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Abstract: This paper aims to present a Preview Controller by taking State-Dependent Riccati
Equation (SDRE) approach to the standard Preview Control solution based on Linear Quadratic
(LQ) framework. A Matlab/Simulink simulation study for performing a lane change task for
a LPV modelled autonomous vehicle has been conducted. The control objective is to achieve
reference tracking under parameter variation. It is assumed that the system has access to the
future reference information for Np preview steps. The results show that the SDRE Preview
Controller demonstrates good transient behaviour and achieve reference tracking objective.
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1. INTRODUCTION

Preview control method uses the knowledge of future
reference or future disturbance signals to calculate optimal
control signals without demanding predictions of future
control inputs. The first examples of the method were
proposed over five decades ago (Sheridan, 1966; Bender,
1968) and it has been attracting an increasing interest
from researchers since the late 2000s. A significant amount
of research done on preview control has its roots in the
early work of Tomizuka who introduced the use of LQ type
cost functions for the solution of optimal preview tracking
problems (Tomizuka & Whitney , 1975). There have been
different efforts for deriving solutions as well. For example,
Takaba (2003) uses H∞ formulation, Uzunsoy & Erkilinc
(2016) develops a fuzzy preview controller and Negm et al.
(2003) applies artificial neural networks for their solutions.

It is observed that a large portion of preview control ap-
plications appear in automotive industry concentrating on
suspension systems with intentions to improve passenger
comfort, security (e.g., vehicle rollover prevention, brak-
ing) by rejecting the disturbances or autonomous vehicle
steering/guidance with regards to reference signal tracking
in order to tackle the problems of trajectory following,
lane keeping/changing etc. Toyota and Nissan have stud-
ies for path tracking and active suspension systems with
preview control respectively (Boyali et al., 2017; Tobata
et al., 1993). There are also some examples of preview
control based on providing aid to the driver that could be
classified under advanced driver assistance systems (Saleh
et al., 2013). However, it should be noted that application
areas are not limited to the automotive research. Studies
of preview control have been made to address questions
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in various different areas including robotic manipulator
trajectory following, wind turbine control in cases where
wind profile can be estimated or humanoid robot walking
pattern generation problems (Kajita et al., 2003; Stotsky
& Egardt , 2012; Negm & Kheireldin , 1991). A compre-
hensive literature survey that covers the topic’s develop-
ment is available (Birla & Swarup , 2014).

Although, several methods and applications are present,
preview control is a field which is still under development.
It is needing more generalized control solutions and tools
for analysis that could be applied to a wide range of ap-
plications. However, there is a noteworthy example called
the Preview Control Toolbox developed by Hazell (2018).
They have proposed a H2/H∞ solution based theoretical
framework which incorporates an efficient method for solv-
ing the computationally expensive discrete-time algebraic
Riccati equations (Hazell , 2008). Their results are mainly
for linear time-invariant systems as is the case for the
majority of preview controllers in the literature. There are
only a limited number of studies available on the design of
preview controllers with LPV modelling approach such as
the work of Boyali et al. (2017) who introduces robust
gain scheduling preview controllers using H∞ solutions
and Linear Matrix Inequalities. To authors’ knowledge,
it is the only example that considers the LPV modelling
approach for preview control of vehicle steering problems.
Motivated from these results, the SDRE technique has
been considered for the preview controller in this paper.
The intuition is that the traditional preview controller can
be designed in a straightforward manner for LPV systems.

SDRE approach (Cloutier , 1997) is a technique for the
control of non-linear dynamic systems which are repre-
sented in linear structures. The optimal control solution
procedure is made roughly in a similar fashion to those
of LQ type algorithms. The method has seen success in
a number of applications as the flexible-link manipulator
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in Shawky et al. (2013). According to a survey made for
the SDRE technique (Cimen , 2008), it is indeed clear
that the number of successful applications have already
outmatched the number of theoretical results.

