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Abstract 

Heat-shock proteins (HSPs) are a prominent family of cellular chaperones that are involved 

in the folding, assembly and degradation of cellular proteins, cell-cycling and signal 

transduction. HSPs are high conserved across taxa and form a key component of the stress 

response with signatures of molecular adaptation in some species exposed to extreme 

environmental stressors such as dehydration, heavy metal pollutants and arctic 

temperatures. Here we characterise two key heat-shock protein genes (hsp70 and hsp90) in 

deep-sea Lysianassoidea amphipods, with a focus on copy number variation and signatures 

of selection on the DNA sequences. Four phylogenetically distinct isoforms were resolved 

for both hsp70 and hsp90, with one isoform in each gene being exclusive to the hadal genus 

Hirondellea. Signatures of purifying selection were shown across hsp70 and hsp90 from 

dN:dS ratios. The GC content of each gene was lower, and the number of codons used was 

higher, than in shallow water amphipods suggesting a relaxation in codon usage bias. Such 

observations suggest that increased hydrostatic pressure is an important environmental 

stress that shapes the adaptation of heat-shock protein genes in deep-sea amphipods. 
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1.  Introduction 

 

Understanding how natural populations adapt to fluctuating and extreme 

environmental conditions is an important and enduring theme in evolutionary biology. 

Elucidating the genetic changes that underpin adaptation to environmental pressures helps 

to inform the underlying evolutionary drivers that determine patterns of biodiversity, define 

a species’ ability to colonise new ecological niches and ultimately establish the limits of life 

(Lavergne et al., 2010; Hoffman and Sgrò, 2011). It is also important to understand how the 

processes driving these patterns are influenced by different environmental conditions in a 

diverse range of biomes (Poiani et al., 2011). Utilising ‘extreme’ environments to examine 

such phenomena provides a powerful opportunity to investigate the patterns of adaptation 

to a suite of exaggerated selection pressures. These extreme environmental pressures can 

result in the manifestation of a wide-range of behavioural, physiological or biochemical 

phenotypes (Stillman and Somero, 1996) where these adaptations can be environment-, 

taxa- or species-specific (Castoe et al., 2013; Stein and Moser, 2014). A classic example of 

this are the Cichlid fishes of a hypersaline soda lake that showed adaptation in a suite of 

highly expressed genes responsible for osmoregulation, energy metabolism, ion transport 

and chemical detoxification as a response to elevated levels of pH, salinity, temperature and 

fluctuating levels of O2 (Kavembe et al., 2015).  

One recognised “universal” response to environmental pressures is the production 

of stress proteins (Kültz, 2005). There is a large complement of stress proteins involved in 

the stress response but the majority studied are chaperone proteins, which play an essential 

role in cell function and maintenance (Feder and Hofmann, 1999). The most prominent 

chaperone proteins belong to the heat-shock protein (HSP) family that are involved in the 

folding, assembly and degradation of cellular proteins (Beckham et al., 1990), cell-cycling 

(Nakai and Ishikawa, 2001) and signal transduction (Voellmy, 1994). Heat-shock proteins can 

be expressed constituently, or as a response to cellular stress. They are highly conserved 

proteins, which have been found across most known taxa and many have been shown to 

have multiple isoforms (Schlesinger, 1990). Two of the most important HSPs are the 70 kDa 

and 90 kDa proteins, which are known as hsp70 and hsp90, respectively. Hsp70 provides a 

broad spectrum of essential housekeeping cellular functions involving folding and signal 

transduction pathway and protein quality control. It has been achieved through the 

diversification and specialisation of hsp70 chaperones (Mayer and Bukau, 2005). Hsp90 

prevents protein aggregation and promotes protein refolding in vitro and is an important 

component of many multiprotein complexes in vivo (Prodromou et al., 1997). Hsp90 has 

also been suggested as a molecular mechanism for uncovering morphological variants that 

can drive evolutionary change in response to environmental cues (Rutherford and Lindquist, 

1998). 



Both hsp70 and hsp90 have shown signatures of selection to environmental 

conditions across a variety of taxa, despite them both being highly conserved proteins. 

These include biased rates of synonymous to non-synonymous nucleotide substitutions 

consistent with directional selection (Yang and Bielawski, 2000), an increase in GC content 

to increase thermal stability (Marmur and Doty, 1962) and a propensity towards codon 

usage bias that increases translational efficiency (Sharp and Li, 1987). Further adaptation in 

HSPs have been shown in an increase in gene copy number to facilitate greater levels of 

expression (Zhou et al., 2011) and hypermethylation of gene sequences to induce 

expression as a response to environmental stress (Gavery and Roberts, 2010). It is well 

documented that HSPs have these signatures of adaptation as a response to extreme 

environmental stressors such as dehydration (Benoit et al., 2010), osmotic stress (Sun et al., 

2001), heavy metal pollutants (Lewis et al., 1999) and extreme temperatures (Trent et al., 

1990; Clark et al., 2009).  

