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Summary. Hyperprior specifications for random fields in spatial point process modelling
can have a major impact on the results. In fitting log-Gaussian Cox processes to rainforest
tree species, we consider a reparameterised model combining a spatially structured and
an unstructured random field into a single component. This component has one hyperpa-
rameter accounting for marginal variance, while an additional hyperparameter governs the
fraction of the variance explained by the spatially structured effect. This facilitates inter-
pretation of the hyperparameters and significance of covariates is studied for a range of
hyperprior specifications. Appropriate scaling makes the analysis invariant to grid resolu-
tion.
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1. Introduction

1.1. Habitat association modelling
There is a strong ecological interest in understanding the mechanisms that allow differ-
ent species to coexist within an ecosystem, and in particular in extremely species-rich
systems, such as rainforests or coral reefs (Chesson, 2000; Hubbell, 2001; Dornelas et al.,
2006). Habitat association has often been seen as a potential strategy that reduces in-
terspecific competition and hence facilitates coexistence (Connell, 1961; Bagchi et al.,
2011). Ecological research has highlighted associations of specific plant species with
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distinct habitat defined by, for instance, climate and soil, but in many cases these associ-
ations have been derived from anecdotal knowledge expressed in floras rather than from
a study that has thoroughly tested them. Recently, increasingly detailed data on soil
properties have become available which provide fine-scale, spatially continuous data on
soil chemistry rather than discrete habitat types providing an opportunity for a more de-
tailed and local analysis characterising a species’ environmental preferences. A statistical
analysis of the relevant data structure here would need to relate the individuals’ occur-
rence in a specific location to the local environment. Spatial point process methodology
(Diggle, 2003; Illian et al., 2008; Baddeley et al., 2015) has been used in this context (Law
et al., 2009; Wiegand and Moloney, 2014; Velázquez et al., 2016) as it models the pattern
formed by individuals in space relative to local conditions. Common approaches relate
the occurrence of an individual in a location in continuous space to a set of environmental
covariates. In addition to the terms representing these spatial covariates and associated
parameters, models contain a further term, for instance a spatially structured random
field such as a Gaussian random field, which accounts for spatial structures unexplained
by the covariates (Illian et al., 2012a; Waagepetersen et al., 2016; Simpson et al., 2016).
These structures might be the result of biotic mechanisms such as dispersal limitation or
of unobserved covariates.

However, this modelling approach is not as straight forward as it might seem. In par-
ticular, the literature is lacking a thorough discussion of (a) the impact of the smoothness
of the spatial field on inference and (b) complexity of accounting for unexplained spatial
structures due to mechanisms operating at a number of spatial scales. With regard to (a),
the level of significance of the covariates’ association with the observed spatial pattern in
a fitted model is not independent of the smoothness of the spatially structured field, and
determining this smoothness in an objective way is difficult, see Section 1.2. Further-
more, the remaining spatial structure is likely to operate at different spatial scales, e.g.
as a combination of large scale clustering due to habitat association and small scale clus-
tering due to local dispersal, and these are difficult to disentangle (Hamill and Wright,
1986; Bagchi et al., 2011). In both the statistical literature on point processes and the
ecological literature using spatial point process methods these issues have not been ex-
plicitly resolved. To the best of our knowledge a discussion of principles for choosing the
smoothness of the spatial field is entirely absent from the spatial point process literature
with a few papers accounting for the issue of clustering at different spatial scales (John
et al., 2007; Illian et al., 2012a; Shen et al., 2013).

In this paper, we acknowledge these issues and that there is no universal objective
criterion for resolving them. We discuss Bayesian methodology that allows us to investi-
gate the spatial behaviour by a) constructing a model that explicitly takes the awareness
of these issues into account and b) suggesting a constructive way of addressing them.
This is done by using interpretable priors that allow us to vary the focus on different
spatial scales and to observe changes in the resulting estimates with changes in scale. In
other words we do not attempt to identify a single degree of smoothing that is optimal
by some criterion but consider a standardised range of degrees of smoothing and observe
the behaviour of the estimates relative to changes in smoothness.

The approach discussed here has been motivated by the analysis of point patterns
formed by tropical forest tree species within the 50-ha rectangular plot at Barro Col-
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orado Island (BCI), Panama. This plot was designed to help address the mechanisms
that maintain species richness and deliberately involved spatial mapping of the entire
community following the recognition that population and community dynamics occur in
a spatial context (Hubbell, 2001). The full dataset includes observed positions for a large
number of tree species (Condit, 1998; Hubbell et al., 1999, 2005) and measurements of
topographical variables and soil nutrients that potentially influence the spatial distribu-
tion of the trees (John et al., 2007; Schreeg et al., 2010). A main aim of the statistical
analysis is to investigate whether the spatial patterns of different tree species can be
related to spatial environmental variations, reflected by observed topography and soil
nutrients (John et al., 2007; Baldeck et al., 2013). To appropriately inform model choice
and inference, this paper suggests an approach that does neither attempt to universally
suggest an optimal degree of smoothing nor to a fixed spatial scale at which mechanisms
are operating. This is done by explicitly communicating prior choices that impact on
inference and statistical conclusions.

1.2. The statistical perspective
Point pattern data are the observed locations of objects or events within a bounded
geographical region, for example the locations of plants or animals in the wild or the
locations of earthquakes. By fitting a spatial point process model, the spatial structure of
the pattern can be studied in terms of observed environmental variables that are included
as covariates. To perform reliable statistical inference and to make an honest accounting
of estimation uncertainty, it is important to also account for spatial dependence structures
and random error due to potentially missing covariates and biotic processes. The resulting
model will be sensitive to input choices. Hence, extra effort must be made to correctly
communicate statistical statements and conclusions.

