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Diagnostic host gene signature for distinguishing
enteric fever from other febrile diseases
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Abstract

Misdiagnosis of enteric fever is a major global health problem,
resulting in patient mismanagement, antimicrobial misuse and
inaccurate disease burden estimates. Applying a machine learning
algorithm to host gene expression profiles, we identified a diag-
nostic signature, which could distinguish culture-confirmed enteric
fever cases from other febrile illnesses (area under receiver operat-
ing characteristic curve > 95%). Applying this signature to a
culture-negative suspected enteric fever cohort in Nepal identified
a further 12.6% as likely true cases. Our analysis highlights the
power of data-driven approaches to identify host response
patterns for the diagnosis of febrile illnesses. Expression signatures
were validated using qPCR, highlighting their utility as PCR-based
diagnostics for use in endemic settings.

Keywords biomarker; enteric fever; machine learning; transcriptomics

Subject Categories Biomarkers; Chromatin, Transcription & Genomics;

Microbiology, Virology & Host Pathogen Interaction

DOI 10.15252/emmm.201910431 | Received 5 February 2019 | Revised 30 July

2019 | Accepted 9 August 2019 | Published online 30 August 2019

EMBO Mol Med (2019) 11: e10431

Introduction

Enteric fever, a disease caused by systemic infection with Salmo-

nella enterica serovars Typhi or Paratyphi A, accounts for 13.5–

26.9 million illness episodes worldwide each year (Buckle et al,

2012; Mogasale et al, 2014). In resource-limited tropical settings,

these infections are endemic and the accurate diagnosis of patients

presenting with undifferentiated fever is challenging.

Diagnostic tests for enteric fever rely on microbiological culture

or detection of a serological response to infection, and are often

unavailable or insufficiently sensitive and specific (Parry et al,

2011). Blood culture remains the reference standard against which

new diagnostic tests are evaluated, and the sensitivity for this test

can reach 80% under optimal conditions (Waddington et al, 2014),

but low blood volumes and uncontrolled antibiotic use often result

in decreased sensitivity in the field. It has been estimated that

approximately 1–4% of suspected enteric fever cases are confirmed

by positive blood culture, indicating a large portion of suspected

cases treated with empirical antimicrobial therapy (Andrews et al,

2018). Due to the lack of reliable diagnostics, this culminates in

substantial overtreatment of enteric fever with unnecessary antibi-

otics (Andrews et al, 2018). These reports highlight the urgent need

of new diagnostic approaches to enable the accurate detection of

enteric fever cases in endemic settings, to guide management of

febrile patients and appropriate use of antimicrobials, and to iden-

tify populations likely to benefit from vaccine implementation.

Most common tests used for acute infectious disease diagnosis

employ methods to directly detect the disease-causing pathogen, by

either culture, antigen detection or amplification of genetic material

by PCR. An alternative approach is to identify a set of human host

immune responses, which together may generate a specific pattern

associated with individual infections or pathogens. With an increas-

ing quantity of molecular host response data being generated by

high-throughput methods—including whole blood gene expression

profiling—differences in the activation status of the immune

response network during infection may be a tractable diagnostic

approach. Recently, small sets containing 2–3 genes have been

described, the expression of which can accurately differentiate

between viral or bacterial infection, and active or latent tuberculosis

(Herberg et al, 2016; Sweeney et al, 2016). Merging available
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well-characterized datasets derived from human clinical samples

representative of a variety of fever-causing infections common in

tropical settings presents an invaluable resource to identify host

immune response patterns specific for enteric fever.

As a human-restricted infection, the development of enteric fever

diagnostics has been hindered by the lack of reliable in vivo models.

Using data from a series of controlled human infection models

(CHIMs; Waddington et al, 2014; Dobinson et al, 2017) of S. Typhi

or S. Paratyphi A infection, whole blood gene transcriptional

responses were identified and then further characterized using

samples collected from febrile patients in an endemic setting (Kath-

mandu, Nepal). Integrating these data with publically available

human gene transcription datasets, we employed a machine learn-

ing algorithm to identify an expression signature that could distin-

guish blood culture-confirmed enteric fever (EF) cases in both the

controlled environment (CHIM) and endemic setting from other

febrile disease aetiologies and non-infected individuals (healthy

controls; Data ref: Berry et al, 2010b, Data ref: Hoang et al, 2010b,

Data ref: Idaghdour et al, 2012b, Data ref: Naim et al, 2011; Berry

et al, 2010a; Hoang et al, 2010a; Idaghdour et al, 2012a; Obermeyer &

Emanuel, 2016).

Results

Transcriptional profiles in response to enteric fever are similar in
challenge study and endemic cohorts

We recently described the molecular response profile of acute enteric

fever in individuals participating in the typhoid CHIM (Data ref:

Blohmke et al, 2016b), which was characterized by innate immunity,

inflammatory and interferon signalling patterns (Blohmke et al, 2016a).

To compare responses to enteric fever occurring during natural

infection in an endemic area, we generated transcriptional profiles

in samples collected from culture-confirmed enteric fever patients

(S. Typhi: “03NP-ST”; S. Paratyphi A: “03NP-SPT”), healthy

community controls (“03NP-CTRL”) and febrile, culture-negative

suspected enteric fever cases (“03NP-sEF”) recruited in Nepal (Kath-

mandu; Study: “03NP”; Fig 1A). We detected significant differential

expression (DE; FDR < 0.05, FC � 1.25) of 4,308 and 4,501 genes in

enteric fever patients with confirmed S. Typhi (n = 19) and S.

Paratyphi A (n = 12) bacteraemia, respectively, when compared

with healthy community controls (n = 47; Fig 1B). Similar numbers

of genes were differentially expressed in samples collected at the

time of enteric fever diagnosis in healthy adult volunteers chal-

lenged with either S. Typhi (“T1-ST”) or S. Paratyphi A (“P1-SPT”)

in a CHIM (Fig 1B; Blohmke et al, 2016a; Dobinson et al, 2017).

