
This is a repository copy of Robust clustering oracle and local reconstructor of cluster 
structure of graphs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/152600/

Version: Accepted Version

Proceedings Paper:
Peng, P. orcid.org/0000-0003-2700-5699 (2020) Robust clustering oracle and local 
reconstructor of cluster structure of graphs. In: Chawla, S., (ed.) 31st Annual ACM-SIAM 
Symposium on Discrete Algorithms (SODA 2020). 31st Annual ACM-SIAM Symposium on 
Discrete Algorithms (SODA 2020), 05-08 Jan 2020, Salt Lake City, Utah, USA. SIAM 
Proceedings . Society for Industrial and Applied Mathematics (SIAM) . ISBN 
9781611975994 

https://doi.org/10.1137/1.9781611975994.179

© 2020 SIAM. This is an author-produced version of a paper subsequently published in 
SIAM Proceedings. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Robust Clustering Oracle and Local Reconstructor of Cluster

Structure of Graphs

Pan Peng∗

Abstract

We develop sublinear time algorithms for analyzing the cluster structure of graphs with noisy partial

information. A graph G with maximum degree at most d is called (k, φin, φout)-clusterable, if it can

be partitioned into at most k parts, such that each part has inner conductance at least φin and outer

conductance at most φout, where d is assumed to be constant. A graph G is called to be an ε-perturbation

of a (k, φin, φout)-clusterable graph if there is partition of G with at most k parts (called clusters), such

that one can insert/delete at most εdn intra-cluster edges to make it a (k, φin, φout)-clusterable graph. We

are given query access to the adjacency list of such a graph.

We show that one can construct in O(
√
n · poly(k logn

φε
)) time a robust clustering oracle for a

bounded-degree graph G that is an ε-perturbation of a (k, φ,O( εφ

k3 logn
))-clusterable graph. Using such

an oracle, a typical clustering query (e.g., ISOUTLIER(s), SAMECLUSTER(s, t)) can be answered in

O(
√
n·poly(k logn

φε
)) time and the answers are consistent with a partition ofG in which all butO(k

√
ε
φ
n)

vertices belong to a good cluster, i.e., a set with inner conductance at least φ

2
, and outer conductance

O(
√
εφ1.5

k4 logn
)). We also develop a local reconstruction algorithm that takes as input a graph as above, and

on any query vertex v, outputs all its neighbors in the reconstructed graph G′, which is guaranteed to be

(k,Ω( εφ

k4 logn
), 1)-clusterable (with slightly boosting degree bound). The number of edges changed is

at most O(k
√

ε
φ
n). Furthermore, the algorithm runs in O(

√
n · poly(k logn

φε
)) time (per query) and can

answer consistently with the same G′ for any sequence of queries it gets.

∗Department of Computer Science, University of Sheffield, Sheffield, U.K. Email: p.peng@sheffield.ac.uk.
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1 Introduction

Graph clustering is a fundamental task arising from many domains, including computer science, social

science, network analysis and statistics. Given a graph, the task is to group the vertices into reasonably

good clusters, where vertices inside the same cluster are well-connected to each other, and any two different

clusters are well-separated (see e.g., surveys [Sch07, POM09, For10, New12]). Due to the massive size

of modern network data, local algorithms that run in sublinear time for analyzing the cluster structure of

the graph are receiving growing interest. Such algorithms are typically assumed to be able to explore the

input graph by performing appropriate queries, e.g., query the degree or the neighbor of any node. There

have been two main frameworks for designing sublinear algorithms for graph clustering, if we use the well-

motivated notion conductance (see below) to measure the quality of clusters. In the first one, called local

graph clustering, the goal is to find a cluster from a specified vertex with running time that is bounded in

terms of the size of the output set (and with a weak dependence on n) (see e.g., [ST13, ACL06, AP09,

OT12, AOPT16, ZLM13, OZ14]). If the target cluster has small enough size, then the running time of the

resulting algorithm will be sublinear in the input size. In the second one, called testing cluster structure in

the framework of property testing, the goal is to distinguish if an input graph has a typical cluster structure

or is far from such cases (see [CPS15, CKK+18] and more discussions in Appendix A). Such algorithms

make decisions on the global cluster structure of the input graph by sampling vertices and locally exploring

a small portion of the graph, and they can serve as a preliminary step before learning the cluster structure.

In this work, we study local and sublinear algorithms for analyzing the cluster structure of graphs that

may contain noise and/or outliers. In many real applications, due to external noise or errors, the network data

set may fail to have the desired property (here, the cluster structure), while it might still be close to have this

property. That is, the graph G under our consideration is some kind of perturbation of a clusterable graph

or a noisy clusterable graph: G is first chosen from some class of clusterable graphs with an underlying

while unknown partition, and then some noise and/or outliers are introduced by some adversary or in some

random way. This is a relaxation of a common assumption for many existing clustering algorithms that the

input graph is simply well clusterable. We would like to very efficiently process such a noisy clusterable

graph and extract useful information regarding its cluster structure. Slightly more precisely, we study two

types of sublinear algorithms for analyzing the cluster structure of graphs with noisy partial information.

The first type of algorithm is driven by the following natural question: Given a noisy clusterable graph,

can we build an oracle (or implicit representation) in sublinear time, that can support typical queries re-

garding the cluster structure of the graph in sublinear time? For example, we would like to query “Is a

vertex s a noise/outlier?”. If the answer is “No”, we would further like to know “Which cluster does s
belong to?”, and “Do s and t belong to the same cluster?”, given that both vertices s, t are not outliers. We

would require that all the query answers will be consistent, e.g., if u, v are reported to belong to the same

cluster, v, w are reported to belong to the same cluster, then u,w will also be reported to belong to the same

cluster. Furthermore, we would like to minimize the number of vertices for which the oracle returns the

“wrong” answers in the sense that the output partition of the algorithm should be close to an underlying

maximal good clustering of the graph. We will call such an oracle a robust clustering oracle. Such oracles

might be already interesting from real-world applications. For example, quickly identifying outliers might

be valuable in road networks and medical data. Sometimes, we only want the cluster information of a small

group of vertices while do not care about other parts of the graph. Furthermore, it will be desirable to work

on-the-fly on a clean data after removing a small fraction of outliers. Besides these real-world applications,

such oracles might be given as input for other clustering algorithms that are equipped with the power of

making the above mentioned clustering queries (see e.g., [MS17b, MS17a, AKBD16, ABJK18, ABJ18]).

Our second type of algorithm is motivated by a very related question: Given a noisy clusterable graph,

can we fix it by minimally modifying the original graph, and provide query access to the reconstructed

clusterable graph in sublinear time? We address this question in the online reconstruction framework

1



introduced by [ACCL08]. In this framework (for graphs), given a property Π and query access to a graph

G that is close to have Π, we want to output a graph G′ such that G′ has the property Π and G is modified

minimally to get G′. Furthermore, we would like to output G′ in a local and consistent way that can provide

query access to G′ by making as few queries as possible to the input graph G. The corresponding algorithm

will be called a local reconstructor or local filter for property Π [ACCL08, SS10, AT10]. The natural

application of such local reconstructors is when only a small portion of the corrected graph G′ is needed

or when we want to make use of the graph G′ in a distributed manner. (Note that in many applications,

queries are made to a large graph which is assumed to exhibit some structural property.) Here, we focus on

designing a local filter for cluster structure of graphs and providing consistent query access to a clusterable

graph. In practice, such algorithms might be used for fast recommending products to users even if there is

some noise in the data.

In this work, we give both sublinear robust clustering oracle and local reconstructors for the cluster

structure of graphs. Now we give basic definitions of clusters and (noisy) clusterable graphs, formalize our

algorithmic problems, state our main results and sketch our technical ideas.

1.1 Basic Definitions

Conductance based clustering. Following a recent line of research on graph clustering (e.g., [OT14,

CPS15, PSZ17, DPRS19], which was built upon [KVV04]), we will use conductance based definition for

measuring the quality of clusters and the cluster structure of graphs. In this paper, we will focus on undi-

rected graphs with bounded maximum degree. We call an undirected graph G = (V,E) a d-bounded graph

if its maximum degree is upper bounded by some parameter d, which is always assumed to be some suffi-

ciently large constant (at least 10). For any two subsets S, T ⊆ V , we let E(S, T ) denote the set of edges

with one endpoint in S and the other point in T . The conductance φG(S) of a set S in G is defined to

be the ratio between the number of edges crossing S and its complement V \ S and the maximum num-

ber of edges possible incident to S, that is, φG(S) := |E(S,V \S)|
d|S| . The conductance φ(G) of the graph

G is defined to be the minimum value of the conductance of any set S with size at most n/2, that is,

φ(G) := minS:|S|≤n/2 φG(S). For convenience, for the singleton graph G (that consists of a single vertex

with no edges) we define its inner conductance φ(G) to be 1.

Given a vertex set S ⊂ V , we let G[S] denote the subgraph induced by vertices in S. In the following,

we will refer to φG(S) and φ(G[S]) as the outer conductance and inner conductance, respectively. Given

two parameters φin and φout, we call a set S a (φin, φout)-cluster if

φG(S) ≤ φout, φ(G[S]) ≥ φin.

For a good cluster S, we expect φin to be large and φout to be small. In particular, if S = V and

φ(G[V ]) = φ(G) ≥ φin ≥ φ for some constant φ, then we call the graph G a φ-expander which by itself

is a good cluster and has been extensively studied in theoretical computer science (see e.g., [HLW06]). It is

useful to note that φG(V ) = 0. When G is clear from the context, we omit the subscript G from φG(S). A

k-partition of a graph G = (V,E) is a partition of V into k subsets, V1, · · · , Vk such that Vi ∩ Vj = ∅ for

i 6= j and ∪iVi = V . In particular, V itself is a 1-partition. We have the following definition of clusterable

graphs that characterize graphs with typical cluster structure (see e.g., [OT14]).

Definition 1.1. Given parameters d, k, φin, φout, we call a k-partition P1, · · · , Pk of a d-bounded graph G
a (k, φin, φout)-clustering if for each i ≤ k, φ(G[Pi]) ≥ φin and φG(Pi) ≤ φout. A d-bounded graph G is

called to be (k, φin, φout)-clusterable if G has an (h, φin, φout)-clustering for some h ≤ k.

Note that in our definition, a (k, φin, φout)-clusterable graph may contain less than k clusters, and

(1, φin, 0)-clusterable graphs are equivalent to φin-expanders.

Clusterable graphs with modeling noise. We assume that the input graph to the algorithm is generated

from the family of all (k, φin, φout)-clusterable graphs and then modified by an adversary in some manner.

We have the following definition.
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Definition 1.2. (Clusterable Graphs with Modeling Noise or Noisy Clusterable Graphs) In this model, the

adversary first chooses an arbitrary graph G∗ from the family of all (k, φin, φout)-clusterable graphs with

maximum degree upper bounded by d. Then the adversary may do the following:

1. Choose an arbitrary (h, φin, φout)-clustering P1, · · · , Ph of G∗ for some h ≤ k.

2. Insert and/or delete at most ε·dn edges (noise) within the clustersG∗[Pi], 1 ≤ i ≤ h, while preserving

the degree bound.

We call the resulting graph G an ε-perturbation of G∗ with respect to the h-partition P1, · · · , Ph.

Equivalently, a graph G is called to be an ε-perturbation of a (k, φin, φout)-clusterable graph if there is

partition of G with at most k parts (called clusters), such that one can insert/delete at most εdn intra-cluster

edges to make it a (k, φin, φout)-clusterable graph. For simplicity, in the above definition, we only allowed

the adversary to perturb the edges inside the clusters, while our algorithm can actually be extended to work

for the case that the adversary is also allowed to perturb inter-cluster edges, up to a very limited extent1. This

definition generalizes the notion of noisy expander graphs studied by Kale, Peres, and Seshadhri [KPS13],

which correspond to k = 1 in our problem. In their setting, the adversary first chooses a φ-expander and

then modifies it by inserting/deleting ε fraction of edges in the graph.

1.2 Problem Formalizations and Main Results

Now we formalize our algorithmic problems and present our main results. For a d-bounded graph G, we

will assume the algorithm is given query access to the adjacency list of G, that is, in constant time we can

query the i-th neighbor of any vertex v.

Robust clustering oracle. Note that in a noisy clusterable graph, if the noise is not too much, many

vertices are still expected to belong to some good cluster, and those vertices that do not belong to any

good cluster will intuitively correspond to outliers or noise. Given query access to the adjacency list of

a d-bounded graph G that is promised to be an ε-perturbation of a (k, φin, φout)-clusterable graph, we are

interested in constructing an implicit representation, called a robust clustering oracle, ofG in sublinear time

such that typical queries regarding the cluster structure of G can be answered as quickly as possible (also in

sublinear time). More precisely, the oracle should support the following types of clustering queries:

1) ISOUTLIER(s): Is a vertex s a noise/outlier?

As mentioned above, a vertex that does not belong to any good cluster should be reported as noise or outlier.

For any non-outlier vertices s, t, the oracle can further support

2) WHICHCLUSTER(s): Which cluster does s belong to?

3) SAMECLUSTER(s, t): Do s and t belong to the same cluster?

In the following, without loss of generality, we will assume that for any non-outlier vertex s and the

corresponding WHICHCLUSTER(s) query, the oracle will output an integer i with 1 ≤ i ≤ h that specifies

the index of the cluster that s belongs to, for some integer h. Furthermore, given the ability of answering

WHICHCLUSTER queries, for any two non-outlier vertices s, t, we simply define SAMECLUSTER(s, t) to

be the procedure that checks if WHICHCLUSTER(s) is equal to WHICHCLUSTER(t). This will naturally

ensures the consistency for SAMECLUSTER queries. Note that the output of the algorithm naturally defines

a partition of V , i.e.,

Pi := {u ∈ V : WHICHCLUSTER(u) = i}, 1 ≤ i ≤ h, B := {u ∈ V : ISOUTLIER(u) = Yes}.
We would like to minimize the number of vertices for which the oracle returns the “wrong” answers.

That is, for most vertices v that do belong to some underlying good cluster in the perturbed G, we expect

ISOUTLIER(v) to return “No”. Furthermore, for most vertices u, v that belong to the same cluster (resp.

1More precisely, the adversary can be allowed to perturb a φout fraction of inter-cluster edges: this essentially can then be

reduced to the case that only intra-cluster perturbations are allowed by re-scaling a constant factor of conductance values, i.e., one

can view that the adversary first chooses a (k, φin, 2φout)-clusterable graph and then perturbs its intra-cluster edges.
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different clusters), we expect SAMECLUSTER(u, v) to return “Yes” (resp. “No”). One further crucial re-

quirement of a robust clustering oracle and the corresponding clustering query algorithm is to maintain

consistency among all queries. That is, on different query sequences, the answers of the oracle should be

consistent with the same h-partition D1, · · · , Dh of V for some h ≤ k, in which all but a small fraction of

vertices belong to some good cluster. Since the oracle construction and the corresponding query algorithm

are typically randomized, we fix the randomness seed of the oracle and query algorithm once and for all to

ensure consistent answers. Then the algorithm will be a deterministic procedure for any input query, which

further guarantees that the partition D1, · · · , Dh is determined by G and the internal randomness of the

oracle and the algorithm, and is independent of the order of queries. This feature allows the oracle to be

used in the distributed manner as consistency is guaranteed.

