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ABSTRACT 

Hand gesture recognition in myoelectric based prosthetic devices 

is a key challenge to offering effective solutions to hand/lower 

arm amputees. A novel hand gesture recognition methodology 

that employs the difference of EMG energy heatmaps as the input 

of a specific designed deep learning neural network is presented. 

Experimental results using data from real amputees indicate that 

the proposed design achieves 94.31% as average accuracy with 

best accuracy rate of 98.96%. A comparison of experimental 

results between the proposed novel hand gesture recognition 

methodology and other similar approaches indicates the superior 

effectiveness of the new design. 
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• Computing methodologies➝ Machine learning➝ Machine 

learning approaches➝ Neural Networks   
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1. INTRODUCTION 
Electromyography (EMG) involves the measurement of electrical 

activity from functional skeletal muscles [1]. The arm movements 

usually are triggered by the central nervous system, which is 

controlled by the brain sending signals to the forearm. The points 

where muscle fibres are triggered by the nerves are called motor 

units (MU), and these transmit electrical signals which cause 

muscles to contract and relax. The voltage generated by the motor 

units is called motor unit action potential (MUAP).  

Nowadays EMG is used worldwide in medical examinations for 

evaluating the health condition of muscles and the nerve cells that 

control them. Diseases such as disorders affecting the connection 

between nerves and muscles are easily identified through EMG 

[2]. Furthermore, EMG signals are also commonly utilized as 

control signals for prosthetic devices [3] (prosthetic hands, arms, 

and lower limbs). 

Currently, there are two types of frequently used sensors for EMG 

signal recording, surface and intramuscular [3]. Sur-face sensors, 

also known as sEMG sensors, record muscle activity from above 

the skin, providing data from the motor units that are near the 

skin. Often, sEMG sensors comprise two electrodes, one of which 

is used as a reference and one to measure the potential difference 

with respect to the first sensor. Other configurations, such as a 

bipolar sensor, also exist. Intramuscular EMG is generally 

performed by inserting a fine wire directly into a muscle, 

measuring the activity of a single or various motor units. In this 

configuration a surface EMG sensor is used as a reference point. 

The interest in EMG signal has increased over the years among 

research and industrial communities because of their efficiency in 

representing the muscle activities [4]. In the application of hand 

gesture recognition, various studies have demonstrated the 

applicability of gesture prediction utilizing EMG signals [5, 6, 7, 

8, 9, 10]. However, currently one of the main issues in the field is 

the limitations in recognition accuracy, due to the difficulty of 

extracting features from multi-sensory EMG signals.  Most of the 

studies emphasize the selection and noise reduction of raw EMG 

signals, which leads to a lack of universality.  

In this work, we introduce a novel approach for gesture 

recognition by transferring raw EMG signals to heatmaps and 

feeding these into a convolutional deep neural network. We 

evaluated the performance of this approach using an EMG dataset 

[11] combined with the convolutional neural network.  

The remainder of this paper is organized as follows. Section 2 

introduces the sEMG dataset used for this work. Section 3 

presents the experimental methodology including the generation 

method of differed heatmaps and the structure of the 

convolutional network. Section 4 presents the results and 

compares them with other hand gesture recognition 

methodologies and ours. Conclusions are presented in section 5. 

2. DATASET 
The dataset used in this work was obtained using sEMG sensors. 

The sEMG signal consists of the summation of the different 

MUAP within its reach plus some additional external noise. When 

humans perform a muscle contraction, different MUs are activated 

in turn, thus preventing the individual motor units from becoming 

fatigued [11]. MUAP ś recorded from different MUs show 

different waveforms, whereas MUAP ś recorded by the same 

electrode from the same MU show an almost identical waveform. 

Our dataset was recorded using two HD EMG arrays, each 

comprising 64 sensors. One EMG array was placed on the surface 

of extensor forearm muscles (upper band?), while the other was 

SAMPLE: Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee provided that 

copies are not made or distributed for profit or commercial advantage 

and that copies bear this notice and the full citation on the first page. To 
copy otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

Conference’10, Month 1–2, 2010, City, State, Country. 
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00. 

DOI: http://dx.doi.org/10.1145/12345.67890 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/237397036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


placed on the flexor muscles (Lower band?). Of the 22 

participants involved in the study, 9 were able bodied and the rest 

were amputees with different levels of hand/lower arm 

amputation. Sensor locations remained the same for both 

amputees and able handed participants when performing the same 

test. Figure 1 shows array attachments of test subjects’ forearms.  

