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Abstract 

Transmissibility is a well-known linear system concept that has been widely applied in 

the diagnosis of damage in various engineering structural systems. However, in 

engineering practice, structural systems can behave nonlinearly due to certain kinds of 

damage such as, e.g., breathing cracks. In the present study, the concept of 

transmissibility is extended to the nonlinear case by introducing the Transmissibility of 

Nonlinear Output Frequency Response Functions (NOFRFs). The NOFRFs are a 

concept recently proposed by the authors for the analysis of nonlinear systems in the 

frequency domain. A NOFRF transmissibility-based technique is then developed for the 

detection and location of both linear and nonlinear damage in MDOF structural 

systems. Numerical simulation results verify the effectiveness of the new technique. 

Experimental studies on a three-storey building structure demonstrate the potential to 

apply the developed technique to the detection and location of damage in practical 

MDOF engineering structures.  

Keywords: Transmissibility; Nonlinear MDOF systems; Damage detection and 

location. 
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1. Introduction 

A wealth of methods exists for the detection and location of damage in structural 

systems.  These methods include time and frequency domain techniques, parametric 

and nonparametric approaches, and empirical and model-based approaches for plates, 

shells, composites, and other types of structures [1]. The core idea of most of these 

available techniques is to compare some features evaluated from on-line measured 

structural responses to the features evaluated from responses measured under the 

systems� normal working conditions, to assess whether damage has occurred and, if this 

is the case, where the damage is located.  

The frequency-domain transmissibility function is a significant feature that can be 

applied to detect, locate, and quantify damage in multi-degree of freedom (MDOF) 

structural systems where structural dynamic sensor arrays can be used to make 

differential dynamic transmissibility measurements [2].   For MDOF structures, 

structural damage affects both the system poles and zeros.  But, as analysed in [2] and 

[3], zeros are much more sensitive than poles to localised damage, as zeros depend on 

the input and output locations whereas poles do not. Transmissibility functions are 

determined solely by the system zeros, and they are therefore potentially better 

indicators of localised damage.   

The frequency-domain transmissibility function is essentially a linear system concept. It 

is normally defined as the ratio of the spectra of two different system outputs of 

interest, and is also equal to the ratio of the system frequency response functions 

(FRFs) associated with the two outputs.  Although, as demonstrated by numerical 

studies in [2], this transmissibility concept can sometimes be used for the detection and 

location of damage in nonlinear structural systems, the concept is generally input-

dependent for nonlinear systems. Consequently, one is generally not able to use the 

traditional transmissibility function to distinguish the effect of system input from the 

effect of the change of system properties due to the occurrence of damage in nonlinear 

structural systems.  

In structural systems, certain types of damage often manifest themselves as the 

introduction of a nonlinearity into an otherwise linear system [4]. Examples include 

post-buckled structures (Duffing nonlinearity), rattling joints (impacting system with 
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discontinuities), or breathing cracks (bilinear stiffness). Therefore effective techniques 

are needed which can reliably detect and locate both these types of nonlinear damage as 

well as linear changes due to damage (e.g., a stiffness or mass change, such as with 

corrosion or loss of an element).  Many researchers have addressed different aspects of 

this important issue using different approaches. These approaches include, for example, 

mutual information and transfer entropy-based statistical nonlinearity detection 

methods [4-8], auto-bispectral analysis [9-10], nonlinear system identification 

techniques [11], and frequency domain ARX model based technique [12].  For MDOF 

structural systems which include beams, rotor shafts, multi-storey buildings, and 

bridges, etc. [13,14,15,16,17], damage detection has been studied by Zhu and Wu [18] 

where the structure with damage is considered to be linear, and the location and 

magnitude of the damage are estimated using measured changes in the system natural 

frequencies. Based on a one-dimensional structural model, Sakellariou and Fassois [19] 

[16] have used a stochastic output-error vibration-based methodology to detect damage in 

structures where the damaged elements are modeled as components of cubic stiffness. 

Recently, using the   concept of Nonlinear Output Frequency Response Functions 

(NOFRFs) [20], several methods have been developed which use the response signals to 

deterministic inputs including sinusoids to detect and locate nonlinear damage in MDOF 

structural systems [21,22,23,27]. The basic principle and effectiveness of these methods 

have been verified by theoretical analysis and numerical simulation.  

The objective of the present study is to extend the frequency-domain transmissibility- 

based damage detection and location technique to the nonlinear case to systematically 

develop a more general transmissibility analysis-based damage detection and location 

approach for MDOF structural systems. The basis of this study is a new transmissibility 

concept known as the transmissibility of the NOFRFs.   

The NOFRFs are a new concept recently proposed and comprehensively investigated 

by the authors for the analysis of nonlinear systems in the frequency domain [20].  The 

concept of the transmissibility of the NOFRFs is defined as the ratio of the maximum 

order NOFRFs associated with two different output responses of interest in a nonlinear 

system. For the MDOF structural systems considered in the present study, it is proven 

that the NOFRF transmissibility is equal to the traditional transmissibility under certain 
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conditions but is generally different from the traditional transmissibility. However, the 

NOFRF transmissibility only depends on the system linear characteristics and therefore 

does not change with the system input. This excellent property of the NOFRF 

transmissibility is exploited in the present study to develop a new technique that can 

detect and locate both linear and nonlinear damage in MDOF structural systems. In 

addition to theoretical derivation and analysis, both numerical simulation studies and 

experimental tests are conducted in the present study. The results verify the 

effectiveness of the new technique and demonstrate that the technique has considerable 

potential to be applied in damage detection and location for real engineering structures. 

2. Transmissibility of Nonlinear Output Frequency Response 

Functions 

Consider the class of single-input multiple-output (SIMO) nonlinear systems which are 

stable at zero equilibrium with the outputs represented, in a neighbourhood of the 

equilibrium, by the Volterra series [25] 
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where )j( ωiX  is the spectrum of the i
th

 system output, )j(),( ωniX  represents the n
th

  

order frequency response of the system�s i
th

 output, )j( ωU  is the spectrum of the 

system input, and  



 5

n

j

nninni ddehH nn ττττωω τωτω
...),...,(...)j,...,j( 1

),...,(

1),(1),(
11 ++−∞

∞−

∞

∞− ∫∫=          (3) 

is known as the n th 
order Generalised Frequency Response Function (GFRF) associated 

with the i
th

 system output, which is the extension of the frequency response functions of 

SIMO linear systems to the n th 
order nonlinear case . The term 
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The Nonlinear Output Frequency Response Functions (NOFRFs) are a concept recently 

introduced by the authors [20]. For SIMO nonlinear systems, the NOFRFs are defined 
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The NOFRFs defined by equation (4) can be regarded as an alternative extension of the 

frequency response functions of SIMO linear systems to the n th 
order nonlinear case. 

