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Dear Editor,
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for NOx Abatement: Supported TiO2 Efficiencies and Impacts” (Manuscript No.: 
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prepared a detailed response to the specific comments as a separate document (filename: Detailed 

Responses to Reviewers Comments). We hope that all these changes fulfill the requirements to 

make the manuscript acceptable for publication in Cement and Concrete Research. 

We look forward to your positive response.
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Corresponding Author: Donald E Macphee. 

E-mail address: d.e.macphee@abdn.ac.uk

Postal address: Department of Chemistry, University of Aberdeen, Meston Building, Meston 

Walk, AB24 3UE, Aberdeen, Scotland, United Kingdom
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Ref.:  CEMCON_2018_587

Title: Photocatalytic Concrete for NOx Abatement: Supported TiO2 efficiencies and 

impacts 

Journal: Cement and Concrete Research

Dear Editor,

Thank you and the reviewer for the helpful and constructive comments. We have addressed 

these in the detailed comments below and have incorporated the changes into the revised 

manuscript. 

Editors and Reviewers' comments:

 Reviewer 1: 

This manuscript focuses on the NOx abatement of photocatalytic concrete by comparing 

TiO2 dispersed in the mortar and applied at the surface. The NOx assessment is 

well executed by the authors, who have studied all the important parameters which can 

influence the photocatalytic process, more characterization of the concrete itself is required 

in order to understand the influence of the TiO2 on the mortar. 

The paper focusses on the performance of TiO2 supported on exposed surface aggregates 

so the influence of the concrete is less significant than would be expected if the 

photocatalyst were embedded in the concrete. However, the relative performance of these 

supported photocatalyst systems has been expressed relative to that of a reference 

photocatalytic mortar in which the photocatalyst has been mixed into the mortar. The 

performance of this reference photocatalytic mortar is similar to photocatalytic mortar 

performances reported in the literature [e.g. Folli, et al., The Journal of Physical Chemistry 

Letters.2014, 5(5): 830-832]. 



It is important to stress that the performances reported in the literature are mainly expressed 

as changes in NOx concentration whereas our paper expresses performance in terms of 

photonic efficiency, an approach which normalizes results in terms of sample size and other 

measurement parameters, such as photon flux, gas flow rate, etc (see equation (1)); note 

also that the measurement conforms to ISO 22197-1: 2007. Typically, this number is much 

smaller than the percentage change in NOx concentration, i.e. a percentage change in NOx 

concentration of 8.3 % corresponds to a photonic efficiency of 0.1 %. For convenience, we 

express the performance of photocatalysts in both formalisms in the revised manuscript. 

Therefore, the reviewers advise a major revision.

          The amount of TiO2 is set at 5%. This value seems to be completely arbitrary and 

the manuscript fails to explain why this amount has been selected. Moreover, the dispersion 

of the TiO2 is not very well described in the manuscript. 

There have been many studies of photocatalytic mortars, with TiO2 concentrations 

ranging from 1 to 10 wt% TiO2, expressed as a fraction of the cement mass [Brouwers, et 

al., Building and Environment 44 (2009) 2463–2474; Macphee, et al., Cement and 

Concrete Research 85(2016)48-54; Pacheco-Torgal, et al., Construction and Building 

Materials 25 (2011) 582–590; Hanus, et al., Progress in Materials Science 58 (2013) 1056–

1102; Poon, et al., Environ. Sci. Technol. 43(2009) 8948–8952; Kurtis, et al., Cement and 

Concrete Research 60 (2014) 30–36; Lucas, et al., Cement and Concrete Research 43 (2013) 

112–120 and so on]. Photocatalytic efficiency increases with photocatalyst loading up to 

around 5 wt% with further additions having only a small effect, also confirmed by our 

recent work (https://cordis.europa.eu/project/rcn/102057_en.html; EU-funded Light2CAT 

project which utilised a 4 wt% loading). We have selected 5 wt% based on this experience 

and have modified manuscript accordingly.

Efficient dispersion of photocatalyst particles in cements is challenging [Macphee and Folli, 

et al., Cement and Concrete Research 42 (2012) 539–548; Folli, et al,  J Amer Ceram Soc, 

93, (10), 3360-69, (2010), and other reports] but by adopting the techniques and conditions 



used by others in the preparation of our reference mortars, and with their similarity in 

photocatalytic performance to those reported in the literature, we are confident that the 

microstructural characteristics of our reference materials are comparable with other 

photocatalytic mortars. Consequently, we have sought to separate the photocatalysts from 

the cement environment but to retain the advantages of the concrete infrastructure as a 

catalyst support. Our comparisons of supported catalyst systems with our reference can 

therefore be taken to be representative. 

  The manuscript is not focusing enough on the quality of the concrete itself, and the 

hydration mechanism affected by the tape, which should be a crucial discussion in an article 

talking about photocatalytic concrete. 

We appreciate the reviewer’s comment but believe that there is a misunderstanding in 

the perceived role of the mortar/concrete and of the tape used in placing the photocatalyst-

coated sand. The primary objective of the approach is to provide a support for the catalyst 

enabling a separation of photocatalyst from the cement environment. Evidently, some 

photocatalyst does come into contact with concrete/mortar but a significant fraction is 

exposed only to the NOx contaminated air. There may be some benefits or disadvantages 

where photocatalsyts supported on the sand are close to the air/mortar interface but these 

are not quantitatively discussed. 