We provide the first robust clustering oracle with both sublinear preprocessing time and query time. We

will assume d is a constant throughout the paper. Let P△Q denote the symmetric difference between two

vertex sets P,Q. For two partitions A = {A1, · · · , As} and A′ = {A′
1, · · · , A′

t} of V with s ≤ t, we define

the symmetric difference between A and A′ to be |A△A′| = minσ
∑t

i=1 |Ai△A′
σ(i)|, where Ai = ∅ for

i > s and σ ranges over all bijections σ : {1, · · · , t} → {1, · · · , t}.

Theorem 1.3 (Robust Clustering Oracle). There exists an algorithm that takes as input parameters n ≥ 1,

d > 10, k ≥ 1, φ ∈ (0, 1), ε ∈ [Ω( 1n), O( φ
k2
)] and has query access to the adjacency list of a graph

G = (V,E) that is an ε-perturbation of a (k, φ,O( εφ
k3 logn

))-clusterable graph, and constructs a robust

clustering oracle in O(
√
n · poly(k·lognφε )) pre-processing time. Furthermore, it holds that

1. Using the oracle, the algorithm can answer any clustering query (i.e., ISOUTLIER, WHICHCLUSTER

or SAMECLUSTER) in O(
√
n · poly(k·lognφε )) time.

2. There exists a partition A′ = {D1, · · · , Dh′ , B′} of G, for some h′ ≤ k, such that

• the partition only depends on G and the input parameters of the algorithm, and is independent

of the order of queries;

• it holds that each Di is a (φ2 , O(
√
εφ1.5

k3 logn
))-cluster, for any 1 ≤ i ≤ h′; and

• with probability at least 1 − 1
n , the partition A = {P1, · · · , Ph, B} output by the algorithm

satisfies that h′ ≤ h ≤ k and |A△A′| = O(k
√

ε
φn).

We remark that there is no algorithm that allows both o(
√
n) pre-processing time and o(

√
n) query

time for ISOUTLIER queries, as otherwise, one could obtain a property testing algorithm for expansion with

o(
√
n) queries, which will be a contradiction to a known lower bound [GR00] (see discussions on relation to

property testing in Appendix A). Furthermore, the second item of the theorem implies that the total number

of vertices that are reported as outliers is at most O(k
√
ε/φ · n) and that the query answers are consistent

with a partition of G in which all but O(k
√
ε/φ · n) vertices belong to a (φ2 , O(

√
εφ1.5

k3 logn
))-cluster. We also

note that in the statement of the above theorem, the range of ε is2 ε ∈ [Ω( 1n), O( φ
k2
)]. If ε = Ω(φ/k2),

the noise will be too much and our algorithm cannot locally identify even one cluster. Removing the log n
gap between the inner conductance and outer conductance seems to be hard, at least for methods that are

based on random walk distances (as we used here). For example, in [CKK+18], it has been discussed that in

general, it is impossible to use Euclidean distance between random walk distributions to test 2-clusterability

if one wants the gap to be a constant. (Testing 2-clusterability is easier than the robust clustering oracle

problem; see Appendix A.) On the other hand, being able to correctly answer SAMECLUSTER(u, v) queries

intuitively requires or induces a distance based approach, as the vertices in the same cluster are “similar” or

“close to” each other, while vertices in different clusters are “dissimilar” or “far from” each other.

2Since ε = O(φ/k2), we do not see the φ2 dependency (from Cheeger inequality) between the outer and inner conductance.
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Local reconstructor of graph cluster structure. We are interested in designing a local reconstruction

algorithm for the cluster structure of graphs. Given query access to the adjacency list of a d-bounded graph

G that is promised to be an ε-perturbation of a (k, φin, φout)-clusterable graph, our goal is to design a local

filter that provides query access to a (k, φ′in, φ
′
out)-clusterable graph G′ such that the distance between G and

G′ is as close as possible. That is, we would like to outputG′ in a local manner that for any vertex query, the

neighborhood of v, i.e., the set of all neighbors of v, in G′ can be answered in sublinear time (in particular,

by making as few queries to the adjacency list to G as possible). Similar as for the robust clustering oracle,

it is crucial to require a local filter to maintain consistency among all queries. Here we require that for

different query sequences, the answers of the filter should be consistent with the same reconstructed graph

G′. Again, the filter is suitable to be used in the distributed manner as consistency is guaranteed. In our local

filter for clusterable graphs, we also aim to make the gap between φin, φout and the gap between φin and φ′in
as small as possible. We next state our theorem regarding our local filter for clusterable graphs as follows.

Theorem 1.4 (Local Reconstructor of Cluster Structure). There exists a local reconstruction algorithm that

takes as input parameters n ≥ 1, d > 10, k ≥ 1, φ ∈ (0, 1), ε ∈ [Ω( 1n), 1] and has query access to the

adjacency list of a graph G = (V,E) that is an ε-perturbation of a (k, φ,O( εφ
k3 logn

))-clusterable graph,

and provides query access to a graph G′ = (V,E′) such that the following holds with probability at least

1− 4/n:

1. G′ is (k,Ω( εφ
k4 logn

), 1)-clusterable, and has maximum degree at most d+ 16.

2. The number of edges changed is at most O(min{1, k
√
ε/φ} · n).

3. G′ is determined by G and the internal randomness of the algorithm, and is independent of the order

of queries.

4. On each query v, the neighborhood of v in G′ can be answered in O(
√
n · poly(k·lognφε )) time.

Note that by Item 1, the resulting graph can be partitioned into at most k parts, each with relatively

large inner conductance (i.e., Ω( εφ
k4 logn

)), with no guarantee on outer conductance (as each set trivially has

outer conductance at most 1). (Such instances are exactly the object that was studied in [CKK+18] in the

framework of property testing.) By sacrificing the inner conductance quality, we can also find a clustering

ofG′ with small outer conductance. That is, we can guarantee thatG′ is also (k,Ω( νk

6kk4
εφ

logn),min{kν, 1})-
clusterable for any ν ∈ [0, 1] (see Appendix D for details). Item 3 implies that all query answers are

consistent, that is, the vertex u is output as a neighbor of v in G′ if and only if v is output as a neighbor of

u. From the discussion below on the connections between our local reconstruction algorithm and property

testing, the running time of our filter is optimal (in terms of dependency on n) up to polylogarithmic factors.

Furthermore, our algorithm generalizes the local reconstruction algorithm for expander graphs by [KPS13],

which corresponds to the special case k = 1 in our problem, though our approximation ratio of the number

of modified edges is worse. More precisely, for ε = Ω(φ), both our algorithm and the algorithm in [KPS13]

will add Θ(dn) edges (as the noise part is too large, and thus almost all vertices will be reported as out-

liers and the resulting graph G′ is almost the complete hybrid of the original graph G and an explicitly

constructible expander Gexp, i.e., the neighborhood of each vertex in G′ is the union of its neighborhood

in G and Gexp; for ε = O(φ), the algorithm in [KPS13] reconstructs a graph that is an ε-perturbation

of a φ-expander by modifying at most O(εn/φ) edges, and the resulting graph has conductance at least

Ω(φ2/ log n) and maximum degree also upper bounded by3 d + 16, while our algorithm has to modify

3Note that [KPS13] claimed that the number of modified edges is at most O( φ

logn
εn) and the maximum degree of the resulting

graph is d+ O(⌈ dφ2

logn
⌉). However, this claim is not correct (at least for d-bounded graphs with d being constant), and the number

of changed edges and the maximum degree bound from their analysis should be O( ε
φ
n) and d + 16, respectively [Ses19]. They

obtained their claimed results by adding t := ⌈ dφ2

c logn
⌉ parallel edges while repairing bad vertices, from which they get that the

maximum degree is d + 16t and the number of added edges to the optimal distance (i.e., εdn) is 16t
dφ

= O(φ/ log n), which is

incorrect as it always holds that t = 1 for constant d and large enough n.
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O(
√
ε/φ ·kn) edges. We further note that the algorithm in [KPS13] guarantees that the reconstructed graph

has inner conductance at least Ω(φ2/log n), while the resulting graph from our algorithm is guaranteed to

have a partition with at most k parts, each with inner conductance at least Ω(εφ/(k4 log n)). Removing the

log n factor in the inner conductance of the output graph seems to be a very challenging task, even for the

case k = 1. See Section 6 for more discussions.

Local mixing property on noisy clusterable graphs. In order to derive the above algorithmic results, we

prove an interesting behavior, which we call local mixing property, of random walks on noisy clusterable

graphs. For technical reasons, we will consider the uniform averaging walk of t steps on a graph G: In this

walk, we choose a number ℓ ∈ {0, 1, 2, · · · , t−1} uniformly at random, and stop the (normal) random walk

after ℓ steps. We let atv denote the probability vector for a uniform averaging walk of t steps starting at v
and let ‖p1 − p2‖TV denote the total variance distance between two distributions p1, p2. For a set A, we let

UA denote the uniform distribution on A. We have the following theorem.

Theorem 1.5 (Local Mixing Property of Random Walks). Let 0 < γ, ε < 1. Let φout ≤ a1.5εγ4φ2
in

k3 logn
for some

sufficiently small constant a1.5 > 0. Let G be a d-bounded graph with an h-partition C1, C2, · · · , Ch such

that φG(Ci) ≤ φout for any 1 ≤ i ≤ h ≤ k. For each i ≤ h, we letDi ⊆ Ci denote a large subset of vertices

such that φ(G[Di]) ≥ φin, and let Bi = Ci \ Di. If
∑

i |Bi| ≤ εn, then for any Dj with |Dj | ≥ 3
√
εn,

there exists a subset D̂j ⊆ Dj such that |D̂j | ≥ (1− 4
√
ε)|Dj | such that for any s ∈ D̂j , and t = 120 logn

γφ2
in

,

it holds that

‖ats − UCj
‖TV < γ +

√
ε.

Intuitively, the set Bi corresponds to the noisy part inside each cluster Ci and we assume that the total

fraction of noisy part is parametrized by ε. Then the above theorem says that the rest of the large part (i.e.,

clusterable part) exhibits some nice local mixing property: for most vertices s in a large cluster C (of size

Ω(
√
εn)), a uniform averaging random walk (of appropriately chosen length) from s will converge quickly

to the uniform distribution on C. This is a generalization of the global mixing property of noisy expander

graphs in [KPS13], though their results are stated for the more general Markov chains.

1.3 Our Techniques

To design a robust clustering oracle, we first note that it is relatively easy to design a clustering oracle

without noise (if the gap between φin and φout is O(log n) as we considered here). This can be done by a

refined analysis of the property testing algorithm in [CPS15] that samples a small number of vertices, and

then tests if the ℓ2 norm distance between the random walk distributions from any two vertices is larger than

some threshold or not. However, the analysis depends on the spectral property (e.g., a gap between λk and

λk+1) of clusterable graphs, and cannot be easily generalized to the case that the input graph contains noise,

as such spectral property is very sensitive to noise (e.g., deleting all edges incident to a constant number of

vertices will break down the property).

In order to handle noisy input, we use the ℓ1 norm distance between the corresponding random walk

distributions to test if the starting two vertices belong to the same cluster or not, and we make use of the local

mixing property of random walks in Theorem 1.5. In order to prove such a mixing property, we first show

that it does hold for clusterable graphs without noise, by exploiting a spectral property that characterizes the

first k eigenvectors of clusterable graphs given by [PSZ17]. To generalize the result to a noisy clusterable

graph G, we view the random walks on the graph as a Markov chain and consider a new Markov chain that

is induced on vertices in the clusterable part in G. (Such a new chain has also been used in [KPS13] for

analyzing noisy expanders.) We show the induced Markov chain does correspond to a clusterable graph H
(by overcoming the difficulty that the outer conductance of each corresponding cluster increases and might

change the cluster structure too much) and thus the random walks in H satisfy the local mixing property.

However, the walks on H can be very different from the random walks in the original graph G. We then
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give a novel application of an old technique called stopping rules of Markov chains that was introduced by

Lovósz and Winkler [LW97] to relate these two walks, and bound the total variance distance between two

random walk distributions from a vertex in any large cluster of G and H . This allows us to show the local

mixing property in the graph G. The idea of using stopping rules to show that a random walk mixes inside

a subgraph (i.e., cluster) rather than in the whole graph might find other applications.

Given such a local mixing property of random walks in the noisy clusterable graph, we are able to design

a robust clustering oracle and the corresponding clustering query algorithm with sublinear preprocessing and

query time. We first note that if the noisy part is not too large (i.e., ε = O(φ/k2)), then the graph G has a

non-trivial partition D1, · · · , Dh′ , B′ with h′ ≥ 1 that only depends on the corresponding parameters (i.e.,

ε, φ, n) and G itself, and that each Di is a good cluster with large size (containing at least Ω(
√
ε) fraction

of vertices), and B′ has small size. Our key idea is to use random walks to learn a succinct representation

H , which is a weighted graph with roughly O(log n) vertices, of the clusterable part of graph G, such that

each cluster Di in G will be mapped to a unique clique (called a core) in H with appropriate edge weight.

Furthermore, by using the weights and the size bounds of these cliques, we can efficiently identify them

from H , and use them to answer the WHICHCLUSTER queries. Slightly more precisely, in the preprocess-

ing (or learning) phase, the algorithm samples a set S of Θ(log n) vertices, and uses the statistics of Õ(
√
n)

random walks from each sampled vertex to (quite accurately) estimate the so-called reduced collision prob-

ability (rcp) of (the random walks of appropriate length from) any two sampled vertices that was introduced

in [KPS13]. We construct a weighted similarity graph H on the sample set S such that the weight of each

edge (u, v) is our estimate of the rcp of u, v, for any u, v ∈ S. We show that if the noisy part is not too large,

then, by the aforementioned local mixing property, for (most) pair of vertices u, v ∈ S ∩Di, the rcp of u, v
will be close to 1/|Di|. Thus, the weight of edge (u, v) in H will be set to be a number close to 1/|Di|, and

most vertices in S ∩Di form a clique Si in H with edge weights close to 1/|Di|. We further observe that

Si has relatively large size (roughly |S| · |Di|
n ), as |Di| is large; and that any vertex v ∈ Si can only belong

to exactly one such (large) clique, as otherwise, the total probability mass of random walk distribution from

v will exceed 1, which can not happen. These properties allow us to efficiently identify the unique core Si
from H that corresponds to the cluster Di by a simple greedy algorithm and further to answer membership

queries. We remark that in [CPS15], a similarity graph is also constructed, while that graph is unweighted

and only tells if the original graph is k-clusterable or not according to the number of connected components,

which is far from sufficient for our application.