Heat-shock protein adaptation has also been shown as a response to high 

hydrostatic pressure but only for in vitro isolated cells (Takahashi et al., 1997; Salvador-Silva 

et al., 2001) and bacteria (Aertsen et al., 2004). The deep sea is a prime habitat for 

examining the in situ evolution of HSPs in response to hydrostatic pressure as the increasing 

depth provides a gradient of hydrostatic pressure in a mostly otherwise stable environment 

where range expansion in the deep sea has been predicted to mirror a tolerance of 

hydrostatic pressure (Young et al., 1997; Thatje et al., 2005). A limited number of studies 

have focused on deep-sea taxa but these have all centred on classical thermotolerance 

responses to the extreme and fluctuating temperature of hydrothermal vents, which are 

capable of producing temperatures exceeding 350°C (Ravaux et al., 2003; Shillito et al., 

2006; Cottin et al., 2008). These studies have highlighted that HSP responses are essential to 

survival in such a habitat (Ravaux et al., 2009) but the assertion that HSP responses are a 

result of strictly temperature adaptation is confounded by the effects of non-thermal 

stresses associated with hydrothermal vents such as pH, redox state and hydrostatic 

pressure (Holden and Baross, 1990).  

Here we test for classical signatures of selection operating on two key heat-shock 

protein genes (hsp70 and hsp90) in Lysianassoidea amphipods. This group provides an 

excellent model system for examining the effects of hydrostatic pressure as they are 

ubiquitous to bathyal (200 – 2000 m), abyssal (2000 – 6000 m) and hadal (6000 - ~ 10,000 

m) depths and are one of the few eukaryote species that have evolved to withstand the 

extreme hydrostatic pressures of the deep sea (Jamieson et al., 2010). We examine how 

variation in gene copy number, relative rates of synonymous and non-synonymous 

substitution, GC content and codon usage bias varies among species, across different deep-

sea trenches, and between deep ocean and shallow water species. 

 

2.  Materials and Methods 



 

2.1. Sample collection 

 

A total of 12 species from seven families within the Lysianassoidea and one species 

from the Lanceolioidea were collected over the course of six sampling cruises to seven 

trenches; Kermadec and Tonga trenches (2007; Cruise SO197), the Japan Trench (2007; 

Cruise KH0703), the Mariana Trench (2007; KR0716), the Izu-Bonin Trench (2009; Cruise 

KT0902), the Peru-Chile Trench (2010; Cruise SO209) and the New Hebrides Trench (2013; 

Cruise KAH1310) (Table 1). In all cases an autonomous full ocean depth rated lander vehicle, 

which incorporated small baited funnel traps for sample collection, was deployed to the 

seafloor for up to eight hours (for details see Table 1 and Ritchie et al., (2015)). Upon 

recovery of the lander vehicles, samples were transferred immediately to 99% ethanol prior 

to morphological identification in a shore-based laboratory (National Institute for Water and 

Atmospheric Research, New Zealand, or latterly the Australian Museum). 

Total genomic DNA was subsequently extracted from either the sixth pereopod or 

the whole body of individual specimens from all 13 species using a standard phenol-

choloroform approach.  

 

2.2. Characterisation of hsp70 and hsp90 genes 

 

Degenerate PCR primers for hsp70 and hsp90 were designed from multiple 

alignments of homologous sequences using PRIFI (Fredslund et al., 2005) where the 

maximum number of ambiguous positions was set to four bases and the critical ambiguous 

position distance from the 3’ end was set to five bases. For hsp70 the multiple alignment 

consisted of crustacean sequences; Penaeus monodon (AF474375), Artemia franciscana 

(AF427596), Eulimnogammarus cyaneus (JN704343), Eulimnogammarus varrucosus 

(JN704341), Eulimnogammarus vittatus (JN704342), Gammarus lacustris (JN704340) and 

Marsupeneas japonicus (EF091692). For hsp90 the multiple alignment consisted of 

crustacean sequences; Penaeus monodon (EF015590), Fenneropenaeus chinensi (EF032650), 

Marsupenea japonicus (AB520827), Litopenaeus vannamei (HQ008268), Metapenaeus ensis 

(EF470247) and Scylla paramamosain (JF265066).  