The adhesive tape is used for the tape casting of TiO2 coated sand onto the mortar 

surface. The sand is only pressed into the surface up to a maximum of two-thirds of its 

diameter so the tape does not come into contact with the cement and cannot affect the 

hydration chemistry of the cement. 

We have strengthened these statements in the revised manuscript. 

-        The FTIR analysis is interesting, but the authors are drawing conclusions without 

further analyses. First, nothing is mentioned about the method used. Then, the difference 

is so small that it might be a measurement error. For instance, the Si-OH groups have the 

same absorption and the result might just be an increase in hydroxyl groups on the quartz 



by the coating method conditions. Therefore all the speculation about there being Ti-O-Si 

bonds are not justified and should be proven by other characterization methods. 

We have added more details on the FT-IR measurement and data analysis methods to 

the manuscript, specifically with regard to quantifying the important Ti-O-Si chemical 

linkages. There has now been quite a number of studies on this topic, including our own 

[Hakki, et al., Jove-Journal of Visualized Experiments, 2016, 125; Lu, et al, Applied 

Catalysis B-Environmental, 222(2018)200-208]. To illustrate the effect of Ti-O-Si more 

effectively on the general shape of the Si-O absorption around 960 cm-1, we have included 

in the manuscript an FT-IR spectrum with the results of a deconvolution analyses (details 

provided in revised manuscript). The significance of the Ti-O-Si bonding, critical to the 

durability of the supported TiO2 structures, is now more obvious. It may be noted also that 

the coating conditions (pH value around 4) does not appear to affect the quartz surface 

state. 

-     Authors say P8 “Further discussions on measurement of the aggregate exposed depth 

and area will be presented in a subsequent paper” and P10 “It is not yet clear why but the 

effects of alkalinity, available at the composite-mortar interface, have previously been 

highlighted in offsetting a selectivity reduction linked to catalyst-support bonding via Ti-

O-Si linkages”. However, this manuscript is already lacking novelty which means that 

these “further discussions” should be included in this paper in order to justify its 

publication. 

Thank you for these comments. We have removed the reference to planned future papers 

made on p8 but we disagree with the reviewer with respect to the paper lacking novelty. 

The paper highlights several important findings:

 Previous inverse correlations observed for supported TiO2 on quartz between nitrate 

selectivity and the degree of Ti-O-Si binding appear to be reversed in the present study. 

This is attributed to the higher local humidity to be expected in the close proximity of 

the cementitious material in the mortar and the consequent higher availability of 



surface water on the catalyst, previously shown to enhance conversion of NO2 to 

nitrate [Lu, et al, ACS Applied Materials & Interfaces, 9(2017)17035-17042]. 

 In supported structures, photocatalysts have shown NO and NOx abatement levels of 

around 9 times that of conventional mortars with less than a tenth of the TiO2 loading.  

 The sensitivity to real environmental variables, such as initial NO concentration, flow 

rate, light intensity and relative humidity, etc., are addressed to assist in decisions on 

for example, the placement of photocatalytic concrete elements. 

We have strengthened the text to emphasise these novel outcomes.

-        In overall, the NOx abatement results are not very convincing, since the absolute 

values of the NOx abatement and selectivity are rather low regardless of the coating. 

Moreover, some results such as the humidity causing a low reactivity have been shown 

numerous times in the literature [1][2][3] and cannot be used as “breakthrough results” in 

this paper. The discussion should focus more on the mechanism itself and how this new 

coating method influence and enhance the photocatalytic process. 

We have already provided detailed mechanistic interpretations for NOx oxidation on these 

catalysts [Lu , et al,  ACS Applied Materials & Interfaces, 9(2017)17035-17042] and have 

sought to show how those mechanisms can be supported utilizing the structures described 

in the present paper, i.e. the role of water in promoting nitrate selectivity and photocatalytic 

activity. The relative performance of the supported structures to that of embedded 

photocatalysts is convincingly demonstrated (Figure 7; see text above) with around 9 times 

improvement in NO and NOx abatement utilizing less than a tenth of the TiO2 loading 

compared with conventional photocatalytic mortars. Based on our response to the 

reviewer’s first point, regarding the reliability of our reference mortar, we believe that this 

significant performance improvement is representative and offers an approach to 

considerably improvements in the effectiveness of photocatalysts in construction 

applications.
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 Supported TiO2 shows greater utilization efficiency than that of TiO2 in mortar

 Binding durability of supported TiO2 in mortar surface depends on its exposed depth

 Environmental conditions influences on photocatalytic performance are presented

 NO concentration, flow rate and relative humidity are main factors to NOx removal
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Abstract: The potential of TiO2-based photocatalysts in mitigating the effects of environmental pollutants 

is evident in the scientific literature but the large-scale implementation of photocatalytic concretes still 

appears limited, despite the current global concerns over urban NOx pollution. Improvements in cost-

effectiveness are required to enhance the case for a photocatalyst-modified infrastructure and this must 

address catalyst efficiency, catalyst loading and performance durability. This paper compares photocatalytic 

efficiencies of supported TiO2 on mortar surfaces with the more conventional TiO2 dispersed in mortar. The 

influences of environmental conditions, such as NO concentration and flow rate, UVA light intensity and 

relative humidity, on photocatalytic performance are also investigated using photonic efficiency as an 

indicator. The supported TiO2 shows greater degradation of NOx (De-NOx), at about 9 times higher than 

TiO2 powder dispersed in the mortar, ca. 150 times higher utilization efficiency, than that of TiO2 in 

traditional photocatalytic mortar (with 5% loading). 