This paper explicitly focuses on how hyperprior specifications influence the statistical
inference when a discretized log-Gaussian Cox process (Møller et al., 1998) is fitted to
an observed spatial point pattern, including covariate information. However, all of the
conclusions in this paper remain valid for any point process model that includes a high-
or infinite-dimensional parameter as well as covariates. A log-Gaussian Cox process is
a Poisson process with random intensity Λ(s) = exp{η(s)}, where {η(s) : s ∈ R2} is
a latent Gaussian random field. To assess the influence of observed covariates, we can
express the log-intensity η(s) in a spatial grid cell s as

η(s) = β0 +

nβ∑
j=1

βjzj(s) + u(s) + v(s), s ∈ Ω, (1)

where Ω here represents a bounded two-dimensional study region. The parameter β0 is
the intercept while {βj}nβj=1 represent linear fixed effects of observed covariates {zj(s), s ∈
Ω}nβj=1. The spatially-correlated random field u = {u(s), s ∈ Ω} is included to account
for spatial autocorrelation or over-dispersion in point counts among neighbouring grid
cells. The random field v = {v(s), s ∈ Ω} is referred to as an error field or a spatially
unstructured effect, accounting for over-dispersion or clustering within grid cells. This
field is similar to the nugget effect in geostatistics, which has been explained as a sum
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of a true “micro scale" nugget variance and variance due to measurement error (Cressie,
1993; Chilès and Delfiner, 1999; Cressie and Wikle, 2011).

The choice of discretizing the log-Gaussian Cox process implies that the point pattern
is aggregated and analysed as lattice data. We consider the simplest case using a regular
lattice. This is a common approach in the analysis of spatial point patterns (Møller et al.,
1998; Illian et al., 2012a) and it is important to study how hyperpriors and grid resolution
influence the analysis in this case. A non-gridded alternative in analysing log-Gaussian
Cox processes is to use a continuous specification for the Gaussian random field based
on a stochastic partial differential equation (Lindgren et al., 2011; Simpson et al., 2016).
This approach is not considered further as it would require a different model formulation
than the one presented here.

When fitting a discretized log-Gaussian Cox process, a common modelling strategy is
to assign Gamma priors to the precision (inverse variance) parameters of the two random
fields (Rue et al., 2009; Illian et al., 2012a,b; Kang et al., 2015). However, both the model
formulation in (1) and the use of Gamma priors are burdened with problems:

(a) The two random fields in the model are not independent as v can be seen to be
included in u in situations with no spatial dependence. The priors for the precision
parameters should therefore not be chosen independently (Simpson et al., 2017).

(b) The model is highly sensitive to prior choices for the precision parameters, espe-
cially the input parameters for the precision of the spatial field (Illian et al., 2012b;
Beguin et al., 2012; Sørbye and Rue, 2014; Papoila et al., 2014; Homburger et al.,
2015). These are not easily controlled using traditional hyperpriors, like Gamma
distributions.

(c) If the spatial component is intrinsic, the model gives different degrees of smoothing
for different grid resolutions and priors have to be adjusted if the grid resolution is
changed (Sørbye and Rue, 2014).

To address these problems, we suggest a subjective, application-driven approach which
facilitates clear interpretation of model components and hyperprior specifications. We in-
troduce a reparameterised model for log-Gaussian Cox processes, where the log-intensity
is expressed as

η(s) = β0 +

nβ∑
j=1

βjzj(s) +
1√
τ

(√
φu∗(s) +

√
1− φv(s)

)
, φ ∈ (0, 1). (2)

Here, u∗ = {u∗(s), s ∈ Ω} represents a scaled spatial random field, and the hyperpa-
rameters τ and φ are assigned penalised complexity (PC) priors (Simpson et al., 2017).
We detail below why this modelling approach has important advantages and avoids the
three problems listed above.

First, the identifiability issue between the spatially structured and unstructured fields
is avoided, combining the two fields as one random component with a marginal variance
governed by a common precision parameter τ . Conditional on τ , the parameter φ helps
the interpretation, as it explains how much of the random variation is attributed to
the spatial term. The two hyperparameters τ and φ are then seen to have orthogonal
interpretation, which makes it natural to choose the hyperpriors for these parameters
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Fig. 1. The point pattern formed by the species C. Longifolium (left) and O. mapoura (right)
observed in a 50-ha study plot on Barro Colorado Island, Panama.

independently. This makes hyperprior selection transparent and we avoid tuning two
precision parameters; see Simpson et al. (2017) and Riebler et al. (2016) for a similar
formulation for the BYM-model (Besag et al., 1991).

The second issue to consider is prior sensitivity. Prior choices for hyperparameters in
Bayesian hierarchical models are crucial as these govern the variability and strength of
dependence for the underlying latent field. Especially, sensitivity to hyperprior choices
for precision parameters of random effects represents a major challenge (Roos and Held,
2011) and commonly used Gamma priors are not necessarily appropriate (Lunn et al.,
2009). The prior choice for the precision parameter τ in (2) will have a major influence
on posterior results and it is essential that we are able to interpret the results in terms of
prior information. This is facilitated using the framework of PC priors (Simpson et al.,
2017), in which the informativeness of hyperpriors are adjusted in an intuitive way by
user-defined scaling parameters.

Thirdly, the spatial field u∗ in (2) needs to be scaled to ensure that a given prior for
its precision yields the same degree of smoothness for different grid resolutions. This is
automatically the case for Gaussian (Markov) random field priors (Cressie, 1993; Rue and
Held, 2005). However, if the spatial model is intrinsic, the marginal variance will depend
on the grid resolution and the model needs to be scaled to give a unified interpretation
for its precision parameter. One approach to avoid this issue is to scale the model in
terms of its generalised variance (Sørbye and Rue, 2014).

This paper illustrates the use of the model in (2) for the analysis of two rainforest
species from BCI, based on the 2005 census of the BCI data. These include the point
patterns of the species Calophyllum longifolium (1461 trees) and Oenocarpus mapoura
(2027 trees) (Figure 1). For the analysis, the 50-ha study area is discretized into equally
sized grid cells, for which we also have measurements of elevation and slope. In addition,
data are available of the soil content of different elements, including Aluminium (Al),
Boron (B), Calcium (Ca), Copper (Cu), Iron (Fe), Potassium (K), Magnesium (Mg),
Manganese (Mn), Phosphorus (P) and Zinc (Zn). All of these variables can potentially
be included as fixed covariates in (2), but to avoid problems with multicollinearity a
variable selection approach is used here.
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The full analysis of these examples is discussed in Section 3. However, to initially
illustrate our point in how hyperpriors influence the analysis, we consider the posterior
95% point-wise credible intervals for the effects of different covariates (Figure 2). Using
an ordinary generalised linear model (GLM) with only fixed effects, quite a few of the
covariates are significant (black intervals). This is not surprising as the GLM-method un-
derestimates the variance as spatial autocorrelation is ignored, giving too narrow credible
intervals. When the random field component in (2) is included, the hyperprior specifica-
tions for τ and φ will influence both the location and the width of the credible intervals.
First, the random field component can be confounded with the effects of the covariates.
This can cause a change of sign in the covariate effects, as seen here for the effect of
Elevation on O. mapoura. Second, a more detailed spatial field can reduce the covariate
effects. To control this, the model should be run for a range of hyperprior settings for τ
as these settings govern the smoothness of the spatial field. As explained in Section 2.2.1,
this smoothness is controlled by a parameter Uσ in the prior for τ , representing an upper
limit for the marginal standard deviation σ = 1/