The outline of this paper is as follows: Section II represents
the vehicle model based on the lateral vehicle dynamics,
Section III demonstrates the SDRE preview controller
results for the lane change problem in order to discuss its
response to the parameter variations. In the last section,
conclusions from the study have been made and topics of
interest for future work are expressed.

2. LPV AUTONOMOUS VEHICLE MODEL

The control objective is to perform a lane change manoeu-
vre for an autonomous car which means that lateral vehicle
dynamics need to be taken into account when designing
the system model and controllers. When constructing the
model, left and right wheels for both front and rear axles
are lumped into a single wheel thus transforming from four
wheels to two wheels bicycle model as in Fig. 1,
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Fig. 1. Bicycle model.

where Vx denotes the longitudinal velocity, ψ is the yaw
angle, δ is the steering angle which acts as the control input
signal, β is called the side slip angle and the distances
from the vehicle center of gravity cg to the rear and front
tires are lr and lf respectively. Detailed derivations of
both mathematical and state-space models are available
in Rajamani (2012). The state-space representation of the
LPV autonomous vehicle model may be summarized as,

ẋ(t) =Atx(t) +Btδ(t),

z(t) =Ctx(t). (1)

LPV, q-LPV or state-dependent system matrices are func-
tions of states, inputs and parameters. Let us clarify
that the expression At = A(x(t);u(t − k); ρ(t)) (in sim-
ilar fashion Bt, Ct) is used simply to avoid notational
complexity. The state vector in the model is expressed

by x(t) =
(
y(t) ẏ(t) ψ(t) ψ̇(t)

)′
which consists of lateral

position y(t), yaw angle ψ(t) and their rates. The state
matrices At and Bt are defined by,
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,

Bt = (2Cf/m 0 2Cf lf/Iz 0)
′
,

with varying parameter ρ = Vx(t) and δ(t) as control
input. The output vector z(t) and the corresponding state
matrix Ct of the model are as shown below.

z(t) =

(
y(t)
ψ(t)

)
, Ct =

(
1 0 0 0
0 0 1 0

)
The parameters Cf and Cr are the cornering stiffness of
the front and rear tires respectively, Iz is yaw moment
of inertia and lastly m stands for the vehicle mass. In
order to track the reference lateral position and yaw
angle, the controller tries to minimize the lateral position
error e1(t), ė1(t) = Vy(t) + Vx(t)e2(t), and yaw angle
error e2(t) = ψ(t) − ψdes(t) where ψdes is the desired

yaw angle which is obtained by ψ̇des(t) = Vx/R. The
curvature of the road is given by 1/R with R being
the radius. The new state vector xe(t) is denoted as in

xe(t) = (e1(t) ė1(t) e2(t) ė2(t))
′
. The state-space matrices

can then be derived accordingly to represent the error
dynamics,

ẋe(t) = Aetxe(t) +Betδ(t) +Betψ̇des(t), (2)

where,
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and Bet = Bt. Note that, if the longitudinal velocity Vx is
a constant, the LPV model becomes an LTI model.

The changes in the plant dynamics due to the varying
longitudinal velocity may prove quite a challenge for con-
trollers. It is expected that the SDRE preview controller
will exhibit some sense of an adaptive behaviour consid-
ering that the SDRE algorithm uses optimized feedback
gains which are updated in response to the changes in
the system dynamics. Therefore, the controller can be a
suitable candidate for preview control of LPV systems.

Let us further indicate that the models in (1) and (2)
are in continuous-time and thus needs to be converted
to a discrete-time model for the implementation of the
controllers used in this study. It can be acquired using
forward Euler approximation as in Adt = (1 − TsAt),
Bdt = TsBt and Cdt = Ct with Ts being the sample time.