Keywords: Photocatalytic concrete; Supported TiO2; NOx; Utilizations; Environmental Factors
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1. Introduction

Despite the successful trialling of TiO2 photocatalysts in several concrete applications [1-6], 

the widespread use of photocatalytic concretes for managing urban local air quality is still 

somewhat limited. Under solar illumination, TiO2 can reduce ambient concentrations of 

nitrogen oxides (NOx) and other pollutants from automotive traffic and other combustion 

emissions, which can be in high concentrations at street level [7-9] and often exceed national 

exposure level guidelines. However, the key question is how to maximum the efficiencies and 

cost-effectiveness of incorporated photocatalysts in real environmental conditions. There are 

many reports identifying the efficacy of TiO2 photocatalysts conventionally mixed into 

cementitious materials (with TiO2 loadings from 1 to 10 wt% as a fraction of the cement content) 

[2, 4, 10-14]. Efficient dispersion of TiO2 photocatalysts in cements is challenging due to the 

highly alkaline and calcium-rich cement environment. Such conditions promote TiO2 

agglomeration, reducing catalyst surface area, and surface precipitation of calcium 

hydroxide/calcium carbonate which may occluded underlying TiO2 clusters [11, 18, 23]. The 

poor dispersibility and/or occlusion of TiO2 by cement hydrates are likely to account for the 

high loadings, resulting in high cost and reduced efficiency of TiO2 photocatalysts when 

intermixed into concrete. 

An alternative approach is to attach the TiO2 photocatalysts to a surface-exposed support rather 

than incorporating them in the concrete [24], which can give a controllable dispersibility and 

exposure of TiO2 photocatalysts on concrete surfaces. Considering the stability, large-scale and 

low cost applications, our recent study [25] has focussed on the application of photocatalyst to 

granular quartz supports, and mounting these on to the surface of concrete (see Figure 1). The 

loading properties and photocatalytic activity of quartz-mounted TiO2 photocatalysts showed 

that TiO2 can be stably bonded on the substrate surface, and yield significant improvements in 

NOx degradation compared with TiO2 powder. In addition to improved utilisation efficiency, 
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efficiency sensitivity to environmental factors, such as the UVA light intensity, relative 

humidity, and initial concentrations of pollutants, etc., must be addressed.  Several laboratory-

based studies have reported environmental effects [26, 27] but there are few reports specifically 

on the advantages of surface-supported TiO2/concretes. The intensity of irradiation can also 

significantly affect photocatalytic activity and should be considered during calculating other 

environmental impacts. This paper quantitatively addresses these effects on supported 

TiO2/concretes, utilising photonic efficiency [28, 29], a parameter which normalizes results in 

terms of sample size and other measurement parameters.  

2. Experimental Procedure

2.1 Materials

Portland cement (CEM I, 52,5R) and ISO Standard sands (ISO 679: 2009, quartz sands) were 

used to prepare mortars. TiO2/quartz sand aggregates were prepared using ISO Standard sands  

(1-2 mm) treated using a suspension of TiO2 sol as described  in ref [25]. The chemical 

compositions derived from X-ray fluorescence (XRF, Rigaku NEXQC+) measurements of each 

product are given in Table 1. Commercial TiO2 photocatalyst (PC105, CristalACTiVTM) and 

acetone (C3H6OH, 99.9%, Sigma-Aldrich) were used as purchased. Mains water was used 

throughout the mortar preparation process.

(The position of Table 1)

2.2 Methods

2.2.1 Photocatalytic aggregate exposed mortar 

Standard mortars were prepared according to BS EN197-1, using a Portland cement-sand-water 

mixture in the mass ratio of 1:3:0.5 (water/cement ratio = 0.5) as follows: Portland cement (450 

± 2) g and water (225 ± 1) g were blended in a mixing pot for 30 s at low speed (level 1) with 

Hobart mixer (N50, USA) after which sand (1350 ± 5) g was added. The resulting mixture was 

blended at the high speed (level 2) setting for another 30 s. Mortar slurries were then cast into 
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the moulds (50 mm width × 100 mm length × 20 mm height) and cured at room temperature 

under 100% relative humidity (RH) for 1 h. 

Surface mounted, TiO2-coated aggregate (QST, which has been prepared according to Ref [19], 

1-2 mm) was applied to the freshly cast mortar, using the following method to ensure a 

monolayer could be achieved. TiO2/quartz sand (QST) aggregates (ca. 10 g) were applied to 

adhesive tape (50 mm width × 100 mm length).The photocatalytic aggregate-coated tape was 

applied to the mortar surface such that the aggregates were forced into the mortar with constant 

pressures across the entire mortar area for 5s. The aggregate application was repeated such that 

two aggregate penetration depths were uniformly achieved: 1/3 aggregate exposure depth (1/3 

AED, ca. 0.35 - 0.65 mm aggregate exposure height above mortar surface; applied pressure 

1514 g/50 cm2), and 2/3 AED (ca. 0.65 – 1.3 mm AED above mortar surface; applied pressure  

343 g/50 cm2) – see Figure 1.  Following this, all samples were de-moulded after curing at 

room temperature and 100% RH conditions for 24 h, and further cured for 7 days. 