√
τ .
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Fig. 2. The posterior mean and 95% point-wise credible intervals for the linear effects of fixed
covariates for C. longifolium (left) and O. mapoura (right). The black intervals show results using
an ordinary generalized linear model with only linear effects of the covariates. For the other
intervals, the PC prior for τ in (2) is scaled in terms of a user-defined scaling parameter Uσ,
prescribing a maximum value for the marginal standard deviation τ−1/2, here using Uσ = 0.05
(red), Uσ = 0.10 (green), Uσ = 0.20 (blue), Uσ = 0.5 (cyan), Uσ = 1.0 (purple) and Uσ = 2.0
(grey).

Further details on the modelling approach taken here are given in Section 2, includ-
ing scaling, computation, tuning of hyperpriors and implementation details using the
methodology of integrated nested Laplace approximations (INLA) (Rue et al., 2009).
Specifically, the suggested model is implemented in the R-package R-INLA, which makes
the proposed model accessible to users. Alternatively, log-Gaussian Cox processes can be
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analysed using Markov chain Monte Carlo (MCMC) methods (Taylor and Diggle, 2014).
Section 3 thoroughly discusses the fitting of the proposed model to the example pat-

terns, represented as lattice data on a regular grid. The analyses include interpretations
of covariate associations and the posterior random fields. Discussion and concluding re-
marks are given in Section 4. The appendix 5 provides a brief review of the principles
underlying computation of penalised complexity priors.

2. Modelling details

Log-Gaussian Cox processes may be interpreted as latent Gaussian models (Rue et al.,
2009) where the observations are conditionally independent, given a latent Gaussian field
η = {η(s), s ∈ Ω}. Here, we consider the case where the bounded observation window Ω
is gridded into equally sized grid-cells and the set {yi}ni=1 denotes the number of points
in n grid cells {si}ni=1. The conditional distribution of the counts is then assumed to
approximately follow a Poisson distribution, i.e.,

yi|η(s) ∼ Poisson
(∫

si

exp(η(s))ds

)
≈ Poisson(|si| exp(η(si))). (3)

The area of a grid cell is |si| and η(si) denotes a representative value of the point log-
intensity in cell si. Since the latent field η(.) may be chosen flexibly, log-Gaussian Cox
processes can be extended to analyse complex spatial point patterns, for example repli-
cated point patterns and point patterns with marks (Illian et al., 2012a,b, 2013). Also,
these processes can be analysed using a continuous representation of the spatial field
(Simpson et al., 2016). However, the fitting of these models using a Bayesian framework
involves challenges, especially in terms of how hyperprior assumptions influence the in-
ference. Unless we can communicate the meaning and interpretation of the role of priors
for the hyperparameters, we cannot appropriately communicate the role of the latent
model itself.

2.1. Spatial field specifications including scaling
Consider the case where the spatially structured field u = (u1, . . . , un) in (2) is an intrin-
sic conditional auto-regressive (ICAR) model (Besag et al., 1991). This prior is commonly
applied to model underlying spatial dependence structures between neighbouring obser-
vations in Bayesian hierarchical models (Banerjee et al., 2004; Assunção and Krainski,
2009). The ICAR models are not proper but have several beneficial properties (Besag
and Kooperberg, 1995). In particular, these models fit very nicely within the framework
of PC priors as the models can be seen to penalise local deviation from their null space,
as explained below.

Specifically, consider the ICAR prior defined on a regular lattice, also referred to as
a second-order intrinsic Gaussian Markov random field (IGMRF) (Rue and Held, 2005,
Section 3.4.2). The density of this model is defined by

π(u | τu) ∝ τ
1

2
(n−2)

u exp

(
−1

2
uTQu

)
, (4)
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where the precision matrix Q = τuR. The parameter τu denotes the precision while
R reflects the specific neighbourhood structure of the model. The precision matrix is
singular of rank n − 2 and does not specify an overall value for the mean, nor a finite
variance. This is not a problem, as one can impose linear constraints to make the variance
finite and the model then specifies a valid joint density. In fact, the rank deficiency
implies that the null space of the model is a plane (Rue and Held, 2005) and the given
model penalises local deviation from this plane. The marginal variances of the model,
integrating out the random precision τu, give information on how large we allow this
local deviation to be. This implies that the hyperprior for τu has a clear interpretation,
at least for a given model of a specified dimension.

An important feature of the IGMRF model which has usually not been accounted for
in spatial point process analysis (Rue et al., 2009; Illian et al., 2012a,b, 2013; Kang et al.,
2014), is that the marginal variances of the model depend on both the size and structure
of R (Sørbye and Rue, 2014). This implies that a chosen prior for τu gives different
degrees of smoothing, for different grid resolutions. To ensure a unified interpretation of
the precision parameter τu, the model u needs to be scaled. One way to do this is to
consider the generalised variance of u, computed as the geometric mean

σ2GV(u) =
1

τu
exp

(
1

n

n∑
i=1

log(σ2ii)

)
,

where σ2ii are the diagonal elements of the generalised inverse of R (Sørbye and Rue,
2014). The generalised variance can be seen to represent a characteristic or typical
level for the marginal variances. For the given second-order IGMRF on a lattice, this
generalised variance will increase by a factor of k2 if the resolution for a study region
is refined from n × n to kn × kn grid cells (Lindgren et al., 2011). Scaling R to have
a generalised variance equal to 1 (Sørbye and Rue, 2014) makes the hyperprior for τu
invariant to grid resolution.

