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We present forecasts on the primordial non-Gaussianity parameter fy; of feature models for the future
Cosmic Microwave Background Stage-4 (CMB-S4) experiments. The Fisher matrix of the bispectrum
estimator was computed using noise covariances expected for preliminary CMB-S4 specifications
including ones for the Simons Observatory. We introduce a novel method that improves the computation
by orthonormalizing the covariance matrix. The most sensitive CMB-S4 experiment with 1’ beam and
1 uK-arc min noise would yield a factor of 1.7-2.2 times more stringent constraints compared to Planck.
Under the Simons Observatory baseline conditions the improvement would be about 1.3—1.6 times to
Planck. We also thoroughly studied the effects of various model and experimental parameters on the
forecast. Detailed analysis on the constraints coming from temperature and E-mode polarization, in
particular, provided some insight into detecting oscillatory features in the CMB bispectrum.
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I. INTRODUCTION

The cosmic microwave background (CMB) radiation is
one of our most valuable probes of the primordial universe.
The temperature and polarization of this ancient light
contains rich statistical information both about the primor-
dial perturbations created during inflation and also their
subsequent evolution until now. This allows us to test our
inflationary theories and also the history of our Universe.
The recent Planck CMB experiments have provided strin-
gent tests on various models of inflation through the
estimation of cosmological parameters and via primordial
non-Gaussianity [1,2].

The simplest model of inflation involves a single scalar
field slowly rolling down a smooth potential. In this case
the CMB temperature fluctuations are expected to be
Gaussian distributed with only tiny deviations (e.g., [3]).
However, many other physically well-motivated models
generate larger non-Gaussian signatures at the end of
inflation (see reviews of [4]). Such primordial non-
Gaussianities are well constrained by three-point correla-
tion functions of the CMB anisotropies or their Fourier
transform, the CMB bispectrum. Different inflationary
models predict bispectra with different momentum depend-
ence, or “shapes.” We constrain these models by using an
optimal estimator for their amplitude parameter, fy; , for
each specific bispectrum shape (see, e.g., [5,6] for reviews).

Although all observations to date are consistent with
vanishing non-Gaussianity, the models most favored by the

“ws313@damtp.cam.ac.uk

2470-0010/2019/100(6)/063536(12)

063536-1

2015 Planck CMB analysis were the ones with oscillations
in the primordial power spectrum [1]. Among them are
feature models, where the oscillations are caused by a sharp
feature in either the inflationary potential [7-12], sound
speed [13,14], or multifield potentials [15] (see [4,16] for
reviews). The primordial power spectrum then becomes
scale dependent, displaying sinusoidal oscillations that are
linearly spaced in momentum space. The resulting bispec-
trum also oscillates and is highly uncorrelated with other
popular bispectrum templates [17], therefore allowing us to
constrain them independently.

Planck constrained fy; for feature models from CMB
bispectra, but no signal above 3¢ significance were found
after accounting for the “look elsewhere effect” as intro-
duced in [18]. The multipeak statistic analysis, however,
revealed some nonstandard signals up to 4¢ level that
deserves attention [1]. There have been many other
searches on signatures of oscillations. Constraints also
come from the CMB power spectrum [19-24], the large
scale structure [25,26], and a combination of the two
[27,28]. We expect stronger constraints on feature models
from future LSS experiments [29]. This paper covers the
prospects of upcoming CMB experiments in constraining
S for feature models.

Currently there are two implementations of the optimal
estimator for constraining fp for feature type models. The
Planck analysis adopted the modal estimator for which
the given bispectrum is expanded using a separable basis
[30,31]. This method is efficient, can flexibly account for
various oscillatory shapes, and is able to easily constrain all
frequencies simultaneously. However, when the oscillation
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frequency is large the modal basis fails to converge within a
reasonable number of basis elements, making the method
impractical. The other approach using the Komatsu-
Spergel-Wandelt (KSW) estimator is viable for various
shapes including the feature model [32,33]. Although this
method only applies to models with separable bispectra,
even highly oscillatory templates can be computed reliably.
This method is however more computationally expensive as
each frequency must be dealt with separately. We present
further optimizations to the fast KSW estimator introduced
in [34] and apply it on feature models for forecasts in
this paper.

The next generation of CMB experiments, CMB
Stage-4, consists of many exciting proposed experiments
located at the South Pole, the Atacama Desert in Chile, and
perhaps space [35-37]. One of the main goals of these
experiments is to measure the polarization signal in the
CMB to the cosmic variance limit. Preliminary specifica-
tions have been released for these experiments [35,36] and
these have been used to produce some forecasts for the
standard f; templates but not yet for feature type models.
In this paper we address this by presenting the Fisher
forecasts on fy; for feature models based on these
specifications and observe that feature type models receive
larger improvements from the extra polarization informa-
tion than the standard templates, justifying this analysis.