In the query phase, we check if the queried vertex v belongs to any of the learned cores or not to decide

if it is an outlier or not. This, again, can be done by estimating the rcp of the walks from v and other vertices

in S (by running Õ(
√
n) random walks), and is guaranteed by the local mixing property of random walks.

In particular, for most vertices v in a cluster Di, the rcp of random walks from v and any other vertex that

is in Si corresponding to Di will be also around 1/|Di|. If this is the case, we output i as the index of the

cluster that v belongs to; otherwise, we report it as an outlier. The above analysis shows that most vertices in

D1, · · · , Dh′ will be correctly classified. Thus, the number of vertices that are reported as outliers is small.

Our local reconstruction algorithm for clusterable graphs is built upon our robust clustering oracle. That

is, we first learn the cores of the input graph as before. Then (if the noisy part is not too large) we only

“repair” all the vertices that are reported as outliers. Let v be any vertex that is reported as an outlier.

We add all the neighbors of v in an explicit expander Gexp to “repair” the graph G, which is called a

hybridization (between Gexp and G) and has been used to repair expander graphs in [KPS13]. Then the

answers is guaranteed to be consistent with a graph G′ such that its distance to the original graph G is at

most d times the number of vertices that are reported as outliers, which has already been bounded to be

small. In order to prove the claimed guarantee on cluster structure of G′, we introduce a definition of weak

vertices that intuitively correspond to the noisy part of the graph. Such a definition has also been used

in [KPS13], though ours is more subtle, depending on the size of noise. We can show that one can improve
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the cluster structure of the graph if we have repaired all the weak vertices in the above way. Furthermore,

such weak vertices will always be reported as outliers, as guaranteed by our robust clustering oracle.

Organization. After giving the preliminaries in Section 2, we prove our two algorithmic results, i.e.,

Theorem 1.3 and Theorem 1.4, in Section 3 and 4, respectively, assuming that the local mixing property as

stated in Theorem 1.5 holds. We give the proof of Theorem 1.5 in Section 5, and conclude in Section 6.

2 Preliminaries

Let G = (V,E) denote an n-vertex undirected graph G with maximum degree bounded by some constant

d, where V = [n] := {1, · · · , n}. For each vertex v, we let dv denote its degree. Throughout the paper,

all the vectors will be row vectors unless otherwise specified or transposed to column vectors. For a vector

x, we let ‖x‖1 :=
∑

i|x(i)| and ‖x‖2 :=
√∑

i x(i)
2 to denote its ℓ1 norm and ℓ2 norm, respectively.

Let 1S denote the indicator vector of set S, that is 1S(u) = 1 if u ∈ S and 0 otherwise. Let 1v := 1{v}.

Let US := 1S
|S| denote the uniform distribution on set S. For any set X of vectors x1, · · · ,xs, we let

span(X) = span(x1, · · · ,xs) denote the linear span of X , that is span(X) = {∑s
i=1 µixi|µi ∈ R}. For

a vector x and a set S, we let x(S) :=
∑

v∈S x(S). For two distributions p1 and p2, we let ‖p1 − p2‖TV

denote the total variance distance between p1, p2. It is known that ‖p1 − p2‖TV = 1
2‖p1 − p2‖1.

Different types of random walks on G. We will consider the following random walks.

(1) (Normal) random walk of t steps. In a (normal) random walk, at each step, suppose we are at vertex

v, then we jump to a random neighbor with probability 1
2d and stay at v with the remaining probability

1 − dv
2d . We stop the walk after t steps. We let pt

v denote the probability vector for a t step random walk

starting at v.

(2) Uniform averaging walk of t steps. In this walk, we choose a number ℓ ∈ {0, 1, 2, · · · , t − 1}
uniformly at random, and stop the (normal) random walk after ℓ steps. We let atv denote the probability

vector for a uniform averaging walk of t steps starting at v.

(3) Uniform averaging walk of t steps with two phases. In this walk, we choose two integers ℓ1, ℓ2 ∈
{0, 1, 2, · · · , t − 1} uniformly at random, and stop the walk after ℓ1 + ℓ2 steps. We let bt

v denote the

probability vector for a uniform averaging walk of t steps with two phases starting at v.

It is useful to note that for any two vertices u, v, bt
u(v) =

∑
w∈V atu(w) · atw(v).

Estimating reduced collision probabilities. Both our robust clustering oracle and local reconstruction

needs to invoke a procedure to estimate the reduced collision probability of two random walks [KPS13].

For a vertex v, an integer t and a constant θ ∈ [0, 1], we let Sθ
v = {u : atv(u) ≤ 1−θ√

n
}. For any two vertices

u, v, the θ-reduced collision probability of u, v is defined as rcpθ(u, v) =
∑

w∈Sθ
u∩Sθ

v
atu(w)a

t
v(w).

Observe that by definition of bt
v-random walks, it holds that rcp0(u, v) ≤ ∑

w∈V atv(w) · atu(w) =∑
w∈V atv(w) · atw(u) = bt

v(u). The following lemma shows that under appropriate conditions, the reduced

collision probability of two vertices can be well approximated in Õ(
√
n) time.

Lemma 2.1 ([KPS13]). Let θ < 1
2 , δ < 1 be two constant. Let u, v be two vertices. There exists a procedure

ESTIMATERCP(G, u, v, θ, δ, t) that takes as input a d-bounded n-vertex graph G, vertices u, v, parameters

θ, δ, and length parameter t, and satisfies the following properties:

1. It runs in time O(
√
nt log2 n);

2. If atu(S
θ
u) ≥ 1/2, atv(S

θ
v) ≥ 1/2, then it aborts (without outputting an estimate) with probability at most

exp(−Θ(
√
n));

3. If it does not abort, then with probability at least 1 − 1
n4 , it outputs an estimate rcp′(u, v) such that

rcpθ(u, v)− δmax{rcpθ(u, v), 1
2n} ≤ rcp′(u, v) ≤ rcp0(u, v) + δmax{rcp0(u, v), 1

2n}.
For the sake of completeness, we give the description of the algorithm ESTIMATERCP in Appendix B.2.
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3 Robust Clustering Oracle

In this section, we present our algorithm for constructing the robust clustering oracle and answering the

clustering queries. In the preprocessing (or learning) phase, the algorithm learns the cores (corresponding

to clusters in the clusterable part) of the graph. In the query phase, the algorithm checks if the queried vertex

v belongs to any of the learned cores or not to decide if it is an outlier or not. If not, the algorithm will find

the index i corresponding to the cluster that v belongs to.

We will use the reduced collision probability of random walks of length t = 960 logn
κφ2 for some suffi-

ciently small constant κ > 0. Such probabilities can be efficiently estimated by invoking the ESTIMATERCP

procedure (see Section 2). The intuition is that for most vertices v in a large clusterC, the uniform averaging

walk of t steps from u will be close to the uniform distribution on C (by Theorem 1.5), which implies that

for almost all of vertices v ∈ C, their reduced collision probability is at least 1−κ
|C| .

The learning phase of the algorithm is as follows.

The preprocessing phase: LEARNCORE(G, d, k, φ, ε)

1. Let θ0 and δ0 be two sufficiently small constant (say at most 1
105

). Let κ > 0 be a constant such that

κ = 100 · δ20 . If ε > φκ2

100 , then abort and output fail.

2. Let c > 0 be a sufficiently large constant. Let τj = 3
√

6ε
φ (1 + κ

3 )
j for 0 ≤ j ≤ J , where J :=

argmaxj{τj ≤ 1}. (Note that J = O( log(φ/ε)κ ).) Let t = 960 logn
κφ2 .

3. Sample a set S of c·k2 ln k·logn√
ε/φ

vertices uniformly at random.

4. For any u, v ∈ S, run ESTIMATERCP(G, u, v, θ0, δ0, t). If it does not abort then add an edge (u, v) with

weight rcp′(u, v) in the similarity graph H on vertex set S.

5. Invoke FINDCORE(H, J) (to find cores).

The subroutine FINDCORE(H, J) is defined as follows.

FINDCORE(H, J)

1. Let F = H . Let S = ∅.

2. For each 0 ≤ j ≤ J , we iteratively do the following:

(a) Let Fj denote the subgraph of F that consists of edges of weight at least 1−κ
τj

1
n ;

(b) For each v ∈ V (H): ⊲ according to the lexicographical order of vertices

i. Let N(v) denote the neighborhood of v in Fj .

ii. Find a maximal clique K from v by sequentially visiting all the edges incident to vertex v and all

vertices u ∈ N(v).
iii. If a clique K with |K| ≥ (1 − κ)τj |S| is found, then 1) add K to S , and 2) remove all edges

incident to K from Fj and F .

3. If |S| = 0 or |S| > k, then output fail; otherwise, output all the disjoint cliques (called cores), say

S1, S2, · · · , Sh, h ≤ k, in S .

Note that by the above definition of cores, it holds that for any core Si, there exists ji ∈ {0, 1, · · · , J}
such that

|Si|
|S| ≥ (1− κ)τji and the edge weight in the clique H[Si] is at least 1−κ

τji

1
n .

We need the following subroutine to answer clustering queries.
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CHECKCORE(H,u)

1. Let κ, θ0, δ0, t and τj be the same numbers as specified in the learning phase.

2. For any vertex v ∈ S, run ESTIMATERCP(u, v, θ0, δ0, t).
(a) If there exists a unique i ≤ h such that rcp′(u, v) ≥ 1−κ

τji

1
n for all v ∈ Si, then return index i;

(b) Otherwise, return Outlier.

Now we are ready to describe our algorithm for answering clustering queries.

The query phase:

ISOUTLIER(G,w):
1. If the learning phase outputs fail, then return Yes.

2. Otherwise, if CHECKCORE(H,w) returns Outlier, then return Yes.

3. Return No.

WHICHCLUSTER(G,w):
1. If ISOUTLIER(G,w) returns Yes, return Outlier.

2. Otherwise, return CHECKCORE(H,w).

SAMECLUSTER(G, x, y):
1. Run WHICHCLUSTER(G, x) and WHICHCLUSTER(G, y).
2. If none of the above two queries return Outlier and the returned two indices are identical, then output

Yes.

3. Otherwise, return No.

3.1 The Analysis of Robust Clustering Oracle

In the following, we show the performance guarantee of the above algorithm. We will use the local mixing

property on noisy clusterable graphs as guaranteed in Theorem 1.5, whose proof is deferred to Section 5.

Recall from the description of our algorithm that κ = 100 · δ20 , which is a sufficiently small universal

constant.

If ε > φκ2

100 (i.e., the noise is too much), then by our algorithm, the learning phase will output fail. Any

queried vertex will be reported as Outlier.

In the following, we assume that ε ∈ [Ω(φn),
φκ2

100 ] and we prove the statement of Theorem 1.3. To do so,

we first introduce the definition of strong vertices, which correspond to vertices in the clusterable part.

Definition and properties of strong vertices. Let φ ∈ (0, 1), ε ∈ [Ω(φn),
φκ2

100 ]. LetG be an ε-perturbation

of a (k, φ, a1.5εκ
4φ

3k3 logn
)-clusterable graph. Recall that atv and bt

v denote the distribution of the uniform average

walk of length t and the uniform average walk of length t with two phases starting from v, respectively. In

the algorithm, we invoke ESTIMATERCP with length parameter t = 960 logn
κφ2 .

We let ε′ := 6ε
φ < κ2

100 . We introduce the following definition of strong vertex for the analysis, which

was inspired by the corresponding definition for noisy expander graphs in [KPS13]. The main difference

here is that we carefully take the size of clusters into consideration.

Definition 3.1. We call a vertex v a strong vertex with respect to a subset C if v ∈ C, |C| ≥ 3
√
ε′n and

‖atv − UC‖TV ≤ κ.

Recall that θ0 is small sufficiently small constant, Sθ0
v = {u : atv(u) ≤ (1 − θ0)/

√
n} and that

rcpθ0(u, v) =
∑

w∈Sθ0
u ∩Sθ0

v
atu(w)a

t
v(w) is the reduced collision probability of u, v (see Section 2). We

have the following properties of strong/weak vertices, which easily follows from the proof of Lemma 2 in

[KPS13]. We present the proof in Appendix C for the sake of completeness.
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Lemma 3.2. If a vertex u is strong with respect to a set C with |C| ≥ 3
√
ε′n, then (1) there can be at most√

κ|C| vertices v in C with atu(v) ≤ (1−√
κ)/|C|; (2) it holds that atu(S

θ0
u ) ≥ 1/2.

Furthermore, if vertices u, v are both strong with respect to a set C with |C| ≥ 3
√
ε′n, then we have

that rcpθ0(u, v) ≥ (1− 5
√
κ)/|C|.

The correctness of the robust clustering oracle. Now we show the correctness of the robust clustering

oracle and bound the total number of vertices reported as outliers by the the algorithm. Recall that we let

Pi := {u ∈ V : WHICHCLUSTER(u) = i} with 1 ≤ i ≤ h for some integer h, and B := {u ∈ V :
ISOUTLIER(u) = Yes} denote the partition output by our algorithm.

Lemma 3.3. LetG be an ε-perturbation of a (k, φ, a1.5εκ
4φ

3k3 logn
)-clusterable graph. Then there exists a partition

D1, · · · , Dh′ , B′ for some h′ ≤ k (that is independent of the order of queries), such that

• if ε ∈ [Ω(φn),
φ

60k2
], then h′ ≥ 1 and each Di is a (φ2 ,

a1.5
√
εκ4φ1.5

3k3 logn
)-cluster, for any 1 ≤ i ≤ h′; if

ε ∈ ( φ
60k2

, 1], then h′ = 0; and

• with probability at least 1 − 1
n , the partition P1, · · · , Ph, B output by the algorithm satisfies that

h′ ≤ h ≤ k and
∑h′

i=1 |Pi△Di|+
∑h

i=h′+1 |Pi|+ |B|+ |B′| ≤ 40k
√
ε/φn.

In particular, the number of vertices reported as outliers is at most 40k
√
ε/φn.

Proof. We first note that if ε > φ
60k2

, then we can simply take B′ = V (and thus h′ = 0) and then for

any output partition of the algorithm, it holds that
∑h′

i=1 |Pi△Di| +
∑h

i=h′+1 |Pi| + |B| + |B′| = 2n <

40k
√
ε/φn.

Thus, in the following, we assume that ε ≤ φ
60k2

.

Let φout = a1.5εκ4φ
3k3 logn

. Let G∗ = (V,E∗) be a (k, φ, φout)-clusterable graph such that G is an ε-

perturbation of G∗. Let C1, · · · , Ch be the corresponding (h, φ, φout)-clustering of G∗ for some h ≤ k.

