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Summary 

Magnetoencephalography (MEG) is an invaluable tool to study the dynamics and connectivity of 

large-scale brain activity and their interactions with the body and the environment in functional and 

dysfunctional body and brain states. This primer introduces the basic concepts of MEG, discusses 

its strengths and limitations in comparison to other brain imaging techniques, showcases 

interesting applications, and projects exciting current trends into the near future, in a way that might 

more fully exploit the unique capabilities of MEG.  
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In brief:  
This primer by Gross introduces Magnetoencephalography (MEG) as a versatile tool to study 
large-scale brain activity in health and disease. It explains fundamental concepts of MEG and 
discusses recent and future applications in the field of cognitive neuroscience. 
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Introduction 
Magnetoencephalography (MEG) allows researchers to study brain activity by recording the 

magnetic fields generated by the electrical activity of neuronal populations. A key advantage of 

this approach over other techniques is that it can record brain activity directly and non-invasively 

with a very high (within milliseconds) temporal resolution. This direct relationship between the 

recorded magnetic field and the underlying neuronal currents means that MEG is not affected by 

the problems commonly caused by intermediate processes (such as neurovascular coupling in 

fMRI (functional magnetic resonance imaging) or fNIRS (functional near-infrared spectroscopy)). 

MEG can thus generate an information-rich, dynamic representation of large-scale brain activity. 

These key strengths of MEG entail that it is often used by neuroscientists to study large-scale brain 

dynamics in health and disease. 

MEG was developed in the late 1960s when magnetic fields originating from the brain were first 

recorded using a single sensor (Cohen, 1968). Since then, MEG systems have developed 

significantly in their technical sophistication and now routinely feature about 300 sensors that cover 

the whole scalp in a helmet-shaped design. In addition, a new generation of sensors is currently 

under development that will expand the remit and use of MEG in cognitive neuroscience. Arguably 

the most exciting developments in the field, and its most significant contributions to neuroscience, 

come from the ongoing efforts to make better use of this rich and detailed brain activity signal. 

These efforts have led to several important transitions in the field. First, the field is moving towards 

‘single-trial analyses’, in which the variability of brain responses and their relationship to 

behavioural changes are explicitly taken into consideration. Second, the rhythmic components of 

brain activity are increasingly being recognised as being of fundamental importance for brain 

function and dysfunction; these rhythms can significantly contribute to our understanding of how 

the brain operates. Third, ‘activation studies’ are giving way to ‘information and connectivity 

studies’, as scientists aim to decode specific information from brain signals and their connectivity 

instead of simply describing the time course of activation. Together, these technological, 

methodological and conceptual developments, combined with MEG’s inherent advantages, have 

created an exciting tool that is ideally placed to make significant contributions to cognitive 

neuroscience.  

This primer is not intended to be a comprehensive review of MEG, given the several excellent 

recent reviews and books on this topic (Baillet, 2017; Hari and Puce, 2017; Hari et al., 2018; Lopes 

da Silva, 2013; Supek, 2013; 2010). For this reason, I also do not discuss best practice in the 

clinical or fundamental application of MEG, but refer readers to other recent reviews (Gross et al., 

2013a; Hari et al., 2018; Keil et al., 2014; Pernet et al., 2018). Instead, this primer aims to provide 

a concise introduction and guide to the most recently reported developments in MEG technologies. 

My goal is to provide readers with sufficient knowledge to appreciate the role of MEG in 

neuroscience, to better assess MEG research, and to understand how MEG could contribute to 

their own research. With this in mind, I explain the fundamental concepts of MEG, including the 

recording hardware to use, the nature and analysis of the recorded signals, and also MEG’s 
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applications to neuroscience research, and how it compares with related methods (Box 2). I also 

consider its potential future applications in the field of cognitive neuroscience.  

 

 -----------------  Box 1 about here ----------------- 

 

MEG relies on the fundamental physical principle that electrical currents are always associated 

with magnetic fields. In the brain, these currents are produced during neural activity by the 

movement of ions in intra- and extracellular space. Ion currents linked to postsynaptic potentials 

are the largest contributors to the MEG signal (Lopes da Silva, 2013). Presynaptic neurotransmitter 

release leads to postsynaptic dendritic transmembrane currents, which cause changes in the local 

field potential (LFP) at the dendrite and soma of a neuron. This results in a primary intracellular 

current along the soma-dendritic axis of the neuron (Lopes da Silva, 2013), along with an 

extracellular return (or volume) current in the opposite direction. When these electrical currents 

flow simultaneously across neighbouring neurons with a similar dendritic orientation, the 

corresponding individual magnetic fields add up to a detectable field strength that can be recorded 

by MEG sensors near the scalp (Hämäläinen et al., 1993). Thus, postsynaptic currents in 

neocortical pyramidal neurons are the primary contributors to the MEG, since these neurons have 

a clear soma-dendritic axis, which is typically locally aligned with neighbouring cells, and 

perpendicular to the cortical surface. Modelling studies and invasive recordings suggest that the 

synchronous activation of a few tens of thousands of neurons leads to robustly detectable signals 

(Murakami and Okada, 2006). The recorded amplitude of the MEG signal largely depends on three 

factors: the number of activated neurons; their temporal synchrony; and the degree of their spatial 

alignment. Thus, a recorded MEG signal provides an approximate representation of the 

synchronized (also below spiking threshold) fluctuation in the membrane potential of many 

neurons. However, while synaptic potentials are considered to be the main contributors to the MEG 

signal, non-synaptic potentials can contribute as well. For example, action potentials and even fast 

sodium spikes are known to contribute to LFPs, even at frequencies of around 100 Hz (Buzsáki et 

al., 2012; Pesaran et al., 2018), and they might contribute to the MEG signal if they are temporally 

precisely synchronized across a local population of neurons (Murakami and Okada, 2006).  

 

 

------------------- Box 2 about here --------------------------- 

 

 

 

Building blocks of an MEG study 
In this section, I discuss the versatility of MEG along three dimensions: recruitment, recording and 

read-out (Figure 3).  
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Recruitment 

Most published MEG studies are based on relatively modest participant numbers (about 20). 

However, larger-scale data collection is possible and should be encouraged in the form of single 

or multi-centre studies, with the results published as open-access data, to improve statistical power 

(Button et al., 2013) and reproducibility (Poldrack, 2019). Such large, open datasets also help us 

understand the mechanisms that underlie inter-individual differences in large-scale brain dynamics 

and behaviour. As an example, resting-state MEG studies have investigated heritability and 

genetic determinants of the amplitude and frequency of brain oscillations and their connectivity 

(Colclough et al., 2017; Leppäaho et al., 2019). MEG data can also be co-registered and merged 

with functional and anatomical MRI data allowing to exploit the complementary nature of the 

signals. In the future, we will hopefully see more large-scale MEG data collection projects and their 

subsequent open sharing and publication (such as the Human Connectome Project (HCP) 

(Larson-Prior et al., 2013), Cam-Can (Taylor et al., 2017), MOUS (Schoffelen et al., 2019) or 

Omega (Niso et al., 2016)) and for MEG data to be combined with other data types such as (f)MRI, 

neuropsychology, biomaterials (for example blood, saliva, urine, stool). This will facilitate studies 

of body-brain interactions and other factors shaping inter-individual differences in brain activity. 