Subsequently, the mortar top surface was immersed in acetone for 30 minutes and the adhesive 

tapes were removed from the aggregates. The obtained photocatalytic aggregate exposed 

mortar samples with 1/3 and 2/3 AED were denoted as 1/3PAED and 2/3PAED, respectively 

(Figure 1). The weight loss of aggregates were recorded for each aggregate support 

configuration (1/3PAED and 2/3PAED) enabling a comparison of binding performance. It 

should be noted that the tape, which is used for the tape casting of TiO2 coated sand onto the 

mortar surface, does not come into contact with the cement and cannot affect the hydration 

chemistry of the cement.

For comparison, mortars were also prepared with TiO2-free quartz sand aggregate (1-2 mm) 

exposed at 1/3 and 2/3 AED. These are denoted as 1/3AED and 2/3AED, respectively. Three 

mortar discs (50 mm width × 100 mm length × 20 mm height) were produced for each set.

(The position of Figure 1)
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2.2.2 Photocatalyst blended mortar 

Conventional TiO2 photocatalyst blended mortar samples were also prepared to the same 

dimensions. The procedure used was similar to that described in Section 2.2.1 except that 

instead of tape casting the photocatalytic aggregate onto the pre-cast mortar, a ca. 2 mm thick 

layer of photocatalyst (TiO2) blended mortar was applied. The photocatalyst (TiO2) blended 

mortar was prepared as follows: TiO2 powder (at 5% of the Portland cement mass) was mixed 

with Portland cement prior to blend with water for 30 s. The TiO2 loading was selected based 

on literature reports which indicate that photocatalytic efficiency increases with photocatalyst 

loading up to around 5 wt% with further additions having only a small effect [15-22]. The sand 

was then added (cement: sand = 1 : 3, mass ratio), the mixture then being blended for another 

30 s. The resulting photocatalyst blended mortar slurry was applied to the previously prepared 

mortar (50 mm width × 100 mm length × 20 mm height) such that a 2 mm thick photocatalytic 

surface layer was achieved. The products were cured at room temperature and 100% RH 

conditions for 7 days. The obtained photocatalyst blended mortar sample was denoted as 

5%PM. Three mortar discs were produced for this sample. 

2.2.3 Characterization

A calibration enabling TiO2 loadings on quartz was obtained using XRF analysis of TiO2:quartz 

sand ratios in mixtures in the range 0.1 to 50 wt. % TiO2. In order to ensure the chemical 

bonding of TiO2 to the support, i.e., quartz sand, Fourier transform infrared (FT-IR) spectra 

were recorded using a Perkin-Elmer Spectrum 2 spectrometer with 48 scans per sample 

collected from 400 to 4000 cm-1 at 1 cm-1 resolution. Prior to FT-IR testing, samples were 

ground and passed through a 75μm sieve and the Perkin-Elmer Spectrum 2 spectrometer was 

calibrated for background corrections. Obtained FT-IR spectra were subjected to peak 

deconvolution analyses as in our previous study [25]. The deconvolution parameters were fixed 
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for all samples and each deconvoluted peak was attributed according to literature assignations 

to specific bonded groups.

Morphologies of samples were observed by scanning electron microscope (SEM, Zeiss EVO 

MA10) equipped with an energy dispersive X-ray spectrometry (EDAX, Oxford INCA) for 

elemental composition analyses. The bonding strength of quartz sand on mortar surfaces with 

different exposure depth was tested by a pull-off test method, following  ASTM D4541/D7234, 

using a PosiTest AT-A Automatic pull-off adhesion tester (Defelsko) with using 20 mm 

aluminum test dolly (maximum 24 MPa) and resin glue as an adhesive agent. According to the 

laboratory standard measurements, the 28 d compressive strength of this mortar is 52.7 MPa, 

and the pull out strengths of exposed quartz sands on mortar surface are ca. 4.0 MPa and ca. 

1.2 MPa for 1/3 and 2/3 exposure depth, respectively.

2.3 Photocatalytic De-NOx performance

The photocatalytic performance of prepared samples (50 mm width × 100 mm length × 20 mm 

height) were measured in a flow-through reactor (ISO 22197-1: 2007), schematically illustrated 

in Figure 2. The test sample was placed inside the reactor so the NO gas had to flow over the 

sample surface. The sample was irradiated by a 500W Xe-lamp solar simulator (Sciencetech. 

Inc, Canada) light source. To investigate the influences of various environmental parameters 

on photocatalytic performance, including NOx concentrations, relative humidity and flow 

rates, etc., a series of concentrations (30, 70, 140, 250, 500, 1000 ppb) of NO gas in synthetic 

air, conditioned at a  range of relative humidities (17% - 87% RH; measured using a HygroPalm 

1 detector (Rotronic) at 25 oC), was passed at a volumetric flow rate of (0.83 × 10-5 – 13.3 × 

10-5) m3 s-1 through the reactor. The concentrations of NO, NO2 and NOx were measured by a 

Thermo Scientific Model 42i-HL High Level NO-NO2-NOx Analyzer (Air Monitors Ltd., 

United Kingdom). Each sample was pre-conditioned under UVA light for over 5 hours to 



7

removal the adsorbed organics. After this, the sample was placed in the flow through reactor 

and NOx measurements were taken in the dark until equilibrium concentrations were reached. 

After this, the evolution of NOx, NO and NO2 concentrations under illumination were recorded 

until steady state concentrations were observed. The incident photon flux at the position of the 

sample was measured using a broadband thermopile detector (Gentec-EO-XLP12-3S-H2-D0). 