The paper is organised as follows. First we briefly review
the theory of CMB bispectrum in Sec. II. Bispectrum
template for the feature model is defined and computed
here. In Sec. III we formulate the bispectrum estimator and
introduce a new method to further optimize its computa-
tion. The technique is applied to the case of a feature model
to yield equations for the Fisher forecast of fy;. We also
briefly discuss implementation details. In Sec. IV we
present our forecast results and their dependence on model
and experimental parameters. In particular, forecasts for the
Simons observatory are compared with the Planck results.
The results are summarized in Sec. V.

II. FEATURE MODEL BISPECTRUM
A. CMB bispectrum

One of the main subjects of primordial non-Gaussianity
studies is the 3-point correlation function of the primordial
perturbations which is defined by

(@(k)D(k;)D(k3))
= (27)36%)(k; + ks + k3)Bo (ki ko k3), (1)

where we have assumed statistical homogeneity and
isotropy. The primordial bispectrum Bg vanishes for
Gaussian perturbations, but more general inflation models
predict nonzero bispectra with various shapes. In order to
constrain these models we reparametrize the bispectrum
into a amplitude parameter and a normalized shape part:

Bo(ky, ky, ks) = fraBE " (ki ko ks). (2)

Constraining fy;, from the CMB measurements allows us
to determine how well the particular shape under consid-
eration aligns with the data, which we can then translate
into constraints on the model itself.

In order to compare the theory with measurements we
first need to relate the primordial perturbations to spherical
multipole modes of the late-time CMB anisotropies,

a, = 4n(-i) | (‘Z';

Here the index X is either T or E, representing CMB
temperature and E-mode polarization, respectively. The
linear CMB radiation transfer function AX(k) can be
computed from the Boltzmann solvers like CAMB [38].

Three point correlation function of aj,,’s yield the reduced
bispectrum bll Li; times a geometrical factor gf,;{af,;mz named
the Gaunt integral. After some algebraic manipulations
we obtain the following useful formula for the reduced
bispectrum:

2\3 [o
by = (‘) / rzdr/ Pk (kikyk3)*Bo (ki ks, k3)
T 0 Vi

3

O(k)AT (k)Y (k). (3)

X

1

[jl,»(kir)Afi(ki)]’ (4)
1

where j; is the spherical Bessel function arising from the
Rayleigh expansion formula. Using this equation, we can
compute the projected bispectrum from any given primordial
bispectrum. Direct computation of this four-dimensional
integral for every / combination, however, is practically
impossible. Not only is the integral in 4D but also the
oscillatory integrand requires a large number of sample
points in each of k;, making the full calculation for every /;
triple prohibitively expensive. All bispectrum estimators get
around this problem by expanding B¢, as a sum of separable
terms. This will be explained in more detail later using the
feature model template as an example.

B. Feature model

We follow the works of [1,18,24,33] and assume the
following template for the bispectrum of feature models:

2

A
B (ky ke k) =
(0] ( 1> 12 3) (k1k2k3)2

sin(wK + ¢), (5)

where K = ky + ky + k3, A represents the primordial
power spectrum amplitude, and ¢ is a phase. The oscil-
lation “frequency” w is associated with the location and
scale of feature in the inflationary potential. It is often
written in terms of the oscillation scale k. as w = 27/3k,.
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w is measured in Mpc but we omit the unit for notational
conveniences.

The feature model template has two free parameters that
need to be fixed before we can constrain the model: @
and ¢. The phase ¢ can be easily dealt with by observing
that

B (k. ks ks) = cos BB (ky. ks k)
+ sin pBg® (ky, k., k3). (6)

Here B! and BS® correspond to feature models with ¢p = 0
and 7/2, respectively. The nonzero phase simply corre-
sponds to a linear combination of the sine and cosine
templates. As we will see later these two shapes are in fact
highly uncorrelated. Therefore, they can be constrained
independently from each other.

On the other hand, one still has a complete freedom
of choice on the oscillation frequency w. Such freedom
dramatically expands the size of the parameter space. In
practice we constrain f, for each fixed value of oscﬂlatlon

frequency, which yields hundreds of estimates. Since there
are so many estimates we are looking at, there is a good
chance that we find notable signals by sheer luck.
Accounting for this “look elsewhere effect” has been
resolved using methods in [18] and subsequently applied
to the Planck analysis [1,24]. The look-elsewhere-adjusted
statistics used in the literature can be employed for the
future CMB-S4 data analysis. This work, however, focuses
on forecasting the “raw” estimates and comparing them
with those of Planck.

C. Separability

The bispectrum template of feature models (5) is an
example of separable shape. It can be expressed as a sum of
terms in the form f(k;)g(k,)h(k;) for some functions f, g,
and &, which dramatically simplifies the computation of
reduced bispectrum by, ;,;,. The three-dimensional integral
over the k space in (4) splits into three individual one-
dimensional integrals for separable shapes. Feature models
for example have

3
by f““_6A2< ) / rdr /V dketotithtis) TT [jz,.(kir)Aff(k,-)]
k

i=1

—6A2( )3 / zdrH{ / dkiei“’kij,i(kir)Aff(ki)]. (7)

Here the real and imaginary parts of b™ correspond to the bispectra of cosine and sine feature models, respectively.

