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We present laboratory experiments that show that fingering patterns can emerge when
circular interfaces of strain–rate–softening fluids displace less viscous fluids in extension-
ally dominated flows. The fingers were separated by regions in which the fluid appeared
to be torn apart. Initially the interface had a large dominant wavenumber, but some
of the fingers progressively merged so that the number of fingers gradually declined in
time. We find that the transition rate to a lower wavenumber during this cascade is
faster the larger is the discharge flux of the displacing fluid. At late times, depending
on the discharge flux the pattern either converged into an integer wavenumber or varied
stochastically within a finite range of wavenumbers, implying convergence to a fractional
wavenumber. In that stage of the evolution we find that the average wavenumber declines
with the discharge flux of the displacing fluid.

1. Introduction

The displacement of one fluid by another in a quasi–two dimensional geometry is
common to a wide range of natural and industrial systems. In some systems, the evolving
interfaces between the two fluids can maintain a smooth circular or planar shape, but in
others they can develop fingering instabilities and consequently evolve complex patterns.

A large class of interfacial–stability problems, known as viscous fingering, involves
flows that are dominated by shear, typically due to the traction imposed by confining
solid boundaries. In these shear–dominated flows in a uniform gap, it is established that
the interface is stable when the displacing fluid is more viscous, either in a system of
Newtonian fluids that obey Darcy’s law and the pressure field is Laplacian (Saffman &
Taylor 1958; Homsy 1987; Wooding & Morelseytoux 1976; Paterson 1981; Cardoso &
Woods 1995; Zhao et al. 2016; Rabbani et al. 2018; Jha et al. 2011; Coumou et al. 2006;
Bhaskar et al. 1992), or when at least one of the fluids is complex and the pressure field
is no longer Laplacian (Lindner et al. 2000b; Coussot 1999; Lindner et al. 2000a; Azaiez
& Singh 2002; Callan-Jones et al. 2008; Kondic et al. 1998; Lemaire et al. 1991; Zhao &
Maher 1993). A more general statement is that the interface is stable when the displacing
fluid is less mobile than the displaced fluid, where mobility is the ratio of permeability and
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Figure 1. (a) Schematic diagram of the experimental apparatus to generate extensional flows.
The region where the flow evolves (dotted rectangular) is expanded in b. (b, top) Schematic side
view of the flow region, showing the polymer solution (blue) propagating radially over the conic
plate and into a bath of salt solution (cyan), resulting in a no–stress interface at the surface and
the base of the displacing fluid. (b, bottom) An image showing the camera plan view of the flow
at a stage where the front of the polymer solution developed four fingers. The vertical dashed
lines mark the radius rG, which is where the fluid–fluid interface intersects with the conical
section.

viscosity. The physical requirement for instability in these systems is that the magnitude
of the driving pressure gradient is larger in the displaced fluid than in the displacing
fluid, which can be hydrostatic rather than dynamic (Kowal & Worster 2019). Instability
can be suppressed or triggered by specifying a non-uniform gap between the confining
boundaries (Al-Housseiny et al. 2012), which affects the driving pressure gradients. In
addition, non–monotonic mobility profiles in confined miscible flows can lead to reverse
fingering, in which the displaced fluid fingers through the displacing fluid more readily
than vice versa (Manickam & Homsy 1994).

The flow geometry also affects the stability of confined shear–dominated flows. Par-
ticularly, for a constant–flux source, Newtonian flows in a circular geometry tend to be
more stable than flows in a linear geometry (e.g. Paterson 1981) because the velocity of
circular interfaces declines with time and circumferential stretching tends to push per-
turbation to lower wavenumbers. A priori, such flow configurations may appear prone
to Saffman–Taylor instability if a single fluid phase of strain–rate–softening fluid prop-
agates axisymmetrically. This is because the radial decline of the dominant strain rate
component leads to monotonically increasing viscosity, or declining mobility, with radius.
This implies that any ring of fluid within such flows is like an interface between an inner
less–viscous fluid and an outer more–viscous fluid. Although there is no viscosity jump
across such fluid rings and they behave as rather smeared interfaces, one might antici-
pate that instability could still occur as it does in miscible Newtonian fluids (Paterson
1985; Manickam & Homsy 1993; Holloway & de Bruyn 2005). However, viscous fingering
in radially–spreading strain–rate–softening fluids has not been observed thus far. Simi-
lar axisymmetric flows of strain–rate softening fluids were studied using viscous gravity
currents that propagate into low–viscosity fluids over a horizontal substrate. Such flows
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Q [g/s] 0.73 1.36 1.37 1.38 2.64 3.84 3.90 6.62 13.39

