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Abstract

Systems depend critically on the behaviour of file systems, but that behaviour differs in
many details, both between implementations and between each implementation and the
POSIX (and other) prose specifications. Building robust and portable software requires
understanding these details and differences, but there is currently no good way to systemat-
ically describe, investigate, or test file system behaviour across this complex multi-platform
interface.

In this paper we show how to characterise the envelope of allowed behaviour of file
systems in a form that enables practical and highly discriminating testing. We give a
mathematically rigorous model of file system behaviour, SibylFS, that specifies the range
of allowed behaviours of a file system for any sequence of the system calls within our
scope, and that can be used as a fest oracle to decide whether an observed trace is allowed
by the model, both for validating the model and for testing file systems against it. SibylFS
is modular enough to not only describe POSIX, but also specific Linux, OS X and FreeBSD
behaviours. We complement the model with an extensive test suite of over 21 000 tests; this
can be run on a target file system and checked in less than 5 minutes, making it usable in
practice. Finally, we report experimental results for around 40 configurations of many file
systems, identifying many differences and some serious flaws.

1. Introduction

Problem File systems, in common with several other key systems components, have
some well-known but challenging properties:
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e they provide behaviourally complex abstractions;

e there are many important file system implementations, each with its own internal
complexities;

e different file systems, while broadly similar, nevertheless behave quite differently in
some cases; and

e other system software and applications often must be written to be portable between file
systems, and file systems themselves are sometimes ported from one OS to another, or
written to support application portability.

File system behaviour, and especially these variations in behaviour, thus must be under-
stood by those developing file systems, by those aiming to write robust and secure software
above them, and by those porting file systems or applications. But at present there is no
good way to systematically describe, investigate, or test that behaviour: either to describe
what the envelope of allowed behaviour of a file system (or group of file systems) is, to
investigate experimentally what behaviour occurs, or to test whether file system implemen-
tations conform to some particular envelope.

Normal practice has for decades relied on prose standards and documentation (the
POSIX standard [33], Linux Standard Base (LSB) [21], man pages) and on test suites [22,
34]. Indeed, this is so well established that many practitioners would not imagine that
any alternative can exist. But normal practice does not support any of the above: prose
documents generally cannot be made complete and unambiguous; they cannot be used as
a test oracle to automatically determine whether some observed behaviour is allowed or
not; and building test suites without a test oracle requires manual curation of the intended
outcome of each test. As we shall see from our test results, behavioural differences between
file systems have proliferated, some intentional and many clearly bugs.

Contributions In this paper we show how to characterise the envelope of allowed
behaviour of file systems and to use that for practical and highly discriminating testing.
Our first contribution is a rigorous specification of file system behaviour, SibylFS: a model
that specifies the range of allowed behaviours of a file system for any sequence of API
calls. This model has several important and unusual properties:

1. Itis executable as a test oracle: given an observed trace of API calls and returns, SibylFS
can efficiently compute whether it is allowed by the model or not. In conjunction with
our extensive test suite (see below), this lets us validate the model, to ensure it does not
overly constrain implementation behaviour, and lets us test implementations, to ensure
they do not exhibit behaviour not allowed by the model.

2. To characterise the behaviour of a particular implementation, SibylFS is parameterised
in various ways. It currently supports four primary modes: POSIX, Linux, OS X and
FreeBSD behaviour. This variation is essential when exploring file system behaviour,
as otherwise a single difference (e.g. in path resolution) might give rise to thousands of
individual test-result discrepancies; we have to be able to analyse and factor out such
differences to make progress.

3. Within our scope, SibylFS aims to be realistic and comprehensive: it is a model of
actual file system behaviour, not of idealised or simplified file systems, and it gives a
functional-correctness criterion for arbitrary sequences of API calls.

4. To make it completely precise and unambiguous, while still admitting the loose speci-
fication needed, the model is written in a mathematically rigorous language, the typed
higher-order logic of the Lem tool [28]. We use Lem to translate this into the theorem



provers HOL4 and Isabelle/HOL (which we have used to prove theorems about file
system behaviour), and into the OCaml source code used by SibylFS.

5. We take care also to make the model readable, for use as an informal reference. The
Lem language is in many ways similar to a conventional functional programming lan-
guage; the model has a modular structure that isolates the conceptually distinct aspects
of file system behaviour, and the model is expressed over abstract structures rather than
the performance-oriented details of file system implementations. Key choices are linked
to the experimental trace data that they relate to. All this is important also for maintain-
ability, which has been essential in developing the model over the last two years.

6. Finally, SibylFS is fast enough to run and easy enough to set up to make it easily usable
in practice. Pre-compiled binaries are available on Linux and OS X (and compile-from-
source is additionally supported on these platforms and FreeBSD), and a test-and-check
run for a single file system takes less than 5 minutes (§7.1). We envision SibylFS being
used during file system development, quality assurance, and continuous integration.

Our second contribution is an extensive test suite, consisting of 21 070 automatically
generated and hand-written test scripts. The fact that we have an executable test oracle
greatly simplifies test suite development: we do not have to manually determine the
intended outcome for each test, but rather can focus on generating tests with good coverage.
Our present test suite achieves 98% coverage of the model (§7.2).

Our third contribution is the results of this testing and modelling process. We have run
our test suite on over 40 system configurations, to simultaneously develop the model and
to identify bugs, platform conventions, and deviations. We present an overview of some of
the most interesting findings, including deviations of Linux HFS+ from OS X HFS+, the
effect of mount options on SSHFS/tmpfs’s behaviour, a storage leak in posixovl/VFAT, and
an infinite busy loop on OpenZFS for OS X (§7.3).

Technical challenges There are two main challenges we have had to overcome. The first
is nondeterminism (§3): file system implementations have considerable internal nondeter-
minism and our model must be loose enough to accommodate that, but the model must still
be clear (not complicated with implementation detail), and, crucially, trace-checking must
be efficient. Previous related work modelling and checking TCP [3] required a sophisti-
cated higher-order logic constraint-based backtracking search, and checking around 1000
traces took 2500 CPU-hours; here, by carefully isolating nondeterminism we check 20 000
traces in about a minute on a four-core machine. These tasks are not directly comparable,
but the specifications and traces have similar sizes and characters; this per-trace perfor-
mance difference (around 6 orders of magnitude) makes the difference between something
on the edge of practicality and something that can be done routinely during development.

The second main challenge is that of managing complexity, in constructing an accurate,
readable and concise model that synthesises the many existing sources of information
and our thousands of observed real-world traces of behaviour (§4). The sheer variety of
behaviours and number of test results is potentially overwhelming; the challenge was to
distil all this complexity down into a concise, structured, comprehensible document (rather
than a collection of thousands of special cases). When we started the work, it was not
obvious that this was feasible, but a range of model-structuring choices and our analysis
tools have made it so.



Use cases  SibylFS provides a turnkey black-box test setup that can be used routinely
(with low effort for the user) to identify behavioural differences between file system
implementations and between those and our specifications. It should be useful for:

e file system authors, kernel maintainers, and distribution teams, to identify POSIX
violations (§7.3.2) and platform convention violations (§7.3.3);

e those porting file systems (e.g. OpenZFS to Linux, OS X, and FreeBSD; HFS+ to Linux;
or ext2 to OS X), to ensure that their efforts strike the right balance between expected
behaviour and platform convention (§7.3.3); and

e system administrators who, before deploying a file system to users, want to understand
their deployment configuration. (§7.3.4)

The specification also serves as a precise reference document, both for file system develop-
ers and application authors, to understand what behaviour can be relied on and where file
systems differ.

