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Abstract 10 

To better understand the fractal characteristics of coal fracture network and find the relation 11 

between 2D and 3D fractal dimensions, the improved box counting method was utilized to calculate 12 

2D and 3D fractal dimensions based on high resolution CT images of 4 coal samples (Ro from 2.915% 13 

to 4.69%). Based on the calculated 2D and 3D fractal dimension, the size of representative element 14 

volume (REV), the relationship between Df2 and Df3 and the relationship between porosity and 15 

fractal dimension were investigated extensively. As the complement of previous theoretical studies, 16 

the exponential relationship between porosity and fractal dimension was proved. By deducing 17 

formulas based on fractal theory, a novel way to get the lower self-similar region size from the 18 

relation between porosity and fractal dimension was provided. Evidently, the relation between 2D 19 

and 3D fractal dimension of coal could be expressed as           , and the slope of the line, C, 20 

depends on the average 2D fractal dimension of the sample. 21 
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1. Introduction 24 

The fractal theory was proposed initially by Mandelbrot [1] to explore the complexity of the 25 

natural world, and it was widely applied to characterize complexed pore structure. Avnir, et al. [2] 26 

reported that the surface of most materials, at molecular scale, are fractal; with the application of 27 

Scanning Electron Microscopy (SEM), Katz and Thompson [3] illustrated that the pore structure of 28 

sandstones is typical self-similar and thus could be characterized by fractal theory. Since then, 29 

fractal characterization of porous media have been studied extensively over the past three decades 30 

[4-9].  31 

According to the fractal theory proposed by Mandelbrot, the pores size distribution of a 32 

self-similar pore structure satisfies the cumulative distribution function as given in Eq. (1),  33 

                  (1) 34 

here N(L) is cumulative pore with size larger than L, and D is the fractal dimension. In the porous 35 

media research community, the fractal dimension is normally determined by experimental 36 

measurements, such as mercury intrusion curve [10], Small-angle Neutron Scattering measurement 37 

[11,12] and Nuclear Magnetic Resonance measurements [13]. Besides these indirect measurements, 38 

fractal dimension of pore space and size normally estimated with the well-known box-counting 39 

method from two-dimension rock images [14,15]. However, fractal dimensions measured through 40 

different experiments are different. For example, fractal dimensions estimated from N2 adsorption 41 

experiment represent the fractal dimension of surface and volumetric roughness, the fractal 42 

dimension measured through mercury intrusion is volumetric fractal dimension, while fractal 43 

dimension inferred from NMR data represents pore size distribution fractal.  The fractal dimension 44 

calculated by box counting method represent the fractal dimension of pore volume/area size and 45 

distribution in space, therefore, the fractal dimension calculated through box counting method is a 46 

valuable parameter to study seepage properties of porous media [16-18]. 47 



 

 

The box counting method based fractal dimension of porous media could be improved with the 48 

development of advanced and high-resolution imaging techniques (e.g., micro X-ray computerized 49 

tomography (micro-CT), Focused Ion Beam Scanning Electron Microscopy (FIB-SEM)), as the 3D 50 

high resolution images makes it possible to characterize rock sample with high resolution [19-22]. 51 

Over the last few decades, several different versions of algorithms based on box counting method, 52 

such as box rotate method [23,24], box flex method [25] and 2 other versions documented by La 53 

Pointe [26], have been proposed to calculate the fractal dimension based on porous images. 54 

However, some estimated fractal dimension of 2D and 3D sample image are larger than 3 or 2, 55 

respectively, which is unreasonable [27]. According to Cai et al. [28], this is because the influence 56 

of the minimum scale/cell size. For the improvement of the algorithm, previously, researchers took 57 

different approaches to eliminate boundary effect, which is a key factor to reduce the accuracy of the 58 

box counting method algorithm [23-27], the most common way is to resize the initial image by 59 

adding blank pixels to make the side length of image be 2
n
, n is different integers according to 60 

different initial image size, then the side lengths of boxes are set as 2
m
, where 1≤m<n, as a result, all 61 

of the initial image data can be covered by small boxes, however, this method changes the original 62 

data set by adding additional data. Small boxes used in this work can cover the original data set 63 

perfectly without any data loss or data implement by utilizing common divisors of the length and 64 

width as box sizes to avoid boundary effect. While as appeared in the literature, there is very limited 65 

