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SUMMARY 

This document reviews the experimental work performed on wave particle kinematics and 

fluid loading in the context of the design of fixed offshore structures. It compares 

various methods (spectral, deterministic etc) of estimating loading conditions for extreme 

and fatigue strength	calculations and describes	the	sensitivity	of the calculations	to!

various fluid loading parameters. 

a.	Determination of Particle Kinematics in Waves (Sections 2.1 and 2.2) 

Regular wave theories are compared and recommendations are made for the selection of 

a suitable theory.	The recommendations have been established by comparing wave 

properties	that	are	significant	for	the	design	of	offshore	structures;	G. g.	velocities, 

accelerations, crest height and wave length.	The errors involved in using Airy theory !

outside its range of applicability are quantified. 

Particle	velocities	predicted by regular wave	theories	have been	compared	with 

measurements	made	in	the sea. Near the	water	surface	some approximate	agreement 

was	found	but	at	depth	the regular wave theories	overpredicted	the kinematics. 

Linear random wave theories are described and the problems of representing finite height 

waves in the splash zone are discussed. The results of random wave theory are 

compared with sea measurements and generally reasonable agreement is found, especially 

if directional spreading is taken into account.

Theoretical	comparisons	between	random	wave	theory	and	regular	waves	have	been made 

by	comparing the	extremes	of	random	wave particle	kinematics	with	the	regular wave 

particle	kinematics for	regular	waves	having a	corresponding	extreme	height	with	a range 

of	steepness. This	suggests	that	near	the surface	very	steep	regular	waves	are needed 

to	obtain	the predicted	highest	particle kinematics.	At	depth,	shallower	(i.e. longer) 

regular	waves are	needed.
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b.	Wave - Current Interaction (Section 2.3) 

The structure of currents is discussed in Section 3.4 of Meteorological and Oceanographic 

Design Parameters, Proposed Revision to Offshore Installations : Guidance on Design and 

Construction Part II Section 2, Department of Energy, July 1987. However the intensity 

and profile of the near surface wind driven current in the presence of waves is still 

uncertain. 

This	report	considers	various approximate methods	of	allowing	for wave—current 

interaction.	Methods	which	reduce the	current	velocity	under the	wave crest,	on	the 

basis	of	continuity	arguments, are	shown to	be	incorrect. A	better approximation 

considers	the	wave	to	,ride,	on the	current. It	is	recommended that	the current	velocity 

profile	is	vectorially	added	to the	wave velocity	profile	in such	a way	that	the 

instantaneous	surface	current	is constant. 

C.	Breakin g Waves (Section 2.4) 

The mechanism and causes of wave breaking are discussed.	Guidance is given on the 

characteristics of breaking waves that may be expected at any site.	The kinematics of 

breaking waves are still the subject of research	but guidance	is given	for spilling!

breakers and some tentative guidance is given for plunging breakers. 

d.	Morison,s Equation (Section 3.2) 

The	applicability	of	Morison,s	equation	and the	factors	affecting	C  and	C,	the drag 

and	inertia	coefficients,	are	discussed	in relation	to experiments performed	in the 

laboratory	and	in	the	sea.	Realistic	values of	Cd	for circular	cylinders	are	shown	to 

be	markedly	higher	than	those	generally	used	for	design purposes but,	as	shown later 

(in	Appendix	P),	the	low	
C 	

value	can be	regarded as	allowing for	(1)	the small 

probability	of	extreme	wave	and	current occuring	at the	same time	and	(2) the 

conservative	use	of	unidirectional	and,	usually, regular	wave	theories in	the	determination 

of	particle	kinematics.

C  and Cm are shown to be affected by many parameters; Reynolds number: R, 

Keulegan Carpenter number: K, surface roughness and current all significantly affect Cd. 

Most loading of significance to offshore structures is in the post super—critical range of 

R	and the loading then becomes independent of R.	
C 	

still appears to be sensitive!

to K , surface roughness and current but we have taken advantage of the link between 

K 	
and the ratio of drag to inertia loading in order to present 

C 	
and Cm pairs which 
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will	give approximately	correct	loading over	the whole	range	of	K and	current.	The 

approximate	
C 	

and	C	values	are therefore dependent	on	surface roughness	alone. 

Member inclination	may	also	have	an effect	on
C 	

but	there	is	at present	insufficient 

data	to allow	for	this	effect.	Additional possibly	important	changes to	loading	occur 

where	a member	penetrates	the	water surface. This	is	the	subject	of ongoing	research.

e.	Vortex Shedding (Section 3.3) 

Vortex shedding, structural response and *lock—on* are described for steady flow and wave 

flow.	The	significance	of	Strouhal	number,	the	response	parameter	and	K	are 

demonstrated.	Recommendations are made for the avoidance of vortex shedding induced 

oscillation.	This includes tentative guidance on vortex shedding in waves and the case 

of intermittent lock—on.	References are given to guidance on the use of strakes etc to !

cure existing vortex induced oscillations. 

I.	Diffraction Loadin g (Section 3.4) 

Wave diffraction by large members is briefly discussed and guidance is given on when 

diffraction theory should be used and how in some circumstances modified Morison inertia 

coefficients may be used instead.	The situations in which diffracting members modify the 

loading on adjacent Morison regime members are described.	Some examples of diffraction!

theory results are given and reference is made to more detailed texts. 

g. Wave Slam and Wave Slap (Section 3.5) 

Wave slam and slap forces, pressures, probabilities and structural response are discussed 

and guidance (some tentative) is given.	The considerable scatter in measured slap 

pressure is noted.	This large scatter would favour a reliability based analysis approach !

but at present deterministic methods are used and this is recognised in the guidance 

given.

h. Hydrostatic and Hydrodynamic Pressure (Section 3.6) 

Hydrostatic and hydrodynamic pressures are discussed.	It is recommended that stresses 

are calculated from the applied pressure distribution in preference to using buoyancy 

arguments which may neglect e.g. hydrostatically induced punching shear forces acting on 

the connection of a horizontal brace to its chord members. 
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The interaction of member curvature, external pressure and internal pressure is noted 

although this is only likely to be significant for members subject to pressures of more 

than lOOm water. 

I .
	Interference (Section 3.7) 

Interference effects on the total load acting on conductor groups are shown to be usually 

small (less than 20%) providing the centre line spacing is greater than three diameters. 

Individual conductors may still be subject to higher loading and a 50% increase for 

checking extreme loading on individual members is recommended. 

Similarly no	interference	effect	need	be	taken	into	account when	calculating the	global 

load	on structures	with	attachments	standing	off	(with a	gap)	from	the structural 

members. However	for	the	calculation	of	the	load	on the	attachment itself	it	is 

necessary to	consider	the	increased	velocities	caused	by	the presence	of	the member	and 

the	convective,	acceleration	in	the	water	as	it	accelerates and	decelerates in	its	path 

around	the member.	Diagrams	are	given	to	enable	both the	increased	velocities	and 

convective accelerations	to	be	easily	calculated.

Where there is no gap between the member and attachment the member should be 

considered to have a modified shape. Some guidance on the calculation of increased 

forces in these circumstances is given. 

j.	Extreme and Fatigue Analysis Methods (Section 4) 

The link between environmental data, hydrodynamics and structural behaviour is discussed 

in relation to deterministic, semi—probabilistic (a type of deterministic), spectral and other 

methods for extreme and fatigue analysis. 

None of the methods are found to be ideal but deterministic analysis is shown to be a 

useful technique for extreme loading analysis. The semi—probabilistic and spectral methods 

are shown to be useful for the fatigue analysis of structures which respond quasistatically 

and dynamically respectively. 

The semi probabilistic method is also shown to be a useful basis for the analysis of 

vortex shedding and wave slam/slap.
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This section also contains the results of a numerical comparison of the methods and a 

description of experiments In which the total hydrodynamic load on structures has been 

compared with the calculated loads. These experiments allow some confidence in the 

existing methods of design for wave loading. 

K.	Sensitivity (Section 5)

The	sensitivity	of	typical members	and	structures	to assumed	wave	theory, wave	length, 

height	and	period,	selected wave	phase	angle,	current, tide	and	storm	surge, Cd	and	C, 

wave	current	directionality and	crest	length	is,	mainly qualitatively,	described.
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NOMENCLATURE 

A area	of	cross	section t time 

b diameter	of	particle	orbit T wave	period 

8r
breaker	index T mean	zero	crossing	period 

c wave	celerity u,w particle	velocities 

Ca added	mass	coefficient U normal	particle	velocity 

C 
drag	coefficient	(time	averaged) (see	Figure	3.2.1) 

fluctuating	drag	coefficient U reduced	velocity 

C 
total	force	coefficient x,z co—ordinates 

C 1 lift	coefficient	(time	averaged) (see	Figure	2.1.1) 

C* 1 fluctuating	lift	coefficient 

Cm inertia	coefficient	(frequently	Cm	=	°a
logarithmic	decrement	=	21t 

C slap	coefficient TI water	surface	elevation 

C slap	pressure	coefficient	 S above	MWL 

d water	depth 8 angle 

D cylinder	diameter	(see	Figure	3.2.6) 9 viscosity 

E ellipticity	:	0	=	planar,	1	=	circular v kinematic	viscosity 

force 4 damping	ratio 

g gravity	acceleration p density 

H wave	height a standard	deviation,	stress 

H significant	wave	height 0 velocity	potential 

k roughness	height	(see	Figure	3.2.6) angular	velocity	(rad/sec) 

K Keulegan	Carpenter	number 

velocity	enhancement	factor Subscripts 

K 2 convective	acceleration	factor 

m sea	bed	slope breaking 
b 

M mean,	spectral	moment curent 
c 

MWL mean	water	level drag 
d 

N frequency	(H) inertia 

R Reynolds	number maximum	value 

R response	parameter deep	water	values 

s height	above	mudline pair 

S spacing	of	members,	spectral	ordinate wave 

S Strouhal	Number
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1.	INTRODUCTION 

This report for the Department of Energy, provides supporting documentation for the 

hydrodynamic and hydrostatic loading on	rigid structures sections of the	Departments 

Guidance Notes.	Atkins Engineering Sciences prepared the report under the supervision of !

a small Steering Group which consisted of representatives from oil companies, certifying 

authorities, designers and research institutions.	The Steering Group members are listed !

on page 3. 

Most aspects of fluid loading	calculations are	subject to uncertainty	but the	normal!

industry design practice is based on the results of experiments, theory and to a limited 

extent, full scale tests.	An exception to this has been the selection of drag and Inertia 

coefficients.	Over the last 10 years experiments have shown that the C 	 values for!

marine roughened cylinders are significantly greater than 0.7, which is usually used for 

design purposes.	Designers have, however, not increased 
C 	

values in line with the 

research results.	The general opinion of the Steering Group and Authors is that the 

use of low C 	
values is probably acceptable for conventional structures because the !

current industry practice also contains some compensatory conservative methodology: 

a) Separate extreme values of wave height, wave period, current and mean water 

level are combined. 

b) Regular wave theories are used. 

C)	The seas are assumed unidirectional. 

d)	Possible benefits from shielding effects are excluded. 

However,	it is	by	no	means	certain	that	the balance	would	be	maintained	for 

unconventional structures	and if	any	of	the	items (a)	to	(d)	above	are	replaced	by 

realistic	but less	conservative assumptions	the	design process	may	be	unsatisfactory	unless 

more	realistic
C 	

values	are also	used.

Any guidance is bound to contain a certain amount of engineering judgement and to 

change with time. Designers and analysts will therefore still need to satisfy themselves 

that the guidance is applicable to their problem and they remain free to justify their own 

methods and data to their clients and the certifying authorities. 
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2. DETERMINATION OF PARTICLE KINEMATICS 

2.1	REGULAR WAVES 

2.1.1	Introduction 

The	approximation	of	an irregular random	sea	by	regular	waves is	the	basis	for	the 

deterministic and	semi-probabilistic methods	for	the	design	and analysis of	offshore 

structures. Regular	wave theories are	also	the	basis	of	the random	wave	methods 

discussed in	Section	2.2. Random	wave	theories	are	used in	the spectral	and 

probabilistic methods..	The choice between	regular	or	random	wave theory is	therefore 

determined by	the	type	of analysis being	performed.	This	is	discussed	in Sections	4.3 

and	4.4.

2.1.2	Regular wave theories 

Regular waves have recurring profiles and particle kinematics.	The profile is usually 

symmetric about a vertical plane through the crest.	The water must be deep enough for 

the sea bed not to affect the wave or the sea bed must be horizontal;	otherwise the!

profile will change as the wave propagates and the wave will not be regular. 

The symbols used to describe waves are given in Figure 2.1.1. 

The characteristics of regular waves are defined as follows:-

Wave Length

	

	The distance between successive crests, troughs, or up-crossings of the !

wave profile through the mean water level. 

Wave Period	The elapsed time, as recorded by a stationary observer, between the!

passage of successive crests, troughs or up-crossing points. 

Celerity

	

	The propagation speed of the wave crest, i.e. the ratio of the wave !

length to the period.
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Fig-ire 2.1.1. Definition of wave and current symbols 
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Steepness	The ratio of the wave height to wave length. 

Long Crest	A wave with all crests parallel and long in relation to the wave—length. 

Short Crest	Short crests are produced when a sea contains waves propagating In 

several directions. 

Particle Orbit The path taken by a water particle during a wave cycle. The form of 

these orbits, for long crested waves of small steepness with no current, 

are depicted in Figure 2.1.2. 

Regular	wave	theories describe	the	flow	in	a	train of	waves	of a	given	height	and 

period.	The	flow	itself is	assumed	to	be	unaffected by	any	viscous forces	and	to	have 

no	initial	rotation, it	is	therefore	,irrotational,. The	water is	also	assumed 

incompressible.	These two	assumptions	expressed mathematically: in	the	form	of	a 

velocity	potential	or	a stream	function,	become	Laplace,s	equation.

The boundary conditions to be satisfied are:—

a) No flow through the seabed, i.e. vertical velocity at the seabed equals zero. 

b) A ,kinematic, condition at the surface which requires that, in the direction normal to 

the free surface, the wave particle velocity should be equal to the wave surface 

velocity. 

C) A ,dynamic, condition at the free surface which is expressed in terms of Bernoulli,s 

equation and usually assumes a constant atmospheric pressure. 

d) A periodic condition - that the wave should be regular. 

e) A condition of prescribed average current. 

Different wave theories are based on different approximations to the boundary conditions 

at the free surface. In linear theories, the free surface boundary conditions are 

simplified by assuming that the departure of the water surface from the mean water level 

is very small.
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Non—linear or higher order theories satisfy more closely the fluid conditions at the 

surface, and give a better approximation to waves of finite amplitude, (Sarpkaya and 

Isaacson, 1981). 

Usually regular wave theories are derived for the case of average zero current.	There!

are two definitions of average zero current in use which give slightly different results:-

1. The average horizontal velocity of any particle in the wave equals zero. 

2. The average current taken over one wavelength between the seabed and the water 

surface equals zero. 

The method of defining zero current affects the overall wave characteristic including the 

celerity.	Frequently the first or second zero current definition is referred to as the first 

or second definition of celerity.	The effects of non zero currents are described in!

Section 2.3. 

Some commonly used, or referenced, wave theories are described below: 

AIRY Theory - This is a velocity potential method also known as linear or sinusoidal 

wave theory.	It is assumed that the wave height is small relative to both the wave 

length and the water depth.	The velocity potential and the particle kinematics then !

reduce to first—order expressions which are straightforward to calculate. 

Airy	Theory	is	strictly	only	valid for	waves	of	very	small height.	As	an approximation 

the	theory	may	be	applied	to	waves	of	finite	height,	either by	extrapolating the	cosh 

and	sinh	functions	up	to	the	instantaneous	water	surface	or	by	empirical modification	to 

Airy	Theory	e.g.	Wheeler	(1970). The	errors	involved	in applying	linear wave	theory 

outside	its	theoretical	range	of applicability	are	discussed in	Appendix C	where	the 

method	of	calculating	kinematics above	MWL	was	to	apply the	hyperbolic functions	with 

positive	values	of	z.

The theory is simple and stable and works quite well over a wide range of conditions. 

It can be easily extended to model irregular multidirectional seas (Section 2.2) and the 

diffraction of waves by large members.
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STOKES	Theory	- This is	a	velocity	potential	method	in	which	successive	approximations 

are	developed	to satisfy the	boundary	conditions.	The	potential	is calculated	in	powers 

of	wave	steepness (H/L) and	is	usually	carried	to	the	fifth	order on	the	basis	of	work 

by	Bretschneider (1960) or	Skjelbreia	&	Hendrickson	(1960).	The original	Skjelbreia	& 

Hendrickson	paper contains	an	error	in	the	formulae	(Nishimara	et al	1977,	and	Fenton 

1985). 

Stokes theory predicts a longer wave with peakier crests and flatter troughs than Airy 

theory.	Particle velocities are greater at the crest than at the trough and the maximum 

horizontal acceleration occurs nearer the crest.	The resulting wave is longer than an!

Airy wave of the same period (see Appendix C). 

STREAM FUNCTION Theory - Dean (1965) described a numerical method for predicting two 

dimensional wave characteristics that is based on a stream function representation of the 

flow.	The stream function expression is expanded as a series and the free surface 

boundary conditions are satisfied numerically by minimising the least—squares error.	The!

theory is capable of extension to any desired order. 

The stream function method is capable of modelling an asymmetric or a prescribed 

individual wave form.	However, the theory cannot model a wave which changes shape 

as it propagates. A free surface pressure distribution may be prescribed. For research 

purposes these features allow a closer approximation to measured wave profiles to be 

made. 

CNOIDAL Theory - Korteweg and de Vries (1895), expressed the wave characteristics in 

terms of the Jacobian elliptic function (cn), hence the term *cnoidal*. This is essentially 

a shallow water theory in which the velocity potential is expanded in powers of H/d (the 

ratio of wave height to water depth).	Keulegan and Patterson (1940), Keller (1948), 

Laitone (1961) and Fenton (1979) have extended the theory.	It is suited to shallow and!

intermediate water depths. 

HYPERBOLIC Theory is a simplification of CNOIDAL Theory. 

SOLITARY	Wave	Theory	may be	considered	to be	a special	case	of	the CNOIDAL	theory 

in	which	the	wave	length and	period	become infinite.	(Therefore	it	is arguably	not	a 

regular	wave).	This	wave lies	wholly	above the still	water	level.	It never	exhibits 

horizontal	particle	velocities in	the	reverse	direction to	wave	advance	so	that	there	is 

always	a	nett	displacement of	fluid	in	the	sense	of the	wave	advance. SOLITARY Wave 

Theory	may	approximate	waves caused	by	land or	ice slides.
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LONG	WAVE	Theory has	application	to	tsunami	propagation, tidal	motion,	storm	surge, 

flood	waves	etc,	but is	not	of	primary	interest	in .	the	present context. Usually	a	linear 

version	is	used	which is	based	on	the	assumption	that	the	wave length is	much	longer 

than	the	water	depth, the	vertical	particle	acceleration	is	also neglected. This	gives	a 

flow	in	which	the	horizontal particle	velocity	is	constant	with depth	and the	pressure	is 

hydrostatic. 

GODA Theory - a form of Stokes theory empirically modified on the basis of tank 

tests.	(Goda, 1964). 

TROCHOIDAL WAVE Theory is largely of historical interest even though it has, to a 

limited extent, been applied to engineering problems. Unlike most other wave theories it 

involves a rotational fluid motion. 

Recently developed wave theories, for instance, Cokelet (1977), Schwartz (1974), Longuet-

Higgins (1973) and Chaplin (1980), have advantages when applied to near breaking 

waves. They all require extensive computation and, as a result, have not yet found 

widespread application. 

For research purposes extended velocity potential theory (Lambrakos and Branon, 1974) 

allows a wave to be modelled which changes shape as it propagates. 

When	the	seabed	is	not horizontal	the	waves	may change	direction and	height.	This 

refraction*	and	*shoaling*	is not	discussed	in	detail in	this	document. See	Sarpkaya	and 

Isaacson	(1981)	for	a	well referenced	introduction	to the	subject.

2.1.3	Comparison of wave theories 

The validity, or range of application, of a regular wave theory may be evaluated on the 

basis of its ability to satisfy the boundary conditions. It should be noted, however, that 

a better numerical *fit* does not necessarily mean that the theory is better for the 

calculation of wave loading.
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In	the	evaluation of	wave	theories,	the	wave characteristics	H and	d are	normally 

reduced	to dimensionless	parameters.	The	wave height	may	be expressed in	terms	of 

H1gT 2 ,	the wave steepness	H1L	or	the	relative height	Hid.	In a	similar manner,	the 

water	depth may be	expressed	in	terms	of	the depth	parameters d/gT2 ,	kd =	2itd/L	or 

the	relative depth d/L.

The results of linear wave theory may be used to create a distinction between shallow, 

intermediate and deep water depth to wavelength ratios. Simplifications of linear theory 

become possible in *shallow (d/gT2 < 0.0025) and deep water (d/gT 2 > 0.08). These occur 

as a result of approximations that can be made to the hyperbolic functions involved. 

Only a few of the theories described above are commonly used in current design 

practice.	This is because only a small number of theories are required to cover the 

usual range of relative wave heights and water depths to acceptable accuracies.	The!

range of validity of presently used theories has been investigated by several researchers. 

A comparison of Airy, Stokes (3rd and 5th), cnoidal (1st and 2nd), solitary (1st and 2nd) 

and stream function theories has been made by Dean (1970). This was made on the 

basis of the closeness of fit to the dynamic free-surface boundary condition. It was 

found that Airy, Stokes 5th, cnoidal 1st and stream function were generally the most 

suitable and had ranges of validity as indicated in Figure 2.1.3. 

Le Mehaute (1976) also summarised the approximate	limits	of wave theories.	This,!

reproduced in Figure 2.1.4, shows some agreement with the results of Dean. 

Cnoidal 5th order theory has been compared with Cokelet*s (1977) theory by Fenton 

(1979). He found that the wave celerities were well predicted by 5th order Cnoidal up 

to H/d of 0.6 and d/gT 2 of 0.01. 

Stokes 5th order theory has been studied by Ebbesmeyer (1974) who showed that *bumps* 

in the profile and multiple crests in a wavelength (Figure 2.1.5) occur when d/gT 2 is less 

than 0.01 to 0.02. Dalrymple (1986) has shown that multiple crest solutions can also be 

produced by stream function theory.
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A comparison of linear, Stokes 5 and stream function theories is presented in Appendices 

B and C.	The comparison was based on particle velocity and acceleration under the 

wave crest, wave length and wave crest height above mean water level.	The comparison 

led to the wave theory selection diagram:	Figures 2.1.6a and b. 

Wave theories have also been compared under laboratory conditions. 

Le Mehaute, Divoky and Lin (1968) measured the velocity distribution under the crest of 

waves, in shallow and intermediate water depths, and compared the results with a number 

of theories including Airy, Cnoidal 1 and 2; Stokes 2, 3 and 5; and Goda*s theory. 

The agreement between the measured data and the shallow water Cnoidal 1 or 2 was 

found to be poor.	Airy theory generally performed better than Cnoidal theory or Stokes 

theories in the shallow water depths.	Goda*s theory was found to be one of the better!

theories for the waves considered. 

Dean (1974) compares his	stream	function	theory	results	with	the	data	of	Le	Mehaute	et 

al. This showed	that stream	function	theory	performed	well	and,	on	average,	matched 

the results better	than the	other	theories	considered. 

Standing	(1981) presented the	results	and theories of	Dean	(1974),	Fenton	(1979), lwagki 

and	Sakai	(1970) and	Le Mehaute,	Divoky and	Lin (1968).	He	made	comparisons of	the 

maximum	particle velocity: see	Figure	2.1.7. In shallow	water	there	was	found to	be 

poor	agreement between the	experimental results and	all	the	wave	theories, however 

stream	function and	Goda*s	theories	were found to	give	the	best	estimates	of particle 

velocity. 

For deeper water and for the levels at which experimental results were obtained, the 

correlation between theory and experiment was quite reasonable. There were only small 

differences between linear and Stokes 5 and stream function theories for this case, which 

is typical of a North Sea *design wave*. 

Comparisons have also been made between regular wave theories and measured kinematics 

in random seas.	These are discussed further in Section 2.2.4. 

2.1.4	Regular waves:	conclusion

The	wave	theory selection diagram, Figure .	2.1.6	should	be	used as	a basis	for	the 

selection	of	an appropriate regular wave	theory.	Programmes which generate	wave 

particle	kinematics should	be treated with	caution.	Changes	in	the method of
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Figure 2.1.6a	Regular wave theory selection diagram (log scales) 
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Figure	2.1.6b Regular	wave	theory	selection	diagram	(linear	scales)
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programming the	Theory	can	lead to	significantly	different	results, especially	near	or 

outside the validity	limits of	the Theory.	The	surface	profile	of the	generated	wave 

should always	be	checked to	ensure that	no	intermediate	crests	or troughs	have	been 

formed and the	kinematics should be	compared	with	a	different Theory	or	order	of 

Theory that is	theoretically valid	for the	same	conditions. 

Airy should preferably be used only in the indicated validity range. However, it is 

accepted that, for refraction and diffraction analysis Airy theory may be the only practical 

choice. 

Airy	theory	is	useful	for	initial	design	purposes	because	it	is	applicable	by	hand.!

However, in shallow water and near the breaking limit it considerably underestimates 

particle velocities and accelerations.	(See Appendix B). 

Stokes 5 is applicable to the moderate steepness and deeper water waves. Its validity 

range would be expected to cover most North and Central North Sea extreme wave 

conditions. 

The	limited	number of	terms	included	in Stokes	5	wave	theory suggests that	even	in 

deep	water	it	may not	properly	model the	steepest	waves. In	some organisations 

therefore	the	use	of Stokes	5	has	been limited	to	waves	of	less than	0.675	times	the 

breaking	wave	height. However,	in	deep water	the	results	of Stokes	5 and	Stream 

Function	theory	are close	although	at	the breaking	limit	both	are in	error (Chaplin	and 

Anastasiou,	1980). 

Cnoidal 5 (Fenton, 1979) is applicable to moderate steepness waves in the shallower 

water depths. However, Cnoidal 5 computer programmes are not yet commonly available 

and the useful range is outside that relevant to most offshore structures therefore a 

region of applicability of Cnoidal 5 has not been identified in Figure 2.1.6. 

For	waves approaching	the breaking	limit	Stream	Function	Theory	is recommended. A 

convergence check	(using	progressively	higher	order	theories) should be	performed to 

ensure	that the	overall	solution	has	converged.	Multiple crest solutions	can also 

sometimes	occur	with	Stream Function	theory	(Dalrymple,	1986). The shape	of	the	wave 

should	therefore be	checked. If	available,	the	more	advanced theories	mentioned	at the 

end	of	2.1,2 may	be	used to	model	near	breaking	regular	waves	more accurately. For 

a	discussion of	the	particle kinematics	at	the	crest	of	a	steep wave see	Longuet-Higgins 

&	Fox	(1977 and	1978)	and Longuet-Higgins	(1985).
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2.2 RANDOM WAVES 

2.2.1 Introduction 

The statistical properties of the random waves in a sea are found to be approximately 

constant for short periods of time (of the order of an hour).	During this time a *sea 

state* is said to exist.	The sea state may be defined by a frequency spectrum of !

water surface elevation and ideally, although rarely in practice, the spectrum would contain 

information about the spread of direction as well as the spread of frequency.	The 

spectrum is usually characterised by the significant height:	H	and mean zero (up 

crossing) period:	T	of the waves.	The long term distribution of sea states is defined 

by a scatter diagram showing the proportion of time for which any given H	and T!

occurs. 

The shape of the frequency spectra vary considerably, from sea state to sea state, even 

for	the	same	values	of	H	and	T.	However,	for	design purposes	various	typical 

spectral	shapes	are used,	e.g.	JONSWAP	or	Pierson	Moskowitz (see	Section	4	and the 

Metocean	Appendix). Only	limited	information	is	available	about the	directions	of	waves 

within	sea	states. It	is	common	practice	to	estimate	a	mean direction	for	each sea 

state	based	on	wind and	fetch	or	ship*s	observations.	Some measurements	have been 

made	of	the	spread of	direction	within	a	sea	state.	These tend	to	show	a	narrow 

spread	of	direction at	the	peak	frequency	but	a	wider	spread away	from	the peak 

frequency,	e.g.	Atkins (1979).	However,	because	of	the	limited amount	of	spreading data 

it	is	at	present	normal	design	practice	to	assume	no	spreading of	direction	within	a sea 

state.	This	results in	identical	wave	particle	kinematics,	at any	instant,	on	any line 

perpendicular	to	the wave	direction. 

2.2.2 Random wave theory

Random	wave	theory	is usually	based	on	Airy	wave	theory	in	which	case	it is	known 

as	linear	random	wave theory	(LRWT).	The	method models	the	required frequency 

spectrum	of	water	surface elevation	by	the	superposition	of regular	linear	*wavelets* having 

the	range	of	frequencies required	by	the	spectrum.	The	random	wave	model may	be 

based	on	a	continuous function	of	wave	frequency. Alternatively,	discrete regular 

wavelets,	with	selected	heights	and	frequencies	but	random phases,	may	be	used in	order 

to	obtain	an	approximation	to	the	required	water	surface elevation	spectrum. In	either 

case	the	randomness	in the	modelled	wave	is	caused by	the	various	fixed amplitude 

wavelets	occurring	in	and out	of	phase	with	one	another. This	causes	waves	of various 

heights	and	zero	crossing periods	to	occur.
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It	is	possible	to	produce	approximate	random	wave	theories which	include	some	of the 

characteristics	of higher	order	regular	wave	theories.	Dean, Lo	and	Johansson	(1979) 

propose	a	method	in	which	they	sum	the	particle	kinematics of	a	Stokes	5	wave and 

Airy	wavelets. However	it	is	only	capable	of	predicting	the particle	kinematics	for one 

wave	at	a	time and	is	probably	more	useful	as	an	aid	to	understanding	some	effects of 

the	higher	order waves	than	as	a	design	tool. 

Several methods, and several variations of each method, are available for calculating the 

effect of a random sea on a structure:-

a. The particle kinematics may be calculated, from the water surface elevation spectrum, 

as a time history. Used with a loading model, usually Morison*s equation, and a 

structural analysis the time history of the internal stresses in the structure may be 

obtained;	see 4.3.6 and 4.4.6.	This method is computationally very time consuming 

but	there	are	some	types	of	analysis,	e.g. of	drag	loading	response	of	a 

dynamically sensitive structure, which are difficult to calculate by other means.	The!

method is also used for the analysis of experimental measurements. 

b. The statistics of the particle kinematics may be determined and used in conjunction 

with a loading model and load-stress influence coefficients (from a structural analysis) 

to determine the statistics of the stress at any point in the structure. This is the 

Non Linear Probabilistic Analysis method which is described in 4.3.5 and 4.4.5. 

c.	If	the structure	responds	linearly	to wave	particle	kinematics (in	practice	this 

requires that	the	loading	is	dominated by	diffraction	or	the	inertia term	in	Morison*s 

Equation) and	finite	wave	height	effects are	not	important	then	the response	of	the 

structure to	a	random	sea	may	be determined	from	the	water surface	elevation 

spectrum and	a	transfer	function	based on	the	response	to	regular waves	over	the 

range	of frequencies	of	interest.	This is	the	Linear	Probabilistic analysis	method, 

described in	4.3.4	and	4.4.4,	which	is the	basis	of	the	spectral analysis	method 

commonly used	for	the	calculation	of	fatigue life	of	dynamically	responsive structures.
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2.2.3	Finite wave height effects in random wave analysis 

a.	Time history analysis 

Linear random wave theory (LRWT) is, in principle, only applicable to very small waves, 

for the reasons that Airy theory itself is only applicable to small waves. However the 

application of LRWT to finite height waves has an additional problem associated with how 

the wavelets add together. 

The simplest method (1) is to assume that members above MWL are never loaded and 

members below MWL are always loaded whatever the specified wave height. 

Method	(1) is not	very	satisfactory	for	most surface	piercing	structures	therefore	an 

extension	of LRWT	(Method	2) is	to	extrapolate	the	cosh	and	sinh	functions	of	each 

wavelet	to the instantaneous	water	surface,	as described	for	a	regular	wave	in	2.1.2. 

Unfortunately this method	leads to	unrealistically high	values	of	particle	kinematics	above 

MWL.	This is caused	by	the extrapolation	of the	hyperbolic	function	beyond	the	highest 

water	level that would	ever	be associated	with the	individual	higher	frequency	wavelets	if 

they	existed as isolated	waves. 

