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A novel viscous fingering instability, involving a less viscous fluid intruding underneath
a current of more viscous fluid, was recently observed in the experiments of Kowal &
Worster (2015). We examine the origin of the instability by asking whether the instability
is an internal instability, arising from internal dynamics; or a frontal instability, arising
from viscous intrusion. We find it is the latter and characterise the instability criterion
in terms of viscosity difference or, equivalently, the jump in hydrostatic pressure gradient
at the intrusion front. The mechanism of this instability is similar to, but contrasts with,
the Saffman-Taylor instability, which occurs as a result of a jump in dynamic pressure
gradient across the intrusion front. We focus on the limit in which the two viscous fluids
are of equal density, in which a frontal singularity, arising at the intrusion, or lubrication,
front, becomes a jump discontinuity, and perform a local analysis in an inner region near
the lubrication front, which we match asymptotically to the far field. We also investigate
the large-wavenumber stabilization by transverse shear stresses in two dynamical regimes:
a regime in which the wavelength of the perturbations is much smaller than the thickness
of both layers of fluid, in which case the flow of the perturbations is resisted dominantly
by horizontal shear stresses, and an intermediate regime, in which both vertical and
horizontal shear stresses are important.

Key words:

1. Introduction

The series of experiments described in Kowal & Worster (2015) involving two super-
posed currents of viscous fluids of different viscosity flowing radially outwards revealed
a novel cross-flow fingering instability when the lower layer is less viscous. A sample
sequence of photographs of the fingering instability is shown in Figure 1. The instability
occurs at late stages of the experiments, causing lobes of highly lubricated, thin regions
of high viscosity fluid to advance ahead of less mobile, thicker regions of high viscosity
fluid. Despite its characteristically different formation mechanism, there are similarities
between the instability observed in the experiments of Kowal & Worster (2015) and the
well known Saffman-Taylor instability, involving the intrusion of a less viscous fluid into
a more viscous fluid in a porous medium (Saffman & Taylor 1958) or Hele-Shaw cell.
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Figure 1: Photographs of the bottom view of one of our experiments t = 100, 200, 300, 400
seconds after injection of the lubricant. Less viscous fluid (dyed potassium carbonate
solution) intrudes underneath a more viscous fluid (golden syrup).

Viscous fingering is ubiquitous in nature and industry and may result in complex, highly
branched structures (Saffman & Taylor 1958; Paterson 1981; Homsy 1987; Chen 1989;
Thome et al. 1989;Manickam& Homsy 1993). Similar phenomena are prevalent in various
scenarios, such as in oil recovery processes (Orr & Taber 1984), carbon sequestration
(Cinar et al. 2009), coating applications and ribbing (Taylor 1963; Reinelt 1995), and
morphological instabilities in crystal growth (Mullins & Sekerka 1964). The patterns
that emerge may be controlled by varying the injection rate of the less viscous fluid (Li
et al. 2009; Dias & Miranda 2010; Dias et al. 2012), changing the geometry (Nase et al.

2011; Al-Housseiny et al. 2012; Juel 2012; Dias & Miranda 2013) and elasticity (Pihler-
Puzovic et al. 2012, 2013, 2014) of the medium, by the use of anisotropy (Ben-Jacob
et al. 1985), and the use of non-Newtonian fluids (Kondic et al. 1998; Fast et al. 2001;
Kagei et al. 2005).
These frontal instabilities can be contrasted with the internal instabilities that arise

between co-flowing, superposed viscous fluids. It has been found by Yih (1967), for
example, that a contrast in the viscosities of two superposed fluid films between two
horizontal plates can cause long-wavelength instabilities and lead to the formation of
wavy patterns. This became commonly known for affecting the quality of manufactured
products in industrial processes and attracted a breadth of research on the subject,
focusing on flows in two spatial dimensions (Kao 1968; Wang et al. 1978; Hinch 1984;
Hooper & Grimshaw 1985; Hooper & Boyd 1983, 1987; Renardy 1987; Hooper 1989; Chen
1993; Tilley et al. 1994; Balmforth et al. 2003). Loewenherz et al. (1989) and Loewenherz
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& Lawrence (1989) later related these results in a glaciological context to the formation
of transverse ridges on rock glaciers. The above-mentioned studies of instabilities due to a
viscosity difference between two superposed fluid films are all due to an internal instability
mechanism and do not involve the cross-flow dimension. The resulting instabilities are
longitudinal, in contrast to the fingering patterns observed in the experiments of Kowal
& Worster (2015).
The experiments of Kowal & Worster (2015) were motivated by considerations of

subglacial till, or water-saturated subglacial sediment, which lubricates the underside of
glacial ice sheets, such as those of Greenland and Antarctica, in an idealised experimental
setting that aids flow delivery. The part of the experiments relevant to the glaciological
setting are their internal dynamics, particularly the viscous coupling between the two
layers, rather than their frontal dynamics, at the intrusion front, and it is of interest to
determine which of these give rise to the instabilities. In particular, can the instabilities
give insight into the formation of ice streams, or regions of ice that are much faster flowing
than their surroundings? Their formation has been suggested to result from a spontaneous
instability of ice flow through a positive feedback between sliding velocity and basal-
melt production (Fowler & Johnson 1995, 1996; Sayag & Tziperman 2008), a triple-
valued sliding law (Sayag & Tziperman 2009; Kyrke-Smith et al. 2014), or thermoviscous
fingering (Payne & Dongelmans 1997; Hindmarsh 2004, 2006). The last of these has also
been seen in the context of the surface cooling of viscoplastic lava domes (Balmforth &
Craster 2000).
In this paper, we analyse the origins of the instability by posing questions on what

the possible instability mechanisms might be and formulating simpler problems that
specifically isolate each mechanism. Two main questions arise: is the instability an
internal instability, arising from internal dynamics; or is it a frontal instability, arising
from viscous intrusion?
To answer the first question, we consider a problem in which both fluids drain off

the edge of a finite plate, as shown in figure 2a. This setting allows us to focus on
internal dynamics while frontal dynamics play no role. The nature of the problem allows
for a clean proof that all normal mode disturbances for any parameter values have
negative growth rates. This proves stability for all parameter values and suggests that the
experimentally observed instabilities are frontal instabilities. We present the proof in §3
after introducing the governing equations in §2. The mechanism of instability is revealed
first in §4 (specifically in §4.1) by considering frontal dynamics, and then modified in §5
and §6.
To examine frontal dynamics, we focus the remaining sections of this paper on a

stability analysis in the neighbourhood of the lubrication front, where the instability
originates. In §4, we focus on a singular limit in which the densities of the two layers are
equal. As a consequence, the order of the governing equations reduces by one and the
frontal singularity, which occurs at the tip of the intruding current only when there is
a density difference between the layers, reduces to a frontal jump discontinuity (Kowal
& Worster 2015). This allows for a local linear approximation to the surface slopes of
both layers in the inner region near the lubrication front. In this setup, we characterise
conditions under which the flow is unstable and identify the underlying instability
mechanism. We find that although the physics of this problem reveals the mechanism of
instability, it does not yield a stabilising mechanism for wavelength selection.
We devote the remaining part of this paper to explore the effect of transverse shear as a

possible large-wavenumber stabilising mechanism in two dynamical regimes and develop
a thin-film theory in each of these. The first regime, described in §5, is one in which
the wavelength of the perturbations is much smaller than the thickness of both layers
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Figure 2: Schematic of two superposed thin films of viscous fluid spreading horizontally
under gravity on a rigid horizontal surface with, (a), and without, (b), drainage at x = L
off the edge of the rigid plate. Panel (a) displays thin films of fluid spreading over a finite
plate in steady state, whereas panel (b) displays a spreading current with an internal
lubrication front. Panel (b) is reproduced from Kowal & Worster (2015).

of fluid, in which case the flow of the perturbations is resisted dominantly by horizontal
shear stresses. These stabilize small wavelengths. The physical ideas of §4 and §5 are
combined in §6 to determine wavelength selection at intermediate wavenumbers. This
final regime is an intermediate regime accounting for both vertical and horizontal shear
stresses. We note that this is an idealised scenario, in which only vertical and horizontal
shear stresses appear, and the purpose is to determine whether or not these are sufficient
to provide stabilisation at large wavenumbers. However, we also note that extensional
stress gradients may also become important at similar length scales, prompting the need
for a solution to the full Stokes equations near the intrusion front, which we do not
attempt in this paper.
We perform a more detailed analysis of the full problem, in which the densities of the

two layers are not assumed equal and without the use of local spatial and frozen-time
approximations, in the companion paper Kowal & Worster (2018). The companion paper
can be read alone, without absorbing all the details of the current paper.

2. Governing equations for lubricated currents

In the present paper, we adopt a two-dimensional geometry for the basic states
that we consider. The experiments of Kowal & Worster (2015) were carried out in
an initialy axisymmetric geometry and the companion paper analyzes the stability for
an axisymmetric basic state. We find in the companion paper that the mechanism of
instability and the conditions of the onset of instability are unaffected by the change in
geometry.
The following is based on the PhD Thesis by Kowal (2016). The systems we analyse are
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illustrated in figure 2. The lubricated region in each case consists of two superposed layers
of fluid spreading horizontally under their own weight over a rigid plate. We denote the
height of the interface between the two fluids by h(x, y, t) and the upper surface height by
H(x, y, t). The fluids are of different dynamic viscosities, µ and µl, kinematic viscosities,
ν and νl, densities ρ and ρl(> ρ), and are released at fixed source fluxes q0 and ql0, where
the subscript l refers to the lower layer. The gravitational constant is denoted by g.
Three important dimensionless parameters arise, including the dynamic viscosity ratio,
the dimensionless density difference and the flux ratio between the two fluids, given by

M =
µ

µl
, D =

ρl − ρ

ρ
, and Q =

ql0
q0

, (2.1)

respectively. Although the following applies for viscous fluids with general viscosity ratios,
we are principally interested in the case in which the lower layer is less viscous, lubricating
the overlying highly viscous current.
The dynamics of the underlying current are dominated by vertical shear stresses arising

from traction along the rigid plate. However, shear and extensional stress can both play
a role within the overlying current. As in Kowal & Worster (2015), we consider the limit
in which vertical shear provides the dominant resistance to the flow in both layers. We
assume that inertia and the effects of mixing and surface tension at the interface between
the layers are negligible and consider a balance between viscous and buoyancy forces. We
assume that the films are much thinner than their extent, H ≪ L, where H and L
are the characteristic thickness and length of the flow, and apply the approximations of
lubrication theory.
We apply the following non-dimensionalisation throughout:

x = Lx̃, (H,h) = H(H̃, h̃), t = T t̃, (q, ql) = q0(q̃, q̃l) (2.2)

where

H =

(
νq0L

g

)1/4

and T =

(
νL5

gq30

)1/4

(2.3)

are the characteristic thickness and time scales of the currents associated with a length
scale L, which depends on the problem in question and will be specified in the appropriate
sections. We drop tildes henceforth.
The horizontal fluid velocities satisfy

