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Abstract

This paper presents a new selection methodology that for the first time supports the identification of Near Net Shape
(NNS) processes. The methodology, known as “Product, Geometry, Manufacturing and Materials Matching” (ProGeMa3),
is composed of four steps, which aim to minimize raw material usage and machining by adopting a NNS approach. A
key component of the methodology is the Process Selection Matrix (ProSMa) that associates a component’s shape and
production volume with its material requirements to reduce the number of candidate NNS processes. A final selection is then
made from this shortlist by using fuzzy logic and considering other constraints and functional requirements. The ProGeMa3
selection process is illustrated by its application to an industrial component that resulted in changes to the processes used for
its commercial manufacture. The ProGeMa3 and ProSMa presented in this paper aspires to be current and comprehensive
for solid metallic components produced by casting, forging and additive technologies. However, ProSMa is also accessible

as an open source resource available for other researcher to extend and adapt.

Keywords Process selection - Selection matrix - Fuzzy logic - Near net shape manufacturing - Forging - Casting -

Additive layer manufacturing

1 Introduction

Inthelast 30 years, the concept of manufacturability has been
applied to many different processes in numerous industries.
This has resulted in the emergence of several different
“Design for Manufacturing” methodologies which have in
common the aim of reducing production costs through
the application of general manufacturing rules. Near net
shape technologies have expanded these concepts, targeting
mainly primary shaping process, such as casting or forging.

As new manufacturing methods emerge and established
ones develop, the production engineer must constantly
review the processes they employ to ensure they are the most
appropriate. Ideally, an automated system would review the
specifications of components and identify their optimum
manufacturing process but in practice the shear range of
options and the complex mix of interacting constrains (i.e.
both quantitative and qualitative) make such automation
difficult. So although various methodologies to support
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manufacturing process selection have been reported, they
have not been widely applied because of the resources and
computational challenges required to implement them.

In response to these issues, this paper introduces a novel
process selection methodology that is designed to review
a company’s portfolio of components and identify oppor-
tunities for adopting near net shape processes. Crucially,
the approach described quickly focuses the review and on
a small number of candidate parts and processes which are
determined to be most economically and technically feasi-
ble. This initial filtering reduces the size of the search space
to a point where computationally intensive methods can be
effectively used to identify optimum solutions.

Near net shape (NNS) concepts are based on the work
of [20, 37, 49, 72] and [3], who based their investigations
mainly on metal casting and forging.

Near net shape is a relative property, rather than absolute,
that defines a combination of product geometry (to be
produced), material and manufacturing process (primary
shaping process) to be minimal in raw material utilization
and finishing machining operations, in comparison with
other possible combinations [47].

However, the selection of an appropriate NNS process is
often an “ad hoc” procedure focused on the manufacture of
new components and based on the personal experience of
the production engineers. In contrast, this paper introduces
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a systematic methodology for the selection of NNS process
appropriate to an existing product.

Unlike previously reported approaches, this selection
methodology uses product geometry, production volume and
materials to classify candidate NNS processes. To make thisz
feasible, the scope of the classification described is limited to:

—  Metals (material constrain)

— Solid geometries (bars, tubes and prisms)

— Casting, forging and additive technologies (excluding
joining and machining processes)

— Non-variable product requirements

Material wastage reduction and energy saving are evaluated
by applying a NNS approach to manufacturing. However,
other environmental factors, such as resource saving consid-
erations (energy and water requirements), re-manufacturing
(material recycling, reuse and repair) and waste manage-
ment (e.g. hazardous wastage), related to manufacturing
processes, are not considered in the developed process
selection methodology. These factors can be quantified only
subsequent to the feasibility stage, using supply chain man-
agement tools and product Life-Cycle Assessment (LCA).
The links between circular economy and process selection
have not yet been explored in literature. The quantitative
evaluation of such factors is therefore beyond the scope
of this paper. Similarly, the effect of product requirement
modification on process selection has not been considered.

The following section reviews the main approaches
reported for the selection of manufacturing processes based
on material, production volume, component shape and
technological and characteristics and other requirements
comparable with process attributes.

Subsequently the Product, Geometry, Manufacturing,
and Material Matching (ProGeMa3) Methodology is
described and then applied to an industrial case study.