The most distinctive characteristic of the NOFRFs is their one dimensional nature, 

which can significantly facilitate the analysis of nonlinear systems in the frequency 

domain [28-30].     

 

From equations (2) and (4), it can be shown that the output frequency response of  

SIMO nonlinear systems can be represented using the NOFRFs as 
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For SIMO linear systems, N=1. So equation (6)  reduces to  
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with )()1,( ωjH i  , i=1,�,n, denoting the frequency response functions (FRFs) of the 

system. Therefore, equation (6) is an extension of the well-known linear system 

relationship (7) to the nonlinear case.      
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where { }nki ,...,2,1, ∈  and ki < , the concept of the transmissibility of the NOFRFs is 

proposed to extend the linear system transmissibility concept to the nonlinear case as 

follows. 
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that is, the transmissibility of the NOFRFs defined above reduces to the traditional 

transmissibility of linear systems.  In addition, as the NOFRFs are independent of the 

change of the system input amplitude, the NOFRF transmissibility also does not change 

with the amplitude. This is the same as the property of the transmissibility of linear 

systems.  

 

3. The NOFRF Transmissibility of MDOF Nonlinear Structural 

Systems  

3.1 MDOF nonlinear structural systems  

Consider the multi-degree-of-freedom structural system shown in Fig 1. For the 

simplicity of introducing the main ideas, assume that there is only one possible 
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 and J
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are the system mass, damping, and stiffness matrices, respectively. 

 

3.2 The NOFRF transmissibility and properties 

 

The MDOF system described by equation (15) can clearly be regarded as a one-input n- 

output system. The system input is the force applied to the n
th

 mass u(t), and outputs are 

the displacements of the n masses. Therefore, denote the output spectra of the i
th

 and k
th

 

masses in the system as )( ωjX i  and )( ωjX k , then )( ωjX i  and )( ωjX k  can be 

described using the NOFRF concepts as 
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respectively where )(),( ωjG ni  and )(),( ωjG nk  are the n th order NOFRFs associated 

with the displacements of the i
th

 and k
th

 masses of the system, and )( ωjUn  is defined in 

equation (5) with )( ωjU  representing the spectrum of the input force )(tu . 

  

In this case, the NOFRF transmissibility )(, ωjT NL

ki  defined in equation (11) refers to the 

transmissibility between the displacements of masses i and k in the MDOF structural 
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system; and )(, ωjT L

ki  defined in equation (10) represents the ratio between the 1
st
 order 

NOFRFs associated with the  displacements of the i
th

 and k
th

 masses.  Based on these 

definitions, a series of properties regarding the NOFRF transmissibility of the MDOF 

structural system (15) can be obtained. These are summarized in the following two 

propositions. 

 

Proposition 1 
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Proof:  The conclusions (18)-(21) can be reached by following the derivation for the 

NOFRF properties of MDOF systems in [26], and taking into account the definitions of  

)(, ωjT NL

ki  and )(, ωjT L

ki  introduced above.      ͗ 

 

Proposition 2 
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For system (15), the NOFRF transmissibility )(, ωjT NL

ki  and a function of frequency 
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exists. In (23), )j()1( ωU  and )j()2( ωU  are the spectra of two different input forces 

separately applied to the system, )j()1( ωiX  and )j()1( ωkX  are the spectra of the 

displacement responses  of masses i and k in the system to the input force with 

spectrum  )j()1( ωU , and )j()2( ωiX  and )j()2( ωkX  are the spectra of the displacement 

responses  of masses i and k in the system to the input force with spectrum  )j()2( ωU  . 

 

Proof: See the Appendix.        ͗ 

 

 

Proposition 1 shows that for system (15), the NOFRF transmissibility )(, ωjT NL

ki  and the 

ratio of the 1
st
 order NOFRFs )(, ωjT L

ki  are all independent of the system input and 

completely determined by the system linear characteristic parameters.  This property 

implies that just like the traditional transmissibility concept for linear SIMO systems, 

the NOFRF transmissibility )(, ωjT NL

ki  
can be used to evaluate changes in the linear 

characteristic parameters of the nonlinear MDOF system (15).  In addition, Proposition 

1 shows that )(, ωjT NL

ki  equals to the ratio of the higher-than-one order NOFRFs 

associated with mass 1 and k (equation (20)), and  reveals an important relationship 

between )(, ωjT NL

ki  and )(, ωjT L

ki (equation (21)). 
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Proposition 2 indicates that under the invertibility condition of matrix (24), the NOFRF 

transmissibility )(, ωjT NL

ki  of system (15) can be determined using the system input and 

output spectra obtained from two separate tests. Proposition 2 also shows that )( ωjEik  

defined in (22) can be obtained using the same system input and output spectra. The 

significance of )( ωjEik  is that it can be used to evaluate the difference between 

)(, ωjT NL

ki  and )(, ωjT L

ki . This is because if  )()( ,, ωω jTjT L
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otherwise 

 0)(, ≠ωjE ki          (26) 

in general. This, together with the relationship between )(, ωjT NL

ki  and )(, ωjT L

ki  revealed 

in Proposition 1, can be exploited to determine the location of the nonlinear component 

in the system. 

4. A NOFRF Transmissibility-based Technique for the Detection 

and Location of Damage in MDOF Structural Systems 

 

The introduction of the concept of the NOFRF transmissibility in Section 2 is to 

address the damage detection and location issue for the MDOF structural system (15).  

Equation (15) describes a class of MDOF nonlinear structural systems where the 

nonlinear component can represent damage in the system such as, for example, a crack in 

a beam. The M, C, and K matrices represent the linear characteristics of the system, and 

damage in the system can also change the values of these matrices.  Therefore, the 

objectives are to detect the existence of the nonlinear component and locate its position, 

and to identify any changes in the M, C, and K matrices. These objectives are to be  

achieved based on the input force and corresponding responses of all the masses in the 

system which can, for example, be the outputs of an array of sensors fitted to the structure 

for health monitoring purposes.  
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The traditional transmissibility concept has already been used in [2] as a differential 

indicator to detect and locate structural damage. Although some nonlinear damage was 

also considered in this previous study, the conclusions reached are based on a specific 

case study and can not be extended to general nonlinear MDOF structural systems. This 

is simply because the traditional transmissibility is a linear system concept; and the 

result is input-dependent in the nonlinear case.   