It also supports machine-checked and machine-assisted formal proofs about the specifi-
cation. As a demonstration that this is feasible, for a previous version of the model we have
proved two sanity properties: that libc calls that result in an error do not change the abstract
file system state (for POSIX, Linux and OS X), and that (in the absence of resource-limit
failures) whether a libc call succeeds or fails is deterministic.

SibylFS also opens up many possibilities for future work, as we touch on in §9.
Our model, tools, and results are available under the BSD-style ISC licence at http:
//sibylfs.io/.

1.1 Scope

POSIX describes many aspects of operating systems, but our model covers only the part
that is relevant to file systems. We include close, closedir, 1ink, 1seek, 1stat, mkdir,
open, opendir, pread, pwrite, read, readdir, readlink, rename, rewinddir,
rmdir, stat, symlink, truncate, unlink, and write. This covers the essential com-
mands that are necessary to manipulate and interrogate the directory structure and file
contents, and the functions dealing with symlinks (readlink, symlink). Together this
is sufficient to cover a broad range of uses.

Our model also includes a model of processes and the operating system, again focusing
on those aspects that are relevant to file systems. Processes can be created and destroyed.
Each process has a working directory which is mainly used when resolving relative paths.
For this reason we include chdir. Additional per-process structures that we model include
the file-descriptor table and the process run state. We also model permissions, including
chmod, chown, and umask, and a model of users, groups, and which users belong to which
groups.

POSIX includes notions of undefined, unspecified and implementation-defined be-
haviour. Undefined behaviour results from using a libc function with arguments that are
“invalid” according to POSIX. Unspecified behaviour results from a libc function call
with arguments that are valid, but for which POSIX leaves the behaviour unspecified.
Implementation-defined behaviour is similar to unspecified behaviour, but it is expected
that conforming implementations document their behaviour in such cases. Our model for
the POSIX platform covers all these cases. The variants of our model for real-world plat-
forms describe the actual real-world behaviour, even where POSIX declares the behaviour
to be undefined.
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Figure 1. File system testing and trace checking
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1.2 Limitations

Currently we do not model host crash-failure. We model concurrent file system API calls
(the call occurs before the return, and there is an intermediate point in time where the
effect of the call occurs), and our checking infrastructure supports them. Our test harness
executes against the libc interface, and as a result it is not possible to force libc calls from
different processes to execute in-kernel simultaneously, see §6.3. As a consequence, our test
suite does not contain tests involving in-kernel racy behaviours; systematically testing such
interactions would require significant additional effort to extend the test executor, but the
model and the checker should be largely unchanged. However, our test harness and test suite
do cover interleaved calls from multiple processes, which is important when modelling
and testing permissions. We also model timestamps, but periodic timestamp updating
results in extremely non-deterministic behaviour, which currently makes trace checking
take excessive runtime, so this is largely untested at present. These are all important aspects
of file system behaviour, and we believe our approach can be extended to cover them in the
future, but each would require substantial additional work; we exclude them for the time
being simply to keep the project manageable.

We do not model unusual file types (such as FIFO special files), or asynchronous
I/O, signals and the associated EINTR error. We exclude errors such as EIO (“a physical
I/O error has occurred”) and ENOMEM; from a modelling perspective such errors could
potentially occur at any time. We do not model many resource exhaustion behaviours, such
as exceeding the maximum number of entries in a directory or using all available inodes.
We do not currently model the *at forms of functions such as openat, although it should
be straightforward to adapt our model to include them.

We do not model free space or storage media behaviour in general. One can imagine
future work developing, for a particular file system of interest, an executable abstraction
function that reads a concrete volume state (perhaps after a host crash and recovery)
and calculates the corresponding abstract state of the model. Testing the correspondence
between implementation and model at each step, analogously to [30], would likely be
extremely discriminating.

Our model parameterisation (Point 2 of the first contribution above), while desirable and
necessary, also has a cost: running SibylFS is low-cost, but adapting SibylFS to model a
file system with significantly different behaviour can involve substantial work (though with
a big pay-off: characterising that behaviour in detail).

2. Overview

The process of testing a file system and checking the resulting traces with SibylFS is
depicted in Fig. 1. The process starts with a set of fest scripts, organised into groups



Q@type script

# Test rename___rename_emptydir_
mkdir "emptydir" 00777

mkdir "nonemptydir" 00777

open "nonemptydir/f" [0_CREAT;0_WRONLY] 00666

rename "emptydir" "nonemptydir"

_nonemptydir

Figure 2. Excerpt of a rename test script

Q@type trace
# Test rename___rename_emptydir___nonemptydir
3: mkdir "emptydir" 00777
RV_none
... [further calls and return values]
6: rename "emptydir" "nonemptydir"
EPERM

Figure 3. Excerpt of a rename trace; RV_none indicates the call completed successfully.

according to the libc functions they target. The bulk of these are generated automatically
by the test generator, supplemented by hand-written test scripts.

Test scripts contain sequences of file system commands that are used by the test executor
to drive the real-world file system under test, via the libc interface. An example excerpt
from a test script is given in Fig. 2; after the header, each line is the data for a single
libc call (more complex test scripts can involve multiple processes). Each script sets up
whatever file system state it needs, starting from an empty file system; they involve up to
several hundred libc function calls. The resulting behaviour is recorded in a trace file, as
in Fig. 3, interleaving the commands from the script with the responses received from the
real-world system.

These trace files are processed by SibylFS to check for conformance with the model. The
main part of the SibylFS checker is the model itself, automatically translated from Lem
to OCaml and then linked together with a small OCaml wrapper. Checking is done with
respect to a particular variant of the model (POSIX, Linux, OS X or FreeBSD); in addition,
various flags control further checking parameters, such as whether the initial process runs
with root privileges or not. The output from this checking phase is a set of checked traces,
as in Fig. 4. For steps in the trace that conform to the model, the checked trace resembles the
original. For steps that are non-conformant, the checked trace includes an error message and
(if possible) diagnostic information to help identify why the behaviour is non-conformant.
In Fig. 4 the error message indicates that at line 6 in the trace file the real-world file system
returned EPERM, but the specification allowed only EEXIST or ENOTEMPTY.

Individual trace files may contain multiple test calls, and so it is important that the
checker try to continue even when an individual step fails. In Fig. 4 SibylFS continues
checking the trace under the assumption that EEXIST or ENOTEMPTY was returned rather
than EPERM.

Analysis of the results also requires automation to assist with the volume of data, as
each run produces tens of thousands of checked traces per platform, and the results must be
compared between file systems and (during model development) between model versions.
For example, it is common to compare different file systems (or different versions of the
same file system) on a single operating system; we have also compared versions of a



# Error: 6: EPERM

#  unexpected results: EPERM

# allowed are only: EEXIST, ENOTEMPTY
# continuing with EEXIST, ENOTEMPTY

Figure 4. Excerpt of a checked rename trace from SSHFS/tmpfs 2.5 on Linux 3.19.1

single file system on several different operating systems, see §7.3. Checked traces can be
rendered to HTML, along with autogenerated indexes and summaries of check results. To
analyse the results of multiple runs, the system can intelligently combine the results across
many different platforms, merging behaviours common to many runs and highlighting the
differences.

In addition, a model-debugging tool allows model developers to analyse the checking
process itself, taking a trace and producing a description of the real-world states that
were being tracked by SibylFS at every step of trace. This has been extremely useful for
developing the model, but we do not expect end users of SibylFS to need it.