Now define
X _—2 " dk si k)i (kr)AX (k 8
sy (r A sin(wk) j, (kr) A7 (k), (8)
X -—2 i dk k)i (kr)AX (k 9
cp(r) = o cos(wk) j,(kr) A7 (k). )

These are analogous to ) (r) and #¥(r) in the usual KSW estimator for local non-Gaussianity. Then (7) reduces to

X, X, X5 feat X X, X5 X X X5 X Xo X
by e —6/ 2dr<c, Cz 200 =y syt — sl‘clzsl*—s,‘slch)
263 0 3 1 2 3 1 2 3 1 2 3

. X, X3 X1 Xy X
+6IA 2dr<sl sz 013 + Czl sl2 c,2 —I—cll sy — slllslzzsl;)
X1 X,X3,c0s XXXzsm
= by by (10)
III. EFFICIENT COMPUTATION OF THE ESTIMATOR WITH POLARIZATION
A. Estimator
The optimal estimator for a given bispectrum in the weak non-Gaussian limit involves computing [5,32]
1 12X X XZX? — — 245 - 3
S;= 6 IZ: Z Gmyniymy b7 11 )(Cl,}nl.um)X‘X“(CJQ}nz,zsmS)X‘X’ (C13;1n3,z(,r:zb)X’X6
X [t @, = (Clomy s @1, + 2¥6lic)|. (11)
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Here summations are over /;, m;, X; and X} foreach j =1,
2, 3. The spherical multipole moments af,’s are computed
from observations, and 5() denotes the ith theoretical
bispectrum template under consideration.

Computing this form, however, requires an inversion of
the full covariance matrix Cj,, y,s, Which is computation-
ally expensive. As a result we will follow the diagonal
covariance approximation in [34] for the inverse covari-
ance: C;! ~ (1/C;,)87,,6m,—m,- We also approximate

Lilymymy ™
|

the covariance in the linear term by an ensemble average

over Monte Carlo simulations of Gaussian realizations:
X, X,
Lylsmyms ™~

estimator takes the form

<a,lmlaim2>. With these simplifications the

fi=_(F),S;, (12)

where

Lbl XXX (D) (=1 XX (o= XXy (o-1\XX5 [ 0 % 5 X, X, X, .
E E Gmymismy by 11, (G )M, ) 2(CL) 5, Ay Ay = \ Dy, oy )Gy + 2€yelic) |, (13)

lmXX

and

pX1XaXa(0)
A 1121z

DN

all X, X’ all/

The covariance matrix C; is now a 2 x 2 matrix consisting
of values CI7, CTE, CF" and CFE.' The linear terms (the
second in square brackets) are required to account for
anisotropies induced by masking and anisotropic noise.

F;; is the Fisher information matrix of the estimator. f g,
in (14) denotes the fraction of the sky covered by the
experiment, and h, b Zm ( i,;{%f,;my is a geometric
factor. Since the estimator f ; in (12) is nearly optimal, its
68% confidence (1o) interval can be computed from the
Fisher matrix as o; := Af\ = (F7!),,.

Note that most CMB-S4 experiments are ground based,
so they can probe smaller fraction of the sky compared to
Planck. Having a smaller fraction of the sky leads to
increased uncertainties for the estimator. The current
estimate is that the new experiments will cover 40% of
the sky, significantly less than the 74% of Planck. The error
bars will thus increase by a factor of 1.38 from the decrease
in fg, alone. This may be reduced by combining Planck
data for unobserved pixels in these experiments.

B. Orthonormalizing the covariance matrix

In [31] it was noted that orthogonalizing the multipoles
of temperature and polarization maps dramatically reduces
the number of terms in computation of the Modal estima-
tors. This technique can also be applied to KSW estimators,
or indeed any optimal bispectrum estimator, which is yet to
be done to the authors’ knowledge.

In both (13) and (14) there are summations over indices
X and X’ to account for correlations between the CMB

'Note that this is equivalent to having a 2/ x 2/ matrix with
diagonal [ x [ block matrices CT7, CTE, CET and CEF as in other
literatures including [31].