Initial PCR amplification was conducted using the degenerate hsp70 non-specific and 

hsp90 non-specific primers (Supplemental Table 1) where amplification reaction mixes 

contained 0.2 mM each dNTPs, 2.5 mM MgCl2, 0.5 µM each primer, 0.5 U of BioTaq DNA 

polymerase (Bioline), 5-20 ng DNA template in 1x NH4 buffer (Bioline: 16 mM (NH4)xSO4, 67 

mM Tris-HCl) in a total reaction volume of 20 µL. PCR amplification was performed using a 

G-storm thermal cycler (G-storm Ltd, Surrey, UK) with the following touch-down conditions: 



initial denaturation at 92°C for 2 min, followed by; 20 cycles of denaturation at 92°C for 30s, 

annealing at 65°C – 55°C (-0.5°C/cycle) for 30s, extension at 72°C for 30s; 20 cycles of 

denaturation at 92°C for 30 s, annealing at 55°C for 30s, extension at 72°C for 30s before a 

final elongation step at 72°C for 5 min.  

Sequencing using the degenerate primers identified multiple isoforms for both hsp70 

and hsp90. Isoform-specific primers were designed for each isoform using the obtained 

amphipod sequence data. Due to the poor quality and high degradation of DNA in deep-sea 

animals (Dixon et al., 2004), it is difficult to determine whether the amplification failure of 

an isoform is a consequence of its absence in a given species or PCR failure as a result of 

DNA degradation preventing sequencing of a large fragment. Therefore, isoform-specific 

primers were designed to amplify the full length of the fragment being investigated but 

isoform-specific primers were also designed to amplify a small part of the fragment to rule 

out false negatives (Supplemental Table 1). All isoform-specific primers were PCR amplified 

using the same reaction mixes and PCR conditions as stated above. 

Where PCR amplification resulted in multiple banding or insufficient quantity of 

product bands were picked for re-PCR. PCR products were run on an agarose gel to 

differentiate the multiple bands before the target bands were picked with a microfilter tip 

which was then placed into a 0.2µL PCR tube containing an amplification reaction mix of 0.5 

µM each primer and 1 U of MyFi DNA polymerase (Bioline) in 5x buffer (Bioline: 1mM dNTPs, 

3mM MgCl2 and enhancers). Re-PCR amplification was performed using a G-storm thermal 

cycler with the following conditions: initial denaturation at 92°C for 2 min, followed by; 25 

cycles of denaturation at 95°C for 15s, annealing at 65°C for 15s, extension at 72°C for 20s 

before a final elongation step at 72°C for 2 min. 

PCR products were enzymatically purified using ExoSAP-IT and quantified with 

lambda DNA size standards on a 1% TBE agarose gel. Sequencing was undertaken with an 

ABI 3730xl automated DNA sequencer (MWG Eurofins Ebersberg, Germany) using the same 

PCR primers as used in the original PCR.  

 

2.3. Phylogenetic reconstruction  

 

Electropherograms were viewed in MEGA v.6.0.5 (Tamura et al., 2013) and 

nucleotide alignments were constructed on the webPRANK server (Löytynoja and Goldman, 

2010) and confirmed by eye. Sequence identity was also confirmed using NCBI BLASTn 

(Altschul et al., 1990) before nucleotide sequences were translated to amino acid sequences 

to check for the presence of stop codons. 

The optimal evolutionary models for both nucleotide and amino acid sequences, for 

both hsp70 and hsp90, were identified by JModelTest 2.1.6 (Darriba et al., 2012) using both 



the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both AIC 

and BIC identified the same best-fit models for hsp70 and hsp90 (nucleotide: TN93 + G + I 

and amino acid: Blosum92 + G +I).   

Phylogenetic topologies for both hsp70 and hsp90 were inferred by both maximum-

likelihood and Bayesian approaches using PhyML v.3.1 (Guindon et al., 2010) and *BEAST 

(Drummond et al., 2012), respectively. Maximum-likelihood analyses were conducted with a 

neighbour-joining starting tree and using nearest neighbour interchange branch swapping 

using the model of sequence evolution estimated by JModelTest2 but with the parameters 

estimated by PhyML. The stability of nodes was assessed from bootstrap support based 

upon 10,000 iterations. Bayesian analyses were run for 10,000,000 generations, sampling 

every 500,000 trees and using the model of sequences evolution estimated by jModelTest2 

but with the parameters estimated by *BEAST. The first 100,000 trees were discarded as 

burn-in where the partition frequencies among the remaining trees give the posterior 

probabilities to provide an estimate of clade credibility. The likelihood of observed versus 

phylogenetically constrained alternative topologies were tested using Shimodaira-Hasegawa 

tests within CONSEL. 