The process of constructing the model has been intimately entwined with testing:
testing (particularly on new operating systems and file systems) uncovers new real-world
behaviours, which are then incorporated into the model; new tests are added and the updated
model is then used for another round of testing, with those behaviours now not generating
discrepancies. This represents a virtuous circle: at each stage the model becomes more
accurate and comprehensive, and the test suite accumulates more and more tests.

3. Technical challenge: nondeterminism

In writing a model to be used as a test oracle (i.e., to compute whether observed traces
are allowed by the model or not), the treatment of nondeterminism is a key issue. If
both the model and the implementations are entirely deterministic, at the abstraction level
at which they are being observed, then one could just run the two on the same input
and check they have equal output. But for real-world software that is rarely the case:
implementation behaviour typically varies, both between implementations and depending
on implementation-internal runtime choices, and specifications are often deliberately loose.
For example, for file systems:

e Some API calls could give rise to several distinct errors, e.g. EISDIR, EEXIST or
ENOTEMPTY for a rename of a file to a non-empty directory; which is actually returned
is determined by the order of the checks in the file system implementation code.

e The number of bytes returned by a read may be less than the number requested,
determined by the implementation internal state.

® The order in which readdir returns entries from a directory with multiple entries will
depend on the implementation and on details of the storage layout of the directory data
(neither of which belong in an abstract specification).

e The behaviour of concurrent API calls may be determined by scheduling.

A sound specification must be loose enough to accommodate all such variation (looseness
should not be confused with the question of whether a specification is precise: we want a
mathematically precise model, but one that admits a range of allowable behaviours). But
then checking a trace against such a specification poses an algorithmic problem, especially
when there is internal nondeterminism that is not immediately observable: in general one
must effectively track the set of all possible implementation states (abstracted to what can



affect external observation) at every step of the trace, or, equivalently, calculate the set of
constraints on the specification state that arise from a trace of observations. The Netsem
project of Bishop et al. [3] produced a specification and trace-checker in that form for
TCP/IP and the Sockets API, but it required a sophisticated higher-order logic constraint
solver and a backtracking search process, and as noted in §1, checking could take thousands
of CPU-hours, at the limits of practicality.

At the same time, there is a tension between writing a model to be as clear as possible
and one that supports efficient checking (both quite different from writing a file system
implementation, of course); as far as possible we want to avoid polluting the model with
algorithmic concerns.

Accordingly, for SibylFS we took great care up-front to write the model in a way that
would remain clear and be efficiently checkable, without needing a backtracking search
or sophisticated constraint solving. We used different strategies for different sources of
nondeterminism, as follows.

Simple nondeterminism via possible next-state enumeration At the top level the model
consists of a type of abstract file system states and a function that, given such a state and
an API event (call, return, etc.), returns a finite set of possible next states. We go into more
detail in §5. For the simple case of multiple possible API error return values, the model
explicitly calculates the set of all allowed errors (using novel combinators, as described in
84, to do so concisely) and a next state for each, then when the real-system return value is
observed we simply choose the corresponding state.

We use a similar approach to deal with the number of bytes processed by a read or
write, just enumerating the possible immediate next states. This is attractively simple and
suffices for our testing. It does involve some unnecessary cost for tests with large reads or
writes, enumerating many next-states, but that blowup is resolved at the next step in the
trace, when the actual number of bytes read by the real-world process becomes known.
To test with very large reads and writes one could refactor the model slightly to produce
continuations abstracted on the API return values, to check them and calculate a single
next state. The downside of doing that uniformly is that it makes it hard for the checker to
describe, for a failing step, the set of values that would have been allowed (as we showed
in the example trace of the previous section).

Directory listing nondeterminism by hand-crafted specification The readdir com-
mand is more challenging to specify. A process can request a directory handle using
opendir and then use readdir to return the directory entries. These can be returned in
any order, so this command gives rise to significant nondeterminism. However, the real
challenge in specifying this command is to deal with modifications of the directory (either
by the same process or a different process) while the directory handle is open. If the di-
rectory is not modified at any point, then readdir returns all the entries in the directory,
and each entry is returned exactly once. The POSIX intent is to provide a similar guarantee
when the directory is modified, and real-world file systems also provide this guarantee, as
far as we can observe: for any entry, if that entry is not modified from the time the directory
handle is opened, then that entry will be returned by readdir exactly once. If an entry is
deleted, and if it has not already been returned by readdir, then it may be returned by
subsequent calls to readdir (if it has already been returned, then it is not returned again if
it is deleted). Similarly, if an entry is added, then it may be returned by subsequent calls.
So far, the semantics could be modelled by taking a snapshot of the entries when
opendir is called, and recording which entries have already been returned by readdir. On



subsequent calls to readdir, the entries in the directory at that point could be examined,
and the possible entries that could be returned at that point could be determined. The
problematic case arises for entries that are initially in the directory, then deleted, then added
again (or, vice versa, those that are added then deleted). According to POSIX, these entries
may (but need not) be returned. In order to model this behaviour, we are forced to track
all changes to a directory from the point that opendir is called, as well as the entries that
have already been returned by readdir. With this information, it is possible to determine
the set of entries that must be returned, and those that may be returned, and thus to give a
semantics to the whole command.

In fact, we maintain (rather than compute) sets of “must” and “may” entries in a
directory. Whenever a directory handle is read from, it accesses the changes since the last
time it was read from, and updates the must and may sets, before nondeterministically
splitting to allow any of the entries in “must” or “may” to be read. This nondeterminism is
resolved at the next step, when the label reveals the entry actually read.

It is worth noting that this is an area where a good specification is conceptually more
complex than any particular implementation: the latter just returns some list of names,
while the model has to capture all allowable sequences, ruling out all those that are not
possible.

Concurrency nondeterminism via state sets Multiple user processes executing file sys-
tem API calls concurrently also results in nondeterministic behaviour, e.g. if one process
renames a file while another removes it. The SibylFS model and trace checker cope with
multiple, concurrent API calls by maintaining explicit sets of possible (model) file system
states.

We note also that another way to avoid internal nondeterminism is to instrument the
implementation, to expose all the internal choices that affect external behaviour as trace
events. For a single implementation that might be viable (and indeed desirable, as it would
permit checking of internal invariants). But for checking many file systems, the black-box
approach that we follow here is more tractable.

4. Technical challenge: managing complexity

To give an idea of the challenges in identifying and describing complex real-world be-
haviours, we describe the process of updating the model to support OS X. At that point,
we already had variants for POSIX and Linux. We ran the tests on OS X with the default
HFS+ file system, and checked the traces against the POSIX variant of the model. We were
confronted with thousands of failing traces (around 5 000 for open alone).

We manually analysed the failing OS X traces to identify why they were not allowed
according to our understanding of POSIX. This was painstaking work, taking roughly
four to six weeks (though still small compared with the effort required to implement
a production file system). The next step was to rework the model to incorporate these
new OS X behaviours, while remaining concise, structured, and readable. The process is
one of inferring, from thousands of observed behaviours, a compact description of those
behaviours (as a higher-order logic specification).

To make it feasible to write the model and to extend it in this way, we have found it
essential to structure the model in various ways. Different mechanisms have been useful to
address different kinds of complexity.

