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Formation of the three primary germ layers during gastrulation is an essential step in              
the establishment of the vertebrate body plan and is associated with major            
transcriptional changes1–5. Global epigenetic reprogramming accompanies these       
changes6–8, but the role of the epigenome in regulating early cell fate choice remains              
unresolved, and the coordination between different molecular layers is unclear. Here           
we describe the first single cell triple-omics map of chromatin accessibility, DNA            
methylation and RNA expression during the onset of gastrulation in mouse embryos.            
The initial exit from pluripotency coincides with the establishment of a global            
repressive epigenetic landscape, followed by the emergence of lineage-specific         
epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and          
endoderm undergo widespread coordinated epigenetic rearrangements at enhancer        
marks, driven by TET-mediated demethylation, and a concomitant increase of          
accessibility. In striking contrast, the methylation and accessibility landscape of          
ectodermal cells is already established in the early epiblast. Hence, regulatory           
elements associated with each germ layer are either epigenetically primed or           
remodelled prior to cell fate decisions, providing the molecular logic for a hierarchical             
emergence of the primary germ layers. 

 
Recent technological advances have enabled the profiling of multiple molecular layers at            
single cell resolution9–13, providing novel opportunities to study the relationship between the            
transcriptome and epigenome during cell fate decisions. We applied scNMT-seq (single-cell           
Nucleosome, Methylome and Transcriptome sequencing12) to profile 1,105 single cells          
isolated from mouse embryos at four developmental stages (Embryonic Day (E) 4.5, E5.5,             
E6.5 and E7.5) which comprise the exit from pluripotency and primary germ layer             
specification (Figure 1a-d, Extended Data Fig. 1). Cells were assigned to a specific lineage              
by mapping their RNA expression profiles to a comprehensive single-cell atlas4 from the             
same stages, when available, or using marker genes (Extended Data Fig. 2). By performing              
dimensionality reduction we show that all three molecular layers contain sufficient           
information to separate cells by stage (Figure 1b,c,d) and lineage identity (Extended Data             
Fig. 2,3) 
 

Epigenome dynamics on pluripotency exit 

We characterised the changes in DNA methylation and chromatin accessibility during each            
stage transition. Globally, methylation levels rise from ~25% to ~75% in embryonic tissues             
and to ~50% in extra-embryonic tissues, mainly driven by a de novo methylation wave from               
E4.5 to E5.5 that preferentially targets CpG-poor genomic loci6,8,14 (Figure 1e, Extended            
Data Fig. 3). In contrast, we observed a more gradual decline in global chromatin              
accessibility from ~38% at E4.5 to ~30% at E7.5 (Figure 1f), with no differences between               
embryonic and extraembryonic tissues (Extended Data Fig. 3). To relate epigenetic           
changes to the transcriptional dynamics across stages, we calculated, for each gene and             
across all embryonic cells, the correlation between its RNA expression and the            
corresponding DNA methylation or chromatin accessibility levels at its promoter. Out of            
5,000 genes tested, we identified 125 genes whose expression shows significant correlation            
with promoter DNA methylation and 52 that show a significant correlation with chromatin             
accessibility (Figure 1g, Extended Data Fig. 4, Table S1-2). These loci largely comprise             
early pluripotency and germ cell markers, such as Dppa4, Rex1, Tex19.1 and Pou3f1             
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(Figure 1g-h, Extended Data Fig. 4), which are repressed coinciding with the global             
increase in methylation and decrease in accessibility. In addition, this analysis identified            
novel genes, including Trap1a and Zfp981 that may have yet unknown roles in development.              
Notably, only 39 and 9 genes found to be upregulated after E4.5 show a significant               
correlation between RNA expression and promoter methylation or accessibility, respectively          
(Extended Data Fig. 4). This suggests that the upregulation of these genes is likely              
controlled by other regulatory elements. 

Characterising germ layer epigenomes 
To understand the relationships between all three molecular layers during germ layer            
commitment we next employed Multi-Omics Factor Analysis (MOFA)15 to cells collected at            
E7.5. MOFA performs unsupervised dimensionality reduction simultaneously across multiple         
data modalities, thereby capturing the global sources of cell-to-cell variability via a small             
number of inferred factors. Importantly, the model leverages multi-modal measurements          
from the same cells, thereby detecting coordinated changes between the different data            
modalities.  
As input to the model we used the RNA-seq data quantified over protein-coding genes and               
the DNA methylation and chromatin accessibility data quantified over putative regulatory           
elements. This includes promoters and germ-layer specific ChIP-seq peaks for distal           
H3K27ac (enhancers) and H3K4me3 (transcription start sites) (Extended Data Fig. 5).           
MOFA identified 6 factors with the first two (sorted by variance explained) capturing the              
emergence of the three germ layers (Figure 2a,b). Notably, MOFA links the variation at the               
gene expression level to concerted methylation and accessibility changes at lineage-specific           
enhancer marks. In contrast, epigenetic changes at promoters or at H3K4me3-marked           
regions show much weaker associations with germ layer formation (Figure 2a-c, Extended            
Data Fig. 6, Table S3-S4). This supports other studies that identified distal enhancers as              
lineage-driving regulatory regions8,17–19. Inspection of gene-enhancer associations identified        
enhancers linked to key germ layer markers including Lefty2, Mesp2 (mesoderm), Foxa2,            
Bmp2 (endoderm), and Blc11a, Sp8 (ectoderm) (Figure 2c, Extended Data Fig. 7).            
Intriguingly, ectoderm-specific enhancers display fewer associations than their meso- and          
endoderm counterparts, a finding that is explored further below. 
The four remaining factors correspond to additional transcriptional and epigenetic signatures           
related to anterior-posterior axial patterning (Factor 3), notochord formation (Factor 4),           
mesoderm patterning (Factor 5) and cell cycle (Factor 6) (Extended Data Fig. 8). 
 
Finally, we sought to identify transcription factors that could drive or respond to epigenetic              
changes in germ layer commitment. Integrating differential expression information with motif           
enrichment at differentially accessible loci revealed that lineage-specific enhancers were          
enriched for binding sites associated with key developmental transcription factors, including           
POU3F1, SOX2, SP8 for ectoderm; SOX17, HNF1B, FOXA2 for endoderm; and GATA4,            
HAND1, TWIST1 for mesoderm (Figure 2d).  