µuzz = ∇p for h 6 z 6 H, µlulzz = ∇pl for 0 6 z 6 h, (2.4a, b)

where ∇ is the horizontal component of the gradient operator, and the pressures are
given by

p = (H − z) for h 6 z 6 H, (2.5)

pl = (H − h) +
ρl
ρ
(h− z) for 0 6 z 6 h. (2.6)

These are subject to no slip at the base, no stress at the upper, free surface,

ul = 0 (z = 0), µuz = 0 (z = H), (2.7a, b)

and continuity of velocity and shear stress between the layers,

ul = u, µlulz = µuz (z = h). (2.8a, b)

These equations can be solved and integrated to obtain the volume flux of fluid, per
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unit width, in the lower and upper films,

ql =

∫ h

0

uldz = −

[
M

3
h3 (D∇h+∇H) +

1

2
Mh2(H − h)∇H

]
, (2.9)

q =

∫ H

h

udz = −

[
1

3
(H − h)3∇H +

1

2
Mh2(H − h) (D∇h+∇H)

+Mh(H − h)2∇H

]
.

(2.10)

In each film, there are Poiseuille-like contributions from the spreading of each film under
its own weight, and Couette-like contributions arising from boundary motion (Kowal
& Worster 2015). These are supplemented by mass conservation equations for the two
layers,

∂h

∂t
= −∇ · ql,

∂(H − h)

∂t
= −∇ · q. (2.11a, b)

and source flux boundary conditions

ql = Qex, q = ex (x = 0). (2.12a, b)

The remaining boundary conditions depend on the problem in question and will be
discussed as they arise.

3. Internal dynamics: lubricated currents with drainage

Consider two superposed layers of fluid spreading horizontally and steadily under their
own weight over a rigid plate of finite length L as depicted in Figure 2a. For the non-
dimensionalisation (2.2), we take L = L in this section. Both fluids are pinned at the
singular drainage front, that is,

h = 0, H = 0 (x = 1). (3.1a, b)

3.1. Steady solution

The mass conservation equations admit steady solutions that satisfy

ql = Qex, q = ex, (3.0a, b)

along with (3.1). These equations can be solved analytically to yield the two-dimensional
steady solutions

(Hs, hs) = (A, a)(1 − x)1/4. (3.1)

The constants A, a depend on the dimensionless parameters through the algebraic con-
ditions given in (A 1) and (A2) in Appendix A.

3.2. Linear perturbation equations

We investigate the linear stability of the steady basic state of §3.1 by introducing small
disturbances hp, Hp ≪ 1. These give rise to the following linearised perturbation fluxes

qlp =−

[
M

3
h3
s (D∇hp +∇Hp) +

M

2
h2
s(Hs − hs)∇Hp+

Mh2
shp(D∇hs +∇Hs) +

M

2
(h2

s(Hp − hp) (3.2)

+2hshp(Hs − hs))∇Hs

]
,
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qp = −

[
1

3
(Hs − hs)

3
∇Hp +

M

2
h2
s(Hs − hs) (D∇hp +∇Hp)

+Mhs(Hs − hs)
2
∇Hp ++(Hs − hs)

2(Hp − hp)∇Hs (3.3)

M

2
(2hshp(Hs − hs) + h2

s(Hp − hp))(D∇hs +∇Hs)+

+M(hp(Hs − hs)
2 + 2hs(Hs − hs)(Hp − hp))∇Hs

]
,

and mass conservation equations

∂hp

∂t
= −∇ · qlp,

∂(Hp − hp)

∂t
= −∇ · qp, (3.4a, b)

for the perturbed lower and upper layers, respectively. We impose the boundary condi-
tions

qlp · ex = 0, qp · ex = 0 (x = 0), (3.5a, b)

hp = 0, Hp = 0 (x = 1). (3.6a, b)

That is, it is required that the source fluxes of both fluids remain fixed and that both
fluids drain at the nose.
We search for normal-mode solutions proportional to eσt+iky with amplitudes h̃p(x),

H̃p(x). Here, k is the transverse wave number of the disturbances and σ is their (complex)
growth rate. After lengthy algebra, introducing the notation ξ = 1−x and dropping tildes,
the mass conservation equations (3.4a,b) can be written compactly in matrix form

σCv =

(
ξ3/4Ev′ −

1

4
ξ−1/4Fv

)′

− k2ξ3/4Ev, (3.7)

and the boundary conditions reduce to

ξ3/4Ev′ −
1

4
ξ−1/4Fv = 0 (x = 0), v = 0 (x = 1), (3.8a, b)

where the prime denotes differentiation with respect to x. Here, v = [hp, Hp]
T , and the

entries of the matrices C, E and F are given in (A 3)–(A5) in Appendix A. It will be
convenient to define J = F +E and to consider the transformation

C̃ = CT , Ẽ = ET , J̃ = JT , (3.9a, b, c)

where

T =

(
1 0
1 1

)
. (3.10)

This transformation is equivalent to reformulating the problem in terms of layer thick-
nesses [h,H−h]T rather than layer heights [h,H ]T . Some key properties of these matrices

will prove useful in the later sections, including that the trace and determinant of the Ẽ

and J̃ are strictly positive and that C̃ is the identity matrix.
We note that (3.7) has a singular point at the front x = 1 (ξ = 0), which poses

a hindrance in our stability calculations. In order to make progress, we analyze the
behaviour of the perturbations near this singular point asymptotically in §3.3.

3.3. Asymptotic solution near the singular front

We explore the asymptotic behaviour of the perturbations in an inner region of size
ǫ ≪ 1 about ξ = 0 and define an inner variable ζ = ξ/ǫ. In terms of this inner variable,
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(3.7) becomes

σǫ5/4Cv + k2ǫ2ζ3/4Ev =
d

dζ

(
ζ3/4E

dv

dζ
+

1

4
ζ−1/4Fv

)
, (3.11)

Expanding the solution as a series v = v0 + ǫv1 + . . . gives, at leading order in ǫ,

d

dζ

(
ζ3/4E

dv0

dζ
+

1

4
ζ−1/4Fv0

)
= 0, (3.12)

which has general solution

v0 = ζ1/4A0 + ζ−MB0, (3.13)

obtained after direct integration and the use of an integrating factor, whereM = 1

4
E−1F

and A0, B0 ∈ R
2 are constant vectors. The matrix ζ−M = exp(− log(ζ)M) is defined in

terms of its Taylor series. It is possible to show (see (B 3)–(B4) in Appendix B), thatM is
positive definite for all parameter values. This implies that, for nonzero choices ofB0, the
second term on the right hand side of (3.13) tends to infinity as ζ → 0, contradicting the
zero-thickness boundary condition (3.8b). This can be seen by changing basis to canonical
form. Therefore,B0 = 0, and so the leading-order solution is simply proportional to ξ1/4.

3.4. Stability results

In this section, we show that the system is stable to all perturbations, whatever the
choice of the three dimensionless parameters, M,D,Q.
After defining w = ξ−1/4v, equation (3.7) becomes

σξ1/4Cw + k2ξEw =

(
ξEw′ −

1

4
Jw

)′

(3.14)

Multiplying on the left by w†J† and integrating gives

σ

∫ 1

0

ξ1/4w†J†Cwdx+ k2
∫ 1

0

ξw†J†Ewdx =
∫ 1

0

w†J†

(
ξEw′ −

1

4
Jw

)′

dx.

(3.15)

After integrating by parts and noting that J†J is symmetric, the right-hand side becomes

w†J†

(
ξEw −

1

4
Jw

)∣∣∣∣
1

0

−

∫ 1

0

w′†J†Ew′ξdx+
1

8
w†J†Jw

∣∣∣∣
1

0

. (3.16)

Noting that ξEw − 1

4
Jw is proportional to (qlp · ex, qp · ex)

T , using the boundary
conditions and noting from §3.3 that w is regular at the nose x = 1, we find that

σ

∫ 1

0

ξ1/4w†J†Cwdx+ k2
∫ 1

0

ξw†J†Ewdx +

∫ 1

0

w′†J†Ew′ξdx =

= −
1

8
w†J†Jw

∣∣∣∣
x=1

−
1

8
w†J†Jw

∣∣∣∣
x=0

6 0.
(3.17)

We wish to show that J†C and J†E are both positive definite as this implies that
each of the integrals on the left hand side of (3.17) are strictly positive for nonzero
perturbations w. This implies that σ 6 0, else, if σ > 0 then the left hand side of (3.17)
is strictly positive while the right hand side is negative – a contradiction. It is sufficient to
show that J̃†C̃ and J̃†Ẽ are positive definite. After some algebra and using the fact that
A > 0 and A > a, it is possible to show that Ẽ and J̃ have all strictly positive entries,
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hence the trace of both matrices is strictly positive, and that their determinants are also
strictly positive. Therefore, Ẽ and J̃ are positive definite. Since Ẽ and J̃ have strictly
positive entries, so does the product J̃†Ẽ, and in particular, the trace of this product is
strictly positive. Using this and the fact that det(J̃†Ẽ) = det(J̃) det(Ẽ) > 0, we conclude

that J̃†Ẽ, and hence J†E, is positive definite. See Appendix C for details, in particular
(C 5), (C 10) and the surrounding text. Note also that C̃ ≡ I is the identity matrix,

therefore, J̃†C̃ = J̃†, and hence J†C, is positive definite as well. This concludes the
argument that σ 6 0. This conclusion holds for all values of the dimensionless parameters
M,D,Q. That is, it is not possible to find a choice of parameters for which the system
is linearly unstable to small perturbations.

3.5. One-layer gravity currents with drainage

Although the framework above was developed for lubricated, two-layer currents, it may
also be applied to a single-fluid current by taking Q = 0. The shape of the steady state
current remains qualitatively the same, except that a = 0 and, by (A 2), A = 121/4.
There are no free dimensionless parameters in this case. Although the matrices used in
the previous sections are no longer well defined, we can instead straightforwardly show
that the perturbation Hp obeys the perturbation equation (3.7) with C replaced by the
scalar 3/A3, E replaced by 1, and F by 3. As these are all strictly positive scalars, by
following the analysis of §3.4 it is immediate that the one-layer gravity current with
drainage is linearly stable as well, as expected.