Various	empirical	modifications	to Airy	wave	theory	have	been proposed in	order to	avoid 

the	problem	of	overestimation. However,	these	may	lead	to an	underestimation of	the 

above	MWL	particle	kinematics when	frequencies	are	closely spaced. The alternative 

empirical	modifications	are	to	the mud—line	vertical	ordinate	s =	d	+	z, or	to the	water 

depth,	d,	used	in	the	Airy	wave formulation.	They	are	described in Figure 2.2.1	and 

below:

5*	=	$	(	d	)	-	method (3) 

(d + n) 

s,i	
=	s	(d + TI.)	-	method (4) 

(d + 11) 

d* 1	=	d + (i - lii)	-	method (5) 
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where: 

11	is the total water surface elevation above MWL 

ti
i
	is the water surface elevation from the wavelet i 

The prime indicates a modified value 

The i subscript indicates that s. and d. are used with linear wave theory to obtain the 

particle kinematics of the ith wavelet component in the random sea representation. 

See Pawsey & Dello Stritto (1983) and Dean, Lo & Johansson (1979). 

The various modifications have the following effect on the velocity at the instantaneous 

water surface. 

Method	(3) results in	the velocities that	would	have	been	calculated	as occurring	at 

mean	water level being applied to	the	instantaneous	water	surface. This	may 

underestimate crest particle velocities when	there	is	a	dominant	frequency	in the	wave. 

Method (4) amounts to the addition of the surface velocities occurring in each wavelet 

being applied to the instantaneous water surface. This helps to avoid the underestimation 

wlen there is a dominant wave frequency but the result is dependent on the number of 

wavelets selected and would need the dominant frequency to be included as one wavelet 

alone.	When the spectrum being modelled is a continuous function of frequency this 

method will result for locations above MWL, in lower estimates of surface particle 

velocities if a larger number of smaller wavelets are used to model the same spectrum. 

In the limit the results of method (4) will coincide with those of method (3) as the 

number of wavelets becomes large. 

Method	(5) assumes	that	each wavelet	can	be regarded	as	having	an	instantaneous	water 

depth	which is	determined	by all	the	other wavelets	which	are	to	be	superimposed. 

Like	method (4)	the	results	will	be	dependent on	the	number	of	wavelets	and	above 

MWL,	the calculated	particle velocities	will decrease	as	the	number	of	wavelets 

increases. The	results	will	not however	tend	to the	method	(3)	values.

Note:	Equation (5) as given by Pawsey and Dello Stritto is given as 

d.	d - (r - i i . ) .	This would seem to be incorrect or associated with a z 

down sign convention.
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b. Non—linear probabilistic analysis 

In work carried out to date the Airy wave theory equations have been used in the 

unmodified form.	Intermittent loading has however been taken into account probabilistically. 

c. Linear probabilistic analysis:	,spectral analysis 

The method of applying spectral analysis usually involves the definition of a transfer, 

function using finite height waves. Each wave is analysed independently of the other 

waves and the kinematics are determined only to the surface of each wave that is 

used.	The results will therefore be highly dependent on the wave heights selected for 

the analysis.	In general the results for any intermittently loaded member will be poor. 

2.2.4	Comparison of random wave theor y with ex periments in the sea 

a.	Christchurch Bay 

As	part	of	the Christchurch	Bay	Experiment	(Bishop	et al,	1980	and Bishop,	1984),	see 

Figure	2.2.2,	water surface	elevation,	wave	particle velocity	and acceleration	were 

measured.	This data	has	been	used	to	evaluate	linear random	wave theory.	Velocity 

and	acceleration spectra	were	predicted	from	the	water surface	elevation spectra.	The 

measured	water surface	elevation	did	not	allow	directional spreading	to be	estimated	so 

the	velocities	and	accelerations	were	calculated	assuming no	spreading. 

Comparison of	the	measured	(in	line	with	the	predominant wave	direction)	and predicted 

velocity	and acceleration	spectra,	Figure	2.2.3,	showed	good agreement	near	the spectral 

peak	but	a tendency	for	overestimation	at	high	frequencies and	underestimation at	low 

frequencies. Bishop	notes	that	the	underprediction	occurs	in the	shallow	water range	of 

water	depth to	wave	period.

Bishop has also produced plots of peak velocities and accelerations.	These show that:-

- The in—line peaks of velocity and acceleration also show a tendency to be 

overestimated from the water surface elevation;	see Figure 2.2.4. 

-	Part of the overestimate may be caused by directional spreading since the error 

in the in—line peak values is of similar size to the difference between the In-

line and total velocity:	see Figure 2.2.5. 
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b.	Exxon Ocean Test Structure (OTS) 

The	Exxon	Ocean	Test	Strcture (Figure	2.2.6)	has	been used to	check	the prediction	of 

random wave	theory.	Pawsey and	Dello	Stritto	(1983) have compared	time histories	of 

velocity using	unidirectional	linear random	wave	theory	(ULRWT) based	on	unmodified	Airy 

theory (method	2)	and	with	the modifications	(methods	3 to	5) given	above: see	Table 

2.2.1. All	the	comparisons	were	good.	The	modified Airy Theory	fitted the	observed 

data	better	than	the	unmodified Airy	theory.

Table 2.2.1: Effect	of	various	modifications	to	the	Airy	Theory	basis	of	ULRWT 

predicted/measured velocity (averaged over 3 elevations below MWL) 

(Pawsey and Dello Stritto, 1983) 

Method of using Airy Theory	 Reference
	

Predicted/
	

Standard 

in tJLRWT	 in 2.2.3a.	measured
	

deviation 

velocity 

Airy hyperbolic functions
	

2
	

1.11
	

0.158 

extrapolated to	 C' 

instantaneous surface 

Airy MWL values summed
	

3
	

1.04
	

0.123 

at surface 

Airy surface values
	

4
	

1.02
	

0.118 

Each wave component
	

5
	

0.96
	

0.122 

rides on the other 

waves components
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All the methods showed a tendency to underestimate the measured velocities at the lower 

levels:	see Table 2.2.2. 

When	directions were	assigned	to the	wavelets	used	to	represent the	measured	spectrum 

(on	the	basis of	minimising	water surface	elevation	errors	at	the four	wave	staffs)	a	still 

better	average fit	to	the	measured data	was	obtained:	see	Table 2.2.3. 

Dean, Lo	and	Johansson	(1979)	also	used OTS results	to	check	unidirectional	linear 

random wave	theory	(using	modified	Airy theory method (4)).	They were	mainly 

concerned with	comparison	of	forces.	However, they show	that	the	forces calculated	from 

ULRWT were	approximately	equal	to	those	from	Stokes	5	at the	+1.5m	level. Also	the 

Stokes 5	wave	overpredicted	velocities	at	this level by	an average	5%. Therefore	the 

ULRWT may	also	be	assumed	to	overpredict by	about	5% at	the	+1.5m level.	This	is 

similar to	the	4%	over	prediction	at	the	—4.6m level given	in Table	2.2.2. 

Table	2.2.2	-	Predicted/measured velocity at the various current	meter	levels,	using 

ULRWT	method	4 (Pawsey and Dello Stritto, 1983) 

Level below MWL
	

Reference
	

Predicted/
	

Standard 

in 2.2.3a.	 measured
	

deviation!

velocity 

—4.6m 4 1.04 0.121 

—10.7m 4 1.01 0.093 

—15.2m 4 0.94 0.071

Table 2.2.3 -	Effect of directional spreading on predicted/measured velocity (averaged over 

3 elevations and based on a different data set to Table 2.2.1) 

(Pawsey and Dello Stritto, 1983) 

Directionality	 Reference	 Predicted/	 Standard 

in 2.2.3a.	 measured	 deviation!

velocity 

Unidirectional LWRT	 3	 1.030	 0.133 

LRWT with directional spread	3	 0.995	 0.128 
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C.	Buccaneer platform measurements 

Forristall,	Ward,	Cardone	and Borgman	(1978)	compared	velocities,	measured at	the 

Buccaneer	platform	in	the	Gulf of Mexico,	with	directional	linear	random	wave theory. 

They	obtained	velocity	spectra	which agreed	to	within	10%	of	the	measured	spectra over 

the	range	of	frequencies	which are significant.	This	10%	agreement	of	the spectra 

should	result	in	a	5%	agreement of velocity	because	the	spectra	is	in	terms	of velocity 

squared. 

The calculated velocity spectrum tends to be an underestimate at the lower frequencies 

and an overestimate at the higher frequencies.	This is similar to the result obtained 

from Christchurch Bay. However, in this case directional spreading has been taken into 

account so the high frequency overestimate cannot be assumed to be caused by 

directional spreading. 

Forristall et al suggest that the differences may be caused by non—linear phase locking 

between harmonics. 

d. Forties Field Experiment 

The	measured water	surface	elevation	spectra	were	transformed into	velocity	spectra	using 

unidirectional LRWT	and	compared	with	measured velocity	spectra	at	various	levels (Atkins, 

1979).	Some problems	occurred	in	interpreting the	results	of the	velocity	meters. They 

had	been	calibrated in	steady	flow	but	in	the real	flow	the vertically	mounted meters 

measured	0.7 times	the	horizontal	velocity	of the	horizontal meters.	Also	the meters 

stalled	at	low velocity	during	the	wave	cycles. 

The horizontal	meters	provided	the best	fit	with	the	velocity spectra	peaks	as	predicted 

from the	water	surface	elevation. They	showed	that	LRWT underestimated	the	measured 

spectra	at	low	frequencies	which	is consistent	with	the	results of	Forristall	et	al	(1978) 

and Bishop	(1984).	LRWT	also	underestimated the	measured spectra	at	high	frequencies 

but this	is	thought	(Atkins,	1979) to	be	caused	by	high frequencies	generated	during 

meter stalling. 

e. Comparison of linear random wave theory with experiments in the sea:	conclusion 

The	experimental	results show that	linear random	wave	theory performs well	both	when 

used	to	determine	the spectra of	particle velocities	and	peak values	of velocity	from	a 

measured	water	surface elevation spectrum. The	best	results	are obtained when
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directional spreading is taken into account.	The low frequency part of the velocity 

spectrum	may	be	subject	to	underestimation	and	the	high	frequency	part	to 

overestimation.	Several researchers have suggested that this may be caused by non-

!

linear effects. 

2.2.5	Comparison of regular wave theor y with experiments in the sea 

a.	Ocean Test Structure 

Individual waves	were identified	(Dean	Lo	and	Johansson, 1979)	from	the	water	surface 

elevation time	history. Velocities	calculated	using	Stokes	5 theory	were	compared	with 

measured values	under the	wave	crest	and	wave	trough. Below	the	splash	zone	the 

mean	velocity	(current) was	subtracted	before	the	comparison was	made	but	in	the	splash 

zone	no adjustment	for current	was	made. 

The results are given by level, as averages for various storm periods, In Figure 2.2.7. 

Unweighted averages of these results are given in Table 2.2.4. 

Table 2.2.4 - Stokes 5/measured velocity. Average results for several storms 

(Dean at al 1979)

Predicted/measured velocity 

Current under elevation	 Note 

above MSL (m)	 Under crest	Under trough 

+1.5 1.07	- 1 

—4.6 1.35	1.11 2 

—10.7 1.38	1.21 2 

—15.2 1.27	1.14 2

1	Not adjusted for current 

2	Adjusted for current
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b.	Buccaneer platform measurements 

Velocities,	measured at	the	Buccaneer	platform,	were compared	with	the predictions	of 

Stokes	5	and	a	surface profile	matching	stream	function theory	(Forristall, Ward,	Cardone 

and	Borgman,	1978). Both	methods	overpredicted	the particle	velocities	under	the	wave 

crest.	The	Stokes 5	results,	which	are	slightly	worse than	the	surface profile	matching 

theory,	are	shown in	Figure	2.2.8.	The	results	for the	highest	meter at	—4m	show 

Stokes	5	to	overestimate the	measured	velocities	under the	crest	by	about 40%.

C.	Eugene Island measurements 

Ohmart and Gratz (1978) measured particle velocities in the Gulf of Mexico at the 

Eugene Island jacket. The water depth was 54m and the measurements were taken at 

1.5m and 6.1m below mean water level. 

The measurements were compared with Airy theory and Stokes 5, which modelled the 

wave from the measured wave height and period, and surface profile matching stream 

function theory. It was concluded that there was some tendency for all the theories to 

overpredict horizontal velocities for the higher waves and to underpredict for the lower 

waves.	Four examples are given in the paper:	for wave heights of 7.5m and 5.3m at 

the two levels.	They show an overestimate of velocity of up to 20%.	Accelerations!

were in one case underestimated by 20%. 

d.	Comparison of regular wave theory with experiments in the sea:	conclusion 

Below	MWL,	and	below	the	wave	crest,	the	three	experiments	show	significant 

overestimation of particle velocities.	Above MWL only the OTS results are available. 

They show only a small overestimation at +1.5m.	However, the effect of current has not !

been taken into account at +1.5m and this could be the cause of the better fit to the 

measured data.
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2.2.6.	Comparison of regular wave and random wave theories 

a. Comparison based on measurements in the sea 

Both the OTS and Buccaneer experiments show that regular wave theories significantly 

overestimate the measured particle velocities but that random wave theories, especially if 

directional spreading is taken into account can provide a good estimate of the measured 

velocities.

b. Theoretical comparison 

Standing (Appendix D) performed a comparison of the extreme velocities and accelerations 

predicted by linear regular waves, of steepness 1/12 and 1/18, and unidirectional linear 

random wave theory (Section 2.2.3a, method 1). For a specific sea state and with no 

current the 1/18 regular wave gave conservative estimates of kinematics from the sea bed 

at 150m below MWL to 35m below MWL.	The 1/12 regular wave gave conservative 

estimates of the kinematics from 50m to 15m below MWL.	Neither regular wave was!

conservative relative to unidirectional random wave theory from 15m below MWL to MWL. 

Holmes,	Tickell	and	Burrows	(1978)	provide	some	indirect	evidence	which	confirms!

Standing*s conclusion that regular waves will tend to underestimate the kinematics at the 

wave surface when compared to the results of unidirectional random wave theory.	They!

calculated the long—term probability distribution of drag and inertia loading: 

1) in method (1) random waves (allowing for drag loading proportional to velocity 

squared) 

2) using	a	deterministic	approach	(see	4.4)	with	the	higher waves	having	a 

steepness of 1/10.7 

3) using a deterministic approach with the higher waves having a steepness of 

1/19.8. 

(Other methods were also used which are not of interest here) 

They	found	that, in I 50 water depth, both	regular	waves underestimated	the	1	year 

return	value	of	wave	loading	at	MWL. The	next	position at	which	calculations	were 

performed	was	7.5m	below	MWL.	Here the	steeper	wave	gave a	conservative	assessment 

of	the	loading	on 0.5,	1.0	and	2.Om	diameter	cylinders	but	was	unconservative	for	a	Sm 

diameter	cylinder. The	shallow	wave	was	always	unconservative at	7m	below	MWL.	At 

22m	below	MWL both	wave	steepnesses gave	a	conservative assessment	of	the	loading
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on all cylinder sizes. 

These	studies	suggest	that,	for members near	the	water	surface,	very	steep regular	waves 

may	be	required	to	obtain	the particle kinematics	predicted	by	unidirectional linear	random 

wave	theory.	Further	work	is needed to	determine	whether	these	high kinematics	only 

exist	because	directional	spreading	has not	been	taken	into	account. Also	the	high 

particle	kinematics	are	caused by	the high	frequency	components	of	the water	surface 

elevation	spectrum.	These	may not	cause	significant	loading	on	a	structure built	up	from 

several	members.

2.2.7	Random waves:	conclusion 

From the experimental work that has been performed it is clear that linear random wave 

theories lead to a better prediction of particle kinematics than regular wave theories. 

Theories which allow for directional spreading within any sea state provide the best fit 

between measured water surface elevations data and particle kinematics. These theories 

are difficult to use in practice because there is a lack of data defining the spreading 

characteristics of seas.	The Metocean document (1987) provides a spreading function but!

it corresponds approximately to an unidirectional sea. 

Theoretical comparisons between unidirectional random wave theory and regular wave theory 

applied with a wide range of wave periods suggests that regular wave theory, used in 

this way, is conservative at depth but unconservative near the surface. 

This conclusion is different to that obtained experimentally and warrants further research. 

The difference may be caused by wave spreading effects which, because they are most 

significant at the higher wave frequencies, would tend to reduce the kinematics most at 

the water surface. The conclusion may also be invalid for loading on a structure 

composed of several members in different plan positions. 
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2.3	WAVE - CURRENT INTERACTION 

2.3.1	Introduction 

A wave of given period travelling in conjunction with a current has wavelength and 

particle kinematics that are dependent on the current velocity. 

If	the	current varies	then	the	wave	height	and	length	will	change.	If	a wave!

propagates into an area of different current velocity and the wave is not parallel to the 

current then the wave direction will also change. These effects are similar to, and may 

occur at the same time as wave refraction and shoaling from changes in water depth. 

lver, Jonnson and Wang (1980) discuss the combined effects. 

2.3.2	Effect of a uniform current (a steady current that is constant throu g h the water 

depth) 

The combination of a uniform current with any of the wave theories described in Section 

2.1.2 is straightforward because the assumption of irrotationality and the boundary 

conditions are such that they still apply exactly providing the axis system for the wave 

theory is moving at the current velocity. 

therefore a wave is specified in terms of its height and length the wave particle 

kinematics may be	calculated	for zero current and	the	combined velocities	exactly 

determined by vector	addition.	It must be	noted	however	that	the wave period	is 

affected	by the	current.	The	wave is effectively travelling	on	the	current and	if	the 

current	has a positive	component	in the direction of	wave	travel	then more crests	will 

pass	a	fixed structure	in	a	given time than	if there	is	no	current. The *encounter 

period	of the waves	is	therefore	reduced.

If alternatively, the wave is specified in terms of height and the encounter period with a 

stationary observer, then the vector addition approach is still acceptable but it is 

theoretically necessary to select a wave length L = T (c + uc). 
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where: 

L	=	wave length 

c	=	wave celerity (with no current) 

U	=	current velocity resolved in the direction of wave propagation 

T	=	wave period relative to a stationary observer 

The method described is applicable to regular waves and each component in a model of 

a random sea (Hedges (1978), Hedges et al (1979), Hedges (1983), Hedges (1987) and 

Forristall, Ward, Cardone and Borgmann (1978). 

Unfortunately because wave data and current data are collected independently, the wave 

period data does not define the wavelengths of the measured waves. Also it is difficult 

to decide whether measured periods should be treated as defining wave length or 

encounter period when a current is added for analysis purposes. 

When using the wave theory selection diagram the value of T used in the parameters 

H/gT2 and d/gT2 should theoretically be the period relative to the current, i.e. L/C and 

not L/(c+u). 

The modification to wavelength by wave current interaction is discussed in more detail in 

Appendices E and F. It is also shown that peak MWL values of velocities and 

accelerations will be overestimated, typically by 5 and 10% if the wavelength modification, 

by a current of about I m/sec, is ignored. 

Having established the wave particle kinematics, the current velocities should be added 

vectorially. For this case of a uniform current the same current velocity should be 

added to the wave particle velocities at all levels, from the instantaneous surface to the 

seabed.	The modification of a current profile by a wave is discussed in 2.3.3. 

2.3.3	Effect of a stead y current which varies with depth 

There are several reasons why the current may vary with depth, for example, the current 

can increase considerably near the surface because of the effect of wind. 

The	combination	of a	wave with	a steady	but	depth	varying	current	is	not	straightforward 

because	a	depth varying current implies	a	vorticity	or	rotation	in	the	flow	whereas 

irrotational	flow	is one	of the	basic assumptions	of	most	wave	theories.
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Biesel (1950) obtained a solution for small amplitude waves and a shear current varying 

linearly with depth.	For the case of a uniform current this solution is equivalent to the 

method described in 2.2. 

Ismail (1983) describes an experiment which shows the mutual effects of wave and current 

for following and opposing currents.	He found that the wave particle kinematics were 

affected by the presence of the current but that Biesel,s (1950) solution provide a good 

match to the measured velocities.	He also notes a change in the mean current which 

he suggests is caused by the waves. 

Dalrymple (1974	a,b)	extended	Dean,s	(1965) stream	function	theory to	include	a	current 

which	has a	linear	variation	or	a	bi—linear	variation	with	depth	(i.e. a	continuous	profile 

made	up of	two	joined	linear	variations).	He found	the	wavelength modification	to	be	in 

the	same proportion	as	that	predicted	by the	small	amplitude theory	(although	the 

absolute	values	of	wave	length	predicted	by the	two	theories	for no	current	may	be 

different).

It should be noted that certain commonly used methods of adjusting the current profile In 

waves are physically incorrect.	In particular the so called	,mass continuity,	method 

reduces the current velocity under the wave crest and increases the current velocity In 

the wave trough.	This is based on the assumption that the wave surface and seabed 

form a tunnel through which the current flows.	This assumption is unconservative. 

Three simple and commonly used approximate methods of combining wave and current are 

shown in Figure 2.3.1.	Method 1:	current profile stretching is the most accurate of the 

three methods (Watson 1986).	Also note that for the case of a uniform current Figure. 

2.3.1 methods 1 and 3 are consistent with the first paragraph of 2.3.2 whereas method 2 

is not consistent with the known result for the uniform current case. 

The wavelength of a wave travelling in a depth varying current will be modified in a 

similar manner to that described in 2.3.2 for a uniform current.	As an approximation a 

mean current may be calculated for the purposes of wavelength modification.	The mean 

should be weighted towards the value of current at the surface.	The actual current 

profile should be vectorially added to the velocities obtained from the wave after the 

wavelength has been modified.	Guidance on the effects of wind—current interaction is 

given in the Metocean (1987) Section 3.4.	The nature of the near surface wind driven 

current, in the presence of waves, is still uncertain. 
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Figure 2.3.1. Various methods of combining a current profile with the 

variation in instantaneous water depth due to wave action 
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2.3.4	Effect of unsteady and non uniform currents 

If	the	current	is not	steady	with time or	not	uniform	with	horizontal	distance	then	the 

properties	of	a wave	travelling	on the current	and	the	properties	of	the	current	itself 

will	be	changed by	the	interaction that occurs. 

In this section the term unsteady is used to refer to variation with time and or 

distance.	Unsteady currents produce changes of height and length of waves propagating 

on them.	Additionally, if the current is not parallel with the wave direction then an !

unsteady current will change the direction of the waves. 

The	phenomena has	been	studied	by	Longuet—Higgins and	Stewart (1961):	see	(Figure 

2.3.2),	Whitham (1965,	1967,	1974)	and Phillips (1977). Skovgaard and	Jonsson	(1976) 

have	considered the	combined	effects	of current and refraction	caused	by	changes	of 

water	depth. Herbich	and	Hales	(1972) present the	results	of	an experiment	where	the 

properties	of	waves	travelling	on	unsteady currents were measured. 

2.3.5	Wave - current interaction:	conclusion 

a.	Steady current 

The effect of wave current interaction from steady currents may be taken into account by 

the vector addition of the wave particle velocities and the current velocity. 

For	a	given wave	period	the wavelength	is dependent	on	the	current.	In	most	cases 

the	effect	on wavelength	will be	small.	For the	calculation	of	loading	near	the	surface 

it	will	usually be	conservative to	ignore	any change	in	wavelength	caused	by	a	current 

running	in	the same	direction as	the	wave.

It is necessary to modify the current profile according to the instantaneous value of 

water surface elevation. The recommended method is that of stretching the profile (see 

Figure 2.3.1, method 1).
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b,	Unsteady current 

If the current on which the wave is propagating changes then the wave height, length 

and possibly direction will also change. 

2.4	BREAKING WAVES 

2.4.1	Introduction 

The	horizontal	velocity of	the	water	particles	in	a wave crest	is	normally	less than	the 

celerity	(the	horizontal velocity	of	the	crest	shape). For a	given	wavelength	the	celerity 

only	varies	slightly	with wave	height.	However, the velocity	of	the	water particles 

increases	approximately in	proportion	to	the	height of the	wave.	Therefore, for	any 

given	wave	there	is	a limiting	height	above	which the	water	particles	in	the	crest	have 

a	horizontal	velocity	greater	than	the	celerity.	Water is	then	ejected	from the	wave 

crest	and	the	wave	is said	to	break. 

The	measurement	and analysis	of breaking waves	is	difficult;	Cokelet	(1977),	in	an 

extensively	referenced	review article, points out	that	after	more	than	one	hundred	years 

of	study	there	are	still unanswered questions about	the	phenomena.

Regular waves have a limiting height of approximately the lesser of 0.78 times the water 

depth (d) or 0.14 times the wavelength (L).	Solitary waves have a limiting height of 

about 0.83d. 

There are several causes of breaking waves:-

- Shoaling:	A wave moving from deep water into intermediate or shallow water !

decreases in length and after a small decrease in height it increases in wave 

height.	(Iversen, 1953).	This increase in height may eventually lead to wave 

breaking. 

-	Wind-Wave interactions:	Wind may increase the wave height sufficiently for it to 

break.	Wind may also shear the crest forwards and cause breaking. 

- Wave-Wave interaction:	Breaking may occur as a wave overtakes another wave !

or as waves from different directions interfere. 
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- Current—Wave interaction:	A wave meeting an opposing current, or moving from!

an area of opposing current to another area of stronger opposing current, will 

increase in	height and decrease in length.	A sufficiently strong current will !

break the wave. 

2.4.2	Waves breakin g in shoalin g water 

Three types of breaking wave may occur in shoaling water as the water depth decreases 

and the wave height increases. Figure 2.4.1 (from Patrick and Wiegel, 1955) shows the 

combinations of seabed slope and deepwater wave steepness which lead to the different 

types of breaking wave. 

The	deep water wave	steepness	is	the	steepness	that	the	wave	either had	in	deep 

water	or would have	if	it	moved	into	deep	water.	If	the	shallow	water steepness	only 

is	known then	the deep	water	steepness	can	be	obtained	approximately	from Figure	2.4.2 

which	is based on	linear	wave	shoaling	theory	(Sarpkaya	and	lsaacsson, 1981)	and	a 

gradually varying water	depth. 

Galvin (1972) characterised the breaker type by the dimensionless ratio:-

2 
B = H	/ (L	m) 

r	0	0 

where: 

H	= wave height in deep water 

L = wave length in deep water 

m	= seabed slope (dz/dx) 

And:

B >5 

5 > Br > 0.1 

0.1 > B 

-	spilling breaker 

-	plunging breaker 

-	surging breaker

Galvins	(1972)	equation does	not	correspond to	Patrick	and	Wiegels	(1955)	dividing	lines 

on	Figure	2.4.2. This is	probably	because	the transition	from	one	type	of	breaking	wave 

to	another	is	not distinct. The	similarity	of spilling	and	plunging	breakers	is	described 

by	Basco	(1985). Figure 2.4.3	shows	the sequence	of	events	in	a	plunging	breaker. 

Figure	2.4.4	shows the characteristics	of	the spilling	and	plunging	breakers	at	the	stage 

6	of	Figure	2.4.3. It may	be	seen	that	the	difference	is	primarily	the	relative	size	of 

the	plunger	vortex. In the	spilling	wave	the plunger	vortex	is	confined	to	the	region	of
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Figure 2.4.4. Similarity of fluid motion in spilling (top) and plunging (bottom) 

breakers (Basco 1985)
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the wave crest.	in the plunging wave the vortex size is similar to the wave height. 

The	surging	breaker	is	a	breaking wave in	combination	with	wave	reflection	from	a beach 

which	is	relatively	steep	compared with the	wave.	This	type	of	breaker	is	not usually 

Important	for	offshore	structures. The foam	in	this	wave	is	caused	primarily by	the 

vorticity	induced	by	the	roughness of the	seabed	and	the	horizontal	velocities do	not 

necessarily	exceed	the	celerity. 

Iversen	(1953)	has presented	data	showing	the wave	height	at breaking	under	shoaling 

conditions	(Figure 2.4.5).	The	wave	heights	can be	considerably higher	than	the	regular 

wave	limiting	values. In	Figure	2.4.7	iversens data	is	plotted with	Patrick	and	Wiegel*s 

(1955)	division	into different	breaking	wave	types; the	transition from	spilling	to	plunging 

is	seen	to	occur approximately	when	the	wave height	is	1.1 times	the	regular	wave 

limiting	value	of 0.78d.	This	seems	to	be	consistent	with	the	descriptions,	discussed 

above,	of	spilling and	plunging	breakers	given	by Basco	(1985). 

Figure	2.4.7 describes the	types	of	breaking	wave	which	may	occur	with	a given	slope, 

water	depth and	deep water	wave	steepness.	It	does	not	define	the	deep water	wave 

height	that will	lead to	breaking	at	a	given	location.	This	deep	water	height	may	be 

obtained	by combining data	presented	by	Goda	(1970)	and	Iversen	(1953)	as described	in 

Appendix	G. By	using	the	resulting	Figure	2.4.6,	the	value	of	deep	water wave	height 

and	steepness may	be obtained	that	will	cause	a	wave	to	break	at	a	given water	depth 

and	seabed slope.	Environmental	data	should	then	be	consulted	to	select combinations 

of	deep	water	wave height	and	steepness	which	are	likely	to	occur. The	selected 

values	of deepwater steepness	may	then	be	used	in	Figure	2.4.7	to	determine	the 

heights	at breaking. The	period	of	the	wave	at	breaking	will	be	the	same	as	the 

deepwater	wave. 

2.4.3	Wave breaking caused by wind

Wiegel	(1964),	reviewing	the	work of	a	number of	researchers,	explains	that the 

turbulence	in	a	wind	speed of	1.5	to 3	m/sec	will immediately	generate	small	waves on 

a	calm	water	surface.	The wind	then	acts	on	the rough	surface	and	in	a	number of 

ways,	including	inviscid	flow, viscous friction	and	viscous drag,	transfers	energy	to the 

water	and	builds	up	both	a current and	the	wave. Providing	the	wind	continues	to act 

on	the	wave	and	the	wind speed	is high	enough,	the wave	will	continue	to	increase in 

height.
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Breaking	will probably occur	before the	wave	reaches	the	limiting	regular	wave	height 

because	(a) the	wind will	tend	to blow	the	top	of	the	wave	forward	and	(b)	wave-wave 

interactions, described in	2.4.4,	may occur. 

2.4.4	Wave breaking caused by wave-wave interaction 

Wave celerity in deep water is approximately proportional to wave period	T.	(For a 

small	amplitude deep	water	wave	c	=	gT/2it). Therefore	a	wave may be	overtaken	by	a 

longer	period wave.	In	shallow	water the	celerity	of a solitary wave	Is 

1.29	(g(d	+	H))° 5 therefore	a	wave	may	be overtaken	by	a higher wave. In	either 

case	the	wave particle	motions	combine	and a	high	wave	is produced as the	crests 

come	together. If	the	horizontal	particle	velocities in	the	combined crest exceed	the 

velocity	of	the crest	shape	then	the	combined wave	will	break.

Kjeldsen and Myrhaug (1979) generated breaking waves in the laboratory by wave-wave 

interaction and obtained two types of breaker:-

- A plunging breaker 

- A deep water bore (shown in Figure 2.4.8) 

Kjeldsen and Myrhaug do not report the occurrence of spilling waves from wave-wave 

interaction. Since spilling waves and plunging waves are similar, except that the breaking 

of the spilling wave is confined to the upper crest, we would anticipate that spilling 

breakers could also result from wave-wave interaction. 

No data was found describing the particle velocities in bore breakers or the precise 

conditions under which they occur.
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The	case of	regular waves	of	the same	period	and	height travelling	In	different	directions 

has	been considered analytically	by le	Mehaute	(1986).	He	concludes	that	breaking	wave 

heights	and	internal velocities	may all	be	greater	for	the resulting	short	crested	breaking 

waves. Le	Mehaute	has	only considered	the	breaking criterion	of	particle	velocity 

exceeding celerity. It	is	possible that	other	criteria	may be	important	for	short	crested 

waves 

2.4.5	Wave breakin g caused by currents 

When	a	wave travels	from an	area	of	no current	into	an	area where	there	is	an 

opposing	current the	wave steepens	and	may break.	The	effect	of a	current	on	wave 

height	and	wave steepness is	shown	in	Figure 2.3.2	(Long uet—Higgins and	Stewart,	1961). 

2.4.6	Plunging wave after breaking 

Svendsen (1984) has described the behaviour of a particular plunging breaker after the 

plunge had occurred.	The wave continued with the original celerity and a 30% to 40% 

reduction in amplitude. However, the wave then carried a volume of water, in a surface 

roller, which had a volume of approximately 0.9 H 2 and a forward velocity equal to the 

celerity of the wave. 

2.4.7	Breaking wave kinematics 

The	kinematics	of	breaking	waves	are	difficult	to	measure	and	there	is only	limited data 

available	on their	particle	velocities	and	accelerations.	However,	laser	doppler anemometry 

techniques, which	are	capable	of	measuring	the	velocities,	are	now	being used, e.g. Stive 

(1980)	and Easson	and	Greated	(1984).	Mathematical	techniques have also been 

developed, e. g.	Longuet—Higgins	and	Cokelet	(1976),	Vinje	and	Brevig (1980) and New, 

McIver	and Peregrine	(1985).