rG [cm] 5.79 5.87 5.82 5.95 6.1 6.2 6.23 6.35 6.61

hG [cm] 0.35 0.39 0.38 0.42 0.49 0.53 0.54 0.6 0.71

Table 1. The source flux Q (±0.05 g/s uncertainty) that was specified in each experiment and
the resulted measured grounding–line position rG and the fluid thickness hG at the grounding
line. In all the experiments the polymer solution consisted of 1% Xanthan gum and the density
of the salt solution was ρ = 1.181 g/cm3.

have mixed boundary conditions of no–slip along their base and no–stress along their free
surface due to the absence of confinement. Here too, despite a radially increasing viscos-
ity within the strain–rate–softening displacing fluids, no fingering was observed (Sayag
& Worster 2013).

In another class of problems, which form the focus of this paper, the fluids have free
top and bottom surfaces along which traction is negligible and the resulting circular flow
is dominated by extension rather than by shear. In this case, evidence shows that unique
finger–like patterns can arise with the fluid appearing to be torn apart when the displacing
fluid is strain–rate softening. For example, ice shelves deform like strain–rate–softening
fluids (Glen 1955) under negligible traction, as they spread over the ocean. When ice
shelves are free from lateral confinement, finger–like patterns can emerge normal to the
shelf front, separated by deep rifts, reminiscent of tears (rips) that cut through the entire
ice thickness (Hughes 1983; Doake & Vaughan 1991; Bassis et al. 2008; Borstad et al.
2017). Similarly, tear–like patterns emerge when pastes squeezed by parallel disks emerge
outside of the rim of the disks into a region that is unconfined where no external stress
is applied (Roussel et al. 2006; Mascia et al. 2006). The formation of these patterns is
potentially related to the migration of the liquid phase within the pastes as they spread.
In contrast, the interface remains stable in similar flows of Newtonian displacing fluids,
such as viscous gravity currents that spread radially under no traction (Pegler & Worster
2012).

In this Part i of the study we extend Sayag & Worster (2013) by allowing a thin film
of strain–rate softening fluid to propagate with the absence of any traction along its
boundaries, thereby forming an extensionally dominated flow. We trace the evolution
of the fluid–fluid interface in time and analyse its wavenumber decomposition. We then
analyse the pattern in which the dominant wavenumber of the interface evolves and how
that pattern depends on the main experimental control parameter, the source mass flux.
In Part ii of this study (Sayag & Worster 2019) we focus on a theoretical investigation
of the instability reported here.

2. Experimental observations

2.1. Experimental set–up

We generated extensional flows experimentally by discharging a thin layer of viscous
fluid into a bath filled with low–viscosity but denser fluid. This way traction on the
viscous fluid was reduced substantially allowing extensional stresses to dominate. The
experimental apparatus (Fig. 1) consisted of a transparent bath of 1 × 1 m2 filled with
low–viscosity, transparent salt solution to a depth of 15 mm. At the centre of the bath
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and attached to its bottom we placed a conical section made of transparent PDMS, which
had a trapezoidal cross section (Fig. 1b) with dimensions 15 mm height, 10 cm top base
diameter and 18 cm bottom base diameter. The displacing complex fluid was driven
from a container by a peristaltic pump at constant flux (1 . Q . 14) g/s, which was
measured with an accuracy of ±0.05 g/s using a computer connected to a digital balance
that supported the container. From the pump the fluid was discharged axisymmetrically
through a tube, 10 mm in diameter, over the centre of the top base of the conical section.
The fluid continued to propagate under gravity over the conical section and beyond,
displacing the ambient salt solution. The propagation of the interface was imaged using
a digital SLR camera in plan view from the bottom of the bath through a 45◦ mirror at
a rate of one frame every 2–6 seconds, depending on the source flux.