4. Frontal dynamics: mechanism of instability at the lubrication front

The results of the previous section suggest that the experimentally observed fingering
originates from a frontal, rather than internal, instability. This is consistent with a
previous study on two-layer flow down an incline, where it was illustrated that modes
with no transverse variation are stable (Toniolo 2001).

The basic state for the problem we wish to investigate is non-standard in that it is
both time- and space-dependent, and normal-mode solutions do not, in general, exist.
We proceed by splitting the domain of the flow into two asymptotic regions in a two-
dimensional geometry: an active, inner region near the lubrication front, in which the
onset of instability occurs, and a passive, outer region away from the lubrication front, in
which the perturbations decay as the lubrication front is distanced. The inner and outer
regions are matched asymptotically through decay conditions.

By also assuming that the changes in surface heights near the lubrication front are
small and that the growth rate of the perturbations is much faster than that of the basic
state (a frozen-time approximation), this reduces the perturbation equations to a system
of linear differential equations with normal-mode solutions that have space-dependent
amplitudes in the inner region. Both of these assumptions are encapsulated in a single
rescaling.

In this section, we confine attention to the region near the lubrication front, illustrated
in figure 2b, and consider the limit in which the flow of both the basic state and the
perturbations is resisted dominantly by vertical shear stresses. We begin by discussing
the mechanism of instability and follow on with a formal derivation of the instability
threshold.
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Figure 3: Schematic of stable and unstable flow configurations. Here, M < 1 (the lower
layer is more viscous) in the left-hand panel, whereas M > 1 (the lower layer is less
viscous) in the right-hand panel.

4.1. Mechanism of instability

To illustrate the instability mechanism, consider the caseM > 1 in which a less viscous
fluid intrudes into a more viscous fluid in the unlubricated region, depicted in the right-
hand panel of Figure 3. In this case, surface slopes, and so pressure gradients, are larger
in the unlubricated region than in the lubricated region. If the front is perturbed and
the less viscous fluid finds itself in the unlubricated region, it will become subject to
higher hydrostatic pressure gradients and so will advance forward, causing an instability.
The scenario is reversed in the opposite case M < 1, depicted in the left-hand panel
of Figure 3. In this case, the jump in slope is reversed so that surface slopes, and so
pressure gradients, are smaller in the unlubricated region than in the lubricated region
and if the front is perturbed so that the more viscous, underlying fluid gets displaced
past the position of the basic state front, then it will become subject to lower hydrostatic
pressure gradients and become suppressed. That is, a viscosity contrast brings with it a
change in pressure gradient, which triggers the instability.
There is a fundamental similarity between this instability and the Saffman-Taylor

instability in that both are caused by discontinuities in a driving pressure gradient.
However, in this case, the underlying pressure gradients originate from changes in free-
surface slope and are related to hydrostatic pressure rather than dynamic pressure.
We proceed with a formal justification of the physical mechanism in the following

sections.

4.2. Perturbations resisted by vertical shear

We use the non-dimensionalisation (2.2), for which we use the lengthscale

L =

(
gq30T

4
0

ν

)1/5

, (4.1)

where T0 is the time delay between the initiation of flow of the two layers, as in
the experiments of Kowal & Worster (2015). The shear-dominated theory of §2 is
supplemented by the following mass conservation equations in the no-slip region

q = −
1

3
H3

∇H,
∂H

∂t
= −∇ · q (x > xL), (4.2)

(Huppert 1982), the matching condition

[H ]+− = 0 (x = xL), (4.3a, b)
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Figure 4: Schematic of the basic state in the inner region, in which the surface heights
are locally linear.

at the lubrication front, and the flux condition and kinematic condition

[
q · nL + ql · nL

]−
=

[
q · nL

]+
(x = xL), (4.4)

nL · ẋL = lim
x→xL

nL · ql/h. (4.5)

Here, we take D = 0.

4.3. Linearisation

We investigate the linear stability of the system by introducing small disturbances
of size ǫ ≪ 1 (distinct from ǫ used in the previous section) and write h = h0 + ǫh1,
H = H0 + ǫH1, xL = xL0 + ǫxL1 and so on. These give rise to the following linearised
perturbation fluxes

ql1 = −

[(
−
M

2
h2
0h1 +Mh0h1H0 +

M

2
h2
0H1

)
∇H0

+

(
−
M

6
h3
0 +

M

2
h2
0H0

)
∇H1

]
,

(4.6)

q1 + ql1 = −

[ (
(1 −M)(H0 − h0)

2(H1 − h1) +MH2
0H1

)
∇H0+

(
1−M

3
(H0 − h0)

3 +
M

3
H3

0

)
∇H1

]
,

(4.7)

in the lubricated region and

q1 = −

[
H2

0H1∇H0 +
1

3
H3

0∇H1

]
, (4.8)

in the unlubricated region. First-order mass-conservation equations in the lubricated
region are

∂h1

∂t
= −∇ · ql1,

∂(H1 − h1)

∂t
= −∇ · q1, (4.9a, b)

and in the unlubricated region

∂H1

∂t
= −∇ · q1. (4.10)
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The condition of flux continuity to first order in ǫ can be expressed as
[
xL1

∂

∂x
(ql0 + q0) + (ql1 + q1)

]−
· ex =

[
xL1

∂

∂x
q0 + q1

]+
· ex (x = xL0).

(4.11)

Height continuity to first order gives
[
xL1

∂H0

∂x
+H1

]−
=

[
xL1

∂H0

∂x
+H1

]+
(x = xL0), (4.12)

and the kinematic condition to first order gives

ẋL1 =
1

h0

(
xL1

∂ql0
∂x

+ ql1

)
· ex −

ql0 · ex

h2
0

(
xL1

∂h0

∂x
+ h1

)
. (4.13)

We wish to perform a local analysis in an inner region of size δ ≪ xL near the
lubrication front in which the surface heights of the two layers in the lubricated region as
well as that of the unlubricated region are linear to first order in δ. This can be attained
by rescaling

x− xL0 = δ(x̃ − xL0), y = δỹ, t− 1 = δ2t̃, (4.14)

assuming x̃, ỹ, t̃ = O(1) as δ → 0, and expanding to first order in δ. Such an approach
can be justified by identifying δ with k−1. Such an approach also ensures that the
linearised quantities are independent of time, which, effectively, imposes a frozen-time
approximation. We additionally impose that all perturbations are local to the lubrication
front and decay away from it. We present a more detailed analysis, involving the full
region of the flow and perturbation equations involving the full, space-dependent basic
state in the companion paper (Kowal & Worster 2018).
In what follows, we split the domain of the flow into two asymptotic regions: the above-

mentioned inner region near the lubrication front, composed of both the lubricated and
no-slip domains, and two outer regions away from the lubrication front, which also consist
of both the lubricated and no-slip domains.
Evaluating basic state quantities at t = 1 defines the dimensional time scale T . We

denote the basic-state surface heights in the inner region to first order in δ by

h0 = a+ b(x− xL), H0 = A+B(x− xL) (x 6 xL0) (4.15a, b)

for the lubricated region, and

H0 = α+ β(x − xL) (x > xL0) (4.16)

for the unlubricated region, as depicted in the schematic diagram of Figure 4.
By searching for normal-mode solutions in the frame of the lubrication front and

writing

(h1(x, y, t), H1(x, y, t), xL1(y, t)) = (ĥ1(x), Ĥ1(x), x̂L1) exp(σt+ iky), (4.17)

where k is the transverse wave number of the disturbances and σ is their (complex) growth
rate, we find that the amplitudes satisfy the following mass conservation equations (after
dropping hats)

σh1 − V h′
1 =

(
al1H

′
0 + al2H

′
1

)′

− al3k
2H1 (x 6 xL0), (4.18)

σH1 − V H ′
1 =

(
a1H

′
0 + a2H

′
1

)′

− a3k
2H1 (x 6 xL0), (4.19)
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for the lubricated region and

σH1 − V H ′
1 =

[
H2

0H1H
′
0 +

1

3
H3

0H
′
1

]′
−

k2

3
H3

0H1 (x > xL0), (4.20)

for the unlubricated region, where ali, ai, for i = 1, . . . , 3, are cubic functions of the basic
state layer thicknesses and the viscosity ratio M, which are given in (S.1)–(S.9) of the
Supplementary Material. Here, V = ẋL0 is the velocity of the lubrication front, which is
related to A,B, a, b through its dependence on the three dimensionless parameters. Of
interest to us are the equations (4.18)–(4.20) up to first order in δ (see (D 1)–(D3) of
Appendix D for details).

The first-order flux continuity boundary condition reduces to

{
c1xL1 + c2H1 + c3h1 + c4

∂H1

∂x

}−

=

{
xL1α

2β2 + α2βH1 +
1

3
α3 ∂H1

∂x

}+

, (4.21)

for x = xL0, where c1, · · · c4 are functions of the viscosity ratio M, the basic state
thicknesses a,A, and slopes b, B, and are given in (S.43)–(S.46) of the Supplementary
Material. Similarly, the condition for continuity of height becomes

[
xL1B +H1

]−
=

[
xL1β +H1

]+
(4.22)

for x = xL0. The kinematic condition becomes

σxL1 = M

(
c8xL1 + c9h1 + c10H1 + c11

∂H1

∂x

)
(4.23)

for x = x−
L0

, where c8, . . . , c11 are functions of the layer thicknesses and their derivatives,
and are given in (S.47)–(S.50) of the Supplementary Material.
The equations (4.18)–(4.20) up to first order in δ along with the boundary conditions

(4.21)–(4.23) form a system of linear differential equations with constant coefficients,
with solutions of the form

(h1, H1) = (h̃−
1 , H̃

−
1 ) exp((x − xL0)λ

−) (x 6 xL0),

H1 = H̃+
1 exp((x − xL0)λ

+) (x > xL0)
(4.24a, b)

where h̃−
1 , H̃

−
1 , H̃+

1 are constants. Direct substitution into the mass conservation equa-
tions (D 1)–(D3) and corresponding matching conditions yields a system of six algebraic

equations for the six unknown variables σ, xL1, h̃
−
1 , H̃

+

1 , λ−, λ+, where it has been as-

sumed that H̃−
1 ≡ 1, without loss of generality, as solutions of this eigenproblem are

defined only up to a multiplicative constant. We restrict the choice of solutions to those
that decay exponentially from the lubrication front, giving that λ− > 0 and λ+ < 0.