In order to benefit from the future reference information,
a state-space model that contains the road states that will
be previewed for Np steps should be constructed. This is
often referred to as the road model and can be represented
as below,

yr(t+ 1) = Aryr(t) +BryrNp
(t), (3)

where yr(t) is the Np×1 road state vector and yrNp
is the

scalar input vector. The system matrices are expanded as
in,

Ar =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ,Br =


0
0
0
...
1


The previewed reference information is incorporated into
the system by combining the road model with the vehicle
plant model in the final augmented state-space model,

(
xe(t+ 1)
yr(t+ 1)

)
=

(
Aet 0
0 Ar

)(
xe(t)
yr(t)

)
+

(
Bet

0

)
δ(t) +

(
0
Br

)
yrNp(t),

= AX (t) + Beδ(t) + BryrNp(t), (4)

and the output equation is constructed using the new
measurements matrix C,

Z(t+ 1) = CX (t) =

(
1 0 0 0 −1 0 0 . . . 0

0 0 1 0
1

VxT

−1

VxT
0 . . . 0

)
X (t).

which will be used in the SDRE cost function. The
modelling principles are adapted from the work of Sharp
& Valtetsiotis (2001) on optimal LQR preview control.

3. LANE CHANGE PROBLEM

The lane change task will be approached as a reference
tracking problem and appropriate lateral vehicle control
strategies will be utilized for its’ success. The first part
of this section briefly introduces a visual model of the
reference signal and discusses how it is generated. The
second part presents a summary of the SDRE preview
control algorithm. In the last subsection, the results of
the controller action is demonstrated from the adaptation
point of view.

3.1 Reference Trajectory Generation

There are several ways to create a reference path such as
using straight line segments joined in a sequential fashion
or clothoids depending on the lateral vehicle control task.
The approach taken in this work is to generate a series
of waypoints that are closely spaced by using Matlab’s
Driving Scenario toolbox and linspace functions. The

toolbox enables the visualization of the desired lane change
manoeuvre as shown in Fig. 2.
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Fig. 2. Lane Changing Manoeuvre.

A lane changing task in practical might involve even more
complex manoeuvres when traffic flow, merging, exits and
etc. are considered. In fact, traffic collisions related to the
lane changing constitute to a significant amount of total
crashes including fatal ones (NHTSA, 2009). Risk factors
can be expected to further increase with the introduction
of self-driving cars. Thus, proper control strategies can
help reduce the number of crashes and increase traffic
safety. The topic has already been attracting the attention
of autonomous driving researchers (Falcone et al., 2007;
Kang et al., 2016) and is gaining popularity.

A crucial element from the vehicle control point of view
is to handle the varying parameters properly. In realistic
scenarios for instance, the longitudinal velocity during
lane changing might vary depending on different factors
mentioned above. The simulation studies in this paper will
address the problem as well as the tracking of the reference
trajectories.

3.2 SDRE Preview Control

The LQR preview controller (Sharp & Valtetsiotis , 2001)
is extracted from the solutions of the cost function below,

J(X (t), δ(t)) = lim
Np→∞

Np∑
t=0

(
X (t)TQX (t) + δT (t)Rδ(t)

)
dt,

for the augmented state-space model in (4) where Q =
CTQC and Vx is constant. The control law is given by,

δ(t) = −KX (t) = (R+BTPB)−1BTPAX (t),

where P satisfies the Riccati Equation,

P = ATPA+ATPB(R+BTPB)−1BTPA+Q.

This paper aims to extend the scheme to LPV systems by
considering the SDRE approach.

In summary, the SDRE technique is an extension of the
LQ problem to provide suboptimal solutions for non-linear
control problems. The standard design steps start with re-
arranging the LQR cost function as in,



J(x, u) =
1

2

∫ ∞
t0

(
xTQ(x)x+ uTR(x)u

)
dt,

where weight matrices Q(x) and R(x) can be chosen as
functions of states. The non-linear system representation,

ẋ = f(x) + g(x)u,

can be expressed in a linear structure using State-
Dependent Coefficient (SDC) form,

ẋ = A(x)x+B(x)u.

Then the SDRE equation is formulated,

AT (x)P + PA(x)− PB(x)R−1(x)BT (x)P +Q(x) = 0.

which is solved for P (x) ≥ 0. Finally, the control signal is
calculated,

u = R−1(x)BT (x)P (x)x.