To keep the level of the ambient fluid in the tank fixed as the complex fluid was in-
truding, we used a secondary pump controlled by an optical feedback circuit. Specifically,
a red laser beam was emitted through the ambient fluid and underwent total internal
reflection from the ambient–fluid free surface towards an optical sensor. A rise in the
level of the ambient fluid shifted the beam trajectory from the sensor and consequently
operated the pump that drained excess fluid, until the beam resumed intersection with
the sensor, thereby turning the pump off. This way we managed to keep the level of the
ambient fluid fixed to within a 0.1 mm accuracy.

The complex fluid consisted of Xanthan gum (Jungbunzlauer) dissolved in distilled
water (1% in weight), having density ≈ 1.02 g/cm3. Xanthan is a semirigid and high–
molecular–weight polysaccharide produced by the Xanthomonas campestris bacterium
(Lapasin 1995). To prepare the solution we used a laboratory mixer to form a smooth
vortex in the center of a 3L beaker containing the distilled water. The xanthan powder
(from a single batch) was then spread into the center of the vortex through a sieve to
disperse powder aggregates, thereby allowing faster polymer hydration. Next we added a
couple of milliliter of blue dye and maintained the mixing for one hour at the maximum
speed possible so long as air bubbles did not intrude the fluid. Then the solution was left
for the next 24h in a closed container to allow full hydration of the polymer. This way
we obtained an agglomerate–free and bubble–free xanthan solution.

The rheology of xanthan gum solutions of ∼1% concentrations has been studied ex-
tensively in various flow configurations. Under steady–shear flow such solutions behave
as a power–law, shear–thinning fluid with exponent ≈ 6 (Sayag & Worster 2013) for the
solution we used, though other measurements find that it can vary between ≈ 5 (Martin-
Alfonso et al. 2018) and ≈ 7 (Song et al. 2006a) (we define shear thinning with exponents
larger than 1). At low shear rates there are indications of bounded shear viscosity at more
dilute polymer concentrations than 1% (Wyatt & Liberatore 2009; Allouche et al. 2015;
Jaishankar & McKinley 2014) with a zero strain–rate viscosity of over 106 times that
of water at 25◦C at shear rates lower than 10−3/s (Jaishankar & McKinley 2014), and
possibly the presence of yield stress (e.g., Herschel-Bulkley fluid, Song et al. 2006a).
These solutions also exhibit elastic properties such as primary normal–stress difference
over a wide rage of strain rates (Jaishankar & McKinley 2014), and a relaxation time
of λ ≈ 0.1 s (Stokes et al. 2011). In oscillatory–shear flow the storage modulus of such
suspensions is 2 to 4 times larger than the loss modulus in frequencies ranging between
0.01 to 100 rad/s (Song et al. 2006b). In uniaxial extensional flows xanthan solutions ex-
hibit strain hardening (Stelter & Brenn 2002; Stelter et al. 2002), as well as strain–rate
softening of the extensional viscosity (extensional thinning) with exponent of ≈ 3 (Jones
et al. 1987; Ferguson et al. 1990; Martin-Alfonso et al. 2018), while the behaviour at
extensional rates lower than approximately 0.5/s is not known. The ratio of extensional
to shear viscosity (Trouton ratio) of such solutions grows with the strain rate, reaching
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Figure 2. Snapshots (plan view) from two experiments with source flux (a) Q = 3.90 ± 0.05
g/s and (b) Q = 2.64±0.05 g/s, showing the evolution (left to right) of the fluid–fluid interface.
The injected complex fluid is colored blue, and the ambient less viscous, denser fluid as well as
the conical substrate are transparent. Time is measured with respect to the instant when the
interface reached the grounding line position. The Fourier modes of each interface in (b) are
shown in Fig. 5b.

approximately 30 at strain rate of 1/s (Jones et al. 1987; Martin-Alfonso et al. 2018), but
at lower strain rates it drops and is expected to converge to the Newtonian value of 3, as
typical of polymeric solutions (Bird et al. 1987). Therefore, at the higher end of strain
rates such xanthan solutions have a more significant elastic deformation, while viscous
deformation becomes more significant at the lower end.

The ambient fluid consisted of sodium–cloride solution with density ≈ 1.181 g/cm3,
and therefore denser than the Xanthan–gum solution. This combination of fluids resulted
in the formation of a region in the flow where the Xanthan solution was propagating over
the denser ambient fluid, which was significantly less viscous and consequently applied
negligible traction.