research about the determination of 3D volume fractal dimension based on 3D high resolution coal 66 

sample images. Especially, the relation between 3D fractal dimension and 2D fractal dimension, 67 

and the relation between fractal dimension and porosity have not been discussed detailly, which are 68 

very important for simplifying the fractal permeability models [16-18]. 69 

For the study of the relation between 2D and 3D fractal dimension, the common accepted 70 

practice of obtaining the volume fractal dimension in 3D is using Df3=Df2+1 [1]. This is inferred 71 

from Euclidean dimension, in which, dimension of 3D object, D3, is 3, while dimension of 2D slices 72 

that make up 3D object, D2, is 2, then D3 = D2 +1, however, this approach has not been proved 73 

effective for fractal networks. Some researchers deduced the relation mathematically as 74 

Df3=3.5-    
, where     

 is the self-similar parameter of Df2 [29,30], however it is reported to be a 75 



 

 

particular self-similar model and only for three particular projections on the Cartesian coordinate 76 

planes [31]. The common practice relation was found incomprehensive to describe the relation of 77 

coal samples, and the mathematic practice has already been reported to be inaccurate.  78 

Recently, the influence factors on different types of fractal dimension have been studied 79 

extensively, some researchers utilized low temperature nitrogen gas adsorption curve and mercury 80 

intrusion curve to calculate fractal dimension of coal samples and analyze the influence factors on 81 

fractal dimension. For example, Yao et al. [5] found that surface fractal dimension of coal samples 82 

(Ro from 1.47% to 4.21%) has positive correlation with coal rank, Yao et al. [19] reported that 83 

volumetric roughness fractal dimension of coal samples (Ro from 0.79% to 4.24%) is affected by 84 

composition, such as ash, moisture, carbon, Fu et al. [32] reported the volumetric fractal 85 

dimension of low rank coals (Ro < 0.7%) has positive correlation with moisture content. Moreover, 86 

the CT technique was also widely used to calculate the fractal dimension of the coal samples. For 87 

example, Liu and Nie [33] utilized box counting method to calculate fractal dimension, and paid 88 

attention to influenced volatile matter content particularly, and found fractal dimension has a 89 

U-shaped curve relationship with Vdaf, Shi et al. [34] found that the 2D fractal dimension of coal (Ro 90 

from 0.59% to 2.25%) has positive correlation with coal rank, Zhou et al. [35] used Sierpinski-like 91 

model to calculate the fractal dimension and the results showed that fractal dimension increases as 92 

the pressure on the coal sample increases. In our study, the relation between fractal dimension and 93 

porosity deduced theoretically and the results that calculated directly from samples were compared, 94 

the results show that these results fit well with each other. Then pore area/volume fractal dimension 95 

of high rank coal (Ro from 2.915% to 4.69%) was found to be mainly influenced by porosity, the 96 

higher porosity, the bigger fractal dimension. 97 

In this work, the box counting method was utilized to study the fractal dimension of micro-CT 98 

coal images, and then the relationships among 2D fractal dimension, 3D fractal dimension and 99 

porosity were discussed. In Section 2, the algorithm of the fractal dimension calculation and the 100 

procedure of image processing were introduced. Then in Section 3, the computation results were 101 

analyzed and verified, the relationships among 3D fractal dimension, 2D fractal dimension and 102 



 

 

porosity were characterized, the influence factors were also discussed. Finally, the coal network was 103 

proved self-similar and the REV (representative elementary volume) was determined, furthermore, 104 

a novel method of finding the lower self-similar region size was introduced. 105 

2. Materials and methods 106 

2.1 Samples and coal analyses 107 

The coal samples used in this study were collected from Duanshi mine, Sihe mine, Yongan 108 

mine and Houcun mine in Qinshui Basin, Shanxi Province, China. The sample identification 109 

numbers of them are D3-2, SH3-1, YA3-2 and H3-1, respectively. Fundamental properties, such as, 110 

maximum vitrinite reflectance in oil (Ro), maceral composition and proximate analysis were 111 

measured under the China National Standard GB/T 6948-2008 and GB/T 8899-2013; and the results 112 

are shown in Table 1. As shown in this table, the Ro of these samples are 2.92%, 3.05%, 4.69% and 113 

4.06% respectively, which indicates they are anthracite in general.  114 

Table 1  itrinite reflectance, maceral composition and proximate analysis of the coal samples. 115 

