UK FLUIDS CONFERENCE 2018 University of Manchester 5th September 2018

An Investigation of the Effect of Biomimetic Tubercles on the Drag of a Flat Plate

A. Marino, M. Atlar, Y. K. Demirel

Alessandro Marino

PhD Student Department of Naval Architecture, Ocean & Marine Engineering University of Strathclyde Glasgow

Presentation Layout

- Tubercles in previous research
- Tubercles in this research
- Geometrical model
- CFD results

Humpback whales

Application of Tubercles on Tidal Turbine Blades

(Shi et al., 2016)

Comparison of different configurations

(Shi et al., 2016)

(Gruber et al., 2011)

Some different types of tubercles

Investigation (CFD Simulations)

Application of single row of axisymmetric sinusoidal tubercles at different position along the stream-wise direction of a smooth flat plate.

Model for CFD Studies

Number of tubercles	10
Height of tubercles	5 mm
Length/width of tubercles	5 mm
2	

Model for CFD Studies

Length	1.52 m
Width	0.76 m
Thickness	3.2 mm
Reynolds number range	3.41E+06 – 1.71E+07

CFD results: Pressure Distribution (flat plate)

Pressure Distribution

CFD results: Pressure Distribution (upstream)

CFD results: Pressure Distribution (mid-length)

CFD results: Pressure Distribution (downstream)

CFD results - Flow Velocity (trough upstream)

CFD results - Flow Velocity (tubercle peak upstream)

CFD results - Flow Velocity (trough mid-length)

CFD results - Flow Velocity (tubercle peak mid-length)

CFD results - Flow Velocity (trough downstream)

CFD results - Flow Velocity (tubercle peak downstream)

CFD Results -Boundary Layer Limit (upstream)

CFD Results -Boundary Layer Limit (mid-length)

CFD Results -Boundary Layer Limit (downstream)

Drag Comparison

Cf Comparison

Future development

CFD simulations:

- Systematic variation of tubercle shape, number and spatial distribution
- Comparison of results in terms of drag, flow quality, pressure distribution

EFD:

- Fully Turbulent Flow Channel (FTFC) experiments on tubercles (flat plate)
- Towing tests on tubercles (flat plate, curved plate, ship model)

Fully Turbulent Flow Channel

(Politis et al.)

References

SHI, W., ATLAR, M., NORMAN, R., AKTAS, B. & TURKMEN, S. 2016. Numerical optimization and experimental validation for a tidal turbine blade with leading-edge tubercles. *Renewable Energy*, 96, 42-55.

POLITIS, G., ATLAR, M. & MARTIN, D. Design of a turbulent channel flow facility for antifouling coating research.

GRUBER, T., MURRAY, M. M. & FREDRIKSSON, D. W. Effect of humpback whale inspired tubercles on marine tidal turbine blades. ASME 2011 International Mechanical Engineering Congress and Exposition, 2011. American Society of Mechanical Engineering, 851-857.

Thank you for your attention!

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263