2.2. Evolution of the interface

We performed a range of experiments in which we varied the source flux Q of the polymer
solution, while keeping fixed the level and density of the ambient salt solution, and the
concentration of the polymer solution (Table 1).

Once discharged from the tube, the gravity–driven polymer solution propagated ax-
isymmetrically over the truncated cone surrounded by a deep layer of denser and low–
viscosity salt solution. When the circular fluid front intruded into the ambient salt so-
lution, as it advanced along the sloping section of the cone, buoyancy forces due to the
surrounding denser fluid caused it to detach from the substrate and float (Fig. 1b, top).
This way, a circular contact line (grounding line) was formed at radius rG > 5 cm over
the slope of the cone, separating between an inner region (r < rG) where no–slip basal
conditions were applied on the polymer solution, and an outer region (r > rG) where no–
stress basal conditions were applied on the polymer solution. Within a short transient the
grounding line advanced down the slope of the substrate and reached a steady position
that was maintained for all t > 0. We discovered that the leading front of the displacing
polymer solution split into a number of tongues in the vicinity of rG, which moved as
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Figure 3. Snapshots (plan view) from the experiment with source flux Q = 2.64 ± 0.05 g/s
tracing the evolution of the interface as it transits the steady grounding line position at t = 0.
The injected polymer solution is colored blue, and the ambient denser fluid as well as the conical
substrate are transparent. The origin is the center of the tube outlet (⊕). The lower base of the
conical substrate (18 cm in diameter) is marked in (- - -) in the first panel. The steady position
of the grounding line is marked at all snapshots (- - -). Inset at the t = 318 s panel shows the
region in the flow (dashed square) that is viewed in the five snapshots. The bottom–right panel
shows the intensity of the light (green channel) transmitted through the flow along the radius
(· · · ) in each of the previous panels, normalised by the intensity of the background (ambient
fluid). The grounding line position at each time is the local minimum of the intensity between 5
cm (the top edge of the substrate slope, · · · ) and ∼ 6 cm (N), where (- - -) marks the grounding
line steady position.

solid blocks similar to the movement of floating ice tongues (e.g. Holdsworth 1983) or of
foam under wall slip (Lindner et al. 2000b). The region between the tongues resembled
fractures with sharp tips near rG, reminiscent of fracture tips (Fig. 1b, bottom). As the
tongues grew longer, some of those tips were advected with the flow and, as they did,
the space between the tongues closed down by the joining of adjacent tongues into wider
ones. Consequently, the number of tongues declined with time (Fig. 2 and supplementary
videos). Such an inverse cascade of the number of tongues also appears to characterise
patterns in squeezed pastes (Mascia et al. 2006), in fractured thin elastic plates (Vanden-
berghe et al. 2013; Vermorel et al. 2010), and in melt transport (Spiegelman et al. 2001).
However, the breakdown of the circular symmetry that we report is in sharp contrast
with similar flows that involve Newtonian displacing fluids (Pegler & Worster 2012), in
which the fluid–fluid interface remained circular.

2.3. Analysis of the results

Having image sequences of the experimental results, we first determine the grounding
line steady position rG and the instant when the front crossed that position for each
experiment. We define the origin r = 0 at the center of the feeding tube using snapshots
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Q = 2.64 g/s Q = 1.36 g/s Q = 1.37 g/s

Figure 4. Fourier decomposition of the fluid–fluid interface: Examples from three different
experiments (Q = 2.64, 1.36, 1.37±0.05 g/s), showing snapshots of the traced interface (—) and
the results of the regression (—) of part of the interface (r 6 2.5 rG) to the Fourier series (2.1).