 

------------- Figure 3 about here -------------------- 

 

Recording 

In general, two different MEG recording types are performed: event-based recordings where (often 

transient) stimuli are repeatedly presented; and continuous recordings, where participants rest or 

perform a continuous task (such as making hand/finger movements, or processing continuous 

sensory stimuli). MEG data can also be acquired in combination with other signals, leading to novel 

applications that can potentially make significant contributions to neuroscience.  

Signals: MEG/EEG is an excellent tool to study the dynamics of interactions between body and 

brain. As described in more detail below, MEG, in combination with source analysis, yields spatio-

temporal maps of brain activation with excellent temporal and good spatial resolution. The use of 

experimental paradigms to probe cognitive functions additionally results in measures of 

behavioural performance that can be used to identify brain-behaviour relationships. This classical 

approach can be further extended at the data acquisition stage by recording additional signals that 

capture aspects of body or brain state. In MEG studies it is common practice to record the electro-

oculogram (EOG) to facilitate the identification of artefacts related to eye movements or blinks 

(Gross et al., 2013a). Eye movements can also be recorded more precisely using MEG-compatible 

eye-trackers that sample at up to 1-2 kHz. Additionally, they allow recording pupil size as a proxy 

for arousal (Meindertsma et al., 2017). Another often-used additional signal is the Electromyogram 

(EMG), which records muscle activity. This can be used to measure different aspects of movement 

also in movement disorders and can be combined with motion tracking devices (Marty et al., 2015). 

Besides classical examples of recording EMG from arm muscles it can also be used to study 
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swallowing (Suntrup et al., 2013) or speech (Alexandrou et al., 2017). Other signals that can be 

recorded alongside MEG include: electrodermal activity (EDA) (Wessing et al., 2013), the 

electrocardiogram (ECG) (Park et al., 2014), electrogastrogram (Richter et al., 2017), and blood 

pressure or respiration (Myllylä et al., 2017). Overall, these additional signals (together with MEG 

here called MEG+ signals) provide a rich, dynamic, multivariate characterisation of the body and 

brain state and behaviour (Figure 3). 

Interventions: Interventions are sometimes made during an MEG study to probe and change brain 

states in a controlled manner, and to observe how this change is reflected in MEG+ signals and 

behaviour using online and offline approaches. Online interventions are applied during MEG+ 

recordings. In a standard cognitive MEG experiment short sensory stimuli are repeatedly 

presented to participants who might have received instructions to perform certain tasks on these 

stimuli (such as detection, discrimination, etc). Other tasks might not use sensory stimuli (for 

example self-paced movements, inner speech, etc). Cognitive tasks during MEG+ can be 

combined with transcranial electric stimulation (TES) or deep-brain stimulation (DBS). Recently, 

the growing interest in brain oscillations has led to an increased use of continuous, and sometimes 

naturalistic, sensory stimuli (or continuous movement tasks) that can be conveniently analysed 

with spectral signal processing methods. Examples are the use of continuous speech (Gross et 

al., 2013b) or continuous movement (Jerbi et al., 2007). This is of interest for the study of brain 

rhythms that can be monitored with MEG while they are modulated by, or entrain to incoming 

sensory stimuli (Giraud and Poeppel, 2012; Thut et al., 2012).  

Offline interventions are applied between MEG+ sessions. In general, a ‘baseline’ MEG session is 

recorded, the intervention is performed, and then one or more MEG sessions are recorded to 

assess the effect of intervention on brain activity. This approach is particularly suited to 

interventions that are incompatible with online recordings such as TMS, pharmaco- or 

psychotherapy. The combination of approaches illustrated in Figure 3 leads to versatile 

applications that have not been fully exploited so far.  

 

Read-out 

MEG+ signals can be transformed to yield information-rich readouts that help to study the complex 

multi-directional dependencies between body, brain and behaviour in health and disease. They 

are typically processed using source analysis (see next section) to reveal how neural activity 

unfolds across space, time and frequency and how these activity patterns relate to behaviour. More 

recently, the focus has shifted from the mapping of activation to the mapping of information or 

representations. For example, information theory can be used to identify brain areas where neural 

activity measured with MEG or EEG contains information about specific stimulus features (such 

as the eye in a visually presented face) (Ince et al., 2017; Quian Quiroga and Panzeri, 2009; 

Schyns et al., 2011). Multivariate analysis enables the mapping of ‘representations’ (Cichy et al., 

2014). The following sections will introduce concepts that help understand relevant read-outs. 
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MEG analysis 
In this section, I provide an overview of MEG data analysis, and the key concepts involved, to 

equip researchers with the necessary and essential background knowledge they will need to 

understand MEG data analysis. For more detailed accounts of MEG data analysis in cognitive or 

clinical studies, I refer readers to several recently published books and articles (Brette and 

Destexhe, 2012; Cohen, 2014; Gross et al., 2013a; Hari and Puce, 2017; Hari et al., 2018; Keil et 

al., 2014).  

MEG source analysis: MEG source analysis aims to identify the neural generators of the recorded 

magnetic fields. It is a central part in most MEG studies, motivated by the fact that interpretation of 

functional data is typically more meaningful when they can be assigned to the underlying 

anatomical brain areas. Source localisation is based on two fundamental concepts: the forward 

and the inverse problem (Figure 4). Solutions to the forward problem model the magnetic fields at 

known sensor locations, that are generated by a current with known location and orientation in a 

specified head model (see below). By contrast, solutions to the inverse problem identify the 

location and orientation of currents based on the recorded magnetic field. Practically, identifying 

the location of a source current from measured MEG signals starts with solving the forward 

problem. This requires the construction of a head model that specifies the spatial distribution of 

tissue conductivities. Individual anatomical MRIs are used to produce two types of state-of-the-art, 

realistic head models: boundary element models (BEMs), which model tissue surfaces; and finite 

element models (FEM), which model tissue volumes of the entire head. Currently, advanced FEM 

models differentiate between several tissue types and their associated conductivities such as skin, 

skull compacta, skull spongiosa, CSF, grey and white matter (Vorwerk et al., 2014). The head 

model is used to compute solutions of the forward problem at known sensor locations, typically for 

a single, infinitesimally small current segment with a specified location and orientation (called the 

equivalent current dipole) (Figure 4). The solution of the forward problem therefore relates a single 

current source to the expected magnetic fields at the sensor locations. Importantly, the magnetic 

fields generated by more complex and spatially extended currents can also be computed (as a 

linear superposition of magnetic fields) from these elementary sources. Solutions to the inverse 

problem make use of this relationship and aim to identify the locations and orientations of 

elementary current sources in the brain that explain components of the recorded magnetic field. 