_ ! _ / X X X’ .(J)
(Clll)X]X] (Clzl)XZXZ(Cl3 )X';X bl X . (14)

[
temperature and E-mode polarization. This can be simpli-
fied by essentially making a change of basis in X space for
each [ so that every C; becomes orthonormal. We perform a
Cholesky decomposition on C; and invert the matrix. Then
C;! = LTL,, where L, is a lower triangular matrix given by

1
0
Ll = _C]TE C[TT . (15)
N VGG R IV G U G0
Now let

Im

=Y LI¥AX(k). and af, = ZLXX’ X
X/

(16)

Defining l;ll 1,1, to be the corresponding reduced bispec-
trum, (13) and (14) simplify to

1 Ll X XaX5.(i

_ 1hl; 1X0X3.(0) | =X =X, ~X3

Si = 6 E E gmlmzfn3b1|1213 [allmlalzmzal3m3
l-.m- X

X, ~X .
(<011;nlal,2mz>a13m3 + 20)’011‘3)]’ (17)
LS XXX (1) XX Xa ()
Fij = WZZ Lo b b (18)
all X alll

Using this method not only makes it more mathemati-
cally concise, but also halves the number of terms involved
in the summation. Linear transformations (16) only need to
be done once in the beginning of the program and cost little
compared to the main computation. We also found it easier
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to optimize the code using instruction level vectorizations
after this simplification.

The only downside of this method is that we no longer
can get breakdowns of signal from each of T7TT, TTE,
TEE and EEFE bispectrum since our new modes are linear
combinations of 7" and E modes. However, in most cases
we are interested in either T-only or T + E results, and this
method works perfectly well in these cases.

C. Estimator for feature models
We compute the general estimator (17) and (18) for
feature models. The method is similar to the one seen in
[33] except that now the polarization is included and the
covariance matrices are trivial thanks to the orthonormal-
ization process outlined above.
Consider the bispectrum shape of

Bo(ki ko k3) = [REB™ (k1. ko, ks) + [REB (k1. Ko, k),

(19)

for a fixed value of oscillation frequency . Here BS" and
B correspond to reduced bispectra b*" and b defined
in (10). The Fisher matrix F is 2 x 2 but its off-diagonal
entries are 2-3 orders of magnitude smaller than diagonal
ones in most cases as will be presented in the next section.
Thus, the two shapes are assumed to be uncorrelated and
constrained individually. Here we present detailed compu-
tations for 3 only but the cosine one can be computed
similarly.

From (10) and the definition of Gaunt integral gﬁ,yf%,ﬁ;mz =
Jany, ,, (@)Y, (@)Y, (i) it follows that

seub — / " R / PR-M, +3MM.2] and  (20)
0

oo e

+2M (M ,M.)] (21)

M (M32) + M (M?)

where

K YnB).  (22)

Again, the bracket (-) denotes averaging over Gaussian
simulations. The sum of S°® and S'" gives the final value
of § for sine feature model.

For efficient Fisher matrix calculation we follow [39]
and deploy the identity

2 _(2ll+])(212+])(2[3+1)
hily — 87

gfwmwmwmw, (23

where P;(u) represents the Legendre polynomial. Then,

3
:E/rzdr/r’zdr’

X /d.u[Pgs + 3PSSPEC - 3P35Pss - 3P?0Pss
=+ 6PcsPscPcc]’ (24)

where we have defined

ZZ (214 1)3%(
ZZ (21 + 1)3%(

and similarly P, and P,,.

Calculations of (22) and (25) are two of the most
computationally expensive steps. If we have not orthonor-
malized the covariance matrix, then there would be an
extra summation over X’ and some 2 x 2 matrix algebra
involving (C;')X¥'.

() Py().

Yfrr/’l

& (r)P(u).  (29)

Py (r. 7' p)

D. Probing beam and instrumental noise

In an ideal experiment where measurements are made on
each point of the sky perfectly, the covariance matrice C;(X/
in (13) and (14) consists purely of the signal. In reality,
however, the probing beam has finite width and the sensors
are noisy. These effects can be incorporated by modifying
the covariance matrices and bispectra as follows:

Cf}xz N W;(I W[ X, X 1X2 + NiﬁXz,
X1 X, X3 X, 2 X3 X1 X, X3
blllzl3 - W, le Wi b111213 ) (26)

where Wf and Nf‘xz represent the beam window function
and the noise covariance matrix, respectively. When sub-
stituted into the KSW estimator, these changes are equiv-
alent to modifying

Cflxz N ;(IX2 + (Wf] W;(Z)_le]XZ
— (Ciig)Xle + (C?OiSB)XIXZ, (27)

while keeping the bispectra same. Here we have defined the
effective (beam-corrected) noise covariance matrix C?Oise.
Modes for which C¢ is much larger than C;®
little to the fy; estimator.