That is, for each i ≤ h, φG(Ci) ≤ φout, and one can insert/delete at most εdn edges inside subgraphs G[Ci]
to make all G[Ci] become (φ, φout)-clusters.

Now for each set Ci, we perform the following process on G[Ci] recursively. We start with Bi := ∅ and

Di := Ci. If |Bi| ≤ |Ci|
2 , and there exists a subset Mi ⊆ Di with |Mi| ≤ |Di|/2 and φG[Ci](Mi) ≤ φ/2,

then we update Bi = Bi ∪ Mi, and Di = Di \ Mi. We recurse until no such set Mi can be found or

|Bi| > |Ci|
2 . Note that by our construction, the final set Bi satisfies that φG[Ci](Bi) ≤ φ/2 and that Di has

inner conductance at least φ/2. Furthermore, it holds that |Bi| ≤ 3
4 |Ci|, since right before the last update,

we have that |B′
i| ≤

|Ci|
2 and that the final cut M ′ satisfies that |M ′

i | ≤ 1
2(|Ci − B′

i|), which gives that

|Bi| ≤ 1
2(|Ci −B′

i|) + |B′
i| ≤ 3

4 |Ci|.
Now we claim that | ∪i Bi| ≤ 6ε

φ n. Assume on the contrary that | ∪i Bi| > 6ε
φ n, i.e.,

∑
i |Bi| > 6ε

φ n.

First, we note that in order to make φ(G[Ci]) ≥ φ, then we should add at least φ
2dmin{|Bi|, |Ci − Bi|} ≥

φ
2d · 13 |Bi| = φ

6d|Bi| edges, where the inequality follows from the fact that |Ci −Bi| ≥ 1
3 |Bi| which in turn

is due to the fact that |Bi| ≤ 3
4 |Ci|. Therefore, in order to make all Ci have inner conductance at least φ, we

have to add at least
∑

i
φ
6d|Bi| > φ

6d · 6ε
φ n = εdn edges, which is a contradiction.

We note that since ε ≤ φ
60k2

, then it holds that at least one Di has size at least
(1−(6ε/φ))n

k ≥ 9n
10k ≥

3
√

1
10k2

n ≥ 3
√

6ε
φ n = 3

√
ε′n. Now we apply Theorem 1.5 on G with error parameter ε′ = 6ε

φ < κ2

100 ,

γ = κ
2 , setsCi = Di∪Bi, 1 ≤ i ≤ h such that φ(G[Di]) ≥ φ

2 , to obtain that for eachDi with |Di| ≥ 3
√
ε′n,

there exists a subset D̂i ⊆ Di such that |D̂i| ≥ (1− 4
√
ε′)|Di| and for any v ∈ D̂i, and t = 960 logn

κφ2 ,

‖atv − UCi
‖TV ≤

√
ε′ +

κ

2
≤ κ.
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This further implies that all vertices in D̂i are strong with respect toCi, as |Ci| ≥ |Di| ≥ 3
√
ε′n. We also

note that for each Di with |Di| ≥ 3
√
ε′n, it holds that φG(Di) ≤ φout·dn

3
√
ε′·dn ≤ a1.5

√
εκ4φ1.5

3k3 logn
. Now we order Di

such that |D1| ≥ · · · ≥ |Dh| (breaking ties arbitrarily). Let h′ be the largest index with |Dh′ | ≥ 3
√
ε′n. Note

that h′ ≥ 1. We define the partition D1, · · · , Dh′ , B′ := V \ (∪i≤h′Di). By definition, it holds that for each

1 ≤ i ≤ h′, |Di| ≥ 3
√
ε′n and φ(G[Di]) ≥ φ

2 , φG(Di) ≤ φout·dn
3
√
ε′·dn ≤ a1.5

√
εκ4φ1.5

3k3 logn
. Note that the partition

D1, · · · , Dh′ , B′ only depends on G. It holds that |B′| = |∑iBi|+ | ∪i:|Di|<3
√
ε′n Di| ≤ (ε′ + 3k

√
ε′)n.

We further define Dg := ∪1≤i≤h′D̂i.

Now we show the following claim.

Claim 3.4. With probability at least 1 − 1
n , for all vertices v in Dg, WHICHCLUSTER(v) will output a

unique index σ(i) if vertex v ∈ D̂i for some injection σ : [h′] → [k].

Note that the statement of the lemma will then follow from the above claim: Let h ≤ k be the largest

index output by the algorithm, and let B,Pσ(1), · · · , Pσ(h′), Pj , for j ∈ [h] \ {σ(1), · · · , σ(h′)} be the

partition output by the algorithm. Then by Claim 3.4, all vertices in Dg will be correctly partitioned and

h′∑

i=1

|Pσ(i)△Di|+
∑

j∈[h]\{σ(1),··· ,σ(h′)}
|Pj |+ |B|+ |B′|

≤ 2 · (| ∪i:|Di|<3
√
ε′n Di|+ | ∪i:|Di|≥3

√
ε′n (Di \ D̂i)|+ | ∪i Bi|)

≤ 2 · (3k
√
ε′ + 4

√
ε′ + ε′)n

≤ 16k
√
ε′n ≤ 40k

√
ε/φn.

Re-arranging the order of sets D1, · · · , Di will complete the proof of the Lemma. Now we prove the

claim.

Proof of Claim 3.4. By the previous analysis, we have that for each i such that |Di| ≥ 3
√
ε′n, the number

of vertices in Ci that are not strong (with respect to Ci) is at most

|Di \ D̂i|+ |Bi| ≤ 4
√
ε′|Di|+ ε′n ≤ 5

√
ε′|Di| ≤ 5

√
ε′|Ci| ≤

κ

2
|Ci|.

That is, for each i such that |Ci| ≥ |Di| ≥ 3
√
ε′n, at least (1 − κ

2 ) fraction of vertices in Ci are strong

(with respect to Ci).

Now let us consider the sample set S. Recall that |S| = c·logn√
ε/φ

= Ω( logn√
ε′
) for some large constant

c > 0. Let Ti = S ∩Ci and let S′
i ⊂ Ti denote the set of vertices in Ti that are strong with respect to Ci. By

Chernoff bound, we have that with probability at least 1− 1/n4, for any i such that |Ci| ≥ |Di| ≥ 3
√
ε′n,

(1− κ

2
)
|Ci|
n

· |S| ≤ |Ti| ≤ (1 +
κ

2
)
|Ci|
n

· |S|,

(1− κ)
|Ci|
n

· |S| < (1− κ

2
)(1− κ

2
)
|Ci|
n

· |S| ≤ |S′
i| ≤ (1 +

κ

2
)
|Ci|
n

· |S|.

In the following, we will condition on event that the above two inequalities hold.

Now recall that τj = 3
√
ε′(1 + κ

2 )
j , for 0 ≤ j ≤ J , where J = O( log(φ/ε)κ ) is the maximum integer j

such that τj ≤ 1. Let ji denote the index such that |Ci| ∈ [τjin, τji+1n). Thus, |S′
i| ≥ (1− κ)τji |S|.

Let v, u be two vertices in S′
i. By Lemma 3.2, we have that atu(S

θ0
u ) ≥ 1/2, atv(S

θ0
v ) ≥ 1/2, and

rcpθ0(u, v) ≥ (1 − 5
√
κ)/|Ci|. By the assumption that κ = 100 · δ20 and Lemma 2.1, we obtain that with

probability at least 1− 1
n4 −exp(−Θ(

√
n)), ESTIMATERCP(G, u, v, θ0, δ0, t) will output a value rcp′(u, v)

12



that is at least (1− 5
√
κ)(1−

√
κ

10 )/|Ci| > 1−κ/2
|Ci| > 1−κ/2

τji+1n
≥ 1−κ

τjin
. That is, with probability at least 1− 1

n3 ,

in the similarity graphH , the induced subgraphH[S′
i] will form a complete graph with at least (1−κ)τji |S|

vertices such that for each pair u, v ∈ S′
i, rcp

′(u, v) ≥ 1−κ
τjin

. Therefore, in our sample, the set S′
i will be

recognized as a subgraph of a core (corresponding to Ci), which is a maximal clique with edge weight at

least 1−κ
τjin

.

Now once a vertex v ∈ D̂i is queried (for checking if it is outlier or not), then by using similar argument

as above, we can guarantee that with probability at least 1 − 1
n3 , for all u ∈ S′

i, the ESTIMATERCP will

output rcp′(u, v) satisfying that rcp′(u, v) ≥ 1−κ
τjin

. Thus, the algorithm will detect the core (corresponding to

Ci) for v. Furthermore, for any vertex v that is strong with respect to Ci, it holds that for any Cj with j 6= i,

there can be at most κ|Cj | vertices u ∈ Cj with rcpθ0(u, v) >
1−5

√
κ

|Cj | , this is true since the total probability

mass on Cj of the random walk distribution from v is at most κ. This ensures that there will be a unique

core corresponding to v. Let σ : [h′] → [h′] denote the corresponding bijection between {C1, · · · , Ch′}
and the cores {S1, · · · , Sh′} found by the algorithm. By union bound, we have that with probability at least

1 − 1
n , for each strong vertex v ∈ S′

i, the algorithm will answer the corresponding index σ(i) to the query

WHICHCLUSTER(v).

Running time and query complexity. Note that in the learning phase, we need to invoke the procedure

ESTIMATERCP for |S| × |S| = O(k
4 ln2 k·φ log2 n

ε ) times, and each invocation takes time O(
√
nt log2 n),

which in total takes time O(
√
n logn

φ2 · k4 ln2 k·φ log2 n
ε ) = O(

√
nk4 ln2 k·log3 n

φε ). Finding the cores in the simi-

larly graph can be implemented by a simple greedy algorithm, which can be implemented inO(poly(|S|)) =
O(poly(k·φ logn

ε )) time. Thus, the query complexity and running time in the learning phase is dominated by

O(
√
n · poly(k·lognεφ )), which, by similar arguments, also upper bounds the query complexity and running

time on each query vertex w in the query phase.

Remark. From Lemma 3.3 and its proof, we note that in order to guarantee that h′ ≥ 1, i.e., there

exists at least one good cluster Di, we need to set ε = O( φ
k2
) (so that there exists at least one set with

size at least (1 − ε′)n/k ≥ 3
√
ε′n). Thus our algorithm has non-trivial guarantee only if the adversary

does not perturb the graph too much. Suppose that there are h ≤ k ground-truth clusters C1, · · · , Ch and

the adversary perturbs an ε-fraction on intra-cluster edges. In order to recover for each Ci, a subset Pi

that is close to Di ⊆ Ci, then we need to require that mini∈h |Di| ≥ 3
√
ε′n, which can be satisfied if

ε = O(φ · (mini∈h |Di|
n )2).

We further remark that in our setting, any algorithm can only be able to (partially) recover the large

clusters, say of size at least Ω(εn). This is the case as for any small cluster (of size o(εn)), it can be

completely hidden or destroyed by the adversary. Currently, our analysis shows that our algorithm can

recover the cluster of size Ω(
√

ε
φn). It will be an interesting question to design a robust clustering oracle

that can recover smaller clusters (i.e., of size in the range [Ω(εn), o(
√

ε
φn)]).

4 The Local Reconstruction Algorithm

In this section, we present our reconstruction algorithm, which will be built upon our robust clustering oracle

algorithm in Section 3 and consists of two phases: the learning phase, that learns the cores (corresponding

to clusters in the clusterable part) of the graph, and the query phase, which first checks if the queried vertex

belongs to any of the learned cores or not, and then output its neighbors in the amended clusterable graph

accordingly. We need the following tool of explicit construction of expanders.
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Explicit expanders. For any vertex set V = [n], we let Gexp = (V,Eexp) denote a graph on V with

maximum degree at most 16 such that for any set S inGexp with |S| ≤ n/2, it holds that |Eexp(S, V \S)| ≥
η|S|, for some constant η > 0. It is known (see e.g., Lemma 6 in [KPS13] which builds upon [GG81]) that

such an expander Gexp also exists and can be explicitly constructed in the sense that for any specified vertex

v, one can find all neighbors of v in Gexp in poly(log n) time.

In the following, given a graph G, we let Gexp denote an explicit expander graphs on the same vertex

set as G. We call vertices G or Gexp-neighbors of a vertex v, depending on the graph under consideration.

Local reconstruction:

1. Run LEARNCORE(G, d, k, φ, ε).
2. For each query NEWNEIGHBORS(G,w):

(a) If the learning phase outputs fail, then output all Gexp-neighbors and G-neighbors of w.

(b) Otherwise, run CHECKCORE(H,w).

i. If w is reported as Outlier, then add all the Gexp-edges (w, u) incident to w;

ii. Otherwise, for each vertex u that is a Gexp-neighbor of w, run CHECKCORE(H,u). If u is re-

ported as Outlier, then add edge (w, x).
Output all neighbors added to w and all G-neighbors of w.

Note that the algorithm should be implemented by first taking as input a random seed s, which is fixed

once for all (and used for sampling vertices in the learning phase and performing random walks), and then

on any query vertex v, deterministically outputting the neighborhood of v in the graph G′. By construction,

if an edge (u, v) is added, then on query vertex u, v will be output as a neighbor of u and vice versa.

Therefore, the algorithm is independent of the order of queries and the answer will be globally consistent.

4.1 Analysis of the Local Reconstruction Algorithm

In the following, we show the performance guarantee of the above algorithm and prove Theorem 1.4. We

first note that the running time and query complexity can be analyzed in the same way as in the proof

Theorem 1.3.

It follows from the definition of Gexp that the maximum degree of G′ is bounded by d + 16, as Gexp

has maximum degree at most 16 and for each vertex u that is found to be an outlier, we will add all of its

Gexp-neighbors to u.

Recall from the description of our algorithm that κ > 0 is a sufficiently small universal constant. If

ε > φκ2

100 (i.e., the noise is too much), then by our algorithm, the learning phase will output fail. Furthermore,

on query any vertex u, the query phase will output all of its G and Gexp neighbors of u. Thus, G′ is a

complete hybridization of G and Gexp. Note that for any set S ⊂ V , |E′(S, S̄)| ≥ |Eexp(S, S̄)|, where E′

and Eexp denote the set of edges in G′ and Gexp respectively. Thus, it holds that if |S| ≤ n
2 , φG′(S) =

|Eexp(S,S̄)|
d|S| ≥ η

d , where we used the fact that for any set S with |S| ≤ n
2 in Gexp, |Eexp(S, S̄)| ≥ η|S|.

Therefore, the resulting graph G′ is (1, ηd , 0)-clusterable. Furthermore, the number of edges added to G is at

most 16n/2 = 8n = O(min{1, k
√
ε/φ} · n) as ε > φκ2

100 . Thus, in this case, the statement of our theorem

holds.