There is no unique solution to the inverse problem, and different inverse methods impose different 

constraints that lead to different representations of the underlying generators (Baillet et al., 2001; 

Wipf and Nagarajan, 2009).  

All inverse methods require the specification of a source model that approximates the underlying 

continuous current density distribution with a finite number of parameters. The choice of source 

model therefore constrains the result. The classical source model is the multi-dipole model, which 

aims to explain the measured magnetic field with a small number (typically <10) of equivalent 

current dipoles. More recently, distributed source models have become increasingly popular. 

These models describe currents as vector fields across the brain at a pre-defined spatial resolution 
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(between about 4-10mm). The source estimation can be constrained for example by restricting 

currents to the grey matter. An orientation constraint can also be incorporated when solving the 

inverse problem to locate sources perpendicular to the local cortical surface according to the 

preferred orientation of pyramidal neurons. Several open-source software packages exist to 

perform MEG source analysis ((Baillet et al., 2011); www.biomagcentral.org). 

In summary, MEG source analysis can be used to reconstruct the brain’s neural activity with 

relatively high fidelity in space and time. This ability to observe and study large-scale brain 

dynamics in a non-invasive, and regionally specific manner is a key strength of MEG, which also 

translates directly into two further advantages: its use in the study of brain rhythms and functional 

connectivity. 

 

-------------- Figure 4 about here ----------------- 

 

MEG spectral analysis  

MEG spectral analysis utilises the high temporal resolution of MEG data to study brain rhythms. A 

standard MEG spectral analysis involves performing a source analysis (i.e. solving the inverse 

problem) to identify regions of interest (ROIs) and estimating the neural activity with millisecond 

temporal resolution. Methods based on the Fourier or wavelet transform are then used to create 

time-frequency representations (TFRs) that quantify the temporal modulation of frequency-specific 

brain rhythms over time (Cohen, 2014). With suitable experimental paradigms, this is a versatile 

and powerful approach to identifying brain-behaviour relationships (Figure 3).  

MEG is also an excellent tool for functional connectivity analysis that studies how different brain 

areas interact to process information. The whole-brain coverage provided by MEG and its excellent 

temporal and good spatial resolution, generate rich data that are well suited for investigating 

statistical dependencies between brain areas (Bastos and Schoffelen, 2015; Pesaran et al., 2018; 

Schoffelen and Gross, 2009). Yet, in interpreting estimates of MEG (or EEG) connectivity, one 

needs to be aware of some important limitations (Gross et al., 2013a; Palva et al., 2018): The main 

limitation is that each activated brain area is recorded by all MEG sensors, albeit at different 

amplitudes that depend on the location and orientation of the activated neuronal population. 

Therefore, even a single activated brain area will lead to a common signal component in all sensors 

which results in spurious ‘connectivity’ between these sensor recordings. The hallmark of this 

spurious connectivity is that it is due to a common signal with no delay across different sensors. 

This makes the interpretation of connectivity results – at the level of sensor recordings – very 

difficult if not impossible. This problem can be partly addressed by using source analysis. But even 

source analysis does not achieve a perfect un-mixing of the signals (Schoffelen and Gross, 2009). 

Directed connectivity measures such as Granger causality can alleviate this problem because they 

are insensitive to these spurious zero-lag interactions (Bastos and Schoffelen, 2015). However, 

other factors such as signal-to-noise ratio, the source localisation method or inaccuracies in the 
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head model will still affect the quality of the connectivity estimate and need to be considered (Cho 

et al., 2015; Mahjoory et al., 2017; Palva et al., 2018).  

A complementary approach for functional connectivity analysis is dynamic causal modelling (DCM) 

which will be discussed in more detail in the section ‘Emerging topics’. While Granger causality is 

data-driven and makes few assumptions about the observed system, DCM is model-based and 

allows hidden states and variables to be estimated. In general, connectivity analysis is an exciting 

tool when performed with the required caution and interpreted with an awareness of its limitations.  

 
MEG Applications 
In this section, I draw on examples from the recent literature to provide a selective overview of how 

MEG and its applications are making significant contributions to cognitive neuroscience. I also 

discuss challenges in the field, interesting developments and their potential applications in the near 

future. We start with the general topic of temporal dynamics and then focus mostly on studies of 

brain rhythms, which have received increasing interest in recent years.  
 
Temporal dynamics of information processing: The main strength of MEG compared to other 

neuroimaging methods is that the silently recorded MEG signals allow neural activity to be 

reconstructed across the brain with excellent temporal and good spatial resolution. This 

information-rich data is thus ideally suited for studying large-scale neural dynamics in the 

information-processing brain. Indeed, from the beginning, the excellent temporal resolution of MEG 

has been exploited to identify different stages of information processing (e.g. (Nishitani and Hari, 

2002; Ploner et al., 2002)).   

More recently, multivariate analysis methods have been used to better understand the specific 

cognitive processes that are reflected in the recorded MEG signal. One of these methods, 

representational similarity analysis (RSA), quantifies the similarity of stimuli, behavioural 

responses or brain responses across conditions (Kriegeskorte et al., 2008). In MEG, this similarity 

can be computed on a sample-by-sample basis time-locked to the onset of a stimulus.  RSA can 

thus provide – when applied to source-localised MEG data – insights into the spatio-temporal 

evolution of stimulus representations in the brain, as well as into brain-behaviour relationships and 

the explanatory power of computational models (Hebart et al., 2018; Klimovich-Gray et al., 2019). 

Similarly, multivariate decoding has been used to elucidate dynamic brain correlates of conscious 

perception and dual task interference (King et al., 2016). Here, decoding algorithms identify where 

and when brain activity contains information that can be used to identify the corresponding sensory 

stimulus or experimental condition. In the context of decoding, the high temporal resolution of MEG 

is particularly advantageous for two reasons: First, it helps to characterise the spatio-temporal 

progression of stimulus-related neural processes throughout the brain. Second, it can be used to 

study how a decoding algorithm, trained using data from a certain latency after stimulus onset, 

leads to significant decoding performance when applied to temporally neighbouring data points. 
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This ‘generalisation’ of a decoder may allow inferences to be made about the temporal dynamics 

of distinct stages of information processing (King and Dehaene, 2014).  