Time resolution of enhancer epigenome 
We next asked how the epigenomic patterns associated with germ-layer specification arise            
during development. DNA methylation levels in endoderm and mesoderm-defining         
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enhancers follow the genome-wide dynamics, increasing from an average of 25% to 80% in              
all cell types (Figure 3 and Extended Data Fig. 9). Upon lineage specification, they undergo               
concerted demethylation to ~50% in a cell type specific manner. The opposite pattern is              
observed for chromatin accessibility; accessibility of meso- and endoderm-defining         
enhancers initially decreases from ~40% to ~30% (following the genome-wide dynamics)           
before becoming more accessible (~45%) upon lineage specification. The general dynamics           
of demethylation and chromatin opening of enhancers during embryogenesis seem thus to            
be conserved in zebrafish, Xenopus, and mouse19. Reassuringly, when quantifying the           
H3K27ac levels of lineage-defining enhancers in more differentiated tissues (E10.5 midbrain,           
E12.5 intestine and E10.5 heart)20,21, we observe that a substantial number of enhancers             
remain marked by H3K27ac (Extended Data Fig. 5). This indicates that the enhancers             
established at E7.5 are, to a significant extent, maintained later in development. 
In striking contrast to the mesoderm and endoderm enhancers, the ectoderm enhancers are             
open and demethylated as early as in the E4.5 epiblast (Figure 3 and Extended Data Fig.                
9). Only in cells committed to mesendoderm fate do the ectoderm enhancers become             
partially repressed. Consistently, when measuring the accessibility dynamics at sites          
containing sequence motifs for ectoderm-defining TFs (SOX2, SP8), we find that these            
motifs are already accessible in the epiblast and lose accessibility specifically upon            
mesendoderm commitment. Conversely, motifs associated with endoderm and        
mesoderm-defining TFs only become accessible in their respective lineages at E7.5           
(Extended Data Fig. 9). 
 
These observations can be explained by either priming of an ectodermal signature in the              
epiblast or the maintenance of a pluripotency signature in the ectoderm. To investigate this,              
we overlapped the E7.5 enhancer annotations with published H3K27ac ChIP-seq data from            
Embryonic Stem Cells (ESCs) and E10.5 midbrain21,22. We observe that the E7.5 ectoderm             
enhancers display an almost exclusive mixture of pluripotent and neural signatures with            
notably different DNA methylation and chromatin accessibility dynamics (Extended Data          
Fig. 10). Pluripotency enhancers show an increase in methylation and a decrease in             
accessibility over time, suggesting a repression of these enhancers with similar dynamics to             
promoters of pluripotency genes (Figure 1g-h). In contrast, neuroectoderm enhancers          
remain hypomethylated and accessible from E4.5 (Extended Data Fig. 10). 
Lastly, to infer temporal dependencies of enhancer activation, we used the RNA expression             
profiles to order cells across two trajectories, corresponding to mesoderm and endoderm            
commitment (Extended Data Fig. 11). By plotting the average DNA methylation and            
chromatin accessibility for each class of lineage-defining enhancers we find that the            
methylation gain (and accessibility loss) of ectoderm enhancers precedes the demethylation           
(and accessibility gain) of mesoderm and endoderm enhancers. In both cases, changes in             
methylation and accessibility co-occur, suggesting tight co-regulation of the two epigenetic           
layers.  

TET enzymes drive enhancer demethylation 
TET methylcytosine dioxygenase enzymes have been implicated in enhancer         
demethylation23,24, and loss-of-function experiments suggest that TET enzymes are vital for           
gastrulation25,26. To test whether TET enzymes drive lineage-specific demethylation, we          
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differentiated both wild type (WT), and ESCs that were deficient for all three TET enzymes               
(Tet TKO) into embryoid bodies (EBs) and subjected the cells to scNMT-seq. 
Mapping the RNA expression profiles to the in vivo gastrulation atlas shows that WT EBs               
recapitulate the transition from a pluripotent epiblast at day 2 of differentiation to the primitive               
streak between days 4 and 5 (Figure 4a-b). At days 6 and 7 we observe the emergence of                  
mature mesoderm structures including hematopoietic cell types (Figure 4a-b and Extended           
Data Fig. 12). Expression of marker genes is restricted to the expected lineage and              
differential expression between lineages agrees with the in vivo results (Extended Data Fig.             
12). Moreover, the global dynamics of DNA methylation and chromatin accessibility in WT             
EBs substantially mirror the in vivo data (Extended Data Fig. 12). 
 
Comparison of WT with Tet TKO differentiation in the epiblast-like cells at day 2 revealed               
higher DNA methylation in ectoderm enhancers in the Tet TKO cells, but no differences in               
mesoderm or endoderm enhancers (Figure 4c). Reassuringly, re-analysis of methylation          
measurements from Tet TKO embryos confirms that the same pattern is observed in vivo25              
(Extended Data Fig. 12). Impaired demethylation is also associated with differences in            
differentiation timing, with Tet TKO cells showing an increased proportion of early            
mesendoderm differentiation at day 4 to 5 (Figure 4a-b). However, at day 6 to 7 Tet TKO                 
cells fail to properly demethylate lineage-specific enhancers and do not differentiate into            
mature mesodermal cell types (Figure 4c).  
 
These observations indicate that demethylation of lineage-defining enhancers is at least           
partially driven by TET proteins. Although enhancer demethylation does not seem to be             
required for early mesoderm commitment, the lack of hematopoietic cells in the Tet TKO              
cells suggests demethylation may be important for subsequent lineage progression.          
Consistently, Tet TKO embryos are able to initiate gastrulation, but by E8.5 they display              
defects in mesoderm-derived cell types, including heart or somites25. 

Discussion 
Our results show that pluripotent epiblast cells are epigenetically primed for an ectoderm fate              
as early as E4.5. This finding supports the existence of a ‘default’ path in the Waddington                
landscape, providing a potential mechanism for the phenomenon of ‘default’ differentiation of            
neurectodermal tissue from ESCs27,28. In contrast, endoderm and mesoderm are actively           
diverted from the default path by demethylation and chromatin opening at the corresponding             
enhancer elements17,24,25. Hence, the germ layer epigenome is defined during gastrulation by            
a hierarchical, or asymmetric, epigenetic model (Figure 3a).  
More generally, our discovery has important implications for the role of the epigenome in              
defining lineage commitment. We speculate that asymmetric epigenetic priming, where early           
progenitors are epigenetically primed for a default cell type, may be a more general feature               
of lineage commitment in vivo. In support of this hypothesis, two recent studies identified              
default pathways in foregut specification and osteogenesis29,30. Future studies that use           
multi-omics approaches to dissect cell populations have the potential to transform our            
understanding of cell fate decisions, with important implications for stem cell biology. 
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Figure legends 
 