For comparison, the photocatalytic performances of pure quartz sand aggregate exposed mortar 

and photocatalyst blended mortar samples were measured under identical conditions. The 

photocatalytic efficiency () was calculated according to equation (1). The catalyst selectivity 

for nitrate (S%) was calculated according to equation (2). 

                    (1)%100)(






ART

VPcc id

                                (2)100% 
NO

NOXS




Where cd is the concentration in dark, ci the concentration under illumination, V the volumetric 

flow rate, P the pressure, A the irradiated sample area, R the gas constant, T the absolute 

temperature and Φ the photon flux impinging the photocatalyst surface. The photocatalytic 

efficiency was determined separately for NO, NO2 and total NOx. 

It is important to stress that the performances reported in the literature are mainly expressed as 

changes in NOx concentration whereas our paper expresses performance in terms of photonic 

efficiency, an approach which normalizes results in terms of sample size and other 

measurement parameters, such as photon flux, gas flow rate, etc (see equation (1)). Typically, 

this number is much smaller than the percentage change in NOx concentration, i.e. a percentage 

change in NOx concentration of 8.3 % corresponds to a photonic efficiency of 0.1 % with the 

standard measure method and parameters in this study (ISO 22197-1: 2007). For convenience, 

the performance of photocatalysts in both formalisms are expressed in this study.

(The position of Figure 2)
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2.4 Modelling

According to the descriptions of ISO 22197-1:2007, the photonic efficiency () is defined as 

the number of NO (NO2) molecules transformed (produced) divided by the number of photons, 

impinging on the catalytic surface. Thus, the value of  depends on light irradiance, NO initial 

concentration, and flow rate at a certain relative humidity, as given in equation (1). The ISO 

22197-1:2007 model gives the sample dimension (50 mm width × 100 mm length), the surface 

height to window (5 mm), the volumetric flow rate (5.0 × 10-5 m3/s-1), the light intensity (10 

W/m2) and as well as NO initial concentration (1 ppm) for laminar flow reactor.  However, the 

flow rate (equivalent to a site wind speed) and flow characteristics (turbulent or laminar) are 

variable in real atmospheric conditions. To clarify the practicality of this laminar flow model, 

the upper limit flow rate was given by the following equation:

                                    (3)
air

reactor

air

reactorair

v
udud




Re

Where Re is the Reynolds number, laminar flow occurs when Re < 2300 for a pipe model; ρair 

is the density of the air (kg/m3); u is the velocity of the air with respect to the object (m/s); 

dreactor is the hydraulic diameter (m), here for the slit equal to double height of reactor surface 

(10 mm); μair is the dynamic viscosity of the flow (kg/m.s); v is the kinematic viscosity of 

flowing air, here equal to 1.51×10-5 m2/s. 

Substituting the maximum Re value to eq. (3) yields 3.47 m/s (equal to a volume flow of 86 

×10-5 m3/s) for the upper limit for laminar flow, which significantly exceeds experiment flow 

rates. Nevertheless, although the ISO method makes the basic assumption of no significant 

dependence on the mass transport of NO from the bulk to sample surface, several important 

reports imply that mass transport influences in ISO reactor should be taken into account, 

especially with high photocatalytic active surfaces and low NO flow rates [15, 26, 30-32]. The 
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contribution of the mass transport component can be predicted by the Peclet number (Pe), 

calculated using the following equations [33]:

                                                                   (4)Sc
D

uLPe L
reactor Re

where Lreactor is the characteristic length of active surface (0.01 m); D is the diffusion coefficient 

for NO (ca. 1.71×10-5 m2/s); Sc is the Schmidt number, calculated from the ratio of v/D, 0.883. 

3 Results and Discussion

3.1 Physio-chemical properties of photocatalysts

Figure 3 presents the surface morphologies and elemental analyses of pure and the TiO2 

modified quartz sands aggregates. The figure shows that TiO2 particles (anatase crystalline 

phase, see Figure S1 in supplementary information) are still associated with the quartz sand 

support even after rigorous washing treatments (see the method of ref [25]) and agitation using 

ultrasound, demonstrating the robustness of the TiO2 adhesion to the quartz surface and are 

reasonably well dispersed. The FT-IR spectra of pure quartz sand and TiO2 modified quartz 

sand show a broad absorbance attributed to Ti-O-Si chemical linkages [28] (850 - 1000 cm-1) 

suggesting a chemical bond between the support and TiO2 particles (Figure 4); this peak is 

better differentiated by the peak deconvolution superimposed on the spectra (Figure 4 (b)); 

peaks at ca. 1070, 1090, 1117, and 1173 cm-1 are associated with the symmetric and asymmetric 

vibrations of Si-O-Si bonds, and the peak at ca. 940 cm-1 is attributed to Si-O-Ti bonds.

(The position of Figure 3)

(The position of Figure 4)

3.2 Aggregate binding performance

Table 2 presents the binding performance of pure and TiO2 modified quartz sand aggregate on 

mortar surfaces with 1/3 AED or 2/3 AED configurations (Figure 1). It is noted that the lost 

percentage of quartz sand-TiO2 composite (QST), defined as the weight difference upon 

removing the adhesive tape (Section 2.2.1), is greatest at the highest aggregate exposure depth, 
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i.e. 2/3 AED (2/3 PAED); with 2/3 of the diameter above the mortar; 1/3 AED gives the 

strongest adhesion to the mortar (1/3 PAED), which are also confirmed by the pull out strengths. 