Another appealing way to capitalise on the rich MEG signal is based on information theory and is 

complementary to decoding approaches (Quian Quiroga and Panzeri, 2009). It also offers a 

mathematically rigorous way to quantify linear and non-linear dependencies in data using mutual 

information (Ince et al., 2017). Mutual information has recently been complemented with measures 

that quantify the representation, or transfer, of a specific feature of a stimulus (such as the mouth 

of a happy face) more directly (Schyns et al., 2011; Zhan et al., 2019). Interestingly, current 

developments that aim to decompose statistical dependencies between three signals (such as 

auditory stimulus, visual stimulus and brain activity) make it possible to compute brain maps that 

represent unique information about each stimulus, as well as their synergistic or redundant 

interactions (Ince et al., 2017). Redundancy quantifies the information about the MEG signal that 

is common to or shared between the two stimulus signals and synergy quantifies the extra 

information that arises when both signals are considered together. 

Generally, these recent developments in this area of MEG research focus on better characterising 

the ‘meaning’ of large-scale neural activity instead of simply describing the time course of activation 

in each brain area. These and similar approaches have also been used to investigate brain 

rhythms, as I will discuss next. 

 

Brain rhythms and spectral signatures:  

Rhythmicity in brain activity is a fundamental and defining property of neural dynamics in humans 

and animals (Buzsáki et al., 2013; Wang, 2010), and neural rhythms form an important component 

of the MEG signal. Rhythmicity arises through precisely timed interactions of neuronal excitation 

and inhibition, leading to rhythmic changes in LFPs that can be recorded throughout the human 

brain. Neuronal firing rates are modulated by the phase of oscillations (Lakatos et al., 2007) and 

the dynamic evolution of LFP phases contains information that is complementary to that contained 

in spikes (Kayser et al., 2009). These cyclic excitability changes make brain rhythms a suitable 

mechanism for supporting information processing with accurate temporal coordination, a 

prerequisite for human behaviour. Buzsaki and colleagues summarize this by stating that brain 

oscillations 'form a hierarchical system that offers a syntactical structure for the spike traffic within 

and across circuits at multiple time scales' (Buzsáki et al., 2013). This dynamic functional structure 

complements the more static anatomical structure and allows the flexible task-dependent routing 

and gating of information flow within anatomically constrained networks. It is therefore not 

surprising that brain oscillations and their task-dependent modulations have been linked to a wide 

range of cognitive tasks, such as working memory, attention, perception, and language (Wang, 

2010). In addition, evidence exists that these brain oscillations reflect brain states; encode stimulus 

and task-relevant information; are expressed by individual brain areas in a characteristic manner; 

and cause rhythms in action and perception (Buzsaki, 2006; VanRullen, 2016). Furthermore, 

pathologically altered brain rhythms are associated with a variety of neurological and mental health 
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disorders (Schnitzler and Gross, 2005; Uhlhaas et al., 2018). For more detailed information on the 

importance of brain rhythms, I refer readers to relevant reviews (Buzsáki and Draguhn, 2004; Fries, 

2015; Schnitzler and Gross, 2005; Siegel et al., 2012; Thut et al., 2012; Wang, 2010). Across this 

research field the concept of spectral signatures is an emerging topic that has received significant 

interest. In this context, the term spectral signature (or spectral fingerprint) refers to a characteristic 

organisation of brain rhythms or their coupling across space, time and frequency that is reliably 

associated with a cognitive process, behavioural state or neural dysfunction (including 

dysfunctions arising from neurological diseases or mental health disorders). Some examples are 

discussed below. 

 

Resting-state spectral signatures: Many MEG (and EEG) studies have investigated resting-state 

activity in healthy participants and patients (e.g. (Cabral et al., 2017; Engels et al., 2017; Mandal 

et al., 2018; Uhlhaas et al., 2018)). The spatio-spectral structure of brain activity in this state is 

shaped and constrained by anatomical connectivity and by the area-specific anatomical substrate 

(Mars et al., 2018), and it leads to functional correlations between brain areas that are reported as 

resting-state networks in fMRI studies (Park and Friston, 2013). These fMRI resting-state networks 

have an electrophysiological correspondence, namely resting-state amplitude correlations 

especially in the alpha (7-13 Hz) and beta (15-30 Hz) frequency band that can be observed in MEG 

recordings (Brookes et al., 2011; Florin and Baillet, 2015). In addition to these band-specific long-

range connectivity patterns, the anatomical microstructure of each brain region also produces 

characteristic local spectral signatures (Keitel and Gross, 2016). More recently, the concept of 

spectral signatures in rest has been extended. Vidaurre and colleagues used Hidden Markov 

Models (HMM) to describe resting-state MEG data as a sequence of a finite number of states 

(Vidaurre et al., 2018). These states correspond to brain networks that have specific spectral 

properties (power spectra) but also specific functional connectivity and are consistent with fMRI 

resting-state networks. State transitions were found on relatively fast time scales of about 100-

200ms. Consistent with the previously reported spectral signatures (Keitel and Gross, 2016), this 

suggests that resting-state brain activity recorded with MEG shows a regionally specific 

organisation in spectral power and spectral connectivity that can be characterised by a finite 

number of states. This begs the question how these spectro-temporal signatures of resting-state 

activity shape human behaviour and are in turn modulated by behaviour.  

 
Spectral signatures in perception and spatial attention: Already in a simple target-detection task, 

the state of brain oscillations at stimulus presentation is related to detection performance (van Dijk 

et al., 2008). MEG and EEG studies have demonstrated that near-threshold stimuli are more likely 

to be detected when the amplitude of ‘alpha’ (about 10 Hz) oscillations is low in parietal-occipital 

brain areas compared to when the amplitude is high. Recently, it was suggested that this is caused 

by changes in the perceptual experience (Iemi and Busch, 2018). In general, this indicates that the 

brain state – as it is reflected in ongoing brain oscillations – determines the fate of a near-threshold 
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stimulus (that is, whether a target is seen or not seen). These findings can be explained with the 

above-mentioned fact that brain oscillations represent excitability changes in neuronal populations 

(Haegens et al., 2011; Romei et al., 2008). Similar results have been reported in studies of spatial 

attention. Instructing participants to covertly shift visual attention to one hemifield leads to a 

sustained decrease in the amplitude of alpha oscillations in contralateral occipito-parietal brain 

areas (Bauer et al., 2014; Foxe and Snyder, 2011; Thut et al., 2006). The amount of alpha 

modulation is related to behavioural performance (of detecting a subsequent target) indicating a 

functional role of alpha oscillations in the gating of target-related stimulus information.  