 

2.4. Nucleotide composition analysis  

 

GC content was calculated for the entire coding sequence of hsp70 in: 1) four deep-

sea amphipod hsp70 isoforms (see Table 1 for details); 2) the average deep-sea amphipod 

hsp70 sequence; 3) the average Antarctic euphausiid hsp70 (Euphausia superba; E. 

crystallorophias); 4) a shallow water amphipod hsp70 (Eulimnogammarus verrucosus; E. 

vittatus; E. cyanaeus; Gammarus lacustris); 5) a non-amphipod crustacean hsp70 

(Marsupenaeus japonicus; Litopenaeus vannamei; Penaeus monodon) using CodonW 

(http://www.codonw.sourceforge.net. GC content was also calculated for the entire coding 

sequence of hsp90 in: 1) four deep-sea amphipod hsp90 isoforms (see Table 1 for details), 2) 

the average deep-sea amphipod hsp90 sequence and 3) a non-amphipod crustacean hsp90 

(Marsupenaeus japonicas; Litopenaeus vannamei; Penaeus monodon). GC content was 

compared between groups using t-tests. The number of GC bases in first and second, and 

third base codon positions were also calculated using the method in Xiang et al., (2015). The 

percentage of non-synonymous first and second GC codon positions were also calculated for 

both hsp70 and hsp90 using the phylogenetically closest non-deep-sea amphipod sequence 

as the baseline changes were measured against. 

 

2.5. Tests for selection 

 



The signatures of selection pressures acting on hsp70 and hsp90 can be identified 

from the dN:dS ratios calculated using DNAsp v.5 (Librado and Rozas, 2009). A dN:dS = 1 

suggests there is no evidence of selection, dN:dS > 1 indicates positive selection and dN:dS 

<1 indicates purifying selection. Variances of dN (Var(dN)) and dS (Var(dS)) were also 

estimated to perform Z-tests of selection where Z= (dN-dS)/√(Var(dS)+Var(dN)) in MEGA 

v.6.0.5 (Tamura et al., 2013). Z-tests were conducted across all groups of interest to test the 

null hypothesis of no selection (H0: dN = dS), an alternative hypothesis of positive selection 

(H1: dN > dS) and an alternative hypothesis of purifying selection (H2: dN < dS). 

Maximum-likelihood analysis of sequence evolution of the multiple isoforms of hsp70 and 

hsp90 was conducted using codeML within PAML v.4.9 (Yang, 1997). Each isoform was 

tested using two models; a One Ratio model (MO) which assumes the same ω ratio across 

all branches, and a Free Ratio model (FR) which allows for different ω ratios across 

branches. Subsequently the two models were compared using a likelihood ratio test (LRT) to 

determine which model represented a better fit for each isoform. 

 

2.6. Codon usage 

 

The analyses of codon usage bias were conducted using the programme CodonW. 

The effective number of codons (NC) was calculated for both hsp70 and hsp90 from codon 

usage data and visualised using the ggplot2 package (Wickham, 2011) in R v.3.2.4. NC can 

range from 20 to 61 where 20 exemplifies extreme codon bias where a single codon is used 

to code for each amino acid, and 61 represents the equal use of every codon for each amino 

acid.  

The relative synonymous codon usage (RSCU) was also calculated for each of the two 

genes from codon usage data. RSCU values are the observed frequency of a given codon 

divided by the expected frequency when there is no codon usage bias. Values greater than 

one indicate that a codon is experiencing usage more frequently than expected under no 

selection bias and values less than one indicate a codon is used less frequently than 

expected. A heat map of RSCU values for each gene was drawn using CIMMiner 

(http://discover.nci.nih.gov/cimminer) by implementing a Euclidean distance method and 

an average linkage cluster algorithm. Cell colours indicate RSCU vales such that blue is <1, 

black is ~1 and red is >1.  

 

3. Results 

 

3.1. Characterisation of hsp70 and hsp90 genes 



 

Sequencing identified four isoforms within both the hsp70 and hsp90 genes. Hsp70 

was characterised in eight species and each species had between one and four isoforms. In 

total, 945 bp were sequenced in the four hsp70 isoforms which covers the majority of exon 

2 through to the majority of exon 5. Within exon 5, 201 bp cover part of the peptide binding 

domain. Hsp90 was characterised in 12 species and each species had between one and 

three isoforms. In total, 627 bp were sequenced in the four hsp90 isoforms which covers the 

majority of exon 7 through to approximately half of exon 10. From exon 7 through to exon 9 

and from exon 9 to exon 10 294 bp and 273 bp, respectively, cover part of the ribosomal 

protein S5 domain.  

Sequence analysis revealed no introns were present in any isoforms in both hsp70 

and hsp90 genes. A lack of intronic sequences have been previously shown in the Crustacea 

for hsp70 (e.g. Liu et al., 2004) and in the Lepidoptera for hsp90 (e.g. Sonoda et al., 2006). 