In order to resolve the problem with traditional transmissibility concept-based 

approaches, a NOFRF transmissibility based technique for the detection and location of 

damage in the MDOF structural system (15) is proposed in this section based on the 

system NOFRF transmissibility and properties that have been derived in Section 3.2. 

The basic ideas of the damage detection and location technique are to apply two 

different forces to excite the system to get two sets of corresponding system responses. 

Then, evaluate the spectra of the force excitations and corresponding responses and 

detect the existence of nonlinear component/damage in the system by checking the 

invertibility of matrix (24).   

This system nonlinearity detection method is based on the fact that if there is no 

nonlinear component/damage in system (15), the system is linear so that  

 
)(

)(

)(

)(
)2(

)2(

)1(

)1(

ω
ω

ω
ω

jU

jX

jU

jX kk =         (27) 

and the inverse of matrix (24) does not exist. Consequently, an invertible condition of 

matrix (24) such as, e.g., whether the determinant of matrix (24) is zero can be used to 

detect whether there exists a nonlinear component/damage in the system.  

 

After that, if the matrix-invertibility-check indicates that there is no nonlinear 

component in the system, then the system is linear, and the traditional transmissibility 

based technique will be applied for the detection and location of possible linear damage 

in the system. Otherwise, there is a nonlinear damage/component in the system. 

Equation (23) will be applied to evaluate )(1, ωjT NL

ii +  and  )(1, ωjE ii +  for each pair of 

consecutive masses in the system, that is, for i=1,�,n-1.  Then the NOFRF 
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transmissibility results  )(1, ωjT NL

ii +  i=1,�,n-1 will be used to evaluate the changes in the 

system linear characteristic parameters to detect and locate possible linear damage in 

the system, and  )(1, ωjE ii +  , i=1,�,n-1, will be used to determine the location of the 

system nonlinear damage/component.   

 

The theoretical basis of determining the location of the nonlinear component is 

equations (21) and (22), which  imply that  
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           (28) 

Therefore, theoretically, the system nonlinear component is located between masses 

*i and 1* +i  where *i  is determined by the values of )(1, ωjE ii + , i=1,�,n-1, such that 

⎪⎩

⎪
⎨
⎧

=

<≤>
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+

Otherwise     0)(

      when 0)(

1,

*

1,

ω

ω
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niijE

ii

ii

       (29) 

 

Based on these ideas and considering various issues associated with real data analysis 

observed in comprehensive experimental studies that have been conducted by the 

authors on MDOF test rigs [34], the damage detection and location technique for 

MDOF structural system (15) is proposed as follows.  

i) Excite the system twice using two different inputs with spectra  )j()1( ωU  and 

)j()2( ωU , respectively; Measure the responses of all the masses in the system to 

each input excitation, and  calculate the spectra of the measured responses to 

obtain )j()1( ωkX , k=1,�,n, and )j()2( ωkX  , k=1,�,n. 

ii) Evaluate index IND1 as defined by  

        { }∑
=

=Δ
−

=
n

k

k QqqDMedian
n 2

,...,0);(
)1(

1
1IND ω   (30)  

where  
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Q is an integer, and [ ]21,ωω  is an interval within the frequency range of the 

system input. The result is used to determine whether or not there is a nonlinear 

component in the system as follows:  

If 
1IND1 ε≤ , then the system nonlinearity is negligible; 

otherwise there is a nonlinear component in the system. 

Here 
1ε  is zero in theory (a noise-free environment) but in practice, it should be 

a small number associated with a noise threshold in a case where the system 

basically behaves linearly.    

iii) If the result in Step ii) indicates that there is negligible nonlinearity, then 

evaluate the traditional linear transmissibility between the responses of all 

consecutive masses to yield 

            2
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 over the frequency range [ ]21,ωω , and assess the changes in the system linear 

characteristics by comparing the evaluated )(1, ωjT L

ii + ,i=1,�,n-1 with the results 

evaluated in the system normal operating conditions to detect and locate damage 

that can be deduced from changes in the system linear characteristic parameters   

iv) If the result in Step (ii) indicates that the system is behaving nonlinearly, 

determine the NOFRF transmissibility )(1, ωjT NL

ii +  and )(1, ωjE ii +  from equation 

(23) with k=i+1 over the frequency range [ ]21,ωω  for i=1,�,n-1. Then, locate 

the damage that makes the system behave nonlinearly, and assess the state 

condition of the system linear components using the evaluated NOFRF 

transmissibility results )(1, ωjT NL

ii + , i=1,�,n-1 to detect and locate possible 

damage that induces changes in the system linear components. Locating 

nonlinear damage can be  achieved as follows.  
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(a) Evaluate  

   ∫ ++ = 2
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             (b) Find a normalized result for 1, +iiE  as 
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 (c) Examine 1, +iiE , i=1,..,n-1 to find an i�  such that  
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Then, it can be concluded that the nonlinear damage is located between mass i�  

and mass 1� +i .  In practical applications, 2ε  in (33) is a specific case-dependent 

threshold, which can be determined from experimental data using statistic 

analyses.  

Fig 2 shows a flow chart that illustrates how to follow the four-step procedure to 

implement this NOFRF transmissibility-based MDOF system damage detection and 

location technique. 

Step i) of this technique indicates that two tests are needed for the system inspection, 

and the force excitations used in the two tests should be different. However, it is worth 

pointing out that this does not mean the technique needs the data from two specially 

designed inspecting tests. In fact, the data collected from two inspecting conditions 

where the input forces from ambient environment are different should also be sufficient 

for the implementation of the technique.  Step ii) is a practical implementation of the 

idea of detecting the existence of nonlinearity in the system based on the invertible 

condition of matrix (24). It is worth noting that the median function is used in this 

implementation to avoid outlying values of the determinant at some frequencies caused 

by noise or other disturbances affecting the analysis results in practice. Step (iii) is a 

traditional transmissibility analysis based procedure, which detects and locates the 

system damage by evaluating the changes in the system linear characteristic 

parameters. In Step (iv), 1, +iiE , i=1,�,n-1, which are the normalized results of  1, +iiE , 
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i=1,�,n-1, are used to implement the equation (29) based idea of determining the 

location of  nonlinear damage.  A threshold of 02 >ε  is introduced in this step to 

change the purely theoretical condition of 01, =+iiE  to the more practical condition of 

21, ε≤+iiE .  This allows the effects of noise, un-modeled dynamics, and inherent but 

less significant system nonlinearities to be omitted in the detection of the relatively 

considerable system nonlinearity so that the proposed method can be applied in 

engineering practice. In addition, by exploiting the fact that NOFRF transmissibility 

)(1, ωjT NL

ii + , i=1,�,n-1 are completely determined by the characteristics of the system 

linear components, Step (iv) also assesses the state condition of the system linear 

components using the evaluated NOFRF transmissibility to detect and locate possible 

linear damage. 