 

Spectral connectivity signatures: Distinct functional roles of brain rhythms in different frequencies 

might have an anatomical basis. Feedforward projections typically start in supragranular layers 

and terminate in layer 4 of the cortex, whereas feedback projections predominantly start in 

infragranular layers and terminate in layers other than layer 4 (Markov et al., 2014). A recent study 

capitalises on the specific strength of MEG for non-invasively studying large-scale brain activity 

and demonstrated that anatomical feedforward and feedback connections are associated with 

connectivity (quantified with Granger causality) in different frequency bands (Michalareas et al., 

2016). Feedforward signals are mediated in the gamma frequency band whereas feedback signals 

are predominantly conveyed in the alpha/beta frequency bands. This model of frequency-specific 

communication channels suggests that directed connectivity derived from source-localised MEG 

data might potentially be used as a functional ‘marker’ to disambiguate feedforward and feedback 

processes that often occur simultaneously and are notoriously difficult to separate - especially in 

non-invasively recorded data. Overall, the empirical anatomical and functional data largely 

supports a computational model that builds on predictions and prediction errors in a hierarchically 

organised neural architecture (Friston et al., 2015). This has important implications for our 

understanding of pathological mechanisms underlying various neurological and mental health 

disorders (Friston et al., 2014). Within this predictive coding model it has been suggested that 

pathological changes in the precision of predictions or the processing of predictions or prediction 

errors can possibly explain symptoms observed in autism (Lawson et al., 2014), schizophrenia 

(Limongi et al., 2018), chronic pain (Ploner et al., 2017) and tinnitus (Sedley et al., 2016).  

In general, MEG is an excellent tool to study spectral connectivity signatures and the sophistication 

of these studies has increased over recent years. Schoffelen and colleagues recently used  

Granger causality analysis to identify spectral connectivity signatures during reading (Schoffelen 

et al., 2017). They report Granger causality effects from middle temporal areas to anterior temporal 

and frontal areas in line with information flow along the auditory cortical hierarchy. In addition, 

several studies have uncovered spectral connectivity signatures that rely on cross-frequency 

coupling (CFC). The hallmark of CFC is a significant statistical dependence of phase or amplitude 

between two time series at different frequencies and has been implicated in inter-area 

communication (Bonnefond et al., 2017). CFC signatures across large areas of cortex are evident 

in resting-state recordings (Florin and Baillet, 2015), might be pathologically altered in patients 
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(Antonakakis et al., 2016) and support coordinated information processing during cognitive tasks 

such as working-memory (Siebenhühner et al., 2016). 

 
Spectral entrainment signatures: Spectral signatures in the brain are not only evident in rest and 

modulated during tasks but they also interact with rhythmic signals in the environment in a way 

that establishes a brain-environment connectivity. An excellent example is human communication. 

Despite the seemingly continuous nature of connected speech, the auditory and visual speech 

signals received by our senses contain rhythmic components, for example corresponding to the 

syllable rate (Ding et al., 2017). Recent MEG studies have shown that frequency-specific brain 

activity becomes temporally aligned to these partly rhythmic amplitude variations in continuous 

speech (Gross et al., 2013b). This temporal alignment is most strongly observed at frequencies 

below 10 Hz and is thought to be initiated by acoustic edges in the speech waveform that lead to 

a phase reset of ongoing oscillations in auditory cortex (Giraud and Poeppel, 2012). As a result of 

the phase reset, brain activity will be temporally aligned to the quasi-rhythmic structure in speech. 

Since low frequency brain oscillations represent cyclic excitability changes in underlying neuronal 

populations this entrainment leads to preferential processing of attended stimuli (Ding and Simon, 

2012; Lakatos et al., 2013). This is likely the result of top-down effects of higher-order brain areas 

(left inferior frontal gyrus and left motor areas) on auditory areas as reported in a recent MEG study 

(Park et al., 2015). Taken together these and other studies suggest that brain rhythms play a 

significant role in processing continuous quasi-rhythmic signals from the environment. 

 
Emerging topics 
In this section I will discuss interesting emerging applications of MEG that might attract more 

attention in the future. I will present this by highlighting individual papers that sample the range of 

novel applications. This is not intended to be a comprehensive overview of new applications and 

not even of these particular topics. I rather intend to showcase individual studies that are 

representative of emerging topics.  

 
Connecting Body and Brain: In this primer, I promote the idea that MEG is an excellent tool to study 

the brain. However, the typical neuroimaging approach of studying the brain in isolation is 

inherently flawed because it ignores the fact that the brain is part of the whole body. This is 

important because there are continuous bidirectional interactions between the brain and the rest 

of the body. The dynamically changing state of the human body influences brain activity; the body 

is, in turn, controlled by the brain, and their mutual interactions and states affect cognition and are 

altered in disease. MEG recordings combined with peripheral recordings of body states are thus 

ideally suited to study these dynamic interactions (see Figure 3). MEG can record top-down signals 

from the brain that dynamically shape autonomic functions. Recordings of body signals, such as 

respiration, heartbeat, pupil dilation etc. can be used to characterise certain aspects of the body’s 

physiological state, which is continuously conveyed to the brain. Such recordings could help to 
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uncover the principles and mechanisms that underlie brain–body interactions in health and 

disease, which as yet remain largely unknown and virtually unstudied. For example, peripheral 

infections (which constitute a change in body state) lead to the production of pro-inflammatory 

cytokines that modulate brain function by inducing sickness behaviour such as reduced motor 

activity and social withdrawal (Dantzer et al., 2008). In addition, several studies have demonstrated 

that information processing in the brain also transiently depends on dynamically changing body 

states - such as the phase of the cardiac cycle (Critchley and Garfinkel, 2018; Park et al., 2014)). 

Similarly, the respiratory rhythm is known to modulate motor and cognitive functions (Varga and 

Heck, 2017; Zelano et al., 2016).  

The need to take into account physiological signals is particularly important when studying brain 

rhythms because several body signals are also (quasi-) rhythmic over a wide range of frequencies 

(Klimesch, 2018) (such as the piper rhythm in muscle  ~40 Hz (Brown, 2000), some eye 

movements ~5 Hz (Otero-Millan et al., 2008), heartbeat ~1 Hz and breathing ~0.25 Hz (Fleming 

et al., 2011) and gastric basal rhythm ~0.05 Hz (Rebollo et al., 2018)). Importantly, even low 

frequency (and non-rhythmic) peripheral signals can modulate the amplitude of higher frequency 

brain activity. These peripheral signals are typically treated as a confounding signal (if considered 

at all); instead they represent an interesting target for studying mutual dependencies between body 

and brain signals and behaviour. Relevant analytical approaches have already been developed 

over the last 20 years in MEG studies of communication between brain and muscles. For example, 

continuous isometric muscle contraction is associated with a temporal coupling of oscillations in 

the recordings of muscle activity (EMG) and brain activity (MEG) at frequencies of about 15-30 Hz  

(Salenius and Hari, 2003). In combination with source analysis, functional maps of cerebro-

muscular coupling have been computed and revealed that this 15-30 Hz coupling represents 

efficient driving of spinal motor neurons from primary motor cortex (Gross et al., 2001; Schoffelen 

et al., 2005). In summary, these studies illustrate the ubiquitous and continuous dependencies 

between (rhythmic) body signals, brain rhythms and sensory and cognitive processing. It is of great 

interest to study this trivariate relationship between body, brain and behaviour in health and 

disease using MEG. 
 