Cokelet (1979) presents analytical results for the velocity and acceleration in some deep 

water breakers. 

A small breaker which was close to a spilling breaker in proportion had, at the point of 

breaking, a crest velocity of approximately the celerity (c) and accelerations under the 

crest which although not accurately determined were of the order of 0.5g.	These values 

are consistent with a limiting height regular wave.	As breaking progressed the crest 

turned into a plunging spout and the maximum velocity increased to	1.09c and the!

acceleration to about 0.9g.
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Results are also presented for a breaking wave wI ich was 22.5% steeper than the wave 

described above.	The velocities and accelerations are generally higher in this steeper 

wave.	It is difficult to compare the results in a precise way but the general increase 

is probably about 30%.	As the plunging spout forms velocities in the spout reach 

1.3c.	Accelerations behind the front face of the wave, below the spout reached 1.6g. 

The work of New et al (1985) confirms the area of very high accelerations below the 

spout. 

Note that the values quoted above should not be taken as typical for all plunging 

breakers.	Higher values of velocity have been obtained in model tests, e.g. Van Dorn 

and Pagan (1975) measured velocities of 1.6c. 

Stive (1980) measured velocities in spilling breakers and compared the maximum and 

minimum values at various levels below MWL with the predictions of Airy and Cnoidal 

theory.	He found that Airy theory gave a reasonable prediction but that Cnoidal theory 

overestimated the measured velocities.	Unfortunately the equipment used was not capable 

of measuring the velocities above MWL.	However, the calculations performed in Appendix 

B show that linear wave theory may only predict velocities of about half the celerity at 

the breaking limit therefore linear wave theory is not satisfactory for the breaking wave 

above MWL. 

Measurements by Easson and Greated (1984) show crest velocities in spilling breakers of 

about the wave celerity.	They have compared a limited number of their measurements 

with the results of analyses using the Longuet-Higgins and Cokelet (1976) programme. 

Horizontal velocities were found to compare well.	Larger vertical velocities were found in 

the experimental work. 

Griffiths, Easson and Greated (1987) present particle kinematics for a number of breaking 

waves.	These waves, which would be predicted by Figure 2.4.7 to have spilling 

characteristics, were found to have crest velocities of about the celerity.	Comparisons 

were made with various wave theories but the agreement was found to be poor.	In 

most cases the velocities in the upper crest were underestimated and the particle 

kinematics for the lower half of the wave crest and from MWL to the seabed were 

overestimated by the wave theories.	We have briefly compared the crest velocities found 

by Griffiths et al with those predicted by stream function theory.	The theory predicts 

breaking to occur at a higher wave height.	For this higher wave height the predicted 

crest velocities are a little greater than the experimental values.	The different trend with 

depth between the experimental results and the wave theories is qualitatively similar to 

that presented for regular waves by Standing (1981) (See Section 2.1.4).	We speculate 
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that this tendency in the breaking wave and regular wave results may be caused by 

currents In the wave flume. 

2.4.8	Breaking waves:	conclusion 

Breaking waves may result from shoaling, or the interaction of a wave with other waves, 

current or wind. Breaking waves caused by shoaling are the most Important type for 

offshore structure design. 

The type of breaking wave that may occur at a given site depends on the water 

depth: d, seabed slope: m, and the height: H and length: L that the wave had in 

deep water. 

For a given seabed slope Figure 2.4.6 defines the various combinations of d, H	and L 

that will lead to a breaking wave. 

The environmental data should be used to determine which combinations of d, H	and L 
0	0 

to consider further.	These values may then be used in conjunction with Figure 2.4.7 to !

determine the type of breaking wave (spilling, plunging or surging) and the height of the 

wave at breaking:	Hb. 

If the breaking wave type is a spilling breaker it may be analysed as a limiting height 

regular wave, see 2.1. 

If the breaking wave type is a plunging breaker then it will be necessary to obtain 

advice from hydrodynamic specialists because very little data is available on the velocities 

and accelerations in these types of wave. A tentative estimate of the kinematics In a 

plunging breaker may be made with reference to Appendix G.2. 

It is unlikely that surging breakers would be of importance for offshore structure design. 

The statistics of breaking waves are discussed in Section 3.5.8. 
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3.	FLUID LOADING 

3.1	INTRODUCTION 

3.1.1	General 

For most fluid loading calculations It is necessary to first calculate the	incident* fluid 

particle kinematics, i.e. those that would occur if the structure was not in place.	In 

other cases	the	interaction	of	the	fluid	and	the	structure	is	calculated	from	first 

principles.	This	is	the case	in	diffraction	theory where wave	theory	is	effectively 

included in the calculation.	This section (3.1) briefly describes the types of fluid loading 

that are of importance for offshore structures.	The remainder of section 3 considers in !

greater detail the calculation of loading and the selection of suitable parameters. 

3.1.2	Vortex formation, drag and lift forces 

The viscosity of water results in a shearing of the flow along the boundary with a 

member.	This applies a direct, though for most structures negligible, shear force on the 

surface of the member.	More importantly the shearing imparts a rotation to the flow 

leading to the formation of vortices.	These become detached from the member and are 

carried downstream as a	vortex street* in the wake of the member.	The energy!

dissipated in the vortices results in a reduction of pressure which produces a drag force 

in the direction of the flow.	Any lack of symmetry in the flow also produces a lift !

force at right angles to the flow. 

Even when the incident flow is steady the drag and lift forces vary with time as 

vortices are shed. It is convenient to consider the fluctuating forces to have a time 

average steady value on which is superimposed a fluctuating force with a zero mean. 

In	waves	the	behaviour	of	the vortices	is	complicated	by	the oscillation	of the	incident 

flow.	In	shallow	water	the	flow may	be	essentially	oscillating in	a	horizontal plane.	In 

some	cases	the	vortices	may	not be	shed	before	the	flow reverses.	In other	cases 

vortices	will	be	shed	and	then they	may	be	swept	back	over the	member as	the	flow 

reverses.
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In oscillating flow the behaviour is independent of whether the member is horizontal or 

vertical although the angle the member makes with the flow will affect the vortex 

shedding pattern. 

In	deep	water the flow	describes approximately	circular	orbits.	A	horizontal member, 

orientated	with its axis	parallel	to the	wave	crests,	will	then	produce	a	vortex shedding 

pattern	that	is very different	from	a vertical	member. 

The forces induced by vortex shedding are usually assumed to be proportional to velocity 

squared and are given by empirical equations of common form:-

Time	average	drag	force 0.5CdpLD	U2 

Fluctuatind	drag	force 0.5C,dpLD	U2 

Time	average	lift	force 0.5C1pLD	U2 

Fluctuating	lift	force 0.5C1pLD	U2

where: 

p	=	fluid density 

L = member length 

D = member diameter 

U = flow velocity resolved normal to the member. 

Cd	C, 
d, 

C 1 . C, are coefficients which will depend on the member geometry and the 

incident flow. 

The first equation for time average drag force is also the drag term in Morison,s 

Equation which is widely used for the calculation of fluid forces on offshore structures. 

Section 3.2 Morison Drag and Inertia Loading, contains a detailed description of the time 

average drag force, the choice of values for 
C 	

and some comments on C1. 

The fluctuating forces are discussed in Section 3.3 ,Vortex Shedding Induced Loading,. 
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3.1.3 Inertia forces 

A member in a uniformly accelerating flow is subject to an inertia force which may be 

calculated from potential flow theory, see for example Sarpkaya and Isaacson (1981). It 

is convenient to consider the force as having two components :-

1	The Froude Krylov component of the inertia force 

An	accelerating	fluid contains	a	pressure	gradient equal	to pCi	where p	is the 

fluid	density	and	U is	the fluid	acceleration.	If the	presence	of	a member in 

an	accelerating	fluid did	not affect	the	pressure	distribution then	the force	on a 

member	of	volume	V would be	pVC)	(of.	buoyancy where	the pressure gradient is 

pg	and	the	buoyancy force is	pVg).	The	force pVU	is sometimes called the 

Froude	Krylov	Force. 

2	The added mass component of the inertia force 

The presence of a member in the flow does affect the pressure distribution and 

an	additional	force	C	pVU	also occurs.	This force	is	similar	to	the	force that 
a 

an	accelerating	member	would have	to	exert on	an	initially	stationary	fluid. An 

*added	mass	of	fluid	having Ca	times	the volume	of	the	member	may be 

thought	of	as	trapped	by	the member	hence the	coefficient	Ca	is	known	as the 

added	mass	coefficient.

1 and 2 are combined in the Inertia Term* of Morison*s Equation as: 

(1 + C a )pVIJ = C 
m 

pVC) 

where C	is known as the inertia coefficient, C	= 1 + C 
m	 m	a 

Note - added mass coefficients are commonly also given the symbol Cm 

The selection of values for C	is discussed in 3.2. 
m
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3.1.4 Diffraction loading 

When	a	body has	a diameter	or	width	of	more	than about	one	fifth	of	a	wavelength, 

the	incident	waves	are modified	or	diffracted by	the presence	of	the	body	and	force 

calculations	should then take	this	into	account. In	this regime	loading	may	be	calculated 

using	a	wave theory with	additional	boundary conditions corresponding	to	the	surfaces	of 

the	structure. This is	usually	performed	using Airy (linear)	Theory	and	the	resulting 

analysis,	known as	a linear	diffraction	analysis is	described	further	in	Section	3.4. 

On single members wave diffraction generally leads to lower wave loading than would be 

estimated from uniformly accelerating flow. In physical terms, the particle accelerations of 

the undisturbed incident wave are, at any given time, only at a maximum over one 

portion of the structure.	However, when the interaction between several members is 

analysed,	diffraction	theory	may	result	in	higher calculated	loading	than	the	inertia 

coefficient approach.	When diffraction is important, the fluid particle displacements usually!

become sufficiently small relative to the member size for the effects of vortex shedding 

to be minimal or localised.	Nevertheless, in certain situations vortex effects remain an 

important consideration.	Near corners they may cause sea bed scouring and the shed !

vortices may buffet nearby minor structures. 

A local modification to the water surface occurs around members which penetrate the 

surface.	This is a second order effect which is referred to in section 3.2.8h. 

3.1.5 Wave slam, slap and impulsive buoyancy 

Wave slam results from the sudden immersion of a member in water during the passage 

of a wave.	In addition to buoyancy, drag and inertia forces a transient peak load 

occurs, due to the impact of the water with the member.	The member may respond !

dynamically and this may increase the effect of the slam force. 

Wave slap occurs when a breaking wave meets a member.	It may induce very high!

local pressures on the member.

The	change in	buoyancy	of	a structure,	as	the	water level	changes	with	the passing	of 

a	wave,	can be	a	significant design	load	for	both horizontal	and	inclined members. 

Even	when there	is	provision	for	free	flooding,	a	member	may	not	be	able	to flood	and 

empty	during a	wave	cycle. Normal	hydrostatics	are applicable	for	computing the	static 

response	to these	loads,	but	in some	cases,	particularly for	horizontal	members, the
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change in buoyancy may produce a dynamic response. 

Wave slam and slap are the subject of Section 3.5. 

3.1.6 Hydrostatic and hydrodynamic pressure 

The pressure at any point beneath the surface consists of the hydrostatic pressure 

(corresponding to the depth of submergence beneath Ahe mean water level), plus a 

dynamic component associated with passing waves. The magnitude and phase of the 

dynamic component may be derived from an appropriate wave theory. 

However, the pressure which acts on submerged members is not simply the ambient 

pressure in the undisturbed flow because it is modified by the changes to the flow, 

brought about by the presence of the body, which cause the drag and inertia or 

diffraction forces. 

The calculation of pressure loading is discussed in Section 3.6. 

3.1.7 Loading regimes 

Wave frequency loads on members in waves may be categorised as drag, inertia, 

diffraction	or	reflection.	The	relative	importance	of	these	in	a	particular	case	will!

depend on the type and size of the member, the nature of the wave and the depth of 

the member. 

The distinction between drag, inertia and diffraction forces and their relative significance 

will determine the method to be used in the prediction of wave loads on offshore 

structures. It is therefore necessary to consider the various loading regimes in more 

detail. 

The relative	importance	of	drag force and	inertia force is	dependent on	wave height and 

depth of	immersion.	The	drag force is	dominant on small	diameter members with large 

wave height.	Currents	increase the importance	of the drag	force. As	the	member size 

increases	relative	to	the	wave height	the	inertia force becomes	dominant. The	inertia 

force also	becomes	relatively more important	as the depth	of	the member below the 

water surface	increases.

Diffraction becomes important for a single member when its diameter (D) is greater than 

115 of the wavelength. However, for multiple members, diffraction effects associated with 

interference may also be important at smaller D/L ratios. 
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3.2	DRAG AND INERTIA LOADING ON CIRCULAR CYLINDERS 

3.2.1	Morisons equation 

The wave loading formula known as Morison,s Equation is usually applied to members 

which have cross section dimensions less than about one fifth of the wavelength. 

The equation (O,Brien and Morison, 1952) reads:—

F = 0.5 Cd pDlUlU + CpA U 

where:	(see also Figure 3.2.1)	 Typical units 

F is	the	force/unit	length	of	member N/rn 

C 
is	the	drag	coefficient - 

C is	the	inertia	coefficient - 
M 

p is	the	density	of	water kg/m3 

D is	the	member	diameter	or	width 

perpendicular	to	the	flow	inclusive	of 

marine	growth	(see	figure	3.2.6) m 

A is	the	member	cross	sectional	area 

inclusive	of	marine	growth 

U is	the	velocity	vector	of	the	incident 

flow	resolved	normal	to	the	member m/sec 

U is	the	acceleration	vector	of	the 

incident	flow	resolved	normal	to	the 

member.	U	should	include	both	temporal 

and	convective	accelerations	(Isaacson	1979) rn/sec2

The selection of values for 
C 	

and Cm and the general use of the equation is 

discussed in the remainder of Section 3.2.
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A 

hon 

Incident Velocity!
Vector

A - Cross-Sectional Area of Member and Enclosed Space 

0 - Diameter or Width of Member 

U - Velocity Normal to Member 

U - Acceleration Normal to Member 

Subscripts: 

w wave only 

current only 

otherwise wave + current 

m maximum value through the wave cycle 

Figure 3.2.1 Definition of symbols for member loading 
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3.2.2	Flow conditions 

a. General 

The values of 
C 	

and Cm required for Morison,s equation are dependent on the 

characteristics of the incident flow and the shape, size and roughness of the loaded 

member. 

In steady flow there is no inertia force and Reynolds number 
(Re) and surface roughness 

(k) determine Cd. 

In waves the orbit size of the fluid particles, the orientation of the member, the current, 

the random nature of the sea and the random re—encounter of the cylinder with its own 

wake (and possibly the wakes of other members) give rise to a considerable scatter in 

measured 
C 	

and Cm values and make the selection of appropriate values difficult. 

Should locked—on vortex shedding occur (see Section 3.3) 
C 	

values may be larger than 

those discussed in 3.2.	Adjacent members may also modify the flow and change C  

and C	(see Section 3.7). 

b. Reynolds number 

Reynolds Number is a non—dimensional parameter which relates the fluid mass times 

acceleration forces to the viscous forces from shearing of the fluid: 

R = U  
e	m 

V 

where	 Typical 

Units 

Urn	=	 maximum velocity of water particles (wave + current) 

during a wave cycle.	For the calculation of Urn 

the flow is assumed undisturbed by the member. 

In principle Urn may be the total velocity or the 

velocity	resolved	normal	to	the	cylinder.	In 

practice the total velocity is the most useful.	 rn/sec 

(see 3.2.4 c)
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D member	diameter	or	a	characteristic	width m 

2 

= fluid	viscosity Ns/m 

p	= fluid	density kg/m3 

v	= kinematic	viscosity	=	/p M
2 
/sec 

Representative values	for	sea	water	and	comparative values	for	air are	given	in	the 

following	table. U	is	in	m/sec	and	D	is	in	metres:—

Table	3.2.1	- Data	for	the	Calculation	of	R
e 

Sea	water	 Sea	water Sea	water Air 

(0°C)	 (4°C) (8°C) (0°C) 

p	(kg/rn 3 ) 1028.0 1027.7 1027.2 1.3 

1.654x103 1.470x103 17x106 t	(Ns/m 2 ) 1.879x103 

v	(m 2/s) 1.828x106 1.609x106 1.431x106 13x106 

R 547x103	U  622x103	U 699x103	U 77x103UD  
e 

The significance of Reynolds number for cylinders in steady flow is shown in Figures 

3.2.7	and 3.2.8. The	Re	value	of	the	flow	is	seen to	have a	large	effect	on the	drag 

coefficient.	In	wave	flow	Figure	3.2.11	shows	that Re	is still	an	important parameter. 

However, for	Re greater	than	about	2x105	the	flow regime	is said	to	be	post supercriti-

cal	and the	drag coefficient	becomes	less	sensitive to	R. For	most	wave loading	on 

offshore structures the	Re	will	be	in	this	post—supercritical	range.
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C.	Ellipticity 

In long crested regular waves, with no current, the water particles move in approximately 

elliptical orbits, as shown in Figure 2.1.2.	The ellipticity of the orbit is defined as:-

Ellipticity = E = Height of orbit/length of orbit 

E = 1 for circular orbital flow 

E = 0 for (planar) oscillating flow 

In reality orbits tend to be more complex because:-

i) finite height regular waves have orbits which are neither perfectly elliptical nor fully 

closed 

ii) current effects the orbit shape as discussed below 

iii) random seas result in the addition of several orbit shapes so that the water 

particles follow three dimensional paths. 

d.	Keulegan Carpenter number 

For	the	simple	case	of	an	elliptical	orbit	the undisturbed	flow relative	to	a	member	is 

dependent	on	whether the	member	is	in	or	out of	the	plane	of the	orbit.	Figure	3.2.2 

shows	a	vertical	member in	a	circular	orbit	plane. Inclined	and horizontal	members	may 

be	in	or	out	of	the orbit	plane	as	shown in	Figures	3.2.2 b)	and	c).	Laboratory 

measurements	frequently show	different	values	of
C 	

and	Cm	for members	in	and	out	of 

the	orbit	plane.	The ratio	of	the	size	of	the orbit	to	the	diameter of	the	member	also 

affects	
C 	

and	C. This	ratio	is	proportional to	the	Keulegan Carpenter	(1958)	number:

K =	U T= 
C	 wm 

D	 D
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Wave 
Direction 

WaV( 

Dim 

a) UNDISTURBED PARTICAL PATHS IN ORBITAL FLOW 
VERTICAL CYLINDER, NO CURRENT 

b) UNDISTURBED PARTICLE PATHS IN ORBITAL FLOW 
HORIZONTAL CYLINDER PARALLEL WITH WAVE DIRECTION 

Wave  
Direction 

tT
	

V2 

c) UNDISTURBED PARTICLE PATHS IN ORBITAL FLOW HORIZONTAL 
CYLINDER PERPENDICULAR TO WAVE DIRECTION 

Figure 3.2.2. Undisturbed particle paths in orbital flow 
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Where:
	

Typical 

units 

U wm = maximum wave particle velocity, 

resolved normal to the cylinder 

during cycle, see Figure 3.2.1	rn/sec 

T	= wave period	 sec 

D	= dimension of structure (e.g. member 

diameter)	 m 

b	= diameter of orbit	 m 

In conjunction with C 
d	m	c 

and C , K	also indicates the relative importance of drag and!

inertia forces: 

F = KC 
d	c d 

F.	2C 
t	m 

Where: 

Fd/Fi =	ratio of drag force/inertia force 

C 	
=	drag coefficient 

C	=	inertia coefficient 
m 

Bishop (1980) has defined an equivalent parameter K	 for random waves where the!

above definitions are not applicable. 

e.	Current 

Current affects the values of C 
d 

and C m ,  especially at low values of K c . The direction 

of the current relative to the orbit plane and the member is important, as shown in 

Figures 3.2.3 and 3.2.4 for members in the orbit plane. 
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Figure 3.2.3	Undisturbed particle paths in orbital flow, 

with current parallel to the wave 
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Figure 3.2.4. Undisturbed particle paths in orbital flow 

with current perpendicular to the waves 
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It is convenient with current in the presence of waves to calculate a non—dimensional 

current:	Uk: 

U k = U 
C 

T 

D 

Where 

U	
is the current velocity resolved normal to the cylinder T,D are as defined In Section !
c  

3.2.2 d. 

Typical values for R	and K 	in waves may be determined from Figure 3.2.5.	The ratio!

of drag force to inertia force is given for a cylinder with 0  = 1.0 and Cm = 2.0. 

Actual values of drag and inertia coefficient would, most conveniently, be obtained in 

laboratory experiments. However figure 3.2.5 shows that in order to obtain Re values 

greater than about 2x10 5 , which are necessary if the experimental flow is to be similar 

to the flow around the actual structure, it is necessary to use quite large cylinders in 

large waves.	For example, in order to obtain K 	30 and post— supercritical conditions 

the minimum requirement would be a 0.25m cylinder in 2.5m, deep water, waves. In 

order to avoid using such large wave heights, and to simplify the problem, various 

researchers have carried out tests in simulated wave flows where the water oscillates in 

a U shaped tunnel or where the cylinder itself is made to move. 

f.	Total force coefficients 

In	order	to	compare the wave loading	resulting from	different 0 	and	Cm	pairs	it	is 

convenient	to	use	a single total force	coefficient which,	for	a given	member	and	wave, 

is	proportional	to	the total drag and	inertia	force acting	on	the member.

C =	((C	K/it 
2 2 
)	+ C 

d	c	m 

2 0.5 

((K/it 2) 2 + 1)0
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1 

USE THESE 
WAV E HE IG HI 
SCALES FOR 

KC 

AT 
SURFACE --

005 
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05 
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15 

2•5 

5 

D 50 

USE THESE 
WAVE HEIGHT 
SCALES FOR 
Re 

- L/H=20
AT 

01	 1	 10	
SURFACE

 

ib	 ido	 —L/H=20
AT DEPTH

0•25L 

id	 io	 L/H10 

ATDEPTH 
0251 ib	 ibo 

WAVE HEIGHT (m)

FdIFI =	Drag Force/Inertia Force 

.L/H =	Wave Length/Wave Height 10 or 20 

Cd Drag Coefficient 

Cm =	Inertia Coefficient = 2 

Re = Reynolds Number = U,D/)) 

Kc =	Keu1egn-Carpenter Number =UwmT/D 

Uwm -	UIT	1TZIL ,unie 2 
I =	(2llLI9)½

NOTES 

1) Zero current is assumed. 
2) The member is assumed to be. perpendicular to the wave 

Urn U 
3) Effect of temperature on Re is shown for 0 and 8C. 

METHOD OF USE 

Select horizontal scale according to whether Kr or Re is 
wanted and for required depth of member and wave steepness. 
The wave height then defines a vertical line and the 
cylinder diameter a horizontal line. 

The intersection point allows Kr or Re to be determined from 
the contours. 

Figure 3.2.5. Reynolds number, Keulegan Carpenter number and ratio 

of drag force to inertia force for deepwater waves 
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This coefficient has the value of C 
m	 c	m	 d 

at low K when C	is dominant and C	at high 

K when 
C 	

is dominant.	It is dependent on the flow conditions as represented by the 

Keulegan Carpenter number K	described above.	This coefficient is very similar to the 

total force coefficient	C	defined by Bishop (1980) for the case of random waves. 

The coefficient C does not allow for the presence of a current.	When the effect of a!

current is to be taken into account the following force coefficient has been used 

instead:— 

C	= (C	K /2Ir 
ft	d	c ) (U k c 

/K + cos 9)2 + C 
m 

sin B 

(K/,2) (Uk/Kc + 005 
9) 2 

+ sin e 

Where Cft is evaluated at the value of phase angle 8 : 0 < 0 < 2n corresponding to 

the maximum value of the numerator of the expression. 

Both C  and C	are approximations to the equal drag and inertia coefficients that would
ft 

cause the same fluid loading as the actual Cd Cm pair. 

However, C  and Cft are based on different assumptions and do not generally have the 

same values for the case of no current. C  assumes a square root sum of squares 

addition of the drag and inertia loading whereas Cft more closely follows the time history 

of the loading on a single member. We would anticipate C  to be the best indicator 

for a structure with several members attracting wave loading but Cft to be a better 

indicator for the loading on a single vertical member. 

3.2.3	Marine growth and surface roughness 

Offshore	structures	are	roughened	by	corrosion	and	colonised	by	marine	growth.!

Roughness and marine growth substantially increase the forces exerted by waves and 

currents. 

This increase Is caused by:—

a)

	

	increased dimensions of the member, which should be taken into account by the use !

of larger D and A values in Morisons equation 
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b)	increased surface roughness caused by, for instance, rust, barnacles and mussels 

C)	entrainment of water, e.g. by kelp. 

Surface	roughness is defined here	in	terms	of	kID	as	shown	in	Figure	3.2.6.	Some 

researchers	define D as	the diameter	of	the	cylinder	excluding	the	marine	growth	and 

others	include	all the marine growth. 

Values	of	surface	roughness may	be	approximately	0.1mm	for	poorly	painted,	galvanised	or 

very	lightly rusted surfaces and	about	25mm	for	hard	marine	growth	such	as	barnacles 

and	mussels. For cylinder diameters	in	the	range	0.5m	to	5m	the	relative	roughness 

k/D	could	therefore be	in the	range	1150,000	to	1/20	although	the	range	of	practical 

interest	is probably 1/1000 to	1/20.	Soft	marine	growth	may	be	compact,	e.g.	sea 

anemones,	or long, e.g.	kelp. Very	little	research	has	been	performed	on	the	effect	that 

soft	marine growth has	on hydrodynamic	loading.	In	practice	marine	growth	does	not 

grow	evenly on	members	of offshore	structures.	This	also	affects	loading.	Wolfram	and 

Theophanatos (1985) describe some	relevant	characteristics	of	marine	growth. 

Surface	roughness	also changes	the	Reynolds number at	which	the	transition	from 

subcritical,	through	critical to	supercritical	flow occurs. The	effect	is	shown	in	Figure 

3.2.8	for	steady	flow	and in	Figures	3.2.15	and 3.2.16	for ocillating	flow.

3.2.4	Steady flow 

a.	Smooth cylinders 

The drag coefficient of a long smooth cylinder for steady flow has been determined using 

wind tunnels, by many researchers, e.g. Delany and Sorensen (1953).	Figure 3.2.7 shows 

the dependence of C  on Reynolds number and, in conjunction with Table 3.2.2, shows 

the various flow types which are characteristic of various ranges of Reynolds number 

(R). 

The value of Re corresponding to the minimum value of 
C 	

reduces (ESDU, 1981) if!

there is any turbulence in the incident flow or any surface roughness because the 

boundary layer becomes	turbulent at a lower velocity.	For design	purposes	it is 

therefore difficult to benefit from the lowest C	values in the critical range of R 
d	 e 
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owth 

D c = cylinder diameter 
D 0 = D - k + 2t 
D = mean diameter of cylinder and marine growth 

t = mean marine growth thickness 
k = mean roughness height 
A = 1TD2/4 = mean cross sectional area 
A and D are used in Morisons+s equation in this report 

Figure 3.2.6	Marine roughness definition 
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Table 3.2.2 - The characteristics of steady flow past a smooth cylinder at various 

Reynolds number 

Reynolds	Flow velocity	Flow characteristic 

number	for lm diameter 

range	smooth cylinder 

at 8°C

Subcritical flow 

1.	0.5	3mm/hour	 *Streamlined* flow around the cylinder with no vortices 

formed.	The drag force is mainly *skin friction* and 

is proportional to the flow velocity 

2. 2-30	10-150mm/hour 

3. 40-2x105	200mm/hour - 

0.3m/sec

Two vortices form in	the	*wake*	behind the cylinder 

but they	are not shed	downstream.	At the higher 

flow velocities they oscillate	from	side	to side

Vortices are shed alternately from each side of the 

cylinder at a frequency which is dependent on the 

flow	velocity.	The	drag	force	is	becoming 

proportional	to	velocity	squared	as	it	is	now 

dominated by the reduced pressure in the wake 

Critical flow 

4. 3x10 5	0.43m/sec at 8°C	The flow in the boundary layer around the front of 

(0.55 misec at	the cylinder has been laminar but at this stage it 

0°C)	 becomes turbulent.	This has the effect of reducing!

the width of the wake and reducing the drag force 

on the cylinder.	Vortices are now shed randomly !

and not at a particular frequency 

Supercritical flow 

5. 4x105	
0.6-6m/sec	The width of the wake and the drag coefficient 

-4x10 6	 increase slightly 

Post-supercritical flow 

6. >4x10 6	6m/sec at 8°C	The width of the wake and drag coefficient remain 

(7m/sec at 0°C)	constant.	The drag force is now proportional to 

velocity squared.	Regular vortex shedding is 

re-established 

Note:	The flow is modified by turbulence in the incident flow and by surface roughness 
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Figure 3.2.7. The effect of Reynolds number on flow characteristics and drag coefficients for 

a smooth cylinder in steady flow
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b.	Rough cylinders 

Roughness increases Cd as shown in Figure 3.2.8, from tests in wind tunnels (Miller. 

1976). Miller uses the roughness parameter kID (see Figure 3.2.6). Similar results 

have been obtained by Achenbach (1971) and Guven et al (1975) and by Lloyds Register 

of Shipping (see Appendix P).	Miller also compared the drag on a barnacle encrusted !

cylinder (with flexible growths removed) and the drag with an artificial roughness (pearl 

barley) of similar kID.	Similar 
0  

values were obtained.	For the post critical flow!

conditions and roughnesses likely to be found on offshore structures Miller*s steady flow 

C 	
value is in the range 0.85 to 1,25. 

Wolfram and Theophanatos (1985) measured 0  values of cylinders, with various types of 

marine growth using instrumented cylinders floating to the surface under the effect of 

their own buoyancy.	After an initial acceleration approximately steady post critical flow 

conditions are achieved. These results were originally presented in terms of D, are 

shown in Table 3.2.3 after adjusting, both the roughness parameter and 
0d 

to be 

consistent with D, the mean equivalent diameter including marine growth as given by 

Wolfram and Theophanatos.	
C 	

values of about 1.3 were obtained for both mussels and 

kelp.	
C 	

values of about 1.0 were obtained for sea squirts, anemones and for cylinders 

with a mixture of barnacles, soft seaweed and very small mussels.	The irregularity of!

the roughness does not allow the k or D to be defined very precisely. 

The findings of various pieces of research on the effects of surface roughness are 

compared in Section 3.2.10 h and are plotted in figure 3.2.55. 

C.	Inclination 

The effect of cylinder inclination to a steady flow has been investigated for example, by 

Bursnall & Loftin (1951), Chiu (1966), Hanson (1966), Novak (1975) and Norton, Heideman 

and Mallard (1981).

These	investigations	have generally confirmed	the	crossflow	or independence principle 

(Hoerner,	1965).	This	states	that the	normal	pressure	force is	independent of	any 

component	of	the	incident velocity which	is	parallel	to	the axis	of	the member. 

However,	the	transition	from subcritical to	post—supercritical	flow	is more	closely	related	to 

the	Reynolds	number	of	the total	incident flow	velocity	than	the	Reynolds	number of
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Table 3.2.3 - Values of 
C 	

for steady flow and Cm for accelerating flow, Wolfram and Theophanatos, 1985 

0

Nature	of	marine growth Details 0 D k k/D k/D C C 0 d m 

Clean,	smooth 200 200 - - - - 2.08 

Clean,	smooth 400 400 - - - 0.49 2.14 

Clean,	roughened 200 200 0.4 .002 1/500 0.83 2.22 

Clean,	roughened 400 400 0.4 .001 1/1000 0.78 2.17 

0.5m	long	kelp	- 100%	cover Effective diameter	found	by	wrapping 400 500 - - - 1.34 2.27 

1.0m	long	kelp	- 100%	cover the	kelp around	the	cylinders 400 520 - - - 1.30 2.26 

Single	layer	of	mussels -	100%	cover Mussels glued	in	place 400 455 27 .059 1117 1.05 2.02 

Multiple	layers	of mussels	-	100%	cover Natural covering	of	1-6	layers of	mussels 200 285 42 .147 1/7 1.30 1.74 

Multiple	layers	of mussels	-	50%	cover Reduced cover	was	obtained	by removing 200 242 42 .173 1/6 1.39 2.09 

Multiple	layers	of mussels	-	25%	cover mussels 200 221 42 .179 115 1.41 2.28 

Sea	anemones	and	squirts Sea	anemones	and	sea	squirts covered 315 365 40 .127 1/8 0.94 1.87 

-	top	and	bottom covered 70%	of cylinder.	Average	size 30-50mm. 315 365 40 .127 1/8 1.17 1.80 

-	sides	covered Remainder	covered	by . barnacles and	soft 

fouling 

Naturally grown fouling 

-	leading edge covered Barnacles,	soft	seaweed	and	clumps	of	315 339 24 .071 1/14 0.96 1.87 

-	trailing edge covered small	mussels.	 315 339 24 .071 1/14 1.03 1.85 

Naturally grown fouling .	Barnacles	24mm	high 

-	leading edge covered 400 424 24 .057 1/18 1.04 1.95 

-	trailing edge covered 400 424 24 .057 1/18 0.87 1.94

Notes: 

1. The C 
d 

and C	values are based on the mean diameter 0 whereas in the original paper the values were based on 0 
m 

2. The Cm value given above is the inertia coefficient.	In the original paper Cm is the added mass coefficient 



the component resolved normal to the cylinder. Also the low value of C  in the critical 

flow region, see Figure 3.2.7, increases with inclination until at about 45 0 the 
0  

value 

changes directly from about 1.2 to 0.6 (Bursnall and Loftin, 1951). 