Isoform sequences have been annotated and deposited into GenBank (Table 1). 

 

3.2. Phylogenetic analysis 

 

The phylogenetic relationships for the four hsp70 deep-sea amphipod isoforms are 

given in Figure 1 using both nucleotide and amino acid sequences. The four isoforms each 

formed distinct clades and species were not monophyletic. This was consistent across both 

the nucleotide and amino acid phylogenies and the relative relationship between the 

isoform clades did not vary considerably between phylogenies. In both phylogenies hsp70-4 

is separated from hsp70-1 to hsp70-3. Hirondellea dubia is the only species that has been 

shown to contain all four isoforms and the isoform hsp70-4 is exclusive to the Hirondellea 

genus. 

The phylogenetic relationships for the four hsp90 deep-sea amphipod isoforms are 

given in Fig. 2 using both nucleotide and amino acid sequences. The four isoforms again 

formed distinct clades with species not forming monophyletic groupings. The phylogenetic 

relationships varied between the nucleotide and amino acid phylogenies. No species have 

been shown to contain all four hsp90 isoforms but Hirondellea gigas has three (hsp90-1, 2 

and 3) and the hsp90-2 isoform is exclusive to Hirondellea. 

Additional phylogenies were created for both the hsp70 and hsp90 isoforms to show 

their relation to shallow water amphipod and wider crustacean sequences that were 

available on Genbank (hsp70, Supplemental Fig. 3; hsp90, Supplemental Fig. 4; Accession 

numbers provided in figure legend). The likelihood of our observed topology where the 

deep-sea and shallow water isoforms were reciprocally monophyletic was significantly 



greater than any constrained topology where they were para- or polyphyletic (Shimodaira-

Hasegawa Test hsp70, p<0.05; hsp90, p<0.05). 

 

3.3. Nucleotide composition analysis 

 

An amino acid alignment was constructed for hsp70 using the four deep-sea 

amphipod isoforms, five Antarctic euphausiid isoforms , shallow water amphipods and non-

amphipod crustaceans (Supplemental Fig. 1; Accession numbers provided in figure legend). 

The amino acid alignment of the hsp70 deep-sea amphipod isoforms shows none of the 

isoforms have any insertions or deletions of whole amino acids. In total, 26 amino acids 

(8.25%) differed across the four hsp70 isoforms.  

An amino acid alignment was also constructed for hsp90 using the four deep-sea 

amphipod isoforms and non-amphipod crustaceans (Supplemental Fig. 2; Accession 

numbers provided in figure legend). The amino acid alignment of the hsp90 deep-sea 

amphipod isoforms shows none of the isoforms have any insertions or deletions of whole 

amino acids. In total, 23 amino acids (11.06%) differed across the four hsp90 isoforms.  

 

3.4. Tests for selection 

 

Across the four hsp70 isoforms and dN:dS ratios were less than 1, which is consistent 

with the effects of purifying selection (Table 2). The presence of purifying selection was also 

tested using the Z-test statistic, which allowed us to reject the null hypothesis of neutral 

evolution and accept an alternative hypothesis of purifying selection (Table 2). This was also 

shown for the four hsp90 isoforms (Table 2).  

For all isoforms, across both hsp70 and hsp90, the Free-Ratio model (FR) provided a 

better fit for our data (Table 2). However, this was not shown to be significant in any case 

meaning we cannot explicitly reject the null One Ratio model (MO) for any of the hsp70 or 

hsp90 isoforms. As the FR model is not significantly favoured we cannot conclude that there 

is variable selective pressure acting on the isoforms. 

 

3.4. Codon usage 

 

Across the four hsp70 isoforms GC content varied from 43.72 % in hsp70-4 to 48.26% 

in hsp70-2 with an average GC content of 45.26% (Table 3). The average GC content of 



deep-sea amphipods is significantly higher than the average GC content of Antarctic 

euphausiids (41.59%; p<0.001), but significantly lower than shallow water amphipods 

(51.79%; p<0.001) and non-amphipod crustaceans (54.20%; p<0.001). GC content in the 

deep-sea isoforms has been increased on average by 3.67% from Antarctic euphausiids, and 

reduced on average by 6.53% from shallow water amphipods and 8.94% from non-

amphipod crustaceans. The percentage of GC content in CP1 and CP2 that resulted in amino 

acid changes ranged from 0.35% in hsp70-2 and hsp70-3, to 5.71% in hsp70-4 with an 

average of 1.96% across the four isoforms.  