Computational models: Combining MEG/EEG data with computational models has a long history 

and holds great promise to further our mechanistic understanding of brain dynamics. A notable 

recent example is a study where MEG, computational modelling and laminar recordings in animals 

were combined to identify a generative mechanism for local beta (15-30 Hz) oscillations (Sherman 

et al., 2016). Going beyond modelling of local activity, Dynamic Causal Modeling (DCM) allows 

inference on hidden neural network states within a Bayesian framework based on recordings of 

brain activity such as MEG data (Friston et al., 2013). Recently, DCM has been extended with a 

neural mass model that reflects the structure of cortical canonical microcircuits (Symmonds et al., 

2018). This model includes parameters for different receptors such as NMDA, GABA and AMPA. 

The generative model relates receptor-specific time constants and connection strengths to 
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membrane potentials and ultimately to MEG/EEG signals. Bayesian inversion of the model based 

on non-invasively recorded MEG data therefore allows inference on these parameters and their 

selective change in disease (Heinzle and Stephan, 2018). This opens up the exciting possibility to 

use MEG (and EEG) to study receptor (dys-)function in health and disease. Interestingly, this 

modelling can be combined with ‘pharmaco-MEG’ where MEG recordings are obtained before and 

during administration of pharmacological substances, for example to study the relationship 

between neurotransmitters, brain activity and behaviour (Bauer et al., 2012; Lozano-Soldevilla et 

al., 2014; Moran et al., 2011; Muthukumaraswamy, 2014).  

Another type of computational models that has recently gained interest can be referred to as brain 

network models (BNM) (Breakspear, 2017; Stephan et al., 2015). Similar to DCM, brain activity in 

each brain area is described by a neural mass model that aims to model the behaviour of local 

neuronal populations with a small set of equations. However, unlike DCM, BNMs can be 

constructed as whole-brain models. Individual neural mass models are connected based on 

anatomical connectivity information - for example acquired with diffusion-tensor imaging (DTI). The 

local activity at each node is shaped by input from other nodes and the specific parameters of the 

local neural mass model. These local neural mass models are combined with a forward model that 

can estimate fMRI, EEG or MEG recordings from the dynamics of neural mass models. One 

example of this approach is implemented in the ‘Virtual Brain’ software (thevirtualbrain.org, (Deco 

et al., 2017; Sanz-Leon et al., 2015; Schirner et al., 2018)). BNMs can be used to study how 

changes in parameters of neural mass models or their connectivity might lead to changes in 

recorded brain activity. Similarly, the effect of neurostimulation (such as TMS or TES) can be 

modelled with BNMs (Kunze et al., 2016), for example to identify the effect of local stimulation on 

brain networks in comparison with empirical data. In summary, computational models provide an 

interesting and complementary path for the analysis and interpretation of MEG data. 

 
Conclusions and future perspectives 

MEG is a powerful tool with highly versatile applications in the field of cognitive neuroscience. Its 

main strength lies in non-invasively recording a signal that is closely related to neuronal population 

activity. When combined with source localisation techniques it yields a rich representation of brain 

activity with millisecond temporal resolution throughout the brain. Whereas MEG cannot compete 

with fMRI or invasive recordings with regards to spatial resolution, it is uniquely suited to study 

large-scale electrophysiological whole brain activity. The main features of MEG, qualifying it for the 

study of large-scale brain dynamics are whole-brain coverage, silent and non-invasive recording, 

excellent temporal resolution, good spatial resolution, low sensitivity to uncertainties about tissue 

conductivities and direct coupling of the recorded signal to neural activity independent of 

neurovascular coupling. These advantages notwithstanding, users need to be aware of strengths 

and weaknesses of MEG as a recording technique and of the different analysis methods. Seeking 

converging evidence across analysis pipelines combined with open science principles will be key 

to ensure that MEG studies will have an increasingly relevant impact in cognitive neuroscience. In 
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the past, MEG has already made significant contributions to our understanding of the relationship 

between the (rhythmic) dynamics of large-scale brain activity and behaviour in health and disease. 

However, the full potential of MEG has not yet been fully exploited. I envisage that in coming years 

currently emerging trends in the field will merge and transform the way we use MEG in cognitive 

neuroscience. Specifically, I foresee the following developments: Multi-center cohort studies will 

collect MEG data on large numbers of participants and patients together with deep phenotyping 

and multi-modal imaging and will make this data publicly available. These studies would greatly 

benefit from standardized task batteries and analysis pipelines that are currently unavailable. In 

the future, combined MEG and EEG recordings might be complemented with simultaneous 

recordings of a range of body signals (Figure 3). This will enable novel applications such as 

studying body-brain interactions, attributing task-related changes in brain activity more directly to 

cognitive processes or simultaneous changes in body state and identifying body-brain changes in 

disease. Machine Learning and deep neural networks will likely play an important role in the 

analysis of these large data sets. Furthermore, we can expect to see an integrated multi-modal 

framework where this MEG+ cohort data is combined with computational brain network modelling 

and neurostimulation to gain mechanistic insights in brain function and dysfunction. The next years 

will also see new generations of OPM sensors combined into powerful multi-channel systems that 

will further expand the remit of MEG and might even allow simultaneous TMS stimulation. 

Together, these MEG-assisted approaches will likely help to identify spectral signatures of specific 

disorders to assist with early diagnosis and inform therapy (van Diessen et al., 2015; Schnitzler 

and Gross, 2005; Uhlhaas et al., 2018). This clinical approach can complement endeavours in 

cognitive neuroscience where MEG and EEG is used to identify individual spectral signatures of 

cognitive processes constrained by individual anatomy, shaped by phenotype and decoded with 

the help of cohort studies, machine learning and computational models. There is well-founded 

hope that in the near future all this might lead to a comprehensive taxonomy of brain rhythms and 

a better understanding of the main principles that govern information processing in the brain in 

health and disease.  
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______________ Box 1 ______________________ 

MEG Hardware 

MEG systems are based on highly sensitive sensors that non-invasively record – outside of the 

human head – minute magnetic fields that are generated by neural activity in the brain. Current 

state-of-the-art, whole-head systems use about 300 sensors that are spatially arranged in a 

helmet-shaped Dewar (cryogenic storage container). The Dewar is filled with liquid helium at a 

temperature of about -269°C – just four degrees Celsius above absolute zero temperature. Current 

commercial, whole-head systems use SQUID sensors (Superconducting QUantum Interference 

Devices). These sensors operate in the state of superconductivity and allow very weak magnetic 

fields to be measured in the femto-tesla range (Hämäläinen et al., 1993; 2010). More specifically, 

each SQUID is coupled to a pick-up coil and measures the changing magnetic flux through this 

coil. Superconductivity affords these sensors a high sensitivity; typical MEG signals recorded from 

the brain have an amplitude in the order of 100 femtoTesla (fT). This is 7-8 orders of magnitude 

lower than the earth’s magnetic field and still about three orders of magnitude smaller than the 

magnetic field generated by the heart. To avoid excessive contamination from ambient magnetic 

fields, MEG systems are operated in a magnetically-shielded room (Figure 1). 