In the authors� previous studies, a series of techniques [21,22,23,27] have been 

proposed for the location of nonlinear damage in MDOF structural systems. Most of 

these previous techniques [22, 23, 27] require to test an inspected structure using 

specific inputs. These can be achieved in well controlled test conditions but are difficult 

for many practical situations. We realized the problems when processing experimental 

data using these techniques and this motivated us to develop the new technique 

introduced above.  The new technique only needs the system excitation and response 

data collected under two different loading conditions, and this requirement can be 

satisfied even for the cases where only ambient excitations to the system are available. 

In addition, via the introduction of the NOFRF transmissibility concept, the new 

technique significantly extends  the nonlinearity location method for MDOF systems in 

[21]. This is because  the new technique provides a comprehensive procedure, which 

can not only be used to detect the existence of nonlinear damage and find its location, 

but is also able to detect and locate damage that can induce changes in the system linear 

characteristic parameters.  
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5. Simulation Studies on a 3DOF Structural System 

In this section, numerical simulation studies on a 3DOF system (i.e. n=3 in Fig 1), 

where the characteristic of the third spring can be nonlinear (i.e., J=3), are conducted to, 

demonstrate the effectiveness of the technique proposed in the last Section.  

Consider the 3DOF system in four different specific cases as follows: 

Case I: 

kg1321 === mmm ;    4

321 106.3 ×=== kkk (N/m); 

(Ns/m)106.301.0 4

321 ××=== ccc ;  

There is no nonlinear component in the system.  

Case II: 

kg1321 === mmm ; 4

321 106.3 ×=== kkk (N/m);

(Ns/m)106.301.0 4

321 ××=== ccc ; 

The third spring is nonlinear, i.e., J=3, with its restoring force given by 

2

23

2

3233

2

1

2323 )(01.0)()()( xxkxxkxxrxxFS
l

l

l −×+−=−=− ∑
=

. 

Case III: 

kg1321 === mmm ; ;N/m)(102 4

1 ×=k (N/m)106.3 4

32 ×== kk

(Ns/m)106.301.0 4

321 ××=== ccc ;  

The third spring is nonlinear, i.e., J=3, with its restoring force given by 

2

23

2

3233

2

1

2323 )(01.0)()()( xxkxxkxxrxxFS
l

l

l −×+−=−=− ∑
=

. 

Case IV  

kg1321 === mmm ; ;N/m)(106.35.0 4

3 ××=k (N/m)106.3 4

21 ×== kk

(Ns/m)106.301.0 4

321 ××=== ccc ;  
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The third spring is nonlinear, i.e., J=3, with its restoring force given by 

2

23

2

2233

2

1

2323 )(01.0)()()( xxkxxkxxrxxFS
l

l

l −×+−=−=− ∑
=

. 

The technique proposed in Section 4 was applied to the 3DOF system in the four cases, 

respectively.  In all these cases, the applied force excitations were the same, which are   

  ( ) ( )tttu ×××++××= 202sin206202sin)(1 πππ   and  )(2)( 12 tutu =  

For each case, the displacements of the three masses in the system, ,3,2,1),( =itxi  were 

obtained by numerical simulation, and the applied inputs and numerically simulated 

system displacement responses were used to determine  

 ∑
=

××=
3
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)202(
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1
IND1
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kD π  
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 )202(2,12,1 ××= πjEE  

 )202(3,23,2 ××= πjEE  

{ } 1,
2,1

2,1

2,1
max +∈

=
ii

i
E

E
E , 

{ } 1,
2,1

3,2

3,2
max +∈

=
ii

i
E

E
E , 

 )202()( 2,12,1 ××= πω jTjT NLNL  , 

)202()( 3,23,2 ××= πω jTjT NLNL .  

in order to detect the existence and find the location of the nonlinear component in the 

system (from IND1, 2,1E , and 3,2E ) and evaluate the characteristics of the system linear 

components (from 2,1E , 3,2E , )(2,1 ωjT NL , and )(3,2 ωjT NL ).   
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Tables 1-4 show the numerical analysis results obtained together with the theoretical 

values of these results. 

From Table 1, it is known that the value of IND1 is a very small number indicating that 

the system in Case I was behaving linearly, which is obviously correct. Because of the 

very small determinant value, the NOFRF transmissibility results were determined 

using equation (31) in Step iii) of the technique, and no results for )(1, ωjE ii +  i=1,�,n-1 

were evaluated for this case.  

A comparison of the IND1 value in Table 1 with that in Table 2 indicates that the 

system in Case II was behaving considerably more nonlinearly. The conclusion that 

there exists a nonlinear component in the system can readily be reached for this case if 

choosing 9

1 10−=ε  and comparing IND1 with this threshold.  

Moreover, it is known from the results in Table 2 that if choosing 4

2 10−=ε , then 

,1 223 ε>=E  212 0.0000445 ε<=E . This, as described in the proposed technique, 

indicates that 2� =i , that is, the nonlinear component is located between mass 2� =i  and 

mass 31� =+i , which is obviously correct for Case II. In addition, comparing the results 

of )(,)(,, 2312232,1 ωω jTjTEE NLNL  evaluated using the technique and their theoretical 

values shows an excellent agreement, which verifies the effectiveness of the system 

input/output data-based analysis.   