Across the four hsp90 isoforms GC content varied from 40.46% in hsp90-1 to 49.95% 

in hsp90-3 with an average GC content of 47.02% (Table 3). The average GC content of 

deep-sea amphipods is statistically lower than the average GC content of non-amphipod 

crustaceans (50.99%; p=0.05). GC content in the deep-sea isoforms has been reduced on 

average by 3.97% from the average GC content of non-amphipod crustaceans. The 

percentage of GC content in CP1 and CP2 that resulted in amino acid changes ranged from 

1.32% in hsp90-2 to 2.01% in hsp90-1 with an average of 1.79% across the four isoforms. 

Codon usage bias for the four hsp70 isoforms varied from 45 codons in hsp70-3 to 51 

codons in hsp70-4 compared to the range of 40 to 51 codons in Antarctic euphausiids 

isoforms, 43 codons in shallow amphipods and 40 codons in non-amphipod crustaceans. 

Deep-sea amphipods use 4 codons (6.56%) more on average than Antarctic euphausiids, 6 

codons (9.84%) more than shallow amphipods and 9 codons (14.75%) more than non-

amphipod crustaceans indicating a relaxation in codon usage bias in hsp70. The increased 

use of codons is also reflected in patterns of codon usage bias from RSCU values, which 

showed no large selection sweeps towards biased use of codons (Supplemental Figure 5).  

Codon usage bias for the four hsp90 isoforms varied from 41 in codons in hsp90-3 to 

52 codons in hsp90-1 compared to the 32 codons used in non-amphipod crustaceans. Deep-

sea amphipods use 14 codons (23.0%) more on average than non-amphipod crustaceans 

indicating a relaxation in codon usage bias in hsp90. Again this increased use of codons is 

reflected in patterns of codon usage bas from RSCU values, which showed no large selection 

sweeps towards biased use of codons (Supplemental Figure 6). 

 

4.  Discussion 

 

Heat-shock proteins play an important role in cell maintenance by performing 

essential chaperone functions in response to environmental stimuli. Responses of HSPs have 

been shown across a wide variety of extreme environmental conditions such as high 

altitudes (Zhong et al., 2000), extreme low (Clark and Peck, 2009) and high temperatures 

(Trent et al., 1990), solar radiation (Keyse and Tyrrell, 1987) and halophilic environments 

(Shukla, 2006). Heat-shock adaptation has also been postulated as crucial to colonising the 



deep sea (Brown and Thatje, 2014) and this has been shown in the deep sea, with 

hydrothermal vent shrimp Rimicaris exoculata and annelid Paralvinella grasslei being able to 

survive in temperatures exceeding 30°C due, in part, to their heat-shock protein response 

(Ravaux et al., 2003; Shillito et al., 2006).  

The salient finding of this study is the identification of signatures of HSP adaptation 

in Lysianassoidea amphipods from abyssal and hadal depths. Most strikingly, this current 

study unveiled four distinct isoforms for both the hsp70 and hsp90 genes. Duplication of 

genes can be an important mechanism to allow for an increase in gene expression, 

development of more efficient copies of the genes and it is an important source for novel 

gene applications (Kondrashov, 2012; Magadum et al., 2013). The multiple copies 

discovered here for both HSP genes are a signature of selection and may be crucial to the 

evolutionary potential of deep-sea amphipods. However, it should also be noted that all 

four isoforms in each of the genes are not present in all species and it is unknown if the 

distribution of isoforms between species is due to different ecological adaptations.  

Notwithstanding, each of the isoforms showed an increase in synonymous 

substitutions per synonymous site (dS) compared to non-synonymous substitutions per non-

synonymous site (dN), which is consistent with the effects of purifying selection (Kimura, 

1977). The dN:dS ratio infers the direction and magnitude of natural selection on protein 

coding genes. A higher number of non-synonymous (dN) changes is consistent with the 

effects of positive selection whereas an excess in synonymous (dS) substitutions indicates 

purifying selection is acting to maintain a stable optimum (Yang and Bielawski, 2000). In this 

case we detected a strong signature of purifying selection, consistent with a scenario that 

different hsp70 and hsp90 isoforms are optimally adapted to the prevailing environmental 

conditions. Indeed, purifying selection acting upon HSPs is common across the different HSP 

families and occurs in wide variety of taxa including hsp90 in fish (Wei et al., 2013), small 

HSPs in plants (Bondino et al., 2012), hsp70 in mice (McCallister et al., 2015) and GroEL in E. 

coli (Fares et al., 2002). 

It has previously been suggested that increases in GC content and codon usage bias 

are indicative of selection pressures acting to maintain DNA stability and translational 

efficiency, and that this is often more pronounced in highly expressed genes such as heat-

shock protein genes (Grosjean and Fiers, 1982). This has not been shown here. In each 

isoform of both genes the GC content is lower than in the non-amphipod crustaceans. 