 

------------------   Figure 1 about here ----------------- 

  

 

MEG systems are relatively expensive to acquire and to maintain. Despite optimal thermal 

insulation, helium boil-off is unavoidable, which in many of the  currently (older) operating systems 

requires the dewar to be refilled with expensive liquid helium 1-2 times per week, leading to 

operational downtime and increased costs. The latest-generation MEG systems come with 

integrated cold-heads that, in a closed system, liquefy most of the boiled-off helium, thereby 

reducing operating costs and downtime.  

In recent years, a new type of sensor has emerged for measuring neuromagnetic signals, called 

an optically pumped magnetometer (OPM) (Alem et al., 2017). A typical OPM design uses a 

photodiode to measure the intensity of laser light after it has passed through a gas-filled glass cell. 

The wavelength of the laser is precisely tuned to the resonance frequency of alkali gas atoms in 

the cell (Boto et al., 2018). Changes in the magnetic field lead to changes in light transmission that 

are precisely detected by the photodiode. The sensitivity of OPMs has significantly increased in 

recent years and is now similar to that of SQUID sensors. However, OPMs do not require the 

expensive and high-maintenance cryogenic components. Instead, OPMs operate at room 

temperature (the sensor contains insulation since the alkali gas is heated to about 150°C). An OPM 

sensor can therefore be integrated into a mobile system (Boto et al., 2018), and can be placed 

directly onto the scalp. The reduced distance between sensors and the brain leads to a significant 

increase in signal power, by a factor of 5-7, compared to SQUIDs (Iivanainen et al., 2017). While 

OPMs are highly promising, they are limited by a relatively low signal bandwidth (about 150 Hz 
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compared to several kHz for SQUIDS). In addition, future whole-head multi-channel OPM-based 

systems will need to account for cross-talk between neighbouring OPM sensors.  

__________ End Box 1 __________________ 

 

____________________ BOX 2 ______________________________ 

MEG compared to other non-invasive neuroimaging methods 

A number of methods for recording brain activity exist. Here, I discuss advantages and limitations 

of MEG in comparison to EEG, fMRI and fNIRS (Figure 2).  

MEG vs EEG: As a non-invasive recording technique, MEG is most closely related to 

Electroencephalography (EEG) (Biasiucci et al., 2019). Both techniques measure the 

consequences of transmembrane currents (Buzsáki et al., 2012; Pesaran et al., 2018) but in 

different ways. Whereas MEG measures the extracranial magnetic fields predominantly related to 

primary dendritic currents, EEG records potential differences that reflect volume currents across 

different locations on the scalp. Therefore, the distortive effect of especially skull and skin 

compartments is larger in EEG than in MEG (Figure 2A). As a result, the spatial distribution of 

measurements across sensors, arising from a specific active neuronal population, is less distorted 

for MEG than it is for EEG (Vorwerk et al., 2014). For the same reason, the localisation of the 

activated neuronal populations in EEG is much more sensitive to errors in modelling the distribution 

of tissue conductivities in the head, compared to MEG. This problem is exacerbated by the fact 

that these tissue conductivities, which are required for accurate head models, are notoriously 

difficult to measure. MEG and EEG signals also differ in their sensitivity to the orientation of 

neuronal currents. In contrast to EEG, MEG is less sensitive to radial currents than to tangential 

currents. This complementarity means that researchers may opt to use simultaneous EEG and 

MEG recordings to localise the underlying generators (Aydin et al., 2015; Sharon et al., 2007). 

  

---------------- Figure 2 about here ------------------ 

 

MEG vs blood-flow imaging techniques: Both fMRI (functional magnetic resonance imaging) and 

fNIRS (functional near-infrared spectroscopy) signals are only indirectly related to neural activity 

because they record associated changes in blood oxygenation levels (Figure 2A). Instead, and as 

already discussed, MEG signals are directly coupled to neural activity via the generated magnetic 

fields, which travel at the speed of light and undergo minimal distortion by the tissues they pass 

through. Another key advantage of MEG (and of EEG) compared to fMRI and fNIRS is the excellent 

temporal resolution of under one millisecond they provide (Figure 2B). Thus, MEG is the preferred 

method for studying the fast dynamics of brain activity and connectivity. However, fMRI has 

significantly higher spatial resolution compared to MEG while providing full brain coverage. 

Instead, spatial resolution in MEG is inhomogeneous across the brain, decreases with distance 

from the sensors and depends on the signal-to-noise ratio, the location, orientation and spatial 

extent of the activated neuronal population. MEG can have a spatial resolution in the millimeter 
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range for cortical brain areas (Barnes et al., 2004) especially if head movements are restricted with 

a flexible headcast (Bonaiuto et al., 2018). However, MEG registers neural activity in subcortical 

areas with lower sensitivity and spatial resolution compared to cortical areas. Nevertheless, there 

is converging evidence that MEG can record activity from deep brain structures such as 

hippocampus, amygdala, thalamus and the brainstem (Pizzo et al., 2019; Pu et al., 2018; Ruzich 

et al., 2019).  

In summary, compared to other commonly used non-invasive recording techniques in cognitive 

neuroscience, MEG’s strengths lie in its ability to directly, silently and non-invasively record neural 

activity with full-brain coverage at high temporal and good spatial resolution. It is therefore ideally 

suited for studying the dynamics of large-scale neural activation and connectivity throughout the 

brain. 

 

Multi-modal studies: Interestingly, MEG can be combined with other complementary techniques to 

obtain either a multi-modal read-out of brain activity, or to modulate brain activity before or during 

MEG recordings. An obvious and standard example is the simultaneous recording of MEG and 

EEG, which is motivated by their partial complementarity, as described earlier. This setup can be 

further extended by the simultaneous acquisition of invasively recorded EEG data from implanted 

depth electrodes in patients (Dalal et al., 2009; Gavaret et al., 2016). Similarly, LFPs can be 

recorded from patients using implanted deep brain stimulation (DBS) electrodes (Hirschmann et 

al., 2011; Litvak et al., 2011). A key strength of these setups is that they can be used to obtain 

precise recordings from a few target locations using an invasive approach, as well as non-invasive 

recordings from the whole brain. Surprisingly, it is even possible to record MEG signals during 

DBS, for example, to investigate how DBS modulates cortical activity (Abbasi et al., 2018; Oswal 

et al., 2016). Since fNIRS is an optical technique it can be simultaneously recorded with MEG to 

enable electrophysiological signals to be related to BOLD signals (Mackert et al., 2008).   