In the following, we prove the rest properties as listed in Theorem 1.4 for the more interesting case that

ε ∈ [Ω(φn),
φκ2

100 ].
In this case, the description of the local reconstruction algorithm, the number of added edges is 16 times

the number of vertices that are reported as outliers, and thus by Lemma 3.3, is at most 16 × 40k
√

ε
φn =

640k
√

ε
φn. Now we analyze the cluster structure of the resulting graph.
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Definition and property of weak vertices. Let ε′ := 6ε
φ < κ2

100 . We introduce the following definitions of

weak vertex for the analysis, which was inspired by the corresponding definitions for noisy expander graphs

in [KPS13]. The main difference here is that we carefully take the size of clusters into consideration.

Definition 4.1. We call a vertex v weak vertex, if for any subset A with |A| ≥ 2ε′

3 n, it holds that ‖btv −
UA‖TV ≥ 1/4.

In order to analyze the cluster structure of the resulting graph G′, we need the following property of

weak vertices.

Lemma 4.2. With probability at least 1−n−3, it holds that for any weak vertex u, the algorithm will report

u as an outlier.

Proof. We first show that if u is weak, then for any subset A with |A| ≥ 2ε′

3 n vertices, at most 7/8|A|
vertices v in A satisfy bt

u(v) ≥ 7/8
|A| . This is true since otherwise, there will be more than 7/8|A| vertices

v satisfy bu(v) ≥ 7/8
|A| . If we let A1 ⊆ A (resp. A2 ⊆ A) denote the set of vertices v in A such that

bt
u(v) ≤ 1

|A| (resp. bt
u(v) >

1
|A| ), then

‖bt
u − UA‖TV =

1

2


∑

v∈A1

(
1

|A| − bt
u(v)) +

∑

v∈A2

(bt
u(v)−

1

|A|) +
∑

v∈V \A
bt
u(v)




=
∑

v∈A1

(
1

|A| − bt
u(v))

< (1− 7/8)|A| · 1

|A| + |A| · 1− 7/8

|A| = 2(1− 7/8) <
1

4
,

which is a contradiction. By the definitions of reduced collision probability rcpθ0(u, v) and relations of

atu and bt
u, we have that rcp0(u, v) ≤ bt

u(v), and thus there can be at most 7
8 |A| vertices v in A with

rcp0(u, v) ≥ 7
8|A| . Note that this property holds for all sets A with |A| ≥ 2ε′

3 n.

For each 0 ≤ j ≤ J , we let Tj denote the set of vertices v such that rcp0(u, v) ≥ 7
8τjn

. Recall that

τj = 3
√
ε′(1 + κ

2 )
j , for 0 ≤ j ≤ J .

If |Tj | ≥ τjn > 2ε′

3 n, then for all vertices v ∈ Tj , it holds that rcp0(u, v) ≥ 7
8τjn

≥ 7
8|Tj | , which is

a contradiction. If
7τj
8 n < |Tj | < τjn, then we can add arbitrarily at most 1

8τjn vertices to Tj to obtain

a set A such that |A| = τjn > 2ε′

3 n, and for at least
|Ti|
|A| >

7
8 fraction of vertices v in A, it holds that

rcp0(u, v) ≥ 7
8τjn

= 7
8|A| , which is a contradiction. Therefore, it must hold that |Tj | ≤ 7τjn

8 .

That is, for the weak vertex u, it holds that for each 0 ≤ j ≤ J , there will be at most 7
8τjn vertices v

with rcp0(u, v) ≥ 7
8τjn

. Thus, there will be at least (1 − 7
8τj)n vertices v with rcp0(u, v) ≤ 7

8τjn
. We can

further guarantee that with probability at least 1−1/n2, for any such pair u, v, the procedure ESTIMATERCP

(with parameter δ ≤
√
κ

10 ) either aborts or outputs an estimate rcp′(u, v) ≤ (1 +
√
κ

10 )
7

8τjn
≤ 8

9τjn
, for any

0 ≤ j ≤ J . Finally, with probability at least 1 − 2
n2 , in our sample set S, at least (1 − 7

8τj) fraction of

vertices v satisfy that rcp′(u, v) ≤ 8
9τjn

, or equivalently, less than 7
8τj fraction of vertices v satisfy that

rcp′(u, v) ≥ 8
9τjn

. This implies that our algorithm will report u as an outlier.

Cluster structure of G′. Now we are ready to show that the resulting graph G′ from our local reconstruc-

tion algorithm can be partitioned into at most k parts, each of which has relatively large inner conductance.
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Lemma 4.3. Let φ∗ = a4.3εφ
k4 logn

for some sufficiently small constant a4.3. If G is an ε-perturbation of a

(k, φ, a1.5εκ
4φ

3k3 logn
)-clusterable graph, then the resulting graph G′ from the local reconstruction algorithm is

(k, φ∗, 1)-clusterable.

Proof. For analysis, we perform the following procedure on the input graph G. Let γ = ε′

3 = 2ε
φ . We start

with the set U := V and a partitioning P := {V } of G. Then if there exists a set U ∈ P and S ⊆ U such

that γn ≤ |S| ≤ |U |
2 and φG(S) ≤ φout :=

a1.5εκ4φ
3k3 logn

, then we set P = (P \ {U}) ∪ {S,U \ S}. We repeat

until no such S can be found. Let P = {C1, · · · , Ch} denote the final partitioning of V .

Note that for any Ci, if U is the subset that contains Ci and is then split into Ci and U \ Ci, then

|U | ≥ 2γn and thus |Ci| ≥ γn and |U \Ci| ≥ |U |
2 ≥ γn by the construction. This implies that at the end of

the above procedure, it holds that mini |Ci| ≥ γn.

We further note that |P| = h ≤ k. This is true since otherwise, in order to makeG become a (k, φ, φout)-
clusterable graph, one has to patch up at least one set Ci to other parts, that is, we need to add at least
3φ
4 · dmini{|Ci|} ≥ 3φ

4 · d · 2ε
φ n > εdn edges, which is a contradiction to the assumption that G is an

ε-perturbation of a (k, φ, φout)-clusterable graph.

Now let us consider the partition P in the constructed graph G′. Observe that by the description of our

algorithm, for any set S of vertices |E′(S, S̄)| ≥ |E(S, S̄)|, where E′ and E denote the set of edges in

G′ and G respectively. In particular, Lemma 4.2 implies that the set of G′-neighbors of any weak vertex

u is a superset of the set of G-neighbors of u, as u will be reported as an outlier by the algorithm and the

Gexp-neighbors of u will be added to G′.
We have the following claim.

Claim 4.4. In the graphG′, for eachCi, and any subset S ⊂ Ci with |S| ≤ |Ci|
2 , it holds that φG′(S) ≥ kφ∗.

Proof. If γn ≤ |S| ≤ |Ci|
2 , then by our construction of Ci, we have that φG(S) ≥ φout. Thus, φG′(S) =

|E′(S,V \S)|
d|S| ≥ |E(S,V \S)|

d|S| ≥ φout ≥ kφ∗. Now let us consider the case that |S| ≤ γn.

If there are less than (1 − η
2 ) fraction of vertices in S are weak, then we show that φG(S) ≥ kφ∗.

Suppose this is not the case, that is, φG(S) <
a4.3εφ
k3 logn

≤ η
16t , if we set a4.3 to be a sufficiently small constant.

By the proof of Theorem 4 in [KPS13] (which in turn is based on the proof of Lemma 4.7 in [CS10]), we

know that for at least (1− η/2) fraction of vertices u in S, the probability that a bt
u-random walk that starts

at u will end up in S̄ is at most 1/4. Now let A be any set with |A| ≥ 2ε′

3 n. Since |S| ≤ ε′

3 n, it holds that

|A \ S| ≥ 1
2 |A|. Thus, we have that UA(A \ S) ≥ 1

2 . This gives that ‖bt
u − UA‖TV ≥ 1

4 , which implies

that such a vertex u is weak. Thus, S contains at least (1 − η/2) fraction of weak vertices, which is a

contradiction. This implies that φG′(S) ≥ φG(S) ≥ kφ∗.

If there are more than (1 − η/2) fraction of weak vertices, denoted by W , in S, then the number of

Gexp-neighbors of W in Gexp is at least η|W |. Since all these Gexp-neighbors are also in G′, we have that

the number of vertices outside of S is at least η|W | − |S \W | ≥ η(1− η/2)|S| − η/2|S| ≥ η
6 |S|. Since we

add all the edges in Gexp that are incident to W to G′, we have that the number of edges crossing S in G′ is

at least η
6 |S|, and thus φG′(S) ≥ η

6d ≥ kφ∗.

Now based on the partition P = {C1, · · · , Ch} as constructed above, we find a new partition of G′ such

that each part has large inner conductance. We start with the partition P = {C1, · · · , Ch} as constructed

above and perform the following operations. If there exist i, j ≤ h, S ⊆ Ci satisfies that i 6= j, |S| ≤ |Ci|
2

and that |E′(S,Ci \ S)| < |E′(S,Cj)|, then we set Ci := Ci \ S and Cj := Tj ∪ S. We repeat until the

condition is violated.

Note that the above process always terminates in a finite number of steps since the number of crossing

edges, i.e.,
∑

i 6=j |E′(Ci, Cj)|, always decreases in each iteration. Furthermore, we observe that at the end
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of the process, for any 1 ≤ i ≤ h, and any set S ⊆ Ci with |S| ≤ |Ci|
2 , |E′(S,Ci \ S)| ≥ |E′(S,V \S)|

k .

Therefore, φG′[Ci](S) ≥ 1
kφG′(S) ≥ φ∗. This implies that for each i, φ(G′[Ci]) ≥ φ∗.

5 Local Mixing Property of Random Walks on Noisy Clusterable Graphs:

Proof of Theorem 1.5

In this section, we give the proof of Theorem 1.5. To do so, we first give a property of random walks on

clusterable graphs (without noise).

5.1 Local Mixing Property of Random Walks on Clusterable Graphs

We will first prove a mixing property of random walks on a clusterable graph, which says that in a clusterable

graph, for many vertices v in a large cluster, a random walk of appropriate length starting from v will mix

well inside the corresponding cluster. By a simple reduction (see Appendix B), it suffices to consider a

corresponding weighted d-regular graph for any d-bounded graph.

Theorem 5.1. Let 0 < α, β, ξ ≤ 1. Let φout ≤ a5.1
ξαβφ2

in

k3 logn
for some sufficiently small constant a5.1 > 0.

Let G be a weighted d-regular and (k, φin, φout)-clusterable graph with underlying clusters C1, · · · , Ch for

some h ≤ k. Then for each Ci with |Ci| ≥ αn, there exists a subset C ′
i ⊆ Ci such that |C ′

i| ≥ (1− β)|Ci|,
and for any v ∈ C ′

i, and t = 20 logn
φ2

in

, it holds that

‖ptv − UCi
‖TV ≤ ξ.

We remark that [ST13] and [AOPT16] gave analysis for upper bounding the probability that a random

walk of length t from a typical vertex v in a set S with small conductance will escape the set S, and lower

bounding the probability that the walk from v of length t stays inside S, respectively. It is unclear if one can

use their analysis to prove the above theorem. In the following, we prove Theorem 5.1 by using some strong

spectral property of clusterable graphs, i.e., the spectral gap between λh+1 and λh for some h ≤ k, and the

closeness of the space spanned by the first h eigenvectors and the space spanned by the indicator vectors of

clusters. More precisely, we need the following tools.

Lemma 5.2 (Lemma 5.2 in [CPS15] and Lemma 10 in [CKK+18]). Let G be a weighted d-regular and

(k, φin, φout)-clusterable graph with underlying clusters C1, · · · , Ch for some h ≤ k. Then λh ≤ 2φout and

λh+1 ≥ φ2
in

2 .

Fact 5.3. It holds that ‖1v‖22 =
∑n

j=1 vj(v)
2 = 1, for any v ∈ V .

The following is a direct corollary of a structural result due to [PSZ17] that relates the first k eigenvectors

of the Laplacian to the normalized indicator vectors of some k-partition of the graph. Recall that vi is the

eigenvector corresponding to the i-th smallest eigenvalue of the Laplacian of G.

Theorem 5.4. Let φout ≤ a5.4φ
2
in/k

2 for sufficiently small constant a5.4 > 0. LetG be a weighted d-regular

and (k, φin, φout)-clusterable graph with underlying (φin, φout)-clusters C1, · · · , Ch for some h ≤ k. Let

ri :=
1√
|Ci|

· 1Ci
. Then there exist h orthonormal vectors r̃1, · · · , r̃h ∈ span(r1, · · · , rh) and a constant

c5.4 > 0, such that

‖vi − r̃i‖22 ≤ c5.4 ·
hφout

φ2in
.

Proof. Let ρ(h) := minA1,··· ,Ah
max{φG(Ai) : i = 1, · · · , h}, where the minimum is taken over all h-

partitions A1, · · · , Ah. It is proven in Theorem 1.1 of [PSZ17] that if λh+1/ρ(h) ≥ ch2 for some constant

c > 0, then there exist orthonormal vectors r̃1, · · · , r̃h ∈ span(r1, · · · , rh) such that ‖vi − r̃i‖22 ≤ 1.1h ·
ρ(h)
λh+1

.
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Note that by definition, ρ(h) ≤ φout. In addition, by Lemma 5.2, it holds that λh+1 ≥ φ2
in

2 . Furthermore,

since φout ≤ a5.4φ
2
in/k

2 ≤ a5.4φ
2
in/h

2, it holds that λh+1/ρ(h) ≥ φ2
in

2φout
= ch2 as a5.4 is sufficiently small

constant. This then implies that ‖vi − r̃i‖22 ≤ 1.1h · ρ(h)
λh+1

≤ c5.4 · hφout

φ2
in

for some constant c5.4.

Now we are ready to prove Theorem 5.1. We first provide a high level idea. We will bound the ℓ2-norm

distance of the random walk distribution pt
v and the uniform distribution UC over the cluster C that contains

v, i.e., ‖pt
v − UC‖2. In order to do so, we note that by Theorem 5.4, the vector UC , which is a scale of the

indicator vector of C, lies in a space that can be well approximated by the space of the first h (where h ≤ k
is the number of clusters) eigenvectors of matrix P. Using this, we show that the projection of pt

v − UC

on the space spanned by the first h eigenvectors is small. Furthermore, by Lemma 5.2, λh+1 is large, and

thus the length of the projection of pt
v − UC on the space spanned by the remaining n − h eigenvectors is

dominated by (1− λh+1

2 )O(t), which is also small for appropriately chosen t. Now we give the details.

Proof of Theorem 5.1. For any vertex v, we let Xv :=
∑h

j=1 vj(v)
2. We first note that

∑
v∈V Xv =

∑
v∈V

∑h
j=1 vj(v)

2 =
∑h

j=1‖vj‖22 = h. Therefore, by the averaging argument, there can be at most
βα
2 n vertices v with Xv ≥ 2h

βαn .