Modules Lem provides a notion of module: a collection of type, pure function, and
inductive relation definitions (analogous to the modules of OCaml and other ML-like
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Figure 5. Modular structure of the model

languages). We used these to structure the model as a set of independent modules, with
clearly defined interfaces, as shown in Fig. 5. A file system has to maintain the directory
structure and the contents of files, typically using references. This is managed by the
state module. The path resolution module defines how paths reference particular files and
directories. The file system module represents the bulk of the model. It describes how
each command (1ink, rename etc.) behaves, including how they modify the state, and the
many possible error cases, but working over fully resolved paths. Finally, the POSIX API
module glues those together and includes the behaviour of libc and the operating system,
introducing the notion of a process, and per-process datastructures. This is the top-level
module which exposes the interface used for trace checking.

Our module structure does not represent the structure of the existing POSIX specifica-
tion or the internal structure of any file system implementation; rather, it is the result of an
attempt to identify the conceptually key components and their interfaces, while simultane-
ously minimising the overall complexity of the model.

An important decision was to separate path resolution from the semantics of each
command. When processing a command such as rename pl p2, the POSIX API module
first resolves the paths p1 and p2 to obtain two resolved paths. These are then used when
invoking the file system module equivalent of the rename function. Thus, internally to the
model, the file system module API is expressed in terms of resolved paths, not raw strings.
This means that the file system model is clean, and unpolluted by the tricky details of path
resolution which have been confined in a separate module.

Because they have pure value-passing interfaces, modules can be considered in isolation,
allowing important invariants to be established. Modularization also allows unit testing of
individual modules, which has been useful particularly to get the details of path resolution
correct.

Traits Aspects of the model that cut across the modular structure but which are concep-
tually distinct have been isolated using a trait-like mechanism: there is a core model on
top of which the user can “mix in” further traits for particular functionality. The permis-
sions trait defines the behaviour of file permissions including functions such as umask. The
timestamps trait defines how the timestamp information on files is updated, in both imme-
diate mode and periodic mode. For example, “core without permissions” specifies a model
where permission information is ignored, and all files are accessible by all users.

Monads and combinators Higher-order logic is based on the notion of (pure) functions.
On top of this we have introduced various functional programming structuring techniques,
including monads and associated combinators, to allow us to structure our definitions.

In Fig. 6 we illustrate the use of the “parallel” combinator ||| to specify the checks that
the rename function must perform. The conditional first checks whether the source and
destination are the same, in which case the rename is a no-op, and the checks do nothing.



let fsop_rename_checks ... = ...

if (fsop_rename_same _rsrc_rdst env rsrc rdst s0) then

fsm_do_nothing

else

( fsop_rename_checks_rsrc_rdst env rsrc rdst

||| fsop_rename _checks_root env rsrc
||| fsop_rename_checks_subdir env rsrc rdst
||| fsop_rename_checks_parentdirs env rsrc rdst
||| fsop_rename_checks_perms env rsrc rdst)

Figure 6. Structuring the model using combinators

Others
Main modules Prelude 156
Types 888
State 502
. Monads 130
Path resolution 291 ..

. Permissions 208
File system 1388 Formal properties 1103
POSIX APL 818 Support files 497

Total 5981

Figure 7. The model, non-comment lines of specification

Otherwise the rename function needs to check various conditions: fsop_rename_rsrc_rdst
checks various combinations of the source and destination that result in errors (for example,
ENOENT may be raised if the source is missing); fsop_rename_checks_root checks attempts
to rename the root directory; fsop_rename_checks_subdir checks attempts to rename a
directory to a subdirectory of itself; fsop_rename_checks_parentdirs checks that the parent
of the source and destination directory can be found (this check should always succeed; it
is included to cover the case that a disconnected file or directory is involved in the rename);
fsop_rename_checks_perms checks the permissions involved in the rename.

Each of these checks may raise many different errors. Moreover, as discussed in §3, and
unlike an implementation, we have to loosely specify the behaviour: any error that arises
from any of the checks is valid behaviour. The parallel combinator conceptually allows
these checks to be carried out in parallel, and the resulting error may be from any of the
individual checks. The excerpt in Fig. 6 concisely and readably expresses all the checks
involved, and the use of the parallel combinator emphasizes that none of the errors arising
from the individual checks has priority over any of the others. We would strongly argue that
the precision and clarity of our model makes it a useful complement to the existing POSIX
standard.

5. The model

Our model is about 6 000 lines of higher-order logic. In Fig. 7 we give details of the line
count for each part of the model. We cannot hope to give full details in the space available.
Instead, we give the main types involved, and representative excerpts from the model. We



start by discussing the notion of a labelled transition system: a mathematical way to specify
complex real-world systems. We then discuss the main modules that make up our model,
following Fig. 5.

Labelled transition systems Conceptually, SibylFS simply defines a labelled transition
system: a nondeterministic infinite-state automaton where the states are abstract (model)
file system states and the transitions (mostly) correspond to libc API calls and returns,
labelled with the call parameter values and return values. Each model state can correspond
to potentially infinitely-many real-world states. As a result, SibylFS only needs to track a
finite number of model states to accurately represent all real-world possibilities.

Formally, an LTS can be thought of as a tuple (S, L, Sp, R), where S is a set of states,
L is a set of labels, Sy C S is a set of start states, and R C S x L x S'is a set of triples
(known as the transition relation): a triple (s, [bl, s") indicates that, from state s, a transition
labelled with bl to state s is possible.

POSIX API module The POSIX API module defines a labelled transition system. Labels
correspond to relevant events: those for a process calling a libc function, a value being
returned to a process from a call, process creation and destruction, and T events used to
model an “internal” system transition (perhaps corresponding to asynchronous execution
of a kernel thread). These are modelled using the Lem type os_label.

type os_label =
| OS_CALL of (ty_pid x ty_os_command)
| OS_RETURN of (ty_pid x error_or_value ret_value)
| OS_CREATE of (ty_pid x uid x gid)
| OS_.DESTROY of ty_pid
| OS_TAU

This defines a new datatype (similar to a tagged union or variant type) where values may
be one of the five possible variants, distinguished by constructors such as OS_CALL, and
each holding an immutable tuple of the associated type. For example, if the value pid is
of type ty_pid (representing a process id) and c is of type ty_os_.command (representing a
particular instance of a libc function call such as 1ink), then OS_CALL(pid, c) is a value
of type os_label (representing the event where process pid makes a libc call ¢). The type
ty_os_.command (used in the OS_CALL constructor) models the various libc functions and
their arguments:

type ty_-os_.command =
| OS_CLOSE of ty_fd
| OS_LINK of (cstring x cstring)

The states of the model must represent real-world system states, including processes,
open file descriptors, file descriptions and so on. The key type of model states, ty_os_state,
is a Lem record type:

type ty-os_state ... = {
oss_fid_table : fmap ty_fid (fid_state ’dir_ref 'file_ref);
oss_group_table : fmap gid (finset uid);
oss_pid_table : fmap ty_pid (per_process_state 'dir_ref);

)



The field oss_fid_table is a finite map (fmap) from open file description references (ty_fid) to
the state of the file description (fid_state 'dir_ref ’file_ref); here the pre-primed identifiers
are generic type variables, and fid_state is actually a type constructor parameterised on
arbitrary 'dir_ref and ’file_ref types. The field oss_group_table is the mapping from group
ids to (sets of) user ids. The field oss_pid_table holds the per-process information tracked
by the operating system. This includes the current working directory, file descriptors and
directory handles, process run state, and various permissions-related state, such as the file
creation mask, and the real and effective user ids.