3.2.5	AcceleratinQ flow 

The	inertia	force	on	a cylinder in	an	inviscid,	irrotational,	accelerating	flow may	be 

calculated from potential flow theory.	This results in a Cm of 2.0. 

Sarpkaya and Garrison (1963) measured the forces on a cylinder in a flow accelerated 

uniformly from zero velocity.	
C 	

and Cm were found to be close to 0 and 2.0 as the 

flow started to accelerate.	After the fluid had displaced by about 3 cylinder diameters!

the drag and inertia coefficients had (fluctuating) values of about 1.25. 

Wolfram and Theophanatos (1985) also estimated C (and hence Cm 1 + Ca) (see 

Section 3.1.3) from the experiments with cylinders described in Section 3.2.4. Cm values 

corresponding to the initial acceleration are given in Table 3.2.3. 

Most types of marine	growth	resulted	in	slightly	lower Cm	values	than	a smooth 

cylinder.	The kelp value was based on an equivalent cylinder area obtained by wrapping !

the kelp around the cylinder and measuring the circumference. 

The effect of inclination on the inertia force in uniformly accelerating flow is most easily 

understood by separating the force into the Froude Krylov and added mass components 

(see Section 3.1.3). 

The	total Froude	Krylov Force	pVU	behaves	very	much like	a	buoyancy force	which acts 

in	the	direction of	the fluid	acceleration. It	is	independent	of	the orientation	of the 

member. However,	the pressure	acting	on any	part	of the	member	is dependent	on the 

orientation of	the	member as	shown	by Figure	3.2.9. For	a	general orientation	of the 

member	the	acceleration may	be	resolved parallel	and transverse	to	the member	and the 

pressures from	the	two components	added.

The independence principle (see Section 3.2.4) therefore applies to the transverse Froude 

Krylov force on the member.	However there is also a Froude Krylov force in the axial 

direction.	This axial force is not usually taken into account in jacket design, but exists 
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a) AXIAL ACCELERATION

The total Froude Krylov force is again Pv although this is now the 

resultant of a varying pressure applied around the curved face of the 

cylinder. The forces on the ends of the cylinder are equal and opposite. 

b) TRANSVERSE ACCELERATION 

Figure 3.2.9. Froude Krylov forces acting on a cylinder from 

axial and transverse components of acceleration 
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for a brace member framing into chords, as well as for the case of the Isolated 

member.	The effect of ignoring the force is estimated, for a simple example structure, 

in Appendix I.	The error was found to be small:	11% of the inertia force.	It is!

therefore just reasonable to ignore this force. 

The added mass forces can also be considered in the parallel and transverse to member 

directions.	However, the added mass parallel to a member is small and may usually be 

ignored.	The added mass force therefore obeys the independence principle as it is !

proportional to the transverse acceleration. 

3.2.6	Planar oscillatinQ flow 

a.	Smooth cylinders 

The	simplest	type of	wave	flow, though only	found	near	the	sea	bed	in	shallow	water 

waves,	is	planar oscillating	flow. This flow	has	been	generated	by	Sarpkaya	(1976	a,b) 

in	the	large	U shaped	tunnels shown in	Figure	3.2.10.	Using	this	apparatus	It	is 

possible	to	study drag	and	inertia forces at	a	wide	range	of	A	and	K. 

The independence principle (see Section 3.2.4) suggests that the flow parallel to the axis 

of a cylinder does not influence the loading normal to the member. This would suggest 

that the oscillating flow results should also be applicable to vertical cylinders in regular 

waves with elliptical orbits. However, experimental work, described in the following 

sections, has shown that until K 
C 

reaches about 300 the oscillating flow measurements 

lead to higher forces than have been measured on structures in waves (Heideman and 

Sarpkaya, 1985).	This may be caused by the re—encounter with the cylinders own wake 

which occurs repeatedly in Sarpkayas	tunnel but occurs less frequently in real seas !

because of the effects of currents and random waves. 

The	
C 

and	C results for	smooth	cylinders	are	shown	in	Figures	3.2.11	to	3.2.14.	At 

Re	values	less than 10,	lower than	are	relevant	to	offshore	structures,	the	drag 

coefficient
C 	

is higher than	the steady	flow	value	and	the	inertia	coefficient	C	lower 

than	the potential flow value	of	2. In	the	range	of	A	and	K	that	is	most	important 

for	drag loading (Re	greater than 10	
K 	

greater	than	20)	the	value	of	
C 	

is	between 

0.6	and 0.7.	This	is similar	to the	post—supercritical	steady	flow	value	of	0.68.	The 

inertia	loading is most important at	lower	values	of	K.	Figure	3.2.11	shows	a	Cm 

value	of about	1.75 for K	=	20 and	R	greater	than	10g .	C	values	for	lower	K 
c e	 m	 c 

at	high Re	are not	available	from	the	experiments.	However	extrapolation	of	the
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results in Figures 3.2.12 and 3.2.14 suggest that Cm may be in the range 1.75 to 2.0 

for these conditions.	Further comparison of the steady flow results, with Sarpkayas 

(1976a) oscillating flow results, shows that the lowest C 	values in the critical flow 

regime occur at an Re of about 2x10 5 in oscillating flow but at the higher R	of about!

5x10 5 in steady flow. 

b.	Rough cylinders 

To	examine	the	effect of	roughness in	oscillating	flow Sarpkaya	(1976a, b)	carried	out	a 

series	of	experiments with	sand—roughened cylinders in	the	tunnel. His	
C 	

and	Cm 

results	are	shown	in Figures	3.2.15 and	3.2.16	for	K =	20	and	K	= 100	as	a	function 
c c 

of	R.	Each	curve on	each	plot corresponds	to	a particular	relative roughness.	The 

variation	of	C	C	and	C	with	K 
d ,
	

m
for	post	critical flow	conditions	is shown	in	Figures 

f c 

3.2.17	to	3.2.19. 

Qualitatively,	the	effect of	hard	roughness	on the	oscillating	flow	
C 	

value	is	similar	to 

the	effect	on	the	steady	flow	C  value: a	small	amount	of	roughness	significantly 

increases	
C 	

in	post critical	flow conditions. However	the	smooth	cylinder,	post	- 

supercritical	
C 	

values are	similar in	steady flow	and	oscillating	flow	but	the	rough 

cylinder	
C 	

values	are significantly higher	in oscillating	flow	than	in	steady	flow	as 

shown	by	Table	3.2.4

C.	Planar oscillating flow with current 

The effect of a current parallel to and superimposed on planar oscillating flow has been 

simulated, by translating cylinders in oscillating flow, in the U tunnel apparatus (Sarpkaya 

and Storm, 1985). Some results, showing the variation of C  and Cm with current and 

K, are shown in Figures 3.2.20 and 3.2.21. Note however that the data is mainly in the 

critical range of Re and that the changes in 
C 	

and Cm may be caused partly by the!

change in R 
e 

when current is added.
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I Table 3.2.4 -

	

	Comparison of C 	values in post—supercritical steady flow and oscillating 

flow 

steady	flow	C Oscillating	flow	C  

7 A 6	R	=3x105 
A	=	10 e	= 10	 e 

e K	=100 K	=20 
C C 

Smooth cylinder 0.68 0.65 0.68 

Rough cylinder 

kiD 1/200 1.00 1.45 1.62

Current reduced the value of C d*	For K c
	 c 

greater than about 10 increasing K	also 

reduces the value of C.	Sarpkaya and Storm show that a value for 
C 	

with current 

may be estimated from the C 
d	 c	c	k 

for no current at the effective K	of K	+ U .	(For 

definition of K	and 
U 	

see 3.2.2).	In Appendix H comparison is made with an 

alternative method of estimating the effect of current on C  

Cm was also found to be dependent on current, particularly for 
K 	

values of less than 

20 where with no current Cm varies quite rapidly with K.	As the current increases the 

C	value becomes less dependent on K 
C	 m 

and tends to the C	value corresponding to!
m  

no current but high K. 

d.	Inclined cylinders in oscillating flow 

The effect of cylinder inclination to oscillating flow (Re =12,000 to 160,000 and 
K 	

= 

to 40) has been reported by Sarpkaya, Raines and Trytton (1982) and a correction was 

made by Garrison (1985).	The independence principle was shown to work fairly well for 

inertia forces at the higher values of R 
e	C 

and K	considered. 
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3.2.7 Cylinders in Simulated waves 

a. General 

The	difficulties	of	achieving	high Re	in	laboratory	waves	have	led	researchers	to simulate 

wave	flow	by	orbiting	cylinders in	initially	stationary flow.	The	flow	around	a cylinder 

orbiting	in	a	stationary	fluid	is similar	to	the	orbital flow	of	a	wave	about	a horizontal 

cylinder.	However,	the	inertia force	acting	on	the orbiting	cylinder	is	only	the	added 

mass	force,	described	in	3.1. The	Froude—Krylov force,	which	is	associated with	the 

acceleration	of	the	flow,	does	not occur.	This	force can	however	be	estimated and	the 

inertia	coefficient	adjusted. 

b. Holmes and Chaplin 

Chaplin	(1985b) (also	Chaplin 1981, 1985a	and	Holmes and	Chaplin,	1978)	performed 

experiments	in which	a	smooth cylinder was	driven	around an	elliptical	path	in	a	tank	of 

water.	The	ellipticity:	E	of the	path was	varied	from 0	(planar	oscillating	flow)	to	1 

(circular	orbital flow	corresponding to	a horizontal	cylinder parallel	to	the	crest	of	a	deep 

water	wave). Kc	values	were in	the range	6	to	20	and	R	7x10 4	to	2.2x105. 

For planar oscillatory flow values of 
C 	

and Cm were similar to those obtained by 

Sarpkaya in his U tunnel, see Figures 3.2.22 and 3.2.23. 

As	the	ellipticity	of the	flow	was increased	Cm	was	found	to	decrease, typically	from 

about	1.8	at E=0	to about	1.0 or	less	at	E=0.9. Chaplin	has	shown that	this	is 

consistent	with a	lift force,	caused by	the	circulation of	the	flow	relative	to the	cylinder, 

acting	in	the opposite direction	to the	inertia	force.
C 	

also	decreased	as E	increased 

but	this	was probably caused	by	the	stirring	effect	of the	cylinder	rotating	in	the	fluid.

C.	Grass, Simons and Cavanagh 

Grass, Simons and Cavanagh (1984) have also performed experiments in which a cylinder 

is	oscillated	or driven	in	an	elliptical	path	in	a	tank	of water.	They	obtained 

subcritical R	of 2x10 3 to 2x104 and K	between 10 and 30.	They also found that C 

	

e	 c	 d 

and Cm reduced as the ellipticity of the flow increased.	They noted Chaplin,s suggestion!

that this was caused by a potential flow lift force but make an alternative sugestion that 
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it is caused by the drag force being imperfectly in phase with the velocity of the 

cylinder, and cancelling part of the inertia force. 

3.2.8	Laboratory waves 

a. General 

As already discussed it is difficult to achieve the post—supercritical Reynolds numbers for 

laboratory wave flows because of the size of cylinders and waves that are needed. 

This section contains the results of experiments which are not all in post—supercritical 

flows	therefore	some	caution	is	needed	in	extrapolating	those	results	to	offshore 

structures.	Nevertheless Bearman et al (1985), Gaston and Ohmart (1979) and Teng and !

Nath (1985) have achieved post—supercritical flows under laboratory conditions. 

b. Bearman, Chaplin, Graham, Kostense, Hall and Klopman 

Bearman et al (1985) conducted experiments in the large Delta flume at the Delft 

Hydraulics Laboratory.	The cylinder was 0.5m in diameter and had a painted finish. 

Vertical and horizontal cylinders were studied in regular and irregular waves.	Re was In 

the range 1.46x10 5 to 5.05x10 5 and K 
c	 d	m 

ranged from 4 to 20.	C	and C	were 

determined for regular waves.	These are shown for the vertical cylinder in Figure 

3.2.24, and for the horizontal cylinder in Figure 3.2.25.	Bearman et al suggest that the!

increased scatter in the horizontal cylinder results is caused by lift forces as vortices 

are shed.	The effect of ellipticity was studied to determine if the effect, found by 

Holmes and Chaplin (1978), of circulation lift forces could be identified. No effect was 

discernible in the measured data and it is suggested that this could be caused by slight 

currents and irregularities in the waves preventing re—encounter of the cylinder and its 

wake. 

Total force coefficients were determined for both random and regular waves.	These were 

plotted against K.	There was good agreement between the total force coefficients for 

the two types of waves.	The C  values for regular waves are shown in Figures 3.2.26!

and 3.2.27.
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C.	Gaston and Ohmart 

Gaston	and Ohmart	(1979)	measured	the	total wave	force	and	overturning	moment on	a 

smooth	and roughened	4.3m	long by	0.305m diameter	vertical	cylinder	in	a	wave	tank. 

Drag	and inertia	coefficient	were determined (Table	3.2.5)	using	the	measured in—line 

moment	and particle	kinematics. The	wave height	was	1.2m.	The	
K 	

at	MWL would 

therefore	have	been	about	12.5. Reynolds numbers,	based	on	the	rms	water particle 

velocity	at MWL,	were	from	2x105 to	3x10 5 . The	change	from	the	smooth	to	the rough 

surface	k/D =	1/99	increased	the drag	coefficient	by	70%.	Further	increase	in surface 

roughness	had a	smaller	effect. Cm	decreased with	roughness. 

Table 3.2.5 - Values of 
C 	

and Cm for rough vertical cylinders 

k/D	
C 	

C	 C 
m	 f 

0 0.77 1.81 1.27 

1/99 1.30 1.76 1.49 

1/34 1.35 1.81 1.54 

1/25 1.34 1.80 1.54 

R	= 2x10 5	to	3x105 ,	K	=12	(Gaston and	Ohmart,	1979) 
e C

Note: Original paper gives k/D, 
C 	

and Cm based on the smooth cylinder diameter: D. 

The	above	results	have	been	estimated allowing	for the	mean	rough	cylinder!

diameter: D (see Figure 3.2.6). 

d.	Pearcey, Singh, Cash and Matten 

Pearcey (1979) and Pearcey et al (1985) measured 
C 	

and Cm values for rough and 

smooth vertical and horizontal cylinders.	The Re range was 2x10 4 to 9x104 and the K !

range 2 to 14. The flow conditions are almost certainly not post—supercritical, 

(Pearcey et al, 1986).	However, the results may be relevant to cylinders at some depth!

see Figure 3.2.5).
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The equipment used is shown in Figure 3.2.28 and the 
C 	

and Cm values for the!

various cases are given in Figures 3.2.29 to 3.2.34. 

The results show low values of C 
m 

for horizontal cylinders which is consistent with 

Holmes and Chaplin (1978). 

e. Tang and Nath 

Tang	and	Nath	(1985)	obtained	drag	coefficients	for	smooth	and	rough	horizontal 

cylinders.	The results are shown in Figures 3.2.35 and 3.2.36.	Cwas found to be 

approximately 1.0 for both the smooth and rough cylinders.	The 
C 	

values increased by!

about 80% with roughness. 

Tang and Nath also towed smooth and rough horizontal cylinders through waves. They 

observed that the drag coefficient tended to the steady flow value as the towing velocity 

increased to that of the wave particle velocity. 

f. Cotter and Chakrabarti 

Cotter and Chakrabarti (1984), in laboratory waves, measured the transverse load on a 

cylinder at various angles to the vertical but in the orbit plane of waves.	Re values 

were up to 1O 5 and K values were up to 30.	It was concluded that the independence !

principle seemed to be valid. 

g. Bullock 

Bullock	(1983) measured
C 	

and	Cm	values	for a	cylinder	at	five	orientations relative	to 

waves	of	various	ellipticities.	The	range	of	Re was	from	1.6x103	to	7.5x10 3 which	is 

subcritical	and therefore of	limited	interest	for offshore	structure	design	and analysis. 

The	effects	of cylinder orientation	and	ellipticity of	the	flow	are	both	shown	to be	large 

with	increased ellipticity usually	reducing	both	
0 

and	C. 

h. Torum 

Torum	(1985) investigated the	wave	forces,	in	the near	surface	region	following	field 

measurements reported	by Dean	et	al	(1981)	which showed	a	surface	effect.	This	is 

explained	by the	Bernoulli effect	giving	a	run	up	on the	waveward	side	of	the	cylinder

of approximately 
U2 

/2g and a similar drop of water level on the down wave side of the 

cylinder.
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3.2.9 Sea waves 

a. General 

Several experiments have been performed in the sea.	These experiments often also!

produced particle kinematics data as described in Section 2.2. 

b. The Christchurch Bay experiment 

This experiment, conducted in the sea off Southern England, has generated a large 

amount of data at high Re and over a range of Kc (see Section 2.2.4). 

Most of the loading data is for clean vertical cylinders but some data has also been 

obtained for clean horizontal cylinders and for kelp fouled cylinders, both vertical and 

horizontal.	Figure 3.2.37 gives 
C 	

and Cm values for all these cases.	Figure 3.2.38 

gives C-f values for the clean vertical cylinders and Figure 3.2.39 gives C	values for!

the clean and kelp fouled cylinders over the range of Kc for which results are available. 

For smooth vertical cylinders Bishop (1984) concludes in his summary report: 

1. Extensive	wave	force	measurements	for	clean	vertical	cylinders	in	real	sea 

conditions	have	led	to confident results	for	mean	force	coefficients,	based	on 

reliable measurements of the wave particle kinematics.	The results are shown to be!

applicable to North Sea structures. 

2. The mean force coefficients, C 
m	d 

and C	at the depth station nearest to the sea 

surface are:-

- at high Keulegan Carpenter numbers (Kc > 30) Cm = 1.8, 
C 	

0.66 

- at intermediate Keulegan Carpenter numbers (30 >c > 5) Cm and 
C 	

both 

increase as K reduces 
c 

- at low Keulegan Carpenter numbers (Kc < 5) C	= 2.0 

(The value of 
C 	

is unimportant at K 	< 5) 
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3. At lower depth stations the force coefficients show some progressive reduction with 

depth.	However, for design purposes, it is safer to use values applicable to the 

upper depth station quoted above. 

4. The total force coefficients have been found to be invariant with Reynolds number 

over the range of conditions tested (2x105 < Re < 2x10 6 approximately). It follows 

that the results may be applied with confidence to North Sea structures. 

5.	Analysis	of	peak	values	of	wave	forces	for individual waves	has	shown that	they 

are	generally	well-predicted	when	using	the long-term mean	force	coefficients	in 

conjunction	with	the	measured	particle	kinematics. The mid-range	values (which	are 

important	in	fatigue	calculations)	are	well predicted at	all	Keulegan Carpenter 

numbers.	However,	the	upper-range	values (which	are	important	In	extreme load 

calculations)	are	susceptible	to	some	underprediction at	high	Keulegan Carpenter 

numbers	and	this	should	be	recognised	in	the prediction of	extreme	loads. 

6. Force spectra are generally well predicted when using the long-term mean force 

coefficients in conjunction with the measured particle kinematics. This is particularly 

so when considering the largest force component, in line with the wave direction. 

Spectra for the smaller transverse force are less well predicted and this is evidence 

of the increased influence of vortex shedding at the higher Keulegan Carpenter 

numbers. Overall however, the transverse force spectrum is dominated by transverse 

wave components in the multi-directional sea and this makes the significance of 

vortex shedding less than it would be with uni-directional waves. 

7. Borgmans	linearisation	of	the	drag	term	in	the	force	spectrum	can	lead	to 

significant under- prediction of the drag force spectrum. In this work, the under-

prediction was typically some 25% at the spectral peak, with larger differences at 

lower frequencies.

8.	The	measured	particle	motion	data, in	terms of	velocity	and	acceleration, have	been 

used	to	evaluate	linear	random wave	theory, in	conjunction	with	the measured 

surface	elevation.	Generally,	the velocity prediction	is	good,	but	there is	some 

over-prediction	at	higher	frequencies	and some	under-prediction	at the	lower 

frequencies.	The	cause	of	the	low frequency under-prediction	is	probably	the effect
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of depth-limited waves, but the present results have only explored this to a limited 

degree. 

With particle acceleration, linear random wave theory gives a more marked over-

prediction at the higher frequencies. 

9.	When force predictions are based on surface elevations the deficiencies of wave 

theory,	as	outlined	above,	follow	through	to	force	predictions	that	are	less 

satisfactory than those based on the measured particle kinematics. The major 

effect is over-prediction of inertia forces due to the over- prediction of particle 

acceleration. 

Results for kelp fouled cylinders have also been obtained from the Christchurch Bay 

Experiment, Bishop (1987).	These have been determined over the range Kc = 15 to 

K 	
= 30.	Values are given	in	Table 3.2.6.	Note that these values	have been!

calculated using the clean cylinder diameter and area. 

Table 3.2.6 - C 	and Cm for kelp fouled cylinders at K 	= 15 to 30 Christchurch Bay !

Experiment (Bishop 1987)

C 	
C 

m 

Vertical cylinder
	

1.20	 2.40 

Horizontal cylinder	 1.05	 1.75 

In practice an allowance is usually made for marine growth increasing the cylinder 

diameter and area.	We assume an equivalent thickness of marine growth to be 50mm. 

The clean cylinder diameter was 490mm and C 
d 

and C	values consistent with the!
m 

590mm effective diameter are shown in Table 3.2.7.	(This effective thickness is similar !

to that given by Wolfram and Theophanatos in Table 3.2.3). 
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Table 3.2.7 - C 	and 
0m 

for kelp fouled cylinders at 
K 	

= 15 to 30 using an 

effective D and A.	Based on the results of Bishop (1987) 

0d	 Cm 

Vertical cylinder	 1.0	 1.66 

Horizontal cylinder	 0.87	 1.20 

C.	The Ocean Test Structure experiment 

This experiment was performed in the Gulf of Mexico (see Section 2.2.4).	It determined 

C 
d 

and C	values in waves for clean and marine fouled (barnacles, k/D = 1/35) vertical!
m 

cylinders. Values have been calculated using both spectral methods (Borgman and Yfantis, 

1979) and by two wave by wave methods (Heideman, Olsen and Johansson, 1979). 

Both estimates	show	a large	scatter.	The	spectral	estimates were	typically	C  :	0.6	to 

0.8 and	C	:	1.4. The	highest	reported	special	estimates for	C	and	C were	1.75 
m d	m 

and 1.65.	The	wave by	wave	analysis	results	(calculated	by two	methods)	are shown	in 

Figures 3.2.40	and	3.2.41. The	corresponding	inertia	coefficients could	not	be related	to 

K and	are	shown	in Table	3.2.8.	Total	force	coefficients	are	given	in	Figure 3.2.42.
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Table 3.2.8 - C	from the OTS experiment (Heideman et at, 1979) 

Method 1	 Method 2 

Cylinder condition	 C 
m	 m 

standard	 C	standard 

	

deviation	 deviation 

Clean 1.51 0.31 1.65 0.28 

Fouled 1.25 0.34 1.43 0.35 

The	measurements taken on	the	OTS structure	were	in	the presence	of currents. 

Sarpkaya	and	Cakal (1983) analysed	some of	the	data	to	determine the	effect	of current 

running	parallel	with the wave	direction. Their	results,	shown	in Figures	3.2.43a and	b 

and analysed further in Appendix H show that increasing current reduces 
C 	

but, for K 

greater than 10, has little affect on C.	These results are qualitatively similar to those,!

obtained by Sarpkaya and Storm (1985), for planar oscillating flow (see Section 3.2.6 and 

Figures 3.2.20 and 3.2.21).	Pearcey (1986) suggested that the reason for the decrease in 

C 	
is that the wake is being convected away from the cylinder. 

At	K	greater than about	30	the	effect	of	current	on	
C 

was	small	in	the	oscillating 

flow	tests.	This also	seems	to	be	the	case	for	the	R 1K of	25.000	but	not 
e	c 

necessarily	for the R /K	=	20,000.	However,	we	speculate that	the	effect	of	currents 
e	c 

does	reduce	as	K  increases	because,	as	discussed	by	Heideman	et	at	(1979),	in	a 

random	sea	at high
K 	

the	wake	will	be	convected	away	from	the	cylinder,	in	much	the 

same	way	as by	a current.	Any	component	of	the	current running	perpendicular	to	the 

wave	direction may also	be	expected	have	an	effect	on	Cd.
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d. The Forties Field experiment 

The	Forties	Field Experiment	(Atkins,	1979) produced	estimates	of	
0d	

and Cm	using	the 

equipment	shown in	Figure	3.2.44.	K	was in	the	range	5	to	15	and	R ranged	from 

3x105	to	6x10 5 . The	results,	based	on	the horizontal	velocity	meters	at —7.5m	and	the 

wave	force	sleeves	at	—8.5m,	are	shown in	Figures	3.2.45a	and	b.	The force	sleeves 

were	coated	with an	antifouling	compound which	would	have	resulted	in some	surface 

roughness.	The C	and	C	values	were found	to	be	correlated	with	R and	K .	The d	m e C 

C	and C	values	were calculated	from the	peaks in	total	force	on the	basis	of an 
d m 

average phase	lag	between the	times	of maximum	force and	maximum velocity.	At the 

time	of writing	there	is some	controversy over	the results	produced by	this	form of 

analysis. Bishop	(private communication) argues	that the	method	is not	satisfactory in 

the	presence	of	currents. Starsmore (1981),	who has	obtained	similar	results	from 

analysing Christchurch	Bay data,	argues that	the	effects	of	current	are	small	and that 

the	method explains	some of	the	scatter found	in	the OTS	experiment. 

e. The Eugene Island experiment 

Ohmart and Gratz (1979) analysed data from a wave force transducer and current meters 

fitted to the Eugene Island Platform in the Gulf of Mexico. It is not known whether 

the wave force transducer was clean or fouled but the data was measured 9 months 

after installation of the structure.

Drag	and	inertia coefficients	were	estimated	on	the	basis	of	minimising	the sum	of	the 

squares	of	the error	between	measured	and predicted	force	time	histories. Coefficients 

were	obtained	for various	subsets	of	the	data as	shown	in	Tables	3.2.9	and 3.2.10.
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Table 3.2.9 - Cd values for two ranges of R, Eugene Island Experiment 

(Gaston and Ohmart, 1979) 

Subset
	

C  

1x106	Re < 3x106	 0.70 

R > 3x106	
0.86 

e 

Table 3.2.10 - Cm from Eugene Island experiment (Gaston and Ohmart, 1979) 

Subset	 C 
m 

All data	 1.06 

Data better conditioned for accurate 

determination of C m
	1.37 

These 
C 	

and Cm values were then used to predict the force peaks occurring in the 

time history.	This resulted in an underestimate of the measured force as shown in!

Table 3.2.11.
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Table 3.2.11 -	Measured/predicted peak forces and coefficient of variation obtained by 

applying C	 and C, based on the loading time history, to the peaks 

of load, Eugene Island experment (Gaston and Ohmart, 1979) 

Measured / Predicted 

Peak Force 

C  for fl	C for RC	Median	Mean	Coefficient 

3—lOx 10
	

1-3x106 e
	m	

of variation 

0.07	 0.07	1.37	1.09	1.14	0.305 

0.86	 0.07	1.37	1.07	1.11	0.304 

f)	Pearcey:	Tests in the sea 

Pearcey et	al (1985)	reports	a	comparison of	wave	forces	on a	smooth	and	rough 

cylinder placed in	the	sea	off	a	pier. The results	are	shown in	Figure	3.2.46.	The 

effect	of hard roughness	and	seaweed	is to increase	the	forces applied	to	the	cylinder. 

Seaweed resulted	in	a	40%	increase	in loading.	Hard	roughness (kID	=	1/200)	resulted 

in	an	11%	increase in	the	rms	value	of the load	and	a	40%	increase	in	the	maximum 

loads	recorded in	10	minute	samples.

3.2.10	Summary and discussion of Cd and Cm results for circular cylinders 

a.	Steady flow 

The research based on steady flow has shown how the flow regime around a cylinder 

may be classified as subcritical, critical, supercritical or post— supercritical. The regime 

is primarily dependent on Reynolds number but is also affected by cylinder surface 

roughness and by turbulence in the incident flow.	Most flows of significance for total 

loading on offshore structures are post—supercritical.	
C 	

in steady flow is dependent on 

the flow regime and the surface roughness.	For smooth cylinders in post—supercritical 

flow C 	= 0.68.	For cylinders roughened by hard marine growth the roughness to !

diameter range is likely to be k/d = 1/1000
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to	1/20	in	which	the	steady flow	
C 	

varies from	0.8	to	1.1. Soft	compact marine	growth 

(sea	anemones	etc)	and	long kelp	seaweed also	increase	
0d

considerably. Values	of	C  

=	1.2	and	1.34	have	been measured	for the	two	types of	fouling. (Wolfram	and 

Theophanatos,	1985). 

Work	in steady flow has	also established the	independence	principle	which	states	that	the 

normal pressure force is	independent	of any	component	of	the	incident	velocity	which	is 

parallel to	the axis of	the member. However	the	experiments	have	shown	that	the 

location of	the critical regime is	most	closely	related	to	the	Re	of	the	full	incident	flow 

velocity and	not the resolved normal	flow velocity	(Bursnall	and	Loftin,	1951). 

b.	Accelerating flow 

Cm may be calculated theoretically:	for inviscid accelerating flow around a circular 

cylinder Cm	2.0 and the independence principle applies to the normal force.	However, 

if there is a component:	U	of the fluid acceleration which is parallel to the axis of !

the member this will produce an additional, non Morison, force approximately equal to 

PVUa where V is the volume of the member.	This force is small and is not usually !

taken into account in jacket design and analysis. 

Cm values in accelerating flow are similar to the theoretical value of 2 but may increase 

with marine growth to about 2.3 (Wolfram and Theophanatos, 1985). (However, values 

of Cm measured in waves are generally less than 2). 

C.	Planar oscillating flow

Sarpkaya	(1976	a,b)	has for	this type	of	flow,	determined	the	effect	of A, K	and 

roughness	on	
C 	

and	C. The
C 	

value	for	a	smooth cylinder	in	postcritical oscillating 

flow	is	approximately	the steady	flow	value.	However,	the	rough	cylinder
C 	

values are 

much	higher	1.7	to	1.9 at	k/D =	1150	for	which	the steady	flow	
C 

would be	1.1. 

Studies	of	planar	oscillating flow with	current	(Sarpkaya and	Storm,	1985) show that	C  

is	reduced	by	the	current towards the	steady	flow	value. Cm	values	for rough cylinders 

in	planar	oscillating	flow decrease with	roughness.
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C 	
values determined in	oscillating	flow have	been	found to	be	much higher	than the 

average	
0 

values	in waves.	This	is	probably	caused	by the	repeated re—encounter of 

the	cylinder	by	its own	wake	which occurs	in	the	oscillating flow experiments but, 

because	of the	effects of	small	currents and	random	seas, only	occurs at	very	low K 

in	the	real sea.	At very	high	
K 	

the oscillating	flow	C  values	do become	equal to 

the	steady flow	
C 	

values. 

d. Simulated wave flow 

Cylinders	propelled	around	elliptical	paths	in,	initially,	still	water	simulate	horizontal 

cylinders in waves.	The results of these experiments have shown that as the ellipticity 

increases	
C 	

and	Cm	reduce	from	the	planar oscillating	flow	values. The	reduction	in 

C 	
may	be	caused	purely by	the	stirring	action	of	the	orbiting	cylinder,	which	reduces 

the	relative	velocity	of	the cylinder	and	water. The	reduction	in	Cm is	probably	caused 

by	potential	flow	lift	forces acting	against	the inertia	force	(Holmes and	Chaplin,	1978) 

although	Grass	at	al	(1984) suggest	that	the reduction	in	Cm	may be	caused	by	the 

drag	force	being	imperfectly in	phase	with	the velocity	and	cancelling part	of	the	inertia 

force. 

e. Vertical cylinders in waves : post—supercritical flow 

The mean results of the vertical cylinder experiments in waves are summarised in the 

following figures:—

Figure 3.2.47	
C 	

for clean vertical cylinders 

Figure 3.2.48	
C 	

for rough vertical cylinders 

Figure 3.2.49	Cm for clean vertical cylinders 

Figure 3.2.50	Cm for rough vertical cylinders 

Figure 3.2.51	
C 
	for vertical cylinders

The	various results for	Cf, the	total	force	coefficient	show	a	generally	similar	trend	with 

Keulegan	Carpenter number. The Forties	data	appears	to	show	a	different	trend.	This 

is	probably caused by	the method of	data	analysis	as	discussed	in	3.2.9d.	In	general 

the	rough cylinders have	a higher loading	than	the	smooth	cylinders	and	the	difference 

is	greatest at	the higher	values of K.
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The OTS clean curve (Heideman et al, 1979) is very similar to the Christchurch Bay 

(Bishop, 1984) clean curves but the laboratory experiments by Pearcey et al (1985) and 

Bearman et al (1985) have produced slightly lower total force coefficients. 