Expressing the mass conservation equations in the lubricated region in matrix form
gives

(P − (σ − V λ−)I)[h̃−
1 , H̃

−
1 ]T = 0 (4.25)

where P is a 2 × 2 matrix with entries that are a function of λ−, k, a,A, b, B, and M.
The entries of P are given explicitly in (S.51)–(S.54) of the Supplementary Material.
Requiring non-trivial solutions gives that λ− satisfies

det(P − (σ − V λ−)I) = 0, (4.26)

which is a cubic equation for λ−. Recalling that H̃−
1 = 1, without loss of generality, it
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follows that h̃−
1 is given by the corresponding solution to (4.26), that is,

h̃−
1 =

(a(b(6B − 3aλ− + 6Aλ−) + a(6Bλ− + (a− 3A)(k − λ−)(k + λ−)))M)

(3B(−2Ab+ a2λ− + 2a(b−B −Aλ−))M + 6σ − 6V λ−)
(4.27)

Solving the mass conservation equation within the unlubricated region subject to decay
conditions gives λ+ explicitly as

λ+ = −
1

2α3
(6α2β + 3V +

√
4α3(3αβ2 + α3k2 + 3σ) + 36α2βV + 9V 2) (4.28)

The flux continuity condition specifies the dispersion relation for σ in the form

ζ1xL1 + ζ2H̃
−
1 + ζ3h̃

−
1 = −

1

3
α2(3βH̃+

1 + αH̃+
1 λ+ + 3β2xL1), (4.29)

where ζ1, . . . , ζ3 are functions of a,A, b, B,M and λ− and are given in (S.55)–(S.57) of
the Supplementary Material. This is an implicit equation for σ, which appears via λ−

and λ+. The λ− and λ+ appear linearly in the dispersion relation and are solutions of
cubic and quadratic equations, respectively. More than one solution for λ− and λ+, and
hence, for σ are possible and we are interested in the solution for which the real part of σ
is largest. H̃+

1 and xL1 are found by using the height continuity and kinematic conditions
to be

H̃+

1 = xL1(B − β) + H̃−
1 , (4.30)

and

xL1 =
1

ζ6

(
ζ4h̃

−
1 + ζ5H̃

−
1

)
(4.31)

where ζ4, . . . , ζ6 are functions of a,A, b, B,M, σ and λ− and are given in (S.58)–(S.60)
of the Supplementary Material.
In this section, we have determined the dispersion relation for σ in terms of quantities

such as the perturbations to the surface heights and leading edge position. Equations
in this section are solved numerically and the solutions for σ are shown in figure 5. In
order to formulate a stability criterion, we wish to simplify these using large-wavenumber
asymptotics in the following section.

4.4. Large-k asymptotics

In what follows, we expand in series of 1/k for k large and write X = X0k+X1 + · · · ,

where X = (σ, λ±, H̃±
1 , h̃−

1 , xL1). Using (4.26) gives the leading-order governing equation
in the lubricated region

1

6
k3
[
(λ−

0 )
2 − 1

][
λ−
0 − λ̃−

0

]
= O(k2) (4.32)

giving λ−
0 = ±1 or λ−

0 = λ̃−
0 where

λ̃−
0 = −

2σ0λ̃n0

λ̃d0

(4.33)

and λ̃n0, λ̃d0 are functions of the layer thicknesses, slopes, the viscosity ratio M and V .
Explicit expressions are given in (S.61)–(S.62) of the Supplementary Material. It can be

deduced from the latter expression that λ̃−
0 → 0 as M → 0. Taking λ−

0 = 1 gives the
next order equation outlined in the Supplementary Material, which gives the next order
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contribution

λ−
1 =

λ−
n1

λ−
d1

, (4.34)

where λ−
n1, λ

−
d1 are given in (S.64)–(S.65) of the Supplementary Material. The relation

(4.27) between h̃−
1 and H̃−

1 , given without loss of generality that H̃−
0 = 1, yields

h̃−
10k + h̃−

11 +O(1/k) =
ζ7
ζ8
, (4.35)

where ζ7, ζ8 are given in (S.66)–(S.67) of the Supplementary Material. ζ7, ζ8 are functions

of k, among other quantities. Expanding in series of 1/k gives that h̃−
10 = 0 and

h̃−
11 =

[
aM(6Ab− 2a2λ−

1 + a(−3b+ 6(B +Aλ−
1 )))

3a(a− 2A)BM + 6(σ0 − V )

]
. (4.36)

The governing equation (4.28) for the unlubricated region gives that

λ+

0 k + λ+

1 O(1/k) =
1

2

[
−
6β

α
−

3V

α3
−
√
4α6k2 + 12α3σ0k +O(1)

]

= −k −
3

2

[
2
β

α
+

σ0 + V λ+

α3

]
+O(1/k),

(4.37)

and so λ+
0 = −1 and λ+

1 = − 3

2

[
2 β
α + σ0+V λ+

α3

]
. The kinematic condition gives that

xL10 = 0, (4.38)

xL11 = −
2(A− a)3 + 3a(2A− a)(A− a)M

6aσ0

, (4.39)

(4.40)

The next-order contribution, xL12, which will be needed in determining the first-order
correction to the dispersion relation (note xL11 was needed in determining the dispersion
relation at leading order), is given in (S.68) of the Supplementary Material. The height
continuity condition gives

H̃+ = xL1(B − β) + H̃−

= xL11(B − β) + H̃−
11 + xL12(B − β)

1

k
+O(1/k2) (4.41)

and so

H̃+

10 = 0, H̃+

11 = xL11(B − β) + H̃−
11, H̃+

12 = xL12(B − β). (4.42a − c)

The leading-order flux condition reduces to

H̃+

11 =
[
(1−M)(1 − a/A)3 +M

]H̃−
11

λ+

0

, (4.43)

which, by comparison to (4.42b), gives

σ0 = γ(a,A,M)(B − β) (4.44)

where

γ(a,A,M) =
A− a

6a
·

2(A− a)2 + 3a(2A− a)M

(M+ 1) + (1− a/A)3(1−M)
. (4.45)
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4.5. Instability threshold

The formula (4.44) shows that to leading order, the growth rate behaves as

σ ∼ −kγ(a,A,M)

[
∂H0

∂x

]+

−

, (4.46)

at x = xL0, as k → ∞. That is, the growth rate varies linearly with k, as k → ∞,
which signifies that there is no stabilising mechanism at large wavenumbers under the
physics considered so far, similarly to the original result of Saffman & Taylor (1958) for
the onset of viscous fingering in a porous medium without the stabilising influence of
surface tension. We explore possible stabilising mechanisms in §5 and 6 of this paper and
in the companion paper. Since γ(a,A,M) in this expression is a positive constant, one
can deduce that there are positive growth rates at large wave numbers precisely when

∂H0

∂x

−

>
∂H0

∂x

+

(x = xL0), (4.47)

that is, when the upper surface slope is gentler in the lubricated region than in the
unlubricated region: |∂H−

0 /∂x| < |∂H+
0 /∂x|, since the surface slopes are negative.

To understand the conditions under which precisely this break in slope occurs, the
condition of continuity of flux for the basic state (q0 + ql0)

−
· ex = q+

0
· ex, written

explicitly as,
{
−
1

3

[
(1 −M)(H0 − h0)

3 +MH3
0

]∂H0

∂x

}−

=

{
−
1

3
H3

0

∂H0

∂x

}+

, (4.48)

may be used to relate the upstream and downstream upper surface slopes as

β =
[
(1−M)(1 − a/A)3 +M

]
B, (4.49)

showing that B and β have the same sign (negative), since the prefactor on the right-hand
side is positive, and that the condition B > β is equivalent to

[
(1−M)(1− a/A)3 +M

]
> 1, (4.50)

that is,

(M− 1)
[
1− (1− a/A)3

]
> 0, (4.51)

or, equivalently,

M > 1. (4.52)

Therefore, the jump in slope is completely determined by the viscosity ratio between the
two fluids, which further determines the stability of the front at large wave numbers.

4.6. Higher-order contributions

In order to determine an asymptotic solution, such that the difference between it
and the full numerical solution decays to zero as k → ∞, we examine the next order.
This provides visual agreement between asymptotic and numerical results for moderate
wavenumbers. To the next order, the flux condition gives

H̃+

12 = φ1h̃
−
11 + φ2H̃

−
11 + φ3H̃

+

11 + φ4xL11, (4.53)

where φ1, . . . , φ4 are given in (S.69)–(S.72) of the Supplementary Material. Relating this
to (4.42c) gives the next order correction for the growth rate

σ1 = φ5h̃
−
11 + φ6H̃

−
11 + φ7H̃

+

11 + φ8xL11, (4.54)
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Figure 5: Asymptotic (dashed) and numerical (solid) solutions of the equations of §4
for the growth rates σ against wavenumber k for perturbations resisted dominantly by
vertical shear. Parameter values used are M = 10 and Q = 0.1.

where the coefficients φ5, . . . , φ8 are given in (S.73)–(S.76) of the Supplementary Material.
The asymptotic solution

σ ∼ σ0k + σ1 (k → ∞), (4.55)

where σ0 and σ1 are derived above, is compared against the numerical solution for σ
against k in Figure 5. The asymptotic solution is shown to converge towards the numerical
solution (solid curve in figure 5) as k increases, with good agreement obtained for k & 0.5.
It is seen from the asymptotic solution that the growth rates increase unboundedly

as the wavenumber increases. Therefore, the limit in which vertical shear provides the
dominant resistance to the flow of the perturbations provides no stabilising mechanism
for large wavenumbers, indicating that there is another physical mechanism in our
experiments that stabilises the flow for large-enough wavenumbers. To explore one such
possible mechanism, we consider the effect of horizontal shear as the dominant resistance
to the flow of the perturbations in the next section. Horizontal shear stresses become
important (or dominate) when the wavelength of the perturbations is comparable to (or
much smaller than) the thickness of both layers of fluid. The next section concerns the
latter limit.

5. Frontal dynamics: stabilisation by horizontal shear

For large enough wavenumbers, the wavelength of the perturbations is much smaller
than the vertical length scale and the perturbations become resisted dominantly by
horizontal shear stresses. This occurs in both layers when k > 1/h. We wish to consider
this limit in this section, and explore whether it stabilizes the flow for large wavenumbers.