For forecasting purposes we assume Gaussian beam and
white uncorrelated noise until more detailed experiment

contribute
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specifications become available. Under these assumptions,
the effective noise covariances reduce to [40]

C‘;Oise'TT =exp(l(l + I)U%eam)Nwhitev
C;loise.EE _ ZC?OiSC'TT, C;loise,TE =0. (28)

The factor of 2 for the EE mode comes from measuring
two Stokes parameters Q and U. The Gaussian beam profile
is usually specified by its FWHM (full width at half
maximum) in arc min, which is then converted to standard
deviations in radians for 6y, The noise level often comes
in the units of uK-arc min. This is then divided by
Tevp = 2.725 K, converted to radians and squared to
get N white*

For the Planck experiment, using 5 arc min FWHM
beam and the 47 uK-arc min noise level gives good
approximations to the post-component-separation noise
covariances. For CMB-S4 experiments the details are not
confirmed, but the beam FWHM is expected to lie between
1 and 5 arc min, while the noise level will range from 1 to
9 uK - arc min [35].

In real measurements there exists extra contamination in
large angular scales due to 1/f noises and the component
separation process. Though most of our analysis assumes a
simpler form of noise covariances elaborated above, for the
Simons Observatory forecasts we follow [36] and model
1/f noise as N; = Npq(1/linee) ™ + Nynie- The noise
curves from each channel were then put together using
the inverse variance method. This is a good approximation
for the E mode polarization but not for temperature, since
extra degradations occur during the component separation
process. Still, because dominant contributions to the feature
model signal comes from polarization data, this would be a
reasonable approximation for our forecast. For Planck the
full post-component-separation noise curves are available
and hence used for computations.

E. Implementation and validation

We implemented the pipeline outlined above using
the C programming language and parallelized using hybrid
MPI + openMP. The code was then run in the COSMOS
supercomputing system.

The transfer functions are generated from the CAMB
code [38]. Bessel function values were precomputed using
recursion relations and stored in a file, while the Legendre
function values were computed on the fly using the GNU
scientific library. The angular power spectrum data was
generated from ACDM parameters estimated in the Planck
2015 results.

Numerical integration for variables &, r and ' were done
using simple trapezoidal methods, as they can be easily
vectorized for optimization. On the other hand, integration
of u required more care because the Legendre polynomials
are highly oscillatory. We adopted the Gauss-Legendre

quadrature rule with 1.5/, + 1 points which can integrate
polynomials up to order 3/, exactly. The weights and
nodes were computed in the beginning using the QUADPTS
code [41].

Various checks have been done to ensure that the code
runs correctly. First we used the code to reproduce the
Planck results, which agreed within 3% error. The code was
then used to compute bispectrum for the constant model,
corresponding to the case where @ = ¢ = 0. There exists
an approximate analytic form in this case [30] which we
were able to reproduce accurately. We also performed
convergence tests on r and r integration by doubling the
number of points for each of them. The grid was chosen to
be very dense around recombination and quite dense near
reionization. We confirmed that changes in the integral are
less than 0.5% for each value of w.

IV. CMB-S4 FORECAST RESULTS
A. Phase dependence

We now present the CMB-S4 forecast on the error bars of
primordial non-Gaussianity parameter for feature models.
For notational convenience we denote the error bars for sine
and cosine feature models by o, and o.,,. Superscripts T
and T + E are also put to distinguish temperature-only
analysis from the full analysis including polarization.

First of all, we check that the sine and cosine bispectrum
templates defined in (5) are indeed uncorrelated and can be
constrained separately. In order to do this, we see if the
Fisher matrix of feature models is robust to changes in the
phase for different @ values of interest. Feature model
bispectra with a specific phase ¢ can be represented as a
sum of sine and cosine ones as in (6). Hence, its Fisher
matrix is given by

F(w,$) = cos® pF (@) + sin® pF .. (o)
+2cos ¢sinpF.(w), (29)

where F is the element F;; of the Fisher matrix in (14)
with reduced bispectra b) = b)) = p*", and so on.
Correlation between sine and cosine templates can be
expressed as F . /(F,F..)"/?, and this value can be learned
from analyzing the ¢ dependence of F(w, ¢).

Figure 1 shows forecast error bars for the full phase
range [0, z] in the most sensitive experiment specification
of 1’ beam and 1 K - arc min noise. The forecast ¢ varies
within 1% level for every @ > 20. In terms of the Fisher
matrix, the cross term F,. was 2-3 orders of magnitude
smaller than F and F,. for all cases. In other words,
correlation between the sine and cosine templates was
smaller than 1%. This justifies our previous choice of
constraining f3! and f5° separately. We now focus our
attention to o, in future discussions.

For smaller values of w, the phase affects the error bar
primarily through modulating the amplitude of the acoustic
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FIG. 1. Forecast error bars 67 £ versus the phase ¢. Apart from
the smallest frequency w = 10, the error bar remains almost
constant. This implies that the sine (¢ = 0) and cosine (¢ = 7/2)
feature models can be constrained independently.

oscillations in the CMB itself. The radiation transfer
functions are nonzero for k values in 0-0.8 Mpc~!. The
argument wk covers less than two full periods in this k
range if @ < 10 Mpc, and phase has a direct influence on
the amplitude of the acoustic peaks. In the extreme case of
@ = 0, the bispectrum vanishes completely for the sin
feature model. Variations in the overall bispectrum ampli-
tude therefore result in varying Fisher information for low
frequencies.