The Christchurch Bay results for Cf, 
C 	

and Cm reduce with depth.	The reason for 

this is not known but the difference is significant. 

At	small	K the	OTS	results	show a	lower	C than	the Christchurch	Bay results.	This c f 
is	associated with	the	lower	C values determined at the	OTS	than at	Christchurch 

m 
Bay.	Also	at	small	K,	Bearmans

C 
	is lower than	both the	OTS	and	Christchurch	Bay 

values.	This is	associated	with	the	very much lower	C  determined	by Bearman.	The 

reason	why	this	
C 	

is	much	lower is	not known although Sarpkaya	(1986) has	suggested 

that	it	might be	caused	by	currents in	the wave flume. 

At high 
K 	

the smooth and rough cylinder 
C 	

values correspond to the steady flow 

values.	These are much lower than the rough cylinder 
C 	

values obtained by Sarpkaya 

(1976b).	The reason for this is discussed in 3.2.10.c. 

C 	
and Cm for kelp fouled vertical cylinders have been determined at Christchurch Bay 

(Bishop, 1987).	The results, after allowing for 50mm effective thickness of marine growth 

were C d = 1.0, Cm
	 c 

= 1.66 for K	in the range 10 to 30.	These compare with 

C	=	0.81	and	C =	1.55	for a	smooth	cylinder	at the	same	location	and	K =	15. 
d	 m c 

All	the	results	for C	and	C measured	in	waves show	considerable	scatter. Various 
d m 

reasons	have	been put	forward for	this	scatter;	Heideman	et	al	(1979)	suggest that	the 

randomness	of	the re—encounter	of	the	wake	with the	cylinder	itself,	and with	the 

velocity	meters	may cause	the scatter.	Sarpkaya	and Cakal	(1983)	show	that currents 

have	an	effect	on
C 	

which explains	some	of	the scatter.	Starsmore	(1981) suggests 

that	some	of	the	scatter	may be	caused	by	Reynolds number	effects.
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f.	Horizontal cylinders in waves	post—supercritical flow 

The mean results of the horizontal cylinder experiments in waves, and simulated waves 

are summarised in the following figures:—

Figure 3.2.52	
0  

for horizontal cylinders 

Figure 3.2.53	
0m 

for horizontal cylinders 

Figure 3.2.54	
C 
	for horizontal cylinders 

Tong and Nath*s (1985) data suggests that the drag coefficient for horizontal cylinders 

corresponds approximately to the steady flow value.	Holmes and Chaplin*s (1978) smooth 

cylinder	data	is	in	the range	0.5 to	0.75.	This	shows	a	variation	with	K 
c	e 

and	R but 

a	steady	flow	coefficient	of	about 0.66	would	match	the	data	reasonably.	Bearman	at al 

(1985)	show	that	
C 

may	be	higher	at	K	less	than	10	but	
C 	

is	not	important at 

these	values	of	K. Pearcey*s (1985)	horizontal	cylinder	
C 	

is	somewhat	variable but 

again	not	important	at the	low	K values. 

The	Cm	values	from	Bearman	at	al and	Holmes	and	Chaplin show a	tendency to 

decrease	as	K	increases.	(Holmes and	Chaplin	explain	this	as being caused	by lift 

forces	counteracting	the	inertia	force). The	Christchurch	Bay	and Tang	and	Nath	results 

do	not	show	the	same	tendency.	Also	Bearman	at	al	shows	that their results	are not 

sensitive	to	the	ellipticity	of	the	flow whereas	increased	ellipticity would be	expected to 

reduce	the	lift	forces.

Pearceys results show large values of Cm at very low K	which reduce very rapidly 

with increasing K.	Pearcey*s results for both the smooth and rough cylinder link well !

with the results of Tang and Nath. 

The Christchurch Bay clean horizontal cylinder Cm of 1.5 is very similar to the vertical 

cylinder Cm values for the same level at Christchurch Bay and much larger than Tong 

and Naths value of 1.0. 

Overall there is no clear pattern to the horizontal cylinder Cm results.	The highest!

values of C, obtained for smooth cylinders by Bearman at al and at Christchurch Bay 

by Bishop, are similar to the vertical cylinder results from the same experiments. The 

large reduction of inertia force that occurs in the smaller scale laboratory tests does not 

seem to occur in the larger scale experiments. 
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The 
C 	

values obtained for smooth and rough horizontal cylinders are similar to the 

steady flow 
C 	

values. 

Both the 
C 	

and Cm values obtained at Christchurch Bay for the kelp fouled horizontal 

cylinder are lower than the values for the vertical cylinder. We speculate that this 

might be caused by the wave action around the vertical cylinder wafting the seaweed 

backwards and forwards whereas the seaweed will tend to be wound around the horizontal 

cylinder by the wave action. 

g. Cylinders in waves with current	post—supercritical flow 

C 	
values	are	affected	by the	presence	of	currents	as shown	by	Sarpkaya and	Storm 

(1985)	for	oscillating	flow,	Sarpkaya	and	Cakal	(1983)	for vertical	cylinders	and Teng	and 

Nath	(1985)	for	horizontal cylinders.	As	the	current increases,	towards	the maximum 

wave	particle	velocity,	
C 

tends	to	the	steady	flow value	(see	Appendix H).	In 

oscillating	flow	Sarpkaya	and Storm	also	find	an	effect of	current	on	C.	However	In 

waves	neither	Sarpkaya	and Cakal	nor	Teng	and	Nath found	any	significant relationship 

between	C	and	current. 
m 

Since the Christchurch Bay and OTS 
C 	

coefficients were measured in the presence of 

currents there is a possibility that higher average 
C 	

and C  values could occur at sites 

where	the	current	velocities	are	smaller,	relative	to	the	wave	particle	velocities. 

Fortunately, the largest effect of current on 
C 	

appears at low values of K	where Cm!

is dominant and the currents required to produce the lower Cd values are not very large 

(see Appendix H) so the importance of the effect is reduced. 

h. Effect of •roughness and marine growth on C 	and Cm 

In general, for the various types of flow, roughness causes an increase of 
C 	

and a 

reduction in C 
m

Figure	3.2.55	shows	the effect of	surface roughness	on	
C 	

as determined in	a	large 

number	of	experiments. It	is clear	that	the effect	of	roughness	on
C 	

is	dependent	on 

the	flow	characteristics	as well as	on	kiD. Oscillating	flow	results in	much larger	rough 

cylinder	
C 	

values	than either steady	flow or	wave	flow.	This is	probably caused	by 

the	repeated	wake	re—encounter that	occurs in	oscillating	flow	conditions	but is	reduced 

in	wave	flow	and	does not occur	in	steady	flow.	Increasing K	reduces the	rough
c 

cylinder 
C 	

both for oscillating flow and wave flow.	This is again explainable in terms 
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of	reduced probability of	wake re—encounter	as	the	orbit	size	to member	size	ratio 

Increases. Also	the vorticity in the	wake	must	decay	with	time	and the	re-encountered 

wake	in	a large	orbit (large K) may	be	less	strong	than	the	wake	in a	small	orbit. 

The	steady flow	
0 	

values	from Wolfram	and	Theophanatos	(1985)	are lower	than	the 

values	from Miller	(1976).	This may	be	because	the	characteristics	of marine	growth 

give	slightly lower	coefficients	than the	artificially	roughened	cylinders	that were	the	basis 

of	most	of Miller*s	results.	It	is clear	from	the	results	that	the	nature of	the	marine 

fouling	considerably affects	
C 	

and that	the	simple	measure	of	k/D	gives a	good	first 

indication	of the	effect.	We	have	plotted	a	straight	line	relationship	between	
C 	

and 

log	(kID). This	may	underestimate
C 	

at	kID	greater	than	0.1. 

The OTS rough cylinder 
C 	

value at high 
K 	

corresponds well with Wolfram*s data. 

This suggests that 
C 	

results for steady flow may be applied to high K	wave flow. 

Cm values (Figure 3.2.56) tend to reduce with roughness as shown by Sarpkaya*s (1976b) 

results for oscillating flow and, to a limited extent, Wolfram*s (1985) results for accelerat-

ing flow. Note, however the high k/D results are very sensitive to the assumed area in 

Morison*s equation and at present it would be unwise to draw too firm a conclusion from 

the C m values at high k D. 

At low K	where C 
m 

is most important we would expect the flow to be similar to the !
c  

accelerating flow conditions of Wolfram and Theophanatos (1985). 

I.	Subcritical and critical flow 

In steady subcritical flow, at Re from about 1O3 to 4x105 for a smooth cylinder, the 

value of C	 is about 1.2 (see Figure 3.2.7).	For rough cylinders and turbulent incident 

flow the upper value of Re may reduce but the 
C 	

value remains at 1.2. 

In	critical and	supercritical steady flow	
C 	

for a	smooth	cylinder	drops to	a	value	lower 

than	both the	subcritical	and post supercritical value.	Because	of	the uncertainty	in	the 

value	of Re	corresponding to	these lower	values of	C	 it	is	preferable to	use	the	post-

supercritical	value	of	
C 

in	the critical	and supercritical	range.	The post-supercritical 

value	is dependent	on	the surface roughness, see	Figure	3.2.8.
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For	subcritical	wave	flow	a	large	number	of	experimental	results	are	available, 

e.g. Bullock (1983), Chakrabarti (1982), Cotter and Chakrabarti (1984).	These results show 

that the drag coefficient on cylinders In subcritical wave flow is dependent on 
K 	

and 

member inclination.	At K	greater than 30, 
C 	

is found to be about 1.2, for smooth 

and rough cylinders.	At 
K 	

of 10 to 20 higher values of Cd. typically 2.0 to 2.5, are 

often found and roughness may increase the 
C 	

value. 

Cm values in subcritical flow are typically approximately 1.0 to 1.5 at 
K 	

greater than 

20.	C	increases to between 2.0 and 2.5 as K 
c	 m 

approaches 0.	C	values do not!
m  

seem to be affected by roughness. 

Usually drag and inertia loading in subcritical wave flow is of little importance. 

3.2.11 The Selection of C 
d	m 

and C	for Circular Cylinders in Waves and Current 

a.	General 

These	recommendations	are	in	two parts.	This	first	part	gives estimates	of	
0 	

and Cm 

for	post	critical	flow,	as	variables	dependent	on	roughness or	marine	growth,	
K 

and 

current.	These	values	are	deduced from	the	experimental	data described	previously. The 

second	part	again	for	post	critical flow	(Section	3.2.12)	gives approximate	values	for C  

and	Cm	which	are	dependent	on roughness	or	marine	growth alone	but	which,	to the 

accuracy	with	which	we	are	able to	predict	fluid	loading,	produce the	same	loading on 

the	structure	over	the	whole	range of	K
C

C 	
and Cm values have been selected as pairs because different analysis techniques may 

result in different C 
d 

and C	for the same total force.!
m 

We have aimed to recommend sets of 
C 	

and Cm values (for different roughnesses etc.) 

which show consistent trends between sets.	This has meant that the recommended !

values do not necessarily correspond to any single experiment. 

Current affects 
C 	

and C.	This is discussed in Appendix H.	The conclusion, Section!

3.2.11 g takes into account the effects of current. 
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On	the	basis of	the	discussion	in	3.2.1Of	we have	generally	not	made separate 

recommendations for	horizontal	and	vertical	cylinders. Although	there	are	some	indications 

of	differences in	their	C	and	C	values	these differences	are	much	smaller in	the d	m 
large	scale	experiments,	at	the	Delft	Flume	and Christchurch	Bay,	than	in	the smaller 

scale	laboratory experiments.	However,	when	more research	has	been	performed it	would 

be	appropriate to	make	specific	recommendations	for horizontal	cylinders. 

The exception to the above is kelp fouled cylinders where the C  and Cm values are 

apparently lower for horizontal cylinders than vertical cylinders and this is taken into 

account in our recommendations. 

The resulting coefficients are our best estimates of the likely mean C  and Cm values. 

However, knowledge of fluid loading in waves is still evolving and further research is 

needed in order to understand better how the many variables affect fluid loading. 

b.	Clean cylinders 

The	Christchurch	Bay	C	and	C	values are	the	most detailed	available from	measure- 
d	m 

ments	in	the	sea.	They	benefit	from	the two	sizes of cylinder	used	for the	experiments 

and	correspond	reasonably	with	the	OTS values. It	is unfortunate	that the	difference 

between	the	levels	is	still	unexplained	but the	level 3 results	were	obtained	nearest	the 

surface	and	therefore	should	be	the	most significant for design	purposes. These	level	3 

results	are	the	basis	of	our	recommendations. At high
K 	

the	drag	coefficient	is	0.66 

which	is	very	close	to	the	steady	flow value.	At K =10,	C	=	1.0. For	K	less 
c d c 

than	10	the	value	of	
C 	

has	not	been determined by the	Christchurch Bay	experiment 

but	has	been	set	equal	to	1.	C has	been determined	to	be consistent	with 
m

C 	
= 1.	However, the loading is dominated by Cm in this region and the total force 

is only slightly sensitive to the value of 
C 	

as shown approximately by the effect on 

the total force coefficient in Table 3.2.12.	Therefore arbitrarily setting 
C 	

equal to one 

in this range of 
K 	

is acceptable. 

The C 
m	 C 

value is close to 2 for low values of K	and reduces to 1.8 for the higher 

values of K 
c
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Table 3.2.12 -	Percentage change in total force for a 50% change in 
C 	

at Kc = 

and 7	(clean cylinder coefficients) 

K C C C Percentage 
c d m

change 

5 1.0 2.04 1.875 

5 1.5 2.04 1.942 +3.6% 

7 1.0 1.91 1.637 

7 1.5 1.91 1.771 +8.2% 

C.	Rough cylinders 

The most useful data for rough cylinders in waves has come from the Ocean Test 

Structure.	This has shown that C 	increases to about 1.5 times the smooth cylinder 

value and C	reduces to about 0.85 times the smooth cylinder value for a kiD of 1/35. 
m 

This	
C 	

value	for the	rough	cylinder	at	high	K	corresponds	approximately	with	the 

steady	flow	rough	cylinder	drag	coefficient.	The	smooth	cylinder,	high	K,	
C 	

values 

were	also	similar	to the	steady	flow	values.	At	large	
K 	

we	therefore	assume	that,	for 

other	values	of	kID the	marine	growth	steady	flow	
0d	

values	from	Figure	3.2.55	could 

be	applied.	This	is a	linear	relationship	between	
C 	

and	log	(kID). 

For	K	greater	than 12	the	C	value	for	a	kID	=	1/35	cylinder	was	assumed	to	be 
c m 

equal	to	0.85	times the	clean	cylinder	value	on	the	basis	of	the	OTS	results.	Again 

values	of	C	for other	k/D	have	been	obtained	by	assuming	a	linear	relationship 

between	Cm	and	the logarithm	of	kID.	For	K	less	than	12	Pearceys	results	suggest 

the	rough	C	could be	greater	than	the	clean	C	.	As	K	becomes	small	vortex 
m m	 C 

effects	should	reduce because	vortices	do	not	have	time	to	form.	We	anticipate	that 

this	will	result	in	the	inertia	coefficient	becoming	independent	of	roughness	and	we	have 

therefore	brought	all C	values	to	the	common	value	of	2.0	at	K	=	0. 
m	 c
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d. Compact soft fouled cylinders 

The only data available for soft fouling is that obtained by Wolfram and Theophanatos 

(1985). This shows C  and Cm values for soft fouling to be similar to those that 

would be obtained for hard fouling with a similar roughness height. 

e. Kelp fouled vertical cylinders 

The	Christchurch Bay	experiment	obtained	
C 	

=	1.0,	for	a	kelp	fouled	cylinder,	with	K  
in	the	range	10 to	30,	at	level	4.	However	at	K	=	20	the	level	4	smooth	cylinder 

C 	
value	was	7% less	than	the	level	3	

C 	
value.	The	level	3	results	have	been	used 

as	the	basis	for the	smooth	and	rough	cylinder	curves.	Therefore,	for	consistency,	the 

recommended	kelp
C 	

value	has	been	increased	by	7%	to	1.07.	Wolfram	and	Theophan-. 

atos	obtained	C  values	of	1.30	and	1.34	for	kelp	fouled	cylinders	in	steady	flow. 

These	
C 	

values may	be	higher	than	the	Christchurch	Bay	values	because	of	the 

different	characteristics of	the	steady	and	wave	flows	around	kelp	fouled	cylinders	or 

there	may	be	some difference	in	the	nature	of	the	kelp	fouling.	However,	preference 

was	given	to	the Christchurch	Bay	data	since	it	was	a	test	in	waves.	The	Cm	values 

for	the	kelp	fouled vertical	cylinder	at	Christchurch	Bay	level	4	are	1.66.	Allowing	again 

for	the	difference between	the	level	4	and	level	3	clean	cylinder	results	the	kelp	fouled 

C	has	been	increased	by	16%	to	1.92.	Wolfram	and	Theophanatos	obtained	C	values m m 
of	2.26	and	2.27 in	accelerating	flow.	This	difference	is	similar	to	the	difference	in	the 

drag	coefficients. Again	preference	was	given	to	the	Christchurch	Bay	Cm	data. 

f. Kelp fouled horizontal cylinders 

The recommended values of C 
d	m 

and C	have been taken directly from the Christchurch 

Bay experiment.	
C 	

was found to be 0.87 and Cm 1.20 over the range of K  from 10!

to 30 (after allowing for an assumed 50mm thickness of marine growth). 

g. Conclusion 

Based on the discussion in 3.2.11 we have prepared Figures 3,2.57 and 3.2.58 as our 

best estimate	of	C	and	C	values	in	waves	with moderate currents.	For	current	alone d	m 
and post	supercritical	flow	our	best	estimate	of	C  is	given by	the	dotted	line	in	Figure 

3.2.55. For	wave	plus	current	a	gradual	reduction from	the wave	
C 	

to	the	steady	flow 

C 
could	be	made	(see	Appendix	H).	The	steady flow	

C 
should	be	applicable	when
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1•0 

0•5 

0 

Cd 

15

0	 10	 20	 30	 40 

K 

Notes 1) For kelp fouling Cd may be taken as 1.07 for vertical cylinders 
0.87 for horizontal cylinders based on data for 15< Kc < 30 

2) In the presence of current Cd may be reduced as described In 
3.2. hg 

3) Diagram based on logarithmic interpolation between k/D 1/35 
and k/D =1/10000 

Figure 3.2.57. Best estimate of C  
for cylinders in waves 
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Cm 

2

Smooth, k/0<1/10000 or Kelp Fouled

NOTES 1.) FOR KELP FOULING Cm MAY BE 
TAKEN AS 
19 FOR VERTICAL CYLINDERS 
12 FOR HORIZONTAL CYLINDERS 

BASED ON DATA FOR 15<Kc<30

2.) DIAGRAM BASED ON 
LOGARITHMIC INTERPOLATION 
BETWEEN k/O1/35 AND kID1I1OOOO 

	

1 . 0 1	 I 

	

0	 10	 20	 30	 40 

K 

Figure 3.2.58. Best estimate of Cm for cylinders in waves 
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the current velocity exceeds the maximum wave particle velocity.	Current probably has 

an effect on C	but the effect is uncertain.	We have therefore assumed that C 
m 

is!
m  

independent of current. 

3.2.12	Approximate C	and C	values for circular cylinders in waves and currents 
d 

In Section 3.2.11 we presented our best estimates of the mean values of C	and C 
d	m 

However, these best	estimate	values	were	dependent on	Keulegan Carpenter	number, 

roughness and ratio	of	wave	particle	velocity	to	current velocity.	When	we	consider	the 

high	scatter	in the	measured	
C 	

and	Cm	values	this complicated	selection	of	
0 	

and 

C	does not seem	justified.	Instead	we	present C	and	C values	which	are 
m d	m  

dependent on roughness	only	but	will	produce,	to	a reasonable accuracy,	the	same 

loading	on the structure	as	the	best	estimate	
C 	

and Cm	values. These	approximate 

coefficients have	been	obtained,	by	trial	and	error,	using	the	total force	coefficients	C 

for	no	current, and	0 I	with	current,	as	a	basis	of	comparison.

The approximate coefficients are given in	Figure 3.2.59.	The total	force coefficients!

determined using the approximate coefficients and the best estimates from 3.2.11 are 

compared in Figures 3.2.60 and 3.2.61.	The approximate coefficients are seen to be !

satisfactory. 

3.2.13 Drag , inertia and steady lift coefficients non—circular members 

a.	General 

In waves little experimental work has been performed on shapes other than cylinders. 

For flat plates, at low R, Keulegan and Carpenter (1958) give curves for Cm and Cd. 

Paape and Breusers (1967) considered the wave force on square pipes but did not derive 

Cd and C	values.	Wave forces on a sphere have been considered by O*Brien and 

Morison (1952).	They did not recommend any average values and their results are only 

for Re less than 104 .	For spheres Grace and Casciano (1969), from a drag dominant 

experiment, recommended a value of C d = 0.65 to 0.70, with an assumed C	value of 
5	 m 

1.15.	The Re range was 6x10	to 3x10	and the K 0 range 8 to 60.	Sarpkaya (1975) 

gives C	and C , as functions of K ,	for oscillatory flow around spheres at low R 
d	m	 C	 e 
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Figure 3.2.59. Approximate C and C values For all K and current inpost-supercritical flow 
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FROM A. BEST ESTIMATE Cd AND Cm VALUES. 
C f	 B. Cd066 Cm20 

30	 FOR 1. LOW CURRENT Cf 

Cff	
2. CURRENT EQUAL TO MAXIMUM WAVE PARTICLE VELOCITY. 

Al ) Cf BASED ON BEST ESTIMATE Cd (k/D, Kc, Uk ) AND Cm( k/D, Kc) FOR 
kIDO, UriO 

BI Cf BASED ON APPROXIMATION Cd : O . 66STEADY FLOW VALUE FOR 
20	 k/DO,UkO AND Cm20 

10

Cft BASED ON APPROXIMATIONS	 0-66 =STEADY FLOW VALUE 
AF k/D=O,Uk =KC AND Cm= 2-0 

BASED ON BEST ESTIMATE Cd (k/D, Kc,Uk) AND Cm(k/D,Kc) FOR 
k/D: 0, Uk 

0
0	 10	 20	 30	 60 

Kc 

NOTE:— FOR Uk : K C , Cd(kID,KC,Uk)066 

Figure 3.2.60. Comparison of total forces:simplified and best estimate 

smooth cylinders force coefficients 

- 193 -



Cf	 From A. Best Estimate Cd and Cm Values. 
Cff	 B Cd =lO Cm18 

3•0	 For	1. Low Current 

2. Current Equal to The Maximum Wave Particle Velocity 

Al Cf Based on Best Estimate Cd (k/O,K,Uk) and Cm(k/DKc) For 

kID 1/35,UkO 

Cf Based on Approximation Cd =lSteady Flow Valve For 
kID 1/35 Cm 18 UkO 

	

i•o-I	 / f---=-= 

/ (B ,)Cft Based on Approximation Cdl Steady Flow Value For 
k101135,Cm18,UkKc 

Cft Based on Best Estimate Cd (k/D,KcUk) and Cm(k/D,Kc) For 

kID=1135, Uk Kc. 

01 

	

0	 10	 20	 30	 40 

K 
Note:- For U k = Kc , Cd (kID,Kc.Uk) 10 

Figure 3.2.61. Comparison of total forces using simplified and best estimate 

rough cylinder force coefficients 
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For drag coefficients it is therefore necessary to rely on wind tunnel tests. Delany and 

Sorenson (1953) present Cd for Re in the range 10 to 10 
6. 

for various 2—dimensional 

prismatic shapes. 

Hoerner (1958), gives C 	value for many shapes at R	between 10	 and 106. 

The Engineering Sciences Data Unit (London) has presented a considerable amount of 

information	on	prismatic	sections	and	plates	for	various	incident	flow	directions	and 

Reynolds number.	Of particular interest are their data items:-

70015	Fluid forces and moments on flat plates 

71016	Fluid forces, pressures and moments on rectangular blocks 

82007	Structural members mean fluid forces on members of various cross sections 

b.	Drag coefficients 

Figures 3.2.62 to 3.2.64 present a limited number of results from the above references for 

post—supercritical steady flow.	C 	
values for sharp cornered shapes in steady flow are 

not sensitive to surface roughness.	This is apparently because the flow separates from 

the shape at the sharp corner, independent of the surface roughness.	For rectangular!

prisms with rounded edges we have recommended that the drag coefficients are increased 

with roughness in proportion to the increase for a circular cylinder. We do not have 

any test data to justify this recommendation but it would clearly be unconservative to 

use the smooth drag coefficients for these cases. 

Figure	3.2.64 gives	coefficients	for	various	rolled	sections.	In	some cases a	steady	lift 

force	transverse	to	the	flow	direction	occurs	as	well as	the in	line force. This	is	not 

part	of	Morison*s Equation.	The	equation:	F1 0.5C1p DU gives	this	transverse 

force,	where C 1	is	the	lift	coefficient.	The	data	in Figure 3.2.64 is	given in	terms	of 

the	Drag—Lift coefficients	Cdli	and	Cdl2	which	are related to	the member axes	instead 

of	the	flow direction.

Values of C 	and C 1 may be derived from Cdli and Cdl2 as described in the figure 

but the data is probably more useful in the given form. 

195 



C.	Inertia coefficients 

Inertia	coefficients	are given	for some	cases	of	prisms	and	plates	in Figures	3.2.62	and 

3.2.63.	These	have been	based on	the	added	mass	values	tabulated by	Sarpkaya	and 

Isaacson	(1981).	The values	are based	on	potential	flow	theory.

Figure 3.2.65 gives first approximation estimates of added mass values and hence inertia 

coefficients for various built up sections. For flow at some angle to the directions 

given in the figure, the accelerations may be resolved into the given directions and the 

total inertia force determined by vector addition. 

Figure 3.2.65 refers to Figure 3.2.66 for the added mass of tandem rectangles which is 

based on Sarpkaya (1960). 

d.	Consistency 

It is important to ensure, when using these, or other, tables of coefficients that the Cd 

value is consistent with the definition of member width:	0 and that the C	value is!
m 

consistent with the definition of member cross sectional area:	A. 

Also when using tables of inertia coefficients it is necessary to determine whether the 

values given are the full inertia coefficients:	C 
m 

as defined in 3.2.1 or just the added 

mass coefficient C .	Some authors use C	for the added mass coefficient and C 
M 

for 
a	 m  

the full inertia coefficient.
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Shape Direction 
of Flow

pA	Added Mass	C8 
(M)	(Fl/PA)

Cm	CD 
(1+Ca) 

Flat	Strip

DI	i*	0*	 0 1+	n o	1.9 
Ti Ti 

Rectangular prisms 

Ea /D<0.02 

0

1310 

0.1 p DB 1.14 on D'/4 8.95 
0.2 p DO 1.21 on D*/4 4.75 
0.5 P DII 1.36= D*/l 2.14 
1 p 00 1.51 on D*/4 1.19 
2 P	1)13 1.70P*	D* /4 0.67 
5 P DO 1.98o	0* /4 0.31 
10 P DII 2.23°" 0* /4 0.18

	

9.95	1.9 

	

5.75	2.0 

	

3.14	2.5 

	

2.19	2.2 

	

1.67	1,5 

	

1.31	1.2 

	

1.18	1.2 

p13*	1.52 P n 0*	1.19	2.19	2.1 

Rectangular prisms with rounded edges 

r/D	0.17

0.98 p 0*	1.51 o n 0*14	1.21	2.21	-1 

Q] rID = 0.33

0.91 uD*	1.51 o"074	1.30	2.30	2 

Notes : 1) p A = Froude Krylov force per unit acceleration in the fluid 

2) Morisons Equation F/L = C0 p0IlJlU + Cm PAU (F/L = Force per unit 
length of member) 

-1 Cd values for a rectangular prism with r/d	0.17 should be taken 
as no less than 1.2 times the value for a circular cylinder of 
the same roughness. 

/2 Cd values for a rectangular prism with rid = 0.33 should be taken as !
no less than the value for a circular cylinder of the same roughness. 

Figure 3.2.62. Drag and inertia coefficients for various prismatic shapes 
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Shape Direction PAT Added Mass Ca Cm CD 
of Flow (M) (M/pV) (1+Ca) 

Elliptical Plate

B

B/C

 

pnBCT/4 1.0 p nBC/6 C/T 1+C/T 1.86 
12.75 - 0.98 pnBC1/6 0.65C/T 1+0.65C/T 1.36 
7.0 - 0.97 pnBCV6 0.65C/T 1+0.65C/T 1.24 
3.0 - 0.90 0nBC2/6 0.60C/T 1+0.60C/T 1.17 
1.5 - 0.74 pnBC2/6 0.49C/T 1+0.49C/T 1.14 
1.0 - 0.63 pn BC/ 6 0.42C/T 1+0.42C/T 1.14 

Rectangular Plate

B

I

B/C


 

BCT/4 1.0 on BC 2/4	
0.79C/J 1+0.79C/T 1.86 

3 - 1.0 onBC 2 /4 0.79C/T 1+0.79C/T 1.17 

2 - 0.84pn BC 2/4 0.66C/T 1+0.66C/T 1.15 
1.5 - 0.68 pn BC 2/4	

0.53C/T 1+0.53C/T 1.14 
1.0 - 0.47 on BC 2/4 0.37C/T 1+0.37C/1 1.14 

Triangular Plate

0.5 0821 0.3 B 2 0.6 BIT 1+0.6B/T 1.15 

-^ f^	

65  

Notes : 1) A = Area of plate T = Thickness of plate 

2) PAT Froude Krylov force per unit acceleration in the fluid 

3) Morisons Equation F = CD p AIUIU + CpATÜ 

Figure 3.2.63. Drag and inertia coefficients for various plates 
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F2 f	0/2	 F2t	 F2t 

21
00 T	T oE T 

I	I	 I	 I 
I Degrees I C dli	Cd12	I C dI1	Cd12	I C dli	Cd12	I 
I	I	 I	 I 

I	 I	 I	 I 

	

o	I +1.9	+0.95 I +2.05	0	1 +2.1	+1.8	I 
I	45	I +1.8	+0.8	1 +1.85	+0.6 1 +1.8	+1.8 
I	90	1 +2.0	+1.7	I	0	+0.6 I +1.8	+2.1	I 
I	135	I -1.8	-0.1	1 -1.6	+0.4 1 -1.9	-1.0	I 
I	180	-2.0	+0.1	1 -1.8	0	I -2.0	+0.3	I 

	

225	 I	 1 -1.4	-1.4 

Fit F F2t F2t F2t 

2 {I {°I- -f - - ^L[fl - 
L	°	- __Ji_:1D 050 0 

I 
I	Degrees I 

I	I
CdI1	Cdl2

I	 I 
I C dli	C d12	I 
I	 I

Cd12 Cdli	Cd(2 

I
I	 I 
I C dli	Cd12	I 
I 

I 

I 0 I +2.05 0

I I 

I +1.6 0 I +2.0 0

I 
1 +2.1 0

I I 

I +2.0 0 I 

I 45	I +1.95 +0.6 I +1.5 +1.5 I +1.8 +0.1 I +3.4 +0.7 I +1.55 +1.55 I 

90 I 

I I

0 +0.9 1 0 +3.9 

I

1 0 

I

+0.1 1 0 +0.75 

I

I 0 +2.0 I 

I I

Incident Velocity 

Notes 1) If U is the incident velocity at angle a
Lift Force 

then Fl = 12 C dli p DU 2	F2 =	PDU2	 Drag Force 
2) If the lift force is positive as shown : 

then Cd = Cdli COSc- + C d12 S fla	Cl = -Cdli Sfl a + C d12 COS a 

Figure 3.2.64. Drag-lift coeffiient for prismatic shapes at various incidence angles 
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Section Flow Simplification Added 
UTFction for Added Mass 

ho	*

P Tr 1	-!
El 4 

JJo	 1 *
Use Fig. 3.2.66 

y as an approximation 

IJ°	:i:	* 

I

Use Fig. 3.2.66 

Notes 

1) . In these cases the added mass may be taken as that for the equivalent flat 
plate shown by solid lines. 