2.2. Tuning hyperparameters using PC priors
When the scaled IGMRF-model u∗ is used, the random field component in (2), defined
by

ψ(s) =
1√
τ

(√
φu∗(s) +

√
1− φv(s)

)
(5)

is also scaled. This ensures that the precision parameter τ of the reparameterised model
component has the same interpretation for different grid resolutions. Obviously, the grid
resolution can still have a minor influence on the results as grid resolution impacts on the
accuracy of the Poisson approximation in (3), where a very fine resolution yields a more
accurate approximation than a coarser resolution. However, the higher the resolution
the higher the required computation time – a trade-off that is relevant in practice. This
will be discussed further for the data examples in Section 3.

The parameter τ represents the marginal precision of the random field component, and
the prescribed size of this random effect is governed by the hyperprior specification for τ .
Further, for a given finite precision, φ ∈ (0, 1) can be interpreted as a mixing parameter
which blends in spatial dependence in the model. As the two hyperparameters τ and φ
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control different features of the fitted random field, it is natural to assign independent
hyperpriors to these parameters.

To facilitate control and interpretation of hyperprior choices, we use the recently
developed framework of PC priors (Simpson et al., 2017). A main idea of this framework
is that a random component, as in (5), can be seen as a flexible version of a simpler base
model. An exponential prior is then assigned to a univariate measure of deviance from
the flexible model to the simpler model, and transformed to give the PC prior for the
parameter of interest, see Appendix 5 for the general principles used to compute the PC
prior.

An important motivation for the given reparameterisation is to provide a proper se-
quence of base models, which can be used to derive PC priors for the hyperparameters
φ and τ , separately. Here, the simplest base model is one with no random effect, which
corresponds to infinite precision τ . This implies that given the covariates the pattern
exhibits complete spatial randomness as represented by a homogeneous Poisson process.
For a finite value of τ , an alternative base model is defined as having no spatially struc-
tured effect (φ = 0). This could for example correspond to locally over-dispersed point
patterns, where the over-dispersion has no spatial structure and is picked up by the error
field.

2.2.1. The PC prior for the marginal precision τ
In general, the PC prior for a precision parameter τ (Simpson et al., 2017) is derived
by assuming no random effect as the base model. In deriving the PC prior for τ in (5),
the flexible and base models are defined by (n − 2)-dimensional multinormal densities,
f1 = πG(0, τ−1Σ) and f0 = πG(0, τ−10 Σ), respectively. Here, τ << τ0, where τ0 is a large
fixed value while

Σ = φR−1 + (1− φ)I,

where R−1 is the generalised inverse of R in (4). Notice that this structure is similar
to the approach in Leroux et al. (2000), who express the precision matrix of the model
component as a weighted average of the precision matrices for the structured and unstruc-
tured components. Also, they do not assume thatR is scaled, which makes interpretation
of φ difficult.

The deviation of f1 from the base model f0 is defined as the univariate distance
measure

d(τ) =
√

2KLD(f1||f0) =

√
(n− 2)τ0

τ
,

where KLD is the Kullback-Leibler divergence (Kullback and Leibler, 1951). Using a
principle of constant rate penalisation (Simpson et al., 2017), the distance d(.) is assigned
an exponential distribution with rate θ. Note that this automatically gives a prior on
the distance, with its mode at the base model. By a change of variables, the resulting
prior for τ is the type-2 Gumbel distribution, i.e.,

π(τ) =
λ

2
τ−3/2 exp

(
− λ√

τ

)
, τ > 0 (6)
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where λ = θ
√

(n− 2)τ0, and where θ is kept constant when τ0 → ∞. This density
corresponds to using an exponential prior on the standard deviation σ = τ−1/2.

The parameter λ controls how fast the model shrinks towards the base model and to
govern the size of (5) it is essential that reasonable values of λ can be inferred intuitively.
A natural suggestion (Simpson et al., 2017) is to impose an upper limit U for the marginal
standard deviation,

P (σ > Uσ) = ασ, (7)

where ασ is a small probability. This implies that λ = − lnασ/Uσ where Uσ is a
user-defined scaling parameter. To suggest reasonable values of Uσ, we notice that the
marginal standard deviation of a random effect w ∼ N(0, τ−1I) is about 0.31Uσ, when
τ is integrated out. Assuming that the value of w is within three times the standard
deviation, it seems reasonable that Uσ represents a prescribed maximum value for the
model component ψ in (5). Equivalently, exp(Uσ) represents an a priori chosen upper
limit for the point intensity for each cell that is explained by the random component
rather than the covariates.

2.2.2. The PC prior for the mixing parameter φ
Assuming a finite precision parameter in (5), a natural base model corresponds to having
a random effect which is just random noise with no spatial structure, obtained when
φ = 0. The PC prior for φ (Simpson et al., 2017) is now derived by considering the
deviation between the flexible Gaussian model f1 = πG(0, φR−1 +(1−φ)I) and the base
model f0 = πG(0, I). The resulting distance measure is

d(φ) =
√
φ
(
tr(R−1)− n

)
− ln |φR−1 + (1− φ)I|, (8)

which can be computed efficiently by embedding the model onto a larger torus (Rue and
Held, 2005, ch. 2). In practice, the exponential prior assigned to d(φ) is transformed to
give a prior for logit(φ), as φ is bounded. The resulting prior can not be expressed in
closed form, but computed numerically making use of the standard change of variable
transformation.

To complete the specification for the prior we again need to infer a value for the rate
parameter of the exponential distribution. Simpson et al. (2017) suggest to infer the rate
parameter based on

P (φ < Uφ) = αφ, (9)

where αφ > d(Uφ)/d(1). For example, a reasonable formulation might be P (φ < 0.5) =
2/3, which gives more density mass to values of φ smaller than 0.5 (Riebler et al., 2016).
A priori, we then assume that the unstructured random effect accounts for more of
the variability than the spatially structured effect. The robustness of this prior will be
investigated in Section 3.