Note that by the precondition of the Theorem, it holds that φout ≤ a5.4φ
2
in/k

2. Let ri and r̃i be the

vectors as defined in Theorem 5.4. Let Yv :=
∑h

j=1(vj(v)− r̃j(v))
2. Then by applying Theorem 5.4 with

graph G, we have that

∑

v

Yv =
∑

v

h∑

j=1

(vj(v)− r̃j(v))
2 =

h∑

j=1

‖vj − r̃j‖22 ≤ c5.4 ·
h2φout

φ2in

Again, by the averaging argument, there can be at most βα
2 n vertices v with Yv ≥ c5.4 · h2φout

φ2
in

2
βαn .

Now let us define C ′
i := {v : v ∈ Ci, Xv ≤ 2h

βαn , Yv ≤ c5.4 · h2φout

φ2
in

2
βαn}. Note that for any Ci with

|Ci| ≥ αn, it holds that |C ′
i| ≥ |Ci| − (βα2 + βα

2 )n ≥ |Ci| − β|Ci| ≥ (1− β)|Ci|.
Let us consider any vertex v ∈ C ′

i. Since ri =
1Ci√
|Ci|

, it holds that

UCi
=

1Ci

|Ci|
= 〈1v,

1Ci√
|Ci|

〉 · 1Ci√
|Ci|

= 〈1v, ri〉 · ri =
h∑

j=1

rj(v) · rj =
h∑

j=1

r̃j(v) · r̃j

where the last equation follows from the fact that r̃1, · · · , r̃h have the same linear span as vectors r1, · · · , rh,

which in turn follows from the properties of {r̃i} as guaranteed by Theorem 5.4.

Recall that pt
v =

∑n
j=1(1−

λj

2 )
t
vj(v) · vj . We let t = 20 logn

φ2
in

. Thus, we have that

‖pt
v − UCi

‖2 = ‖
n∑

j=1

(1− λj
2
)tvj(v) · vj −

h∑

j=1

r̃j(v) · r̃j‖2

= ‖
n∑

j=1

(1− λj
2
)tvj(v) · vj −

h∑

j=1

vj(v) · vj +

h∑

j=1

vj(v) · vj −
h∑

j=1

r̃j(v) · r̃j‖2

≤ ‖
h∑

j=1

((1− λj
2
)t − 1)vj(v) · vj‖2 + ‖

n∑

j=h+1

(1− λj
2
)tvj(v) · vj‖2 + ‖

h∑

j=1

vj(v) · vj −
h∑

j=1

r̃j(v) · r̃j‖2
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≤

√√√√
h∑

j=1

((1− λj
2
)t − 1)2vj(v)2 + (1− φ2in

4
)t

√√√√
n∑

j=h+1

vj(v)2 + ‖
h∑

j=1

vj(v) · vj −
h∑

j=1

r̃j(v) · r̃j‖2

≤ (1− (1− λh
2
)t)

√√√√
h∑

j=1

vj(v)2 + (1− φ2in
4
)t

√√√√
n∑

j=h+1

vj(v)2 + ‖
h∑

j=1

vj(v) · vj −
h∑

j=1

r̃j(v) · r̃j‖2

≤ (1− (1− φout)
t) ·
√
Xv + (1− φ2in

4
)t + ‖

h∑

j=1

vj(v) · vj −
h∑

j=1

r̃j(v) · r̃j‖2

(by Lemma 5.2 and Fact 5.3)

≤ tφout ·
√
Xv +

1

n3
+ ‖

h∑

j=1

vj(v) · vj −
h∑

j=1

r̃j(v) · r̃j‖2 (by our setting t =
20 log n

φ2in
)

Now observe that

‖
h∑

j=1

vj(v) · vj −
h∑

j=1

r̃j(v) · r̃j‖2

= ‖
h∑

j=1

vj(v) · vj −
h∑

j=1

vj(v) · r̃j +
h∑

j=1

vj(v) · r̃j −
h∑

j=1

r̃j(v) · r̃j‖2

≤ ‖
h∑

j=1

vj(v) · vj −
h∑

j=1

vj(v) · r̃j‖2 + ‖
h∑

j=1

vj(v) · r̃j −
h∑

j=1

r̃j(v) · r̃j‖2

≤
h∑

j=1

‖vj(v) · (vj − r̃j)‖2 + ‖
h∑

j=1

(vj(v)− r̃j(v)) · r̃j‖2

≤
√
c5.4 ·

hφout

φ2in
·

h∑

j=1

|vj(v)|+ ‖
h∑

j=1

(vj(v)− r̃j(v)) · r̃j‖2 (by Theorem 5.4)

≤
√
c5.4 ·

h2φout

φ2in
·

√√√√
h∑

j=1

vj(v)2 +

√√√√
h∑

j=1

(vj(v)− r̃j(v))2 (by Cauchy-Schwarz inequality)

=

√
c5.4 ·

h2φout

φ2in
·
√
Xv +

√
Yv

Therefore,

‖pt
v − UCi

‖2 ≤ tφout ·
√
Xv +

1

n3
+

√
c5.4 ·

h2φout

φ2in
·
√
Xv +

√
Yv

≤
(
tφout +

√
c5.4 ·

h2φout

φ2in

)
·
√

2h

βαn
+

√
c5.4 ·

h2φout

φ2in

2

βαn
+

1

n3
≤ 2ξ√

n
,

where the last inequality follows from our setting that h ≤ k, t = 20 logn
φ2

in

and φout ≤ a5.1
ξαβφ2

in

k3 logn
, where

a5.1 > 0 is some sufficiently small constant.

Therefore, it holds that ‖pt
v − UCi

‖TV = 1
2‖pt

v − UCi
‖1 ≤ 1

2

√
n · ‖pt

v − UCi
‖2 ≤ ξ.
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5.2 From Clusterable Graphs to Noisy Clusterable Graphs

Now we analyze the random walk on a noisy clusterable graph G, for which we use an induced Markov

chain introduced in [KPS13] and some property of stopping rules of Markov chains [LW97].

A tool: stopping rules of Markov Chains. Consider a finite, irreducible, discrete time Markov chain

on the state space V = [n] with stationary distribution π. For any distribution σ, we let σt denote the

distribution of a t-step walk on the Markov chain with initial distribution σ. A stopping rule Γ of the

Markov chain is a rule that observes the walk and decides whether to stop or not on the basis of what has

been observed so far (see e.g., [LW97] for formal definition). Given a starting distribution σ and a target

distribution τ , we say that a stopping rule Γ is a stopping rule from σ to τ if the initial state is drawn from

σ and the final state is governed by τ . Let E[Γ] denote the expected length before Γ halts. For any two

distributions σ and τ , we let H(σ, τ) denote the minimal expected length E[Γ] among all stopping rules Γ
from σ to τ .

Let σ(t) denotes the distribution of a uniform average walk of length t with initial distribution σ. The

following lemma was proved by Lovász and Winkler.

Lemma 5.5 ([LW97]). For any distribution τ , and any subset U ⊂ V ,

∑

i∈U
σ(t)(i) ≤ 1

t
H(σ, τ) +

1

t

∑

i∈U

t−1∑

m=0

τm(i)

where τm denotes the probability vector of an m step random walk on the Markov chain with initial distri-

bution τ .

We remark that the above inequality was not explicitly stated in [LW97], while the proof of Lemma 4.22

in [LW97] directly implies the above Lemma.

An induced Markov chain. Let G = (V,E) be a d-bounded graph. Let M be the Markov chain corre-

sponding to the (normal) random walks on the input graph G. For simplicity, we assume M is irreducible

(i.e., the graph is connected). By definition, the stationary distribution π of M is the uniform distribution

UV on V , that is π(i) = 1
n . Let D denote a (large) subset of V and let B = V \ D. Now we describe

the new Markov chain M′, that has been considered in [KPS13], with state set D as follows. For any two

vertices u, v ∈ D, the transition probability p′
u(v) in M′ is the sum of pu(v), i.e., the transition probability

from u to v in M, and the probability b
(t)
u (v) that is equal to the total probability of all length t walks

from u to v all of whose states, except for the end points u and v are in B, for any integer t ≥ 2. That

is, p′
u(v) = pu(v) +

∑
t≥2 b

(t)
u (v). The chain M′ is formally constructed by first retaining the original

transition in M between u, v and then adding new transitions e
(t)
u (v) with transition probability b

(t)
u (v) for

any t ≥ 2, for any u, v ∈ D.

We note that the chain M′ is the stochastic complement of M with respect to set D [Mey89]. Let

P =
(
PD P1
P2 PB

)
denote the transition probability matrix underlying M. We have the following lemma

regarding the transition probability matrix P
′ underlying M′.

Lemma 5.6 ([Mey89]). The Markov chain M′ is irreducible and aperiodic. Furthermore, its transition

probability matrix is P′ = PD +P1(I−PB)
−1

P2.

It is known (see e.g., [Mey89] and [KPS13]) that, the stationary distribution in M′ is given by the vector

π′ ∈ R
D such that π′(u) = π(u)

π(D) =
1
|D| for any u ∈ D.

Now let us consider a vertex s ∈ D and an integer ℓ that will be specified later. Let τ := p′(ℓ)
s denote

the distribution of a random walk of length ℓ starting from s ∈ D in M′. Consider the stopping rule Γ that

stops the walk in M as soon as it has taken ℓ steps in M′, that is, Γ is a stopping rule from 1s to τ . Recall
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that E[Γ] denotes the expected number of steps the walk takes starting from s before being terminated by

the stopping rule Γ. The following lemma has been proven in [KPS13].

Lemma 5.7 ([KPS13]). There exists a set B̃ ⊆ D with π(B̃) ≤ π(B) such that for any s ∈ D \ B̃,

E[Γ] ≤ 2ℓ. In particular, for any such vertex s, H(1s, τ) ≤ 2ℓ.

Now we use the above induced chain to analyze the random walks on noisy clusterable graphs. Let G
be a graph with an h-partition Ci, i ≤ h satisfying the precondition of Theorem 1.5. We let D denote the

union of all Di’s with |Di| ≥ 2|Bi|, that is, D = ∪i:|Di|≥2|Bi|Di and B = V \D. We consider the induced

Markov chain M′ with state set D.

Recall that we let A denote the adjacency matrix of the d-regular graph G′ corresponding to G (see

Section 2.) Then the transition probability matrix is P =
I+ 1

d
A

2 . If we let A =
(
AD A1
A2 AB

)
, then by

Lemma 5.6, the transition probability matrix of GM′ is

P
′ =

I+ 1
dAD

2
+

A1

2d

(
I− 1

dAB

2

)−1
A2

2d
=

I+ 1
d(AD +A1(2dI−AB)

−1
A2)

2
. (1)

If we let GM′ denote the (weighted) d-bounded graph with adjacency matrix AD +A1(2dI−AB)
−1

A2,

then by the above analysis (and the fact that (2dI − AB)
−1 ≥ 0 [Mey89]), M′ corresponds to the lazy

random walk on the graph GM′ .

In the following, we show that GM′ is a clusterable graph with clusters Di ⊆ D, which will imply

that the chain M′ has the nice local mixing property as guaranteed by Theorem 5.1. Then we can use the

stopping rules to relate the chains M′ and M.

The following lemma shows that if we construct M′ as above for the graph that satisfies the precon-

dition of Theorem 1.5, then GM′ is (k, φin, O(φout))-clusterable. This is trivial for the case of k = 1 (as

in [KPS13]), as the inner conductance of any set is monotonically increasing. However, for general k ≥ 2,

we need to deal with the difficulty of bounding the outer conductance of potential clusters, as the outer

conductance of any set is also monotonically increasing due to our construction.

Lemma 5.8. Let G = (V,E) be a d-bound graph with an h-partition Ci, i ≤ h such that φG(Ci) ≤ φout.

Furthermore, each Ci can be partitioned into two subsets Di and Bi such that φ(G[Di]) ≥ φin. Let

D = ∪i:|Di|≥2|Bi|Di and B = V \D. Let GM′ be the weighted graph corresponding to the Markov chain

M′ on D constructed as above. Then in the graph GM′ , each Di ⊆ D has the inner conductance at least

φin and outer conductance at most 3φout.

Proof. We first consider the inner conductance of Di in GM′ . Let S ⊆ Di with |S| ≤ |Di|
2 . By the

fact that the adjacency matrix of GM′ is AD + A1(2dI − AB)
−1

A2, it holds that |EGM′ (S,Di \ S)| ≥
|EG(S,Di \ S)| ≥ φind|S|. This implies that the inner conductance of Di in GM′ is at least φin.

To bound the outer conductance of Di in GM′ , we instead bound the outer conductance φM′(Di) of Di

in the Markov chain M′, which is defined to be φM′(Di) :=

∑
u∈Di,v∈D\Di

π′(u)p′
u(v)

π′(Di)
, where p′

u(v) denotes

the transition probability from u to v in the Markov chain M′. Note that by our definitions, φGM′ (Di) =
2φM′(Di).

Recall that π′(u) = 1
|D| and that the transition probability matrix of M′ is P

′ given by Equation (1).

Then we have that

∑

u∈Di,v∈D\Di

π′(u)p′
u(v) =

1

|D|
∑

u∈Di,v∈D\Di

1u ·P′ · 1Tv

=
1

|D|
∑

u∈Di,v∈D\Di

1u ·
(
I+ 1

d(AD +A1(2dI−AB)
−1

A2)

2

)
· 1Tv
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=
1

|D|
∑

u∈Di,v∈D\Di

1u ·
(

1

2d

(
AD +A1(2dI−AB)

−1
A2

))
· 1Tv

=
1

|D|
∑

u∈Di,v∈D\Di


 1

2d


1u ·AD · 1Tv +

1

2d
1u ·A1 ·

∞∑

j=0

(
1

2d
AB)

j ·A2 · 1Tv






(2)

where last equation follows from the Neumann Series (I− AB

2d )−1 =
∑∞

j=0(
AB

2d )j .
We bound each term in the right hand side of the above inequality as follows. First, we have that

∑

u∈Di,v∈D\Di

1u ·AD · 1Tv ≤ |EG(Di, D \Di)|. (3)

Furthermore, we observe that 1u ·A1 ·A2 · 1Tv is exactly the number of paths that start from u, then go to a

vertex w ∈ B, and then move to v. Thus,

1

2d

∑

u∈Di,v∈D\Di

1u ·A1A2 · 1Tv ≤
∑

w∈B

|EG(Di, w)||EG(w,D \Di)|
2d

≤
∑

w∈Bi

|EG(w,D \Di)|
2

+
∑

w∈B\Bi

|EG(Di, w)|
2

=
1

2
(|EG(Bi, D \Di)|+ |EG(Di, B \Bi)|)

≤ 1

2
|EG(Ci, V \ Ci)|

Similarly, for each j ≥ 1, 1u ·A1 ·Aj
B ·A2 · 1Tv is exactly the number of paths that start from u, then

go to a vertex w1 ∈ B, and move inside B for the next j steps until some vertex w2 ∈ B, and then move to

v. We have that

1

(2d)j+1

∑

u∈Di,v∈D\Di

1u ·A1A
j
BA2 · 1Tv

≤ 1

(2d)j+1

∑

w1∈B
|EG(Di, w1)| ·

∑

w2:p=(v0=w1,··· ,vj=w2),
vℓ∈B,(vℓ,vℓ+1)∈E(G)

|EG(w2, D \Di)|

≤ 1

(2d)j+1
(
∑

w1∈B\Bi

|EG(Di, w1)| · dj+1 +
∑

w2∈Bi

|EG(w2, D \Di)| · dj+1)

=
1

2j+1
(|EG(Di, B \Bi)|+ |EG(Bi, D \Di)|)

≤ 1

2j+1
|EG(Ci, V \ Ci)|,

where in the first inequality, the third summation is taken over all possible paths p from w1 to some vertex

w2 ∈ B, such that the length of p is j and all vertices on p belong to B; in the second inequality, we used

the fact that the number of such paths p is at most dj and each vertex has degree at most d.