There were 12 distinct movements performed by all subjects, 

which were all formed from rest and maintained for 3 to 5 

seconds.  Each gesture was repeated 10 times for able-bodied 

subjects and 5 times for amputees in a random order. However, 

some of the gestures performed by the amputees were different 

compared to the able bodies. For example, some of the amputees 

were unable to perform a grip. Hence, only the 8 hand activities, 

which both sets of subjects could achieve, were used for analysis 

and classification. Example images of the gestures used from the 

dataset are shown in figures 2 and 3. All 8 gestures shown were 

performed under the same conditions. 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 1. (a) and (b) show 1 to 128 sensors attached on 

amputee’s forearm. (c) and (d) show 1 to 128 sensors attached 

on able-handed participant’s forearm. 

 

 
(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 2. Classified gestures (a) close; (b) extension; (c) 

flexion; (d) point. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Classified gestures (a) lateral; (b) tripod closed; (c) 

palm down; (d) palm up. 

3. Heatmap Difference Technique 
The recorded signals were amplified and sampled at 2048 Hz. The 

sampled data is subsequently passed through built-in hardware 

filters comprising a high-pass filter with cut off frequency at 3Hz, 

and a low-pass filter with cut off frequency at 900 Hz, as 

significant EMG activity happens between 5 Hz and 450 Hz [12]. 

A 3rd order Butterworth digital filter was employed to remove 

electronic equipment noise and motion artefacts. After filtering, 

signals are modified by Hamming windows with length 250ms, 

with 50% overlap as described in [11]. 

Heatmaps indicate the electrical activity (energy level) of different 

sEMG sensors as a result of different gestures, which result in 

different levels of target muscle activity.  

The original signal dataset contains 128 channels. Each channel 

represents a specific muscle area. The values shown in the 

heatmaps for each channel were obtained from the mean absolute 

value of the original EMG signal and plotted in various colors.  

As an example, graphs of the heatmaps of a gesture performed by 

participant 5 are shown in figure 4, where the left heatmap shows 

the array placed on the flexor muscles and the right heatmap 

shows the array placed in the extensor muscles. White color areas 

indicate high muscle activation. The numbers indicate sensor 

locations in the arrays. 

As seen from figure 4, most of the peak muscle activation 

occurred in small areas of the heatmap. This implies that when the 

arrays are being divided into smaller rectangles and sensors are 

Figure 4. Heatmap for close gesture of participant 5 



averaged, vital information on the specific area where the muscle 

activation has occurred can be lost. Noting that different gestures 

show different areas where muscle activation is at its highest, it is 

intuitively obvious that selecting sensors from an area with high 

activation levels will significantly enhance the performance of a 

classifier, as it would be able to better capture the muscle 

activation patterns and omit readings from sensors which provide 

little or no useful information. 

To investigate this, we transformed RGB heatmaps into Grey 

heatmaps so as to enhance visibility of sensors with highest 

energy level (brightest color). After transformation, only the most 

active sensors were represented by white color. Less active or 

non-active sensors were turned into black. Based on previous 

experiments, an optimal number of sensors which provide useful 

information in each case is necessary to minimize overlapping 

common features. However, with no clear knowledge of what this 

optimal sensor number is in each case, an empirical strategy was 

employed to determine optimal sensor numbers based on sensor 

signal strength levels.  

The procedure for evaluating these optimal numbers is as follows. 

Starting with just one sensor with the highest signal (brightest 

color) for a given gesture, a partial heatmap is formed. The second 

partial heatmap uses the two highest signal sensors (this includes 

the first sensor). This process of selecting partial heatmaps 

continues, each time including the sensor with the next highest 

signal. The process stops when 50 (out of 64) sensors are selected 

for each band – the last 14 sensors with very low signal strengths 

were ignored. Examples of the heatmaps generated by the 4 

topmost sensors forming the “close” gesture for the lower band 

are shown in figures 5 and 6.   

(a) (b) 

Figure 5. (a) for 1 sensor; (b) for 2 sensors 

 

(a) (b) 
Figure 6. (a) for 3 sensors; (b) for 4 sensors (2 of the sensors 

are close to each other). 

However, classifiers are more efficient when using common 

features or, in this case, common heatmap features for each 

gesture for all subjects. Given the mixture of healthy subjects and 

amputees (with varying degrees of injuries), the partial heatmaps 

obtained unstable information, such as outliers and signals not 

directly generated by the corresponding gestures and they could 

be slightly different for each subject. For this reason, an 

intersection methodology (Algorithm 1) was used on these partial 

heatmaps so as to determine the common heatmap features for 

each gesture for all users which could then be used for 

classification. 