Fig. 1 | Single cell triple-omics profiling of mouse gastrulation. a,  Schematic of the 
developing mouse embryo, with stages and lineages considered in this study labeled. b,  
Dimensionality reduction of RNA expression data using UMAP. Cells are coloured by stage. 
Included are 1,061 cells from 28 embryos sequenced using scNMT-seq and 1,419 cells from 
26 embryos sequenced using scRNA-seq. (c,d) Dimensionality reduction of c,  DNA 
methylation data and d, chromatin accessibility data from scNMT-seq using Factor analysis 
(Methods). Cells are coloured by stage. Included are 986 cells for DNA methylation data and 
864 cells for chromatin accessibility data. e-f,  Heatmap of e, DNA methylation levels (%) 
and f,  chromatin accessibility levels (%) per stage and genomic context. g, Scatter plot of 
Pearson correlation coefficients of promoter methylation versus RNA expression (x-axis), 
and promoter accessibility versus RNA expression (y-axis). Each dot corresponds to one 
gene (n=4927). Black dots depict significant associations for both correlation types (n=39, 
FDR<10%). Examples of early pluripotency and germ cell markers among the significant hits 
are labeled. h, Illustrative example of epigenetic repression of Dppa4. Box and violin plots 
show the distribution of RNA expression (log normalised counts, green), promoter 
methylation (%, red) and accessibility (%, blue) per stage. Box plots show median levels and 
the first and third quartile, whiskers show 1.5x the interquartile range. Each dot corresponds 
to one cell. 
 
 
Fig. 2 | Multi-omics Factor Analysis reveals coordinated epigenetic and transcriptomic 
variation at enhancer elements during germ layer commitment. a,  Percentage of 
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variance explained (R2) by each MOFA factor (rows) across data modalities (columns). b, 
Scatter plot of MOFA Factor 1 (x-axis) and MOFA Factor 2 (y-axis). Cells are coloured 
according to their lineage assignment (n=840). c,  Scatter plots showing differential DNA 
methylation (%, x-axis) and chromatin accessibility (%, y-axis) at lineage-specific enhancers 
at E7.5. Comparisons are ectoderm vs non-ectoderm cells (left), endoderm vs 
non-endoderm cells (middle) and mesoderm vs non-mesoderm cells (right). Black dots 
depict gene-enhancer pairs with significant changes in RNA expression and methylation or 
accessibility (Pearson’s chi-squared test, FDR<10%). d,  Transcription Factor (TF) motif 
enrichment at lineage-defining enhancers. Shown is motif enrichment (Fisher’s exact test, 
-log10 q-value, y-axis) versus differential RNA expression (log fold change, x-axis) of the 
corresponding TF. The analysis is performed separately for ectoderm- (left), endoderm- 
(middle) and mesoderm- (right) defining enhancers. TFs with significant motif enrichment 
(FDR<1%) and differential RNA expression (edgeR quasi-likelihood test, FDR<1%) are 
labelled. 
 
 
Fig. 3 | DNA methylation and chromatin accessibility dynamics at lineage-defining 
enhancers across development.  
a,  Illustration of the hierarchical model of enhancer epigenetic dynamics associated with 
germ layer commitment. b,  UMAP projection based on the MOFA factors inferred using all 
embryonic cells (n=1,928). In the left plot the cells are coloured by lineage. In the right plots 
cells are coloured by average methylation (%, top) or accessibility (%, bottom) at 
lineage-defining enhancers. For cells with only RNA expression data, the MOFA factors 
were used to impute the methylation and accessibility levels. c, Profiles of methylation (red) 
and accessibility (blue) at lineage-defining enhancers across development. Shown are 
running averages in 50bp windows around the center of the ChIP-seq peaks (2kb upstream 
and downstream). Solid lines display the mean across cells and shading displays the 
standard deviation. E5.5 and E6.5 epiblast cells show similar profiles and are combined. 
Dashed horizontal lines represent genome-wide background levels for methylation (red) and 
accessibility (blue).  
 
Fig. 4 | TET enzymes are required for efficient demethylation of mesoderm-defining 
enhancers and subsequent blood differentiation in embryoid bodies. a,  UMAP 
projection of stages E6.5 to E8.5 of the atlas data set (no extraembryonic cells). In the top 
left plot cells are coloured by lineage assignment. The remaining plots show, for different 
days of EB differentiation, the nearest neighbours that were used to assign cell type labels to 
the EB data set. WT cells are red (n=438),Tet TKO cells are blue (n=436). We grouped days 
4-5 and 6-7 together due to similarity in the cell types recovered. b,  Bar plots showing the 
cell type numbers for each day of EB differentiation, grouped by genotype. c,  Overlaid box 
and violin plots display the distribution of DNA methylation (top) or chromatin accessibility 
values (bottom) for lineage-defining enhancers in epiblast-like cells at day 2 (n=46 for WT 
and n=44 TKO) and mesoderm-like cells at days 6-7 (n=22 for WT and n=32 TKO). The 
y-axis shows the methylation or accessibility (%) scaled to the genome-wide levels. P-values 
resulting from comparisons of group means (t-test) are displayed. Asterisks denote 
significant differences (FDR<10%). 
 



 

 

Methods 

Embryos and single cell isolation 
All mice used in this study were C57BL/6Babr and were bred and maintained in the               
Babraham Institute Biological Support Unit. Ambient temperature was ~19-21°C and relative           
humidity 52%. Lighting was provided on a 12 hour light: 12 hour dark cycle including 15 min                 
‘dawn’ and ‘dusk’ periods of subdued lighting. After weaning, mice were transferred to             
individually ventilated cages with 1-5 mice per cage. Mice were fed CRM (P) VP diet (Special                
Diet Services) ad libitum and received seeds (e.g. sunflower, millet) at the time of              
cage-cleaning as part of their environmental enrichment. All mouse experimentation was           
approved by the Babraham Institute Animal Welfare and Ethical Review Body. Animal            
husbandry and experimentation complied with existing European Union and United Kingdom           
Home Office legislation and local standards. Sample sizes were determined in order to             
obtain at least 50 cells for each germ layer. No randomisation or blinding was performed.               
Sex of embryos was not known at the time of collection. Single-cells from E4.5 to E5.5                
embryos were collected as described2. E6.5 and E7.5 embryos were dissected to remove             
extraembryonic tissues and dissociated in TryplE for 10 minutes at room temperature.            
Undigested portions were physically removed and the remainder filtered through a 30 μm             
filter prior to isolation using flow cytometry. 
 