taken before the fluid was discharged. We also identify the rim of the larger base of the
PDMS substrate (Fig. 3, t = −12 s) and use its known diameter (18 cm) to convert from
pixels to dimensional length. Then we identify the position of the grounding line using
the intensity of the light transmitted through the polymer solution (Fig. 3, graph in
the bottom right panel). Specifically, the part of the fluid that spreads along the higher
base of the conical section from the nozzle is relatively thick and appears as a dark disk
that becomes radially brighter towards the edge of that top base. Near that edge and just
before the fluid intrusion into the salt solution, the fluid thickness is minimal and appears
as a thin ring of brighter color (Fig. 3, t = 318 s), with a corresponding local maximum in
the light intensity at radius 5 cm (Fig. 3, graph). Across that ring, the polymer solution
intrudes into the ambient fluid along the substrate slope (Fig. 1b), so it becomes thicker
and consequently darker with radius, as also implied from the corresponding decline
in the light intensity. Further down along the substrate slope, another sharp transition
occurs into a brighter region, which implies that the fluid layer has gone through a
sudden thinning. Such abrupt thinning that coincides with a local minimum in the light
intensity (Fig. 3, graph) is due to the detachment of the fluid layer from the slope of
the substrate (Fig. 1b, top). Therefore, we identified that local minimum in intensity,
which varies with azimuth by less than ±2 mm, with the position of the grounding line.
We follow the propagation of the grounding line along the slope from the time it is
formed very close to the top base and until it reached a steady position within a short
transient (Fig. 3, graph). Upon detachment of the polymer solution, the basal friction
drops abruptly and substantially and the fluid layer flows as a plug (no vertical shear),
becoming a pure extensional flow with principal axes along the radial and azimuthal
directions resulting in horizontal stretching, and perpendicular to the direction of flow
resulting in vertical thinning (e.g., Robison et al. 2010; Pegler & Worster 2013). Having
the steady grounding–line position and knowing the substrate geometry, we calculate the
fluid thickness at that position, assuming that the fluid is floating (Table 1). In addition
we define t = 0 at the instant when the fluid front reached the steady position of the
grounding line (Fig. 3).

The sharp colour contrast between the polymer solution and the salt solution allowed
a straightforward tracing of the fluid–fluid interface rN (θ, t) as a function of time (Fig. 4)
using image–processing tools. Applying a fast Fourier transform to the raw interface leads
to inconsistent results particularly when the interface roughness was substantial, having
sections with multiple fracture–like elements that enhanced the interface length in these
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Figure 5. (a) The traced fluid–fluid interface at times t=20,50,80,160 s (thick curves) in the
experiment with Q = 2.64 ± 0.05 g/s (Fig. 2b), with the grounding line marked in (—). (b)
Amplitude distribution (lines) of the dominating Fourier wavenumbers that compose each of
the interfaces in (a) (colors match) obtained by fitting a Fourier series of the front rN (θ, t) (�
marking the maximum amplitude in each case). (c) Time evolution of the amplitude distributions
(interpolated) normalised by the maximum amplitude at each time, where darker color represents
modes with higher amplitudes (discrete version is shown in the appendix). Vertical gridlines mark
the distributions at times that match (by color) those shown in (b & a).

parts disproportionally (e.g., Fig. 4c). To avoid such complications we first truncate at
each instant the part of the interface having r > 2.5rG and then fitted to the residual
traced interface a Fourier series of the form

f(t) = a0(t) +

N∑
k=1

ak(t) sin(kθ + φk(t)), (2.1)

where the amplitudes a0...N and the phases φ1...N were the fitted parameters (Fig. 4).
We chose N=30 noticing that a larger value does not affect the amplitude distribution
ak(t) in a measurable way. In addition, the value of the truncation radius was robust
and was used for all experiments. We applied this routine to each experimental snapshot
and got a time series of the wavenumber amplitude distribution (Fig. 5a,b). Then, we
normalised the amplitude distribution at each instant with the maximal amplitude at
that instant, obtaining the normalised amplitude distribution of the different Fourier
modes for the whole duration of the experiment (Fig. 5c). For clarity, that distribution is
a smoothed (interpolated) version of the original discrete distribution (appendix A). This
wavenumber–amplitude distribution, which is typical for a wide range of experiments,
shows that the initial circular front (t < 0) first develops a high–wavenumber pattern (0 <
t < 20 s) that then declines progressively and monotonically through a descending set
of dominating wavenumbers to a finite k = 3 dominating wavenumber. This reduction of
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Figure 6. Time evolution of the normalised amplitude of the Fourier modes (dark, smoothed)
that comprise the fluid–fluid interfaces for experiments with source flux in the range
1.3 . Q . 13.4 ± 0.05 g/s. The maximal amplitudes at each instant are highlighted with
color patches. At each panel, the horizontal gridline marks the average wavelength after the
initial cascade of wavenumbers.

the dominating wavenumber is reflected in the experiment through the repeated merging
of adjacent fingers into wider ones (Fig. 2).