 116 

2.2 X-ray CT scanning 117 

The computed tomography (CT) is a non-destructive technique that can provide quantitative 118 

detection of interior 3D structure of rocks, thus it has been used extensively for porous media 119 

research [36]. In this study, the sample was analyzed using the GE Phoenix X-ray Nanotom 120 

industrial CT instrument. The system consists of X-ray source system, detector system, 121 

mechanical turntable system, image processing system. The measured samples were cylindrical 122 

Sample NO. Ro (%) Coal maceral composition (vol. %)  Proximate analysis (%) 

  Vitrinite    Inertinite  Exinite Mad Ad Cdaf 

D3-2 2.92 66.10 0.20 0.00  0.93    34.02 84.55 

SH3-1 3.05 90.70 1.80 0.00  1.18    18.68 89.82 

YA3-2 4.69 76.20 19.00 0.00  0.76    12.22 81.01 

H3-1 4.06 63.80 31.70 0.00  1.03 9.33 83.35 



 

 

with a diameter of 2 mm and a height of 5 mm. The four samples were scanned with a resolution 123 

of 1.1μm. 124 

2.3 Image processing 125 

The rock images obtained from micro-CT scanning, need to be processed with two main 126 

steps, first reduce the noise and then do binarization before they could be used as input data to 127 

calculate their properties. 128 

2.3.1 Denoise 129 

The raw micro-CT coal images normally contain noises due to the limitation of CT scanning 130 

equipment itself. The noises may gloss some essential feature in the image that could significantly 131 

affect the accuracy of the subsequent data analyses, and thus noise reduction is prerequisites 132 

before any further implementation. In this work, the Java-based open source image processing 133 

software, ImageJ, was applied to reduce the noise of the images, the median filter method was 134 

utilized, and the radius was set as 2 pixels. Fig.1 shows the procedure of reducing the noise for a 135 

slice of coal image. Fig.1(a) presents the slide of initial image, a highlighted yellow square area 136 

was selected to be shown as an example of denoising. The selected yellow area was displayed in 137 

Fig.1(b), and then it was segmented, where red denotes for the pores and fractures in the coal 138 

sample, as shown in this figure, amount of isolated noises were observed. Fig.1(c) shows the 139 

results after noise reduction, much less noises (mainly isolated points) were found compared with 140 

that in Fig.1(b).  141 

 

(a) 



 

 

  

(b) (c) 

Figure 1. The procedure of reducing the noise in a slice of coal sample image. (a) A slice of coal 142 

image; (b) a selected area of the original image before noise reduction, (c) a selected area of 143 

image after noise reduction. 144 

2.3.2 Binarization 145 

After the coal images treated with denoise, the gray images were segmented, this was 146 

accomplished by setting a threshold value first, and then the grayscale of the pixels which were 147 

bigger than the threshold were set as 255 or set up as 0 if the grayscale of the pixels were smaller 148 

than the threshold. This process is termed as binarization, which is essential before pore and/or 149 

fracture extraction from rock images [37,38].  150 

Several methods have been used to determine the threshold for binarization, such as the 151 

bimodal method, porosity restriction method and the Digital Terrain Model (DTM). The grayscale 152 

histogram of the conventional reservoir rock, for example sandstone, images normally contain two 153 

peaks, one relates to the pores and the other relate to the rock skeleton, and thus the bimodal 154 

method is widely used for determining the threshold in conventional reservoir rock images [39,40]. 155 

While unlike the situation of conventional reservoir rock, the grayscale histogram of coal usually 156 

contains one peak, so the bimodal method is not suitable for coal image threshold estimation. 157 

Currently, the porosity is normally used as criteria to determine the threshold for coal images [41], 158 

and this is normally completed through an iterative process to select the threshold for matching the 159 

pre-measured core scale porosity, while this approach could be problematic when there is 160 

uncertainty of the pre-measured porosity, for example the coal sample may be deformed during 161 

measurement under high pressure [42]. 162 



 

 

In this work, the DTM method, widely applied in mapping field [43], was used to determine 163 

the threshold of coal images. This method was initially adopted by Taud, et al. [44] to estimate the 164 

threshold of the micro-CT rock image for porosity calculation. And recently, the DTM method 165 

was used successfully for determining the threshold value of coal sample [41]. The algorithm of 166 