This probably due to increased contact surface area but also, for rounded particles, because the 

greatest diameter lies beneath the mortar surface. Interestingly, the TiO2 modified quartz sands 

have lower lost percentage than that of pure quartz sand on mortar surface with the same 

exposure levels (1/3AED and 2/3 AED). Presumably, TiO2 particles supported on quartz 

further enhances the surface roughness and consequently the contact area to improve the 

physical retention of the aggregate support on the mortar surface.

(The position of Table 2)

3.3 Performance of supported TiO2 on mortars

Figure 5 shows a typical concentration profile of NO, NO2, and NOx for a QST sample 

exhibiting photocatalysis. Three stages can be observed: 1) NO and NOx concentrations 

stabilization without light illumination, 2) NO and NOx concentrations decrease with NO2 

concentration increasing upon illumination; a period of 20 minutes is required to reach a 

steady state, 3) NO and NOx concentrations recover and NO2 returns to zero after turning off 

the light. The photonic efficiency () for photocatalyst-induced concentration changes in NO, 

NOx and NO2 can be calculated by using the above data in combination with eq. (1). On the 

assumption that NO2 is further oxidised to NO3
-, nitrate selectivity (S %) is obtained using eq 

(2). The De-NOx performance of prepared TiO2 (TiO2-H), commercial TiO2 (TiO2-C) and QST 

are shown in Figure 6. 

(The position of Figure 5)

It can be noted that the prepared TiO2 (TiO2-H) has a higher  (NO) and nitrate selectivity than 

that of commercial TiO2 (TiO2-C). The higher nitrate selectivity drives a correspondingly 

higher NO2 consumption rate. After being loaded on the aggregate surface, the supported TiO2 

(QST) presents a slight increase in De-NOx (0.62%  (NO), equal to ca. 51.4% NO removal) 
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with only a small decrease in nitrate selectively (37%).  Significantly though, this performance 

is achieved with almost a third of the TiO2 that was used for the TiO2 (TiO2-H)) powder, 

confirming that supported TiO2 has greater utilization efficiency. A small reduction of nitrate 

selectively can be explained by our earlier findings [28, 34], which demonstrated that nitrate 

selectivity of TiO2 can be reduced by Ti-O-Si linkages. 

(The position of Figure 6)

The De-NOx performance of the QST photocatalysts on mortars is shown in Figure 7. Photonic 

efficiencies were significantly reduced with embedding into the mortar surface. It can be 

observed that the negative effects of embedding on photocatalysts are mainly associated with 

activity, which probably can be attributed to the reduction of available photocatalytic surface 

areas, and possibly also the influences of cement hydrates [12, 27]. It must also be noted 

however that the performance of the 2/3PAED is poorer than that of the 1/3PAED sample. This 

appears counter intuitive but may be associated with a shadowing effect, causing light intensity 

losses which offset against the increase in exposed catalyst surface area.  

It can also be noticed that both aggregate exposed PAED (1/3PAED and 2/3PAED) samples 

show higher NO and NOx photonic efficiencies than that of traditionally prepared sample 

(5%PM), which are about 11 and 5 times higher for NO abatement, respectively, and 9 and 4 

times higher for NOx abatement, respectively. It can be emphasised that the mass fraction of 

TiO2 photocatalyst in QST is only 0.34%, again showing much higher utilization efficiency 

(150 times higher) than that of TiO2 photocatalyst in traditional photocatalytic mortars (5% 

mass fraction). These observations have significant efficiency and economic impacts on the 

use of TiO2 in photocatalytic concretes.

Comparison of Figures 6 and 7 show that nitrate selectivity (S%) of aggregate-supported TiO2  

is significantly enhanced when surface mounted on the mortar. It is not yet clear why but the 

effects of alkalinity, available at the composite-mortar interface, have previously been 
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highlighted in offsetting a selectivity reduction linked to catalyst-support bonding via Ti-O-Si 

linkages [39]. 

According to our previous results, Ti-O-Si linkages have shown negative effects on nitrate 

selectivity, attributed to the polarising influence of Si on the Ti-O bond. However, we have 

also previously shown the positive role of surface adsorbed water in conditioning nitrate 

selectivity of TiO2 [28]. 

The availability of water to the TiO2 surface is defined by local humidity; high humidity can 

lead to water condensation which would block active catalyst sites. The adsorbed water 

required to participate in NOx oxidation mechanisms is available even at low humidity but 

maintaining this level of humidity is important and this behavioural change (nitrate selectivity) 

in the proximity of the mortar substrate suggests that hydrated cement pastes, and its 

hydrophilic constituents, may contribute an important localised humidity control.  In fact, the 

reduction in alkalinity arising from carbonation may reduce this enhancement; calcium 

carbonate is also less hydrophilic than Ca(OH)2 and C-S-H gel and therefore less likely to 

favour an enhancement in water adsorption. 

(The position of Figure 7)

3.4 The influences of environmental factors

In contrast to the expected levels of control of experimental variables in laboratory experiments, 

performance assessment of functional photocatalysts in the real environment must consider 

variations in influencing parameters such as initial NO concentration, flow rate, light intensity 

temperature and relative humidity. Before translating the laboratory performance of 

photocatalytic mortar (photonic efficiency, ) into quantifiable impacts on air quality 

(NOx/NO/NO2 concentrations), the influences of these parameters on  should be assessed. 