Tet TKO cell culture 
Tet[1-/- ,2-/- ,3-/-] (C57BL6/129/FVB) and matching wild-type mouse ES cells31 were cultured            
in 2i+LIF media (serum-free N2B27 (N2 & B27; Gibco) supplemented with LIF, MEK             
inhibitor PD0325901 (1 µM) and GSK3 inhibitor CHIR99021 (3 µM), (all Department of             
Biochemistry, University of Cambridge). ES cells were cultured on tissue culture plastic            
pre-coated with 0.1% gelatine in H2O and were passaged when approaching confluence            
(2-3d).  
For the embryoid body (EB) differentiation assay, 2x104 ES cells were collected in serum               
media consisting of DMEM (Life Technologies, 10566-016), 15% Fetal Bovine Serum (FBS)            
(Gibco, 10270106), 1x non-essential amino acids (NEAA) (Life Technologies, 11140050),          
0.1 mM 2-mercaptoethanol (Life Technologies, 31350-010), 2 mM L-Glutamine (Life          
Technologies, 25030-024) in ultra-low attachment 96-well plates (Sigma-Aldrich, CLS7007).         
All cells were cultured in a humidified incubator at 37°C in 5% CO2 and 20% O2. EBs were                  
collected 2, 4, 5, 6 and 7 days after induction of differentiation and dissociated into single                
cells using accutase prior to flow sorting. Cell lines were subject to routine mycoplasma              
testing using the MycoAlert testing kit (Lonza) and tested negative. Cell lines were not              
authenticated. 

scNMT-seq library preparation 
Single-cells were flow-sorted (E6.5 and E7.5 stages, using a BD Influx or BD Aria III) or                
manually picked when cell numbers were too low (E4.5, E5.5). Cells were isolated into 96               
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well PCR plates containing 2.5μl of methylase reaction buffer (1 × M.CviPI Reaction buffer            
(NEB), 2 U M.CviPI (NEB), 160 μM S-adenosylmethionine (NEB), 1 U μl−1 RNasein         
(Promega), 0.1% IGEPAL CA-630 (Sigma)). Samples were incubated for 15 minutes at 37°C             
to methylate accessible chromatin before the reaction was stopped with the addition of RLT              
plus buffer (Qiagen) and samples frozen down and stored at -80°C prior to processing.              
Poly-A RNA was captured on oligo-dT conjugated to magnetic beads and amplified cDNA             
was prepared according to the G&T-seq32 and Smartseq2 protocols33. The lysate containing            
gDNA was purified on AMPureXP beads before bisulfite-seq libraries were prepared           
according to the scBS-seq protocol34. 
A subset of embryo cells were processed for scRNA-seq only (1,419 cells after QC). These               
followed the same protocol but we discarded the gDNA after separation. 
A full step-by-step protocol for scNMT-seq is available online:         
dx.doi.org/10.17504/protocols.io.6jnhcme.  
 

Sequencing 
All sequencing was carried out on a NextSeq500 instrument. BS-seq libraries were            
sequenced in 48-plex pools using 75bp paired end reads in high-output mode. RNA-seq             
libraries were pooled as either 384 plexes and sequenced using 75bp paired end reads in               
high-output mode or 192-plexes and sequenced using 75bp paired-end reads in mid-output            
mode. This yielded a mean raw sequencing depth of 8.5 million (BS-seq) and 1 million               
(RNA-seq) paired-end reads per cell. 

RNA-seq alignment and quantification 
RNA-seq libraries were aligned to the GRCm38 mouse genome build using HiSat235 (v2.1.0)             
using options --dta --sp 1000,1000 --no-mixed --no-discordant, yielding a mean of 681,000            
aligned reads per cell. Subsequently, gene expression counts were quantified from the            
mapped reads using featureCounts36 with the Ensembl gene annotation37 (version 87). Only            
protein-coding genes matching canonical chromosomes were considered. The read counts          
were log-transformed and size-factor adjusted38. 

BS-seq alignment and methylation/accessibility quantification 
BS-seq libraries were aligned to the bisuflite converted GRCm38 mouse genome using            
Bismark39 (v0.19.1) in single-end nondirectional mode. Following the removal of PCR           
duplicates, we retained a mean of 1.6 million reads per cell. Methylation calling and              
separation of endogenous methylation (from A-C-G and T-C-G trinucleotides) and chromatin           
accessibility (G-C-A, G-C-C and G-C-T trinucleotides) was performed with Bismark using the            
--NOMe option of the coverage2cytosine script. 
Following our previous approach40, individual CpG or GpC sites in each cell were modelled              
using a binomial distribution where the number of successes is the number of reads that               
support methylation and the number of trials is the total number of reads. A CpG methylation                
or GpC accessibility rate for each site and cell was calculated by maximum likelihood. The               
rates were subsequently rounded to the nearest integer (0 or 1). 
When aggregating over genomic features, CpG methylation and GpC accessibility rates           
were computed assuming a binomial model, with the number of trials being the number of               
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observed CpG sites and the number of successes being the number of methylated CpGs.              
Importantly, this implies that DNA methylation and chromatin accessibility is quantified as a             
rate (or a percentage). We avoid binarising DNA methylation and chromatin accessibility            
values into “low” or “high” states as it is not a good representation of the continuous nature                 
of the data (Extended Data Fig. 3). 
 

ChIP-seq data processing 
ChIP-seq data were obtained from the Gene Expression Omnibus under accession           
GSE125318). Reads were trimmed using Trim Galore (v0.4.5, cutadapt 1.15, single end            
mode) and mapped to M. musculus GRCm38 using Bowtie241 (v2.3.2). Read 2 was             
excluded from the analysis for paired end samples because of low quality scores (Phred              
<25). All analyses were performed using SeqMonk       
(https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/). For quantitation, read    
length was extended to 300 bp and regions of coverage outliers and extreme strand bias               
excluded as these were assumed to be alignment artefacts. Comparison of data sets with              
different read lengths did not reveal major mapping differences, and thus, mapped, extended             
reads were merged for samples that were sequenced across more than one lane. Samples              
were overall similar regarding total mapped read numbers, distribution of reads and ChIP             
enrichment.  
 
To best represent the underlying ChIP-seq signal, different methods to define enriched            
genomic regions were used for H3K4me3 and H3K27ac marks. For H3K4me3, a SeqMonk             
implementation of MACS42 with the local rescoring step omitted was used (p<10-15,            
fragment size 300 bp), and enriched regions closer than 100 bp were merged. Peaks were               
called separately for each lineage. For H3K27ac, reads were quantitated per 500 bp tiles              
correcting per million total reads and excluding duplicate reads. Smoothing subtraction           
quantitation was used to identify local maxima (value > 1), and peaks closer than 500 bp                
apart were merged. Lineage-specific peak annotations exclude peaks that are also present            
in one of the other lineages, and only peaks present in both replicates were considered               
(Extended Data Fig. 5). 
 