2) In each case the added mass coefficient +Ca+ is Added Mass 

p x cross section 

3) The cross section required for calculating Ca is the shaded area in column 1. 

4) The inertia coefficient +Cm+ is 0 + Ca) 

5) These values are first approximations only. 

Figure 3.2.65. Recommendations for calculating Cm values for rolled sections 
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a 1 __

FLOW 
• ______ - _______________-	 DIRECTION 

Ca 

b/a 

c/a 0.1 0.2 0.4 0.6 1.0 1.5	2.0 

0.1 4.8 - - - - -	- 
0.2 4.5 2.6 - - - -	- 
0.6 4.7 2.8 1.4 1.0 - -	- 
1.0 5.3 3.2 1.6 1.1 0.7 -	- 
1.5 5.8 3.6 2.0 1.3 0.8 0.5	- 
2.0 6.4 4.0 2.3 1.6 1.0 0.6	0.4 
3.0 7.1 4.6 2.5 1.8 1.2 0.9	0.6

Added Mass = 2 f Ca ab 
Note	Similar diagram in Sarpkaya and Isaacson (1981) is incorrect 

Figure 3.2.66	Added mass of tandem rectangular prisms 

(Sarpkaya 1960) 
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3.3	VORTEX SHEDDING INDUCED OSCILLATION 

3.3.1	General 

In	currents	and	most	wave	flows	members	shed	vortices.	The	member is	subject	to 

longitudinal	and	transverse load	fluctuations	as	the	vortices	are	shed. If	the	loading 

frequency	corresponds	to a	natural	frequency	of	the	member	large and	potentially 

damaging	vibrations	may occur.	This	section	describes	the	characteristics	of	vortex 

shedding	in	steady	flow and	waves	and	gives	guidance	on	assessing and	avoiding 

member	oscillations.	Lift forces	in	steady	flow	without	member	oscillation are	discussed 

in	Section	3.3.2.	Member oscillation	is	introduced	in	Section	3.3.3.	Lift forces	in	oscil-

latory	flow	are	discussed in	Section	3.3.5	and	the	corresponding	member oscillations	in 

Section	3.3.6.	The	final Sections	of	3.3	contain	recommendations	and	conclusions.	Other 

useful	general	references include	Blevins	(1977),	Hallam	at	al	(1977), King	(1977), 

Sarpkaya	(1979a,	b),	Sarpkaya	and	Isaacson	(1981)	and	Griffin	(1981). 

Most work on vortex shedding oscillations has been performed on circular cylinders and 

this is reflected in this section. For other shapes reference should be made to Blevins 

(1977) and Hallam at al (1977) where some results are presented for non circular 

cylinders in steady flow. 

The observed characteristics of vortex shedding for the case of a steady current are 

shown in Figure 3.2.7.	In wave flow the patterns are dependent on R, K	and the 

presence of any currents.	Some observed patterns of vortex shedding in oscillating flow 

are shown in Figure 3.3.1. These may be expected to be similar to the patterns for a 

vertical cylinder in waves but the pattern for a horizontal cylinder will be different (See 

Section 3.3.6d).

As	each	vortex	forms	it	produces	a	suction on	the member.	In many	cases	vortices 

shed	alternately	from each	side	of	the	member. This results	in	an alternating	transverse 

force	with	a	period equal	to	the	time	taken to	shed two	vortices. If	the	member	is 

symmetrical	relative	to	the	flow	direction	this transverse force	will usually	have	a	zero 

mean	value.	Otherwise there	will	also	be	a steady lift	force	as described	in	Section 

3.2.13.	The	vortices also	produce	an	alternating and	steady in	line or	drag	force.	The 

alternating	drag	force usually	has	a	period	of half	the alternating	transverse	force,	be-

cause	the	drag	force peaks	as	each	vortex	is shed. The	steady drag	force	has	been 

discussed	extensively in	Section	3.2.
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Kc
+ 

J_L 
f

SIZE AND POSITION 
OF PARTICLE MOTION

C:) CD 

a) 43

-

c:

C11.1T)
1)

CTIT) 
C) 6-15 2

O)
Uc 0 b

c:TTTT; 
0-20 3

I

c1:ID cTiIiI) 

e) 4-25 4 b c D ds) 

d

Clb 

1) Vortices are labelled o.b,c,d In order of forming 

2)	Shows the orbit size and the direction 
"-"	of the flow for a given case 

3) The Kc ranges given are approximate and depend 
on Re

Figure 3.3.1. Visualisation of vortex shedding in oscillating flow


(based on Sarpkaya (1976a,b), Sarpkaya and Isaacson (1981) and Grass et al (1984) 
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Mathematical models are now able to predict vortex—induced forces.	Instead of solving 

the	full	Navier—Stokes	equations,	it	is	usually	assumed	that vorticity	is	shod	and 

convected in vortex ,sheets, with inviscid flow outside these sheets.	Numerical models of !

steady and oscillatory two—dimensional flow have been developed e.g. Stansby (1977) and 

Sarpkaya and Shoaff (1979). However at present these methods are still research 

orientated and the guidance given here is based on experimental measurements and very 

simple mathematical models. 

Section 3.3.2 describes the vortex shedding phenomena for a member which is not 

oscillating in steady flow.	Section 3.3.3 describes the changes in the fluid behaviour and 

the structural response when oscillations do occur.	Sections 3.3.4 to 3.3.6 consider the !

same phenomena but in oscillating and wave flows. 

3.3.2	Steady flow with no member oscillation 

a.	Alternating forces and frequencies

The alternating forces,	excluding	any	steady	component, may	be characterised	by	their 

size F, 1 , F , d and	by	the	Strouhal	number	relationship between vortex	pair	shedding 

frequency, incident	velocity	and	member	diameter. 

F, 1 = 0.5 C, 1 pDU 2
	

F , d	=	0.5	C,dpDU2 

S
t

= N D/U	 Typically	N	N	and	N 
I

2N 
p p	d p 

Where:

Typical	units 

F, 1 is the alternating	lift	force	per	length	of	member N/rn 

F,d is the alternating	drag	force	per	unit	length	of	member N/rn 

is the lift	coefficient - 

C, 
d

is the drag	coefficient - 

P is the density	of	water Kg/ 
M3 

D is the member	diameter	or	width	perpendicular	to the	flow rn 

U is the velocity	vector	of	the	incidental	flow	resolved rn/sec 

normal to	the	member 

N is the frequency	at	which	vortex	pairs	are	shed Hz 

N 1 is the frequency	of	the	fluctuating	(transverse)	lift force Hz 

N  is the frequency	of	the	fluctuating	(in	line)	drag force Hz 

S is the Strouhal	number -
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Note	however that	F, 1	and	F,d	vary randomly	from	one	cycle	of	vortex shedding	to 

another.	The forces	and	the	coefficients C, 1	and	C,d	may	therefore	define the	rms	or 

the	maximum values.	In	principle	the larger	the	number	of	cycles	included in	the	time 

history	the	higher	the	likely	peak	value. It	is	therefore	preferable	to	define C, 1	and	C,d 

by	an	rms value	and	a	probability distribution.	We	have	not	found any	specific 

reference	to distribution	functions	but	if we	assume	a	Rayleigh	distribution of	the	force 

peaks	then 

C, 1 (average maximum of 10 peaks)	2.5	C , 1 (rms) 

C, 1 (average peak value)	1.25 C , 1 (rms) 

Where C, 1 (rms) is calculated from the rms value of the alternating force about its mean 

value.

Figure 3.3.2 shows	the range	of C, 1	(rms) obtained	by	various	researchers	and sum-

marised by Sarpkaya	and Isaacson (1981),	Hallam et	al	(1977)	and	ESDU	(1978). These 

results have been	based on	various C, 1	(rms), peak	and	average	peak	values	which have 

been converted	to	equivalent rms	values using the	relationships	given	above.	The wide 

range of	C, 1 is	probably caused	by a	number of	factors	which	may	include:

a) The length of cylinder over which the lift forces are measured. (When the 

cylinder does not oscillate the length over which the lift forces are correlated 

may only be a few diameters, so, the shorter the measurement length the higher 

the C1). 

b) The turbulence in the incident flow (ESDU, 1978). 

C)	The rigidity of the cylinder. 

d) The surface roughness of the cylinder (ESDU, 1978). 

e) The direction of the flow to the line of the cylinder (skew). 

f) The form of the end of the cylinder. 

The broken line on Figure 3.3.2 corresponds to the average of the values reported by 

Hallam et al (1977) and this is recommended for design purposes This would correspond 

to measurement lengths of a few cylinder diameters. 
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Based on data presented by Sarpkaya and Isaacson 

Design curve based (1981) and Hallam, Heaf and Wootton (1977) 

on Hallam et
This figure is based on data for Cl( rms ), Cl (mean 
peak) and C (max peak). We have assumed 

CI (max peak) = 2.5 Cl(rms) 
and Cl (mean peak) = 1.25 Cl(rms) 

C increases with surface roughness in this 
supercritical and post-supercritical range. 
The higher values of Cl given here would 
correspond to rough cylinders. 

Roughness only effects 
Cl by changing the 
apparent value of Re 
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Figure 3.3.2. Range of measured values of C+ (rms) Vs Re for a smooth circular 

cylinder which does not oscidate



Figure 3.3.3 shows the range of C* 
d 

(rms).	This is based on Hallam et al (1977). !

Scatter in C* 
d 

values will have similar origins to that in the C, I values. 

The frequency of the lift force, equal to that of shedding vortex pairs, is given by the 

Strouhal number relationship N1	StU/D.	In steady flow the Strouhal number for a 

cylinder is dependent on A	as shown by figure 3.3.4; (Lienhard, 1966).	In subcritical 

flow and post—supercritical flow S is well defined. In critical and supercritical flow the 

wake is disorganised, vortices shed randomly and the Strouhal number can only define 

the peak vortex shedding frequency. 

In	the	critical	and	supercritical regime	Figure 3.3.4 shows	a	large	range	of	measured 

peak	frequencies.	The	Strouhal number	of the peak	frequency	has	been	found	to 

correspond	to	the	lower	values	given by	figure 3.3.4. when: 

I) The cylinder oscillates. 

or ii) The cylinder has	a	rough	surface. 

or iii) The incident flow	is	turbulent	(except	for	very	low	levels	of	turbulence). 

The Strouhal number is also related to the spacing of adjacent vortices moving downstre-

am	in	the	wake. The	time	between	shedding of	single vortices	T	is	0.5/N.	Assuming 

that	the	vortices	are	convected	away	from	the cylinder at	the	velocity,	U,	of	the	incident 

flow	their	spacing is	U/(2N)	=	D/(2St)	i.e. individual vortices	are	spaced	at	about 

0.5S	cylinder	diameters.	For	S	of	about 0.2	the spacing	of	individual	vortices	is 

therefore	about	2.5 cylinder	diameters.

b.	Correlation 

The correlation of vortex shedding along the length of the cylinder is dependent on A, 

the turbulence of the incident flow and any movement of the member.	King (1977) 

summarises the very limited data on correlation for stationary members. At the Reynolds 

numbers of significance to offshore structures (generally greater than 1O 4 for currents) the 

alternating vortex shedding induced loading, along a stationary member, is correlated over 

no more than 6 diameters and therefore, unless the member oscillates, the total force on 

a long member is small.	Although not the subject of specific tests it is reasonable to 

assume	the	vortex	shedding	forces	are	unlikely	to	be	correlated	between	different 

stationary members unless there is a specific mechanical or hydrodynamic coupling. It is 

therefore reasonable to ignore alternating vortex shedding forces when calculating total 

forces on braced structures such as jackets.
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However a structure composed for example of vertical piles linked at the top but able to 

sway as a group, could be subject to a global effect from vortex shedding (Hallam et 

al,	1977). 

C.	Effect of surface roughness 

Experimental data is limited but it is generally accepted that surface roughness changes 

the critical value of R	as discussed in Section 3.2.3.	Therefore the value of C	may,!
e 

for R	just less than critical, be reduced by surface roughness.	In postcritical flow C*1 

is not dependent on R.	However in oscillating flow (see Section 3.3.4b) roughness has 

been found to increase the alternating lift force.	It is therefore likely that the steady 

flow alternating forces are increased by surface roughness.	We suggest that the smooth 

cylinder values should be increased by 
0d10•7 

where 
C 	

is the rough cylinder steady 

flow drag coefficient obtained from	Figure 3.2.59.	There is also some evidence that!

roughness increases correlation lengths (Wolfram, 1987, private communication). 

d. End effects 

Short stubby cylinders and the end one or two diameters of longer cylinders tend to 

have less strong vortex shedding than the centre portion of a long cylinder. This is 

the case whether the end is froe or a nodal connection to another member. 

e. Inclination 

The vortex shedding forces on cylinders inclined to the flow direction may be calculated 

approximately using the independence principle, discussed for Morison loading in Section 

3.2.4c.	The lift force and vortex shedding frequency will be approximately dependent on 

the velocity normal to the cylinder.	For further discussion and a review of the research!

see Sarpkaya and Isaacson (1981). 

3.3.3	Steady flow with vortex induced member oscillation 

a.	Member oscillation 

Wootton	et al	(1972) give an	example	(Figure	3.3.5)	of the	response of a flexible 

member to vortex shedding.
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The response is presented as a function of reduced velocity U. 

Where:

U = U/ND!

	

r	cm 

U c = flow velocity 

	

N	= natural frequency of the member 

	

D	= diameter of the member. 

Three peaks in the response are found where the vortex shedding becomes locked—on to 

the member*s lowest natural frequency.	The first two peaks correspond to in line motion 

of the member and the third corresponds to the transverse motion.	The pattern of the!

response is repeated for each natural frequency which has mode shape deflections in line 

or across me now.	i ne peaKs occur when one ot the vortex shedding frequencies 

corresponds to the natural frequency, N of the member as discussed in Section 3.3.1. 

The two peaks in the in—line response (when only one might have been expected) are 

caused by the two different vortex shedding modes shown in Figure 3.3.5. 
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The amplitude of the dynamic response is determined by the properties of the member 

and the flow as characterised by a response parameter.	Different authors use slightly 

different forms of the response parameter.	In this report we have used a parameter!

which is also known as the Scruton number: 

R = 2M8!
p	e 

pD 
2 

Where

Typical Unit 

Me is the effective mass per unit length of	 kg/rn 

the member including the external added 

mass for the excited mode (see Figure 3.3.6) 

8	is the log decrement of structural damping in air	 - 

8 = 27t where t = damping ratio 

See Appendix J. 

p	is the density of sea water
	

kg / 

D is the member diameter
	

m 

The	amplitude	of	the locked—on	response	is a	function	of the response	parameter	as 

shown	by	Figure	3.3.7 for	transverse	motion and	Figure	3.3.8 for in—line	motion.	These 

results	for	a	cantilever cylinder	were	obtained experimentally	by Wootton	(1969)	and	for	a 

spring	mounted	cylinder by	Iwan	(1975).	Iwan	also	showed how the	relative	amplitudes 

of	different	mode	shapes	may	be	related	to the	results	for the cantilever	case	(Table 

3.3.1).
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Figure 3.3.6. Calculation of equivalent mass per unit length for 

the response parameter (Hallam et al, 1977) 
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Table 3.3.1 -	Relative amplitudes of response to vortex shedding for various vibration 

modes.	(The response is the maximum within the mode shape) 

Iwan (1975) 

Cylinder Vibration Mode
	

Relative Amplitude of Response 

Rigid Spring Mounted Cylinder
	

0.77 

Pivoted Rod
	

0.99 

String and Cable
	

0.89 

Simply Supported Beam
	

0.89. 

Cantilever (1st mode)
	

1.00 

Cantilever (2nd mode)
	

1.15 

Cantilever (3rd mode)
	

1.18 

It should be noted that the response parameter is not a rigorous parameter for use in 

defining the response of structures in water because it consists of two independent 

parameters, 2M/pD 2 and S. The use of this parameter, strictly, depends on the 

following two conditions being satisfied. 

1) The form of the input force must be single frequency and sinusoidal. The 

relationship between amplitude and damping is A m 1/8	for such a force whilst 

for a wide band force spectrum	of uniform	power density A a 1/(8)05 for 

example (Hallam et al, 1977).	At very small deflection amplitudes, where the !

force due to vortex shedding is not enhanced by structural response, the overall 

force is closer to a wide band force.	At resonance and at larger amplitudes !

the force more closely matches the sinusoidal condition. 

2)	The	frequency	of	the	response	of	the cylinder	must	not	be	affected	by the	force 

due	to	vortex	shedding.	This requires	that the	vortex	shedding	force is	wholly 

in	phase	with	the	velocity	: there being no	component	in	phase with	the 

displacement	(or	acceleration)	of the cylinder. In	practice	it	is	known that	this 

condition	is	only	satisfied	when the vortex shedding	frequency	and	the natural 

frequency	of	the	member	(measured in	still water)	match	exactly. There	are 

indications	that	this	requirement is	not	fully satisfied	in	many	flow	conditions	and 

therefore	care	must	be	taken	in the use	of the	response	parameter.
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It	should	also	be	noted that	in	cases	such as	risers	the curvatures	and	hence	stress 

levels	are	much	greater in	the	higher	modes	than	the lower	modes	for	the	same 

amplitude	of	response. Thus	although	the	deflection response amplitude	in	higher	modes 

may	be	reduced,	because in	general	structural damping	increases	with	increased	mode,	the 

stress	levels	and	fatigue damage	may	not	be dominated	by the	fundamental	mode.	In 

the	case	of	risers	it	is common	for	fatigue damage	to	be attributable	to	the	third	or 

fourth	mode. 

An insight and first approximation to the response parameter - amplitude relationship can 

be obtained by using *wake oscillator models* in which the cylinder is analysed as a 

damped mass—spring system subject to a fluctuating load at the cylinders natural 

frequency. 

Sarpkaya	(1979b)	assumes	a simple	sinusoidal	loading. Blevins	(1977)	calculates the 

loading	allowing	for the	relative motion	of	the	cylinder	and	the	flow.	Blevins	(1977) also 

develops	a	*correlation	model which	assumes	a	random loading	that	is	correlated along 

the	length	of	the cylinder. In	Appendix	K	a	simple wake	oscillator	model	based	on 

Sarpkaya	(1979b)	is developed and	compared	with	Hallam	(1977)	and	Iwan	(1975). The 

model	is	shown	to give	a	reasonable	first	approximation to	the	experimental	data. 

b.	Effect of transverse oscillation on drag force, in steady flow 

When	a	member oscillates	transverse	to	the	flow	the	steady	drag	force	may considerably 

increase.	This effect	has	been	considered	by Mercier	(1973),	Skop	et al	(1977), 

Patrikalakis	and Chryssostomidis	(1983)	and	Basu	et al	(1987).	For	locked—on oscillations 

the	C 
d	

value	increases above	the	value	for	no oscillation:	C	,	as	shown 
do

in	Figure 

3,3,9,	Most	of this	data	is	for	low	R
e
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C.	Effect of in line oscillation on the in line time varying drag force, in steady flow 

The in line time varying drag force is affected by in line oscillation (King, 1977).	In!

the first instability region 

C. d = 0.12 + 3.8 (A/D) 

In the second instability region 

C. d = 0.08 + 2.66 (AID) 

where A is the amplitude of oscillation and D is the member diameter. 

3.3.4	Lift forces in planar oscillating flow and waves with no member oscillation 

a.	Smooth cylinders 

Lift forces have been measured in these types of flow by Sarpkaya (1976a,b and 1986), 

Chaplin (1985) and Bearman at al (1985).	Their results for the lift coefficient are given 

in Figure 3.3.10.	The lift coefficient we have used is defined by Sarpkaya (1976a) in!

terms of the rms force but the maximum velocity: 

F 1 (rms) = 0.5C, 1 (rms)pDU2(max) 

Other definitions of C, 
I 

include an alternative rms value, in terms of the rms velocity, 

used by Bearman et al (1985): 

F 1 (rms) = 0.5C, 
I 

(a) pDU2(rms)
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A maximum C* 1 is also used by Sarpkaya: 

F* 1 (max) = 0.5 C , 1 (max)pDU2(max) 

For sinusoidal variation of U, U 2(rms) = 0.5U 2(max) therefore C* 1 (rms) = 0.5C* 1 (a) 

For a Rayleigh distribution of the peaks in F* 1 , and taking an average of the maximum 

of 10 peaks C* 1 (max) = 2.5C, 1 (rms). This ratio is consistent with the results presented 

by Sarpkaya (1976a). 

Figure 3.3.10 shows that Sarpkaya*s (1976b) oscillating flow values of C* 1 were similar to 

those obtained by Bearman et al (1985) in the De Voorst Flume.	Chaplin (1985) 

obtained rather larger C* 1 at the same A: as shown in	Figure 3.3.11.	Sarpkaya!

measured lift forces over 5 to 18 diameters of member length whereas Chaplin and 

Bearman measured pressures on one ring of pressure transducers.	This difference!

between Sarpkaya and Chaplin may therefore be caused by a lack of correlation of the 

lift force over the length of Sarpkaya*s cylinder.	This in turn suggests that the average!

lift forces measured over the length of a typical brace member would be less in the 

ocean than in oscillating flow.	The experiments showed that lift forces were negligible 

for K	less than about 3. 
c 

Every (1980) measured C* I (rms) values in combined wave and current for vertical 

cylinders in a wave flume.	Reynolds numbers up to 1.4 x 10 
4 

and K 
+c 

up to 20 were 

obtained.	C* and K+ were defined: 
c 

F	(rms) = 0.5 pC* (rms) D(U	+ U 
c	w 

K 
C	C	W 
= (U + U )T/D 

where

U	= 
C	

curPent velocity 

U 	
= maximum wave particle velocity 

He found that the highest value of C* were about 1.0 and occurred at K

	

	 of 5 to!
c 

12.	At K	of 20, C* 1 was typically about 0.3. 
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b.	Rough cylinders 

Sarpkaya	(1976a,	b and	1986)	has	measured lift	forces on	rough and	smooth	cylinders	in 

planar	oscillating	flow.	Roughness	considerably increases	the	lift	force	especially	at	K 

greater	than	15. However	these	high	lift forces	are related to	the	high	drag	forces 

found	in	oscillating flow	experiments	and	it is	unlikely that	as large	an	increase	would 

occur	in	the	sea. Some	increase	in	C* 1 with	roughness is however	likely	and	it	is 

tentatively	recommended for	post—supercritical flow	(Re greater	than	about	5	x	10)	that 

the	smooth	cylinder value	of	C* 1	should	be increased by	Cd/O.l where	
C 	

is	the	rough 

cylinder	steady	flow drag	coeficient	from	Figure	3.2.59.

C.	Empirical model of vortex shedding in oscillating flow 

Bearman, Graham and Obasaju (1984) have produced a model of transverse loading in 

oscillating flow based on observations of the flow characteristics and the vortex shedding 

behaviour in steady flow. Their model fits the experimental data best, at K  greater 

than 25, where a vortex street develops in each half wave cycle. 

3.3.5	Frequency of vortex sheddin g in oscillatin g flow and waves 

a.	Oscillatory Flow 

The characteristics of vortex shedding in this type of flow have been described by 

Isaacson (1974), Sarpkaya (1976 a,b) and Grass at al (1984). 

Vortex shedding phenomena are considerably complicated by the flow oscillation and the 

interaction with previously shed vortices. 

Figure 3.3.1 shows how the vortex shedding pattern varies with 
K 	

for A	of about 

1O.	As K	increases more vortices form per wave cycle.	The number can be!

determined approximately from: 

1) The Strouhal number - individual vortex spacing relationship, given in Section 

3.2.2 : S	= 0.5 S 
v	t
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2) The particle orbit diameter relationship with K	: K 	= 

Therefore the number of vortices per wave cycle is approximately: 

2b/Sv
	c 

= (2K D/,v)/(0.5S t 1/D)	=	
4K c t 

S /i 

At K
C
 less than 3 the flow displaces by less than a cylinder diameter and vortices do 

not form.	In the 
K 	

range 3-6 vortices form but only shed occasionally. 

At	Kc of	about	6	to	15	two	vortices form	and shed	per	wave	cycle.	Each	vortex	is 

influenced by the	previously	shed	vortex and	this causes the	vortices	to	always	pass	the 

same side	of the	cylinder.	This	in turn	leads to	a lift	force	cycle	for	each	vortex 

shed whereas in	steady	incident	flow	a lift	force cycle occurs	for	each	pair	of	vortices 

shed. Large lift	and	drag	forces	result from	this type of	behaviour	and	it	is	possible 

that the	vortex	shedding	may	be	highly correlated by	the action	of	the	wave. 

K 	
in	the	range	10-20	results	in	3	vortices	being	shed per	wave	cycle.	Two	vortices 

shed	during	one	half	cycle	(a	and	b	in Figure	3.3.1d) but	vortex	b inhibits	one	vortex 

(d)	from	shedding	during	the	following half	cycle. The	resulting time	history	has 

harmonics	at	1,	2,	3,	4	and	5	lift	force cycles	per	wave	period	but the	third	harmonic 

is	the	largest	so	that	again	the	dominant number	of	lift force	cycles equals	the	number 

of	vortices,	and	not	vortex	pairs,	shed.

Further increase in K
C
 results in more vortices being shed per wave cycle and a lift 

force cycle per pair of vortices shed. 

Sarpkaya (1976a,b and 1986) has analysed the frequency content of the lift force.	Figure!

3.3.12 shows the highest vortex shedding frequency that occurs during a wave cycle. 

Figure 3.3.13 shows the dominant frequency associated with the lift force.	For a rigid 

smooth cylinder only the 2nd and 4th harmonics are significant.	However roughness!

considerably increases the importance of the higher order harmonics. 
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b.	Wave flow 

Every	(1980)	measured lift	forces	and	frequencies on	vertical	cylinders in	waves and 

current	at	K	of	3	to 20	for	subcritical	A	.	At K	=	10	and	with no	current he 
c e c  

obtained	a	frequency	spectrum dominated	by	2	lift force	cycles/wave cycle.	As the 

current	was	increased the	response	at	1	lift	force	cycle/wave	cycle increased and 

eventually	became	larger than	the	original	peak	when the	current	velocity exceeded	about 

half	the	maximum	wave particle	velocity. 

3.3.6 Planer oscillatin g and wave flow with vortex induced member, oscillation 

a.	Experimental results 

Verley	and	Every	(1977)	conducted	experiments	on	cylinders	in	waves	at	low 

K . Vibrations both in line and transverse were found to occur for U greater than 1.0. 

Steady flow conditions would only have led to in line oscillations for Ur less than 3.5 

but the transverse oscillations can be explained by the shed vortices always passing the 

same side of the cylinder as described in Section 3.3.5.	It was also found that the 

cylinder response was insensitive to the amount of damping.	Verley and Every suspect!

that this was caused by the vortices being shed irregularly and so not building up a 

resonant response. The response to this type of intermittent vortex induced loading is 

less sensitive to the damping but should be less than that predicted by a response 

parameter curve. 

The appropriate response parameter curve for use when vortices regularly pass one side 

of the member only has not been the subject of any research. However this is 

discussed in Appendix K where it is suggesed that the amplitude of oscillation may be 

controlled providing R	is greater than about 5. 

Rajabi	(1979)	used the	U	tunnel apparatus of	Sarpkaya	(1976a)	to	determine	the 

transverse	response of	spring	mounted	cylinders in	planar	oscillating	flow.	Rough	and 

smooth	cylinders	were	used	in	the experiment and	it	was	found	that	the	response 

parameter	fitted	the data	better	if	C* 1 (rms)	was introduced: 

A 
PC	e 

= 2M S/(pD 2C* 1 (rms)).

The	peak	response was	found	to occur	at	the mean	frequency	of	the	lift	force	(see 

figure	3.3.13).	This corresponds to	a	Strouhal number	of	0.16	based	on	the	maximum 

velocity	during	the	wave	cycle	or 0.25	based	on the	average	particle	speed.
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Sarpkaya (1979b)	discusses these results	and presents	response	amplitude	curves for	A 

based	on (1)	structural	mass with	structural damping	and	(2)	structural	plus	hydrodynamic 

added	mass	with	structural plus hydrodynamic damping.	To	be	consistent	with	the steady 

flow	data we	have	adjusted the results	to allow	approximately	for	hydrodynamic added 

mass	but no	hydrodynamic damping.	The	resulting	response	curves	are	given	in Figure 

3.3.14. In	comparison	with the steady	flow response	curve	(Iwan,	1975	plotted for	C*1 

(rms)	=	0.33)	the	oscillating flow produces	a lower	response	at	low	R. 

The	highest	values	of	Rpc	given	by	Rajabi	do	not	result	in a	very	low amplitude	of 

cylinder	oscillation	and	it	is	difficult	to	extrapolate	the	curve to	lower	values.	Also	It 

is	not	certain	that	the	U	tunnel	response	parameter	curve	will	be	more applicable	to 

wave	flow	than	the	steady	flow	response	parameters.	This is	particularly the	case	at 

high	
K 	

where	wave	drag	forces	are	more	closely	related	to steady	flow drag	than	to 

oscillating	flow	drag.	We	therefore	tentatively	recommend	that the	steady flow	response 

parameter	-	amplitude	relationship	is	also	applied	to	wave	flow except	for the	case	of 

one	sided	vortex	shedding	described	above.

b.	Intermittent lock-on 

In wave flow the particle velocities over the whole wave cycle are not necessarily 

sufficiently high for continuous vortex shedding excitation to occur.	Instead a repeating 

pattern of excitation followed by damped reducing oscillation is likely to occur.	This is!

discussed further in Appendix L. 

C.	Effect of transverse oscillation on the drag force 

No experimental results showing the effects of transverse oscillation on the drag force 

have been found for wave flow.	It would be reasonable to assume that the effect 

would be similar to that found In steady flow.	(See Figure 3.3.9) 
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Based on Rajabi (1979) 
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d.	Cylinder Orientation 

The vortex	shedding	behaviour of a vertical cylinder in	waves	and	a cylinder	In!

oscillating flow are expected to be similar by the independence principle discussed In 

3.2.4.	A horizontal cylinder will exhibit a different vortex shedding behaviour in which!

the vortices are convected around the cylinder as they are shed. 

3.3.7 Recommendations for avoidin g vortex induced member oscillation 

a. Steady flow 

In	line	oscillations should	be	avoided	providing	U, the	reduced	velocity:	U/(ND) is 

below	1.2.	Transverse	oscillations	should	be	avoided provided	Ur	is below	3.5. If	U 

is	between	1.2 and 3.5	the	amplitude	of	any	(in—line) oscillation	should be	no	more than 

0.050	providing R, the	response	parameter:	2M8/(pD 2) is	greater	than about	1.8. If	Ur 

is	greater	than 3.5 the	amplitude	of	any	(transverse) oscillation	should be	no	more than 

0.050	providing R is	greater	than	about	20. 

The above procedure controls but does not eliminate vortex induced oscillations.	The 

small amplitude oscillations may still cause fatigue damage.	A method for estimating!

fatigue damage from vortex shedding is given in Section 3.3.8. 

b. Wave and current flow - vertical cylinders - (1) 

If K	is less than 4 waves alone will not cause vortices to shed.	The combination of!
c 

waves, with K	less than 4, and current should be investigated as described in Section 

c below.	(Note K	should be calculated for the wave particle velocity alone). 

If	K is	in	the	range	4	to 15	and	the	current is	less	than	half	the	maximum	wave 
c 

particle velocity	two	vortices are	shed	per	wave cycle	and they	may always	pass	the 

same	side of	the	member. Large	oscillations	may occur	if the	natural frequency	of	the 

member is	twice	the	wave frequency	unless	the response parameter: R	=	2M6/(pD2) 

exceeds about	5	(estimated	value	not	checked	by	experiment).



When	K	is	in	the	range	4 to	15	and	the	current	is	less	than half	the	maximum	wave 
C 

particle	velocity,	it	is	also possible	to	obtain	large	oscillations at	the	wave frequency, 

even	when	this	does	not	correspond	to	a	natural	frequency.	In this	case	the oscillation 

is	caused	by	the	particularly large	drag	and	lift	coefficients	that occur	in	this range	of 

K.	The	drag	coefficient	(see	3.2)	may	be	further	increased as	described in	3.3.3b. 

The	large	lift	coefficient	is shown	in	Figure	3.3.10.	In	these	cases	it	is	necessary	to 

perform	a	structural	analysis to	determine	the	response,	which is	no	longer related	to 

the	response	parameter. 