As comparison of host responses at the gene level can be difficult

to interpret, we performed gene set enrichment analysis (GSEA;

Subramanian et al, 2005) of blood transcriptional modules (BTMs) as

a conceptual framework to interpret the host responses in the context

of biological pathways and themes (Li et al, 2014). Overall, between

54 and 74 BTMs were significantly enriched [Benjamini–Hochberg

(BH)-corrected P < 0.01] in blood culture-confirmed enteric fever

cases in the CHIM and natural infection and CHIM participants who

did not develop enteric fever (measured at day 7 post-challenge—

“nD7”; Appendix Table S1). Figure 1C shows the enriched BTMs in

each population with lines indicating when specific BTMs are also

enriched in other populations (Fig 1C; please also refer to

Appendix Table S1). The majority of BTMs enriched in cases from the

enteric fever CHIM were also enriched in naturally infected cases

from Nepal (56–69%, Appendix Table S1—red squares). Positively

enriched modules represented cell cycle (CCY), type I/II interferon

and innate antiviral responses (IFN), dendritic cell (DC), innate immu-

nity, inflammation and monocyte (Infl./Mono) signatures. In contrast,

T-cell (TC) signatures were down-regulated in patients with confirmed

enteric fever, as we have previously described (Fig 1C–E; Blohmke

et al, 2016a). In addition, a number of modules including inflamma-

some receptors (M53), monocyte enrichment (M118.0, M118.1, M81,

M4.15, M23, M73, M64, S4) and inflammatory responses (M33) were

significantly enriched in the CHIM but not in cases from Nepal.

Single-sample GSEA (ssGSEA) demonstrated the similar enrichment

pattern for a selection of IFN and DC signatures between individuals

with confirmed typhoid and paratyphoid fever in the CHIM and natu-

rally infected cases (Fig 2A). Overall, we observed marked similarity

in the gene transcription responses between acute enteric fever cases

from the CHIM and an endemic setting in Nepal.

Responses of febrile, culture-negative samples in Nepal

In culture-negative, suspected enteric fever patients (03NP-sEF)

from Nepal, we detected differential expression of 3,517 genes when

compared with healthy community controls (Appendix Fig S1B).

While we observed 2,843 genes as commonly expressed in all three

Nepali patient cohorts (03NP-ST, 03NP-SPT and 03NP-sEF), addi-

tional 582, 756 and 183 genes were uniquely expressed by subjects

with confirmed S. Typhi (03NP-ST), S. Paratyphi A (03NP-SPT) or

suspected enteric fever (03NP-sEF), respectively (Appendix Fig S1A

and B). Unsupervised hierarchical clustering of these patients based

on their expression of the 500 most variable genes in the Nepal

cohort demonstrated clustering into three groups (Fig 2B): Group A

contained mostly healthy control participants (03NP-CTRL); Group

B contained mostly patients with suspected enteric fever (03NP-

sEF); and Group C contained a mixture of patients with suspected

enteric fever, and blood culture-confirmed S. Typhi (03NP-ST) or S.

Paratyphi A (03NP-SPT) infection. Of note, three samples (03NP-

CONT) in this cohort grew bacterial contaminants and were thus

excluded from the entire analysis.

Using ssGSEA, we observed a heterogeneous BTM enrichment

pattern with broad variability in normalized enrichment scores

across suspected enteric fever patients (depicted by the interdecile

range; Appendix Fig S1C). The most consistent positively or nega-

tively enriched modules represented cell cycle, IFN, inflammatory

responses, DC and some NK cell signatures (green cluster) and TC-

and BC-related signatures (red cluster), respectively. In contrast,

heterogeneous enrichment in which approximately half of partici-

pant samples demonstrated up- or down-regulation was observed in

BTMs representing TC activation patterns, protein folding and meta-

bolism (brown cluster), or in innate response and monocyte signa-

tures (purple cluster; Appendix Fig S1C).

Multicohort data quality assessment

In order to address the potential overdiagnosis of enteric fever and

associated inappropriate antimicrobial use, we next aimed to identify a

set of genes whose expression is able to differentiate enteric fever from
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other common febrile conditions found in tropical settings. We repur-

posed publically available datasets (Data ref: Idaghdour et al, 2012b,

Data ref: Subramaniam et al, 2015b, Data ref: Berry et al, 2010b, Data

ref: Kaforou et al, 2013b, Data ref: Hoang et al, 2010b, Data ref:

Kwissa et al, 2014b, Data ref: Tolfvenstam et al, 2011b) describing

host transcriptional response in two malaria (Idaghdour et al, 2012a;

Subramaniam et al, 2015a), four tuberculosis (Berry et al, 2010a;

Kaforou et al, 2013a) and four dengue cohorts (Appendix Table S2;

Hoang et al, 2010a; Tolfvenstam et al, 2011a; Kwissa et al, 2014a).

Using independent datasets, we designed a discovery cohort consisting

of control samples from each respective study (n = 220 community

controls or convalescent samples, “CTRL”), 74 enteric fever (“EF”), 94

blood-stage P. falciparum (“bsPf”), 67 dengue (“DENV”) and 54 active

pulmonary tuberculosis (“PTB”) cases. An independent validation

cohort consisted of 109 CTRLs, 50 EF, 19 bsPf, 49 DENV and 97 PTB

samples (Fig 3). Finally, a cohort of “unknown” samples was created

consisting of febrile culture-negative suspected EF cases from Nepal

(“sEF”), and samples collected from CHIM study participants who did

not develop enteric fever after challenge at day 7 (“nD7”) and their

respective pre-challenge baseline samples (“D0”; Fig 3). Using princi-

pal component analysis (PCA) to assess the variability at the level of

gene expression between the cohorts indicated some distinct clustering

between cases (Appendix Fig S2A), for each infection, whereas no

such differences were observed with the comparator CTRL samples

(Appendix Fig S2B).

Five genes sufficiently distinguish EF from other
febrile infections

With these data, we aimed to build a classifier containing a mini-

mum set of genes that could discriminate culture-confirmed enteric

fever cases from individuals with other causes of fever (class:

“Rest”, consisting of CTRLs, DENV, PTB and bsPf; 2-class classifi-

cation; Fig 3) using a Guided Regularized Random Forest (GRRF)

algorithm (Deng & Runger, 2013). Genes were ranked by frequency

of selection in each of 100 iterations, and applying a selection

threshold of ≥ 25%, we identified a putative diagnostic signature

containing STAT1 (98% of iterations), SLAMF8 (76%), PSME2

(39%), WARS (37%) and ALDH1A1 (36%; Fig 4A). With this 5-

gene signature, we were able to predict which individuals in the

validation cohort had enteric fever with a sensitivity and specificity

of 97.1 and 88.0%, respectively (area under receiver operating

characteristic curve, AUROC: 96.7%; Fig 4B, Appendix Table S3A).

