances of
the two subnetworks indicated in Fig. 13. In particular,

f (Ĕ, s) = d(Ẽ, s)R + q(Ẽ, s)(1 + sRC),

g(Ĕ, s) = d(Ẽ, s) + sCq(Ẽ, s),

f̂ (Ê, s) = sLq̄(Ē, s), and

ĝ(Ê, s) = q̄(Ē, s) + sLd̄(Ē, s).

Now, let Ĕ0 = (R0,C0, Ẽ0) and Ê0 = (L0, Ē0) where R0, L0,C0 ∈

R and L0 , C0. Since d(Ẽ0, 0) , 0; q(Ẽ0, s), d(Ẽ0, s) are co-
prime polynomials; and q(Ẽ0, s)/d(Ẽ0, s) = d̄(Ē0, s)/q̄(Ē0, s),
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then g(Ĕ0, s) and ĝ(Ê0, s) are also coprime polynomials. It is
also easily verified that f̂ (Ê0, 0) = 0, ĝ(Ê0, 0) , 0, f (Ĕ0, 0) , 0,
and g(Ĕ0, 0) , 0. Furthermore, denoting deg(g(Ĕ0, s)) by n,
then deg(ĝ(Ê0, s)) = n, deg( f (Ĕ0, s)) = n, and deg( f̂ (Ê0, s))≤n.

We will now show that,

x ∈ R2m+4 and H(E0, s)x = 0 ⇒ x = 0 , (21)

where E0 = (R0,C0, L0, Ẽ0, Ē0) and

H(E, s) =

 ∂a
∂R

∂a
∂C

∂a
∂Ẽ1
· · · ∂a

∂Ẽm

∂a
∂L

∂a
∂Ē1
· · · ∂a

∂Ēm
a

∂b
∂R

∂b
∂C

∂b
∂Ẽ1
· · · ∂b

∂Ẽm

∂b
∂L

∂b
∂Ē1
· · · ∂b

∂Ēm
b

 .
(22)

By the chain rule, H(E0, s) may be expressed as

H(E0, s) = M(E0, s)
(

H̆(Ĕ0, s) 0
0 Ĥ(Ê0, s)

)
︸                         ︷︷                         ︸

N

, (23)

where

H̆(Ĕ, s) =

 ∂ f
∂R

∂ f
∂C

∂ f
∂Ẽ1

· · ·
∂ f
∂Ẽm

∂g
∂R

∂g
∂C

∂g
∂Ẽ1

· · ·
∂g
∂Ẽm

 ,
Ĥ(Ê, s) =

 ∂ f̂
∂L

∂ f̂
∂Ē1

· · ·
∂ f̂
∂Ēm

f̂
∂ĝ
∂L

∂ĝ
∂Ē1

· · ·
∂ĝ
∂Ēm

ĝ

 , and

M(E0, s) =

(
ĝ(Ê0, s) f̂ (Ê0, s) g(Ĕ0, s) f (Ĕ0, s)

0 ĝ(Ê0, s) 0 g(Ĕ0, s)

)
. (24)

We therefore need to show that

x ∈ R2m+4 and M(E0, s)Nx = 0 ⇒ x = 0 . (25)

Consider a fixed but arbitrary x ∈ R2m+4, let y = Nx, and note
that y takes the form (u(s), v(s),w(s), z(s)), where u(s), v(s),
w(s) and z(s) are polynomials of degree less than or equal to
n and w(0) = 0 (since f̂ (Ê, 0) = 0). We will first show that if
M(E0, s)y = 0 then y = α( f (Ĕ0, s), g(Ĕ0, s),− f̂ (Ê0, s),−ĝ(Ê0, s))
for some real constant α. The matrix equation M(E0, s)y = 0
yields the following two polynomial equations:

ĝ(Ê0, s)u(s) + f̂ (Ê0, s)v(s) + g(Ĕ0, s)w(s) + f (Ĕ0, s)z(s) = 0 ,
(26)

ĝ(Ê0, s)v(s) + g(Ĕ0, s)z(s) = 0 . (27)

Equation (27) can be written as z(s)/v(s) = −ĝ(Ê0, s)/g(Ĕ0, s),
from which we conclude that v(s) = αg(Ĕ0, s) for some real
constant α, since g(Ĕ0, s) and ĝ(Ê0, s) are coprime polynomi-
als with deg(g(Ĕ0, s)) = deg(ĝ(Ê0, s)) = n, while deg(v(s)),
deg(z(s)) ≤ n. From (27) it then follows that z(s) = −αĝ(Ê0, s).
Equation (26) now reduces to

ĝ(Ê0, s)(u(s)−α f (Ĕ0, s))+g(Ĕ0, s)(w(s)+α f̂ (Ê0, s)) = 0 . (28)