Algorithm 1: Intersection Algorithm 

Input: partial heatmaps for all subjects’ gestures for all 
numbers of sensors considered 
Parameter: image type: jpeg; image size: 8×8  
Output: intersected heatmaps 
1: collect all partial heatmaps for same sensor number 
for all subjects’ gestures  
2: select one partial heatmap for one gesture from one 
subject  
3: subtract (pixelwise) the heatmap of the selected 
subject’s gesture from all remaining heatmaps (from all 
other users) for the same gesture.  
4: inverse pixel value of obtained subtracted heatmaps to 
generate intersected heatmaps between the chosen subject 
and each of the other subjects  
5: repeat steps 2 to 4 for all other subjects 
6:   repeat steps 2 to 5 for all remaining gestures 
7:   repeat steps 1 to 6 for all remaining sensor number 
selections. 

 

The algorithm obtains the common heatmap features for the 

selected number of sensors considered in each case for all users, 

for each gesture in turn.  In this case we had a maximum of 50 

sensors and 8 gestures. These were:  1 palm up; 2 palm down; 3 

tripod closed; 4 lateral; 5 point; 6 flexion; 7 extension; 8 close.  

For each gesture, 340 partial heatmaps (30 partial heatmaps from 

9 able handed subjects and 5 from 14 amputees) were obtain for 

each set of sensors selected (from 1 to 50). In total, 136000 partial 

heatmaps are obtained (340 per-gesture × 8 gestures × 50 sensors 

selection conditions). After applying the intersection algorithm for 

each set of sensors selected, 57630 intersected heatmaps were 

obtained per-gesture. In total, 23052000 intersected heatmaps 

were applied (57630 per-gesture × 8 gestures × 50 sensors 

selection conditions).  For the combined two bands shown in 

figure 8 the best results were obtained when a maximum of 35 

sensors were used. 

4.  NEURAL NETWORK 
Due to the characteristics of the generated heatmaps, it was 

decided to use a VGG[13]  based CNN[14] as the deep learning 

architecture for the classification model because of its simple and 

stable architecture, which enables easier modification of the 

network structure with low risk. The main structure of this 

network is shown in figure 7. The network contains three 

convolution blocks with max-pooling layer [15] in between, 

which substantially reduces the computing free-parameters and 

thus accelerates the training speed. Each convolution block 

contains 3 convolutional layers, and each convolutional layer is 

implemented with the fixed size 3x3 filter. Two dropout layers 

[16] with 512 neurons are connected to the last convolutional 

layer of the 3rd convolution block, which prevent the network 

from overfitting. The output layers consist of 8 neurons which 

correspond to the predicting gestures. The network is trained 

using the Adam gradient descent algorithm [17] combining a 

Softmax Classifier [18] for efficient recognition. 



5. EXPERIMENTAL RESULTS 
In order to fit the designed CNN to the heatmap, numerous 

experiments on network tuning were tested. We trained the 

network with 10 epochs and different hyper parameters, using 

different number of sensor inputs ranging from 1 to 50 sensors.  

The 8 hand gesture classification results for the intersected 

heatmaps for the combined upper and lower bands are shown in 

figure 8. Figure 8 clearly indicates that, for the set of gestures 

considered, the accuracy of the classification increases with 

increasing number of sensors, until 35 sensors are used.  Beyond 

this point adding more sensors appears to have a slightly negative 

effect in the classification rates. Hence, for this set of gestures it is 

considered that 35 is the optimal number of sensors which can 

produce the best classification results. It should be noted that, 

even though figure 8 indicates 35 sensors as being the optimal 

number, the actual number of sensors which are common to all 

subjects is significantly less than 35 for each gesture. This is 

clearly shown in Table 1 where the common contributing sensors 

for each gesture are shown. Table 1 indicates that, for most cases, 

only around 20 sensors are contributing significantly for all users 

and many of them are contributing to more than one gesture. 

There are more contributing sensors from the upper band than the 

lower one. The best classification rate obtained was 98.96% when 

35 sensors were considered. 

The proposed method demonstrates nearly perfect results for the 

given dataset. Table 2 is a comparison of several methods 

showing the number of gestures considered, and the number of 

amputees involved in the study. The last 3 entries in the table 

indicate the results using the proposed approach when 6, 7 and 8 

gestures were considered with corresponding classification rates 

of 98.24%, 98.77% and 98.96% respectively. As shown in Table 

2, Xiaolong Zhai et al. [19] used SVM classification methodology 

and achieved 77.44% accuracy on NinaPro dataset. Rezwanul et 

al. [20] fed time frequency features of raw EMG signals to an 

artificial neural network and achieved 88.40% accuracy. Ugur 

Sahin et al. [21] applied wavelet transform into raw EMG dataset 

and obtained 96.60% with 6 hand movements. Xun Chen et al. 