We repeated the same analysis procedure for all of the experiments with varying source
flux Q (Table 1), and generated the corresponding amplitude–wavenumber distributions
(Fig. 6, 7). The evolution of the interface is reflected by the evolution of the dominant
wavenumbers – those modes that have maximum amplitude at each instant (Fig. 8). In
these experiments we find that the wavenumber evolution at early time had a different
pattern compared to late time. At early time, the patterns that emerged from the ini-
tial circular front had high dominating wavenumber, which gradually cascaded into a
lower dominating wavenumber at increasingly growing transition times. This behaviour
characterised all experiments, and quantitatively the rate of the cascade (transition time
to lower wavenumbers) and the lowest wavenumber that the pattern converged to were
strongly dependent on the source flux Q. At later times, after the initial cascade to the
lower wavenumber, the interface evolved in two distinguished patterns depending on the
input flux. In the higher–flux regime (Q & 1.37 g/s), the asymptotic pattern remained in
the lowest wavenumber of the initial cascade. That lowest wavenumber declined with the
source flux (Fig. 8a). In the lower–flux regime (Q . 1.37 g/s), the dominating wavenum-
ber did not settle on a well–defined fixed value, rather, it changed stochastically within a
finite band of wavenumbers (Fig. 8b). This appears to imply that while instantaneously
the pattern has an integer dominant wavenumber, on average the system can asymptot-
ically settle on a fractional wavenumber.
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Q = 0.73 g/s Q = 1.37 g/s Q = 1.38 g/s
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Figure 7. Time evolution of the normalised amplitude of the Fourier modes (dark, smoothed)
that comprise the experimental fronts for experiments with source flux in the range
Q = 0.73, 1.37, 1.38 ± 0.05 g/s, in which the dominant wavenumber varies stochastically af-
ter the initial wavenumber cascade. The maximal amplitudes at each instant are highlighted
with color patches. In each panel the ◦ marks the instant when the pattern had a maximum
dominant wavenumber. The ◦ marks the instant when the pattern had the lowest wavenumber
at the termination of the wavenumber cascade, beyond which the dominant wavenumber evolved
stochastically. At each panel, the horizontal gridline marks the average wavenumber after the
initial cascade of wavenumbers.

3. Discussion

The apparent stochastic evolution of the dominant wavenumber in the lower–flux ex-
periments (Fig. 8b) motivates us to evaluate a time–averaged asymptotic wavenumber.
To do that we identified in each experiment the time when the initial wavenumber cas-
cade terminated. This was done by first finding the instant when the pattern had the
maximal wavenumber. The instant that followed at which the pattern had the minimal
wavenumber was defined as the end of the wavenumber–cascade phase (e.g., Fig. 7). The
time–average dominant wavenumber κ is defined as the time average of the dominant
wavenumbers in the interval from that latter instant onwards. Those lower–flux experi-
ments in which the dominant wavenumber evolved stochastically after the initial cascade
(Fig. 8b) had a fractional time–average wavenumber and a standard deviation of about
one wavenumber (Fig. 9a), whereas the higher–flux experiments (Fig. 8a) had zero stan-
dard deviation. In addition, the time–average wavenumbers decline monotonically with
the source flux Q (Fig. 9a).

The dependence on Q of the time–averaged dominant wavenumber and of the tran-
sition times to lower wavenumbers may be partially scaled away with an appropriate
Q–dependent time scale. One way to define a time scale using the measured quantities is
to consider the flow at r = rG. When the flow is quasi steady, the grounding–line position
is steady and so is the thickness of the free surface for r < rG. Therefore, conservation
of mass implies that from that stage on, the total volume flux across a circle of radius
rG is equivalent to Q. Therefore, at the grounding–line position, Q = 2πrGhGuG, where
uG is the radial velocity at rG. In addition, the scale of uG can be written in terms of
uG = rG/T , where T is a characteristic time scale of the flow. Substituting this relation
in the expression for the flux we find that the characteristic timescale is

T =
2πr2GhG

Q
. (3.1)