5.1. Model equations

5.1.1. Unlubricated region

To investigate the stability of the flow, we introduce small disturbances of size ǫ ≪
1 and search for normal-mode solutions with transverse wavenumber k and growth
rate σ of the form X = X0 + ǫX1 + · · · , where X1 = X̂1 exp(iky + σt) and X =
(H(x, y, t),u(x, y, z, t), q(x, y, t)). With the assumption that the perturbations to the
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flow are resisted dominantly by horizontal shear stresses, the gradients in z are negligible
and so the perturbation to the velocity obeys

u1 = −
1

k2
∇H1. (5.1)

In contrast with the previous analysis, here the velocity involves a 1/k2 contribution,
reflecting the resistence to the flow by horizontal shear stresses.We will use the convention
that the y-component of the gradient operator means either d/dy or ik, interchangeably.
The volume flux, per unit width, can be expressed as

q =

∫ H

0

udz =

∫ H0+ǫH1

0

(
u0 + ǫu1

)
dz (5.2)

=

∫ H0

0

u0dz + ǫ

[∫ H0

0

u1dz +H1u0

∣∣∣∣
z=H0

]
+O

(
ǫ2
)

(5.3)

so that the perturbation to the volume flux, per unit width, is

q1 =

∫ H0

0

u1dz +H1u0

∣∣∣∣
z=H0

=

∫ H0

0

u1dz −
1

2
H1H

2
0∇H0 (5.4)

since the basic state velocity for a classical current is primarily along the x-direction with
u0 = − 1

2
z(2H0 − z)∂H0/∂x. Substituing the expression (5.1) for the perturbation to the

velocity gives

q1 = −
1

k2
H0∇H1 −

1

2
H1H

2
0∇H0 (5.5)

This differs from (4.8) in the 1/k2 term to reflect that the flow of the perturbations is
resisted by horizontal shear. The time-evolution of the perturbations, in the frame of the
lubrication front, is governed by the mass conservation equation for the next order in ǫ

σH1 − V
∂H1

∂x
= −∇ · q1

= −
∂

∂x

(
q1 · ex

)
− ikq1 · ey.

(5.6)

5.1.2. Lubricated region

We introduce small perturbations of size ǫ ≪ 1 and investigate the stability of the flow
by searching for normal-mode solutions with transverse wavenumber k and growth rate
σ. We expand in series of ǫ, Y = Y0 + ǫY1 where Y1 = Ŷ1 exp(iky + σt), and

Y = [H(x, y, t), h(x, y, t),u(x, y, z, t),ul(x, y, z, t), q(x, y, t), ql(x, y, t)]. (5.7)

As the perturbations to the flow are resisted dominantly by horizontal shear stresses, the
gradients in z are negligible and so

u1 = −
1

k2
∇H1 (5.8)

for the upper layer and

ul1 = −
M

k2
∇H1 (5.9)

for the lower layer. There is a small boundary layer at the interface between the two fluids
and at the base, in which vertical shear stresses are important and resolve the no-slip
boundary condition as well as the continuity of velocity and shear stress at the interface.
However, the effect of this boundary layer is negligible in a depth-averaged description of
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the flow when the wavenumber of the perturbations is large, specifically, when k ≫ 1/h.
As an alternative to scaling arguments, this can also be deduced from considering the
full calculation with k = O(1) so that both vertical and transverse shear contribute to
resisting the perturbations to the flow, and considering the limit kh → ∞.
The volume flux, per unit width, of the upper layer fluid is

q =

∫ H

h

udz =

∫ H0+ǫH1

h0+ǫh1

(
u0 + ǫu1

)
dz

=

∫ H0

h0

u0dz + ǫ

[∫ H0

h0

u1dz +H1u0

∣∣∣∣
z=H0

− h1u0

∣∣∣∣
z=h0

]
+O

(
ǫ2
) (5.10)

and in the lower layer,

ql =

∫ h

0

uldz =

∫ h0+ǫh1

0

(
ul0 + ǫul1

)
dz

=

∫ h0

0

ul0dz + ǫ

[∫ h0

0

ul1dz + h1ul0

∣∣∣∣
z=h0

]
+O

(
ǫ2
)
.

(5.11)

By using expressions for the velocity fields for the two layers at zeroth order in ǫ given
Kowal & Worster (2015), the perturbation to the volume flux in the upper layer can be
found to be

q1 = −
1

k2
(H0 − h0)∇H1 −

1

2
(H1 − h1)

[
Mh2

0

+2Mh0(H0 − h0)
]
∇H0 −

1

2
H1(H0 − h0)

2
∇H0

(5.12)

and in the lower layer,

ql1 = −
1

k2
MH0∇H1 −

1

2
h1

[
Mh2

0 + 2Mh0(H0 − h0)
]
∇H0. (5.13)

These differ from (4.6) and (4.7) in the 1/k2 term, as before. Conservation of mass at
first order in ǫ in the two layers is described by

σ(H1 − h1)− V (H ′
1 − h′

1) = −∇ · q1

= −
∂

∂x

(
q1 · ex

)
− ikq1 · ey

(5.14)

for the upper layer and

σh1 − V h′
1 = −∇ · ql1

= −
∂

∂x

(
ql1 · ex

)
− ikql1 · ey

(5.15)

for the lower layer. Here, we take the basic state to be quasi-steady with respect to the
lubrication front.

5.2. Local stability analysis: results

We locally approximate the basic state surface heights linearly near the lubrication
front and summarise the resulting set of equations in the lubricated and unlubricated
regions along with jump conditions in (E 1)–(E 9) of Appendix E. The method used to
derive these local equations, valid in the vicinity of the lubrication front, follows that
of the previous section on perturbations resisted dominantly by vertical shear. We solve
these equations explicitly to obtain the dispersion relation in §E.0.2 and also perform an
asymptotic analysis for large wavenumbers k. The asymptotics are outlined in §E.0.3 of
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Figure 6: Asymptotic (dashed) and numerical (solid) solutions for the growth rates
σ against wavenumber k for perturbations resisted dominantly by horizontal shear.
Parameter values used are M = 10 and Q = 0.1.

Appendix E. The main message to take away can be captured concisely in the limit of
M → ∞, in which the large-k behaviour of σ, is given by the simple relation

σ =
ϕ8M

2 + ϕ9M

ϕ10

+O(1/k, 1/M), (5.16)

where ϕ8, . . . , ϕ10 are functions of the basic state thicknesses, slopes and lubrication
front velocity. Explicit expressions can be found in (S.113)–(S.115) of the Supplementary
Material. The important message is that σ tends to a constant at large wavenumbers.
This, in fact, is the case not only in the limit M → ∞, but holds for any value of M
and indicates that horizontal shear significantly stabilizes the flow at large wavenumber.

The large-k asymptotic solution for the growth rate σ is shown in Figure 6, where it is
additionally seen that the full numerical solution of the equations, (E 1)–(E 9), described
in Appendix E for the growth rate converges towards the asymptotic result.

This analysis reveals that horizontal shear provides a desirable stabilizing mechanism
for large wavenumbers. In the following section, we wish to combine the physical ideas
of §4 and the current section to determine the behaviour at intermediate wavenumbers.

6. Frontal dynamics: Intermediate regime for perturbations resisted

by vertical and horizontal shear

In this section, we wish to consider the intermediate regime in which the flow of
the basic state is resisted dominantly by vertical shear stresses while the flow of the
perturbations is resisted dominantly by both vertical and horizontal shear stresses.
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6.1. Model equations

6.1.1. Unlubricated region

With the lubrication approximation, the Stokes equations for the fluid flow in the
unlubricated region are given by

0 = −∇p− ez +

(
∂2

∂y2
+

∂2

∂z2

)
u (6.1)

in dimensionless variables. A vertical balance of forces gives that the pressure is given
hydrostatically by

p = H − z (6.2)

whereas a horizontal balance gives

∇H =

(
∂2

∂y2
+

∂2

∂z2

)
u. (6.3)

To investigate the stability of the flow, we introduce small disturbances of size ǫ ≪
1 and search for normal-mode solutions with transverse wavenumber k and growth
rate σ of the form X = X0 + ǫX1 + · · · , where X1 = X̂1 exp(iky + σt) and X =
(H(x, y, t),u(x, y, z, t), q(x, y, t)). The horizontal part of Stokes equations becomes

∂H0

∂x
ex + ǫ∇H1 =

∂2u0

∂z2
ex + ǫ

(
−k2 +

∂2

∂z2

)
u1, (6.4)

which has the following contribution at O(ǫ)

∇H1 =

(
−k2 +

∂2

∂z2

)
u1. (6.5)

For intermediate wavenumbers k, the effect of both horizontal and vertical shear stresses
can become important and we retain both in the governing equations. The perturbed
velocity is therefore exponential in z and resolve the boundary layers that were previously
neglected in the limit in which horizontal shear was dominant. The full details are given in
(F 1)–(F2) of Appendix F, where the perturbed velocities and fluxes are given explicitly
along with the mass conservation equations. We further apply local approximations valid
in the vicinity of the lubrication front and match to the outer regions through decay
conditions. This enables us to search for normal-mode solutions. The approach follows
that of the previous two sections.

6.2. Lubricated region

Linearising the Stokes equations and looking for normal-mode solutions, while keeping
the terms arising from both vertical and horizontal shear stresses, gives the following
horizontal part of Stokes equations

∇H0 + ǫ∇H1 =
∂2u0

∂z2
ex + ǫ

(
∂2

∂y2
+

∂2

∂z2

)
u1, (6.6)

M (∇H0 + ǫ∇H1) =
∂2ul0

∂z2
ex + ǫ

(
∂2

∂y2
+

∂2

∂z2

)
ul1, (6.7)
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Figure 7: Growth rates σ against wavenumber k for perturbations resisted by vertical
shear only (dotted), horizontal shear only (dashed), and both vertical and horizontal
shear (solid). This figure uses results presented in figure 6 (dashed) for k ≫ 1. Parameter
values used are M = 10 and Q = 0.1.

for the two layers. This yields the following O(ǫ) contributions

∇H1 =

(
∂2

∂y2
+

∂2

∂z2

)
u1, (6.8)

M∇H1 =

(
∂2

∂y2
+

∂2

∂z2

)
ul1, (6.9)

for the two layers. As the perturbations to the flow are resisted by both vertical and
horizontal shear stresses, the gradients in z are comparable to the gradients in y. We,
therefore, retain both and by looking for normal-mode solutions, obtain the following
equations for the horizontal velocity

∇H1 =

(
−k2 +

∂2

∂z2

)
u1 (6.10)

for the upper layer and

∇H1 =

(
−k2 +

∂2

∂z2

)
ul1 (6.11)

for the lower layer. This approach resolves the small boundary layer at the interface
between the two fluids and at the base, in which vertical shear stresses are important.
The limit kh → ∞ simplifies the problem to that of the previous section, in which
horizontal shear stresses provide the dominant resistance to the flow of the perturbations
and in which the effect of this boundary layer is negligible in a depth-averaged description
of the flow.