Publicly available ChIP-seq libraries for H3K27ac20–22were processed with Trim Galore and           
Bowtie2 (see above), and analysed in Seqmonk. Read counts were determined for 1 kb              
non-overlapping tiles and, separately, for lineage-specific enhancers (average length 1.2 kb).           
The genomic tiles were used to determine the distribution of H3K27ac across the genome.              
Enhancers were classified as marked if their read counts were within the top 5% of the                
distribution. 

scRNA-seq and scBS-seq quality control 
For RNA expression, cells with less than 100,000 mapped reads and with less than 500               
expressed genes were excluded. For DNA methylation and chromatin accessibility, cells with            
less than 50,000 CpG sites and 500,000 GpC sites covered were discarded, respectively             
(Extended Data Fig. 1). 
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Lineage assignment using RNA expression 
Lineages were assigned by mapping the RNA expression profiles to a comprehensive            
single-cell atlas from the same stages4, when available (stages E6.5 and E7.5), or by SC343               
elsewise (stages E4.5 and E5.5) (Extended Data Fig. 2). Extraembryonic cells were            
identified by these methods and excluded from further analyses. 
 
The mapping was performed by matching mutual nearest neighbours44. First, count matrices            
from both experiments were concatenated and normalised together. Highly variable genes           
were selected38 from the resulting expression matrix and were used as input for principal              
components analysis. Subsequently, batch correction was applied to remove the technical           
variability between the two experiments and a k-nearest neighbours graph was computed            
between them. For each scNMT-seq cell, the cell type was selected as the mode from a                
Dirichlet distribution given by the cell type distribution of the top 30 nearest neighbours in the                
atlas (i.e. majority voting). 

Correlation analysis 
To identify genes with an association between the mRNA expression and promoter            
epigenetic status, we calculated, for each gene, the correlation coefficient across all cells             
between its RNA expression and the corresponding DNA methylation or chromatin           
accessibility levels at the gene’s promoter (+/- 2kb around transcription start site). 
As a filtering criterion, we required, for each genomic feature, a minimum number of 1 CpG                
(methylation) or 5 GpC (accessibility) measurements in at least 50 cells. Additionally, the top              
5,000 most variable genes (across all cells) were selected, according to the rationale of              
independent filtering45. Two-tailed Student’s t-tests were performed to test for evidence           
against the null hypothesis of no correlation, and p-values were adjusted for multiple testing              
using the Benjamini–Hochberg procedure46. 

Differential DNA methylation and chromatin accessibility analysis 
Differential analysis of DNA methylation and chromatin accessibility was performed using a            
Fisher exact test independently for each genomic element. Cells were aggregated into two             
exclusive groups and, for a given genomic element, we created a contingency table by              
aggregating (across cells) the number of methylated and unmethylated nucleotides. Multiple           
testing correction was applied using the Benjamini-Hochberg procedure. As a filtering           
criteria, we required 1 CpG (methylation) and 5 GpC (accessibility) observations in at least              
10 cells per group. Non-variable regions were filtered out prior to differential testing. 

Motif enrichment 
To find transcription factor motifs enriched in lineage-associated sites, we used H3K27ac            
sites that were identified as differentially accessible between lineages as explained above.            
We tested for enrichment over a background of all H3K27ac sites using ame (meme suite47               
v4.10.1) with parameters --method fisher --scoring avg. Position frequency matrices were           
downloaded from the Jaspar core vertebrates database48. This is a curated list of             
experimentally derived binding motifs and not an exhaustive set which means that some             
important transcription factors will not be analysed due to absence of their motifs. 
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Differential RNA expression analysis 
Differential RNA expression analysis between pre-specified groups of interest was          
performed using the genewise negative binomial generalised linear model with          
quasi-likelihood test from edgeR49. Significant hits were called with a 1% False Discovery             
Rate (Benjamini-Hochberg procedure) and a minimum log2 fold change of 1. Genes with low              
expression (mean log2 counts < 0.5) were filtered out prior to differential testing45. 

Dimensionality reduction for DNA methylation and chromatin accessibility data using          
Bayesian Factor Analysis 
To handle the large amount of missing values in DNA methylation and chromatin             
accessibility data we used a linear Bayesian Factor Analysis model15. The linearity            
assumption renders the model output directly interpretable, and more robust to changes in             
hyperparameters than non-linear methods, particularly with small number of cells. We           
trained every model using the top 5,000 most variable features and we constrained the latent               
space to two latent factors, which were used for visualisation (Figure 1c-d, Extended Data              
Fig. 3). Variance explained estimates were computed using the coefficient of determination            
as described in 15. 

Multi-Omics Factor Analysis (MOFA) 
The input to MOFA is a list of matrices, where each matrix represents a different data                
modality. RNA expression measurements were defined as one data modality. For DNA            
methylation and chromatin accessibility we defined separate matrices for promoters, distal           
H3K27ac sites (enhancers) and H3K4me3 (transcription start sites, TSS). Promoters were           
defined as a bidirectional 2kb window around the TSS of protein-coding genes. For each              
genomic context, we created a DNA methylation matrix and a chromatin accessibility matrix             
by quantifying M-values for each cell and genomic element. 
As a filtering criteria, genomic features were required to have a minimum of 1 CpG               
(methylation) or 5 GpC (accessibility) observed in at least 25 cells. Genes were required to               
have a minimum cellular detection rate of 25%. In addition, to reduce computational             
complexity, the top 1,000 most variable features were selected per view. Similarly, the top              
2,500 most variable genes were selected for RNA expression. 
Similar to most latent dimensionality reduction methods, the optimisation procedure of MOFA            
is not guaranteed to find a global optimum. Following15, model selection was performed by              
selecting the model with the highest Evidence Lower Bound out of 10 trials.  
The number of factors was calculated by requiring a minimum of 1% variance explained in               
the RNA. The robustness of factors across trials was assessed by calculating the correlation              
coefficients between every pair of factors across the 10 trials. All inferred factors were              
consistently found in all model instances. 
The downstream characterisation of the model output included several analyses: (a)           
variance decomposition: quantification of the fraction of variance explained (R2) by each            
factor in each view, using a coefficient of determination15. (b) Visualisation of            
weights/loadings: the model learns a weight for every feature in each factor, which can be               
interpreted as a measure of feature importance. Features with large weights (in absolute             
value) are highly correlated with the factor values. (c) Visualisation of factors: each MOFA              
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factor captures a different dimension of cellular heterogeneity. All together, they define a             
latent space that maximises the variance explained in the data (under some important             
sparsity assumptions15). The cells can be visualised in the latent space by plotting scatter              
plots of combinations of factors. (d) Gene set enrichment analysis: when inspecting the             
weights for a given factor, multiple features can be combined into a gene set-based              
annotation. For a given gene set G, we evaluate its significance via a parametric t-test               
(two-sided), where we compare the mean of the weights of the foreground set (features that               
belong to the set G) versus the mean of the weights in the background set (features that do                  
not belong to the set G). Resulting p-values are adjusted by multiple testing using the               
Benjamini-Hochberg procedure from which significant pathways are called (FDR<10%). 
 