[22] used Hudgins’ Time Domain features, autocorrelation and 

cross-correlation coefficients and spectral power magnitudes of 

EMG signals and achieved 90% real time recognition accuracy 

with six subjects. Côté-Allard et al. [23] transfer learning 

algorithm on EMG signals collected from 17 subjects and 

obtained 97.8 % recognition accuracy with 7 gestures. 

 

Table 1. Common active 35 sensors for two bands 

Gestures 
Lower Band 

Common Sensor 
Locations 

Upper Band Common 
Sensor Locations 

palm up 48,49,50,53,54,55 103,104,105,117,118, 
119,125,126,127,128 

palm down 24, 27, 50 
107, 108, 109, 

117,118,119,121,122, 
123,124,125,126,127,128 

tripod 
closed 

3, 4, 5, 6, 54, 55 
95,96,97,105,106,107, 
108,117,118,122,123, 

126,127,128 

lateral 1, 2, 3, 4, 5, 6 
67,105,106,113,114, 
117,118,120,121,122, 

123,124,126,127 

point 
3, 4, 5, 6, 20, 21, 

22 
117,118,120,121,122, 
123,124,126,127,128 

flexion 2, 3, 4, 20, 21, 22 
91,92,93,94,95,96,97, 
117,118,126,127,128 

extension 
46,47,48,49,53, 

54,55,56,57 

95,96,97,111,112,113, 
117,118,119,125,126, 

127 

close 3,4,5,6,7,8,27,2
8,29,49,50 

110,111,112,113, 
117,118,119,125,126, 

127 

 

 

Figure 8. Network Structure 
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Figure 7. Classification results for combined two bands for 

8 gestures. 



Table 2. Classification results comparison 

Method Gesture 

numbers 

Amputee 

numbers 

Input 

data type 

Results  

SVM 

([19]) 

10 11 Spectrogr

am 

77.44

% 
 

ANN 

([20]) 

4 0 Time 

Frequency 

Features 

88.40

% 
 

CNN 

([21]) 

6 0 Wavelet 

Transform

ation 

96.60

% 
 

JL ([22]) 4 0 TD and 

other 

features 

90.00

% 
 

CNN 

([23]) 

7 0 Transfer 

Learning 

97.81

% 
 

IA-CNN  6 14 Proposed 

Heatmap 

for both 

98.24

% 
 

IA-CNN  7 14 Proposed 

Heatmap 

for both 

98.77

% 
 

IA-CNN  8 14 Proposed 

Heatmap 

for both 

98.96

% 
 

 

6. CONCLUSION 
In this paper, we have presented a novel heatmap difference 

method for personalizing EMG-based models with deep learning 

techniques and we have evaluated it with our high-density sEMG 

dataset. We have compared this performance with some proposed 

prior work, which used different techniques such as wavelet 

transforms, spectrograms and Hudgins time Domain features with 

various machine learning methodologies. Even though these 

experiment results were achieved using different categories and 

forms of sEMG datasets, the collection instrument of all sEMG 

datasets remains the same i.e. the dataset used by others contain 

sEMG signals just like the sEMG dataset we have used. Our 

experimental results show that the heatmap difference approach 

significantly outperforms other methodologies in terms of 

accuracy though some of the methodologies perform better (The 

latter has slightly higher accuracy than our method because of the 

number of gestures and subjects used, which in our case is 8 

gesture classification from 23 participants, including 14 

amputees), which was as high as 98.96% under and 98.96% under 

35 sensors conditions for 8 hand gesture recognition based on the 

combined two bands. The heatmap difference approach minimizes 

the input data dimensions by reducing required number of 

attaching sensors without recognition accuracy deterioration. It 

also has the added advantage of minimizing the possibility of 

erroneous readings. This study has shown that the active sensors 

are not spread equally in the two bands. Thus, one would expect 

that the individual recognition accuracy for each band may differ.  

Furthermore, given that there are several sensors which contribute 

to more than one gestures, it is reasonable to assume that judicious 

selection of sensor inputs can be used to minimize the number of 

sensors required to obtain very high classification accuracy. For 

future work, we plan to implement more sEMG datasets to our 

neural network since only 8 hand gesture recognitions have been 

achieved so far.  
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