Of blood culture-confirmed enteric fever cases in the validation

cohort, 6 of 51 were misclassified as “Rest” (i.e. classification

probability > 0.5; Fig 4C—top), and 8 of 274 samples belonging to

class “Rest” were classified as enteric fever. These included six

tuberculosis and one dengue case, and a pre-challenge baseline

sample from a CHIM participant (Fig 3C—bottom).

To allow comparison between the different disease conditions,

we quantified expression of the five genes identified in each sample

using the z-score of the geometric mean of the expression values

(expression score). Significant differences in expression scores were

observed between the enteric fever samples and all other conditions

in both the discovery (top) and the validation (bottom) cohort

(Fig 4D). Of note, there were no significant differences between the

scores calculated for the control samples derived from endemic

areas or naı̈ve, healthy controls from the CHIM, indicating the

homogeneity of expression of these genes in healthy controls from

different studies and geographical locations.

The design of discovery and validation cohorts is likely to have an

impact on the diagnostic signature selected, and we therefore

exchanged the validation and discovery cohort and re-ran the analy-

sis. Although in this experiment four instead of five genes were

selected (using a threshold ≥ 25%), most genes included were also

part of the initial signature (STAT1, SLAMF8, WARS) and the high

predictive accuracy was maintained (AUROC: 97.2%; Appendix Fig

S3A and B). These results demonstrate the ability of a small number

of genes for predicting true EF cases from other febrile illnesses caused

by another bacterial pathogen, and of parasitic or viral origin.

Multiclass prediction classifies three of five
conditions simultaneously

Given the apparent success of small gene expression signatures in

classifying two distinct groups, we sought to leverage the overall

dataset and the GRRF algorithm to identify a signature that could

accurately classify more than two classes simultaneously. We re-

analysed the data preserving the original class labels (i.e. CTRL, bsPf,

DENV, PTB and EF) and performed the iterative feature selection step

using the GRRF algorithm (Fig 3—”multiclass classification”). Apply-

ing a ≥ 25% selection threshold to ranked features identified seven

genes (RFX7, C1QB, ANKRD22, WARS, BATF2, STAT1 and C1QC) able

to discriminate the classes (Fig 4E). Prediction of the validation cohort

using this 7-gene signature indicated good sensitivity and specificity

for classifying CTRL, bsPf and EF cases; however, the identification of

DENV and PTB was less accurate (Fig 4F, Appendix Table S3B). Anal-

ysis of individual gene expression levels in each group indicated that

RFX7 was only up-regulated in bsPf samples, while STAT1, WARS,

and ANKRD22 and BATF2 were all strongly up-regulated in EF.

◀ Figure 1. Overview of Oxford and Nepal comparison.

A Overview of enteric fever cohorts used in this study (T1: typhoid CHIM study 1; T2: typhoid CHIM study 2; P1: paratyphoid CHIM; 03NP: Nepali cohort. ST: S. Typhi;
SPT: S. Paratyphi A; sEF: suspected enteric fever; D0: day of challenge, which represents the control samples in the Oxford CHIM; CTRL, endemic community
controls; nD7, day 7 after challenge in participants who stayed well in the CHIM; BC+, blood culture positive; BC�, blood culture negative; Dx, diagnosis).

B Volcano plots of up-regulated (red) and down-regulated (blue) genes (compared to healthy control samples) in S. Typhi- and S. Paratyphi A-positive individuals
(Nepal and Oxford). Black numbers indicate the up- and down-regulated genes compared to healthy controls.

C Circular plot depicting the overlap of BTMs between enteric fever and nD7 samples from Oxford and Nepal. Tracks (from outer to inner): cohort and samples; BTM
labels; direction of enrichment (blue: down; red: up; compared to healthy controls). Cords represent overlap of enrichment between given cohorts (red: overlap
between P1-SPT and T1-ST; green: overlap between T1-nD7 and P1-nD7; blue: overlap of 03NP-ST with P1-SPT and T1-ST; purple: overlap of 03NP-SPT with P1-SPT
and T1-ST; yellow: overlap between 03NP-SPT and 03NP-ST).

D, E Scatter plots of BTMs enriched (P > 0.05) in blood culture-positive samples in Nepal (y-axis) versus Oxford (x-axis) for typhoid fever (D) and paratyphoid fever (E).
For further details on BTMs, refer to reference (Chaussabel & Baldwin, 2014).
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Expression of these genes in PTB and DENV samples was variable

accounting for the lower performance of the signature in these condi-

tions (Appendix Fig S4A and B).

Prediction of unknown samples

Given the superior performance of the 2-class diagnostic signature,

our subsequent analyses focused on using the initial five genes iden-

tified to ascertain whether enteric fever was the likely true underly-

ing aetiology of suspected febrile, blood culture-negative cases in

Nepal (03NP-sEF; n = 71), part of the unknown cohort (Fig 3).

Included in this cohort were 144 samples originating from challenge

studies with known class membership confirming the correct classi-

fication of 94.4% of the samples by the GRRF algorithm

(Appendix Fig S5 and Table S4).

Classification of the 03NP-sEF cases predicted nine of 71 (12.6%)

febrile, culture-negative patients to be true enteric fever cases and

the remaining samples to belong to class “Rest” (Fig 5A). Relating

the gene expression scores to the predicted class probabilities indi-

cated no clear separation of scores according to the predicted class

(Fig 5B). Furthermore, comparing the expression score (based on

microarray data) of febrile, culture-negative samples (03NP-sEF)

with culture-confirmed enteric fever (03NP-ST or 03NP-SPT) in

Nepal showed a marked overlap, indicating that these scores alone

are insufficient for 2-class discrimination (Fig 5C).

Diagnostic validation by qPCR

Finally, to validate the induction of the diagnostic gene signature

in blood culture-confirmed enteric fever cases, we performed

Figure 3. Flow diagram of machine learning analysis.

The discover cohort consisted of only Illumina datasets and was used for feature selection using the GRRF algorithm. For the validation cohort, Affymetrix datasets were also
included. A cohort of unknown samples consisted of pre-challenge baseline samples of participants who stayed well following challenge, their respective nD7 samples
(7 days after challenge) and febrile, culture-negative suspected enteric fever (sEF) cases from Nepal. Refer to Appendix Table S2 for study identifiers. 03NP: Nepali cohort. T1:
Oxford typhoid CHIM study 1. T2: Oxford typhoid CHIM study 2; P1: Oxford paratyphoid CHIM.