A comparison of the results of the NOFRF transmissibility in Tables 1 and 2 shows that  

the )(12 ωjT NL  results are the same but the )(23 ωjT NL  results are different in the two 

tables. This is because there is a nonlinear component located between mass 2 and mass 

3 in Case II, the system is completely linear in Case I, and, apart from this difference, 

the systems in the two cases are the same. Therefore, if the system is normal in Case I, 

but in addition to nonlinear damage there also exist linear damage in Case II which 

induces changes in the system parameters that affect )(12 ωjT NL
, then the damage can be 

effectively detected by comparing the )(12 ωjT NL  results in the two cases.   
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The analysis results for Cases III and IV in Tables 3 and 4 further confirm the 

effectiveness of the proposed technique. In addition, a comparison of the results of 

)(,)(, 231223 ωω jTjTE NLNL  in Tables 2 and 3 shows that the change of the system 

parameter 1k  from N/m)(106.3 4

1 ×=k  in Case II to N/m)(102 4

1 ×=k  in Case III 

causes the changes in the evaluated values for )(,)(, 231223 ωω jTjTE NLNL . This 

demonstrates the dependence of these results evaluated by the proposed technique on 

the system characteristic parameter 1k , and indicates that the proposed technique can be 

used to detect and evaluate the change in the system parameter 1k . However, a 

comparison of the results of )(,)(, 231223 ωω jTjTE NLNL  in Tables 2 and 4 show that the 

change of the system parameter 3k  from  N/m)(106.3 4

3 ×=k  in Case II to 

N/m)(106.35.0 4

3 ××=k  in Case IV induces no change in the evaluated values 

for )(,)(, 231223 ωω jTjTE NLNL . Because 3k  is a characteristic parameter of the system 

nonlinear component,  this result implies that the NOFRF transmissibility results are 

completely determined by the characteristics of the system�s linear components.  

Therefore, the NOFRF transmissibility should only be used to evaluate the changes in 

the system linear components.    

6. Experimental studies 

6.1 Experimental setup 

The three-storey building structure [31] shown in Fig 3 was used in the study to 

demonstrate the potential of the proposed NOFRF transmissibility-based technique for 

the detection and location of damage in practical MDOF structural systems. The 

structure consists of aluminum columns and plates, assembled using bolted joints with a 

rigid base. The structure slides on rails that allow movement in only one direction. At 

each floor, four columns (17.7x2.5x0.6cm) are connected to the top and bottom 

aluminum plates (30.5x30.5x2.5 cm), which form a four degree-of-freedom system. 

Additionally, a center column (15.0x2.5x2.5 cm) can be suspended from the top of each 

floor (Figs 3 and 4 show the case where the column is suspended from the top of the 

second floor), which is used to induce nonlinear behaviours when the column contacts a 
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bumper mounted on the next floor. The position of the bumper can be adjusted to vary 

the extent of the nonlinearity. This source of nonlinearity can, for example, simulate the 

fatigue cracks that subsequently open and close under operational and environmental 

conditions. An electromagnetic shaker provides the excitation to the ground floor of the 

structure. A force transducer was attached at the end of a stinger to measure the input 

force from the shaker. Four accelerometers are attached to each floor at the opposite 

side from the excitation source to measure the response from each floor. Fig. 4 shows 

the spring-damper model of the three-storey building structure which is clearly a 

specific case of the nDOF model in Fig.1.   

6.2 Experiments and objectives of experimental data analysis 

The data collected from twelve experiments conducted on the structure were analyzed 

for the present study to evaluate the performance of the proposed damage detection and 

location technique in different practical situations. The details of the experiments are 

summarized in Table 5.  Six different state conditions of the structure were 

investigated.  These are the structural state conditions under Experiments #1 and #2, 

Experiments #3 and #4, Experiments #5 and #6, Experiments #7 and #8, Experiments 

#9 and #10, and Experiments #11 and #12, respectively.  

The objectives of the experimental data analysis are to apply the proposed technique to 

two sets of signals measured by the force transducer and four accelerometers from 

Experiment #( 12 −i ) and Experiment # i2 , respectively, to evaluate state condition i of 

the structural system for i =1,2,3,4,5,6 . It is worth pointing out that in the description 

for the proposed technique in Section 4, the displacement of each degree of freedom in 

system (15) is considered to be the system output response, it can be shown that the 

technique will be the same if, instead of displacement, the acceleration is regarded as 

the system output. Therefore, the proposed technique can directly be applied to process 

the experimental data from the three�storey building structure for the purposes of 

damage detection and location. 

 

The analysis results for structural state condition 1 will be compared with the analysis 

results for structural state condition 2 to examine the difference between the results to 

see how the introduction of nonlinearity into the system changes the outcome of 
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analysis.   This is to simulate the situation of detecting the existence of nonlinear 

damage and determining its location. Then, the analysis results for structural state 

condition 3 will be compared with the analysis results for structural state condition 4 to 

demonstrate how the changes in the characteristic parameters of linear components in a 

nonlinear structure can be identified by the analysis. This is to simulate the situation 

where the proposed technique is applied to a nonlinear structural system and the 

changes in structural linear components are to be detected. Finally, the analysis results 

for structural state condition 5 will be compared with the analysis results for structural 

state condition 6 to demonstrate the capability of the proposed technique in locating 

damage that only induces changes in the characteristics of the system�s linear 

components.  

It is worth noting that the applied sinusoidal input excitation with a given amplitude in 

each experiment as shown in Table 5 is the signal generated by a computer which was 

used to control the shaker�s force output. However, real experimental data show that the 

force literally measured by the force transducer is not only different from the sinusoidal  

signal in amplitude due to scaling etc effects but also contains harmonics due to the 

inherent nonlinear nature of shaker dynamics. Therefore, in the present study, when the 

proposed technique was applied to analyze the experimental data, the range of 

frequencies of the input force excitation that was actually used in the analysis covers 

not only the frequency of the applied sinusoidal input but also its harmonics.  

 

6.3 The results of experimental data analysis 

Tables 6, 7 and 8 show the comparison of the experimental data analysis results for 

structural state conditions 1 and 2, 3 and 4, and 5 and 6, respectively.   

Because the test rig is a 4DOF structure, n=4.  1,2,3i,  1, =+iiE , was evaluated to 

determine the location of the system nonlinearity; and n-1=3 NOFRF transmissibility 

results, i.e., )(12 ωjT NL , )(23 ωjT NL , )(34 ωjT NL  were evaluated over the frequencies of 

interest. 

Due to the nonlinear effects of shaker dynamics as mentioned above, the range of 

frequencies of the excitation force literally applied to the structure covers not only the 

frequency of the sinusoids generated by the shaker control computer but also its 
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harmonics. Because of this, in the present study, index IND1 was determined from 

equation (30) with n=4, Q=9, Ω=1ω  and Ω=102ω . Here, Ω  is the frequency of the 

sinusoidal signal generated by the shaker control computer. In Experiments #1 and #2, 

for example, rad/s 602 ××=Ω π . In addition, the values of the NOFRF 

transmissibility over the frequencies up to the fifth harmonic were evaluated for each 

case. 