DTM threshold segmentation method has been described in detail previously [44]. For any CT 167 

image, the relationship estimated porosity ϕ(x) to its corresponding gray value x can be obtained 168 

[41]. The essence of calculating surface porosity of an image is to find the minimum of the 169 

function ϕ(x), then the threshold is said to be the grey value corresponds to the minimum of the 170 

function ϕ(x) [44]. For example, choose 4 images equidistantly from all the images of D3-2 and 171 

calculate their threshold values, the results are 40, 42, 40, 43, the average is 41, so the threshold 172 

value of D3-2 in this work is set as 41. Subsequently, the same method was used to determine the 173 

threshold of another 3 samples.  174 

 

Figure 2. Porosity curves obtained by DTM threshold segmentation method, the first column is 



 

 

images that are used to analyze, the second column images are the results, while the third 

column images are the enlarged results of the maximum value of the minimum on the curve of 

the second column images. x-coordinate is the gray value and the y-coordinate is porosity. 

2.4 Fractal dimension calculation based on coal images  175 

2.4.1 Box counting method (BCM) 176 

The box-counting method is the one of the most well accepted method to determine the 177 

fractal dimension and it has been used extensively for determining pore surface/area in 2D rock 178 

images [14,15]. It contains three main steps: a. divide the binary image by boxes under different 179 

length r, b. compute the number N of the boxes whose number of pore pixels is bigger than 1, c. 180 

plot      vs     
 

 
  on and use the linear correlation to match the data, the slop of the correlated 181 

line denotes the fractal dimension. A flow chart is given in Fig.3 below to demonstrate the 182 

procedures of estimate fractal dimension in 2D rock images.  183 
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Figure 3. The flow chart of estimating fractal dimension from rock images. 

Assuming the binary CT images with the size of M×M pixels and the gray value of 0 indicate 184 

pores, which is also said to be black pixels. The square boxes (or cubes for 3D) with side length of 185 

r will be used to cover the binary images, r is chosen from divisors of the length and width of the 186 

image, then the original image will be divided into M/r   M/r (or M/r   M/r   M/r for 3D) 187 

boxes. After that, counting the amounts of black pixels in each box, then calculate N(r), which is 188 

the number of the boxes (or cubes for 3D) whose number of pore pixels is bigger than 1, a set of 189 

(N(r), r) can be obtained by changing r, the data pair (-lgr, lgN(r)) can be fitted and the slop is the 190 

fractal dimension according to the fractal dimension law.  191 

2.4.2 Validation  192 

According to the definition of fractal dimension, the Hausdorff-Besicovitch dimension of 193 

Sierpinski Carpet (see Fig.4(a)) and Menger Sponge (see Fig.4(c)) are   
    

    
        and 194 

  
     

    
       , respectively. As shown in Fig.4(b) and Fig.4(d), excellent linear correlation 195 

could be found between      vs     
 

 
 , and the calculated fractal dimension for Sierpinski 196 

Carpet and Menger Sponge are 1.8928 and 2.7268, respectively, there are no deviations for when 197 

compared with the analytical result, which means our program is theoretically right. 198 

  

(a) (b) 



 

 

 

 

(c) (d) 

Figure 4. The fractal dimension of Sierpinski Carpet and Menger Sponge. (a) and (c) are the 199 

images of Sierpinski carpet and Menger Sponge, respectively; (b) and (d) are fractal dimensions 200 

of Sierpinski carpet and Menger Sponge estimated from boxing account method, respectively.  201 

2.4.3 Computation of fractal dimension in 2D and 3D coal images 202 

The BCM, as introduced in section 2.4.1, is used to calculate the fractal dimension directly 203 

from the rock images. The size of the 3D analyzed images are 900
3
, 800

3
, 400

3
 and 400

3
 voxels 204 

for coal sample D3-2, SH3-1, H3-1 and YA3-2, respectively. To obtain more essential data, the 205 

computation domain of 3D images constructed by different cubes initialized from 9 positions (see 206 

Fig.5).  207 

Fig.5 gives an example of the approach that is used to generate 3D cubes with different sizes 208 

from position B. There are 9 positions, includes eight corner points, A, B, C, D, F, H, I, and the 209 

center point, E. As shown in Fig.5, 3 cubes initialized from point B are presented with different 210 

color. In this work, we increase the size of the cube with 10 pixels at each coordinate. For sample, 211 