6 of 16 EMBO Molecular Medicine 11: e10431 | 2019 ª 2019 The Authors

EMBO Molecular Medicine Christoph J Blohmke et al



n.s.

**** n.s **

**** n.s.

****

2.0

1.0

0.0

1.0

2.0

3.0

3.5

Ox.CTRL CTRL PTB DENV bsPf ST SPT

S
co

re

n.s.

****
n.s. *

****

****

2.0

1.0

0.0

1.0

2.0

3.0

3.5

Ox.CTRL CTRL PTB DENV bsPf ST

S
co

re

4%

4%

4%

4%

4%

5%

5%

6%

6%

10%

10%

12%

16%

18%

20%

36%

37%

39%

76%

98%

MYOF

EPSTI1

RCN1

BATF2

APOL3

IRF1

PSMB10

SLC6A12

CIITA

GBP2

P2RY14

VAMP5

HLA DPA1

GBP5

HLA DMB

ALDH1A1

WARS

PSME2

SLAMF8

STAT1

0102030405060708090100
Rank Importance

0.00

1.00

0.00

1.00

EF

REST

Condition

CTRL

bsPf

DENV

PTB

Control Malaria Enteric Fever Dengue Pulmonary TB

0.00

0.25

0.50

0.75

1.00

C
la

ss
ifi

ca
tio

n 
P

ro
ba

bi
lit

y

Condition Controls Malaria Dengue Enteric Fever Pulmonary TB

11%

12%

12%

13%

15%

18%

19%

19%

19%

21%

23%

23%

23%

39%

40%

45%

45%

61%

63%

92%

VAMP5

CTLA4

HESX1

ERICH3

FBXO6

GBP5

TAP1

GADD45B

TIFA

TGM1

DMRT2

EBI3

AIM2

STAT1

BATF2

WARS

C1QC

ANKRD22

C1QB

RFX7

0102030405060708090100
Rank Importance

highlow

highlow

A B C

D E

F

Figure 4.

ª 2019 The Authors EMBO Molecular Medicine 11: e10431 | 2019 7 of 16

Christoph J Blohmke et al EMBO Molecular Medicine



high-throughput qPCR in samples collected during an independent

typhoid CHIM (Appendix Table S2—qPCR; Jin et al, 2017) and in

the Nepali cohort. Transcription of the 5-gene signature was

increased at the time of diagnosis in most participants with culture-

confirmed enteric fever in both sample sets (Fig 5D and E). Two

CHIM participants diagnosed with typhoid infection and one patient

infected with S. Paratyphi A in Nepal showed low expression of all

genes and a resulting low expression score (Fig 5E—black arrows).

In contrast, 1 day-7 sample from a participant not diagnosed with

enteric fever demonstrated high expression of the putative diagnos-

tic gene signature (Fig 5E—black arrows).

As surrogate disease severity markers, temperature showed a

poor correlation with the expression score in both CHIM and

endemic setting culture-confirmed enteric fever cases (Fig 5F and

G—left). In contrast, C-reactive protein levels (only available for

CHIM participants) were significantly associated with the expression

score of the 5-gene signature (Fig 5F and G—right), thus underlin-

ing the relevance of this signature in reflecting the clinical presenta-

tion of enteric fever. In the Nepal cohort, gene expression also

strongly correlated between the array and qPCR data (Appendix Fig

S6). Overall, these results verify the strong expression of the puta-

tive diagnostic signatures in samples from patients with acute

enteric fever and underline the clinical plausibility through associa-

tion with disease severity parameters.

Discussion

New approaches to diagnose patients with enteric fever are urgently

needed, as currently available methods are antiquated and unreli-

able. New diagnostic modalities are required, to both improve the

immediate management of patients and increase the accuracy of

disease burden measurements to support targeted vaccine imple-

mentation. Here, we demonstrate a reproducible host expression

signature of five genes (STAT1, SLAMF8, PSME2, WARS and

ALDH1A1) able to discriminate EF cases from other common causes

of fever in the tropics with an accuracy of > 96% (AUROC; sensitiv-

ity 97%, specificity 88%). Application of high-throughput methods

such as functional genomics, to this major health concern (Escadafal

et al, 2017), underscores the importance and tangible benefits of

applying “omics technologies” to combating infectious diseases in

the most needy populations (Baker, 2011). While further optimiza-

tion work is required, validating the expression of our signature

using conventional methods such as qPCR demonstrates feasibility

for further development into a routine laboratory test (Jiang et al,

2014). A rapid, PCR-based test would be useful tool for accelerated

diagnosis of enteric fever in hard-to-diagnose settings. While cost-

effective, early approaches for easy use in resource-limited settings

exist (Jiang et al, 2014; Huang et al, 2018), further development of

reliable PCR diagnostic is needed to make such a test fit for purpose.

The degree of perturbation of molecular responses occurring

during enteric fever can be confounded by the duration of clinical

illness (ranging in 12 h to ≥ 3 days in the CHIM and patients from

Nepal, respectively) or the specific pathogen (S. Typhi or S. Paraty-

phi A). This may hinder identification of a reproducible gene expres-

sion signature reliably expressed in various settings. The responses

to S. Typhi and S. Paratyphi A cases in Nepal were remarkably simi-

lar despite longer duration of disease and “uncontrolled” exposure

to antimicrobials in Nepal, with the majority of DE genes overlap-

ping between the two groups, which is unsurprising given the close

genetic relatedness of both pathogens (McClelland et al, 2004).

Enrichment of BTMs resembled responses described previously by

us (Blohmke et al, 2016a; Salerno-Goncalves et al, 2017) and under-

lined the concordance between culture-confirmed enteric fever cases

from Oxford and Nepal despite the possible differences between

challenge and currently circulating strains.