2.3. Implementation in the R-INLA package
The reparameterised model component combining the spatially structured and unstruc-
tured effect is specified in R-INLA as the latent model component rw2diid. It combines
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the spatially structured effect on a grid (rw2d) with the spatially unstructured random
error term iid, as defined in (2). In addition, we can easily specify one or several fixed
covariates (cov) in the predictor. Let y denote the number of points in each grid cell,
the grid cells being numbered from 1 to n (index) where n = nrow × ncol. All of the
relevant variables (y, cov, index) need to be provided as a list or data frame (data).
The formula and the resulting call to inla is then specified as follows:

> formula = y ~ cov + f(index, nrow = nrow, ncol = ncol, model = "rw2diid",
scale.model = TRUE,
hyper = list(prec = list(prior = "pc.prec",

param = c(U.sigma, alpha.sigma)),
phi = list(prior = "pc",
param = c(U.phi, alpha.phi))),

> result = inla(formula, family = "poisson", data, E = Area)

By default, the rw2diid-model is implemented using the scaled IGMRF-model on a
lattice, having generalized variance equal to 1. This can also be specified using the
option scale.model = TRUE in the model formulation. As already explained, this option
is important in practice as we can then use the exact same prior for τ for different grid
resolutions. If the model is not scaled, the prior needs to be adjusted to give the same
degree of smoothness when the grid resolution is changed.

The penalised complexity priors for the precision and mixing parameter are specified
as the hyperprior choices “pc.prec” and “pc”, respectively, in which the user provides
values for the scaling parameters and probabilities in (7) and (9). By default, the PC
prior for the precision is implemented using (Uσ, ασ) = (1, 0.01) in (7). For the mixing
parameter in (9), the upper limit is by default set equal to Uφ = 0.5 while αφ is set equal
to a value close to the allowed minimum value d(Uφ)/d(1).

3. Careful prior specification in practice

A main motivation of this paper is to use the reparameterised model formulation in
(2) to facilitate interpretation of hyperpriors and communicate how these influence the
statistical analysis to practitioners. In this section, we study how covariate associations
depend on hyperprior choices and propose some simple interpretations of the estimated
hyperparameters and model components in the context of habitat assciation models
for several rainforest species. We also consider how a change in grid resolution would
influence the results.

3.1. The data set and covariate selection
We consider the spatial patterns formed by the rainforest species C. longifolium and O.
mapoura from the BCI-rainforest dataset, introduced in Section 1; see Figure 1. These
species were chosen since there was an expectation that habitat associations and seed
dispersal patterns were different for the species, based on previous work (Harms et al.,
2001; Muller-Landau et al., 2008). In addition to spatial locations of a large number of
tree species, the dataset includes measurements on two topographical variables, terrain
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elevation and slope, and thirteen different soil nutrients, which can be included as fixed
covariates. Using a lattice-based approach, the 50-ha study plot is initially gridded into
50 × 100 grid cells. We fit a log-Gaussian Cox process to the data as detailed above,
assuming that the number of trees in each grid cell follows a Poisson distribution, as
given by (3).

When necessary, the observed covariates have been log-transformed to reduce skewness
and all of the covariates have been standardised prior to the analysis. This justifies using
the same prior on all coefficients β in (2), which are assigned independent zero-mean
Gaussian priors with precision 10−3. As the covariates are highly correlated, we choose
to select a subset of the covariates in which the variance inflation factor is less than
5 to avoid biased results due to multicollinearity. Also, we remove variables that are
non-significant in an initial generalized linear model. The resulting set of covariates are
slightly different for the two different species. For C. longifolium, the variable selection
procedure suggested including two topographical variables (Elevation and Slope) and
three soil nutrients (Aluminium, Manganese and Zinc) in the model. For the species
O. mapoura, five soil nutrients (Aluminium, Copper, Iron, Magnesium and Zinc) were
included in addition to the two topographical variables.

Reich et al. (2006) point out that the deletion of scientifically relevant variables to
avoid multicollinearity can potentially result in a model that is difficult to interpret. Also,
the estimates of the coefficients could be biased but they should be more precise (Reich
et al., 2006). For example, in this case the procedure eliminated soil P concentration,
which is known to be an important predictor of tree distributions in Panama (Condit
et al., 2013), but is also often correlated with exchangeable soil Al concentrations and
pH (Brady and Weil, 2013). An alternative to the variable selection chosen here is to use
principal components to summarise covariate effects based on all the variables, which was
the approach taken by John et al. (2007) for the analysis of tree distributions in response
to soil resource availability on the BCI plot. These can easily be included as fixed effects
in the proposed model, but here we have chosen to focus on individual covariate effects
as well as a linear combination of these.

3.2. Significance and interpretation of covariate associations
With the aim of identifying habitat association the spatial point patterns formed by the
two species are analysed to establish which covariates potentially influence the spatial
distribution of the observed points. We consider the soil nutrients and topographical
variables and assess which variables have a significant association with the local intensity
of trees for each of the patterns in Figure 1. This is not trivial as the results need to
be interpreted with care, keeping in mind the model assumptions. Specifically, we need
to be aware that statistical significances of covariate associations might be due to model
misspecification rather than ecologically meaningful mechanisms. For example, this is
likely to be the case when we use a simple GLM, where spatial autocorrelation is ignored.

To make realistic conclusions concerning covariate associations, it is essential to con-
sider the results for a reasonable range of prior input values. Using the model formulation
in (2), the scaling parameter Uσ in (7) plays a key role in adjusting prior information.
Recall that this parameter can be seen as a prescribed maximum value for the effect of
the random field component, explaining the variation of the log-intensity of a pattern.



Careful prior specifications for LGCP 13

A very small value of the scaling parameter corresponds to using an informative spatial
prior model, here equal to a plane. Often, such a model would not explain spatial auto-
correlation sufficiently. The variance is then underestimated, giving too narrow credible
intervals for the covariates and frequentistic coverage properties of the model will be
poor. A large value of Uσ corresponds to using a non-informative prior, allowing for
large local deviation from the plane. Used carelessly, this might produce an overfitted
random effect which masks relevant covariate effects due to spatial confounding. This
trade-off in scaling the hyperprior for τ has a crucial effect on the results. In contrast,
the results are very robust to tuning the hyperprior for φ. This has been investigated for
the given model with Uφ = 0.5 by varying the probability αφ from the allowed minimum
value to a value of 0.8.