6.3. Local stability analysis: results

Due to the terms proportional to −k2, the horizontal velocities are given in terms
of exponentials in z (in a finite domain) and present difficulties in obtaining a concise
lubrication model. The reader is referred to Appendix F, specifically (F 1)–(F 2) and
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Figure 8: Growth rates σ against wavenumber k for perturbations resisted by both vertical
and horizontal shear. Parameter values used are M = 10, 15, 20, 25, 30 and Q = 0.1.

(F 7)–(F10), where the details of the derivation of the model, as well as the application
of the local approximation and matching to the outer regions can be found.
Figure 7 shows the growth rates σ as a function of the transverse wavenumber k for

representative parameter values, for the intermediate regime, considered in this section,
in which the perturbations are resisted by both vertical and horizontal shear. Figure 7
also displays the growth rates for the small wavenumber limit in which vertical shear
provides the dominant resistance to the flow of the perturbations and also the large
wavenumber limit in which horizontal shear provides the dominant resistance to the flow
of the perturbations. The intermediate regime, involving both vertical and horizontal
shear stresses, is seen to converge to these small and large wavenumber limits in Figure
7.
Apart from the large-wavenumber stabilization analysed in the previous section, hori-

zontal shear also stabilizes the flow at small wavenumbers. Figure 8 shows representative
growth rates as a function of the wavenumber, for the intermediate regime, involving
both vertical and horizontal shear stresses, for varying viscosity ratios M. It is seen
that small wavenumbers are the most unstable, and that the band of most unstable
wavenumbers shifts towards smaller wavenumbers as the viscosity ratio increases. This
does not necessarily imply that k = 0 is the most unstable wavenumber for these
viscosity ratios, as a non-local analysis, valid for small wavenumbers, would be necessary
to examine this.

7. Conclusions

We have carried out linear stability analyses of lubricated viscous gravity currents in
two scenarios to isolate two different mechanisms of instability: internal and frontal. The
former analysis shows that steady flow with no internal front is unconditionally stable and
suggests that the instability observed in experiments is a frontal instability. The latter
analysis explained the mechanism of instability by exploring three physical scenarios.
The first scenario occurs for wavelengths much larger than the thicknesses of the two
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layers. We highlighted the underlying physical mechanism that drives the instability by
using a combination of asymptotic and numerical methods. Analytically, we derived
an asymptotic solution for the growth rate of the perturbations as an outer, large-
wavenumber limit, which shows that the growth rate σ of the perturbations grows
linearly with the wavenumber k as k → ∞ with a prefactor that depends on the two
layer thicknesses, the viscosity ratio as well as, crucially, the jump in upper surface
slope, or hydrostatic pressure gradient, across the lubrication front. The latter ingredient,
importantly, determines the sign of σ, that is, it determines whether or not the flow is
unstable. By balancing upstream and downstream upper-layer fluxes, we further showed
that this jump in upper surface slope is positive (that is, the flow is stable) precisely
when the viscosity ratio M between the two layers is less than one. That is, when a less
viscous fluid lubricates a more viscous fluid – the setting relevant to our experiments and
of geophysical interest – then the lubrication front is unstable; whereas if the situation
is reversed and a more viscous fluid is injected underneath a less viscous fluid, then the
flow remains stable.

The underlying instability mechanism involves a jump in hydrostatic pressure gradient
across the lubrication front in contrast to Saffman-Taylor fingering, which occurs as a
result of a jump in dynamic pressure gradient across the intrusion front. The instability
mechanism can be understood physically by considering the lubrication front in the case
in which a less viscous fluid intrudes beneath a more viscous fluid. If the lubrication front
is perturbed so that the underlying, less viscous fluid dislocates to the no-slip region, then
it becomes subject to higher hydrostatic pressure gradients and advances forward, feeding
the instability. In the opposite case in which a more viscous fluid intrudes underneath a
less viscous fluid, then if the front is perturbed so that the underlying, more viscous fluid
dislocates to the no-slip region, then it becomes subject to lower hydrostatic pressure
gradients and slows down, suppressing the instability.

By using a combination of asymptotic and numerical methods, we found that for the
second scenario, involving perturbations resisted dominantly by horizontal shear stresses,
the growth rate of the perturbations converges towards a constant rather than growing
unboundedly. Tranvsverse shear, therefore, provides an effective but weak stabilising
mechanism at large wavenumbers. By considering the third, intermediate regime and
formulating a fuller theoretical model accounting for both vertical and transverse shear
stresses and solving it numerically, we found that transverse shear is weakly stabilizing
for intermediate wavenumbers as well and that intermediate wavenumbers are the most
unstable at modest values of M. For larger values of M, long waves are selected. In the
companion paper, we consider effects of buoyancy and find further stabilization at long
wavelengths.

KNK acknowledges the support of a NERC PhD studentship.

Supplementary Material Full expressions for coefficients used within this paper can
be found in the Supplementary Material.

Appendix A. Tensorial form for lubricated currents with drainage

The prefactors a,A depend on the dimensionless parameters via

1

4

[
M

3
a3 (Da+A) +

M

2
a2A(A− a)

]
= Q, (A 1)
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1

4

[
1

3
(A− a)3A+

M

2
a2(A− a) (Da+A) +MaA(A− a)2

]
= 1. (A 2)

The entries of C are given by

C11 = 1, C12 = 0, C21 = −1, C22 = 1, (A 3)

the entries of E are given by

E11 =
MD

3
a3,

E12 =
M

3
a3 +

M

2
a2(A− a),

E21 =
MD

2
a2(A− a),

E22 =
1

3
(A− a)3 +

M

2
a2(A− a) +Ma(A− a)2, (A 4)

and the entries of F are given by




F11 = Ma2(Da+A) +
M

2
(−a2A+ 2aA(A− a)),

F12 =
M

2
a2A,

F21 = −(A− a)2A+
M

2
(2a(A− a)− a2)(Da+A)

+M((A− a)2 − 2a(A− a))A,

F22 = (A− a)2A+
M

2
a2(Da+A) + 2Ma(A− a)A.

(A 5)

Appendix B. Second asymptotic solution near the drainage front

We wish to show that the leading order asymptotic solution is of the form

v0 ∼ ζ1/4A0, as ζ → 0 (B 1)

where A0 ∈ R
2 is a constant vector. As the the general solution to the leading order

equation (3.12) in an inner region about the singular drainage front is

v0 = ζ1/4A0 + ζ−MB0, (B 2)

it suffices to show that M is positive definite for all parameter values, as in that case
it is necessary that B0 = 0 to ensure that the zero-thickness boundary condition (3.8b)
holds. After some algebra, it is possible to show that

det (M) =

[
9
(
a2D +A2

) (
aM

(
a2D + 2A(A− a) +A2

)
+

2A(a−A)2
)][

8a2D(a−A)2
(
3Ma+ 4(A− a)

)]−1

> 0. (B 3)

The positivity follows since each of the terms in the above quotient are positive, and the
strict inequality follows since a and A are not both zero. After further algebra, it is also
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possible to show that

trace (M) =

[
12(a−A)2(A3 + a2(A− a)D + a2AD) + 3a(4(A− a)A3+

2A4 + 10Da2A(A− a) + a2A2D + a4D(3 + 2D))M

]
·

[
4a2(a−A)2D(4(A− a) + 3Ma)

]−1

> 0. (B 4)

As before, the positivity follows since each of the terms in the above quotient are positive,
and the strict inequality follows since a and A are not both zero. Therefore, since both
the determinant and the trace of M are strictly positive, then M is positive definite,
and this shows the claim holds.

Appendix C. Integral terms in dispersion relation

In order to show that the dispersion relation (3.17) yields only negative growth rates,
it is sufficient to show that the integral terms in the dispersion relation are positive. To
show this, it is sufficient to demonstrate that J†C and J†E, are both positive definite,
or equivalently, that J̃†C̃ and J̃†Ẽ are positive definite where C̃, Ẽ, and J̃ are given by
(3.9). The equivalence follows since T is invertable. The components of J̃ are given by

J̃11 =
1

6
Ma

(
2aA+ 6A2 + a(A− a) + 8Da2

)
> 0, (C 1)

J̃12 = 1/6Ma2
(
(A− a) + 5A

)
> 0, (C 2)

J̃21 =
1

6
(A− a)

(
2(A− a)2 + 3Ma(A− a) + 3MaA+

6MA2 + 9MDa2
)
> 0, (C 3)

J̃22 =
1

6

(
2
(
(A− a) + 3A

)
(a−A)2+

3a
(
6A(A− a) + a2(1 +D)

)
M

)
> 0. (C 4)

The strict positivity follows since each of the terms above are strictly positive. This is
because A > a, a > 0 and A > 0. Therefore, it follows that trace(J̃) > 0. After some
algebra, it is also possible to show that

det(J̃) =
1

9
aM

(
4(A− a)2

(
3A3 +Da2(A− a) + 3a2AD

)
+

3aM
(
4A3(A− a) + 2A4 + a2(3A− a)2D + 2a4D2

))
> 0 (C 5)

The strict positivity follows since the above is a sum of strictly positive terms as A >
a, a > 0 and A > 0, as before. Therefore, J̃ is positive definite, since its trace and
determinant are strictly positive.
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The components of Ẽ are given by

Ẽ11 =
1

6
a2M

(
2(A+Da) + (A− a)

)
> 0, (C 6)

Ẽ12 =
1

6
a2M

(
(A− a) + 2A

)
> 0, (C 7)

Ẽ21 =
1

6

(
2(A− a)3 + 3Ma(A− a)

(
A+ (A− a) +Da

))
> 0, (C 8)

Ẽ22 =
1

6

(
2(A− a)3 + 3aM

(
(A− a) +A

)
(A− a)

)
> 0. (C 9)

The strict inequalities follow since the above entries are sums of positive terms. It follows
from this that the trace of Ẽ is strictly positive. It is also possible to show that the
determinant of Ẽ reduces to

det(Ẽ) =
1

36
MDa3(A− a)2

(
4(A− a) + 3Ma

)
> 0, (C 10)

where the strict inequality follows from similar arguments as before. Therefore, since
both the trace and the determinant of Ẽ are strictly positive, then Ẽ must be positive
definite.