 

Code availability 
All analysis code is available at https://github.com/rargelaguet/scnmt_gastrulation 

Data availability 
Raw sequencing data together with processed files (RNA counts, CpG methylation reports,            
GpC accessibility reports) are available in the Gene Expression Omnibus under accession            
GSE121708. Processed data can be downloaded from       
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Extended Data Legends 
 
Extended Data Fig. 1 | scNMT-seq quality controls. a-b, Number of observed cytosines in 
(a) CpG (red) or (b) GpC (blue) contexts respectively. Each bar corresponds to one cell. 
Cells are sorted by total number of CpG or GpC sites, respectively. Cells below the dashed 
line were discarded on the basis of poor coverage. c, RNA library size per cell. Top, total 
number of reads and bottom, number of expressed genes (read counts>0). Cells below the 
dashed line were discarded on the basis of poor coverage. d, Venn Diagram displaying the 
number of cells that pass quality control for RNA expression (green), DNA methylation (red), 
chromatin accessibility (blue). e, Number of cells that pass quality control for each molecular 
layer, grouped by stage. Note that for 1,419 out of 2,524 total cells only the RNA expression 
was sequenced.  
 

Extended Data Fig. 2 | Cell type assignments based on RNA expression. a-b, Lineage 
assignment of a, E4.5 cells (N=175) and b, E5.5 cells (N=173). Shown are (top left) SC3 
consensus plots representing the similarity between cells based on the averaging of 
clustering results from multiple combinations of clustering parameters. (Top right) Heatmap 
showing the RNA expression (log normalised counts) of the ten most informative gene 
markers for each cluster. (Bottom left) t-SNE representation of the RNA expression data 
coloured by the expression of Fgf4 and Pou5f1, known E4.5 and E5.5 epiblast markers50,51, 
respectively. (Bottom right) t-SNE representation of the RNA expression data coloured by 
the expression of Gata6 and Amn, known E4.5 primitive endoderm and E5.5 visceral 
endoderm markers52. c-d, Lineage assignment of c, E6.5 cells (N=977) and d, E7.5 cells 
(N=1,155). Left: UMAP projection of the atlas data set (stages E6.5 to E7.0 to assign E6.5 
cells and E7.0 to E8.0 to assign E7.5 cells). In the top-left panel the cells are coloured by 
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lineage assignment. In the bottom-left panel, the cells coloured in red are the nearest 
neighbors that were used to transfer labels to the scNMT-seq data set. In the right panels 
cells are coloured by the relative RNA expression of lineage marker genes. e, Left: Number 
of cells per lineage, using the maximally resolved cell types reported in4. Right: Number of 
cells per lineage after aggregation of cell types belonging to the same germ layer or 
extraembryonic tissue type, as used in this study. 

Extended Data Fig. 3 | Global methylation and chromatin accessibility dynamics. a-b, 
Distribution of a, DNA methylation and b, chromatin accessibility levels per stage and 
genomic context. When aggregating over genomic features, CpG methylation and GpC 
accessibility levels (%) are computed assuming a binomial model, with the number of trials 
being the total number of observed CpG (or GpC) sites and the number of successes being 
the number of methylated CpG (or GpC) sites (Methods). Importantly, this implies that DNA 
methylation and chromatin accessibility are quantified as a percentage and are not binarised 
into ”low” or ”high” states. As this Extended Data Fig. shows, the distribution of DNA 
methylation and chromatin accessibility across loci (after aggregating measurements across 
all cells) is largely continuous and does not show bimodality. Hence, a binarisation approach 
that is sometimes used for differentiated cell types would not be a good representation of the 
data. c-d, Box plots showing the distribution of genome-wide c, CpG methylation levels or d, 
GpC accessibility levels per stage and lineage. Each dot represents a single cell. At a 
significance threshold of 0.01 (t-test, two-sided), the global DNA methylation levels differ 
between embryonic and extraembryonic lineages, but the global chromatin accessibility 
levels do not. e-f, Dimensionality reduction of e, DNA methylation and f, chromatin 
accessibility data. To perform dimensionality reduction while handling the large amount of 
missing values we used a Bayesian Factor Analysis model (Methods). Shown are scatter 
plots of the first two latent factors (sorted by variance explained) for models trained with cells 
from the indicated stages. From E4.5 to E6.5, cells are coloured by embryonic and 
extraembryonic origin. At E7.5 cells are coloured by the primary germ layer. All lineage 
assignments were made using the cells’ corresponding RNA expression level (Extended 
Data Fig. 2). The fraction of variance explained by each factor is displayed in parentheses. 
The input data was M-values quantified over DNase I hypersensitive sites profiled in 
Embryonic Stem Cells.  

Extended Data Fig. 4 | DNA methylation and chromatin accessibility changes in 
promoters are associated with repression of early pluripotency and germ cell 
markers. a, Volcano plots display differential RNA expression levels between E4.5 and E7.5 
cells (in log2 counts, x-axis) versus adjusted correlation p-values (FDR < 10% in red, 
Benjamini-Hochberg correction). Left plot shows DNA methylation versus RNA expression 
correlations and the right plot shows chromatin accessibility versus RNA expression. 
Negative values for differential RNA expression indicates higher expression in E4.5, 
whereas positive values indicate higher expression in E7.5. b, Illustrative examples of 
epigenetic repression of early pluripotency and germ cell markers. Box and violin plots show 
the distribution of RNA expression (log2 counts, green), DNA methylation (%, red) and 
chromatin accessibility (%, blue) levels per stage. Box plots show median coverage and the 
first and third quartile, whiskers show 1.5x the interquartile range. Each dot corresponds to 
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one cell. For each gene a genomic track is shown on top, where the promoter region that is 
used to quantify DNA methylation and chromatin accessibility levels is highlighted in yellow. 