If K	is in the range 4 to 15 but the current exceeds half the maximum wave particle 

velocity the stability of the cylinder should be investigated as described in Section c. 

If 1<	is greater than 15 the stability of the member should be checked as described in 

Section c. 

c. Wave and current flow - vertical cylinders - (2) 

Section b	defines certain	cases	for which	this	section	is	applicable. In	these	cases	the 

criteria for	vortex shedding	induced oscillation	may	be	taken	as	the same	as	for	steady 

flow. However	if the	flow	velocity is	only	in	the	critical	range	of reduced	velocity	for 

part	of the	wave cycle	the	value of	the	respon	se	paramater:	R may	be	taken	as 

2M6/(pD 2P) where P is given in Table 3.3.2. 

d. Wave and Current Flow - Horizontal Cylinders 

The	vortex shedding	pattern	for	a	horizontal	cylinder will	be	very	different	from that for 

a	vertical cylinder.	Vortices	will	however	be	shed at	a similar	frequency	and, in the 

absence	of any	experimental	data	we	would	recommend that	a	horizontal	cylinder is 

treated	as in	Section	3.3.7(b	and	c).	The	flow velocity to	be	used	should be that 

normal	to the	cylinder	and	in	the	plane	of	the mode corresponding	to	the natural 

frequency	being checked	for	lock—on.
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Table 3.3.2 -	Oscillation amplitude as a proportion (P) of the steady flow amplitude for 

intermittently locked-on vortex shedding. 

number of forcing cycles 

0	1	2	5	10	20	999 

P 

0	0 1	1 1 1 1	1 

number	of	 1	0 0.38	0.56 0.77 0.88 0.95	1 

decay	cycles	 2	0 0.24	0.39 0.63 0.79 0.90	1 

m	 5	0 0.12	0.22 0.42 0.61 0.79	1 

10	0 0.07	0.14 0.29 0.47 0.68	1 

20	0 0.05	0.09 0.20 0.36 0.57	1 

999	0 0.03	0.06 0.14 0.26 0.45	1 

8	=	0.03	during	forcing	cycles (	=	0.5%) 

8	0.05	during	decay	cycles (	0.8%)

is the number of forcing cycles per wave where	Ur > Ucrit 

m is the number of decay cycles per wave where	Ur < Urcrit 

Note:

1. This table is applicable to a member continuously immersed in water. For members 

in the splash zone and subject to decay cycles in air 8 = 0.03 throughout and table 

L.3 should be used instead. 

2. This table is based on an approximate calculation which assumes that: 

a) locked on vortex shedding occurs as soon as the reduced velocity exceeds 

the critical value 

b) damped reducing ascillations occur when the velocity is less than the critical 

value 

3.	For derivation see Appendix L
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3.3.8 Fatigue analysis of members excited by vortex shedding 

A fatigue analysis of a member subject to vortex shedding in a wide range of sea 

states is very difficult to perform. This is because a) the likely range of behaviour 

varies from full lock on to very little excitation and b) the presence of other types of 

wave loading complicates the stress range cycle counting. 

An estimate	of fatigue sensitivity	could	be	made	by	performing	a semi-probabilistic 

analysis (see Section 4.4.3)	in which the sea conditions are split up into a large!

number of deterministic combinations of current and wave height, period and direction. 

Each	deterministic case	is	analysed	using	the	response parameter (Figure 3.3.7)	in!

conjunction with Table 3.3.1 to determine the amplitude of oscillation of the cylinder for 

continuous excitation at the reduced velocity corresponding to perfect lock-on. The 

amplitude can be reduced by the factor P from Table 3.3.2 to allow for intermittent lock-

on during a wave cycle. 

The amplitude can be further reduced by a factor from Figure 3.3.5 to allow for the 

reduced velocity of most cases not corresponding to the peak response.	This factor will 

be R for transverse oscillations (U	greater than 3.5) or 1OR for in line oscillations (Ur!

less than 3.5). 

Having	obtained the	amplitude	of	oscillation	these can	be applied	to the	mode	shape	of 

the	oscillation	in order	to	calculate	the	member curvature and	hence, from	beam	bending 

theory,	the	stress	amplitude.	This	should	be doubled to	determine the	stress	range

which may be taken to occur T.N	times during the wave cycle (where: T is the wave 

period (sec) and N	is the members excited natural frequency (H)). 

Hence the damage per wave and the cumulative fatigue damage for all waves from 

vortex shedding effects can be estimated. 

The difficulty in adding the fatigue damage from vortex shedding alone to the fatigue 

damage from other e.g. Morison loading is discussed in 4.4.1b. 
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3.3.9 Vortex Shedding - Conclusion 

Vortex shedding can excite resonant oscillations particularly in flexible members such as 

conductors and risers. This may result in large internal stresses with consequences for 

the member strength and fatigue life. 

In a structure consisting of many small members having different natural frequencies, the 

shedding from different members is not usually synchronized and there will not usually be 

any global resonance effect. 

However structural carry over effects from one member to another may be important. 

Also the natural frequency of a member is determined by the properties of adjacent 

members. Therefore it is not always satisfactory to calculate a natural frequency on the 

basis of a single member with idealised boundary conditions. 

Response amplitudes under conditions of resonant lock—on* can be limited as described in 

Section 3.3.7.	Fatigue damage can be estimated as described in Section 3.3.8. 

Vortex shedding oscillations can most easily be avoided by increasing member diameter 

and natural frequencies.	This will have the effect of decreasing U. 

If that is not possible an increase in mass may increase R	and help to prevent vortex!

shedding oscillations providing neither the diameter is increased nor the member natural 

frequency decreased.	Therefore decreasing the span or increasing the structural wall !

thickness of a tubular member will make it less susceptible to vortex shedding. 

Should neither of the above options be an acceptable solution it may be necessary to 

consider artifically increasing damping (see Waishe and Wootton, 1970) or to attach, for 

example, helical strakes to break up the flow (see Waishe and Wootton, 1970; Hallam et 

al, 1977, Zdravkovich, 1981 and Singh et al, 1984). 
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3.4 DIFFRACTION LOAD EVALUATION 

3.4.1 Introduction 

When	structural	members	are	larger in	diameter	than	about	115 of	the	wavelength	it 

becomes necessary	to	analyse	the	manner	in	which	the structure modifies	or	*diffracts* 

the	wave field	(Standing,	1978).	The analysis	required	is similar to	a	wave	theory	with 

additional boundary	conditions	of	no flow	through	the	structure. Diffraction	theory	is 

based	on inviscid	irrotational	flow	and therefore	does	not include any	drag	force	in	the 

estimate of	loading.	Fortunately	when	diffraction	affects are	important then	the	drag 

component of	the	total	wave	frequency loading	tends	to	be small. 

For	a	single member,	as	the	wave	length	reduces to	about twice	the	member	diameter, 

the	effect	of diffraction	is	usually	equivalent	to	a reduction in	the	inertia	coefficient and 

a	change	in the	phase	of	the	inertia	loading. The	modification of	the	waves	by a 

member	may increase	the	wave	height	in	the	vicinity	of	the member.	This	is	known as 

wave	*run	up*	or	upwelling	and	should	be	taken into	account when	calculating	the air 

gap	(Eatock Taylor,	1987).	The	modified	wave	pattern	also affects	and	is	affected by 

other	members. This	may	significantly	increase	or decrease the	loading	according	to the 

characteristics of	the	modified	wave	pattern.

Various single and multiple body diffraction problems have been solved: see Hogben and 

Standing (1975) and Sarpkaya and Isaacson (1981). These will provide initial guidance on 

the likely effect of wave diffraction but it will frequently be necessary to perform a 

diffraction analysis using a general purpose computer program. 

Some examples of the effect of diffraction on the loading on vertical cylinders are given 

in figures 3.4.1 to 3.4.4. 

3.4.2 Analytical and numerical methods 

The theoretical basis of diffraction theory is described in many texts, e.g. Sarpkaya and 

Isaacson (1981).	Relatively simple problems e.g. of a vertical cylinder, may be solved 

analytically.	More complex shapes may generally only be solved using numerical methods!

on a computer.
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The finite element method has been used for treating wave diffraction problems see 

Zienkiewicz (1977) and Shen (1977).	Source—sink methods are also commonly used at 

present.	They only require a discretisation of the surface of the structure whereas the !

finite element method requires a three dimensional mesh of solid elements to represent 

the sea in the vicinity of the structure: see Hogben and Standing (1974). In either 

case mesh refinement studies or previous experience are needed in order to select a 

suitable mesh which should avoid numerical ill conditioning, be sufficiently fine to produce 

satisfactory answers but not so fine that excessive computer time is used. 

The diffraction method is usually only applied to first or second order based on the 

assumptions of Stokes wave theory. Isaacson (1977) has solved the case of cnoidal 

wave diffraction by a vertical cylinder and (1981) describes a time stepping procedure for 

steep non linear waves interacting with arbitrary shapes of structure. 

3.4.3	Effects of currents 

The effect of currents on the loading on large bodies has been summarised by Hogben 

and Standing (1975) who mention three possible modes of influence on the wave force. 

1) The incident wave motion may itself by altered in the presence of a current as 

described in Section 2.3. 

2)	Although	drag	forces	are not taken	into	account	in	the diffraction	approach,	they 

are	neverthless	liable	to be significant	in	the	presence of	an	appreciable	current, 

this	effect	would	normally be predicted	on	the	basis	of Morison,s	equation.

3) When a surface—piercing structure is subjected to a steady current, a surface 

wave pattern is set up which gives rise to an additional force, the so—called 

,wave—making resistance acting on the body.	This may be taken into account 

by some diffraction theory programs.	(Inglis and Price, 1980). 

4)	Diffracted and radiated wave patterns are also affected by current. 
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3.4.4	Differences between diffraction and the inertia term in Morison*s equations 

In section 3.1.3 the inertia loading on a member in accelerating flow is shown to be 

the sum of: 

a) The incident wave or Froude Krylov force : pVU 

b) An added mass force associated with the modification to the flow by the stationary 

member: C 
a 

pVU 

C)	Also if the member itself accelerates there is an additional inertia force or added 

mass force: —C pVU 
a m 

In the above equations: 

p	= water density 

V	= member volume 

U	= flow acceleration 

U	= member acceleration 
m 

There are a number of differences between the case of accelerating flow and diffracting 

conditions: 

1) The three forces are no longer in phase with the acceleration at the centre of 

the member. 

2) The Froude Krylov force no longer equals pVU 

3) Owing to 1) and 2) it is no longer possible to define Cm = 1 + Ca 

4) The added mass force for flow acceleration is no longer equal to the added 

mass force for member acceleration.
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3.4.5 Influence of diffracting members on other members 

In many structures large diameter diffracting members will modify the wave loading on 

nearby non diffracting members for which Morison,s equation would be applicable. A 

typical example (Standing, 1978) is the tower of a gravity platform which may be subject 

to drag and inertia loading conditions in a wave field modified by the presence of a 

large diameter base.	This interaction affect may be taken into account by some!

diffraction programs. 

3.4.6 Comparison of diffraction theor y with experiment 

Many comparisons have been made between diffraction theory calculations, model tests and 

real structures.	In general diffraction theory is found to predict forces quite well. 

Skjelbreia (1979) compares model test results and theoretical calculations for a concrete 

gravity structure and concludes that existing theories have a fair accuracy, that loads 

acting above MWL should not be ignored and that in some circumstances, dependent on 

the soil conditions, pressure loads acting on the underside of the base may need to be 

taken into account. 

3.4.7 Jarlan walls

Some	large	diameter	structures	include perforated ,Jarlan	Walls,.	The analysis	of	these 

structures	should	account	for	wave	diffraction and head	loss	in	the flow	through	the 

perforations.	Advice	from	hydrodynamic specialists should	normally be	sought	before 

attempting	either	mathematical	analysis	or model	test of	these	structures.
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3.5	WAVE SLAM AND WAVE SLAP 

3.5.1	General 

As a wave surface immerses a member some water is rapidly accelerated to make way 

for the member. If the member enters the water at an angle the slam force amounts 

to a small force which moves along the member at the point of contact with the water 

surface.	If the member enters the water with a face parallel to the water surface then 

the force acts along the whole length of the member at the same instant. This results 

in a short duration force which may be much larger than that from drag or inertia 

loading. 

The force is known as a slam force if a horizontal member is immersed by a rising 

wave surface or if the member moves down into the wave, e.g. during transportation of 

a jacket on a barge. 

The force is known as a slap force if an approximately vertical surface of a breaking 

or near breaking wave immerses a member. 

In	addition	to	the	slam or	slap forces	buoyancy	is	applied	to a	member	as	it is 

immersed.	Also	a	cavity forms	behind	the	member	which	results in	a	suction	force on 

the	member	until	the	cavity fills. This	cavity	effect	is	however	not	as	important	as the 

acceleration	effect	(Ridley, 1982). The	relative	importance	of	the Morison,	buoyancy and 

slamming	contributions	to the	total load	was	examined	by	Miller (1978)	who	found that 

the	slamming	term	is	the largest component	if	the	Froude	number U/(gD)°	is	greater 

than	about	0.6. 

Slamming affects local loads and fatigue lives of individual members.	It does not usually 

increase the total design load on e.g. a jacket structure by an appreciable amount. 

Roughness	or	fouling	of a	member will	influence	the	slamming	mechanism.	Fouling 

changes the	time	history	of the	slam force	and this	might increase	or	decrease	the	slam 

load. The	member*s	dynamic	response is	always important during	wave	slam	and	this	is 

affected by	any	change	in the	time history	of the	force or	any	additional	weight	of 

marine growth	attached	to the	member.	The	interaction of slam	force	time	history	and 

dynamic response	has	been considered by	Ridley (1982).
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3.5.2	Slam coefficients for cylinders 

a. Equation for slam force 

Present design practice is to calculate the slam force using an equation similar to that 

used for the calculation of drag force but with a slam coefficient in place of the drag 

coefficient. (It should be noted however that slam is an inviscid flow phenomenon which 

is hardly affected by viscosity or vortex shedding and that the similarity In the form of 

the equations is coincidental).	The overall slam force on the cylinder is a maximum 

when the axis of the cylinder is parallel to the water surface.	The slamming force per !

unit length is expressed in the form:—

F 
S	 S	 5	 5	 S 

IL	=	0.5 C	p D U lU I	or	F IL	=	0.5 C	p D UlUl 

where 

U	is the velocity of the water particles resolved normal to the cylinder 

U	is the velocity of the normal to the surface resolved normal to the cylinder 

For most cases of slamming U	= U	= U.	For wave slap, particularly of vertical or 

inclined members in spilling breakers U	and U	may be very different. 

D is the members local effective diameter,	p is water density and C	is the slamming!

coefficient. 

b. Theoretical time average slam coefficient 

An insight into the slam phenomenon can be gained from the following simple analysis. 

During a wave slam an added mass per unit length of CpitD 2/4 is decelerated from a 

velocity of U	to 0 in a time equal to DIU. 

Force = rate of change of momentum therefore 

Force = (CpitD 2/4) U p
	s	 a 
I(DIU ) = 0.5 (C pit/2) D U 

p 
U 

S 
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By comparison with the slam force equations in terms of C, Cs average = CitI2. 

For a cylinder C 
a	 S 

= 1 and the average C	would therefore be 7t/2. 

However experiments have shown that the rate of change of momentum is not uniform 

over the immersion time but is very high just as the water surface touches the member. 

Some recent tests on cylinders are described below: 

C.	Experimental measurements of slam coefficients 

Faltinsen et al (1977) measured slam coefficients between 4.1 and 6.4 on rigid cylinders 

and found higher values on flexible cylinders. 

Sarpkaya	(1978)	measured	slam coefficients	between	1.6 and	5.3 using	the	oscillating	flow 

water	tunnel	(Fig.	3.2.10)	but with	the	cylinder	at	the top	of one	of	the	vertical	legs. 

He	noted	the	importance	of the	dynamic	response of	the member	and	found	that 

roughness	increased	the	force rise	time	but	tended	to decrease the	dynamic	response	of 

the	member. 

Kaplan	(1979) estimated	slam coefficients	of	between	1.9 and	5.1	based	on	measurements 

taken	on	the OTS	structure. Sampling	rate	and	data filtering	problems	prevented	peak 

forces	from being	obtained and	the	estimates	were made	by	comparing	the	actual 

measured	time histories	with similarly	sampled	and	filtered theoretical	time	histories.

Campbell	and	Weynberg	(1980)	measured	slam	coefficients	of	5.1	for	perpendicular!

slamming into calm water, 4.1 for slightly disturbed water, 2.9 for aerated disturbed water 

and 4.1 for soft fouled cylinders.	The variation in slam coefficient seems to be caused!

by a number of factors 

1. the surface roughness 

2. the shape of the water surface as it hits the member 

3. the dynamic response of the member 

Item 3 probably has a small effect on the peak slam force applied to a member. 

However, if the slam force is inferred from the response of the slammed member then 

the dynamic response of the member is important (see Section 3.5.3). 
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When the water surface is not parallel to the surface of the member the effect of the 

slam	is that of a	point load traversing	the	member.	This produces	lower slam 

coefficients.	However, the smooth cylinder/calm water coefficients are reduced more than !

the fouled cylinder or disturbed water coefficients. 

The time histories of the slam forces as measured by Campbell and Weynberg were 

5.15 / (1 + 19 Ut/D) + 0.55 Ut/D for the smooth cylinder 

and

4.1 / (1 + 8.3 Ut/D) + 0.45 Ut/D for the fouled cylinder 

where t = the time from the commencement of the slam 

d.	Theoretical estimates of slam force time histories and coefficients 

Impact with a flat still water surface	has been studied extensively because of its 

importance for ship hull slamming, seaplane landing and spacecraft touchdowns in the 

sea.	Mathematical models have been developed for cases of simple geometry, such as 

spheres and wedges: Szebehely (1959), and cylinders:	Kaplan and Gilbert (1976). 

Various	methods	have	been	used	to	estimate	the	time history.	A simple approach	for	a 

cylinder	assumes	that	the	added	mass	is	equal	to	that of	a	flat plate	of width	equal	to 

the	instantaneous	wetted	width	of	the	member.	The slam	force is	then estimated	from 

the	rate	of	change	of	added	mass.	This	gives	a	C value	of	it for	a cylinder.

More detailed hydrodynamic analyses, taking into account the generation of spray, have 

produced higher values. 

Gallagher and McGregor (1985) show the importance of trapped air during wave slamming 

by using a finite difference analysis which models the air flow as well as the behaviour 

of the water. 

3.5.3	Member response to slam 

Slam occurs over a very short period of time.	This produces a dynamic response in 

the member which may increase or decrease the effect of the slam loading. 
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Miller	(1980)	accepts	that	high	C	values	are	possible but	notes that	the	ideal	conditions 

necessary	have a	low	likelihood	of	occurrence	in	the real	sea. By	taking	into	account 

the	directional and	frequency	spread	of	the	waves	and typical response	characteristics	of 

members,	he suggested	that	a	constant	slamming coefficient Cs	=	3.5	is	usually 

conservative	for estimating	both	extreme	stresses	and	fatigue life. 

Ridley	(1982) extended	Miller,s	(1980) work	and, based	on the	time	histories	from 

Campbell	(1982) produced	graphs	which	enable	the	peak	dynamic response	of	members	to 

slam	loading	to be	easily	calculated. The	dynamic amplification factor	may	be	as	high 

as	two.	The angle	between	the	water surface	and the	member as	the	slam	occurs	is 

allowed	for	in the	calculation	and	is	shown	to	have a	significant	effect.	Figures	3.5.1-

3.5.2	are	based on	Ridley,s	work.	Figure 3.5.1	shows the	dynamic amplification	factor,	i.e. 

(Dynamic peak response)/(peak response if the slam load were to be applied slowly). 

Figure 3.5.2 shows the dynamic range factor, i.e. 

(Dynamic max—min response)/(peak response if the slam load were to be applied 

slowly). 

A ,response may be deflection, moment or bending stress. 

The figures are presented in terms of 0 L/D and U/f D. 

Where

= angle	between	member	axis	and	water surface (radians) 

= angle	between	member	axis	and	water surface (degrees) 

L	= member	length 

D	= member	diameter 

U	= velocity	of	impact	measured	normal to	the cylinder	(the	possibility	of	different 

values	of	U	and	U	was	considered but	not included	in	the	final	results) 
p	S 

= natural	frequency	of	the	member	(H)
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Because	wave slam	leads to	a	dynamic	response	in	the	slammed member	a	large	number 

of	cycles	of oscillation occur	for	each	slam. The	oscillations will	decay	according	to 

the	damping characteristics	of	the	member. The	effect	of these	oscillations	is	to 

considerably	increase	the fatigue	damage	from wave	slam	effects. Ridley	(1982)	provides 

guidance	on the	form of	the	oscillations corresponding	to assuming	a	logarithmic 

decrement	of 0.05. 

3.5.4 Probabilit y of wave slam 

Probabilities of wave slamming were discussed by Miller (1980) and further considered by 

Ridley (1982).	They allowed for: 

a.	The distribution of	wave heights	within	a	sea	state. 

b.	The distribution of	mean water	level. 

c.	The distribution of	wave directions. 

The method is based on probability theory applied to water surface elevation within each 

sea state. 

An	alternative	and conceptually	much	simpler	method for	calculating the probability	of 

wave	slams	is	to use	the	semi—probabilistic	approach. This	is	described in	4.3.3	(for 

strength	analysis) and	4.4.3	(for	fatigue	analysis)	of Morison	and diffraction	loading 

effects.	It	is	however	easily	adapted	to	wave	slam and	may	be used in	conjunction 

with	Ridleys	(1982) dynamic	analysis	of	the	response	of a	member	to slam.

3.5.5	Slam coefficients for non—cylindrical members 

a.	Flat sided members 

Slam coefficients for flat sided members will be very dependent on the angle of the 

sides to the water surface and the flatness of the water surface. Should a slam occur 

where a flat wave surface is nearly parallel with the member surface then very large 

values of slam coefficient may be expected. 

However, the probability of flatness and perfect alignment will usually be very small and 

it is tentatively proposed that for non critical members a slam coefficient of 3 should be 

used with a dynamic amplification factor of 2. 
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Flat sided members which are subject to slamming and are critical (for overall structural 

safety or for other reasons) should be justified by model tests or by reference to the 

available literature.	Broughton and Horn (1987) calculated the overall vertical slam forces 

on the underside of a platform deck using an added mass analogy.	The calculated 

forces were	compared with	experimental	results and were found to	be reasonable!

estimates for 0.56m overlap, of this platform deck and wave crest, but the force was 

overestimated for 1.86m of overlap.	Miller (1978) provides a useful bibliography. 

b.	Curved sided members 

Members having a variable curvature, may be assumed to be subject to the same peak 

slam force per unit length as a cylinder having the same radius as the member at 

location of the wave impact.

2 
i.e. F = 0.5 C 5 p (2R) u 

where R is the radius of curvature at the point of impact. 

3.5.6	Pressure distributions from wave slam 

For some members the high local pressures caused by wave slam may need to be 

considered.	Campbell and Weynberg (1980) have measured pressures on cylinders subject 

to slamming.	Figure 3.5.3 has been based on their results.	This figure shows the!

width of the cylinder subject to the pressure, and the average pressure over that width, 

at any given time.	The results are given in terms of the pressure coefficient C 

where: 

P = 0.5 C	p 	U. 
p	p	S 

Using this data a time history of the pressure loading on a panel of a cylinder may be 

calculated.

The initial	peak	pressure	is very	dependent	on	the	*rise	time	and this	in practice	varies 

from one	impact	to	another. Most	experimental	work	seems	to produce rise	times	of 

0.001 to	0.01	seconds	for nominally	parallel	impact.	This	limits	the peak	pressure, 

usually quite	considerably. It	is	not	clear	whether	there	is	any scale	effect	associated 

with the	rise	time.	Results from	tests	at	various	scales	seem	to produce similar	values 

of	rise time	which	suggests that	it	may	be	independent	of	scale.
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Note that the rise time for the pressure in a localised area will not necessarily be the 

same as the rise time for the total force. 

3.5.7	Wave slap 

a. General 

Wave slap occurs when a breaking or near breaking wave immerses a member. The 

physics of the slap force is exactly the same as that of wave slam, therefore the 

calculation methods for slam forces and pressures may also be used for wave slap on 

members. 

Slap	pressure measurements	include those by	Denny	(1951)	which	are	related	to	sea 

walls,	Kjeldsen (1981)	for	impacts	on flat plates	in	deep	water	conditions	(Figure	3.5.4) 

and	Ochi	and Tsai	(1984)	for	breaking and recently	broken	deep	water	waves. 

The results of these measurements have been presented in non dimensional form related 

to	either	the	wave	height	or	the	wave	particle	velocity.	Approximate	relationships 

between these results and the C	defined in Section 3.5.6 are derived in Appendix M !

and used in the remainder of this section. 

Damage to offshore structures corresponding to slam pressure in excess of 1 MN/m 2 has 

been recorded by the Department of Energy. Higher extreme pressures may be expected 

on the basis of model test results although actual values are very difficult to predict. 

b. Slap pressures on cylinders and curved surfaces 

Ochi	and	Tsai (1984)	measured slap	forces	on	cylinders	from	just	breaking and	recently 

broken	deep	water	waves.	In Appendix	M4	we	have	estimated that	their measurements 

correspond	to a	C	of	about 9	for	the	broken	wave	and	13 for	the	breaking	wave. 

We	also	show that	these	values are	reasonably	consistent	with the	slam pressure	time 

history	given	in	Figure	3.5.3. It	is	therefore	recommended	that wave	slap is	treated	as 

wave	slam	for the	calculation	of pressure	loading.
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C.	Slap Pressures on flat areas 

This problem is similar to that of a steep wave hitting a sea wall or the side of a 

ship. 

An average slap pressure coefficient can be calculated for this case based on the rate 

of change of momentum. 

If a flow having a velocity U is assumed to be stopped by a perpendicular wall the 

momentum change per unit area per unit time is pU2. 

The average slap pressure is given by 0.5 C	p U2. 

Therefore C	(average) = 2. 

Broughton	and	Horn	(1987)	used a	similar approach	for	estimating the	horizontal forces	on 

a	platform	deck	with	inadequate air	gap. They	estimated	the	pressure as	pcU, where	c 

is	the	celerity	of	the	wave,	and compared	the	result	with	model tests. They found	that 

the	force	was	reasonably	estimated	for	a 0.56m	overlap	of	wave and platform deck	but 

whereas	the	calculated	force	increased considerably	when	the overlap was 1.96m	the 

model	test	predicted	an	increase of	only 10%.

As for the case of wave slam on a cylinder a wave impact on a vertical face produces 

an initial peak pressure many times the average value. 

Wiegel (1964) reviews some of the early research associated with waves breaking on sea 

walls.	Some of the most interesting work was by Bagnold (1939) and Denny (1951). 

Denny presented ratios of pressure head to wave height for plunging waves.	These were 

carefully set up to give the highest pressures on sea wall. The spread of values is 

seen to be considerable and dependent on the surface characteristics of the water: 

measured pressures were considerably less when there were ,wavelets, of about one tenth 

of the main wave height superimposed on the main wave.	Denny,s results, adjusted to 

C	values, as discussed in Appendix M4, are shown in Figure 3.5.5.	For rough wave!

surfaces the average value of C 
p 

is about 18. 

Denny also shows where, in the wave height, the maximum pressures were found to 

occur (Figure 3.5.6).
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Slap pressures on a vertical plate in deep water waves have been measured by Kjeldsen 

(1981).	In Appendix M3 we have estimated that his measurements correspond to a C 

of about 7. 

Kawakami, Michimoto and Kobayashi (1977) performed slamming experiments with a model 

ship, having a flat bottom, in regular waves. The C values determined for various 

locations on the bottom had average values of 19 to 47 and maximum values of 25 to 

73. 

Rask (1986) compares a number of formulae for slamming pressures on ships hulls. 

These are based on theoretical and experimental studies of wedges impacting a water 

surface.	For a wedge whose faces make angles of 100 with the water surface the 

predicted C	values varied from 17 to 70. 

3.5.8	Probability of wave slap from breakin g waves 

a. Probability of wave breaking in deep water 

This	is difficult to	determine. Estimates	can be made on	the	basis	of	individual	wave 

scatter diagrams, e.g.	Ochi and	Tsai	(1984) but they depend	on	the	shape	of	the 

extreme part	of the	diagram which	is	probably not very reliable.

Kjeldsen et al (1981) and Myrhaug and Kjeldsen (1987) have made predictions of breaking 

wave occurrence on the basis of measurements taken around the Norwegian coast. 

b. Probability of wave breaking in shoaling conditions 

The probability may be determined by using an individual wave scatter diagram for the 

waves in deep water and before they approach the shallow water. The waves which 

break at any given location and their breaking characteristics can be estimated using the 

method given in 2.4.2. 

3.5.9 Recommendations for the calculation of wave slam and slap forces and pressures 

a.	General 

In this section wave forces are given for overall member analysis and wave pressures 

are given for local analysis of, for example, individual plates and stiffeners. 
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Both forces and pressures are subject to scatter but the pressures are much more 

variable than the total forces. 

b.	Slam and slap forces 

Ridley,s (1982) method described in Section 3.5.3 should be used. 

C.	Slam and slap pressures 

Overall the various experiments show that slamming and slapping pressures can vary 

considerably.	Further research is required particularly on slapping pressures and slapping 

wave	probabilities.	Ideally	reliability	techniques	would	then	be	used	to	determine!

satisfactory design criteria. 

Slam and slap pressures may be tentatively estimated using Figure 3.5.3.	This figure!

gives a time history of the pressure and a time history of the chord width ,B, over 

which the pressure acts.	Large areas of plating can therefore be designed for much!

lower pressures than small areas of plating. 

The highest pressure on the smaller areas of plating is limited by a ,rise time, effect 

which is probably associated with the compressibility of trapped air. In the worst cases 

the highest pressure occurs about .001 second after the wave and member first touch. 

Wave	slam and slap	pressures	will be	reduced	by the	presence	of	small	wavelets	on	the 

surface	of the main	wave.	This should	result	in a	reduction	in	pressure,	perhaps	to 

about	one half the	value	predicted by	the	graph	in Figure	3.5.3. 

For	wave	slam	calculation	the	water	surface	of the main	wave	(on	which	the	wavelets 

are	superimposed)	may	reasonably	be assumed flat. For	wave	slap	calculations	the 

assumption	of	a	flat	surface	is	likely to	be	too conservative as	the	breaking	wave	will 

almost	certainly	be	curved	both	in	plan and	elevation. This	overall	curvature	should	lead 

to	a	further	reduction	in	slap	pressure, especially for members	whose	diameter	is	greater 

than	the	wave	height.

We give a tentative method for estimating slap pressures allowing for wave surface 

curvature, along with some examples, in Appendix N. 
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d.	Statistics of wave slam and slap 

The statistics of wave slam and wave slap occurrence are discussed in Section 3.5.7 and 

3.5.10.	In addition to the probability of occurrence of a particular impact velocity it is 

necessary to consider the probability distribution of the impact coefficient (C	or C).!

However, it is unlikely that both will have extreme values in the same event. 

For fatigue calculations it is also necessry to consider the range of impact coefficients 

that occur.	Again using the maximum values will be conservative. 
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3.6	HYDROSTATIC AND HYDRODYNAMIC PRESSURE 

3.6.1	Hydrostatic pressure 

The global effect of hydrostatic pressure is simply that of buoyancy and a calculation 

based on immersed volume is satisfactory. However, in order to calculate the stresses 

in a member immersed in water, a more complicated calculation, based on the actual 

pressure distribution, is required.	It is occasionally necessary to consider the influence!

of internal and external pressure on the global behaviour of slender beam members. 

There is an interaction between the pressure along the length of an immersed member 

and the curvature of the member.	This results in external pressure reducing bending 

deflections and an internal pressure increasing bending deflections.	This interaction may 

be analysed using the effective tension approach (Sparks 1980). The effect is typically 

only important when the difference between the internal and external pressure exceeds 

lOOm of water. 

3.6.2	Hydrodynamic pressure 

The distribution	of hydrodynamic	pressure	on a	body	immersed	in	an	inviscid	fluid	can 

be calculated	from potential	theory	for	steady or	uniformly	accelerating	flow	(see	Sarpkaya 

and Isaacson,	1981) or	from	diffraction	theory for	wave	flow	(see	Section	3.4).	A	body 

in sea	water	will shed	vortices	and	this will	change	the	pressures	calculated	from 

diffraction theory. 

The	order of	magnitude of	the	inviscid	flow hydrodynamic	pressures	may be	estimated	by 

calculating the	so	called Incident,	Froude Krylov	or	Excess	Pressure under	the	waves. 