Figure 8 shows how gas flow rate affects De-NOx photonic efficiency () of the photocatalytic 
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mortar (1/3PAED). It can be noted that whilst (NOx) shows little variation, both (NO) and 

(NO2 generation) do, with flow rate induced changes effectively cancelling out the change in 

(NOx). However, an important observation here relates to the (NO2 generation) trend, which 

increases with flow rate. As NO2 is significantly more toxic than NO, it is preferable to favour 

lower flow rates. This is confirmed in the %S data which indicate the highest conversion (of 

generated NO2) to nitrate is at low flow rates. This is probably attributed to the mass transport 

effects of NO and NO2 gas, as described by eq. (4). The high mass transport effects help to 

enhance the reaction time of pollutants on the supported photocatalysts and can be achieved by 

decreasing the Peclet number (Pe), a laminar flow rate dependent parameter. 

(The position of Figure 8)

The influences of NO initial concentration on photonic efficiency are shown in Figure 9. It can 

be seen that (NO), (NO2 generation) and (NOx) increase with the increase of NO initial 

concentrations, but with different increasing rates. In the low initial NO concentration (< 140 

ppb) range, the photonic efficiencies slightly increase with the increase of NO concentrations. 

However, when the initial NO concentration is greater than 250 ppb, as in real situations in 

major urban centers around the world, e.g. London, Beijing etc., [19], the photonic efficiencies 

increase rapidly, at least to 1 ppm NO (Figure 9). The interesting point in Figure 9 is that the 

S% dropped from ca. 85 % to ca. 59% as the initial NO concentration increased from within 

140 ppb to over 250 ppb.  Although there is no clear answer to explain the S% drop, several 

probable reasons can be deduced. The low NO volume fraction (below 140 ppb) will result in 

low coverage of the photocatalyst surface, which can decrease the reaction rate of NO 

molecules. On the contrary, high coverage (NO concentration over 250 ppb) will increase the 

reaction rate, corresponding to the NOx photonic trends in Figure 9. However, amongst these 

reactions, the NO2 to NO3
- reaction is influenced by the presence of physisorbed water [28]. A 

possible explanation for the drop in S% is that without proportionally increasing levels of 
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physisorbed water, the NO2: physisorbed water ratio increases and reduces the oxidation rate 

of NO2 to nitrate, thus decreasing the S%. 

(The position of Figure 9)

Figure 10 shows the NO and NOx photonic efficiencies profiles of TiO2 as a function of 

illumination intensity for a fixed TiO2 loading. The reduction of photonic efficiency 

demonstrates that the utilization efficiency of incident photons decreases as incident UVA light 

intensity increases. Figure 10 suggests that photonic efficiency of NO2 generation is 

independent of UVA irradiance, but the data represent the net effects on NO2 concentration of 

NO oxidation and NO2 consumption. The initial decrease in (NO) means a reduced amount 

of generated NO2 but in compensation for the constant ((NO2) trend, the oxidation of NO2  

must also be reduced, i.e. so is also affected by illumination intensity. The S% is 

correspondingly decreased and indicate that weak UVA light intensity is sufficient to drive 

efficient NOx degradation. 

(The position of Figure 10)

Figure 11 shows the effect of relative humidity on NOx degradation and nitrate selectivity. As 

previously reported [26, 27, 40-44], the NO and NOx photonic efficiencies are reduced as 

relative humidity is increased, giving a reduction in nitrate selectivity. However, it is also noted 

that generated (NO2) does not change significantly with relative humidity and the small drop 

may be driven by a reduction in NO oxidation as suggested above. However, the increase in 

humidity is likely to bring about water condensation at the higher end of this range, especially 

at pore throats in the catalyst microstructure, this being expected to limit mass transport into 

the interparticle regions and restricting accessible surface. This means that a high relative 

humidity would strongly limit the photocatalytic efficiency.

(The position of Figure 11)
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4 Conclusions

In this study, photocatalytic aggregate exposed mortars were prepared by using quartz sand 

supported TiO2 (QST) composite as a photocatalytic functional aggregate. The physio-

chemical properties, photocatalytic performance of QST and prepared mortars were identified. 

The results indicate that Ti-O-Si chemical linkages were formed and TiO2 particles present 

uniform layers on quartz sand surface. The binding performance results indicate that TiO2 

modification can enhance the binding force between aggregate and cement hydrates, in which 

the lower aggregate exposure depth (AED) (most embedded configuration) can provide the 

higher binding stability. The QST sample shows greater photocatalytic utilization efficiency 

for degradation of NOx (De-NOx), which is about three times higher than for mortar dispersed 

TiO2 powder. 

Both QST exposed mortars show higher NO and NOx photonic efficiencies than that of 

traditional dispersion approach (5% TiO2 in surface mortar layer). Most importantly, the mass 

fraction of TiO2 in QST is only 0.34% of quartz sand mass, and shows a significantly higher 

utilization efficiency (ca. 150 times higher) than that of TiO2 in traditional photocatalytic 

mortars, further confirming the efficiency and low-cost advantages of supported TiO2 in 

photocatalytic concrete technology.

Considering the variability of real environmental conditions, such as initial NO concentration, 

flow rate, light intensity and relative humidity, etc., the identified influences of these 

parameters on photocatalytic performance should be managed, by selection of appropriate 

locations for application, to consider: 

(1) Air flow rate; low flow rates are preferred - NO and NO2 removal can reach 80% under 

0.375 L/min. 

(2) NO concentration; photonic efficiencies increase rapidly as initial concentration exceed 

250 ppb, however S% drops to ca. 59% (from 85% at 140 ppb).  
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(3) UVA light intensity; the highest photon utilization and nitrate selectivity was observed 

under weak UVA intensities (< 5 mW.cm-2) 

(4) Relative humidity; high relative humidity strongly limits photocatalytic efficiency, 

probably due water condensation limiting mass transport (access to catalytic sites). However, 

at relative humidities lower than the dew point, surface water is known to enhance the rate of 

NO2 oxidation [22].
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Figure Captions

Figure 1 Configurations for conventional TiO2 dispersions in mortars and surface-mounted 

TiO2-aggregate composites on photocatalytic mortar surfaces.