Figure 2 summarises the posterior mean and 95% point-wise credible intervals for
the fixed covariate effects, using six different values of Uσ ranging from 0.05 to 2.0.
Recall that exp(Uσ) represents a prescribed upper limit for the proportion of the point
intensity of each cell, explained by the random component. For C. longifolium, Al is non-
significant using the minimum value of Uσ = 0.05. Mn has a significant positive effect
when Uσ ≤ 0.2, but then turns non-significant. Elevation, Slope and Zn concentration
remain significant also using a very high value of Uσ which then corresponds to a non-
informative analysis. In this species the relationships with topographic variables are
supported by earlier analyses of associations to discrete habitats on the BCI plot, which
also found that C. longifolium was positively associated with slopes (Harms et al., 2001).
A previous analysis has also highlighted the potential importance of high Al and Mn
concentrations on the BCI plot correlates of species distributions, although effects on C.
longifolium were not detected explicitly and the mechanisms underlying these patterns
are unclear (Schreeg et al., 2010).

The spatial distribution of O. mapoura is significantly associated with Elevation,
Slope, Cu, Fe and Zn. A previous analysis has detected a positive association of O.
mapoura to a swamp located in one part of the BCI plot (Harms et al., 2001), and the
analyses presented here suggest that this may be accompanied by effects of slope and soil
chemistry. Although associations of plant distributions with elements such as Cu, Fe and
Zn are not commonly detected, analyses of the BCI plot data have determined a role for
all these elements in niche structure (John et al., 2007), and effects on the distribution
of individual species are therefore reasonable. Further research is required to understand
the mechanisms that drive these patterns of plant distribution in response to elements
that are not required in large quantities for plant growth, or may even be toxic (John
et al., 2007; Schreeg et al., 2010).

3.3. Assessing bias properties
To investigate the bias properties of the proposed model, we performed a simulation study
generating 500 point patterns from (2) using different sets of pre-defined parameter values
for β. To generate patterns in a realistic way, we used the fitted random effect for the
two species corresponding to the prior choices P (σ > 1) = 0.01 and P (φ < 0.5) = 2/3.
Using the fitted random effect for the species C. longifolium, the true parameter values
for the fixed effects were set equal to β′ = (−0.5, 0.2, 0, 0.2,−0.3) corresponding to the
covariates Elevation, Slope, Al, Mn and Zn, respectively. For the species O. mapoura, we
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used β′ = (0.3, 0.1, 0,−0.3, 0.3, 0,−0.1) for the effects of the covariates Elevation, Slope,
Al, Cu, Fe, Mg and Zn. To speed up calculations, we used a regular lattice with 25× 50
grid cells which only give minor differences in the results compared to using a finer grid.
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Fig. 3. The average bias for 500 simulated point patterns using Uσ = 0.05 (black), Uσ = 0.10
(red), Uσ = 1.00 (green) and Uσ = 2.00 (blue). The patterns are generated based on (2), using
specified parameter values for the covariate effects and the fitted random effect for the species
C. longifolium (left) and O. mapoura (right) corresponding to the prior choices P (σ > 1) = 0.01
and P (φ < 0.5) = 2/3.

As illustrated in Figure 3, the resulting average biases are quite small and decreasing
as a function of Uσ. We have not included the bias using GLM, but in the case of O.
mapoura, the GLM approach gives a negative effect of Elevation, having a bias equal
to approximately -0.5. We repeated the simulation study assuming a negative effect of
Elevation (β1 = −0.30). In this case, both GLM and the approach using our proposed
model correctly estimated a negative effect of this covariate.

3.4. Interpretation of estimated hyperparameters and model components
A possible interpretation of Uσ is to view the size of this parameter as a prior measure of
misspecification in modelling the log-intensity in a given grid cell. This reflects that infer-
ence is made in dependence on how certain we are to have included all potential causes of
aggregation in the model. The statements and conclusions we end up with should then be
interpreted conditional on the size of the unexplained effect. The model misspecification
has two sources corresponding to the role played by the spatially structured effect u and
the random error term v in (2). The spatial field u models over-dispersion in cell counts
due to between-cell random effects which are not captured by other terms in the models.
In essence, these represent non-local dependencies introduced by failing to model the
mean correctly. The error field v captures the within-cell over-dispersion, which can be
due to un-modelled random effects that might have led to increased local clustering in
the point pattern. We can then interpret the mixing parameter φ as the balance between
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Table 1. C. longifolium: Estimated hyperparameters including 95% credible intervals and the de-
viance information criterion (DIC) for different choices of the scaling parameter Uσ, using two different
grid resolutions.

50× 100 100× 200

Uσ σ̂ (95% CI) φ̂ (95% CI) DIC σ̂ (95% CI) φ̂ (95% CI) DIC
0.05 1.54 (1.39, 1.69) 0.71 (0.63, 0.78) 5113 1.78 (1.62, 1.97) 0.72 (0.65, 0.79) 8153
0.10 2.02 (1.79, 2.27) 0.83 (0.76, 0.88) 5066 2.33 (2.09, 2.59) 0.83 (0.77, 0.87) 8077
0.20 2.64 (2.29, 3.03) 0.90 (0.86, 0.94) 5035 3.07 (2.69, 3.49) 0.90 (0.86, 0.93) 8031
0.50 3.50 (2.99, 4.10) 0.95 (0.92, 0.97) 5010 4.16 (3.51, 4.86) 0.95 (0.92, 0.97) 7996
1.00 4.05 (3.42, 4.76) 0.96 (0.94, 0.98) 5001 4.85 (4.08, 5.84) 0.96 (0.94, 0.98) 7982
2.00 4.41 (3.71, 5.21) 0.97 (0.95, 0.98) 4996 5.41 (4.49, 6.43) 0.97 (0.95, 0.98) 7975

Table 2. O. mapoura: Estimated hyperparameters including 95% credible intervals and the deviance
information criterion (DIC) for different choices of the scaling parameter Uσ, using two different grid
resolutions.