Using the measurements in Table 1, we evaluated the characteristic time scale (3.1) in
each experiment and used it to normalise the time–evolution of the dominant wavenum-
ber. We applied this to the experimental results that behaved regularly and not stochas-
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Figure 8. The dominant wavenumbers (maximum instantaneous amplitude) versus time and
source flux Q in g/s, corresponding to the experiments in which (a) the late–time evolution of
the dominant wavenumber converged to a fixed value (Fig. 6), and in which (b) the dominant
wavenumber changed stochastically (Fig. 7).

tically in the long–time limit (Fig. 8a) and found that the measurements collapse into a
narrower region (Fig. 9b). This demonstrates that the patterns we observe in experiments
with different mass flux share common features when the rate of the flow represented
by the flux is scaled away. Particularly, it may imply that in the non–stochastic cases
the wavenumber cascade could end up in the lowest possible wavenumber for any source
flux Q, and that the associated timescale could grow like 1/Q as implied from (3.1). The
lowest wavenumber may be k = 2, though in the experiment with the highest Q = 13.39
g/s we found that one tongue was approximately 30% thicker than the other, and that
the angle between their axis of propagation was less than 180◦. This may represent an
intermediate pattern before a transition to k = 1 at higher flux. Experiments with Q > 3
g/s have all reached k = 2 by the time t ' T (Fig. 9b), and those experiments that
terminated at higher wavenumbers lasted no longer than t ' 3T . Therefore, it may be
that T represents a damping timescale and that within less than ≈ 10T any flows would
converge to wavenumber k = 2 and possibly less.

The xanthan solution that we used has a viscoelastic deformation in principle. The
relative role of elastic compared to viscous deformation can be estimated by the ratio of
the fluid elastic–relaxation time λ and the characteristic rate of flow T , as represented
by the Deborah number De = λ/T . Having λ ≈ 0.1 s (Stokes et al. 2011), the maximal
Debora number in the experiments we report (0.01/s < 1/T < 0.07/s) that corresponds
to the smallest T , is De ≈ 0.007. This suggests that the characteristic timescale of the flow
in all of the experiments is much longer than the timescale of the fluid elastic relaxation,
implying that in the flow we consider elastic effects are weaker than viscous deformation.
As indicated in §2.1, more direct measurements of the relative strength of elasticity under
extension at rates similar to those in the experiments we report are absent. The known
decline of the Trouton ratio with the decline of the rate of deformation (Jones et al.
1987; Martin-Alfonso et al. 2018) implies that the relative strength of elasticity drops at
smaller strain rates, but measurements in extensional rates lower than 0.5/s are absent
in the literature. Similarly, in other flow configurations the relative strength of elasticity
drops as the rate of deformation declines. For example, in simple–shear flow the ratio of
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the normal–stress difference and shear stress (stress ratio, Bird et al. 1987) drops from
5 in shear rate of 1/s to 1 in shear rates of 10−2/s (Jaishankar & McKinley 2014). In
oscillatory-shear flow the ratio of the storage to loss moduli drops from 3 in shear rate
of 1/s to about 2 in shear rate of 10−2/s (Song et al. 2006b). Despite the decline of the
elastic strength with the decline of rate in these examples, as in extensional flows, at
low shear rates (≈ 0.01/s) elasticity can be comparable to the viscous deformation in
simple shear or even larger in oscillatory shear. However, these values may not necessarily
imply about the specific Trouton ratio in the extensional flow that we study, which differs
substantially from both oscillatory and simple shear flows.

The flow of the polymer solution from the inner, shear-dominated region across rG
to the free-slip region is associated with a Reynolds number. Considering the grounding
line position, we find that Re = Qρ/2πrGµ. To estimate an upper bound for Re we use
Q ∼ 10 and the viscosity associated with the largest strain rate (0.1/s) µ ∼ 102 Pa s,
resulting in Re . 10−3.

Although the polymer solution is in contact with both the salt solution and air, we
expect that the impact of surface tension on the dynamics of the front is weak, having
a secondary or higher–order contribution owing to two major reasons. First, the density
ratio of the two solutions implies that nearly 80% of the displacing front of the polymer
solution is submerged in the salt solution, yet the two solutions are nearly miscible as their
surface tension differs only by about 5% (surface tension of 1% Xanthan gum solution
∼ 0.0825 N/m at ∼ 25◦C (Muthamizhi et al. 2014), and the corresponding value of
our sodium chloride solution is ∼ 0.0785 N/m (Bzdek et al. 2016). Secondly, deforming
the highly viscous and possibly unyielded polymer solution at the front requires larger
external stresses than could be provided by surface tension. The low traction applied on
the floating tongues combined with the strain–rate softening property of the polymer
solution leads to high fluid viscosity (at least ∼ 100 Pa s, Sayag & Worster 2013) in
most of the tongues and particularly along the front, such that the fluid in those regions
appears unyielded throughout the whole experiment. Such immobility of the polymer
solution is reflected in the vertically flat (Fig. 1b) and thick fluid front (similar to hG,
Table 1), in contrast to the wedge–like front when the displacing fluid is Newtonian
(Pegler & Worster 2013).