B. I,,.x dependence

Figure 2 shows the graph of forecast error bar agﬁ'E as we

increase /.. The forecasts were done within angular scale
range 2 <[ < [., the oscillation frequency w set to 100,
and assuming 1’ beam and 1 uK-arc min noise. The
Planck noise curves were approximated by ones for 5’
beam and 47 uK - arc min noise for this plot only, since we
extend /., to 4000 here.

The Planck error bar essentially stalls out when /[,
reaches 2000. The forecast error bar, on the other hand,
keeps decreasing until /,,,, = 4000 thanks to the improved
sensitivity in measuring small scale, or large I’s. Despite the
information loss due to smaller sky coverage fg, the
forecast error bar reduces to about 42% of Planck by
[nax = 4000. This corresponds to a factor of 2.4 times
improvement to measurement precision on fyy..

C. Beam and noise dependence

We explore how different beam widths and noise levels
affect the forecast error bars in this section. Figure 3 shows
forecast 6.7 for ranges of beam and noise levels. Their

oscillation frequencies are also varied, but only two

120 T T T T T T

—— Planck
—6—1" beam, 1pK noise |

E

100

80

40

20

! ! ! ! ! !

0
500 1000 1500 2000 2500 3000 3500 4000

lmaz

FIG. 2. Forecast error bars 0571:5 when multipoles 2 < [ < [,

are included, in comparison with Planck. The oscillation fre-
quency o is set to 100 Mpc in all cases. Planck did not have
access to the information from modes [ > 2000 due to large noise,
but the CMB-S4 experiments are expected to be able to explore
modes up to [ = 4000.

representatives @ =20 and 2000 are chosen here.
Forecasts for the other values of w also show similar
dependences on beam width and noise level.

First of all, note that all estimated error bars in the
plot are smaller than Planck, for which ¢,/* = 34 when
w =20 and ¢.t¥ =610 when @ =2000. In fact even
the least sensitive CMB-S4 specification of 5’ beam and
9 uK - arc min noise is expected to put better bounds on
feature models.

Wider beams and noisier detectors provide less signal and
thus larger error bars, as expected. In this range of beam width
and noise levels, noise has a bigger effect on the forecast;
experiments with 1’ beam and 5 K - arc min noise yields
larger error bars than the ones with 5° beam with 1 4K -arc min
noise. Between the most sensitive specification of 1’ beam
and 1 uK - arc min and the least sensitive one with 5’ beam
and 9 pK - arc min, o, differs by a factor of 1.6.

D. Oscillation frequency dependence

We now present the main results of the forecast.
Figure 4 summarizes the o, forecasts for several different
CMB-S4 preliminary specifications, including the Simons
Observatory (SO) baseline and goal. Note that the 1/f noise
effects are incorporated in SO forecasts but not in other
ones. We also provide 1o errors for joint estimators, for
which Planck signals from the fraction of the sky not
covered by CMB-S4 are combined via oj‘o%m = o6kp.sat
Opine- This method is not statistically optimal but suffi-
cient to give an idea of the joint estimation power.

The most sensitive setup with 1’ beam and 1 K- arc min
noise would yield error bars that are 47%—-62% of Planck,
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FIG. 3. Beam (left) and noise (right) dependences of the forecast error o—ﬁE for fixed w. The noise level was set as 1 K - arc min for
the first plot, while the second plot had fixed beam FWHM of 1’. We obtain less information from using wider beam and noisier sensors,

as expected.

depending on the oscillation frequency w. These corre-
spond to a factor of 1.6-2.1 improvement. Relatively
smaller improvements are made for high oscillation
frequencies. They correspond to smaller momentum scales
k., = 2r/3w, or larger angular scales, which benefit less
from the increased sensitivity of CMB-S4 experiments.
When the results are combined with Planck the error bar
further reduces to 45%-57% of Planck, which is a factor of
1.7-2.2 improvement.

Forecast error bars from the SO baseline specification
and the more ambitious one do not differ very much.
Quoting in terms of the baseline values, o, lies about
68%—-86% of that of Planck or equivalently, 1.2-1.5 times

700 . : T
—+— Planck
—+— SO baseline

SO goal

—+—1’ beam, 1K noise

600

500

400

T+E
sin

© 300
200

100

1500

2000

smaller than Planck. Numbers change to 62%-74% when
combined with Planck, so that the overall improvement
ratio is about 1.3-1.6.

Figure 5 shows the results when only the CMB temper-
ature data are used in the forecast. CMB-S4 would in fact
be worse than Planck in terms of constraining f& for this
case. The loss in information due to less sky coverage
overwhelms the increased sensitivity. We see again that the
real strength of CMB-S4 experiments lies in measuring the
CMB polarization.