50× 100 100× 200

Uσ σ̂ (95% CI) φ̂ (95% CI) DIC σ̂ (95% CI) φ̂ (95% CI) DIC
0.05 0.59 (0.49, 0.70) 0.38 (0.23, 0.54) 7976 0.66 (0.50, 0.82) 0.43 (0.26, 0.63) 13053
0.10 0.74 (0.64, 0.84) 0.46 (0.30, 0.61) 7924 0.83 (0.71, 0.97) 0.43 (0.27, 0.59) 12923
0.20 0.85 (0.72, 0.99) 0.54 (0.37, 0.70) 7902 0.97 (0.83, 1.11) 0.50 (0.33, 0.66) 12874
0.50 0.97 (0.80, 1.16) 0.63 (0.45, 0.79) 7890 1.10 (0.96, 1.23) 0.58 (0.45, 0.71) 12852
1.00 1.03 (0.84, 1.25) 0.67 (0.49, 0.82) 7886 1.16 (1.01, 1.31) 0.62 (0.48, 0.74) 12843
2.00 1.08 (0.86, 1.32) 0.69 (0.51, 0.84) 7883 1.21 (1.05, 1.37) 0.65 (0.52, 0.77) 12838

within- and between-cell misspecification and hence the relative importance of local and
larger scale clustering that cannot be explained by the covariates alone.

Table 1 and 2 summarise the estimated hyperparameters for the two species, using
both 50 × 100 and 100 × 200 grid cells. For illustration, we also include the deviance
information criterion (DIC) (Spiegelhalter et al., 2002), which is a commonly applied
criterion in Bayesian model selection. Obviously, this criterion can not be used to select
Uσ automatically as it just decreases as the prescribed variability of the model increases.
The results illustrate that the estimated values of σ and φ typically increase as a function
of Uσ. This is natural and suggests that as the model marginal variance increases, the
within-cell variation becomes less important and more of the variability is explained by
the spatially structured term. It is difficult to specify a recommended balance between
these two types of misspecification, but a value of φ close to 1 might indicate that the
spatially structured field dominates too much.

For the species C. longifolium φ gets close to 1 rather quickly as Uσ is increasing.
This may be indicating the relative unimportance of the error field and hence the relative
irrelevance of local clustering. Conversely, for the species O. mapoura increasing values of
Uσ result in medium sized φ. Hence, in contrast to the what we saw for the first species,
the error field representing local clustering plays a relatively bigger role in explaining the
spatial pattern formed by the trees.

Associations between underlying biological processes and the point pattern formed
by a species are typically much more complex than what we are able to capture with a
simple statistical model. The specific point pattern formed can for example be influenced
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by interaction with other species, dispersal limitations and a mix of abiotic and biotic
processes. To gain further insight, we consider the estimated sum of the fixed covariate
effects and the posterior random fields to see whether these enable ecologically meaningful
interpretations.
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of the fixed covariate effects (without intercept), the weighted spatial component, the weighted
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Fig. 5. O. mapoura: From left to right the figures illustrate the posterior means of the sum of the
fixed covariate effects (without intercept), the weighted spatial component, the weighted error
component, and the linear predictor (without intercept), using Uσ = 0.05 (upper panels) and
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Figures 4 and 5 illustrate the posterior means of the fitted log-intensity, decomposed
into three components – the sum of the fixed effects of covariates, the weighted spatially
structured effect u∗√φ/τ , the weighted error term v

√
(1− φ)/τ and the combination of

these, the resulting linear predictor. Again, it is useful to consider the results for different
scaling parameters, here Uσ = 0.05 (upper panels) and Uσ = 1.0 (lower panels). For both
species, the summarised effect of the fixed covariates do not seem to change substantially
with the different choices of the scaling parameters, while the spatially structured field
clearly becomes more detailed. The error fields are also quite similar for both choices of
Uσ.

These results are robust to changes in the grid resolution of the study plot. This
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has been investigated dividing the given area into 50 × 100 and 100 × 200 grid cells,
respectively. Running times increased from an average of 5 minutes for the rougher
grid to almost 2 hours for the finer one. By using a scaled spatial component in (2),
we have ensured that both the results summarising the significance of covariates and
the interpretations of the random field effects are similar when the grid cell resolution is
changed. The PC prior for φ is not invariant to grid resolution by construction. However,
Tables 1 and 2 illustrate that the estimates of φ are very similar for the two different
grid resolutions. This can also be seen in Figure 6, which gives the posterior marginals
of both σ and φ when Uσ = 1, for both resolutions.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Standard deviation σ

D
e
n
s
it
y

0.90 0.92 0.94 0.96 0.98 1.00

0
1
0

2
0

3
0

4
0

Mixing parameter φ

D
e
n
s
it
y

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0
1

2
3

4
5

Standard deviation σ

D
e
n
s
it
y

0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Mixing parameter φ

D
e
n
s
it
y

Fig. 6. Posterior marginals for the standard deviation and the mixing parameter using grid
resolution equal to 50×100 and 100×200 (red), when Uσ = 1.0 for C. longifolium (upper panels)
and O. mapoura (lower panels).



18 Sørbye, Illian, Simpson, Burslem and Rue

3.5. A note on restricted spatial regression
A potential alternative to the proposed method is to apply a restricted spatial regres-
sion approach, in which the spatial field is constrained to be orthogonal to the space
spanned by the fixed covariates (Reich et al., 2006; Hodges and Reich, 2010; Hughes
and Haran, 2013; Hanks et al., 2015). This is motivated by the fact that inclusion of
spatially-correlated field in a model with fixed effects causes shrinkage and possibly bi-
ased estimates for the mean and variance of the fixed-effect coefficients (Reich et al.,
2006; Hodges and Reich, 2010).

We can easily implement the idea of restricted spatial regression using (2). However,
the implied assumption of no spatial confounding between the fixed and random effects
is very strong as the observed fixed effects are attributed as much variability as possible.
This typically leads to credible intervals that are inappropriately narrow under model
misspecification (Hanks et al., 2015). Also, using a restricted spatial regression approach
we loose flexibility as the effects and credible intervals for the observed covariates are
invariant to the choice of Uσ.

We can not recommend this approach, as it seems unrealistic to assume that unob-
served biological processes reflected by the random fields are completely independent of
the observed covariate information. In addition to false significances of the fixed covari-
ates, interpretation of the resulting random fields is difficult. Meaningful interpretation
of the posterior random fields is important as these might reflect underlying biological
processes. They can hence be interpreted and should not necessarily be considered a
nuisance that needs to be accounted for (Hamel et al., 2012; Illian and Burslem, 2017).
They may also be used for knowledge elicitation, pointing to biological mechanisms that
cause aggregation but have not been included in the model, as we will see below.