Previous studies have suggested that a GC rich template may not be necessary for the 

efficient expression of HSP genes (Kudla et al., 2004). It has also been suggested that in 

lower organisms the GC content of hsp70 homologs are usually similar to the average GC 

content of their genomes (Kudla et al., 2004). This is likely true for amphipods as the deep-

sea amphipod hsp70 isoforms had an average GC content of 45.26% and the total 

transcriptome GC content for the shallow water amphipod Parhyale hawaiensis is ~45% 

(Whittle and Extavour, 2015). Often an increase in GC content is linked with codon usage 

bias as the majority of bias realised is a selection towards GC third codon positions (GC3) 



however, this may not always be true for Arthropods as bias has been shown for both GC3 

(Duret and Mouchiroud, 1999) and for AT third codon positions (AT3) (Behura and Severson, 

2012). Regardless, no signatures of codon bias were seen for either GC3 or AT3. 

The novel finding of this study is the presence of four isoforms in both the hsp70 and 

hsp90 genes in deep-sea amphipods. Copy number variation in hsp70 has been used to infer 

the effects of selection in several taxa, including five isoforms in Antarctic euphausiids 

(Cascella et al., 2015), two genes in the hydrothermal vent shrimp Rimicaris exoculata 

(Ravaux et al., 2007), and between two and five copies in different species of Drosophila 

(Bettencourt et al., 2008). The evolutionary divergence between the deep-sea amphipod 

isoforms is not as pronounced as the Antarctic euphausiids although the majority of their 

divergence is driven by a mitochondrial isoform (hsp70-D). The most distinctive deep-sea 

isoform is hsp70-4 as it is the most evolutionary removed from the rest and it is exclusive to 

species of Hirondellea which is the deepest living genus of amphipods.  

Hsp90 is known to have two major cytoplasmic isoforms that originated from a 

duplication event ~500MYA (Gupta, 1995) but it was initially believed that invertebrates 

only had a single cytoplasmic isoform. A small number of studies have since discovered two 

hsp90 isoforms in some invertebrate species including the marine crab Portunus 

trituberculatus (Cui et al., 2010) but there have been no studies that have identified multiple 

isoforms comparable to those that we have resolved in the deep-sea amphipods where 

Hirondellea gigas has three hsp90 isoforms in total. The most distinctive isoform is hsp90-2 

which is exclusive to species of Hirondellea in the same way as hsp70-4 suggesting these 

isoforms may be hadal specific.  

Within this study the inference of the number of isoforms is based upon a limited 

amount of sequencing within each allele, and represents a minimum number of variants. 

Clearly, an improved analysis would incorporate full length sequences of the genes to 

ensure that no extra variation could be resolved and that the full complement of isoforms 

has been characterised within each species. In the hsp70 gene it would be interesting to 

sequence the entirety of the peptide binding regions as well as portions of the gene that 

contain motifs implicated in ATP/ATG interactions and glycosylation sites as variability in 

these regions suggests differentiation of isoform function (Cascella et al., 2015). Hsp90 

isoforms also contain conserved regions called ‘signature sequences’ which are three N-

terminal domains and two middle region domains that may also suggest functional 

differentiation (Sreedhar et al., 2004). Differentiation of gene expression has been shown 

between the hsp70 isoforms of two Antarctic euphausiids species (Cascella et al., 2015), 

which suggests they have adapted different response patterns due to their different 

habitats.  

Overall, this study has highlighted a signature of selection in deep-sea amphipod 

heat-shock protein genes, which forms part of the stress response to hydrostatic pressure. 

This signature of purifying selection indicates that the heat-shock protein isoforms are well 



adapted in Lysianassoidea amphipods to deal with hadal selection pressures although this 

does not discount the involvement of other genes in the stress response. Our understanding 

of the subtle interplay between genes will be greatly enhanced with the emerging 

comparative transcriptomic approaches to evolutionary analyses. 
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Figure 1. Unrooted maximum-likelihood tree showing the relationship between four deep-

sea amphipod isoforms in the hsp70 gene for both A) nucleotide sequences and B) amino 

acid sequences. Bayesian posterior probabilities and maximum-likelihood bootstrap 

support are shown on major branch nodes. 

 



 

Figure 2. Unrooted maximum-likelihood tree showing the relationship between four deep-

sea amphipod isoforms in the hsp90 gene for both A) nucleotide sequences and B) amino 

acid sequences. Bayesian posterior probabilities and maximum-likelihood bootstrap 

support are shown on major branch nodes. 

  



 

Table 1. Sample locations, depth and sequence accession numbers for all samples included 

in the analysis. 