Extended Data Fig. 5 | Characterisation of lineage-specific H3K27ac and H3K4me3 
ChIP-seq data. a, Percentage of peaks overlapping promoters (+/- 500 bp of transcription 
start sites of annotated mRNAs (Ensembl v87); lighter colour) and not overlapping promoters 
(distal peaks, darker colour). H3K27ac peaks tend to be distal from the promoters, marking 
putative enhancer elements53. H3K4me3 peaks tend to overlap promoter regions, marking 
transcription start sites54 b, Venn diagrams showing overlap of peaks for each lineage, for 
distal H3K27ac (left) and H3K4me3 (right). This plot shows that H3K27ac peaks tend to be 
lineage-specific, while H3K4me3 peaks tend to be shared between lineages. c, Illustrative 
example of the ChIP-seq profile for the ectoderm marker Cxcl12. The top tracks show wiggle 
plots of ChIP-seq read density (normalised by total read count) for lineage-specific H3K27ac 
and H3K4me3. The coding sequence is shown in black. The bottom tracks show the 
lineage-specific peak calls (Methods). H3K27ac peaks are split into distal (putative 
enhancers) and proximal to the promoter. d, Left: Bar plot of the fraction of E7.5 
lineage-specific enhancers that are uniquely marked by H3K27ac in either E10.5 midbrain, 
E12.5 gut or E10.5 heart. Right: Heatmap displaying H3K27ac levels at individual 
lineage-specific enhancers in more differentiated tissues. E7.5 enhancers are predominantly 
marked in their differentiated-tissue counterparts (midbrain for ectoderm, gut for endoderm 
and heart for mesoderm).  

Extended Data Fig. 6 | Differential DNA methylation and chromatin accessibility 
analysis at E7.5 for different genomic contexts. a, Bar plots showing the fraction (left) or 
the total number (right) of differentially methylated (red) or accessible (blue) loci (FDR<10%, 
y-axis) per genomic context (x-axis). Each subplot corresponds to the comparison of one cell 
type (group A) against cells comprising the other cell types present at E7.5 (Group B). For 
the right panel, positive values indicate an increase in DNA methylation or chromatin 
accessibility in group A, whereas negative values indicate a decrease in DNA methylation or 
chromatin accessibility. Differential analysis of DNA methylation and chromatin accessibility 
was performed independently for each genomic element using a two-sided Fisher exact test 
of equal proportions (Methods). b, Scatter plots showing differential DNA methylation (x-axis) 
versus chromatin accessibility (y-axis) analysis at promoters. Shown are ectoderm vs 
non-ectoderm cells (left), endoderm vs non-endoderm cells (middle) and mesoderm vs 
non-mesoderm cells (right). Each dot corresponds to a gene. Labeled black dots highlight 
genes with lineage-specific RNA expression that show significant differential methylation or 
accessibility in their promoter (FDR<10%). 

Extended Data Fig. 7 | Illustrative examples of putative epigenetic regulation in 
enhancer elements during germ layer commitment. Box and violin plots showing the 
distribution of RNA expression (log2 counts, green), and enhancer DNA methylation (%, red) 
and chromatin accessibility (%, blue) levels for key germ layer markers per stage and cell 
type. Shown are marker genes for a, ectoderm, b, mesoderm, and c, endoderm. Box plots 
show median levels and the first and third quartile, whiskers show 1.5x the interquartile 
range. Each dot corresponds to a single cell. For each gene a genomic track is shown on the 
top. The enhancer region that is used to quantify DNA methylation and chromatin 
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accessibility levels is represented with a star and highlighted in yellow. Genes were linked to 
putative enhancers by overlapping genomic coordinates with a maximum distance of 50kb. 

Extended Data Fig. 8 | Characterisation of MOFA Factors. a, Factor 1 as mesoderm 
commitment factor. Left: RNA expression loadings for Factor 1. Genes with large positive 
loadings increase expression in the positive factor values (mesoderm cells). Middle: Scatter 
plot of Factor 1 (x-axis) and Factor 2 (y-axis) values. Each dot corresponds to a single cell, 
coloured by the average methylation levels (%) of the top 100 enhancers with highest 
loading. Right: as the middle panel but cells are coloured by the average accessibility levels 
(%). b, Factor 2 as the endoderm commitment factor. Left: RNA expression loadings for 
Factor 2. Genes with large positive loadings increase expression in the positive factor values 
(endoderm cells). Middle: Scatter plot of Factor 1 (x-axis) and Factor 2 (y-axis) values. Each 
dot corresponds to a single cell, coloured by the average methylation levels (%) of the top 
100 enhancers with highest loading. Right: as the middle panel but cells are coloured by the 
average accessibility levels (%). c, Characterisation of MOFA Factor 3 as antero-posterior 
axial patterning and mesoderm maturation. Left: Beeswarm plot of Factor 3 values, grouped 
and coloured by cell type. The mesoderm cells are subclassified into nascent and mature 
mesoderm (see Extended Data Fig. 2). Right: Gene set enrichment analysis of the gene 
loadings of Factor 3. Shown are the top most significant pathways from MSigDB C255 
(Methods). d, Characterisation of MOFA Factor 6 as cell cycle. Left: Beeswarm plot of Factor 
6 values, grouped by cell type and coloured by inferred cell cycle state using cyclone56 
(G1/2, cyan or G2/M, yellow). Right: Gene set enrichment analysis of the gene loadings of 
Factor 6. Shown are the top most significant pathways from MSigDB C255. e, 
Characterisation of MOFA Factor 4 as notochord formation. Left: Beeswarm plot of Factor 4 
values, grouped and coloured by cell type. The endoderm cells are subclassified into 
notochord (dark green) and not notochord (green) (see Extended Data Fig. 2). Middle: RNA 
expression loadings for Factor 4. Genes with large negative loadings increase expression in 
the negative factor values (notochord cells). Right: Same beeswarm plots as in left but 
coloured by the relative RNA expression of Calca (gene with the highest loading). 

Extended Data Fig. 9 | DNA methylation and chromatin accessibility dynamics of E7.5 
lineage-specific enhancers and transcription factor motifs across development. a, Box 
plots showing the distribution of DNA methylation (top) or chromatin accessibility (bottom) 
levels of E7.5 lineage-defining enhancers, across stages and cell types. Box plots show 
median levels and the first and third quartile, whiskers show 1.5x the interquartile range. The 
dashed lines represent the global background levels of DNA methylation at E7.5 (see 
Extended Data Fig. 3). b, Box plots showing the distribution of chromatin accessibility levels 
(scaled to the genome-wide background) for 200bp windows around transcription factor 
motifs associated with commitment to ectoderm (top), endoderm (middle) and mesoderm 
(bottom). Box plots show median levels and the first and third quartile, whiskers show 1.5x 
the interquartile range. 