Despite the multiple redundancies incorporated into human

immune pathways driven by successful evolution (Nish & Medzhitov,

2011), our data suggest that the pattern of immune response activa-

tion is sufficiently specific to allow identification of the causative

pathogen. For example, while immune responses during enteric

fever and TB are broadly characterized by IFN signalling, we and

others have reported that this response during acute S. Typhi infec-

tion appears to be skewed towards a type II pattern likely associated

with neutrophils and NK cells rather than the type I-dominated pro-

file found in TB (Manca et al, 2005; Thompson et al, 2009; Berry

et al, 2010a; Spees et al, 2014; Blohmke et al, 2016a, 2017;

Dobinson et al, 2017). Application of computational methods to

large datasets including host gene expression has been shown to be

an effective approach to capture such differential activation of

immune pathways (Herberg et al, 2016; Sweeney et al, 2016). Two

of the genes identified in our 5-gene diagnostic signature are impor-

tant entities in the IFN-c signalling cascade (STAT1 and WARS),

which has been broadly implicated in the responses to enteric fever,

TB (Berry et al, 2010a), dengue (De La Cruz Hernandez et al, 2014)

and P. falciparum (Miller et al, 2014) infection. The discriminatory

◀ Figure 4. Identification of diagnostic signatures.

A Ranking of genes by their selection frequency into the diagnostic signature out of 100 iterations (orange dot) during the 2-class classification. Y-axis = genes ranked
by selection frequency. X-axis = importance measure of each gene across all 100 iterations. Green dots: importance measure for each gene per iteration. A cut-off of
25% was selected to detect a 5-gene putative diagnostic signature (orange bar).

B Performance of the 5-gene classifier when predicting the class membership of the validation cohort.
C Top: probability of an EF sample to be classified as non-EF (> 0.5). Bottom: probability of sample belonging to “Rest” to be classified as EF (> 0.5). Red dotted line

signifies the 0.5 prediction probability. Y-axis: prediction probability ranging from 0 to 1.
D Combined expression score for samples based on the 5-gene signature for samples in the discovery cohort (top) and validation cohort (bottom). Ox.CTRL, Oxford

controls (D0); CTRL, Nepali control samples; PTB, pulmonary TB; DENV, dengue samples; bsPf, blood-stage P. falciparum; SPT, S. Paratyphi A; ST, S. Typhi. ST and SPT
samples are derived from the challenge models as well as from Nepal. Significance levels were determined using Student’s t-test (two-sided): *P < 0.05; **P < 0.01;
****P < 0.0001. Number of samples per group: Discovery: Ox.CTRL = 45; CTRL = 175; PTB = 54; DENV = 67; bsPf = 94; ST = 44; SPT = 30. Validation:
Ox.CTRL = 50; CTRL = 59; PTB = 97; DENV = 49; bsPf = 19; ST = 50.

E Ranking of genes by their selection frequency into the diagnostic signature out of 100 iterations during the multiclass classification. A cut-off of 25% was selected to
detect a 7-gene putative diagnostic signature (orange bar).

F Classification probabilities for each sample of the validation cohort based on the 7-gene signature.
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impact of increased expression of these genes identified in our anal-

ysis, however, suggests that there are distinct differences during the

responses to these very different pathogens sufficient to discriminate

underlying disease aetiology (Munoz-Jordan et al, 2003; Obiero

et al, 2015) possibly based on subtle metabolic differences (Zhang

et al, 2013; Blohmke et al, 2016a). While STAT1 and WARS are

markers of an IFN-c response, SLAMF8 is a surface-expressed

protein (van Driel et al, 2016) found on macrophages, DCs and

neutrophils and induced by IFN-c or Gram-negative bacteria (Wang

et al, 2012). SLAMF8 negatively regulates ROS production through

inhibition of NADPH oxidase 2 (NOX2) in the bacterial phagosome

and reduces ROS-induced inflammatory cell migration (Wang et al,

2015). While oxidative stress is a common response to infection,

Salmonella survival is reduced in SLAMF1-deficient mice and can

interfere with localization of functional NOX2 in Salmonella-

containing vacuoles (SCVs), linking SLAM proteins and oxidative

stress (Fang, 2011). PSME2 is one of the two interferon-inducible

subunits of the 20S immunoproteasome (IP) regulator 11S and is

involved in immune responses and antigen processing (Nandi et al,

1996). The 20S IP can be induced by oxidative stress and preferen-

tially hydrolyses non-ubiquitinated proteins (Dubiel et al, 1992;

Seifert et al, 2010). Thus, genes involved in these processes may be

exploited to distinguish between pathogens inducing oxidative

stress and those also triggering ubiquitination (Cirillo et al, 2009;

Spooner & Yilmaz, 2011). While ALDH1A1 has not specifically been

linked with responses to invasive bacterial infections, it is involved

in gut-homing of TCs through expression of retinoic acid (Molotkov

& Duester, 2003; Iwata et al, 2004), a phenotype we have observed

following infection with S. Typhi (Salerno-Goncalves et al, 2017).

C1QB and C1QC are well-known subunits of the complement

subcomponent C1q and, together with ANKRD22 [involved in cell

cycle control (Yin et al, 2017)], have previously been described as

part of a signature able to distinguish active from latent TB (Kaforou

et al, 2013a). The function of the transcription factor RFX7 is largely

unknown but has been found to be strongly up-regulated during

blood-stage malaria, and its selection in our 7-gene signature is

therefore likely to be driving the classification of malaria cases.

Of note, while multiclass classification is difficult to perform and

here merely serves as demonstration that data-driven approaches

may be capable of performing this task, it is interesting to observe

increased misclassification rates specifically in the DENV and TB

groups. In the validation cohort, the majority of misclassified DENV

cases were identified as enteric fever (5/49) or TB (9/49), and

misclassified TB samples as enteric fever (13/97) or DENV (23/97),

possibly reflecting the overlapping immune response seen due to

the intracellular nature of all three pathogens. In the TB group, 15

of 97 samples were misclassified as controls, compared with one

DENV sample being misclassified as such, for example, potentially

owing to the broad clinical phenotype or lack of inflammatory/

immune responses seen in the peripheral blood during tissue-

specific pulmonary TB infection.