D3-2 (with size of 900
3 

voxels), it will generate 90 different cubes with size change from 10
3
 to 212 

900
3
 voxels at each initial position, and thus 810 3D cubes could be constructed that initialized 213 

from the 9 points, while 9 among the 810 constructed 3D cubes are identical as the full cube with 214 

900
3
 voxels in each direction, so eventually 802 different 3D cubes could be established. With the 215 

same procedure, 632, 352 and 352 3D cubes could be constructed for SH3-1, H3-1 and YA3-2, 216 



 

 

respectively. For each of the 3D constructed image, the 3D fractal dimension was calculated using 217 

the 3D box counting method, and the relevant 2D fractal dimensions were presented by the 218 

averaged 2D fractal dimension estimated from the slices of the 3D image.  219 

 220 

Figure 5. An example of constructing 3D coal image with different size and initial position. 221 

The 9 initial position contains 8 corner points, A, B, C, D, F, G, H, I, and the center position, E. 222 

An example of 3 different 3D images that initialized from position B are highlighted with different 223 

color. 224 

3. Results and discussion  225 

3.1 REV of coal images 226 

With the box counting method, the averaged Df3 of these 4 samples are presented in Fig.6, 227 

which shows the averaged Df3 of 9 positions as a function of the cubic side length. As shown in 228 

this figure, Df3 fluctuates at small computation domains and then remains constant if the 229 

computation domain size surplus a critical value, and this critical value is referred as REV 230 

determined by fractal dimension. As shown in Fig.6, side lengths of fractal dimension-based REV 231 

of D3-2, YA3-2, H3-1 and SH3-1 are 290, 120, 120 and 160 pixels, respectively, fractal 232 

dimensions of their REVs are 2.55, 2.48, 2.48 and 2.65, respectively. Fig.7 shows the relation 233 



 

 

between average porosity and computation domain size, the average porosities of these 4 samples 234 

become stable as the computation domain size larger than certain pixels.  235 

 236 

Figure 6. The relation between computation domain size and average Df3. 237 



 

 

 238 

Figure 7. The relation between computation domain size and average porosity. 239 

3.2 Relationship between Df3 and Df2 240 

As addressed in the literatures, the common practice of obtaining the volume fractal 241 

dimension in 3D is using Df3=Df2+1 (see Fig.8). As shown in the Fig.8, Df2 and Df3 are 2 and 3 242 

respectively when porosity is 1, but we argue that Df3 calculated from 3D image whose porosity is 243 

not 100%, could be not be simply correlated with average Df2 by    =   +1 (see Fig.9), which 244 

presents Df3 as a function of Df2 of these four coal samples and it is clear that Df3 is a linear 245 

function of Df2, therefore, Eq. (2) is proposed to describe the relationship between Df3 and average 246 

Df2, 247 

                    (2) 248 

here C is a parameter characterizes the relation between Df3 and average Df2, when average Df2 is 249 

2, C will be 1 (see Fig.8). C is close to 1 when average 2D fractal dimension Df2 larger than 1.45 250 

(see Fig.9(a)), which means the relation between Df3 and average Df2 of high rank coal samples 251 



 

 

can be expressed as Df3=Df2+1, however, there will be deviation to characterize the relation using 252 

Df3=Df2+1 when average 2D fractal dimension is smaller than 1.45 (see Fig.9(b)), then Eq. (2) is 253 

better than the common practice to describe this relation. Evidently, the average Df2 of these 4 coal 254 

samples from 3 different directions are very close (see Table 2). 255 

  

(a) (b) 

  

(c) (d) 

Figure 8. The fractal dimensions of 2D and 3D objects with porosity is 1. 256 



 

 

 

(a) 

 

(b) 

Figure 9. The relationship between 2D fractal dimension and 3D fractal dimension. (a) and 257 

(b) are the results of average 2D fractal dimension bigger and smaller than 1.45, respectively. 258 

Table 2 259 

Average 2D fractal dimensions from different directions 260 

 X Y Z 

SH3-1 1.72 1.72 1.70 

D3-2 1.63 1.62 1.62 

H3-1 1.57 1.58 1.58 

YA3-2 1.56 1.58 1.57 
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3.3 Relationship between fractal dimension and porosity 261 