Comparison of the analysis results for structural state conditions 1 and 2 

The results of IND1 in Table 6 show that the test rig under structural state condition 2 

behaves considerably more nonlinearly than in structural state condition 1 and, if 

choosing 4

1 105 −×=ε , it can be concluded from Step (ii) of the proposed technique that 

the test rig is a linear system under structural state condition 1 but a nonlinear one 

under structural state condition 2.  The conclusion is obviously correct as, under 

structural state condition 2, a nonlinear effect was introduced into the 4DOF structural 

system via fitting a center column and bumper on the ground floor with a 0.13mm gap 

between the column and bumper. This indicates that the existence of a system 

nonlinearity can effectively be detected by the proposed technique.  In addition, if 2ε  in 

Step (iii) of the proposed technique is chosen as 3.02 =ε , then from 1,2,3i , 1, =+iiE  

evaluated under structural state condition 2, it can readily be concluded that the system 

nonlinear component was located between masses 2 and 3, i.e., on the ground floor, 

which is again a correct analysis result.  It is worth noting that in the experimental 

studies reported in this paper, this 2ε  was selected by observing the obtained data 

analysis results. In practice a principled method based on the statistics of  

1,2,3i , 1, =+iiE  may need to be used to set this threshold. 

A comparison of the NOFRF transmissibility results evaluated for state conditions 1 

and 2 shows that overall the two sets of results are different. This is believed to be due 

to the effects of inherent, but not very significant, nonlinearity in the three-storey 

building structure; otherwise the (.)12

NLT  and (.)23

NLT  results  should be very similar under 

the two state conditions as they are theoretically the same. Evidence of the inherent 

structural nonlinearity is in the value of IND1 under state condition 1 which is much 

smaller than the IND1 under state condition 2 but can obviously not be considered to be 
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zero like the IND1 in Table 1, the result obtained from a simulation study.  However, it 

can be observed that the results of the NOFRF transmissibility at the base frequency, 

that is, )602(12 ××πjT NL  and )602(23 ××πjT NL  under the two different state conditions are 

basically similar. This confirms the theoretical analysis to a certain extent and implies 

that, in similar practical situations, the NOFRF transmissibility results evaluated at the 

base frequency should be used to assess any changes in system linear components to 

detect and locate system linear damage. Other experimental data analyses also confirm 

this observation. 

Comparison of the analysis results for structural state conditions 3 and 4 

The two values of IND1 in Table 7 are all considerably larger than 4

1 105 −×=ε . 

Therefore, based on the proposed technique, the 4DOF structural system was nonlinear 

under both structural state conditions 3 and 4. In addition, because 2,1E  is less than 

3.02 =ε , and 3,2E  and 4,3E  are all larger than this 2ε , Step (iii) of the proposed 

technique indicates that the system nonlinear component was located between masses 2 

and 3, i.e., on the first floor. These were, as described in Table 5, exactly the situations 

of the 4DOF structure under structural state conditions 3 and 4.   

A comparison of the values of the NOFRF transmissibility evaluated for state condition 

3 and state condition 4 as given in Table 7, shows a considerable difference between 

the conditions of the structural linear components. The relative difference between the 

NOFRF transmissibility values under the two different state conditions (averaged over 

the results evaluated at the five harmonic frequencies) is 52.75% for (.)2,1

NLT ,  38.34%  

for (.)3,2

NLT , and 21.04% for (.)4,3

NLT , respectively. This is as expected because, 

compared with state condition 4, four mass blocks were added on the top of the 

building structure under state condition 3, which increases the value of  parameter 1m  

in the system model. It can be analytically shown that the change of the system 

parameter 1m  can be reflected by the values of all NOFRF transmissibilities in the 

system. Therefore, in addition to a nonlinear damage, a change in the linear 

characteristic of the system is also effectively detected.   
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Comparison of the analysis results for structural state conditions 5 and 6 

From the results of IND1 and 1,2,3i,  1, =+iiE  in Table 8, the same conclusions as those 

reached above about the linear/nonlinear nature of the system behaviors, and the 

location of the system nonlinear component can be reached for the 4DOF structural 

system under structural state conditions 5 and 6, which are also correct.  

A comparison of the values of the NOFRF transmissibility evaluated for state condition 

5 and state condition 6 as given in Table 8, however, shows a different situation. The 

relative difference between the NOFRF transmissibility values under the two different 

state conditions (again averaged over the results evaluated at the five harmonic 

frequencies) is 7.99% for (.)2,1

NLT ,  7.51%  for (.)3,2

NLT , and 20.62% for (.)4,3

NLT , 

respectively. Compared with the 52.75% difference between the two sets of (.)2,1

NLT  

results in Table 7, the 7.99% difference between the (.)2,1

NLT  results under state 

conditions 5 and 6 is much less significant. In addition, apart from )302(2,1 ××πjT NL
,  

the (.)2,1

NLT  results under the two different state conditions have very little difference.  

Because the observed difference between the )302(2,1 ××πjT NL  results under state 

conditions 5 and 6 can be explained to be due to noise and other factors, the 

experimental results in Table 8 basically show that compared with the data analysis 

results for state condition 5, the analysis result (.)2,1

NLT  for state condition 6 almost has 

no change, but the analysis result (.)4,3

NLT  for state condition 6 has a relatively 

significant change.  These observations can be confirmed by theoretical analyses. 

Compared with state condition 5, three mass blocks were added on the ground floor of 

the structure under state condition 6, and this in fact increases the value of parameter 

4m  in the system model. It can be shown that the NOFRF transmissibility (.)2,1

NLT  only 

depends on 2121 ,,, kkcc , and 1m  so that, in theory, the values of (.)2,1

NLT  can not be 

affected by the increase of 4m . It can also be proved that  for the  4DOF system in 

Fig.4, when the nonlinear component is located between masses 2 and 3, 4m  will affect 
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the value of (.)4,3

NLT . Therefore, the data analysis results in Table 8 can be well-

justified. 

Further discussions for  the data analyses 

The NOFRF transmissibility analysis results in Table 7 show that compared to state 

condition 4, more masses are added on the top floor in state condition 3; The results in 

Table 8 indicate that compared to state condition 5, more masses are added on the 

ground floor in state condition 6. Therefore, if the mass change represents a linear 

damage, the proposed technique has, in these cases, not only detected the damage but 

also found its location.     