Extended Data Fig. 10 | E7.5 ectoderm enhancers contain a mixture of pluripotency 
and neural signatures with different epigenetic dynamics. a, Scatter plot showing 
H3K27ac levels for individual ectoderm enhancers (n=2039) quantified in serum ESCs 
(pluripotency enhancers, x-axis) versus E10.5 midbrain (neuroectoderm enhancers, y-axis). 
H3K27ac levels in the two lineages are negatively correlated (Pearson’s R = −0.44), 
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indicating that most enhancers are either marked in ESCs or in the brain. Highlighted are the 
top 250 enhancers that show the strongest differential H3K27ac levels between midbrain 
and ESCs (blue for midbrain-specific enhancers and grey for ESC-specific enhancers). b, 
Density plots of H3K27ac levels in ESCs versus E10.5 midbrain. H3K27ac levels are 
negatively correlated at E7.5 ectoderm enhancers, but not in E7.5 endoderm (n=1124) or 
mesoderm enhancers (n=631). c, Profiles of DNA methylation (red) and chromatin 
accessibility (blue) along the epiblast-ectoderm trajectory. Panels show different genomic 
contexts: E7.5 ectoderm enhancers that are specifically marked by H3K27ac in the midbrain 
(middle) or ESCs (bottom) (highlighted populations in a). Shown are running averages of 
50bp windows around the center of the ChIP-seq peaks (2kb upstream and downstream). 
Solid lines display the mean across cells (within a given lineage) and shading displays the 
standard deviation. Dashed horizontal lines represent genome-wide background levels for 
DNA methylation (red) and chromatin accessibility (blue). For comparison, we have also 
incorporated E7.5 endoderm enhancers (top), which follow the genome-wide repressive 
dynamics. d, Box plots of the distribution of DNA methylation (top) and chromatin 
accessibility (bottom) levels along the epiblast-ectoderm trajectory. Panels show different 
genomic contexts: E7.5 ectoderm enhancers that are specifically marked by H3K27ac in the 
midbrain (middle) or ESCs (right) (highlighted populations a). Box plots show median levels 
and the first and third quartile, whiskers show 1.5x the interquartile range. Dashed lines 
denote background DNA methylation and chromatin accessibility levels at the corresponding 
stage and lineage. For comparison, we have also incorporated E7.5 endoderm enhancers 
(left), which follow the genome-wide repressive dynamics. 

 

Extended Data Fig. 11 | Silencing of ectoderm enhancers precedes activation of 
mesoderm and endoderm enhancers. a, Reconstructed mesoderm (top) and endoderm 
(bottom) commitment trajectories using a diffusion pseudotime method applied to the RNA 
expression data (Methods). Shown are scatter plots of the first two diffusion components, 
with cells coloured according to their lineage assignment (n=1,154 for endoderm and 
n=1,511 for mesoderm). For both cases, ranks along the first diffusion component are 
selected to order cells according to their differentiation state. b, DNA methylation (red) and 
chromatin accessibility (blue) dynamics of lineage-defining enhancers along the mesoderm 
(top) and endoderm (bottom) trajectories. Each dot denotes a single cell (n=387 for 
endoderm and n=474 for mesoderm) and black curves represent non-parametric loess 
regression estimates. In addition, for each scenario we fit a piece-wise linear regression 
model for epiblast, primitive streak and mesoderm or endoderm cells (vertical lines indicate 
the discretised lineage transitions). For each model fit, the slope (r) and its significance level 
is displayed in the top (- for non-significant, ∗ for 0.01<p<0.1 and ∗∗ for p<0.01). c, Density 
plots showing differential DNA methylation (%, x-axis) and chromatin accessibility (%, y-axis) 
at lineage-defining enhancers calculated for each of the lineage transitions. 

 

Extended Data Fig. 12: Embryoid bodies (EBs) recapitulate the transcriptional, 
methylation and accessibility dynamics of the embryo. a, Embryoid bodies show high 
transcriptional similarity to gastrulation-stage embryos. (Top left) UMAP projection of the 



 

RNA expression for the EB data set (n=775). Cells are coloured by lineage assignment and 
shaped by genotype (WT or Tet TKO). (Bottom left) UMAP projection of stages E6.5 to E8.5 
of the atlas data set (no extraembryonic cells) with the nearest neighbours that were used to 
assign cell type labels to the scNMT-seq EB data set coloured in red (WT) or blue (Tet TKO). 
(Middle) UMAP projection of EB cells coloured by the relative RNA expression of marker 
genes. (Right) Scatter plot of the differential gene expression (log2 normalised counts) 
between different assigned lineages for EBs (x-axis) versus embryos (y-axis). Each dot 
represents one gene. Pearson correlation coefficient with corresponding p-value (two-sided) 
are displayed. Lines show the linear regression fit. The top four genes with the largest 
differential expression are highlighted in red. b, Global DNA methylation and chromatin 
accessibility levels during EB differentiation. (Top) Box plots showing the distribution of 
genome-wide CpG methylation (left) or GpC accessibility levels (right) per time point and 
lineage (compare to Extended Data Fig. 3). Each dot represents a single cell (only WT cells 
are used). Box plots show median levels and the first and third quartile, whiskers show 1.5x 
the interquartile range. (Bottom) Heatmap of DNA methylation (left) or chromatin accessibility 
(right) levels per time point and genomic context (compare to Figure 1e,f). c, Ectoderm 
enhancers are more methylated in Tet TKO compared to WT epiblast cells in vivo. Bar plots 
show the mean (bulk) DNA methylation levels (%) for ectoderm (left), endoderm (middle) and 
mesoderm (right) enhancers in E6.5 epiblast cells25. For each genotype, two replicates are 
shown. d, Profiles of DNA methylation (red) and chromatin accessibility (blue) at 
lineage-defining enhancers quantified over different lineages across EB differentiation (only 
WT cells). Shown are running averages in 50bp windows around the center of the ChIP-seq 
peaks (2kb upstream and downstream). Solid lines display the mean across cells and 
shading displays the corresponding standard deviation. Dashed horizontal lines represent 
genome-wide background levels for methylation (red) and accessibility (blue). 
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