We have now defined the states and the labels of our LTS. For the transition relation one
might expect a relational definition, specifying a set of triples (s, Ibl, '), but a mathemat-
ically equivalent and more computationally convenient form of definition is as a function
that takes a state and a label, and returns a finite set of states; we have a top-level function
os_trans with that type:

val os_trans : ty_os_state — os_label —
finset os_state_or_special

There is a subtlety here: the type finset os_state_or_special represents a finite set of
elements, which are either normal states, or “special states” which correspond to POSIX
undefined, unspecified and implementation-defined behaviours, as described in §1.1. If we
ignore special states, the result type indeed represents a set of file system states.

The remainder of the model defines the transition relation: given a state, and a label
corresponding to a libc function call, the definition of os_trans uses the path resolution
module to resolve paths, and then calls the file system module to process the function itself.
In addition to this, os_trans must deal with processes and concurrency, open file descriptors,
file descriptions and so on.

A trace such as that in Fig. 3 is a sequence of labels. SibylFS checks a trace step by step.
At each step 7 of the trace, SibylFS maintains a finite set S; of values of type ty_os_state,
which represents all the states that the real-world file system might be in. For each label
Ibl;, SibylFS applies os_trans to each element of .S;, and takes a union of the resulting sets
to form the set of values S; 1 at the next step. The initial set Sy consists of a single state s
representing an empty file system. In effect, given Sy and the sequence of labels, SibylFS
computes a sequence Sy by S1 bl Ss . ... If the end of the trace is reached at [bl,, and the
set S, is non-empty, then the trace is accepted by the model. If the set S; of possible file
system states at step ¢ is ever the empty set, then this indicates that the trace is not accepted
by the model.

Path resolution module Path resolution is complicated for several reasons. The resolution
of even simple paths (no symlinks, no permissions) can be counter-intuitive on real-world
systems, particularly when the path ends in a trailing slash e.g. the path /tmp/f.txt/ is
sometimes resolved successfully under Linux, even when f.txt is a non-directory file.
Symlinks introduce much additional complexity. For example, symlinks that occur as the
last component of a path are sometimes followed and sometimes not, depending on the libc
function involved and flags such as those for open; this “follow last symlink™ behaviour
is further complicated by trailing slashes on the path (a trailing slash makes it more likely
the symlink is followed). Permissions further complicate matters. For example, there is the
question of how permissions interact with path resolution, and what permissions should be
assigned to symlinks.



Our model clearly describes the behaviour of path resolution in terms of the inputs to
path resolution, and the output resolved path. The result of path resolution is captured by
the resolved name type res_name:

type res_name ’dir_ref 'file_ref =
| RN_dir of ("dir_ref x ...)
| RN _file of (*dir_ref x name x ’file_ref x ...)
| RN_none of (’dir_ref x name x ...)
| RN_error of (error x ...)

Intuitively path resolution can give four possible results: the path can resolve to a
directory (constructor RN _dir), a non-directory file (RN_file), or an error can occur during
resolution (RN _error), or the path might resolve to “none” (RN_none), representing a non-
existent entry in a directory. This last possibility occurs, for example, for functions such
as mkdir, where the given path is intended to reference a non-existing entry that will be
created by the function.

File system module The file system module defines the behaviour of individual functions
such as 1ink and rename. Internal to the model, its API is expressed using resolved names.
In Fig. 6 we gave an excerpt from the file system module: the checks that the rename
command must make.

State module The state module provides a simple model of directory and file contents.
The main type is a record type which includes a field dhs_dirs (a finite map from directory
references to directories) and a field dhs_files (a finite map from file references to files):

type dir_heap_state_fs = (

dhs_dirs : fmap dh_dir_ref dh_dir;
dhs_files : fmap dh_file_ref dh_file;
)

The interface to the state model is expressed in terms of references to files and directo-
ries (types dh_dir_ref and dh_file_ref). The state-model API permits arbitrary linking and
unlinking, in particular, our model can handle directory links, and disconnected files and
directories can also be modelled (a disconnected file is one that does not appear in the
directory tree, but is still accessible).

Contrasting this to the block-structured storage state one might find in a typical file
system implementation is instructive: the model can abstract from all that implementation
detail while still correctly describing the envelope of allowed behaviour visible at the API
we consider, and that abstraction is essential to make the model simple.

6. Test suite and harness

In §2 we gave an overview of the system, and described the virtuous circle formed by
testing and revising the model. We now describe the tests and test execution in more detail.

6.1 The tests

Autogenerated scripts test commands such as link and rename where combinatorial
testing is straightforward, feasible, and expected to cover all static real-world behaviour.
The combinatorial nature of the tests means that functions such as 1ink and rename which
take two arguments have many more tests than functions such as rmdir which take only
one. The open function has an especially large number of tests because one argument is a
bitfield of open flags.



To reduce the test cases to a finite number, we use equivalence partitioning, which
requires identifying classes of inputs where a function is assumed to behave “the same”,
and testing only one member of each class. For example, in a given file system state
where neither £1 nor £2 exist, the behaviour of rename f1 f1 should be the same as
rename f2 f2, so it suffices to test only one of these two possibilities: the assumption is
that the exact name of a file is irrelevant. A potential weakness is that these assumptions
might not actually hold for real-world file systems. For example, even if neither £1 nor
.snapshot exist, it could be that any reference to . snapshot triggers unusual file system
behaviour so that rename .snapshot .snapshot behaves differently to rename f1 f1.
Our tests would typically fail to establish this difference. This is an inherent weakness in
equivalence partitioning, not specific to our use.

The equivalence classes are based on properties (of file system state, and the file system
API calls) which we believe affect file system behaviour. For example, properties of paths
used in API calls include: whether the path ends in a slash; whether it starts with O, 1, 2,
or >3 slashes; whether it is the empty string; whether it is a single slash; the type of the
resolved path (file, directory, symlink, nonexistent, error); if the resolved path is a directory,
then the number of entries in the directory; and whether the path has a symlink component
or not. These properties are used to construct equivalence classes. We then make sure that
we have at least one test case for each logically-possible combination of properties. For
API calls involving two paths (such as rename) we consider all combinations of properties
of each path individually, together with equivalence classes based on properties of two
paths: whether they are equal or not; whether they are different paths to the same file (hard
links); and whether one path is a proper prefix of the other. Again, we ensure we have at
least one test case for each logically-possible combination of properties.

The construction of equivalence classes is carried out manually: extensive human in-
volvement is necessary to determine which combinations of properties are logically possi-
ble. For example, it makes no sense to require that a path corresponds to an empty directory,
and is at the same time a proper prefix of a path that corresponds to a file (or directory or
symlink). Potentially the model itself could be used to determine that certain combinations
are not possible. We suspect that this could not be done automatically, but would require
significant proof effort for each combination, and there are many logically-impossible com-
binations. Even if we could automatically determine whether a combination was logically
possible, constructing missing test cases requires human involvement (see below). Instead
of using the model, we manually inspect each combination for which no test case is avail-
able, to certify that the combination is indeed impossible. This takes significant effort, and
there is the danger that the human mistakenly labels some combination as impossible, and
thereby omits an interesting test case. If a combination is possible, but no test case exists,
we manually examine the combination, identify (at least one) missing test case, and ex-
tend our automatic test generation to include this case. As an example of the missing test
cases our approach uncovered, for commands involving a single path, our test suite initially
lacked test cases which resulted in a path resolution error, where the error was not due to a
trailing slash on the end of a file. The fix was to include commands that attempt to resolve a
nonexistent file in a nonexistent directory; a nonexistent file (in an existing directory) does
not suffice since it resolves to RN_none rather than RN_error. We used OCaml to model
properties and equivalence classes, and mechanically verify that all logically-possible com-
binations were matched by at least one test case.