All the results shown in Tables 6-8 and discussed above, show that the experimental 

data analysis conducted using the proposed technique can effectively distinguish the 

different state conditions of the 4DOF experimental structural system and, neglecting 

the effects of unavoidable noise, un-modeled dynamics, and particularly the inherent 

but relatively insignificant system nonlinearity, the data analysis results are also 

consistent with theoretical analyses. The experimental studies therefore demonstrate the 

effectiveness of the proposed technique in detecting and locating system nonlinearity 

and in evaluating changes in the characteristic parameters of the system linear 

components using the NOFRF transmissibility concept.  Because the system 

nonlinearity and changes in system linear components can represent different kinds of 

damage in practical MDOF structural systems, the proposed technique has considerable 

potential to be applied in damage detection and location on real engineering structures. 

7. Conclusions 

In the present study, the concept of the transmissibility of the NOFRFs has been 

proposed for a class of nonlinear MDOF structural systems. The NOFRF 

transmissibility is based on the recently proposed NOFRF concept, and extends the 

transmissibility concept for linear systems to the nonlinear case. An NOFRF 

transmissibility based technique is then developed for the detection and location of 

damage in MDOF structural systems.  Both simulation and experimental studies have 

been conducted.  The results verify the effectiveness of proposed technique and 

demonstrate that the technique has the potential to be applied in practice to detect and 
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locate damage in a wide range of MDOF engineering structural systems. Although, the 

MDOF system model considered in the present study is of a relatively simple form, the 

basic ideas can be extended to much more complicated cases including systems where 

there are more than one nonlinear components and/or the motion of each mass is of a 

multi-dimensional nature. Further research studies will focus on addressing these 

issues. More comprehensive experimental studies will also be conducted to investigate 

how to effectively apply the basic idea of the proposed technique to the health 

monitoring of a wide range of real engineering components and structures including 

beams, plates, shafts, and bridges. 

Appendix 

Proof of Proposition 2: 

Rewrite equation (16) as follows 

)j()()j()()j()j()( ,,

1

),( ωωωωωωω k

NL

kik

NL

kin

N

n

nii XjTXjTUGjX −+=∑
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 (A.1) 

Substituting equation (17) into (A.1) for the )( ωjX k  inside the third term on the right 

hand side of this equation, and taking into account equation (20) yield 
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Because ),(, ωjT NL

ki )(),( )1,()1,( ωω jGjG ki  are all independent of the system input, 

equation (A.2) implies that if system (15) is excited by two different force inputs with 

their spectra being )j()1( ωU  and )j()2( ωU  respectively, then the corresponding spectra 

of the displacement responses of masses i and k, denoted by )j()( ωq

iX  and )j()( ωq

kX , 

q=1,2, can be described as 
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if  matrix 
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is invertible.                         ͗    
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Figure 1 The MDOF structural system considered in the present study 
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Figure 2 A flow chart of the NOFRF transmissibility-based MDOF system damage 

detection and location technique  

Step i) 

Excite system (15) twice using two different input forces, 

measure the responses of all the masses to each excitation, 

and evaluate the spectra of the applied input forces and 

the  measured responses. 

Step ii)-1 

Calculate index IND1 from equation (30) using the 

system input and output spectra evaluated in Step i)   

Step ii)-2 

Check if 11 ε≤IND ? 

Step iii)  

In this case, no nonlinear 

damage exists in the system. 

So  

• Evaluate the traditional 

transmissibility using 

equation (31); and  

 

• Assess the changes in the 

system linear 

characteristics from the 

evaluated transmissibility 

results. 

Step iv)  

In this case, there exists nonlinear 

damage in the system. 

 So 

• Evaluate the NOFRF 

transmissibility )(1, ωjT NL

ii +  and 

)(1, ωjE ii +  from equation (23); 

• Locate the nonlinearity  

following steps (a)-(c) from 

the evaluated values for 

)(1, ωjE ii + ; and 

• Assess the changes in the 

system linear characteristics 

from the evaluated  NOFRF 

transmissibility )(1, ωjT NL

ii +  

YES NO 
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Figure 3 Schematic representation of a three-storey building structure used for the 

experimental studies 

 

 

 

 

 

 

 

 

 

Figure 4 The 4DOF system model of the three storey building structure 
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Table 1 Analysis Results for Case I of Simulation Studies 

System 

Characteristics 

Analysis 

Results 

Theoretical 

Values 

IND1 
 

1.21e-010 0 

)202(2,12,1 ××= πjEE   

 

NA 

 

 

NA 

 

)202(3,23,2 ××= πjEE  

),max( 3,22,12,12,1 EEEE =  

),max( 3,22,13,23,2 EEEE =  

)202()( 2,12,1 ××= πω jTjT NLNL     0.543    0.543 

)202()( 3,23,2 ××= πω jTjT NLNL  0.758 0.758 

 

Table 2 Analysis Results for Case II of Simulation Studies 

System 

Characteristics 

Analysis 

Results 

Theoretical Values 

IND1 
 

2.02e-004 >0 

)202(2,12,1 ××= πjEE  0.00000000192  0 

)202(3,23,2 ××= πjEE  
 

0.0000431 
 

4.31e-005 

),max( 3,22,12,12,1 EEEE =  
 

0.0000445 

 

                       0 

),max( 3,22,13,23,2 EEEE =  
 

1.000 

 

                        1 

)202()( 2,12,1 ××= πω jTjT NLNL  0.543  0.543 

)202()( 3,23,2 ××= πω jTjT NLNL  
     

0.681 
 

0.681 
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Table 3 Analysis Results for Case III of Simulation Studies 

System 

Characteristics 

Analysis 

Results 

Theoretical Values 

IND1 
 

1.93e-004 >0 

)202(2,12,1 ××= πjEE       0.00000000224 0 

)202(3,23,2 ××= πjEE  
 

0.0000387  
 

3.87 e-005 

 

),max( 3,22,12,12,1 EEEE =  
 

0.0000578  

 

0 

),max( 3,22,13,23,2 EEEE =  
 

1.000 

 

 

1 

)202()( 2,12,1 ××= πω jTjT NLNL  0.584  0.584  

)202()( 3,23,2 ××= πω jTjT NLNL  
 

0.611  
 

0.611  

 

Table 4 Analysis Results for Case IV of Simulation Studies 

System 

Characteristics 

Analysis 

Results 

Theoretical Values 

IND1 
 

6.49e-004 >0 

)202(2,12,1 ××= πjEE  0.00000000156  0 

)202(3,23,2 ××= πjEE  
 

0.0000431  

 

 

4.31e-005 

 

),max( 3,22,12,12,1 EEEE =  
 

0.0000361 

 

0 

),max( 3,22,13,23,2 EEEE =  
 

1.000 

 

1 

)202()( 2,12,1 ××= πω jTjT NLNL  
 

0.543  
 

0.543  

 

)202()( 3,23,2 ××= πω jTjT NLNL  
 

0.680 
 

0.681 
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Table 5 Details of the Experiments 

Experiment Input excitation 

applied by shaker  

control computer 

Structural state condition 

under which experiment 

was conducted 
Experiment #1 60Hz sinusoidal with 

amplitude 3  
State Condition  1 

The center column and 

bumper were fitted on the 

ground floor but Gap was so 

large that no nonlinearity was 

introduced to the structure. 