Then how much information do we actually gain
from adding E-mode polarization? Figure 6 shows the
ratio of o,’s between the temperature-only (T) and

700 T T T
—+— Planck
—+— SO baseline + Planck
SO goal + Planck
—+—1’ beam, 1K noise + Planck

600
500
400

© 300

T+E

s

200

100

1500

2000

FIG. 4. Frequency dependence of the forecast error in comparison to Planck (left). All CMB-S4 specifications would improve
constraints on feature models. The most sensitive setup with 1’ beam and 1 yK - arc min noise is expected to yield error bars that are
1.6-2.1 times smaller than Planck. We get stronger constraints when the Planck results are combined with CMB-S4 (right).
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FIG. 5. Frequency dependence of the forecast error from temperature data only, in comparison to Planck (left). The CMB-S4
experiments would perform worse than Planck when only the temperature map is concerned. After the addition of Planck data the error
bars improve only marginally (right). Polarization data are crucial in constraining feature models.

polarization-included (7 + E) analyses. The forecast
error bars reduces up to 4.6 times smaller when the
polarization information is added, which is much larger
than the corresponding Planck value of 2.2. The ratio
decreases overall when the joint statistics with Planck
are considered. An intriguing feature of this plot is that
the ratio is maximized around @ = 200 before it starts
dropping again.

In order to gain insight on this behavior, we performed
some simplified computations using the power spectrum.
We imposed oscillations on the primordial power spectrum
as P'(k) == P(k)(1 + sin(2wk + ¢)), which is just like our
feature model bispectrum template but with o (k| +k, + k3 )
replaced by w(k + k). P'(k) is then projected to the late-
time harmonic space using the transfer functions,

5 T T

—+— 1’ beam, 1uK noise
—*— S0 goal

SO baseline
—%— Planck

4.5

m
+ - 3.5

R

S

3

% 3 1
o

1.5
10!

103

2
o 22 / RdkP' (AN (AR (k). (30)
T

We observed that the fractional variation (C)—C;)/C;
displays some oscillations in /, and the largest contribution
comes from a term  sin(2w//At) where Az represents the
conformal distance to last scattering surface. This fact can
be explained by approximating the transfer function as
A;(k) =~ (1/3)j,(kA7) and noting that the spherical Bessel
function has a sharp peak at [ for large /’s. The integral in
(30) therefore picks up a term proportional to sin(2wl/At).

The amplitude of these ‘“maximal” oscillations in
(C;—C))/C; were then computed using discrete Fourier
transform for different values of oscillation scale @ and two

5 T T

—+—1" beam, 1uK noise + Planck
—x—S0 goal + Planck

SO baseline + Planck
—%— Planck

4.5

FIG. 6. Improvements on the forecast error when including E-mode polarization data. Constraints from the CMB-S4 experiments
would improve significantly from addition of the polarization data. The improvement is maximized around @ =~ 200 Mpc.
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1.2 T T T

sin EE

Maximum oscillation amplitude

FIG. 7. The maximum amplitude of oscillations detected in
fractional variations of the projected power spectrum C!7 and
CFE, when extra oscillations sin(2wk) and cos(2wk) were
imposed on the primordial power spectrum. Heuristically this
shows that the E-mode polarization is more sensitive to the
primordial oscillations, especially in the @ range of 70 to 300.

different phases ¢ =0, /2 (i.e., sine and cosine). The
results are shown in Fig. 7. Some extra wiggles to the graph
come from the phase of oscillations imposed; we indeed see
that graphs of sine and cosine oscillate between each other.
Some peak features near w70 and 140 arise from
resonances with baryonic acoustic oscillations.

We can think of the computed amplitude as a measure of
information C,’s contain about primordial oscillations. First
of all, note that the amplitude in all four plots generally
decreases as w grows. Previously in Fig. 4 we saw that the
amount of information obtained from the CMB is smaller
for larger w’s, consistent with what can be said from the
amplitude analysis. Moreover, the amplitudes for the EE
mode are generally larger than the TT mode ones, and their
difference is the largest in the @ range of 70 to 300. This
could serve as a heuristic explanation for the improvement
in forecast error bars from including polarization data being
maximized around @ = 200, as depicted in Fig. 6.

TABLE L

E. Comparison to scale invariant models

Our pipeline for forecasting f& also yields forecasts

for fyp, of the constant model. Constant models are scale
invariant and have a trivial shape, so that B(ky, k,, k3) o
(kykok3) 2. Forecasts on £ follow from our pipeline by
simply setting oscillation frequency @w =0 and phase
¢ = n/2. Table I summarizes the forecast results for several
different CMB-S4 specifications mentioned before, using
both Tand E data and in combination with Planck data from
the regions of the sky not covered by CMB-S4. For the 1’
beam and 1 yK-arc min noise setup, the error bar is
expected to be reduced by a factor of 2.3 compared to
Planck.