For commands such as read and write we need to test sequences of calls, which
is inherently hard to test combinatorially. We therefore wrote extensive manual tests,



attempting to cover all possible behaviours. We have done preliminary investigation of
automated generation of tests for these calls but this is future work. An alternative is to use
randomized testing.

The standard OpenGroup POSIX test suite includes hand-written code to check the
results of calling libc functions. Our use of combinatorial testing, made possible by the
SibylFS oracle, allows us to test many more cases: 2 500 autogenerated scripts for rename
alone, supplemented by further hand-written scripts, whereas the OpenGroup test suite for
rename includes around 50 tests. On the other hand, they test a wide range of POSIX
functionality, whereas we test file system functions only.

6.2 Script execution

Test scripts may involve multiple processes making libc file system calls. Each test script
execution forks an interpreter process from the controller process to provide signal and fault
isolation. The interpreter process then reads, parses, and dispatches script commands over a
high-fd UNIX socket to worker processes running in a chroot jail. Each worker runs with
real user and group IDs and supplementary group IDs generated to match the permissions
relations for the corresponding process in the script. Our use of chroot jails means that
we can effectively test as if the file system namespace is empty. This design trades off
complete accuracy regarding the behaviour of the root directory (e.g., in a chroot jail the
root directory link count is typically off-by-one compared to a non-chroot setup), for fast,
reliable execution. We have considered testing modes involving per-test virtualization but
have not yet constructed such a test harness.

6.3 Testing, interleaving, concurrency and races

The SibylFS model allows interleaving and concurrent behaviours and many test scripts in-
volve multiple processes making interleaved libc calls. However, in-kernel racy behaviours
are inherently difficult to elicit from real-world systems, and such racy behaviour, although
modelled, is not currently tested. In this section we clarify the nature of the interleaving
and concurrent behaviours allowed by the SibylFS oracle, and the difficulty in testing racy
behaviours.

A file system API function call and return is not modelled as an atomic event. Instead,
there is an initial event corresponding to the call, a second internal 7 event corresponding
to the libc/OS/file system processing the call, and a final event corresponding to the return
from the libc call. Additionally, the model satisfies a receptivity property: at any time, any
running process can make a libc call, at which point the process blocks until the call returns.
This model allows multiple processes to execute calls concurrently. Test scripts can involve
multiple processes, each making calls to libc. For example, many of our hand-written test
scripts involve multiple processes making interleaved calls to libc, in order to test file
system features such as ownership and permissions. The test infrastructure will execute
a script line-by-line and no attempt is made to execute calls from different processes at the
same time: typically a libc call from one process will complete before the test infrastructure
executes a call from another process.

It should be possible to extend the test infrastructure to initiate libc calls from different
processes simultaneously, perhaps by assigning different processes to different cores. This
would at least make it possible for concurrent calls to race in the kernel, but the probability
of a race actually occurring would likely be very low (there is no way to force calls to
race in the kernel). The next step would be to run such potentially-racy tests many times,
to try to increase the chance of racy behaviour being observed. However, the time cost of



doing this for a large test suite such as ours is prohibitive, and such racy testing should
probably be restricted to particular test scenarios where the racy behaviour is expected to
be “interesting”.

7. Evaluation and test results

Testing focused on the Linux, OS X and FreeBSD operating systems for which we
have models. On Linux, we tested tmpfs, Btrfs, ext2, ext3, ext4, F2FS, XFS, HFS+,
MINIX, NILFS2, NFSv3/tmpfs, NFSv4/tmpfs, fusexmp/tmpfs (the example FUSE pass-
through backed by tmpfs), SSHFS/tmpfs, bind/tmpfs, posixovl/VFAT, posixovl/NTFS-
3G, aufs/tmpfs/ext4, overlay/tmpfs/ext4, GlusterFS/XFS, and OpenZFS. On OS X, we
tested HFS+, NFSv3/HFS+, fusexmp/HFS+, SSHFS/HFS+, fuse-ext2, Paragon ExtFS, and
OpenZFS. On FreeBSD, we tested tmpfs and ufs. In addition, on Linux we compared the
standard libc (glibc) and the lightweight libc musl, and kernels 3.13, 3.14, and 3.19.

An individual test run currently executes 21070 tests and produces 46MB of trace
data. Because manually analysing system traces of this volume is difficult, we index,
filter, and highlight specification deviations in HTML. Our tools can also produce merged
test runs comparing local specification deviations across multiple platforms with platform
differences identified and highlighted. With appropriate experimental design, OS, file
system, and libc defects are easy to find.

7.1 Performance

To use our specification during file system development or behavioural exploration, indi-
vidual script execution and trace checking must run quickly. As described in §3, nonde-
terminism can, without careful management, lead to very long run times. In our checking
system, we have both engineered the specification to ruthlessly control nondeterminism
and taken advantage of trace independence for parallel speedup.

Trace checking the entire test suite with 4 processes on a machine running Linux 3.14-2
with an Intel Core 17-3520M 2.90GHz CPU with performance governor, Samsung 840 PRO
SSD, and 12GB RAM takes about 79s, which is a mean rate of 266 test traces per second.
With test suite execution on Linux tmpfs clocking in at 152s, it takes less time to check a
trace set than it does to execute the test suite. Our naive single-threaded HTML generator
takes about 48s to process a single, unmerged test run. Thus, we believe the performance
of SibylFS is suitable for use during development and continuous integration. The slowest
phase of testing is due to user and group creation: we need to employ application-level
locking to avoid race conditions on Linux, OS X, and FreeBSD; these race conditions have
been reported upstream. We have not yet aggressively optimized either the test harness
or the checker architecture. For example, we spawn a new process for each trace being
checked.

7.2 Test results

Trace acceptance For the “standard” Linux platforms (Linux 3.19, with glibc and either
ext2, ext3, or ext4), all but 9 of 21 070 traces are accepted by SibylFS. The 9 failures are
mostly due to the use of a chroot jail for testing, i.e., they do not represent real deviations
of the underlying file system from the SibylFS model. For other Linux platform variations,
failing traces differ mostly in aspects that POSIX indicates are implementation-defined or
unspecified. These include default permissions for symlinks, writing 0 bytes to bad file
descriptors, and specific errors due to removal or renaming of the root directory.



On OS X 10.9.5 with the default HFS+ file system, the script which tests pwrite
with a negative offset fails to execute to completion due to an integer underflow bug in
OS X (§7.3.4). In total, 34 traces fail to check, due to a handful of issues similar to the
Linux failures, and the resolution of symlinks with trailing slashes (which we are presently
correcting). The FreeBSD results are similar.

Test coverage To understand the completeness of our test suite, we measured the proportion
of lines in the model that are covered by a test run (statement coverage). The ideal target of
100% coverage is not possible for two reasons. First, some lines of the model correspond
to situations that are impossible to reach. However, the fact that these situations are not
reachable is often far from obvious, so we have explicitly included annotated lines covering
these cases as a form of documentation, and as a guarantee of exhaustivity of match
clauses. Second, clauses for particular platform behaviour will not be exercised when
checking traces for another platform. This can be addressed by annotating each line of
the specification with the relevant platforms. Taking these factors into account, our tests
currently cover 98% of the model. The remaining 2% consist of lines that probably could
be tested (for example, we do not currently test process destruction during a test), and
lines for unused internal definitions generated by Lem (which should be excluded from our
analysis).

The high level of coverage is partially attributable to our decision to use automatically
generated test cases in an attempt to exhaustively explore all behaviours. Related work [14]
has used randomized testing of the POSIX file system interface applied to a novel file
system implementation, achieving 89.06% coverage of the implementation code. If one
considers the model as a (non-deterministic) reference implementation, there is a sense in
which these figures are comparable.