Katz and Thompson [3] proposed a correlation between porosity and fractal dimension and it 262 

is given as 263 

φ=  
    

    
              (3) 264 

where a is a constant of order one, φ is porosity, D is fractal dimension,      and      are upper 265 

limit and lower limit self-similar region respectively. Yu and Li [45] modified Eq. (3) to allow for 266 

more generalized computation domain and it is given as below in Eq. (4), 267 

φ=  
    

    
              (4) 268 

in Eq. (4), d denotes the Euclidean dimension of the computation domain, and d equals to 2 in two 269 

dimensional spaces, and it equals to 3 in three dimensional spaces. 270 

Take the logarithm on both sides of Eq. (4), the correlation can be rewritten as 271 

  φ       
    

    
        

    

    
            (5) 272 

this equation could be simplified as: 273 

  φ                (6) 274 

where e and f are constants, and e equals to     
    

    
 , f equals to       

    

    
   , respectively.  275 

The 2D cross section of the four coal sample images are used as input to calculate the Df2 and 276 

their relevant porosity. Fig.10 presents   φ as function of Df2, as shown in this figure there is a 277 

linear correlation between   φ and Df2, which satisfies the theoretical derivation as given in Eq. 278 

(6). Here we can calculate 2D rmin from e and f, and the 2D rmin of D3-2, YA3-2, H3-1 and 279 

SH3-1are 5, 3, 4 and 2, respectively. 280 



 

 

The relationship between porosity and Df3 for the 4 coal samples are also investigated. As 281 

shown in Fig.11,   φ is presented as function of Df3. Like the cases in 2D images and expressed 282 

theoretically,   φ could be expressed as a linearly function of Df3. We can calculate 3D rmin from 283 

e and f, then the 3D rmin of D3-2, YA3-2, H3-1 and SH3-1are 76, 98, 181 and 30, respectively. The 284 

3D lower limit size of self-similar region is bigger than 2D lower limit size of self-similar region, 285 

and they are both smaller than the observed fractal dimension-based REV. 286 

Here in the coal sample, the main contribution of porosity is the fracture/cleat system, and 287 

thus rmax could be considered as the size of the image due to the natural extension of the main 288 

fracture/cleat identified in the coal samples. 289 

 290 

Figure 10. The relation between Df2 and porosity. 291 



 

 

 292 

Figure 11. The relation between Df3 and porosity. 293 

4. Summary and conclusion  294 

In this work, we utilized the box counting method to estimate the fractal dimension of 3D 295 

objective, Df3, and the average 2D fractal dimension, Df2, directly from 3D coal samples that 296 

imaged with the advanced micro-CT imaging techniques. Based on the calculated 2D and 3D 297 

fractal dimension, the size of REV, the relationship between Df2 and Df3, and the relationship 298 

between porosity and fractal dimension are investigated extensively. Based on our work, the 299 

detailed conclusion could be summarized as following: 300 

 There exists the fractal dimension-based REV of 3D coal image and the bigger original 301 

image size, the bigger REV. Fractal dimensions of REVs of D3-2, YA3-2, H3-1 and 302 

SH3-1 are 2.55, 2.48, 2.48 and 2.65, respectively, which are positively correlated with 303 

porosity. 304 



 

 

 Not like the previous result, the fractal dimension in 3D and 2D coal image could be 305 

expressed as           . 306 

o The slope of line, C, increases with the increasement of average 2D fractal 307 

dimension, Df2, which is around 1 as the Df2 larger than 1.45 for high rank coal. 308 

o It was noticed that average Df2 of high rank coal from different directions are 309 

very close. 310 

 Consistent with the previous theoretical derivation, we prove that porosity has an 311 

exponential relationship with fractal dimension, and it is influenced by coal composition 312 

and porosity, the lower self-similar region size can be deduced from the equation of the 313 

relation between porosity and fractal dimension. 314 

 The minimum self-similar region, rmin, in 3D coal samples is larger than that in 2D sample 315 

images.  316 

Future work of this study would be extending the proposed approach to characterize other 317 

materials, such as sandstone, carbonate, shale, and low rank coal, using the fractal theory. And 318 

look at the relationship between permeability and fractal theory. The relation between average 2D 319 

fractal dimension and 3D fractal dimension in this work was obtained based on experiments, so 320 

future work about this is to deduce the theoretical relation based on mathematic and physic 321 

theories and to improve the experimental relation. 322 
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