Overall, the genes identified in both signatures through our unbi-

ased selection approach are supported by previous studies including

those aiming to develop predictive diagnostic signatures (Berry

et al, 2010a; Kaforou et al, 2013a; Zak et al, 2016). In the era of

biological “big data”, several studies have explored the utility of

gene transcription signatures capable of discriminating viral aetiolo-

gies, viral or bacterial infections and acute or latent tuberculosis

(Zaas et al, 2009; Kaforou et al, 2013a; Anderson et al, 2014;

Andres-Terre et al, 2015; Herberg et al, 2016; Mahajan et al, 2016;

Sweeney et al, 2016). Only in the tuberculosis studies have such

signatures been identified from samples collected in high-incidence,

disease-endemic settings and been further validated against other

disease processes including (but not limited to) pneumonia, sepsis,

and streptococcal and staphylococcal infections (Berry et al, 2010a;

Anderson et al, 2014; Sweeney et al, 2016). Herberg et al (2016)

demonstrated that distinction between viral and bacterial infections

could be achieved based on two genes only. In contrast, most efforts

undertaken to diagnose active TB employ biomarker signatures

ranging in size from 3 to 86 genes, possibly due to broad and

heterologous molecular responses seen in response to differing clini-

cal phenotypes of infection. In our analysis, we specifically focused

on pathogens with the potential to cause undifferentiated febrile

illnesses in tropical settings. While the clinical presentation and

epidemiology of the infections chosen may be sufficient to distin-

guish the aetiologies clinically, enteric fever has a broad differential

diagnosis and is frequently overdiagnosed in the absence of confir-

matory laboratory results. Notably, despite the high prediction accu-

racy of the signatures identified in our analysis, this type of data

modelling is highly dependent on the quality and availability of suit-

able input datasets. Although an increasing amount of data is accu-

mulating in the public domain, few well-defined datasets of samples

representing a larger repertoire of febrile illnesses are available. For

example, rickettsial infection is likely to underlie a large burden of

the culture-negative cases in Nepal; however, no gene expression

datasets exist, and the lack of adequate confirmatory diagnostic tests

◀ Figure 5. Prediction of Nepali unknown samples using the 2-class and qPCR validation.

A PCA of sEF samples based on the 5-gene signature (based on gene array data) coloured by predicted class membership (EF: purple; green: rest).
B Dot plot of prediction probability of being class EF versus the expression score calculated on the bases of the 5-gene signature (based on gene array data).
C qPCR gene expression scores of the 5-gene signature (DDCT over PPIA) for CTRLs, 03NP-sEF, 03NP-SPT and 03NP-ST samples from Nepal. Yellow diamonds in the

03NP-sEF category represent the nine patients classified as EF based on the Random Forest algorithm.
D qPCR expression values (DDCt over PPIA) of the 5-gene signature in control samples (Oxford and Nepal), S. Paratyphi A (03NP-SPT) or S. Typhi (03NP-ST) in Nepal,

samples at day 7 after challenge of participants who stayed well following challenge with S. Typhi (nD7), or typhoid diagnosis after challenge (TD) in the Vi-TCV study
(Appendix Table S2). Colour legend in panel (E). Data are median with the 25th/75th percentile. N per group: CTRL = 64; nD7 = 5; 03NP-SPT = 9; 03NP-ST = 13; TD = 12.

E Combined qPCR expression score of the 5-gene signature. Black arrows indicate outlier samples. Data are median with the 25th/75th percentile. N per group:
CTRL = 64; nD7 = 5; 03NP-SPT = 9; 03NP-ST = 13; TD = 12.

F Temperature and CRP for samples of which data were available (CRP was only measured in the Oxford CHIM). D0, pre-challenge baseline Vi-TCV study; nD7, day-7
samples of participants who stayed well following challenge (Vi-TCV study); SPT, S. Paratyphi A (03NP); ST, S. Typhi (03NP); TD, typhoid diagnosis (Vi-TCV study).

G Spearman’s rank correlation of the 5-gene combined expression score and (left) temperature (only nD7 and TD samples from the Oxford CHIM—Vi-TCV and SPT and
ST cases from Nepal at presentation to hospital were included) and (right) CRP (CRP was only available for Oxford CHIM—Vi-TCV samples, and we excluded D0
baseline measures).
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further hinders the inclusion of such data in our analysis. Indirect

evidence for a likely high burden of rickettsial infection was demon-

strated in a recent randomized controlled treatment trial of treat-

ment for typhoid at the same centre in Nepal (Arjyal et al, 2016). In

this study, a higher proportion of culture-negative cases clinically

responded to fluoroquinolone class antibiotics rather than the 3rd-

generation cephalosporin used in the study, probably due to the

high frequency of murine and scrub typhus presenting as acute

undifferentiated febrile infection in this population. Of note, we

have shown that non-typhoidal Salmonella infection only accounts

for 0.6% bacteraemia over a 23-year period (Zellweger et al, 2018).

Although the 5-gene signature achieved high accuracy in iden-

tifying enteric fever cases, several culture-confirmed cases were

misclassified. Metadata from samples collected in the Oxford

CHIM indicate that the majority of these misclassified samples

had a temperature below 37°C (5/6) and were diagnosed beyond

7 days after challenge (4/6), which, in our CHIM experience, is

likely to indicate a less severe disease phenotype. In contrast, six

nD7 samples from the Oxford CHIM (part of the unknown cohort)

classified as enteric fever did show some evidence of response

based on either cytokine profile, temperature or positive stool

culture findings. Because our analysis was purely data-driven and

not motivated by clinical suspicion, we believe that these observa-

tions and the significant association of the gene expression scores

with CRP provide sufficient evidence that these study participants

had infection despite not meeting our study endpoint definitions

for enteric fever. Despite all this evidence, an open question

remains the effect of prior antibiotic use and duration of illness

on the expression of the 5-gene signature. While our study is too

small to formally assess this, the similarity of gene expression

between samples derived from the CHIM (short disease duration,

no antibiotic exposure) and Nepal (long disease duration and

exposure to antibiotics) may suggest stability of the gene signa-

ture in the presence of these co-founding factors. Additional work

is required to address these limitations by performing a multisite

prospective diagnostic evaluation recruiting all patients with fever

to ensure a balanced case mix and range of alternate fever-

causing aetiologies (e.g. rickettsial infection).

In summary, our work demonstrates how a large gene expression

dataset derived from challenge study cohorts and settings endemic

for febrile infectious diseases can be exploited for diagnostic

biomarker discovery. Verification of the putative diagnostic signa-

ture using qPCR in independent validation sets indicates that a diag-

nostic test derived from these gene expression data could be

developed for deployment in resource-limited settings. The applica-

tion of purely data-driven analyses to large and well-defined host–

pathogen datasets derived from disease-relevant populations may

enable us to develop a single, highly accurate diagnostic signature,

which would allow rapid identification of the main fever-causing

aetiologies from readily available biological specimens.