Figure 2 Configuration schematic of photocatalytic reaction for NOx degradation.

Figure 3 SEM morphologies and EDAX elements characteristics of (a) pure quartz sand, and 

(b) TiO2 modified quartz sand aggregate.

Figure 4 (a) FT-IR spectrums of pure quartz sands and TiO2 modified quartz sand aggregate; 

(b) TiO2 modified quartz sand aggregate with component peaks identified by deconvolution in 

the wavenumber range 825 - 1350 cm-1

Figure 5 Concentration profile of NO, NO2 and NOx for QST sample during photocatalysis 

process.

Figure 6 De-NOx Photonic efficiencies and nitrate selectively of prepared TiO2 (TiO2-H), 

commercial TiO2 (TiO2-C), QST and QS samples.

Figure 7 De-NOx photonic efficiencies and nitrate selectively of 1/3PAED, 2/3PAED, 5%PM 

and (1/3 or 2/3) AED samples (photonic efficiency of aggregate exposed samples are 

normalised to 10 g aggregate weight).

Figure 8 De-NOx photonic efficiencies and S% of 1/3PAED with various NO flow rate.

Figure 9 De-NOx photonic efficiencies and S% of 1/3PAED with various initial NO 

concentrations.

Figure 10 De-NOx photonic efficiencies and S% of 1/3PAED with various irradiance.

Figure 11 De-NOx photonic efficiencies and S% of 1/3PAED with various relative humidity.
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Tables

Table 1

Table 1 Chemical compositions of quartz sand and TiO2 modified quartz sand aggregate

Chemical Composition

(mass fraction, %)
Quartz Sand TiO2/Quartz Sand *

CaO 0.29 0.04

SiO2 89.42 89.06

Al2O3 0.49 0.37

Fe2O3 0.07 0.09

MgO 0.04 0.02

MnO - -

TiO2 0.02 0.36

K2O 0.03 0.02

Na2O 0.04 0.08

P2O5 0.01 0.01

Cl 0.01 -

SO3 0.08 0.02

       *To increase bonding forces, the quartz sands were treated by 0.1 M NaOH for 24 h before loading TiO2
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Table 2

Table 2 Binding performance of QS and QST aggregates on mortar with different AED

Aggregate Weight and Lost Percentage (L.P.)Item Initial/g Remained/g L.P./% Average L.P./%
9.23 7.81 15.4
9.35 7.48 20.01/3PAED
9.05 7.64 15.7

17.0

9.1 6.80 25.3
9.65 6.90 28.52/3PAED
9.4 6.44 31.5

28.4

9.08 6.42 29.2
9.22 7.26 21.21/3AED
9.24 6.76 26.8

25.7

8.86 5.54 62.5
8.74 6.99 79.02/3AED
8.69 4.81 55.3

65.6

PAED: photocatalytic aggregate exposed mortar; AED: aggregate exposed mortar; 1/3 or 2/3: 1/3 or 2/3 aggregate 

exposed depth.
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1. XRD analysis

The phase compositions of TiO2 and photocatalytic quartz sand aggregate were determined by 

comparing X-ray diffraction (XRD) patterns, obtained on a PHILIPS P W 3O4O/60X’ 

PertPRO diffractometer in the range 20 to 70 o 2θ under Cu Kα radiation at a scanning speed 

of 6 ° min-1, against reference XRD data.
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Figure S1 XRD patterns of the prepared TiO2 particles (TiO2-H), TiO2/quartz sands (QST) aggregates and 

commercial TiO2 (TiO2-C)

Figure S1 shows the XRD patterns of the prepared TiO2 particles, TiO2/quartz sands (QST) 

aggregates and commercial TiO2, respectively. It can be seen the prepared TiO2 (TiO2-H) and 

commercial TiO2 (TiO2-C) photocatalysts all present anatase crystalline phase with different 

relative intensities, while no obvious anatase peak can be observed in TiO2 supported quartz 

sands aggregate. The loading amount of TiO2 photocatalysts for QST sample therefore was 
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obtained by XRF, and the result shown the TiO2 loading amount is 0.34% mass fraction to 

quartz sands aggregate (Table 1). 

2. Photocatalytic De-NOx performance

The photocatalytic performance test method of prepared TiO2 (TiO2-H), commercial TiO2 

(TiO2-C) were the same with that of photocatalytic quartz sand aggregate. The used amount of 

test sample was 0.1 g, which was uniformly distributed in a rectangular recess (area 5 × 10-3 

m2) inside the reactor. The TiO2-H was obtained by drying the TiO2 hydrosol (the preparation 

method can be seen in ref [1]) at 105 oC for 24 h. TiO2-C is PC105 (CristalACTiVTM). 

[1] L. Yang, A. Hakki, F.Z. Wang, D.E. Macphee, Photocatalyst efficiencies in concrete 

technology: The effect of photocatalyst placement, Applied Catalysis B-Environmental, 222 

(2018) 200-208.