This	is	the	cyclic	pressure,	caused	by	the waves,	that	would	occur if	there	was	no 

structure present.	(see Appendix	A,	Table Al).	The	presence	of the	structure	will 

modify	the	incident	pressure	and	result,	in theoretical	inviscid	flow,	in total	hydrodynamic 

pressures of	typically	0.5 to	2.0	times	the	incident	values.

The pressures associated with flow separation may be determined approximately from the 

time averaged and fluctuating drag and lift forces, which may be assumed to act on the 

projected area of the member. 

Pressures caused by wave slam and slap are discussed in 3.5. 

260 



3.7 INTERFERENCE BETWEEN MEMBERS 

3.7.1 General 

Members of offshore structures do not occur in isolation. The effect of the wake of 

one member on another and the alteration of the velocity field may significantly change 

the resultant forces from those predicted. 

Flow	interference	between	circular	cylinders in	various arrangements	has	been reviewed	by 

Zdravkovich	(1977,	1985)	and	Sarpkaya	and Isaacson	(1981).	Most	of	this	work has	been 

performed	in	subcritical	flow	but	the	results show	that there	is	generally	only a	moderate 

change	in	the	drag	forces	acting	on	the members providing	the	centreline spacing	is 

greater	than	3	to	4	diameters.	Changes in	drag force	when	one	cylinder is	in	the 

wake	of	another	become	very	small	at	a spacing	of 10	to	15	diameters	but	lift	forces 

may	still	be	affected	significantly	up	to	a	spacing of	20	diameters.	For spacings	of 

less	than	3	diameters	interference	effects	may become very	large. 

When performing experimental	work on	arrays	a	significant	proportion	of	the	width	of	the 

tank or	tunnel may	be	occupied by	the	members.	This	*blockage	effect*	may	cause 

higher forces	on the	members	than would	occur	in	the	open	sea. 

Sections 3.7.2 to 3.7.8 deal with	rectangular arrays of 2 or more cylinders	having 

approximately equal diameters.	Sections 3.7.8 to 10 deals with attachments and Section !

3.7.11 discusses joints. 

3.7.2	Forces on arrays of cy linders in steady flow 

Pearcey et al (1982) measured drag forces on groups of smooth cylinders in simulated 

post critical steady flow (by using trip wires and an actual Reynolds number of 4 x 104 

to	8	x	10). 

They	found	that	for	a	pair of	cylinders	at	a	centreline	spacing of	5D the	drag 

coefficient	for	the	downstream cylinder	was	considerably	affected	by	the angle	of incidence 

of	the	flow.	When	the	flow is	in	line	with	the	cylinders	the	drag force	on the	rear 

cylinder	reduced	to	64%	of	the isolated	cylinder	value.	However,	when	the	flow is	at 

18.5 0	to	the	plane	through the	axes	of	both	cylinders	the	drag force	on the	rear 

cylinder	increased	to	128%	of the	isolated	cylinder	value.	In	both cases	the force	on 

the	front	cylinder	remained	at the	isolated	cylinder	value.
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Pearcey	et	al (1982)	also	measured forces	on	cylinders	in	2	x	2,	3	x	3, and	4 x	4 

arrays	with	a centreline	spacing	to diameter ratio	of 5.	Figures	3.7.1	and 3.7.2 show 

the	effect	of interference	on	the	2 x	2	and 3	x	3 cylinder	arrays.	Table 3.7.1	shows 

the	increased in	line	forces	on individual members and	thw	whole	group which are 

important	for	the	analysis	of	strder increased to	128% of	the	isolated	cylinder value. In 

both	cases	the force	on	the	front	cylinder	remained at the	isolated	cylinder	value. 

Pearcey	et	al (1982)	also	measured	forces	on	cylinders	in	2	x	2,	3	x	3, and	4	x	4 

arrays	with	a centreline	spacing	to	diameter ratio	of	5.	Figures	3.7.1	and 3.7.2	show 

the	effect	of interference	on	the	2	x	2	and 3	x	3	cylinder	arrays.	Table 3.7.1	shows 

the	increased in	line	forces	on	individual members	and	thw	whole	group which	are 

important	for the	analysis	of	structures.

Table 3.7.1 -	Increased in line force on arrays of cylinders in steady 

simulated post critical flow 

S/D = 5	Force on group	Force on single member 

2 x 2	 1.07	 1.18 

3 x 3	 1.12	 1.27 

Pearcey et al did not attempt to measure steady lift forces but suggest that these will 

occur and result in a further increase in the forces. 

Pearcey et al suggested three interference effects on drag loads: 

The first effect tends to reduce the drag for any individual member that lies directly 

downstream of others, because the incident velocity is reduced in the wake of the 

upstream cylinders. 

The second effect tends to increase the drag for any individual member that lies to the 

side of the wake of an upstream one, where the presence of the upstream cylinder and 

its wake leads to an increased velocity to the side of the wake. 

The third effect is that the increased vorticity of the incident flow on a downstream 

cylinder moves the position of the transition to turbulence downstream. This may 

increase or decrease the loading on the downstream cylinder according to the Reynolds 

Number.

262 



1/2°	o° 

c	
5  

Ln 

118

— - 

— - 

---- 

107 -4- - - 

1 

de

_ 

1- -I-
0	io 185120	30	40	sdI 

Angle of Incidence of Flow 

130 

U
120 

U 
U 
t 1.10 
U 4-

4-
0 
4-	0*9C 

080 
0 U-
"S	0-70 

CU 

U

060 
U 
L. 
-2 0-50 

4-	0-40 

i-i	0-30 
0 

U-
•1-	0-20 0 
0

0-10 
ix

0

TOTAL FORCE ON THE GROUP 

- - HIGHEST FORCE ON SINGLE MEMBER 

LOWEST FORCE ON SINGLE MEMBER 

Figure 3.7.1. Changes in loading on a group of 4 cylinders caused by interference 


(simulated post critical steady flow, S/D = 5, Pearcey et al, 1982) 

- 263 - 



140 

w 130 
'-I 
C 
U 
U 
*4-

U 
.4-
c 1.10 

.4-

100!

090!

LL 060 

U 
Cw 0-70 
U 
cu 

060 

- 050 

.4-

040 
U 
*-I 

L 030 

0 

2 020 
.4-

0-10 

0

\85 O0 

45 

5  5  

Ln 

Ln

, 

127
1 

--

 It
 

- 00 1.12 

2 
/ 

oe 
/ 

/ 
,1 --

0	10	185120	30	60	50 

Angle of Incidence of Row 

TOTAL FORCE ON THE GROUP 

- -- HIGHEST FORCE ON SINGLE MEMBER 

LOWEST FORCE ON SINGLE MEMBER 

Figure 3.7.2. Changes in loading on a group of 9 cylinders caused by interference 


(Pearcey et al, 1982) 

- 264 - 



Heideman and	Sarpkaya	(1985)	performed experiments	on a	square	S	x	5	array	of 

cylinders of	S/D	=	2	and	a	rectangular	5 x	5	array	with S/D	=	2	and	5	(see	Table 

3.7.2).	For	comparison	they	also	measured the	forces	on solid	bounding,	prisms	which 

had	the same	overall	external	dimensions as	the	arrays, and	on	an	isolated	cylinder. 

Measurements	were	made	in	both	steady	and oscillating	flow.	All	cylinders	were	sand 

roughened with	a	k/D	of	1150. 

In	steady flow	the	loading	on	the ,bounding	prism,	was	less than	the	total	load	on	the 

cylinders except	when	the	incident flow	was	parallel	to	the edge	of	the	square	prism, 

when	the loading	on	the	prism	was nearly	50%	greater	than that	on	the	array. 

The	loading	on a	single member	was	always found	to	be	higher	than	the	average	for 

the	arrays,	see Table 3.7.3.	The	shielding factor	varied	from	0.8	to	1.0	for	the 

rectangular	array and	0.5 to	0.7	for	the	square array. 

Table	3.7,2	-	Spacing	to diameter	ratios -	(Heideman	and Sarpkaya,	1985) 

Rectangular Square 

Array Array 

Across	0 0 Flow 2 2 

Along	0 0 Flow 5 2 

Table	3.7,3	-	Shielding	effect	for	arrays in	steady	flow	Re =	2	x 

(Heideman and	Sarpkaya, 1985) 

Flow Single Rectangular Square 

Angie Member Array Array 

00 1 0.8 0.5 

150 1 0.9 0,6 

20 0 1 1.0 0.7
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3.7.3	In line forces on arrays of c y linders in oscillatin g flow 

Heideman and Sarpkaya (1985) found that in oscillating flow the loading on the *bounding 

prism* was higher than the loading on the cylinder array except when the incident flow 

was parallel to the edge of the rectangular prism. An *opposite* conclusion to that 

found for steady flow. 

At K	= 10 there was a blockage effect in the array and the isolated cylinder forces 

were lower than the average for the array, by up to 30%. However at higher K  there 

was a shielding effect and the single member force was always higher than the average 

array member force, see Tables 3.7.4 and 3.7.5. 

Table	3.7.4	-	Total	force	for arrays in	oscillating	flow	R =	1300 

blockage	effect at	K =	10	(Heideman	and	Sarpkaya, 1985) 

Flow Single Rectangular Square 

Angle Member Array Array 

00 1 1.4 1.2 

15 ° 1 1.4 1.1 

20° 1 1.3 1.0 

Table	3.7.5	-	Total	force	for arrays in	oscillating	flow	Re =	13000	shielding 

effect	at	
K 	

= 100	(Heideman	and	Sarpkaya, 1985) 

Flow Single Rectangular Square 

Angle Member Array Array 

00 1 0.3 0.5 

15 0 1 0.6 0.6 

20 0 1 0.8 0.7
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Bushnell (1976) performed experiments on pairs of cylinders and a 3 x 3 array of 

smooth cylinders, at a spacing of 4D.	The oscillating flow conditions were	R	of 2 x 

1O 4 to 8.6 x 1O4 and 
K 	

from 31 to 126.	The experiments were performed with and !

without trip wires which were intended to simulate post critical flow conditions. 

The results for the array tests are given in Tables 3.7.6 and 3.7,7.	These showed that 

there was generally minimal interference effect until the 
K 	

value became greater than 

30.	This corresponds to a water particle double amplitude/cylinder spacing of 2.5. 

Table	3.7.6	-	Increased	in line	force on	array	of cylinders	in	oscillating	critical	flow 

(Re	= 4	x 104)	(S/D	= 3)	(Bushnell, 1976) 

Angle K b/s Force	on	group Force	on 

single	member 

00 31 2.5 1.00 1.0 

00 62 5.0 0.75 1.0 

00 126 10.0 0.75 1.1 

200 31 2.5 1.0 1.1 

20 0 62 5.0 0.95 1.1 

200 126 10.0 0.85 1.2 

b	=	2x amplitude of flow oscillation 

S	=	centreline spacing of cylinders 

Table 3.7.7 -	Increased in line force on array of cylinders in oscillating simulated post 

critical flow (Re = 4 x 104) (with trip wires) (S/D = 3) (Bushnell, 1976) 

Angle K b/s Force	on	group Force	on 

single	member 

0° 31 2.5 1.15 1.20 

00 62 5.0 0.95 1.15 

0° 126 10.0 0.85 1.10 

200 31 2.5 1.15 1.25 

20 0 62 5.0 0.25 1.65 

20 0 126 10.0 0.30 1.75
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The increased loading was not separated into drag and inertia effects but at the higher 

K	value of 62 to 126 it is likely that all the changes were dominated by drag effects. 

The applicability of these results to true post—critical flow is unclear.	It is possible that!

the results are valid, in which case large increases in loading on cylinder arrays should 

be expected.	However, the drag coefficient determined by Bushnell for a single cylinder 

with trip wires was 0.9 at high K.	This is higher than the post—critical oscillating flow 

value of 0.65 and more consistent with a rough cylinder value. If the single cylinders 

with trip wires were behaving like rough cylinders in critical oscillating flow then it is 

possible that the increases measured for the arrays are caused partly by the increased 

turbulence in the flow moving the flow pattern around each cylinder into the supercritical 

region.	This effect will significantly increase the drag coefficients in the tests but not!

cause any increase in true post—critical flow. 

The	results for	the	00 incidence suggest	that	this	effect	could	amount	to	15% for the 

group	and 20%	for	the most	highly loaded	member.	This	leaves	an	increase	of 13% for 

the	force on	the	group and	46% for	the	force	on	an	individual	member.	These results 

(for	a	3D spacing	of members) are	then	comparable	with	the	steady	flow	results of 

Pearcey	et al	(1982)	which, for a	5D	spacing	of	members,	gave	increases	of 12% for 

the	group and	27%	for the	force on	a	single	member	of	the	group. 

Beckmann and	Merwin	(1979)	analysed	data	from	the	OTS structure	which	had a	7	x	3 

group	of members	simulating	conductors. The spacing	to diameter ratio	was 5.4	along 

the	three member	lines	and	3.6	along the seven	member	lines. The	average drag 

coefficient for	the	(smooth)	cylinders	in large waves	was 0.6.	This coincided with	the 

value	for no	interference.	The	spread of
C 	

values was	large but	no consistent 

interference or	shielding	effects	could	be identified either	for	the	total force	on the	array 

or	for	the forces	on	5	separately	instrumented conductors.

Vortex shedding caused the cylinders to vibrate transverse to the flow, at a frequency 

corresponding to the Strouhal number.	The moments induced by vortex shedding were at 

times greater than the drag force.	No effect of the transverse vibration on the drag !

force could be determined.
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Chakrabarti (1979) performed experiments on lines of cylinders in waves at Re of104to 

4 x 1O 4 and K	of 3 to 50.	The arrangement of cylinders included: 

Number of Cylinders : 2, 3 and 5 

Centreline spacing of cylinders : 1.1, 1.33, 2 and 5 diameters 

Orientation of line : 00, 45 0 and 900 for the wave direction. 

Chakrabarti does	not	present	results for	a	single	cylinder but	the	difference	between	the 

results	for 5	diameter	spacing	and 2	diameter	spacing	is generally	small.	Therefore	at 

5	diameters spacing	the	interference effects	would	seem	to be	negligable.

For the cylinders at 0 0 (in line with the wave direction) there was found to be a 

shielding effect as the spacing decreased. 

When five cylinders were positioned at 90 0 to the wave the force on the end cylinders 

increased by 2.75 times as the spacing decreased from SD to 1,1D. The force on the 

other cylinders increased by about 4.5 times resulting in a 3.8 times increase in the 

total load on the group. 

With the cylinders at 45 0 to the wave direction the forces were similar to the 90 0 case 

with a general increase in force as the spacing reduced. 

3.7.4	Inertia and diffraction forces on arrays of cylinders in inviscid flow 

Inertia coefficients have been calculated for groups of cylinders using potential flow theory 

by Yamamoto and Nath (1976) and Dalton and Helfinstine (1971).	Spring and Monkmeyer 

(1974) have used diffraction theory.	However Sarpkaya and Isaacson (1981) suggest that!

coefficients determined by these methods may not be appropriate to arrays of small 

cylinders	(e.g. conductors)	because	of modification	of the	pressure	distribution	by	the!

eddies. 

It	is	therefore	recommended	that	inertia	forces	for	cylindrical	arrays	are	determined!

experimentally where they are important.
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For	cylinders	of	diameter	greater than	one fifth	of	the	wavelength the	effect of	the 

cylinders	individually	or	in	groups diffracting the	waves	must	be	taken into	account and 

any	vortex	shedding	effects	will be	very small.	Diffraction	is	associated with the 

structure	modifying	the	incident	wave	pattern. The	interference	is	then transferred as	a 

wave	and	can	travel	over	longer distances	than	interference	from	drag and	inertia effects 

which	are	approximately	limited	to the	orbit radius.	The	interference effect	will reduce 

approximately	as: 

(spacing / diameter)° 

This produces a slow reduction of the interference effect with distance. 

3.7.5	Lift forces on arrays of cylinders 

a.	Fluctuating lift forces

Bushnell	(1976)	also	measured	lift forces on	the	cylinder pairs	and arrays. At the 

critical Re	values	of	the tests	lift forces were	much	larger than	in post	critical flow. 

In	the two	cylinder	tests lift	forces were modified	from	the isolated cylinder values as 

shown in	Table	3.7.8.The angle	given is the	angle	between the	flow direction and the 

plane containing	the	axes of	the	two cylinders. 

Table 3.7.8	-	Factors	by which	lift forces were	modified	in 2	cylinder tests	in simulated 

post	critical oscillating flow S/D	=	3,	Re	= 2	x	10 to	8.6	x with 

trip	wires

K 
c	

Angle 

0°	20°	400 

31 0.8 0.9 0.8 

62 2.0 1.9 1.2 

126 2.9 3.1 1.9 

Larger	increases	in lift	force	were found for	the 3	x	3	array.	The	largest lift	force	of 

5	times	the	single cylinder	value was obtained from	the	cylinder	with	trip wires	which 

also	had	the	largest drag	force	of 1.75 times	the single	cylinder	value.	This would
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imply a peak force increased to about 2.1 times the single cylinder value.	However,!

this increase may have been partly caused by a failure of the trip wires to act as 

intended.	Without trip wires the largest lift force was 3.7 times the single cylinder !

value. 

Verley and Every (1977) have also compared the lift forces and dynamic response of 

single cylinders and a 4 x 3 array of cylinders with S/D = 2.0 at K	up to 30.	They 

found that there was no increase in the lift forces measured in the array.	This Is 

consistent with the low K	results of Bushnell (1976). 
C 

b.	Steady lift forces 

Large lift forces can occur when a line of cylinders is not exactly parallel or perpen-

dicular to the flow direction. Bokaian and Geoola (1985) demonstrate this for two 

cylinders in steady flow at Re = 2900 and 5900. 

3.7.6	Conclusion for arrays of cylinders 

a.	Drag and inertia forces - total force on an array 

The	experiments	show	that the	force	is	dependent	on	the	angle	the	flow	makes	with	the 

array. Figure 3.7.3	shows a	typical	change	in	total	force	with	incident	flow	direction. 

In	the range of	centreline spacing	to	diameter	(S/D)	of	most	interest	for	conductor	arrays 

(SID =	3	to 5)	the	force	may	increase	or	decrease	but	will	probably	remain	within 

about 20%	of that	predicted without	allowing	for	any	interaction.

At smaller spacing the interaction effect can be much greater: a line of 5 cylinders 

across the flow at (SID) = 1.1 resulted in an increase to about 3.8 times the total 

force for 5 isolated cylinders. 

Since these changes for typical conductor spacings are relatively small and the loading 

on the conductors is only part of the total loading on a jacket structure it may often 

be reasonable to ignore any interference effects in the calculation of the total force on 

a conductor array.
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b.	Drag and inertia forces - force on individual members 

In steady	flow,	oscillating	flow	and	laboratory	waves	the	forces	on	members within	arrays 

are highly sensitive	to	interaction	effects.	At	S/D	= 5	increases	of	27% were	obtained 

for a	3	x 3	array.	At	S/D	=	3	increases	of	up	to 75%	were	obtained, again	on	a	3 

x 3	array. Five	cylinders	across	the	flow	at	S/D =	1.1	resulted	in	an increase,	for 

the cylinder with	the	highest	loading,	to	4.5	times	the single	cylinder	force. 

Analysis of data from the OTS structure in the sea (S/D 3.6 and 5.3) did not Identify 

any increase in the loading on the conductors which were instrumented. 

Nevertheless	the	results	from steady flow	and	oscillating	flow	experiments	demonstrate	that 

some	cylinders	in	arrays are likely to	be	subject	to	significantly	higher	loads	than	would 

be	estimated	for	a single cylinder. We	would	tentatively	recommend,	for	members	in 

arrays	with	spacing between 3D	and 51),	that	the	extreme	local	loading	on	any	individual 

member	should	be taken as	1.5 times	the	loading	calculated	without	allowing	for 

interference.	For lower	member spacing	reference	should	be	made	to	relevant 

experimental	data. For	larger member	spacing	interference	effects	may	be	ignored.

C.	Fluctuating lift forces 

There is some evidence from oscillating flow experiments that lift forces on members in 

arrays may be much higher than single member lift forces for 
K 	

greater than 30. 

However, in this range of K  oscillating flow may not correspond very well with real sea 

conditions so until more data is available cylinders in arrays should be checked for 

vortex shedding induced oscillation assuming no interference. 

d. Steady lift forces 

These can occur and are most significant for small member spacing. 

e. Diffraction forces 

When members span more than one fifth of a wavelength they modify the wave.	This 

may effect other members at large distances from the diffracting member.	See Section 

3.7.4.
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3.7.7	Interference between non cylindrical shapes 

Little data is available.	In the diffraction regime the diffraction calculation should account 

for a member shape. 

In the absence of specific data for the drag/inertia regimes then the interference factors 

obtained for smooth cylinders may be used. 

3.7.8 Attachments 

Attachments	to	the members	of	an	offshore structure take	many	forms, e.g.	sacrificial 

anodes,	pile	guides, walkways	and	risers. Little	data exists	concerning the	effect	of 

these	attachments	on the	wave	loading	of the	parent members.	In	some cases	the 

phenomena	involved may	be	expected	to	be similar	to those	described	in Sections	3.7.2 

to	3.7.8.	In	other cases	the	effect	of	the attachment is	to	change	the shape	of	the 

member. 

3.7.9	Total load on a member with attachments 

a.	General 

Sacrificial	anodes are	used in	large numbers	on steel	members	of	offshore	structures	to 

control	or	reduce corrosion. These anodes	are manufactured	commercially	in	a	range	of 

shapes	and	sizes, and	are fitted	by a	variety	of methods. 

The effect of the anodes on the total wave loading of members to which they fitted 

can be expected to vary with several parameters for instance: 

I.	Anode	shape. 

ii.	The method	of fixing	and	the	gap between	the	anode	and	the	member	to	which 

it is	fitted. 

iii.	The length	of the	member	covered by	anodes. 

iv.	The incidence angle	of	the	anode relative	to	the	wave. 

V.	The orientation of	the	member	to which	the	anode	is	fitted.
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Singh et	al (1982) fitted	one square	cross	section	shape	of	anode	to	circular	cylinders 

which were either vertical	or horizontal	and	parallel	to	the	wave	crests. Stand	off 

distance and incidence angle were	varied	in	these	experiments.	The	anode width	was 

one quarter of	the cylinder	diameter. The	Reynolds	number	was	less	than 10	but	the 

flow was	thought	to be	post critical.	Keulegan	Carpenter	number	range	was from	I	to 

12. 

They concluded that 

1. The effect of anodes varies considerably with orientation of the member in which 

the anodes are fitted. 

2.	On	vertical	cylinders	the	anodes	always	increase	the	loading.	Increasing	the 

incidence, defined	as	the	angle	between	the	radius	to	the	anode	and the	flow 

direction, results	in	an	increase	in	force.	As an	example,	at	an incidence	of 

900,	with the	stand	off	distance	equal	to	one anode	width,	a	load of	2	times 

that	on	a	plain	cylinder	was	recorded.	At a	similar	orientation, reducing	the 

stand	off distance	to	zero	caused	a	further increase	in	loading, to	about	3 

times	that on	the	smooth	cylinder.	However, an	increase	in	stand off	distance 

from	one anode	width	to	two	anode	widths caused	only	a	slight change	in 

loading.

3. On vertical cylinders the wave loading penalty appeared to be increasing with K. 

4. On horizontal cylinders, the effect of anodes is more complex. Anodes mounted 

on a horizontal plane through the member caused a reduction in the in line 

forces but generated large transverse forces. An increase in load of almost 

twice that on a plain cylinder was observed at f<c greater than 10.

0 

5. Stand	off	distance	is	also	important	on	horizontal	cylinders.	Generally, 

decreasing stand off distance increased the total force, however for K	greater!

than about 8 the effect of stand off distance is reduced. 
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b.

	

	Recommended method of estimating total forces on members with attachments standing !

off from the member 

In line forces: 

Analysis of the results of Singh et al suggests that the maximum forces on 

members with attachments standing off from the member may be underpredicted if 

no interference effects are allowed for, see Table 3.7.9. 

Table 3.7.9 - C 	and Cm Values for anode of size D/4 by D/4, standing off by 0/4, !

on a Cylinder of diameter D. Experimental values compared with values 

calculated without allowing for interference effects (Re	l0, 
K 	

1 to 12) 

Note: 

(1) Coefficients for use with 

member dimensions 

(2) Coefficients for use with 

member + anode dimensions

Measured	Calculated	Blockage 

Singh et al	assuming no	effect 

(1982)	interference 

(1)	(2)	(1)	(2) 

Vertical cylinder	
C 	

(max. value)	 1.4	1.1	1.2	1.0	 1.2 

Horizontal cylinder 
0  

(max. value)	 1.2	1.0	1.2	1.0	1.2 

Vertical cylinder	Cm (max. value)	 2.7	2.5	2.2	2.0	 1.2 

Horizontal cylinder Cm (max. value)	 2.2	2.0	2.2	2.0	1.0 

Note:

	

	Sirgh et al calculate C 	and Cm for D and A in Morison*s equation!

corresponding to the member alone. 

The calculated values are seen to be approximately correct for the horizontal 

cylinders and a little low for the vertical cylinders. 

However, the experimental values given are for the worst incidence angle of 

the flow. For anodes and other appurtenances scattered over a structure the 

assumption of no interference would therefore be reasonable. 
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2.	Lift forces: 

The anode attached to one side of the cylinder was found to produce a lift 

force of similar size to the drag force. 

Lift forces on smooth cylinders are much higher at the low Reynolds Number of 

the experiments than they are at the high Reynolds Numbers of the prototype 

flows.	However, the attachments almost certainly generated a post critical flow 

in	the	experiments	and	therefore the	results	may	be applicable	to offshore!

structures. 

It is therefore recommended that members with attachments should, over the 

length of the attachment, be capable of taking an additional steady lift force 

equal to the drag force on the attachment and member. This force need not 

be included in the total global load. 

c.	Recommended method	of estimating	total	forces	on	members having	attachments 

mounted	with no	gap. 

For	appurtenances attached	to the	surface	of	cylinders	with	no	stand off	distance	higher 

forces	were	measured,	see Table	3.7.10.	In	this	case	the	C value	when	the 
a 

appurtenance	is orientated	at right	angles	to	the	flow	should	be calculated	for	an 

approximate	added mass	force of:-

p it (D + d) 2 U and a Froude Krylov Force of p it (D 2 + d2)Ü!

4	 4 

where	D	is	the	diameter	of	the	member	and	d	is	the	width	of	the appurtenance. The 

Cm	value	appropriate	for	use	with	the	total	area	of	the	member	and the	attachment (see 

Section	3.2.13) is	therefore	((D	+	d) 2	+	D 2	+	d 2)/(D 2	+	d 2 )	=	2.4 for	the	dimensions 

used	by	Singh et	al.	The	drag	force	should	allow	for	the	extra width	and	also for 

the	higher	
C 

caused	by	forcing	boundary	layer	separation	to	occur at	the	appurtenance 

which	leads	to a	wider	wake.	The	
C 	

value	for	the	cylinder	with	the	appurtenance may 

then	be	taken as	the	average	value	for	a	cylinder	and	a	plate,	e.g. (1.0	+	2.0)12	= 1.5 

and	the	width in	Morison*s	equation	should	be	taken	as	D	+	d.
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Table 3.7.10 - 0  and Cm Values for anode of size D/4 by D/4, mounted with no gap 

on a Cylinder of diameter D. Experimental values compared with calculated 

values for the modified member

Note: 

(1) Coefficients for use with 

member dimensions alone 

(2) Coefficients for use with 

member + anode dimensions 

i.e. D(-- D + d, A	- ir(l	+ d2)/4

Measured
	

Calculated 

Singh et al
	

assuming no 

(1982)
	

interference 

(1)	(2)	(1)	(2) 

Vertical cylinder	
0  

(max. value)	 2.2	1.8	1.9	1.5 

Horizontal cylinder Cd (max. value)	 2.0	1.6	1.9	1.5 

Vertical cylinder	Cm (max. value)	 2.9	2.7	2.6	2.4 

Horizontal cylinder Cm (max. value)	 2.6	2.4	2.6	2.4 

The recommended method is seen to be quite good for the horizontal cylinder but to 

underestimate the loading on the vertical cylinder. 

3.7.10	Force on Attachments to Members 

No data is available for calculating the force on attachments themselves. It is common 

practice to use potential flow theory to allow for an increased force on attachments 

caused by the disturbance to the flow from the presence of the member. 

For cylindrical members the increased flow velocity in a plan through the axis of the 

member and at 900 to the normal flow is given by: (1 + 0.25D 2/R2)U where 0 is the 

diameter of the cylinder, R is the radial distance from the centre of the cylinder (R is 

therefore always greater than D/2) and U is the incident velocity.	(See Figure 3.7.4.) 

It is proposed that this formula is used to magnify the drag, inertia and lift coefficients 

278



for the calculation of local loading on	the appurtenance when the appurtenance	Is!

attached normal to the flow. 

This magnification need not be applied for the calculation of global forces or forces on 

a member and attachment together. 

For attachments at other angles to the incident flow the potential flow speed and 

direction is given in Figures 3.7.4 and 3.7.5. 

The real interaction between the members is rather more complicated than these diagrams 

suggest : lift forces will be present, buffeting of the attachment by the turbulence in 

the wake of the member may occur and theoretically there is an additional inertia force 

which results from a convective acceleration which is in phase with the velocity and 

proportional to the (incident flow velocity squared)/(Diameter of the main member).	The 

amplitude and direction of this force is shown in Figures 3.7.6 and 3.7.7.	Figures 3.7.4!

to 3.7.7 are derived in Appendix 0. 

3.7.11	Joints 

The structural	joints of	a	steel framed	offshore	structure present	several complications 

from a	fluid	loading point	of	view. End	effects	of	a	finite length	member are	likely	to 

be	noticeable in	this region	as will	be	the	interference	of one	member	end on	another. 

The various	members concerned are	likely	to	have	differing diameters	and, to	increase 

local structure	strength, members may	be	increased	in	diameter	as	they approach	the 

joint.

It is not yet possible to take into account interference effects despite the possibility that 

forces may be changed. 

In calculating wave loads on joints, present industrial	practice takes account of the 

various diameter increases.
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3.7.12	Interference : Conclusions 

a. General 

This is a summary of the more detailed recommendations and conclusions given in 

Section 3.7.6 for arrays and in Sections 3.7.9 and 3.7.10 for attachments. 

b. Total loading on arrays 

Interference will probably change the total loading on cylinder arrays, such as conductor 

arrays by less than 20%, providing the spacing to diameter ratio is greater than 3. It 

may often be reasonable to take the loading as the sum of the Morison loading for 

each cylinder separately. 

When the centre line spacing to diameter is less than 3, large increases or reductions 

in load may occur and reference should be made to the detailed discussion in 3.7 and 

experimental data. 

C.	Loading on individual members in arrays 

Loading on individual members of arrays can, for certain wave directions, be significantly 

greater than that on an isolated member. For cylinder spacings in the region 3D to 5D 

it is tentatively recommended that extreme member loading be considered to be increased 

by 50%.	For lower member spacing reference should be made to experimental data. 

Individual members in arrays may also be subject to steady lift forces especially at small 

member spacings and increased fluctuating forces from vortex shedding at the higher 

values of K 
C 

d.	Total loading on members with attachments 

When attachments	stand off	from	the	member	and the	gap	is	not	filled with	marine 

growth, the	total	in—line loading,	calculated	assuming no	interference,	should be	correct	to 

about 20%.	Therefore	it may	often	be	acceptable	to ignore	the	interference effect.	The
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member may	also be	subject	to	a	significant	lift force	of	similar	size	to	the	drag	force 

on	the member. The	member	should	be	capable of	taking	this	lift	force	but	it	need 

not	be considered when	calculating	the	total	force on	the	structure. 

When there is no gap between the member and the attachment the loading should be 

calculated for the modified member shape, see Section 3.7.9c. 

e.	Loading on attachments

Attachments	may	be	subject	to	flow	velocities	of	up	to	twice	that	of the	flow incident 

on	the	member. The	largest	effect	would	be	to	quadruple	drag	forces and	to double 

inertia	forces.	In addition	convective	accelerations	in	the	flow	will	lead	to an	extra 

inertia	force	which is	in	phase	with	the	velocity,	proportional	to	velocity squared, and	up 

to	twice	the	no interference	drag	force.	Fortunately	the	largest	drag forces occur	at 

different	locations to	the	largest	convective	acceleration	inertia	forces. Figures 3.7.4	to 

3.7.7	are	provided for	estimating	the	effects.
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Figure 3.7.6. Convective acceleration around a cylinder 

(multiply above values by (incident velocity)2 / D) 
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Figure 3.7.7.  Direction of convective acceleration around a cylinder (degrees) 
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