Materials and Methods

Typhoid challenge model

Samples included in the discovery cohort were collected during a

typhoid dose–escalation study in which 41 healthy adult volunteers

ingested a single dose of S. Typhi Quailes strain following

pre-treatment with 120 ml sodium bicarbonate solution (Study: T1).

In this study, one of the two doses was administered: 1–5 × 103

(n = 21) and 1–5 × 104 (n = 20; Waddington et al, 2014). Samples

used in the validation cohort were collected from a second typhoid

challenge model performed as part of a vaccine efficacy study (Study:

T2), in which healthy adult volunteers ingested a single dose of S.

Typhi Quailes strain (1–5 × 104, n = 99) 4 weeks after oral vaccina-

tion with Ty21a, M01ZH09 or placebo (Darton et al, 2016). Lastly,

samples collected from the control arm of a further vaccine efficacy

challenge study, in which participants received meningococcal

ACWY-CRM conjugate vaccine (MENVEO�, GlaxoSmithKline) prior

to challenge, were used for the independent qPCR validation experi-

ment (Jin et al, 2017). The clinical and molecular results of these

studies have been described previously (Waddington et al, 2014;

Darton et al, 2016; Dobinson et al, 2017; Jin et al, 2017). In all

typhoid challenge studies, participants were treated with a 2-week

course of antibiotics at the time of diagnosis (fever ≥ 38°C sustained

for ≥ 12 h and/or positive blood culture) or at day 14 post-challenge

if diagnostic criteria were not reached. Informed consent was

obtained from all subjects, and all experiments conformed to the prin-

ciples set out in the WMA Declaration of Helsinki and the Department

of Health and Human Services Belmont Report.

Paratyphoid challenge model

Clinical samples for paratyphoid infection were collected during a

dose–escalation study, as previously described (P1; Dobinson et al,

2017). Briefly, 40 healthy adult volunteers were challenged with a

single oral dose of virulent S. Paratyphi A (strain NVGH308) bacte-

ria, which, as before, was suspended in 30 ml sodium bicarbonate

solution (17.5 mg/ml), and after pre-treatment with 120 ml sodium

bicarbonate solution. Oral challenge inocula were given at one of

two dose levels, low (n = 20; median [range] = 0.9 × 103 CFU

[0.7 × 103–1.3 × 103]) or high (n = 20; median [range] = 2.4 ×

103 CFU [2.2 × 103–2.8 × 103). Criterion for diagnosis was either

microbiological (≥ 1 positive blood culture collected after day 3) or

clinical (fever ≥ 38°C sustained for ≥ 12 h). Participants were

ambulatory and followed up as outpatients at least daily after chal-

lenge when safety, clinical and laboratory measurements were

performed (Dobinson et al, 2017). Informed consent was obtained

from all subjects, and all experiments conformed to the principles

set out in the WMA Declaration of Helsinki and the Department of

Health and Human Services Belmont Report.

Endemic cohort

To validate the gene transcriptional signatures in a relevant patient

cohort, blood samples were collected from three cohorts at Patan

Hospital or the Civil Hospital both located in the Lalitpur Sub-Metro-

politan City Area of Kathmandu Valley in Nepal. Firstly, blood

samples were collected as part of a diagnostic study (Darton et al,

2017) from febrile patients presenting to hospital with ≥ 3 days of

fever, with no obvious focus of infection (WHO, 2018), and diag-

nosed with blood culture-confirmed S. Typhi (n = 19) or S. Paraty-

phi A (n = 12) infection, and from febrile patients who were blood

culture-negative for any pathogen (n = 71). Samples from a cohort

of healthy control volunteers (n = 44) were also collected as part of
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this study. Informed consent was obtained from all subjects, and all

experiments conformed to the principles set out in the WMA Decla-

ration of Helsinki and the Department of Health and Human

Services Belmont Report.

Gene expression array sample processing

In the human challenge studies (T1, T2 and P1), peripheral venous

blood (3 ml) was collected in TempusTM Blood RNA tubes (Applied

Biosystems) before challenge (baseline, pre-challenge controls, “D0”,

n = 166) and at paratyphoid diagnosis (“SPT”, n = 18) or typhoid

diagnosis (“ST”, n = 75). In those challenged but who did not develop

enteric fever within 14 days of challenge, gene expression was

measured at the median day of diagnosis of the diagnosed group in

the appropriate studies and this day was termed “nD7” (n = 73).

In Nepal, blood was collected when patients presented to hospi-

tal (n = 102) and from healthy controls (n = 44; Fig 1A,

Appendix Table S1). Total RNA was extracted from all samples using

the TempusTM Spin RNA Isolation Kit (Life Technologies). Where

applicable, 50 ng of RNA was used for hybridization onto Illumina

HT-12v4 bead arrays (Illumina Inc.) at the Wellcome Trust Sanger

Institute (Hinxton, UK) or the Wellcome Trust Centre for Human

Genetics (Oxford, UK), and fluorescent probe intensities were

captured with the GenomeStudio software (Illumina Inc.). For the

paratyphoid CHIM (P1), RNA gene expression was determined using

RNA sequencing. Briefly, libraries were prepared using a poly-A selec-

tion step to exclude ribosomal RNA species (read length: 75 bp

paired-end) and samples were subsequently multiplexed in 95

samples/lane over 10 lanes plus one 5-plex pool run on 1 lane and

sequenced using a Illumina HiSeq 200 V4.

Data pre-processing

Paired-end reads were adapter-removed and trimmed from 75 to

65 bp using Trimmomatic v0.35 (Bolger et al, 2014), and only reads

exceeding a mean base quality 5 within all sliding windows of 5 bp

were mapped to the Gencode v25/hg38 transcriptome using STAR

aligner v2.5.2b keeping only multimapped reads mapping to at most

20 locations. featureCounts(), a function from the subread set of tools

v1.5.1 (Brodersen et al, 2010), was used to quantify reads in Gencode

v25 basic gene locations with parameters -C -B -M -s 2 -p -S fr.

Between-sample normalization was performed using TMM (trimmed

mean of M-values) normalization as implemented in the edgeR

(Robinson et al, 2010) package, and we used principal component

analysis (PCA) as quality control step and excluded two samples,

which were clear outliers due to also failing QC during the library

preparation. Counts were converted into log2 counts per million

(cpm) values with 0.5 prior counts to avoid taking the logarithm of

zero and were then taken forward to the multicohort quality control.