 

MEG and neurostimulation  

Non-invasive neurostimulation techniques such as TMS (Transcranial Magnetic Stimulation) and 

TES (Transcranial Electric Stimulation) offer exciting applications for potential treatment of 

neurological and mental health disorders or for probing the causal relevance of specific neural 

activity patterns (such as brain oscillations) for cognitive processes (Thut et al., 2017). Although 

MEG can be combined with TES one limitation of this approach is that TES generates very strong 

artefacts during MEG recordings. Nevertheless, modern SQUID sensors can tolerate the currents 

that are typically applied through electrodes on the scalp during TES (about 4mA). Indeed, several 

studies have reported the use of electric stimulation during MEG, using alternating (tACS) or 

constant (tDCS) currents (Herring et al., 2019; Ruhnau et al., 2016). However, removing the 

corresponding artefacts from the MEG signals is not trivial because the amplitude of the artefact 

is modulated by a number of rhythmic and non-rhythmic processes, such as heartbeat, respiration, 

head movement and changes in electrode impedance (Noury and Siegel, 2018). Another important 
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consideration for MEG-TES studies is the optimisation of the stimulation parameters, including 

electrode location (Dmochowski et al., 2011; Opitz et al., 2018; Wagner et al., 2016). Stimulation 

of a specific target area is only possible with the use of computational models that are based on 

realistic volume conductor models (Huang et al., 2017; Wagner et al., 2014) ideally derived from 

individual anatomical MRIs (Liu et al., 2018). Modern multi-channel TES systems offer further 

degrees of freedom to control the path, focality and orientation of induced currents to optimally 

stimulate a target area (Baltus et al., 2018). This is a promising and active research area driven by 

the exciting prospect of combining spatio-temporally detailed electrophysiological recordings with 

a versatile neurostimulation technique.  

____________________ END BOX 2 ______________________________ 
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Figure legends 

 

Figure 1: MEG system.  
A: MEG system inside a magnetically-shielded room that consists of several layers of mu-metal. 

The whole-head MEG system with 275 SQUID sensors inside the helmet-shaped dewar can be 

seen through the open door. B: MEG recordings are obtained from a participant with SQUID 

sensors in the dewar surrounding the participants head. 

 

Figure 2: MEG and other recording techniques.  
A: Measuring brain activity: This schematic figure illustrates the recording of brain activity with 

fMRI, fNIRS, MEG and EEG. Current flow (black arrow) is associated with magnetic fields (red 

lines) that can be recorded with MEG. SQUID sensors (red coil) operate in liquid helium and need 

a thermal insulation that leads to a physical separation from the scalp. OPM sensors (red rectangle) 

operate at near room temperature and in close proximity to the scalp. EEG electrodes (green) are 

attached to the scalp and record potential differences to a reference electrode. fMRI and fNIRS 

are sensitive to changes in blood oxygenation that are caused by neural activity. 

B: MEG and other recording techniques. MEG is compared to EEG, fMRI and fNIRS. The bar 

graph shows for each aspect a comparative ranking of all four methods. High bars indicate high 

performance. Temporal resolution: MEG and EEG have the same higher resolution compared to 

fMRI and fNIRS. Spatial resolution: fMRI has the highest spatial resolution followed by MEG where 

spatial resolution is less affected by models of head conductivity compared to EEG. Coverage: 

Modern MEG and EEG system have sensors covering most of the scalp (and for EEG sometimes 

the face) but typically have reduced coverage of prefrontal areas and cerebellum while fMRI does 

not have this limitation. fNIRS has limited coverage. Signal: MEG/EEG signals are more directly 

related to neuronal activity compared to fNIRS and fMRI. MEG signals are less distorted by 

changes in tissue conductivities compared to EEG. Silence: MEG, EEG and fNIRS are silent 

recording techniques in contrast to fMRI where gradient coils produce noise during data 

acquisition. Mobility: Mobile systems exist for EEG and fNIRS but not for fMRI. New MEG-OPM 

sensors can be integrated in more mobile MEG-systems. Affordability: fMRI systems are most 

expensive, followed by MEG and more affordable EEG and fNIRS systems. Please note that this 

graph is not the result of a comprehensive, precise assessment. 

 

Figure 3: The building blocks of an MEG study.  
The figure shows the different parts of an MEG study that can be adapted according to the specific 

purpose of the study. 

 Recruitment: Especially in large-scale cohort studies the rich MEG data can be complemented 

with detailed clinical and epidemiological data, but also with other imaging data such as (f)MRI. 

Recording: Typical MEG studies record MEG/EEG and behavioural data (such as accuracy and 
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reaction time (RT)). In addition, peripheral signals can be recorded simultaneously to allow for a 

more detailed analysis of body-brain interactions. A range of online or offline interventions can be 

employed such as continuous tasks (e.g. movements or isometric contraction), sensory 

stimulation, TES (Transcranial Electric Stimulation), TMS (Transcranial Magnetic Stimulation), 

DBS (Deep Brain Stimulation), medication or other forms of therapy. Underlined interventions can 

also be applied in a rhythmic/oscillatory mode with the aim to interact with intrinsic brain 

oscillations. Read-out: MEG source analysis leads to spatio-temporal functional maps that are 

characterised by excellent temporal and good spatial resolution. This can be used to characterise 

the activation of specific brain areas in response to sensory stimulation, or in relation to a specific 

task (red line). The activation time series can be transformed to the time-frequency domain to study 

the relationship between brain rhythms and behaviour. Combining MEG data with decoding or 

information analysis can result in a time series representing the decoding performance over time 

or the information about a certain stimulus feature that is coded in the MEG signal (illustrated by 

the black line). MEG connectivity analysis quantifies statistical dependencies with applications in 

the study of brain-brain coupling, body-brain coupling or brain-environment coupling. (Connectivity 

plots created with immersive.erc.monash.edu/neuromarvl/)  

 

 

Figure 4: Forward and inverse problem. 
The forward and inverse problem are based on models of the MEG measurement process.  

Top: An activated neuronal population leads to the summation of magnetic fields associated with 

electrical currents. These magnetic fields (displayed with isocontour lines) are detected non-

invasively outside the head with MEG sensors (plotted as blue disks).  

Bottom: Regional brain activity arising from interacting excitatory and inhibitory neurons across the 

different cortical layers can be modelled with a neural mass model (NMM, e.g. (Symmonds et al., 

2018)). NMMs can account for different receptor types. The primary currents representing the 

accumulated currents of several tens of thousands of neurons are modelled with single current 

dipole. Solving the forward problem requires precise knowledge of the measurement geometry. 

This is modelled with a 3D head model and sensor positions obtained during the recording. The 

Maxwell equations can then be used to compute magnetic fields at the sensor locations for a 

current dipole with a given orientation at a certain location in the head model. The inverse problem 

describes the process of inverting this model. Recorded magnetic fields are used to estimate 

parameters of the generative model such as parameters of the NMM or location and orientation of 

currents associated with activated neuronal populations. (High-resolution brain slice from big brain 

atlas (Amunts et al., 2013); Layer 5 pyramidal neuron from opensourcebrain.org (Hay et al., 2011)).  
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