We recall that w(0) = f̂ (Ê0, 0) = 0 and ĝ(Ê0, 0) , 0. Therefore,
for s = 0, (28) yields ĝ(Ê0, 0)(u(0) − α f (Ĕ0, 0)) = 0, from
which we conclude that u(s) − α f (Ĕ0, s) is divisible by s. But
by writing (28) as

w(s) + α f̂ (Ê0, s)
u(s) − α f (Ĕ0, s)

= −
ĝ(Ê0, s)
g(Ĕ0, s)

we can conclude that u(s)−α f (Ĕ0, s) is also divisible by g(Ĕ0, s),
since g(Ĕ0, s) and ĝ(Ê0, s) are coprime polynomials and deg(u(s)−
α f (Ĕ0, s)) ≤ n. Therefore u(s)−α f (Ĕ0, s) is divisible by sg(Ĕ0, s)
(which has degree n + 1), from which it follows that u(s) =

α f (Ĕ0, s) necessarily. Equation (26) finally gives w(s) = −α f̂ (Ê0, s).
At this point we have shown that

x ∈ R2m+4 and M(E0, s)Nx = 0 ⇒ Nx = α


f (Ĕ0, s)
g(Ĕ0, s)
− f̂ (Ê0, s)
−ĝ(Ê0, s)

 . (29)

If we partition x into two vectors x1 and x2 each of dimension
m + 2, the right-hand side of (29) may be written as

(
H̆(Ĕ0, s) 0

0 Ĥ(Ê0, s)

) (
x1
x2

)
− α


f (Ĕ0, s)
g(Ĕ0, s)
− f̂ (Ê0, s)
−ĝ(Ê0, s)

 = 0 ,

which is equivalent to(
H̆(Ĕ0, s)

f (Ĕ0, s)
g(Ĕ0, s)

) (
x1
−α

)
= 0 , (30)(

Ĥ(Ê0, s)
− f̂ (Ê0, s)
−ĝ(Ê0, s)

) (
x2
−α

)
= 0 . (31)

Since (i) x ∈ Rm+1 and H̃(Ẽ0, s)x = 0 ⇒ x = 0, and (ii) y ∈
Rm+1 and H̄(Ē0, s)y = 0 ⇒ y = 0, then it follows from the
proof of Lemma 4 that

t1 ∈ Rm+3 and
(
H̆(Ĕ0, s)

f (Ĕ0, s)
g(Ĕ0, s)

)
t1 = 0 ⇒ t1 = 0 ,

and t2 ∈ Rm+2 and Ĥ(Ê0, s)t2 = 0 ⇒ t2 = 0 .

Therefore we can conclude from (30) that x1 = 0 and α = 0, and
from (31) that x2 = 0. Therefore (25) holds and, by Corollary 1,
the network N is generic.

Lemma 6 may be generalised to the series connection of two
RLC two-terminal networksN1 andN2. Namely, under the fol-
lowing assumptions we may conclude that the series connection
of N1 and N2 is generic:

• The two networks are generic;

• One of the two networks has an impedance zero at the
origin, and the other does not;

• The two networks do not have any coincident impedance
poles for almost all element values.

Finally in this paper, we provide a proof of the genericity
of the Bott-Duffin networks. We note that, if the impedance
function is a biquadratic, then the Bott-Duffin method leads to
a generic network with the structure of Fig. 9, as already dis-
cussed in Example 8. However, it remains to consider the cases
for which the impedance is not biquadratic.

Theorem 3. Any positive-real impedance can be realised by a
generic RLC network.
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Proof. The Bott-Duffin theorem states that any positive-real im-
pedance function can be realised by an RLC network [3]. It
therefore suffices to show that each of the steps involved in the
construction of such a network N preserves genericity (see [5]
for a textbook explanation of the Bott-Duffin procedure).

To obtain a networkN to realise an arbitrary given positive-
real function Z(s), the steps in the Bott-Duffin procedure (cou-
pled with the so-called Foster preamble) are as follows:

1. Subtract any imaginary axis impedance poles (resulting
in an impedance of lower order).

2. Subtract a constant equal to the smallest value of Re(Z( jω))
for ω ∈ R ∪ ∞, resulting in a network whose impedance
Ẑ(s) has no imaginary axis impedance poles and satisfies
one of the following properties:

(a) Ẑ(s) has an admittance pole at the origin or at infin-
ity;

(b) Ẑ(s) has an admittance pole elsewhere on the imag-
inary axis;

(c) Ẑ(s) is a minimum function.
In each case, the impedance can then be reduced to one
of lower order.

The network realisations corresponding to cases 1, 2a, 2b and
2c each take the form of one of the networks described in Lem-
mas 4–6, or can be obtained from such networks through a com-
bination of frequency inversion and duality transformations (in
certain cases it is necessary to replace the resistor by a short
or open circuit). That genericity is preserved in each case can
be shown using Lemmas 4–6 and minor modifications thereof.
The Bott-Duffin procedure continues inductively until the re-
sulting impedance has order zero. This final impedance can be
realised by a single resistor, which itself is generic. This estab-
lishes the genericity of all of the other networks in the inductive
procedure, whereupon we conclude that N is generic.
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