4. Discussion and concluding remarks

For the species C. longifolium habitat association was expected based on its positive
association with the slope habitat and negative association with the flat habitat in pre-
vious analyses of the same plot data (Harms et al., 2001). The species is known to be
well dispersed, hence local clustering was not expected and the results have confirmed
this (Harms et al., 2001; Muller-Landau et al., 2008). In addition, inspection of the
spatial field in Figure 4 shows clear medium scale clustering that the covariates we ex-
amined cannot explain. This clustering might be related to the activity of the diverse
assemblage of vertebrate secondary dispersers and seed predators that are known to be
attracted to the fruits of this species (e.g. Adler and Kestell (1998)). Secondary disper-
sal and larder-hoarding of large tropical tree seeds may cause aggregations at medium
scales that decouples the spatial structuring of recruitment from that of adults, which
may be exacerbated by density-dependent mortality close to adult trees. These processes
highlight the complexity of the interactions that determine spatial structure in tropical
tree populations, including effects of biotic components of the community that are not
captured by the covariates included in previous analyses. Through this example we have
demonstrated that the modelling approach allows us to account for small and interme-
diate scale clustering while assessing the relative importance of either of these and also
while providing potential interpretation of reason for larger scale clustering unexplained
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by the covariates.
For O. mapoura significant habitat associations were expected (Harms et al., 2001;

Muller-Landau et al., 2008) because this palm is a known specialist of the swamp habitat
on the plot. The spatial field in Figure 5 shows a trend that covariates cannot explain, in
particular, the high intensity of points in the bottom right hand corner of the plot. The
cause of this cluster remains uncertain, but this corner has the lowest elevation across
the plot and there may be aspects of the hydrological regime there that are particularly
suitable for this species. In contrast to the other species, local clustering was to be ex-
pected here due to known seed dispersal limitation. This example allowed us to illustrate
that we are able to establish the significance of covariate effects and their sensitivity to
the smoothness (and hence potential overfitting) of the spatial field while accounting for
both local and larger scale clustering and establishing their relative importance to the
pattern.

An observed spatial point pattern represents one realisation of a random spatial point
process. The fact that we have only one realisation of a random process is challenging as
a statistical model including a spatially structured random field is easily overfitted to the
observed pattern. This implies that valuable ecological information might not be revealed
due to spatial confounding. However, underestimation of spatial autocorrelation could
also give misleading results in terms of false significances of associations between the
point pattern intensity of a species and covariates reflecting environmental conditions.
For the given log-Gaussian Cox model, this trade-off is governed by the hyperprior choices
for the precision of the included random field component. To avoid over-interpretation
of the results, it is essential to fit models using a reasonable range of hyperprior choices.

In order to define reasonable hyperprior choices, the hyperparameters need to have
clear interpretations. This is achieved here by viewing the spatially structured and
unstructured random fields as one random component, parameterised in terms of two
hyperparameters. The common precision parameter represents marginal precision and
governs the total variability explained by the random component. The mixing parameter
distributes this variability between the spatially structured and unstructured term. By
using the PC prior framework, we are able to control the effect and informativeness of
these random fields using interpretable probability statements to tune the hyperpriors in
an intuitive way. Also, the scaling of the spatially structured model ensures that given
hyperprior choices can be transferred for analyses using different grid resolutions.

The given model formulation represents a first step towards explicitly communicating
hyperprior choices in spatial point pattern analysis, fitting a log-Gaussian Cox process
to an observed spatial point pattern. Ṫhe framework of log-Gaussian Cox processes is a
versatile and flexible tool in spatial point pattern analysis, and care should be taken to
facilitate correct ecological interpretation of the statistical results. The issues discussed
here, are equally relevant in non-Bayesian settings where the choice of smoothing pa-
rameters impact the results in a similar way and an explicit discussion of these issues
is equally ripe. An important future aim is to extend the given ideas to more complex
modelling of the log-intensity, for example including non-linear effects of covariates, in-
teraction between species and also to joint models of point patterns with marks as in
Ho and Stoyan (2008) and Illian et al. (2012a). This requires further work in terms
of model formulation, in which the total variance explained by random components is
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distributed between several model parameters, aiming to make the effect and influence
of all hyperprior choices transparent.
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5. Appendix: A brief review on computation of penalised complexity priors

The computation of PC priors for a given parameter ξ is based on four principles. For
ease of readability, these are listed below. We refer to Simpson et al. (2017) for further
details on computation of PC priors, including a wide range of examples.

1. Occam’ razor: Assumet that f1 = π(x | ξ) represents a flexible version of a simpler
base model f0 = π(x | ξ = ξ0). The prior for ξ is computed to penalise deviation
from the flexible model to the base model. This ensures that the constructed prior
prefers the simpler model, until there is enough support for a more complex model.
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2. Measure of complexity: The PC prior is assigned to a function of the Kullback-
Leibler divergence (KLD) (Kullback and Leibler, 1951), which represents a measure
of complexity between two densities. Explicitly,

KLD(f1 ‖ f0) =

∫
f1(x) log

(
f1(x)

f0(x)

)
dx,

To facilitate interpretation, this deviation is transformed to a unidirectional measure
of distance between the two densities, defined by

d(f1 ‖ f0) =
√

2KLD(f1 ‖ f0). (10)

3. Constant-rate penalisation: The prior for d is chosen according to a principle of
constant rate penalisation

π(d+ δ)

π(d)
= rδ, d, δ ≥ 0, (11)

where r ∈ (0, 1). Consequently, the relative change in the prior for d is independent
of the actual distance and d is exponentially distributed,

π(d) = λ exp(−λd),

where r = exp(λ). The prior for ξ follows by a standard change of variable trans-
formation and will always have its mode at the base model.

4. User-defined scaling: The effect (or size of deviation from the base model) of a
random component is adjusted by an intuitive scaling parameter, incorporating a
user-defined probability statement for the parameter of interest. For example, this
statement can be defined in terms of tail events, for example

P (Q(ξ) > U) = α,

where U represents an assumed upper limit for an interpretable transformation
Q(ξ), while α is a small probability, see on PC priors. This implies that the user
should have an idea of a sensible size of the parameter (or any transformed variation)
of interest.
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