The SDRE design procedure is illustrated by the flowchart
in Fig.3 below,

sensor measurements

compute the state-dependent gain

compute state matrices

solve the SDRE

compute the feeback control signal

compute weights

Fig. 3. SDRE flowchart.

in which sensor measurements transfer the system infor-
mation for computation of the state matrices and the cost
function weights, if they are chosen to be state-dependent,
then the SDRE equation is solved for P (x) ≥ 0 and finally
the feedback control signal is calculated and delivered to
the plant. This sums up the background control theory for
the approach taken in this work.
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Fig. 4. SDRE preview control.

The SDRE technique will be embodied within the pre-
view control diagram as shown in Fig.4. Recall that the
controller is digital therefore the discretized version of the
SDRE formulation is used in actual computations. The
preview control cost function given earlier is organized as,

J(X (t), δ(t)) = lim
Np→∞

Np∑
t=0

(
X (t)TQ(x)X (t) + δT (t)R(x)δ(t)

)
dt,

for the augmented state-space model in (4) considering the
parameter variation now where Q(x) = C(x)TQ(x)C(x).
The SDRE preview control law is hence given by,

δ(t) = −K(x)X (t)

= (R(x) +BT (x)P (x)B(x))−1BT (x)P (x)A(x)X (t),

where P (x) satisfies the discrete SDRE Equation,

P (x) =AT (x)P (x)A(x) +AT (x)P (x)B(x)(R(x)+

BT (x)P (x)B(x))−1BT (x)P (x)A(x) +Q(x).

Let us add that the control signal gain K(x), actually
consists of state feedback and preview gains. It can be
formulated by K(x) =

(
Kfb(x),Kff (x)

)
.

For simulations, the weights Q(x) and R(x) are chosen as,

Q(x) =

(
1 0
0 0

)
, R(x) = 1.

The vehicle parameters are selected as vehicle mass m =
1573kg, yaw moment of inertia Iz = 2550mNs2, front and
rear tires’ cornering stiffness values Cf = 2 ∗ 88310N/rad,
Cr = 2 ∗ 64076N/rad, respectively. Sampling time Ts =
0.02 and the preview steps have been chosen Np = 250 by
trial and error procedure. It is known that there exists
a maximum preview length beyond which there is not



room for further improvements. However, an algorithm
that can determine the optimal preview length has not
been presented in the literature yet.

Below are the simulation results demonstrating the ve-
hicle lane changing manoeuvre. As the reference signal
indicates, a single lane change action is taking place.
In Fig.5, the longitudinal velocity is kept constant at
Vx(t) = 20m/s. Both controllers are tracking the reference
successfully with the SDRE preview control showing a
faster transient response exploiting the future reference
information.

time

Fig. 5. SDRE preview controller vs LQR at Vx(t) = 20m/s.

time

Fig. 6. SDRE preview controller vs LQR as Vx(t) varying.

In Fig.6, longitudinal velocity Vx(t) increases with a 2m/s2

acceleration rate with the initial value of 20m/s for 10
simulation seconds (the simulation time is scaled in the
graphs.)

Under parameter variation, LQR shows noticeable track-
ing errors whereas SDRE preview controller keeps up with
the objective. The LQR needs retuning in order to accom-
modate the changes each time whereas the SDRE preview
controller does not because its gains are updated.

For instance, initial calculation of the state feedback
portion is recorded below,

Kfb(0) ≈ (0.3095, 0.076, 4.602, 0.4120) ,

which is continuously updated during the simulations in
response to the parameter variations and reaches its final
values (Vx(t) = 40m/s),

Kfb(∞) ≈ (0.3056, 0.1128, 4.4504, 0.6497) ,

showing that the controller is adapting to the changes in
the system.

4. CONCLUSION

The SDRE preview controller has shown potential at
adapting to parameter variations. Its a straight-forward
extension of the classical preview control with a simple
design procedure. The controller can also be used for quasi-
LPV models. Future work may consider such implementa-
tion as well as the investigation of set point change and
disturbance cases or handling of the constraints.
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