The latest Planck constraints on fy; of some popular

bispectrum templates are given by fitl =2545.7,

f\?f” =-16+70, and fYMh° =-34433 [1]. CMB-S4
experiments are expected to yield better estimates on these
as well. Table II summarizes the forecast improvement ratio
given in [35] together with the constant and feature model
ratios computed in this work.

To the authors’ surprise, the estimation error for feature
models does not improve as much as other templates.
Feature models benefit much more from polarization data
than other scale independent shapes; for example,
o' /6T*E = 4.6 for the feature model with @ = 200 in
CMB-S4, while the value equals 2.8 for the constant model.
Because CMB-S4 would have significantly enhanced
polarization measurement sensitivity, we originally
expected the feature models to be constrained significantly
better than Planck.

In order to investigate this lack of improvement, we
performed a breakdown analysis on the improvements
gained from CMB-S4 temperature and polarization; we
computed o(fy;) for the constant and feature models
using each of the four combinations of Planck/CMB-S4
noise curves for temperature/polarization (e.g., Planck
T 4+ CMB-S4 E). The results are summarized in Table III.

We see that the constraints on feature models improve by
a factor of 1.7 when swapping Planck polarization noises
with the CMB-S4 ones. This factor is indeed larger than
that of the constant model, which equals 1.6. The difference

Forecasts on the estimation errors of fy for the constant model.

Planck SO baseline + Planck

SO goal + Planck

1’ beam, 1 uK noise + Planck

() 23.4 14.9

14.0 10.4

TABLE IL

Expected improvements on estimation errors of [y for the CMB-S4 1’beam, 1 uK - arc min setup, for

various bispectrum templates. The local, equilateral and orthogonal results are quoted from [35].

Local Equilateral

Orthogonal

Constant Feature (w = 200)

O.Planck /GCMB-S4 25 2.1

24 2.3 2.0
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TABLE III.  Expected improvements on the estimation errors of
fn1, for each combination of Planck/CMB-S4 temperature (T)
and polarization (E) data. Here the CMB-S4 assumes 1’ beam and
1 K - arc min noise. For feature model the oscillation frequency
@ = 200 and phase ¢ = 0. The sky fraction fg, = 0.4 for all
cases except for Planck 7 + Planck E.

E
o(f™) improvement Planck CMB-S4
T Planck 1.0 1.6
CMB-S4 1.1 2.2
E
o(fY) improvement Planck CMB-S4
T Planck 1.0 1.7
CMB-S4 0.9 1.9

is however not significant. It seems that the amount of
feature signals in polarization data left unexplored by
Planck is not tremendously large compared to the constant
model. The feature model improves less than the constant
model when the temperature measurements are enhanced.
In fact, for feature models the signal loss from smaller sky
fraction fg, eclipses the signal gain from more sensitive
temperature measurements. This lack of improvements
from temperature causes the full CMB-S4 constraints on
the feature model not to improve as much as the constant
model overall.

V. CONCLUSION

Upcoming CMB Stage-4 experiments will provide an
opportunity to measure CMB temperature and polarization
with greater precision. The estimation of primordial non-
Gaussianity parameters would greatly benefit from the
improvement in measurement sensitivity. In this research
we made forecasts on fyy for the feature models, which
have not been done so far despite the growing interests on
inflation models with primordial oscillations. For efficient
forecasts we simplified the bispectrum estimator for fy; by
orthonormalzsing the covariance matrix, further optimizing
the computation. When the most sensitive CMB Stage-4
experiment specification of 1’ beam and 1 K -arc min
noise is concerned, we expect a factor of 1.7-2.2 times

more stringent constraints compared to Planck. Under
realistic Simons Observatory conditions the improvement
would be about 1.3-1.6 to Planck.

Although this is not a massive boost in the estimation
power, we can hope to verify current 4¢-level signals found
in the 2015 Planck analysis. It is also worth noting that the
CMB-S4 experiments would allow us to explore higher /
modes, especially since localized oscillations in this range
are currently unconstrained. Moreover, though we have
only considered linearly spaced oscillations in this work,
we expect even better improvements on the models
inducing log spaced oscillations. Higher [ modes would
promote the constraining power as the oscillation slows
down in small scales for this type of model. Lastly, cross-
validation using these new statistically independent modes
would be useful.

We also extensively studied how the forecasts depend on
various parameters. Frequency dependences of the ratio
between T and T + E forecasts were particularly illuminat-
ing; the improvement from adding polarization information
is maximzsed around w = 200. Some simplified calcula-
tions were presented to heuristically address this fact. Even
though the estimation power on feature models massively
benefit from the polarization data, overall expected
improvements compared to Planck are quite underwhelm-
ing. Breakdown analysis on temperature and polarization
contribution revealed that the feature models would indeed
improve more than other scale-independent models if only
the polarization measurement sensitivity is enhanced to the
CMB-S4 standards. However, boosts in the temperature
measurements affect scale-independent models more so
that they gain more information overall.
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