Since all the entries of J̃ and Ẽ are strictly positive, then the trace of J̃†Ẽ must also
be strictly positive. Also note that det(J̃†Ẽ) = det(J̃) det(Ẽ) > 0. Therefore, J̃†Ẽ is

positive definite. The positive definitiveness of J̃†C̃ follows trivially since C̃ = CT = I

is the identity matrix.

Appendix D. Derivation of local equations for perturbations resisted

dominantly by vertical shear

For large enough wavenumbers k, the perturbations are localised near the lubrication
front. Approximating the basic state linearly, that is, to first order in δ, near the front
reduces the mass conservation equations (4.18)–(4.20) to

σh1 − V h′
1 =

[
bl1h1 +

(
bl2 + bl3k

2
)
H1 + bl4h

′
1 + bl5H

′
1 + bl6H

′′
1

]
+

+ (x − xL0)el1 +O(x− xL0)
2 (x 6 xL0), (D 1)

σH1 − V H ′
1 =

[
b1h1 +

(
b2 + b3k

2

)
H1 + b4H

′
1 + b5H

′′
1 + b6h

′
1

]
+

+ (x − xL0)e1 +O(x − xL0)
2 (x 6 xL0) (D 2)

for the lubricated region and

σH1 − VH ′
1 = (2αβ2 −

1

3
α3k2)H1 + 2α2βH ′

1 +
1

3
α3H ′′

1 + (x− xL0)e2

+O(x− xL0)
2 (x > xL0) (D 3)

for the unlubricated region. Here, bli, bi, for i = 1, . . . , 6, are functions of the basic state
thicknesses a,A, slopes b, B and the viscosity ratio M, whereas e1, el1, e2 are additionally
functions of the perturbed quantities h1, H1 and their derivatives, and are listed in (S.7)–
(S.21) of the Supplementary Material. Writing x − xL = O(δ), the mass conservation
equations locally reduce to the zeroth order (in δ) balance of (D 1)–(D3).
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The first-order flux continuity boundary condition
{
c1xL1 +

[
c2H1 + c3h1 + c4

∂H1

∂x

]}−

=

{
c5xL1 +

[
c6H1 + c7

∂H1

∂x

]}+

(D 4)

consists of contributions from flux perturbations as well as from perturbations to the
frontal position. Here, c1, . . . , c7 are functions of the basic state thicknesses h0, H0 and
their gradients, as well as M, and are given in (S.36)–(S.42) of the Supplementary
Material. All quantities are to be evaluated at x = xL0 from the side of the lubricated
and unlubricated regions as indicated.

Appendix E. Derivation of local equations for perturbations resisted

dominantly by horizontal shear

Near the lubrication front, we locally approximate the basic state surface heights
linearly and find that the governing equation for the upper layer in the lubricated region
becomes

σ(H1 − h1)− V (H ′
1 − h′

1) = ξ1H1 + ξ2H
′
1 + ξ3H

′′
1 + ξ4h1 + ξ5h

′
1, (E 1)

and for the lower layer,

σh1 − V h′
1 = ξ6H1 + ξ7H

′
1 + ξ8H

′′
1 + ξ9h1 + ξ10h

′
1, (E 2)

where ξ1, . . . , ξ10 are given in (S.78)–(S.87) of the Supplementary Material.
After approximating the basic state surface heights linearly in the unlubricated region,

the governing equation reduces to

σH1−V H ′
1 =

(
1

2
α2βH ′

1 + αβ2H1 − αH1 +
1

k2

(
αH ′′

1 + βH ′
1

))
+O(β(x−xL0)). (E 3)

With the local approximation near the front, this further reduces to the zeroth order
form, in x− xL0, of the above.

E.0.1. Lubrication front

The condition (4.11) of continuity of flux across the lubrication front is given in terms
of the perturbation to the combined flux of fluid in the x-direction in the lubricated
region, which can be written as

(q1 + ql1) · ex =
1

2
H1H

′
0

(
h2
0(M− 1)− 2h0H0(M− 1)−H2

0

)

−
1

k2
H ′

1

(
h0(M− 1) +H0

)
, (E 4)

by using the expressions (5.12)–(5.13). Using this and the expression (5.5) for the
perturbation to the flux of fluid in the unlubricated region, we find that the flux condition
becomes

[
1

2

(
H1H

′
0

(
h2
0(M− 1)− 2h0H0(M− 1)−H2

0

)

−
2

k2
H ′

1

(
h0(M− 1) +H0

))
+ xL1

∂

∂x

(
q0 + ql0

)
· ex

]−

=

[
−

1

2

(
H ′

0H
2
0H1 +

2

k2
H0H

′
1

)
+ xL1

∂

∂x

(
q0 · ex

)]+
(E 5)
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By using the zeroth-order balance of the mass conservation equations to substitute for
the basic state fluxes and using the local approximation near the front to linearise the
basic state surface heights, we find that the flux condition becomes

[
1

2
BH1

(
a2(M− 1)− 2aA(M− 1)−A2

)
−

1

k2
H ′

1

(
a(M− 1) +A

)]−

xL1

(
(−a2bB + a2B2 + 2aAbB − 2aAB2 −A2bB)(M− 1)−A2B2

)
=

−
1

2

[
βα2H1 +

2

k2
αH ′

1

]+
− α2β2xL1 (E 6)

for x = xL0. The condition of continuity of height gives

BxL1 +H−
1 = βxL1 +H+

1 (E 7)

for x = xL0. The kinematic condition gives

σxL1 =
1

h2
0

[(
− xL1h

′
0ql0 · ex + h0xL1

∂

∂x
ql0 · ex − h1ql0 · ex

)

+
1

2

(
h3
0(H1 − h1)MH ′

0 − h3
0H1H

′
0 − 2h2

0H0(H1 − h1)MH ′
0

+ 2h2
0H0H1H

′
0 − h0H

2
0H1H

′
0 −

2

k2
h0(H0 − h0)H

′
1

)]
(E 8)

for x = x−
L0
. Using zeroth order balances, we substitute for the basic state flux, apply the

linear approximation for the surface heights near the front and find the local kinematic
condition

σxL1 =
1

6a2

[(
3a2M(−2ab+ 3aB + 3Ab− 4AB) + 2(a−A)2(2ab

− 3aB +Ab)
)
BxL1 +

((
− 3aAM(a− 2A)− 2(a−A)3

)
Bh1

+ 3
(
aM(a− 2A)− (a−A)2

)
aBH1

)
+

6

k2
a(a− A)H ′

1

]
(E 9)

for x = x−
L0
.

E.0.2. Dispersion relation

The mass conservation equations (E 3), (E 1)–(E 2) along with the height, flux and
kinematic conditions (E 6)–(E 7), (E 9) form a system of linear differential equations with
solutions

(h1, H1) = (h̃−
1 , H̃

−
1 ) exp((x− xL0)λ

−) (x 6 xL0),

H1 = H̃+

1 exp((x − xL0)λ
+) (x > xL0)

(E 10a, b)

where h̃−
1 , H̃

−
1 , H̃+

1 are constants, after nondimensionalising by using the length and
time scales found in (2.2). Direct substitution into the dimensionless versions of the mass
conservation equations (E 3), (E 1)–(E 2) and boundary conditions (E 6)–(E 7), (E 9) gives
the following governing equation for the unlubricated region

σ − V λ+ =
1

2
α2βλ+ + αβ2 − α+

1

k2

(
α(λ+)2 + βλ+

)
, (E 11)
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and for the upper layer of the lubricated region

(σ − V λ−)(H̃−
1 − h̃−

1 ) =
(
χ1 + χ2λ

−
)
h̃−
1 +

(
χ3 + χ4λ

− + χ5(λ
−)2

)
H̃−

1 , (E 12)

and lower layer of the lubricated region

(σ − V λ−)h̃−
1 =

(
χl1 + χl2λ

−
)
h̃−
1 +

(
χl3 + χl4λ

− + χl5(λ
−)2

)
H̃−

1 . (E 13)

where χ1, . . . , χ5, and χl1, . . . , χl5 are given in (S.88)–(S.92) and (S.100)–(S.104) of the
Supplementary Material.

The flux continuity condition gives

χ6H̃
−
1 + χ7λ

−H̃−
1 + χ8xL1 = −

1

2

(
βα2H̃+

1 +
2

k2
αλ+H̃+

1

)
− α2β2xL1, (E 14)

and height continuity gives

BxL1 + H̃−
1 = βxL1 + H̃+

1 . (E 15)

The kinematic condition becomes

σxL1 = χ9h̃
−
1 + χ10H̃

−
1 + χ11λ

−H̃−
1 + χ12xL1, (E 16)

where χ6, . . . , χ12 are given in (S.93)–(S.99) of the Supplementary Material.

The mass conservation equations (E 11), (E 12)–(E13) and height, flux and kinematic
conditions (E 14)–(E15), (E 16) is a system of six equations for six unknown variables

σ, xL1, h̃
−
1 , H̃

+

1 , λ−, λ+, where, as before, we set H̃−
1 ≡ 1, without loss of generality. The

choice of solutions is restricted to those that satisfy decay conditions away from the
lubrication front, that is, it is required that λ− > 0 and λ+ < 0.