Illumina HT-12v4 bead array data were pre-processed by background

subtraction, quantile normalization and log2-transformation using the

limma package in R (Ritchie et al, 2015). Probes were collapsed to

HUGO gene identifiers keeping only the highest expressed probe.

Data download

Previously published whole blood transcriptional array data were

downloaded from the Gene Expression Omnibus (GEO) data

repository. In this study, we specifically focused on studies investi-

gating blood-stage Plasmodium falciparum (bsPf; two cohorts of

blood-stage, HIV-negative malaria cohorts; children and adults;

Idaghdour et al, 2012a; Subramaniam et al, 2015a), acute uncom-

plicated dengue (DENV; four adult South-East Asian cohorts of

uncomplicated dengue fever patients; Hoang et al, 2010a; Tolfven-

stam et al, 2011a; Kwissa et al, 2014a) and active pulmonary

tuberculosis (PTb; four cohorts of active, pulmonary TB HIV-nega-

tive adults from Africa and the UK; Berry et al, 2010a; Kaforou

et al, 2013a), all infections which present with undifferentiated

fever and are relevant to areas where enteric fever is endemic

(Appendix Table S2). Raw data were downloaded from GEO using

the getGEO function (Davis & Meltzer, 2007) and quantile normal-

ization with detection P-values and control probes where avail-

able. Probes were collapsed to HUGO gene identifiers keeping only

the highest expressed probe.

Data processing and cohort quality control

Probe sequences on microarrays may not correspond to the most

recent release of the human reference genome that was used for the

RNAseq alignment. In order to mitigate this potential discrepancy,

we re-annotated the probes to the Gencode v25/hg38. The new

annotations were used as gene names for each probe. To avoid

uninformative genes and gender bias, only probes common to all

datasets, not located on sex chromosomes and with an expression

above the lowest tertile of the average expression (12,821 probes),

were used and a “superset” was created by merging the expression

data from all studies into one large data matrix. In order to avoid

platform or study-related artefacts between the data, we applied

surrogate variable analysis (sva; Leek et al, 2017) to remove batch

effects based on study ID while preserving the disease condition

(i.e. control or individual infection).

Diagnostic signature identification

For classification analyses, we separated the superset into a discov-

ery cohort and a validation cohort. To ensure heterogeneity and

optimal feature identification, we restricted the discovery cohort to

samples solely generated on Illumina platforms and ensured inclu-

sion of EF samples from Oxford and Nepal. In order to establish a

validation cohort, we casted a wider net and permitted studies

generated on other platforms including Affymetrix due to the limited

amount of suitable datasets available in the public domain. In addi-

tion, to predict unknown samples by applying the signatures identi-

fied in this study, we separated the febrile, culture-negative

suspected enteric fever cases, samples at day 7 after challenge of

those who stayed well and their respective pre-challenge control

samples from the superset into a cohort of samples of unknown aeti-

ology (unknown cohort; Fig 3).

Only the discovery cohort was used for feature selection using

Guided Regularized Random Forest (GRRF; Deng & Runger, 2013)

as implemented in the R package RRF v1.7 (preprint: Deng, 2013)

with c = 0.5, and parameter mtry tuning was performed using the

tuneRRF command. Feature selection was repeated on 100 iterations

of bootstrapped subsets of about 70% of the data in the discovery

cohort. To assess model performance, predictions on the remaining

30% of the discovery cohort were performed and balanced
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accuracies (Brodersen et al, 2010) were recorded to account for

class imbalances. Genes were then ranked by the frequency of posi-

tive gene selection by GRRF (based on mean-Gini) during the 100

iterations, and only genes included in at least 25% of the selection

rounds were included in the diagnostic signature and used for

prediction of the independent validation cohort as well as the

samples belonging to the unknown cohort (Fig 3).

High-throughput qPCR validation

We performed TaqMan gene expression assays to validate gene

expression levels in samples from Nepal and a subset of individuals

from the Oxford challenge studies. A panel of 6 probes was

measured in triplicates on a 192.24 Fluidigm chip using the Biomark

at the Weatherall Institute for Molecular Medicine (WIMM) single-

cell facility. Four samples and one probe failed in the quality control

and were removed from the analysis. Raw Ct values were normal-

ized to the housekeeping gene cyclophilin A (PPIA; DCt values) and
subsequently to control samples (healthy controls) to achieve DDCt

values. The following primers were used: STAT1 (Hs01013996_m1),

SLAMF8 (Hs00975302_g1), PSME2 (Hs01581610_g1), WARS

(Hs00188259_m1), ALDH1A1 (Hs00946916_m1) and the house-

keeping gene PPIA (Hs04194521_s1).

Statistical analysis

All data were processed in R version 3.2.4. Comparison of groups in

Fig 3D was performed using Student’s t-test (alternative: two-sided),

correlations between clinical parameters and expression scores were

performed using the Pearson correlation, and correlation between

array and qPCR expression was performed using the Spearman

correlations (alternative: two-sided).

Data availability

The datasets produced in the present study are available in the Gene

Expression Omnibus (GEO) database under the identifier

GSE113867 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE113867).

Expanded View for this article is available online.
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Problem
Enteric fever caused by Salmonella Typhi and S. Paratyphi A causes
significant morbidity in resource-limited settings. Undifferentiated
febrile presentation and inadequate diagnostic tests make enteric
fever difficult to diagnose, leading to missed cases or inappropriate
antimicrobial use. This leads to late and/or missed diagnosis and
possible overuse of antimicrobials.

Results
This study suggests a novel approach for improving enteric fever diag-
nostics by detecting the molecular host immune response patterns
occurring during invasive Salmonella infection. To achieve this, we
used large datasets of host gene expression profiles representing con-
firmed enteric fever cases and other causes of undifferentiated febrile
illnesses. Machine learning analysis identified five genes for which dif-
ferential activity could identify the enteric fever cases with an accu-
racy of over 96%, further validated in independent patient cohorts.

Impact
This cutting-edge, data-driven approach utilizes the increasing
amount of molecular immunology data accumulating in the public
domain and combines advanced analytics with biology and global
health. Using this type of molecular signature may significantly
improve the detection and management of enteric fever and other
causes of undifferentiated febrile illness.
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