 

Experiment #2 60Hz sinusoidal with 

amplitude 6 

Experiment #3 60Hz sinusoidal with 

amplitude 4 
State Condition  2 

The center column and 

bumper were fitted on the 

ground floor and 

Gap=0.13mm. 

Experiment #4 60Hz sinusoidal with 

amplitude 6 

Experiment #5 40Hz sinusoidal with 

amplitude 2 
State Condition  3 

*  The center column and  

    bumper were fitted on the 

1st floor and Gap=0.13mm;  

*  50% stiffness reduction in 

the two columns located 

between the ground and 

first floors, and in the 

intersections of plane B 

with planes C and D; 

*   4 mass blocks were added 

to the top floor. 

Experiment #6 40Hz sinusoidal with 

amplitude 3.5 

Experiment #7 40Hz sinusoidal with 

amplitude 2 
State Condition  4 

*  The center column and  

    bumper were fitted on the 

1st floor and Gap =0.13mm;  

*  50% stiffness reduction in 

the two columns located 

between the base and first 

floor, and in the 

intersections of plane B 

with planes C and D; 

Experiment #8 40Hz sinusoidal with 

amplitude 3.5 

Experiment #9 30Hz sinusoidal with 

amplitude 2 
State Condition  5 

The center column and  

bumper were fitted on the 1st 

floor and Gap =0.13mm;  

 

Experiment #10 30Hz sinusoidal with 

amplitude 4 

Experiment #11 30Hz sinusoidal with 

amplitude 2 
State Condition  6 

* The center column and  

   bumper were fitted on the 

   1st floor and Gap =0.13mm; 

 * 3 mass blocks were added 

to the ground floor. 
 

Experiment #12 30Hz sinusoidal with 

amplitude 4 
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Table 6 Comparison of the Real Data Analysis Results  

for Structural State Conditions 1 and 2 

 The experimental data analysis 

results for  the test rig under 

State Condition 1  

The experimental data analysis 

results for  the test rig under  

State Condition  2 

IND1 9.21e-005 5.80e-003 

 

 

 

1,2,3i,  1, =+iiE  

 

 

 

 

 

N/A 

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,+iiE

i

)602(12 ××πjT NL  0.7450 0.7667 

)1202(12 ××πjT NL  0.1917 0.3068  

)1802(12 ××πjT NL  2.4399 0.8164 

)2402(12 ××πjT NL  0.9012 0.4619 

)3002(12 ××πjT NL  0.3355 0.1771 

)602(23 ××πjT NL  3.6518 4.2531 

)1202(23 ××πjT NL  2.0257 0.3682 

)1802(23 ××πjT NL  0.3341 0.1391 

)2402(23 ××πjT NL  0.7128 0.1850 

)3002(23 ××πjT NL  0.6353 0.1909 

)602(34 ××πjT NL  0.2199 0.4250 

)1202(34 ××πjT NL  0.1704 0.7321 

)1802(34 ××πjT NL  0.0757 1.4025 

)2402(34 ××πjT NL  0.0615 2.1753 

)3002(34 ××πjT NL  0.0523 0.9910 
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Table 7 Comparison of the Real Data Analysis Results 

   for Structural State Conditions 3 and 4 

 The experimental data analysis 

results for  the test rig under Status 

State condition  3

The experimental data analysis 

results for  the test rig under Status 

State condition  4 

IND1 5.6000e-3 9.9000e-3 

1,2,3i,  1, =+iiE  

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,+iiE  

i
1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,+iiE

i

)402(12 ××πjT NL  0.5828 0.2410 

)802(12 ××πjT NL  0.3937 0.6468 

)1202(12 ××πjT NL  0.1896 0.1756 

)1602(12 ××πjT NL  0.0687 0.0275 

)2002(12 ××πjT NL  0.0750 0.0199 

)402(23 ××πjT NL  1.1071 2.0952 

)802(23 ××πjT NL  0.7193 0.5273 

)1202(23 ××πjT NL  0.7778 0.8723 

)1602(23 ××πjT NL  2.8102 3.3609 

)2002(23 ××πjT NL  0.6612 0.9521 

)402(34 ××πjT NL  0.5177 0.5398 

)802(34 ××πjT NL  9.3953 8.0210 

)1202(34 ××πjT NL  4.3623 4.5555 

)1602(34 ××πjT NL  5.4426 9.8445 

)2002(34 ××πjT NL  16.5217 16.6871 
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Table 8 Comparison of the Real Data Analysis Results 

  for Structural State Conditions 5 and 6 

 The experimental data analysis 

results for  the test rig under Status 

State Condition  5

The experimental data analysis 

results for  the test rig under Status 

State Condition  6

IND1 0.0600 0.0480 

1,2,3i,  1, =+iiE  

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,+iiE  

i
1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,+iiE

i

)302(12 ××πjT NL  1.5419 1.0999 

)602(12 ××πjT NL  0.4820 0.4577 

)902(12 ××πjT NL  0.2338 0.2264 

)1202(12 ××πjT NL  0.1314 0.1349 

)1502(12 ××πjT NL  0.1427 0.1433 

)302(23 ××πjT NL  2.5731 2.2744 

)602(23 ××πjT NL  1.5412 1.8118 

)902(23 ××πjT NL  1.0208 1.0460 

)1202(23 ××πjT NL  1.1157 1.1059 

)1502(23 ××πjT NL  1.1947 1.1344 

)302(34 ××πjT NL  0.2490 0.3771 

)602(34 ××πjT NL  2.3993 2.3324 

)902(34 ××πjT NL  11.2686 8.6609 

)1202(34 ××πjT NL  6.5080 8.1805 

)1502(34 ××πjT NL  2.8338 2.8334 

 

 