4. Conclusions

In this experimental study we have shown that the interface between a strain–rate
softening fluid that displaces a lower–viscosity fluid can become unstable when friction
is nearly negligible along the path of the flow. Our experiments using polymer solutions
that deform under nearly free–slip conditions showed that the initially circular interfaces
become unstable, evolving rectangular–shaped fingers with rough edges reminiscent of
tears in solid material. Tracing the dominant wavenumber in the instantaneous Fourier
decomposition as a function of time, we find that the evolution of the interface consists of
two primary stages: in the initial wavenumber–cascade stage the interface ruptured into
multiple fingers that gradually grew and merged into a smaller number of wider fingers; In
the second stage, the pattern evolved either regularly or stochastically depending on the
discharge rate. At higher discharge rates the pattern remained in the lowest wavenum-
ber form, which corresponds to a constant number of fingers whose length continuously
grew. At lower discharge rates the pattern evolved stochastically within a small band of
wavenumbers, which corresponds to the repeated emergence of new fingers followed by
their merging to existing longer fingers. In both cases, we found that the time–averaged
dominant wavenumber that the evolving pattern converged to in that stage declined with
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Figure 9. (a) The dependence of the average dominant wavenumber on the source flux. The
time–averaged dominant wavenumber (Colored � corresponding to the colors in Fig. 8) is com-
puted for the time after the initial wavenumber cascade to a minimal value. A ±1 standard
deviation of the dominant wavenumber distribution is marked by the error bars. Experiments
with non–zero standard deviation (�) are those shown in Fig. 8b. Inset shows one example of
the dominant wavenumber distribution for the experiment with Q = 0.73 g/s, and the fitted
Gaussian distribution used to compute the average and standard deviation. (b) Nondimensional
time evolution of the dominant Fourier modes that the front is comprised of, for a range of
source fluxes 1.3 & Q & 13.4 g/s corresponding to those in Fig. 8a.

the source flux. The transition time to lower wavenumbers in the initial cascade declined
with the source flux as well.

The instability that we find seems strongly reliant on both the free–slip conditions and
the strain–rate softening property of the displacing fluid, and possibly of the circular
geometry of the flow. Such conditions characterise other natural and man–made systems
such as when non–Newtonian pastes are squeezed out of a confining geometry (Mascia
et al. 2006) and when glacier ice creeps over the ocean (Walker et al. 2013). Therefore,
this study may help to understand the evolution of these systems.

In the second part of this study (Sayag & Worster 2019) we investigate theoretically the
early–time evolution of the circular interface into tongues and the wavenumber cascade.
Specifically, we analyse the linear stability of an axisymmetric base flow and thereby
identify that the instability relies on the divergent nature of the flow and is allowed by
the absence of boundary friction and by the strain–rate–softening property of the fluid.
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Appendix A. The discrete amplitude distribution

For the purpose of clearer graphical representation of the dominant wavenumbers,
diagrams that show the evolution of the amplitude distribution of wavenumbers (Figs. 5c,
6, 7, 8 and 9b) are smoothed through a linear interpolation. At each instant the amplitude
distribution of wavenumbers is discrete (Fig. 10) and the log scale representation of the
wavenumber axis results in a relatively stretched patches of the lower wavenumbers in
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a b
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t t

Figure 10. Comparison of the discrete and interpolated time evolution of the normalised am-
plitude distributions. Panel (a) (identical to Fig. 5c) is the interpolated version of panel (b) that
shows a discrete distribution in which k is integer.

these diagrams. Whether discrete of smoothed, the vertical thickness of such patches in
these diagrams is a graphical artefact, while the meaningful values of amplitude are only
those that correspond to integer wavenumbers.
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