Thus,

∞∑

j=0

1

(2d)j+1

∑

u∈Di,v∈D\Di

1u ·A1A
i
BA2 · 1Tv ≤

∞∑

j=0

1

2j+1
|EG(Ci, V \ Ci)| = |EG(Ci, V \ Ci)| (4)
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By the above inequalities (2),(3),(4), we obtain that

∑

u∈Di,v∈D\Di

π′(u)p′
u(v) ≤ 1

2d|D| · (1 + 1) · |EG(Ci, V \ Ci)| =
|EG(Ci, V \ Ci)|

d|Ci|
· |Ci|
|Di|

· |Di|
|D|

≤ φG(Ci) ·
3

2
· π′(Di) ≤

3

2
φoutπ

′(Di),

where in the second to last inequality, we used the assumption that |Di| ≥ 2|Bi|, which gives that |Di| ≥
2
3 |Ci|.

Therefore, φGM′ (Di) = 2φM′(Di) ≤ 3φout.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let D = ∪j:|Dj |≥2|Bj |Dj . Let B = V \D. Then it holds that |B| =∑1≤i≤h |Bi|+∑
i:|Di|<2|Bi| |Di| ≤ 3

∑
1≤i≤h |Bi| ≤ 3εn, and |D| ≥ (1 − 3ε)n. We consider the induced Markov chain

M′ on D as above. By Lemma 5.8, the corresponding d-bounded weighted graph GM′ is (k, φin, 3φout)-
clusterable. In particular, φGM′ (Di) ≤ 3φout and φ(GM′ [Di]) ≥ φin for any Di ⊂ D.

Let ℓ be an integer that will be specified later. For any s ∈ D, we let τs := p′
s
(ℓ)

being the probability

distribution of an ℓ step random walk starting from s in the induced Markov chain M′. Let Γs be the

stopping rule from 1s to τs which is obtained by stopping the random walk that starts at s in M as soon as

it has taken ℓ steps in M′. Let B̃ ⊆ D be the set guaranteed by Lemma 5.7 such that |B̃| ≤ |B| ≤ 3εn and

for any s ∈ D \ B̃,

E[Γs] ≤ 2ℓ. (5)

Now we set a1.5 = a5.1
120 and thus φout ≤ a5.1εγ4φ2

in

120k3 logn
. We then apply Theorem 5.1 on GM′ with

(φin, 3φout)-clusters Di and α = 3
√
ε, β = 3

√
ε, ξ = γ

6 , to obtain that for any Dj with |Dj | ≥ 3
√
εn ≥

3
√
ε|D|,there exists a set D′

j with |D′
j | ≥ (1− 3

√
ε)|Dj | such that for any s ∈ D′

j and ℓ = 20 logn
φ2

in

, it holds

that ‖τs − UDj
‖TV ≤ γ

6 . This implies that

‖τs − UCj
‖TV ≤ ‖τs − UDj

‖TV + ‖UDj
− UCj

‖TV ≤ γ

6
+

|Cj \Dj |
|Cj |

=
γ

6
+

|Bj |
|Cj |

≤ γ

6
+

εn

3
√
εn

=
γ

6
+

√
ε

3
(6)

Now we set D̂j := D′
j \ B̃. Then it is guaranteed that for any j with |Dj | ≥ 3

√
εn, |D̂j | ≥ (1 −

3
√
ε)|Dj | − 3εn ≥ (1− 4

√
ε)|Dj |. Thus, for any s ∈ D̂j , both inequalities (5) and (6) hold.

Now let us consider an arbitrary s ∈ D̂j . Let τ = τs and σ = 1s. By the precondition of the Theorem,

we have that t = 120 logn
γφ2

in

= 6ℓ
γ . We further recall that ats denotes the distribution of a uniform average walk

of length t with initial distribution σ in the original chain M. By applying Lemma 5.5 with σ(t) = ats and

distribution τ , we obtain that for any U ⊂ V ,

∑

i∈U
ats(i) ≤

1

t
H(σ, τ) +

1

t

∑

i∈U

t−1∑

m=0

τm(i),

where τm denotes the distribution of an m step random walk on G with initial distribution τ , that is τm =
τPm. (Here we slightly abuse the notation τ and use it to denote the distribution on V by adding zero
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coordinates corresponding to vertices in V \D). This further implies that for any set Cj and any U ⊆ V ,

∑

i∈U
(ats(i)− UCj

(i)) ≤ 1

t
H(σ, τ) +

1

t

∑

i∈U

t−1∑

m=0

(τm(i)− UCj
(i))

Therefore,

‖ats − UCj
‖TV ≤ 1

t
H(σ, τ) +

1

t

t−1∑

m=0

‖τm − UCj
‖TV ≤ 2ℓ

t
+

1

t

t−1∑

m=0

‖τm − UCj
‖TV, (7)

where the last inequality follows from inequality (5). Now recall that P = I+d−1A
2 denotes the transition

probability matrix of the random walk. We will show the following claim.

Claim 5.9. For any 0 ≤ m ≤ t− 1, it holds that ‖UCj
P

m − UCj
‖TV ≤ γ

3 .

Assuming that the above claim holds, we have that for any 0 ≤ m ≤ t− 1,

‖τm − UCj
‖TV = ‖τPm − UCj

‖TV ≤ ‖τPm − UCj
P

m + UCj
P

m − UCj
‖TV

≤ ‖τPm − UCj
P

m‖TV + ‖UCj
P

m − UCj
‖TV ≤ ‖τ − UCj

‖TV + ‖UCj
P

m − UCj
‖TV

≤ γ

6
+

√
ε

3
+
γ

3
=
γ

2
+

√
ε

3
,

where the last inequality follows from Ineq. (6) and Claim 5.9. This, together with inequality (7), gives that

‖ats − UCj
‖TV ≤ 2ℓ

t
+

1

t
· t · (γ

2
+

√
ε

3
) ≤ γ

3
+
γ

2
+

√
ε

3
< γ +

√
ε.

This will then finish the proof of the theorem.

Now we give the proof of Claim 5.9.

Proof of Claim 5.9. For notational simplicity, we let C = Cj . We write P =
∑n

i=1 ηiviv
T
i , where ηi :=

1 − λi

2 and vi (1 ≤ i ≤ n) denote the i-th eigenvalue of P, respectively. Let UC =
∑

i αivi. Note that∑n
i=1 α

2
i = ‖UC‖22 = 1

|C| .
Note that

1C

|C| · (I −P)1TC =
1C(dI − A)1TC

2d|C| =

∑
u∼v(1C(u)− 1C(v))

2

2d|C| =
φG(C)

2
≤ φout

2
,

which gives that 1−|C|·UCPUT
C ≤ φout

2 . Thus, 1−|C|∑i ηiα
2
i ≤ φout

2 , or equivalently,
∑

i ηiα
2
i ≥

1−φout/2
|C| .

Let H = {i : ηi ≥ 1 − xφout

2 }, where x = 8
γ2 . Then we have that

∑
i∈H α2

i + (1 − xφout

2 )
∑

i/∈H α2
i ≥

1−φout/2
|C| . Thus,

∑
i∈H α2

i + (1− xφout

2 )( 1
|C| −

∑
i∈H α2

i ) ≥
1−φout/2

|C| , which gives that

∑

i∈H
α2
i ≥

x− 1

x · |C| ,
∑

i/∈H
α2
i ≤

1

x|C| .

Now we have that

‖UCP
m − UC‖22 =

∑

i

(αiη
m
i − αi)

2 =
∑

i

α2
i (1− ηmi )2 ≤

∑

i∈H
(1− (1− xφout

2
)m)2α2

i +
∑

i/∈H
α2
i

≤
∑

i∈H
(
xtφout

2
)2α2

i +
1

x|C| ≤ (
x2t2φ2out

4
+

1

x
)
1

|C| <
γ2

4|C| ,

24



where we used our choice of parameters which satisfy that tφout ≤ γ3/16 and x = 8
γ2 .

On the other hand, if we let DC denote the diagonal matrix such that DC(u, u) = 1 if u ∈ C and 0
otherwise, then by Proposition 2.5 in [ST13], it holds that for any m ≥ 0,

UC(PDC)
m1TC = UC(PDC)

m1TV ≥ 1− mφG(C)

2
≥ 1− mφout

2
.

This gives that

UCP
m1TV \C = 1− UCP

m1TC ≤ 1− UC(PDC)
m1TC ≤ mφout

2
.

Finally, by the above calculations, we have that

‖UCP
m − UC‖TV =

1

2
‖UCP

m − UC‖1 ≤
1

2
(UCP

m1TV \C +
∑

i∈C
|UCP

m(i)− UC(i)|)

≤ 1

2
(
mφout

2
+
√
|C| ·

√∑

i∈C
(UCP

m(i)− UC(i))2) ≤
1

2
(
tφout

2
+
√

|C| · ‖UCP
m − UC‖2)

≤ γ3

64
+
γ

4
<
γ

3
.

This finishes the proof of the Claim.

This finishes the proof of Theorem 1.5.

6 Conclusions

We gave the first robust clustering oracle and local filter for reconstructing the cluster structure of bounded

degree graphs. Both algorithms run in sublinear times. To design and analyze our algorithms, we formalized

and proved a new behavior of random walks in a noisy clusterable graph: a random walk of appropriately

chosen length from a typical vertex in a large cluster of the clusterable part will mix well in the corresponding

cluster, which might be of independent interest.

It will be an interesting open question to design a local reconstruction algorithm that outputs a cluster-

able graph with better cluster-quality guarantee, especially to remove the Θ(log n) gap between the inner

conductances of the original graph and the corrected graph from our current result. In the property testing

setting, such a gap was successfully closed, for both testing expansion ([CS10] vs. [KS11, NS10]) and for

testing k-clusterability ([CPS15] vs. [CKK+18]). However, for the local reconstruction setting, we even do

not know how to remove such a logarithmic gap for reconstructing noisy expander graphs (i.e., k = 1). As

noted in [KPS13], for the case k = 1, one already needs to have more refined definitions of strong/weak

vertices and much stronger results about random walks in noisy expander graphs. Removing the logarithmic

gap from our result for locally reconstructing cluster structure for general k ≥ 1 can be as hard, if not harder.

Similar question can be asked for removing the Θ(log n) gap between the inner and outer conductance of

the input instance of our robust clustering oracle. As we mentioned before, there is evidence in [CKK+18]

showing that this is difficult (for distribution distance based algorithms).
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Appendix

A Further Discussions on Related Work

A.1 Relation to Testing Graph Clusterability

Both the robust clustering oracle and local reconstruction are closely related to the framework of property

testing [RS96, GGR98]. In the bounded degree graph property testing [GR02], given a property Π, the

algorithm aims to distinguish graphs that satisfy Π from graphs that are ε-far from satisfying Π by making

as few queries (to the adjacency list of the graph) as possible, with high constant probability, say at least

2/3. Here, a graph is said to be ε-far from satisfying property Π if one has to modify more than εdn edges

to make it satisfy Π, while preserving the degree bound. After two decades of study, a number of properties

of bounded degree graphs are now known to be testable in constant time [GR02, BSS10, HKNO09, NS13],

Õ(
√
n) or Õ(n

1
2
+c) time [GR98, GR00, CS10, KS11, NS10, CPS15, CKK+18, KSS18].

In particular, for the property of being (k, φin, φout)-clusterable, [CPS15] gave a testing algorithm that

runs in time Õ(
√
npoly(φ, k, 1/ε)) and distinguishes (k, φ,O( φ2ε4

kΩ(1) ))-clusterable graphs from graphs that

are ε-far from being (k,Θ( φ2ε4

kΩ(1) logn
), ψ)-clusterable, for any ψ ∈ [0, 1]. (Note that the algorithm rejects any

graph that is far from clusterable graphs with arbitrary outer conductance.) [CKK+18] recently improved

this algorithm by giving an algorithm for testing if a graph contains at most k subsets with inner conductance

at least φ from those that can be decomposed into at least k + 1 subsets with size at least Ω(n/k) and outer

conductance at most O(µφ2) in time O(n1/2+O(µ)poly(k logn
φε )) for any µ that is smaller than some constant

(they also generalize their algorithm for general graphs). For the case of k = 1, i.e., testing if the graph

has expansion at least φ, the best known algorithm can test if a graph has expansion φ or is ε-far from

having expansion Θ(µφ2) in time Õ(n0.5+µ) for any µ > 0 ([KS11, NS10] which improves upon [CS10]).

Furthermore, there exists a lower bound of Ω(
√
n) on the query complexity for testing expansion [GR02].

Note that both the robust clustering oracle problem and the reconstruction problem are always much

harder than the property testing version (see e.g., [KPS13]). For example, in the oracle problem, we need

to figure out the cluster structure of the clusterable graph, and in the local reconstruction problem, the al-

gorithm actively repairs the input graph, while the property testing is a decision problem. Furthermore,

property testing only needs to distinguish between graphs which are clusterable and those are ε-far from

being clusterable, while both the clustering oracle and the reconstruction have to (in some sense) approx-

imate the distance to the class of all clusterable graphs4. Thus, the property testing algorithms can not be

directly used to or easily modified to give a robust clustering oracle or local reconstruction algorithm. In

particular, even for the case that the input graph is clusterable, one cannot use the corresponding property

testing algorithm (on the clusterable graph) to answer SAMECLUSTER queries. Actually, both algorithms

in [CPS15, CKK+18] make decisions based on some small summarizations of the input graph which are

constructed by a small sample of vertices and the corresponding random walk statistics. Such small summa-

rizations can be used to distinguish if the graph is k-clusterable or is far from being k-clusterable. However,

if the graph is indeed k-clusterable, they cannot be used to distinguish if two vertices are from the same clus-

ter or are from two different clusters. As we mentioned before, in [CKK+18], evidence has been provided

that in general it is not possible to use pairwise Euclidean distances between two random walk distributions

to distinguish between 2-clusterable graphs and far from 2-clusterable graphs if the gap between conduc-

tances is constant.