Our coverage figures come with a caveat: these figures show only that the test scripts
produce traces whose checking exercises almost all of the model. As noted earlier, it may
still be the case that the assumptions underlying equivalence partitioning are invalid or that
some real-world behaviour, unrepresented in the model, is not being tested.

Our tests aim for complete implementation code coverage, but we use coverage of the
model, rather than coverage of the implementations, for two main reasons. First, we believe
that the model is detailed and accurate (although admittedly this belief partly depends on
the testing itself), so that tests which cover the model should also exercise all interesting be-
haviours of the implementations. Second, attempting to measure implementation coverage
is difficult. There are at least three distinct pieces of code which form an implementation
(the libc library, the OS, and the file system implementation code), and only parts of each
piece are in the domain of the SibylFS model. In order to measure implementation cover-
age, we would first need to determine, for each of the three pieces, which lines of code are
relevant, and which are not, so that we can restrict our coverage checking to the relevant
lines. This requires expert knowledge of libc, the OS and the file system code, but should
be possible for a single test platform, and we believe this would provide further evidence
that the tests provide high coverage. However, providing such implementation coverage for
each of the many combinations of libc, OS and file system that we consider, would surely
be infeasible.

7.3 Survey results

In our testing of over 40 different system configurations, we discovered numerous devia-
tions from the specification ranging from mundane to critical. We classify by increasing
severity the file system defects found during our survey.



7.3.1 Issues in the POSIX specification

POSIX specifies the behaviour of each libc function separately, with clauses for common
errors duplicated between functions. Almost inevitably it is difficult to keep these clauses in
sync when updating the POSIX text, and minor mistakes have crept in. Our formal model is
in part a formal counterpart to the informal POSIX specification, and clauses in the formal
model that were not uniform suggested underlying issues with the POSIX specification.
For 1ink, mkdir and open we queried the POSIX specification of the allowable errors on
the Austin Group mailing list; new issues were recorded and subsequently resolved on the
Austin Group bug tracker.

7.3.2 POSIX specification violation

Core behaviour If we restrict to successful invocations of libc functions, for file system
states which do not contain symlinks, and paths that do not end in a trailing slash, and if we
ignore permissions and work with a single process, then the behaviour across most system
configurations is very similar. On some file systems, specific features such as directory link
counts are not supported. Btrfs, SSHFS/tmpfs, and Linux HFS+ all exhibit this violation
with SSHFES/tmpfs also not supporting link counts for regular files due to limitations in the
SFTP protocol.

Error codes POSIX often allows different errors in a given circumstance, and this loose-
ness is present in implementations: Linux is substantially different from OS X and, even
on the same operating system, different file systems can return different errors in the same
situation. There are also cases where error codes not allowed by POSIX are returned; for
example, Linux follows the LSB for unlink of directories and returns EISDIR, where
OS X follows POSIX and returns EPERM. On OS X, when attempting to rename the root
directory, EISDIR is returned instead of EBUSY or EINVAL.

Path resolution, trailing slashes, and symlinks Trailing slashes on paths, even without
symlinks, are treated in what appears to be an ad hoc manner. For example, if f.txt is
a path to a file, then f.txt/ intuitively should result in an error, but often such a path is
resolved successfully. For example, on Linux link /dir/ /f.txt/ can return EEXIST
to indicate that the file f.txt exists (this is not allowed by POSIX), whereas one might
expect ENOTDIR to indicate that the path /f.txt/ cannot be resolved because f.txt
is not a directory. Symlinks introduce further complications. For example, a path to a
symlink followed by a trailing slash is often used to mean “resolve to the target of the
symlink (even if a file)”, but this is not universally followed on either Linux or OS X.
The behaviour when symlinks to symlinks are involved can be confusing. For example, if
s1 is a symlink to a directory, and s2 is a symlink to s1, then on OS X, readlink s2/
will return the contents of the symlink s1, whereas one might expect that the trailing slash
would force the path to be resolved to the directory, resulting in an EINVAL error returned
by readlink. Creation of hard links to symlinks using 1ink is permitted by Linux and
support is specified as implementation-defined. Notably, HFS+ on Linux returns EPERM
when this is attempted rather than either linking the symlink or following the symlink as
OS X does. This behaviour is likely a portability compromise for removable volumes.

Invariants POSIX specifies that calling open with flags 0_CREAT, O_DIRECTORY and
0_EXCL on a symlink to an existing directory should fail with EEXIST. FreeBSD instead
returns ENOTDIR. POSIX also mandates a strong invariant: a libc call which returns with
an error should leave the underlying file system state unchanged. On Linux and OS X this



invariant holds for all our tests. However, in the above scenario, as well as returning the
ENOTDIR error, FreeBSD deletes the symlink and replaces it with a newly created file. This
breaks the POSIX invariant. If the symlink points to a non-existent target rather than a
directory, and the flag 0_EXCL is omitted, then the new file is created as the target of the
symlink and ENOTDIR is returned, again violating the invariant.

7.3.3 Platform conventions

Some platforms, such as Linux, have well-known and longstanding defects in their POSIX
compliance. For example, on Linux, calling pwrite on a file descriptor opened with
0_APPEND will ignore the offset and instead append data to the file. It is crucial that any file
system or application software ported to or from Linux ensure that it follows this convention
on Linux and provides or expects POSIX compliance on operating systems that attempt
POSIX compliance. Our specification and development process ensures that we explicitly
express and check behaviour of this kind.

7.3.4 Defects likely to cause application failure

A comparison of SSHFS/tmpfs mount options An organization’s system administra-
tor might consider deploying a shared SSHFS/tmpfs mount to their users and wonder
what mount options to use in the configuration scripts. With SibylFS, the administrator
can easily compare, in under an hour, the behaviour of various mount configurations in
their specific deployment of SSHFS/tmpfs and conclude that, using only allow_other
is dangerous because it allows users to violate permissions, using allow_other and
default_permissions is safer but still is not adequate for a shared mount deployment
due to SSHFS/tmpfs’s unconfigurable default creation ownership set to the mount owner
(root). Additionally, without a mount option umask, a user process’s umask is bitwise ORed
with 0022 (regardless of the parent process’s umask) but when setting a mount option
umask of 0000, a user process’s umask is ignored entirely. Using this empirical evidence,
the system administrator is now informed enough to reject SSHFS/tmpfs for this deploy-
ment scenario.

OS X VFS purite integer underflow and signal POSIX specifies a negative offset to
pwrite should return an EINVAL error. We believe the OS X VFS layer incorrectly uses
an unsigned integer type for the of fset argument to pwrite which causes negative values
to be interpreted as extremely large positive values, and the operating system then sends
a SIGXFSZ signal to the process which almost certainly does not handle it. This results in
premature, potentially unclean process termination for what otherwise would be a simple
error condition.

Various issues in deployed but older versions of Linux In Ubuntu “Trusty” Linux 3.13.0-
34, HFS+ did not support chmod and would return EOPNOTSUPP for every chmod call. This
was not the case in Debian “sid” Linux 3.14-2.

In OpenZFS 0.6.3-2"trusty, also on Ubuntu “Trusty” Linux 3.13.0-34, files opened
with O_APPEND would not seek to the end of the file before either write or pwrite
potentially resulting in application malfunction and data loss or corruption.