   Accession numbers 
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KX500
374 

- 
KX500

375 

- 
- 
- 

KX500
382 

KX500
383 

- 

- 
- 
- 

- 
- 
- 

Hirondelle
a gigas 

Izu-
Bonin 
Japan 

931
6m 
694
5m 

- 
- 

- 
- 

- 
KX500

368 

KX500
373 

KX500
372 

- 
KX500

379 

KX500
380 

KX500
381 

KX500
385- 

- 
- 

Hirondelle
a sonne 

Peru-
Chile 

705
0m 

- - - KX500
376 

- - - - 

Hirondelle
a wagneri 

Peru-
Chile 

617
3m 

- - - - - - KX500
389 

- 

Lanceola 
sp. 

Peru-
Chile 

915
m 

- - - - - - KX500
386 

- 

Orchomen
ella 
gerulicorbi
s 

Kerma
dec 

600
7m 

- - KX500
371 

- KX500
377 

- - - 

Paralicella 
caperesca 

Kerma
dec 
New 
Hebri
des 
Peru-
Chile 

600
7m 
250
0m 
617
3m 

KX500
362 

- 
KX500

360 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

KX500
393 

KX500
394 

- 

Paralicella 
tenuipes 

Japan 
Maria
na 

694
5m 
546

- 
- 

KX500
363 

KX500

- 
- 

- 
- 

- 
- 

- 
- 

KX500
390 

KX500

- 
- 



9m 364 391 
Valettietta 
anacantha 

Maria
na 

546
7m 

- - - - - - KX500
387 

- 

 

 

 

 

Table 2. Analysis of directional selection in hsp70 and hsp90 genes in deep-sea amphipods 

and across other amphipod and crustacean groups using dN:dS, Z-test and codeML 

models. Likelihood ratio tests were also conducted between the two codeML models. 

Significance of the Z-test statistic and the LRTs are indicated by p<0.05* p<0.01**. 

  dN dS dN:dS |Z| Model Likelihood  

hsp70 

hsp70-1 0.10 0.86 0.11 18.05** 
MO 
FR 

-1359.83 
-1359.60 

hsp70-2 0.10 0.81 0.12 17.71** 
MO 
FR 

-1318.66 
-1318.66 

hsp70-3 0.10 0.85 0.12 18.05** 
MO 
FR 

-1453.45 
-1451.79 

hsp70-4 0.14 0.84 0.17 16.62** 
MO 
FR 

-1456.87 
-1456.41 

Antarctic A 0.09 0.83 0.12 17.99** 
 
 

 

Antarctic B 0.10 0.87 0.12 19.11** 
 
 

 

Antarctic C 0.12 0.88 0.14 18.00**   

Antarctic D 0.36 0.78 0.46 8.98**   

Antarctic E 0.09 0.77 0.12 16.97**   

Shallow 0.11 0.83 0.13 19.30** 
 
 

 

hsp90 

hsp90-1 0.17 0.77 0.22 11.86** 
MO 
FR 

-1227.86 
-1224.12 

hsp90-2 0.16 0.78 0.21 11.52** 
MO 
FR 

-893.34 
-892.74 

hsp90-3 0.14 0.63 0.22 8.34** 
MO 
FR 

-1288.27 
-1274.42 

hsp90-4 0.15 0.68 0.22 11.00** 
MO 
FR 

-946.95 
-946.95 

dN = number of nonsynonymous mutations, dS = number of synonymous mutations, |Z| = 

Z-test, and models MO = one omega ratio model, FR = free omega ratio model. 



 
 

 

Table 3. GC content, number of Gs and Cs in either first and second base positions or third 

base position, and the percentage of GCs in first and second base positions that cause 

changes to the amino acid in the different isoforms of hsp70 and hsp90 genes in deep-sea 

amphipods and across other amphipod and crustacean groups.  

hsp70 hsp90 

  GC Codon 
Position 

% of ½ GC 
Positions 
Causing 

Amino Acid 
Changes 

  GC Codon 
Position 

% of ½ GC 
Positions 
Causing 

Amino Acid 
Changes 

Group 
GC % 1/2 3 

Group 
GC % 1/2 3 

hsp70-1 47.36 282 167 1.42 hsp90-1 40.46 156 97 2.01 
hsp70-2 48.26 289 170 0.35 hsp90-2 43.78 154 121 1.32 
hsp70-3 43.85 282 125 0.35 hsp90-3 49.95 155 157 1.97 
hsp70-4 43.72 280 124 5.71 hsp90-3 48.64 164 143 1.86 
Deep-sea 
amphipod 

45.26    
Deep-sea 
amphipod 

47.02    

Shallow 
amphipod  

51.79    
Non-
amphipod 

50.99    

Antarctic 
euphausiids 

41.59    
 

    

Non-
amphipod 

54.20    
 

    

 

 

 

 