4Actually, in our setting, we are approximating the intra-perturbation distance to the class of all clusterable graphs, i.e., the

minimum number of intra-cluster edges needed to be modified to obtain a clusterable graph over all possible h-partitions, for some

h ≤ k. This is in contrast to approximating the distance to all clusterable graphs, which is the minimum number of edges needed

to be modified to obtain a clusterable graph.
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On the other hand, property testing algorithms can always be obtained from the corresponding local

reconstruction ones (which has already been noted in previous work on local reconstruction) and testing

k-clusterability can also be obtained from our robust clustering oracle algorithm. This is also true in our

scenario since we can estimate the distance between G and a clusterable graph G′ with small additive error

by sampling a constant number of vertices and running the oracle and clustering query algorithm (or the local

reconstruction algorithm) on each sampled vertex to obtain the fraction of outlier vertices. We further note

that if a graph G is ε-far from any (k, φin, φout)-clusterable graph, then it cannot be an ε-perturbation of any

such clusterable graph (i.e., one has to perturb more than an ε-fraction of edges). Therefore, both our robust

clustering oracle and local reconstructor algorithm lead to a property testing algorithm that distinguishes

(k, φ,O( εφ
k3 logn

))-clusterable graphs from graphs that are ε-far from being (k,Ω( νk

6kk4
εφ

logn), kν)-clusterable

for any ν ∈ [0, 1], with probability at least 2/3. The running time of the algorithm is Õ(
√
n), which is

optimal up to polylogarithmic factors due to the
√
n lower bound on the number of queries for testing

expansion (corresponding to k = 1 in our problem) [GR02].

A.2 Other Related Work

The study on local graph clustering [ST13, ACL06, AP09, OT12, AOPT16, ZLM13, OZ14] is also closely

related to our work. In this framework, the goal is to find a cluster from a specified vertex with running time

that is bounded in terms of the size of the output set (and with a weak dependence on n). In the scenario

where both inner and outer conductance are used for measuring the quality of clusters, [ZLM13] gave a local

clustering algorithm that outputs a set with conductance at most Õ(min{
√
φG(A), φG(A)/

√
Conn(A)})

where A is the target set, and Conn(A) is the reciprocal (e.g., φ(G[A])2/(log vol(A))) of the mixing time of

the random walk over the induced subgraph G[A] on A and vol(A) is the total degree of vertices in A. It is

also shown that the conductance guarantee φG(A)/
√

Conn(A) is tight among (some class of) random-walk

based local algorithms [ZLM13]. It might be interesting to note the logarithmic factor (i.e., log(vol(A)))
dependency appeared in these guarantees. The performance guarantee has later been improved by [OZ14]

using a flow-based local improvement algorithm that finds a set with conductance ψ = O(φG(A)), volume

O(vol(A)) and runs in time Õ(vol(A)/ψ), where A is the target set with Conn(A)/φG(A) = Ω(1). Note

that the running times of these algorithms are sublinear only if the size (or volume) of the target set is small

(say, at most o(n)), while in our setting, the clusters of interest have at least linear size (for any constant ε).
Fully or partially recovering the clusters in the noisy model has been extensively studied in the “global

algorithm regimes”. Examples include recovering the planted partition in stochastic block model with mod-

eling errors or noise (e.g., [CL15, GV16, MPW16, MMV16]), correlation clustering on different ground-

truth graphs in the semi-random model (e.g., [MS10, CJSX14, GRSY14, MMV15]) and partitioning the

graph in the average-case model [MMV12, MMV14, MMV15]. All these algorithms run in at least linear

time.

Local reconstruction of some other properties have been investigated before. Such properties include ex-

panders [KPS13], graph connectivity and diameter [CGR13], bipartite and ρ-clique dense graphs [Bra08],

geometric properties [CS11], monotone functions [ACCL08, SS10], Lipschitz functions [JR13] and low

rank matrices and subspaces [DGK17]. This algorithmic framework is also closely related to local decod-

able codes (e.g., [STV99]) and local decompression [DLRR13]. The local reconstruction model has been

generalized to local computation model by Rubinfeld et al. [RTVX11, ARVX12], and a number of problems

like maximal independent set, hypergraph coloring and maximum matching have been investigated in this

model [RTVX11, ARVX12, MRVX12, MV13].
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B Deferred Parts from Section 2

B.1 A Simple Reduction from d-Bounded Graphs to d-Regular Graphs

Given a graph G with maximum degree upper bounded by d, it will be very convenient to consider the

d-regular graph G′ that is obtained by adding an appropriate number of self-loops (each with half weight)

to each vertex so that every vertex has degree exactly d. Note that the (normal) random walk on G we

defined above is exactly the lazy random walk of the graph G′. Let A denote the adjacency matrix of G′,
and let L := I − 1

dA denote the normalized Laplacian matrix of G′. We let 0 = λ1 ≤ λ2 ≤ · · · ≤
λn ≤ 2 denote the eigenvalues of L and let v1,v2, · · · ,vn denote the corresponding orthonormal (row)

eigenvectors. That is, L =
∑

i λi · vT · v. Note that the lazy random walk matrix corresponding to G′ is

P :=
I+ 1

d
A

2 = I− L

2 . This implies that the eigenvalues of P are 1 = 1− λ1
2 , 1− λ2

2 , · · · , 1− λn

2 ≥ 0, with

corresponding eigenvectors v1,v2, · · · ,vn. In particular, P =
∑

i(1 − λi

2 ) · vT · v. Furthermore, it holds

that pt
v = 1v ·Pt =

∑
i(1− λi

2 )
t · vT · v.

B.2 Description of the Algorithm ESTIMATERCP

In the algorithm, C is a sufficiently large constant.

ESTIMATERCP(G, u, v, θ, δ, t)

1. Run the following C log n times:

(a) Let Fu := FINDSET(G, u, θ, t) and Fv := FINDSET(G, v, θ, t)
(b) Keep performing uniform average walks of length t from u (resp. v) until x :=

√
n/δ2 such walks

end at vertices in Fu (resp. Fv). Let Wu (resp. Wv) denote the set of walks. If more than 20x walks

are performed (from either u or v), then report FAIL.

(c) Let A be the number of pairwise collisions5 between walks in Wu and Wv. Output A/x2.

2. If the majority of the above runs do not fail, then output the median of all the output numbers in successful

runs. Otherwise, ABORT.

FINDSET(G, u, θ, t)

1. Perform C
√
n log n independent uniform average walks of length t from u.

2. Let Fu denote the set of all vertices w such that at most C(1 − θ
2) log n walks from u end at w. Return

Fu.

C Deferred Proofs from Section 3

In the following, we prove Lemma 3.2.

Proof of Lemma 3.2. First, note that if there are more than
√
κ|C| vertices in C satisfying that atu(v) ≤

(1 − √
κ)/|C|, then ‖atu − UC‖TV >

√
κ|C| · √κ/|C| ≥ κ, which contradicts to the fact that u is strong

with respect to C.

Second, by the definition of the set Sθ0
u and the fact that θ0 ≤ 1/2, there can be at most 2

√
n vertices in

V \ Sθ0
u , and thus there are at least (1 − √

κ)|C| − 2
√
n vertices w ∈ Sθ0

u ∩ C such that atu(w) ≥ 1−√
κ

|C| .

Thus

atu(S
θ0
u ) ≥ ((1−√

κ)|C| − 2
√
n) · 1−

√
κ

|C| ≥ 1/2,

5If a walk from Wu and a walk from Wv end at the same vertex, then this counts as one pairwise collision.
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where in the second inequality we used the fact that |C| ≥ 3
√
ε′n = 3

√
6ε
φ n >

8
√
n√
κ

as ε = Ω(φn).

Finally, since u is strong with respect to C, there are at least (1−√
κ)|C| − 2

√
n vertices w ∈ Sθ0

u ∩C
such that atu(w) ≥ 1−√

κ
|C| . The same is true for v. Thus, there are at least (1 − 2

√
κ)|C| − 4

√
n vertices

w ∈ Sθ0
u ∩ Sθ0

v ∩ C such that pu(w), pv(w) ≥ 1−√
κ

|C| . Again, by the fact that |C| > 8
√
n√
κ

, we have that

rcpθ0(u, v) ≥ ((1− 2
√
κ)|C| − 4

√
n) · 1−

√
κ

|C| · 1−
√
κ

|C| ≥ 1− 5
√
κ

|C| .

This finishes the proof of the Lemma.

D Further Guarantees on the Locally Reconstructed Graph

In the following, we show that by sacrificing the inner conductance quality, we can also find a clustering of

the reconstructed graph G′ with small outer conductance.

Lemma D.1. Let φ∗ = a4.3εφ
k4 logn

. If G is an ε-perturbation of a (k, φ, a1.5εκ
4φ

3k3 logn
)-clusterable graph, then the

resulting graph G′ from the local reconstruction algorithm is (k, ν
6

6k
φ∗,min{kν, 1})-clusterable, for any

0 ≤ ν ≤ 1.

Proof. We start with the (k, φ∗, 1)-clustering of G′ that is guaranteed from Lemma 4.3. Let C1, · · · , Ch be

a partition satisfying that φ(G′[Ci]) ≥ φ∗. Let ν ∈ [0, 1]. We next carefully merge some of these clusters so

that each part of the final partition will have both inner conductance at least νk

6k
φ∗ and outer conductance at

most min{kν, 1}.

If there exists 1 ≤ i 6= j ≤ h such that |Ci| ≤ |Cj | with |E′(Ci, Cj)| ≥ νd|Ci|, then we merge Ci and

Cj to obtain a new cluster C := Ci ∪ Cj . We repeat until the condition is violated.

Note that this process always terminates as each time the number of clusters decrease by 1. Furthermore,

note that after termination, each cluster has outer conductance at most min{1, kν} by construction. Now

we show that in each iteration, the merged C = Ci ∪ Cj still has large inner conductance. Let S ⊂ C with

|S| ≤ |C|
2 . Let Si = S ∪ Ci and Sj = S ∪ Cj . Note that it can not happen simultaneously that |Si| > |Ci|

2

and |Sj | > |Cj |
2 . Now we have the following cases.

• If both |Si| ≤ |Ci|
2 and |Sj | ≤ |Cj |

2 , then

φG[C](S) =
|E′(S,C \ S)|

d|S| ≥ min{|E
′(Si, Ci \ Si)|
d|Si|

,
|E′(Sj , Cj \ Sj)|

d|Sj |
} ≥ φ∗.

• If |Sj | > |Cj |
2 , then |S| ≤ |Ci|+ |Sj | ≤ |Cj |+ |Sj | < 3|Sj |.

1. If |Sj | ≥ (1 − ν
2 )|Cj |, then |Ci| ≥ 2

3 |Cj | as otherwise |C| ≤ 5
3 |Cj | and |S| ≥ |Sj | > |C|

2 , a

contradiction. Then |Si| ≤ ν
2 |Cj | ≤ ν

2
3
2 |Ci| = 3ν

4 |Ci|. Thus there will be at least dν
4 |Ci| edges

between Sj and Ci \ Si. Thus φG[C](S) ≥ |E′(Sj ,Ci)|
d|S| ≥

dν
4
|Ci|

3d|Sj | ≥
dν
4

2
3
|Cj |

3d|Cj | = ν
18 .

2. If |Sj | ≤ (1− ν
2 )|Cj |, then |Cj \Sj | ≥ ν

2 |Cj | ≥ ν
2(1− ν

2
) |Sj |. Therefore, φG[C](S) ≥ |E′(Sj ,Cj\Sj)|

d|S| ≥
φ∗d|Cj\Sj |

3d|Sj | > φ∗ν
6 .

• If |Si| > |Ci|
2 , then it must hold that |Sj | < |Cj |

2 .

1. If |Si| < (1− ν
2 )|Ci|, then

|Ci|
2 ≥ |Ci \Si| ≥ ν

2 |Ci|. Thus φG[C](S) ≥ |E′(Si,Ci\Si)|+|E′(Sj ,Cj\Sj)|
d(|Si|+|Sj |) ≥

min{φ∗d|Ci\Si|
d|Si| ,

φ∗d|Sj |
d|Sj | } = min{νφ∗

2 , φ∗} = νφ∗

2 .
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2. If |Si| ≥ (1− ν
2 )|Ci|, then |E′(Si, Cj)| ≥ dν

2 |Ci|. If |E′(Si, Sj)| ≥ 1
2 |E′(Si, Cj)|, then |Sj | ≥ ν

4 |Ci|,
then φG[C](S) ≥ |E′(Sj ,Cj\Sj)|

d|S| ≥ φ∗d|Sj |
d(|Sj |+|Ci|) ≥ φ∗ν

5 . Otherwise, |E′(Si, Sj)| < 1
2 |E′(Si, Cj)|, then

|E′(Si, Cj \ Sj)| ≥ 1
2 |E′(Si, Cj)| ≥ dν

4 |Ci|. Thus φG[C](S) ≥ |E′(Si,Cj\Sj)|+|E′(Sj ,Cj\Sj)|
d(|Si|+|Sj |) ≥

min{
dν
4
|Ci|

d|Si| ,
φ∗d|Sj |
d|Sj | } ≥ min{ν

4 , φ
∗}.

From the above analysis, we know that if both φ(G[Ci]) ≥ φ∗ and φ(G[Cj ]) ≥ φ∗, then after merging Ci

and Cj , the resulting cluster C has inner conductance at least νφ∗

6 . Since there will be at most k iterations

(or merges), we know that in the final partition P ′, each part has outer conductance at most min{kν, 1} and

inner conductance νkφ∗

6k
= a4.3νk

6kk4
εφ

logn . This proves the statement of the lemma.

34


	Introduction
	Basic Definitions
	Problem Formalizations and Main Results
	Our Techniques

	Preliminaries
	Robust Clustering Oracle
	The Analysis of Robust Clustering Oracle

	The Local Reconstruction Algorithm
	Analysis of the Local Reconstruction Algorithm

	Local Mixing Property of Random Walks on Noisy Clusterable Graphs: Proof of Theorem 1.5
	Local Mixing Property of Random Walks on Clusterable Graphs
	From Clusterable Graphs to Noisy Clusterable Graphs

	Conclusions
	Further Discussions on Related Work
	Relation to Testing Graph Clusterability
	Other Related Work

	Deferred Parts from Section 2
	A Simple Reduction from d-Bounded Graphs to d-Regular Graphs
	Description of the Algorithm EstimateRCP

	Deferred Proofs from Section 3
	Further Guarantees on the Locally Reconstructed Graph