7.3.5 Defects causing system halt, data loss, or resource exhaustion

posixovl/VFAT 1.2 storage leak posixovl is an overlay file system which provides POSIX
functionality on file systems such as VFAT. Our test suite revealed that posixovl/VFAT fails
to decrement the hard link count correctly in certain rename scenarios. We wrote a simple



mkdir ("deserted",0700) ;
chdir("deserted");
rmdir("../deserted");
open("party",0_CREAT | O_RDONLY,0600) ;

Figure 8. Function call sequence causing OpenZFS 1.3.0 on OS X 10.9.5 to unkillably
spin processes

C program to repeatedly create 64MB files with hard links and delete them using rename.
On Linux 3.14, this resulted in the process receiving a SEGFAULT. On Linux 3.19, we found
that the open with 0_CREAT libc call would fail with ENOENT. In both cases, the file system
would have no remaining space despite being empty — even through an unmount cycle.

OpenZFS on OS X unkillably spins processes in a disconnected directory case Open-
ZFS 1.3.0 on OS X 10.9.5 has a defect which, after executing the sequence of function calls
in Fig. 8, causes the calling process to consume 100% CPU and ignore all signals. The file
system is still usable by other processes at this time but the OpenZFS volume cannot be
unmounted and the machine cannot be shutdown. Force unmounting the OpenZFS volume
may succeed and release the storage device or may cause the storage device to become
unusable until the next restart.

8. Related work

Model checking Yang et al. [35] have used model checking to find serious file system
errors. Their FiSC tool included a simple model of file system state (name, size and link
count for files and directories), sufficient for finding errors, but not intended as a realistic
model of file systems in the way that SibylFS is. FiSC requires intrusive access to file
system internal state: “ReiserFS took between one and two weeks of effort to run in FiSC
as it violated one of the larger assumptions we made”. In contrast, we have opted to test file
systems solely via the libc interface, making it trivial to test new file systems. FiSC is also
focused on errors typically arising from host crashes. SibylFS does not currently model
such scenarios at all.

Ad-hoc models FiSC includes a simplified, ad-hoc file system model. Such models are
reasonably common. For example, the COMMUTER tool [6] includes a model expressed
in a symbolic variant of Python. The model is simplified, e.g., filenames have no structure
and can only be compared for equality, and there is no support for symlinks. Even these
simplified models can take significant time to develop, and are typically not reused across
projects. We believe the SibylFS model is more detailed and better validated, and we hope
that it will be reused in place of such ad hoc models in future file system research projects.

The COMMUTER project is similar to our work in other respects. They use equivalence
partitioning to ensure only a finite number of tests are generated, which nevertheless “cover
all possible paths and data structure access patterns in the model”. As with our work, they
focus on coverage of the model, rather than implementation code. Moreover, their tests
are somewhat simplified because, in addition to the model simplifications described above,
their test cases do not deal with directories (other than the root directory).

Differential testing Differential testing compares the behaviour of multiple implementa-
tions to identify possible errors without a reference model [26]. In some cases it can be
very effective, e.g. for C compilers [36]: by restricting the domain to C programs that (ac-



cording the C standard) should be deterministic, any behavioural difference in compiled
programs identifies a compiler bug. File systems are more complicated to test because of
nondeterminism, with a large envelope of allowable behaviours within which file systems
are expected to behave differently, so one cannot simply compare runtime behaviours with-
out a reference model that identifies when they are sufficiently similar. SibylFS instead
allows differential testing of multiple file systems taking this allowable variability into ac-
count. In this sense it improves on differential testing, but the downside is the effort needed
to construct the model.

Differential testing has also been applied to a novel file system implementation [14]
to ensure it behaved the same as a reference implementation.That paper also applied
randomized testing to file systems, a low-cost alternative (that SibylFS also supports) to
the model checking approach described earlier. SibylFS can also be used as a reference
implementation by determinizing the model (selecting one of the many possible states
at each step) and we have mounted previous versions of SibylFS as prototype FUSE file
systems under Linux. The good performance of the SibylFS test oracle should also make it
feasible to integrate with dynamic verification engines such as EnvyFS [2] or Recon [12].

Formal methods Previous models of file systems [11, 27] do not aim to capture the full
complexity of POSIX or real-world file systems. As a result they are usually much simpler
than our model: symlinks, permissions and timestamps are ignored, and there is no model of
concurrent processes and per-process datastructures. Recently Schierl et al. gave an abstract
specification of a single file system: UBIFS [32]. However, this is not a general model
of POSIX. No previous work that we are aware of has attempted to formally model the
subtle behavioural quirks of real-world systems as we do for Linux, OS X and FreeBSD.
Work on verified implementations is complementary to our work: it should be possible to
prove that a verified implementation behaves according to our model. Implementations of
file systems have previously been formally verified [7, 8, 10, 11, 16, 18], but these are
highly idealized and do not represent realistic file system implementations. The seL.4 team
previously produced a verified operating system [20], and some of the researchers are now
working on a formally verified file system implementation [19]. Another approach [4] uses
a modified Hoare logic inside the Coq theorem prover to attempt to prove correctness of
a novel file system implementation. The specification is based on POSIX, but does not
attempt to deal with the full variability allowed by POSIX and real-world implementations,
since the focus is on a single verified implementation. The authors note, “we found that
significant care is needed when writing specifications [...] it is easy to write an incomplete
specification that does not eliminate the possibility of some bugs”. As with other ad hoc
models, SibylFS could be used as an alternative, high-quality specification. Recently Ernst
et al. [9, 29, 31] achieved a significant milestone by producing a verified implementation
based on UBIFS that is actually usable as a flash file system.

Preliminary work on specifying the semantics of storage stacks in Isabelle/Isar has been
carried out [1]. The researchers argue for expressive logics to capture specifications of each
layer, and theorem prover support for proving that file system stacks satisfy the desired
guarantees. The researchers list “obtaining specifications” as one of the main challenges.
At least for the uppermost layer that is exposed to the application, SibylFS can provide
such a specification.

For reasoning about POSIX file system behaviour, Gardner et al. [13] proposed a
variation of separation logic. The SibylFS model could be used as a basis to prove
soundness for this logic.



File system innovation Recent studies have shown that the workloads imposed on POSIX
file systems now vary widely [15], and there are also many new FUSE-based file systems
such as Ori [25], OptFS [5], and kernel-based ones such as Betrfs [17] and ReconFS [24]
that optimise particular use cases. File system evolution in this style often results in subtle
semantic and data corruption bugs [23], and SibylFS is the first rigorous specification that
can be used, in a developer-friendly way, to test directly that these implementations remain
POSIX compliant.

9. Conclusion and future work

SibylFS gives a detailed, precise, and usable characterisation of the behaviour of a range
of file systems. As described in §1, it should be immediately usable for multiple purposes,
and it also opens up many directions for future work.

With modest additional engineering, SibylFS could support analysis of API traces
of applications, identifying when they rely on non-portable aspects of the model; by
providing an executable test oracle it could support randomised testing; and it could support
automatic test case reduction. It could and should also be extended with extensive testing
of concurrent API calls and timestamps, with modelling and testing of behaviour in the
presence of crash failure, and with testing that imposes more resource stress on file system
implementations. On the theoretical side, SibylFS provides, in the HOL4 and Isabelle/HOL
theorem prover definitions generated from our model by Lem, a basis for rigorous proof
about file system properties and about software that uses file systems. Especially, it can
serve as a specification of correctness for work on verified file systems.

Most generally, one can see SibylFS as a novel instrument for examining behavioural
differences in a largely black-box fashion. We have done this for file systems, but much of
our approach should also be applicable in other contexts.
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