E.0.3. Large-k asymptotics

The mass conservation equations for the lubricated region can be written in matrix
form

(P − (σ − V λ−)I)[h̃−
1 , H̃

−
1 ]T = 0 (E 17)

where the entries of the matrix P are

P11 =

(
Ab−

1

2
a2λ− + a(B − b+Aλ−)

)
BM

P12 =

(
1

k2

(
bλ− + a(λ−)2

)
− a

)
M

P21 = 0

P22 = (a−A)− (A− a)bB + (A− a)B2 − aM + (A− a)bBM

+ aB2M + λ−
(
−

1

2
a2B(M − 1) + aAB(M − 1) +

1

2
A2B

)

+
1

k2

(
(A− a)(λ−)2 + (B − b)λ− + bλ−M + a(λ−)2M

)
. (E 18)

For non-trivial solutions, it is necessary that

det(P − (σ − V λ−)I) = 0 (E 19)
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giving a cubic equation for λ−. Expanding in series of 1/k for k large,

σ = σ1 + σ2/k + . . . ,

λ± = λ±
−1k

2 + λ±
0 k + . . . ,

H̃±
1 = H̃±

10k + H̃±
11 + . . . ,

h̃−
1 = h̃−

11 + k−1h̃−
12 + . . . ,

xL1 = xL11 + k−1xL12 + . . . , (E 20)

gives that the leading order behaviour of the root λ− is

λ− =
−(a−A)2B + a(a− 2A)BM− 2V

2(A+ a(M− 1))
k2 +O(k) (E 21)

so that λ−
−1 can be read from the leading order term above. Here, we exclude solutions

for which λ− < 0. The relationship between h̃−
1 and H̃−

1 can be determined from the
equation of mass conservation for the lower layer to be

h̃−
1 =

aM(−(a−A)2B + a(a− 2A)BM− 2V )

(A+ a(M− 1))(a(a− 2A)BM− 2V )
+O(1/k) (E 22)

so that h̃−
11 can be read from the leading order term above. Here, recall that H̃−

1 = 1,
without loss of generality. By solving the mass conservation equation for the unlubricated
region for λ+, excluding the positive root and expanding in series of 1/k, we find the
leading order behaviour of λ+ to be

λ+ =
2(−αβ2 + α+ σ1)

α2β + 2V
+O(1/k), (E 23)

which tends to a constant as k → ∞. Expanding the kinematic condition in series of 1/k
gives the leading order behaviour of xL1 to be

xL1 =
ϕ1H̃

−
1 + ϕ2h̃

−
1

ϕ3

+O(1/k), (E 24)

which depends on the relation between h̃−
1 and H̃−

1 , where the ϕi are given in (S.106)–

(S.115) of the Supplementary Material. Using (E 22) to substitute for the value of h̃−
1

and expanding in series of 1/k gives the leading order behaviour for xL1 to be

xL1 =
ϕ4

ϕ5

+O(1/k). (E 25)

Therefore, xL1 tends to a constant as k → ∞. Height continuity gives the value of H̃+
1

H̃+
1 = H̃−

1 + (B − β)xL1. (E 26)

Substituting this into the condition of flux continuity gives an alternative expression for
xL1

xL1 =
ϕ6

ϕ7

H̃−
1 +O(1/k). (E 27)

Comparing this with the previous expression (E 25) for xL1 gives an implicit dispersion
relation for σ. The explicit dispersion relation for σ, in the large-k limit, involves over
300 terms and is not written here for conciseness. The large-k behaviour of σ, in the limit



32 K. N. Kowal and M. G. Worster

of M → ∞, is given by

σ =
ϕ8M

2 + ϕ9M

ϕ10

+O(1/k, 1/M). (E 28)

Appendix F. Derivation of local equations for perturbations resisted

by horizontal and vertical shear

F.1. Unlubricated region

The perturbed velocity components in the x- and y-directions are given by

u1 =
2

k2
sinh

(
kz

2

)
sech(kH0)

[
∂H1

∂x
sinh

(
1

2
k(z − 2H0)

)
+

− k cosh

(
kz

2

)
H1

∂H0

∂x

]
(F 1)

v1 =
2i

k
sinh

(
kz

2

)
H1 sech (kH0) sinh

(
1

2
k(z − 2H0)

)
(F 2)

The components of the perturbation to the volume flux, per unit width, given by (5.4),
can be found to be given by

qu1 =
1

2k3

[
2
(
tanh(kH0)− kH0

)∂H1

∂x
− kH1

(
k2H2

0+

− 2 sech(kH0) + 2
)∂H0

∂x

]
, (F 3)

and

qv1 =
i

k2

(
tanh(kH0)− kH0

)
H1. (F 4)

The mass conservation equation for perturbations at the next order in ǫ gives

σH1 − V
∂H1

∂x
= −∇ · q1

= −
∂

∂x

(
q1 · ex

)
− ikq1 · ey.

(F 5)

By nondimensionalising and approximating the basic state surface heights piecewise
linearly by (4.15) and assuming that the changes in surface slope, δ ∂H0

∂x are small in
the vicinity of the lubrication front, the mass conservation equation for the unlubricated
region reduces to

σH1 − V
∂H1

∂x
=

(
1

k
tanh(αk)

(
β2sech(αk) + 1

)
+ α

(
β2 − 1

))
H1

+

(
β
(
α2k2 + 4

)
− 2βsech(αk)(sech(αk) + 1) + 2k2ẋL0

2k2

)
∂H1

∂x

+

(
αk − tanh(αk)

k3

)
∂2H1

∂x2
. (F 6)
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F.2. Lubricated region

The x- and y-components of the perturbed velocity field in the upper layer may be
written as

u1 =
1

α1

(
γ1h1 + γ2H1 + γ3

∂H1

∂x

)
, (F 7)

v1 = i
γ4
α1

H1 (F 8)

where the coefficients are given in (S.116)–(S.120) of the Supplementary Material.
The x- and y-components of the perturbed velocity field in the lower layer are

ul1 =
1

α1

(
γl1h1 + γl2H1 + γl3

∂H1

∂x

)
, (F 9)

vl1 = i
γl4
α1

H1 (F 10)

where the γli are given in (S.121)–(S.124) of the Supplementary Material.
The components of the depth-integrated volume flux, per unit width, for the upper

layer are

qu1 =
1

α1

(
γq1h1 + γq2H1 + γq3

∂H1

∂x

)
, (F 11)

v1 = i
γq4
α1

H1 (F 12)

where the γqi are given in (S.125)–(S.128) of the Supplementary Material.
Conservation of mass at first order in ǫ is given by

σ(H1 − h1)− V
∂(H1 − h1)

∂x
= −∇ · q1

= −
∂

∂x

(
q1 · ex

)
− ikq1 · ey

(F 13)

for the upper layer and

σh1 − V
∂h1

∂x
= −∇ · ql1

= −
∂

∂x

(
ql1 · ex

)
− ikql1 · ey

(F 14)

for the lower layer.
In what follows, we approximate the basic state surface heights piecewise linearly by

(4.15) and also assume that the changes in surface slope, δ ∂H0

∂x and δ ∂h0

∂x , of the two
layers are small in the vicinity of the lubrication front. After nondimensionalising, this
reduces the mass conservation equation for the upper layer to

σ(H1 − h1)− V
∂(H1 − h1)

∂x
=β1h1 + β2H1 + β3

∂h1

∂x
+ β4

∂H1

∂x
+ β5

∂2H1

∂x2
(F 15)

where the coefficients β1, . . . , β5 depend on the basic state thicknesses and surface slopes
as well as the wavenumber and are given in (S.129)–(S.133) of the Supplementary
Material. Similarly, the mass conservation equation for the lower layer reduces to

σh1 − V
∂h1

∂x
=βl1h1 + βl2H1 + βl3

∂h1

∂x
+ βl4

∂H1

∂x
+ βl5

∂2H1

∂x2
. (F 16)

The coefficients βl1, . . . , βl5 are given in (S.135)–(S.139) of the Supplementary Material.
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F.3. Lubrication front

The condition (4.11) of continuity of flux across the lubrication front gives
[
κ1h1 + κ2H1 + κ3

∂H1

∂x
+ xL1

(
∂qu0
∂x

+
∂qul0
∂x

)]−
= (F17)

[
κ4H1 + κ5

∂H1

∂x
+ xL1

∂qu0
∂x

]+
, (F 18)

at x = xL0, where the coefficients κ1, . . . , κ5 are given in terms of the basic state
thicknesses and surface gradients at the lubrication front, and are speficied in (S.140)–
(S.144) of the Supplementary Material.
Continuity of height gives

[
xL1

∂H0

∂x
+H1

]−
=

[
xL1

∂H0

∂x
+H1

]+
, (F 19)

at x = xL0. The kinematic condition reduces to

σxL1 = κ6h1 + κ7H1 + κ8

∂H1

∂x
+ κ9xL1, (F 20)

at x = xL0, where the coefficients κ6, . . . , κ9 depend on basic state thicknesses and surface
gradients as well as on the basic state flux and its gradient at the lubrication front. The
coefficients are specified in closed form in (S.145)–(S.148) of the Supplementary Material.

F.4. Dispersion relation

The three mass conservation equations form a fifth-order system of differential equa-
tions. Together with the height, flux and kinematic conditions as well as the two
asymptotic decay conditions as x → ∞ and as x → −∞, this forms a fully specified
system of linear differential equations with general solutions given by (E 10) in terms of

the amplitudes h̃−
1 , H̃

−
1 , H̃+

1 .
Direct substitution into the mass conservation equations yields

σ(H̃−
1 − h̃−

1 )− V λ−(H̃−
1 − h̃−

1 ) =β1h̃
−
1 + β2H̃

−
1 + β3λ

−h̃−
1 + β4λ

−H̃−
1 + (λ−)2H̃−

1 ,
(F 21)

for the upper layer and

σh̃−
1 − V λ−h̃−

1 =βl1h̃
−
1 + βl2H̃

−
1 + βl3λ

−h̃−
1 + βl4λ

−H̃−
1 + βl5(λ

−)2H̃−
1 , (F 22)

for the lower layer of the lubricated region and

σ − V λ+ =

(
1

k
tanh(αk)

(
β2sech(αk) + 1

)
+ α

(
β2 − 1

))

+

(
β
(
α2k2 + 4

)
− 2βsech(αk)(sech(αk) + 1) + 2k2ẋL0

2k2

)
λ+

+

(
αk − tanh(αk)

k3

)
(λ+)2 (F 23)

for the unlubricated region. Continuity of flux gives

κ1h̃
−
1 + κ2H̃

−
1 + κ3λ

−H̃−
1 + xL1

(
∂q−u0
∂x

+
∂q−ul0
∂x

)
= (F24)

κ4H̃
+

1 + κ5λ
+H̃+

1 + xL1

∂q+u0
∂x

, (F 25)
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Continuity of height gives

xL1

∂H−
0

∂x
+ H̃−

1 = xL1

∂H+
0

∂x
+ H̃+

1 , (F 26)

while the kinematic condition reduces to

σxL1 = κ6h̃
−
1 + κ7H̃

−
1 + κ8λ

−H̃−
1 + κ9xL1, (F 27)

The above system of six algebraic equations can be solved for the six unknowns
xL1, h̃

−
1 , H̃

+
1 , λ−, λ+ and σ, where, as before, H−

1 ≡ 1, without loss of generality.
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