1.1 Process and material selection in literature

The generic process selection procedure usually has three
steps: screening, ranking and a search for supporting infor-
mation [6, 27]. Seven general approaches have been iden-
tified for selection of the best process for a given material,
design characteristics and product requirements:

Analytical

Probabilistic (Fuzzy Logic)
Knowledge Base System
Manufacturing and Product complexity
Methodological (Qualitative)
Optimization Algorithms

Topological (Numerical)

Nk wD =

Considering each of these in turn, the analytical papers
develop a multi-variable system of equations, quantifying
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the different process features and their capabilities of match-
ing with the component requirements. This formulation
allows the process with the resultant lowest cost to be
considered as the best candidate.

For example, [2] develop a model based on manufac-
turing cost prediction. The model provides the material
(i.e. considering only the product volume and the mate-
rial cost) and basic processing costs, depending on the
selected processes and cost is calculated through the cost
time and production volume, using empirical constant. This
cost refers to the production of an ideal component design
for the selected process and a coefficient (relative cost coef-
ficient) corrects the process cost considering the geometry
to produce. The coefficient is composed of four parame-
ters (determined though empirical graphs), associated with
geometrical shape, section reduction/thickness, tolerances
and surface finish giving the distance between the cur-
rent and the ideal conditions. Swift and Booker [70] use
the [2] formula, introducing a matrix for a preliminary
screen of the processes. Other authors use cost functions
and cost estimation for pre-selection screening: for example,
[40] provide a measurement of casting process compati-
bility for the required production volume, weight input,
thick/thin sections, tolerances, and surface finish. A sim-
ple proportion between the available capabilities and the
requirements give a compatibility score. Every character-
istic is weighted, depending on its importance, with a
qualitative system. The casting processes are thus ranked
depending on their compatibility values. Rao and Pad-
manabhan [58] use graph theory and matrix approach for
screening the additive layer manufacturing processes. The
combination of these two methods is able to deliver a multi-
criteria decision, defining the interactions between selection
attributes.

The process attributes can be either qualitative or quan-
titative and their responses to the product requirements
as well as their interrelation are summarized in an sin-
gle index. For ranking the casting processes, [27] use the
cost function with compatibility ranges for identifying the
possible feasible processes and ranking them. From these
first step, the best process is selected and, in a subsequent
step, the process technological (tolerances, workable dimen-
sions, surface roughness) and economical capabilities are
matched, giving a complete overview of the process abil-
ity for produced the required product. The work is based
on a previous investigation by [26], comparing target design
and product requirements (material, size, product shape,
mechanical precision and cost) with those that lie within the
capacity of a large number of processes, seeking the subset
which is capable of making the component. The subset is
then ranked by economic criteria.

The probabilistic approach aims to develop a statisti-
cal correlation between the process capabilities and product
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requirements. In particular, fuzzy logic (artificial intelli-
gence technology in control systems and pattern recogni-
tion) had been used by several authors. It is based on the
observation that people make decisions based on imprecise
and numerical information [19]. Fuzzy models, or sets, are
mathematical means of representing vagueness and impre-
cise information, hence the term fuzzy [39]. Different from
traditional probability, fuzzy sets are capable of represent-
ing, using and manipulating data that has a range of values,
due to their uncertainness. Hence, in fuzzy logic, distinction
between from full compatibility (one) and incompatibility
(zero) is gradual between extreme ranges of the fuzzy set.
Figure 1 illustrates the fuzzy logic approach. Several authors
applied slightly different versions of fuzzy approach to pro-
cess selection and decision making in manufacturing [19,
30, 54, 60, 73]. Where, L min — abs) is the absolute min-
imum value, L,,in is the minimum typical, L,,ax is the
typical maximum value, and Lmax — abs) is the abso-
lute maximum value of the investigated process’s feature.
L,eq is the requested value of product feature (e.g. required
surface roughness). Compatibility assessment can be per-
formed by mapping from qualitative description (‘low’,
‘low to medium’, ‘medium’, ‘medium to high’ and ‘high’)
to numerical values.

Giachetti [30], Ravi [59] and Daws et al. [19] define
compatibility by the requested value and four values which
define the fuzzy set. If the requested value is outside of the
set (4), compatibility is considered null. If it is in normal
range, then the request is fully compatible (1). If value
falls between normal and extreme ranges, then the value is
intermediate between 0 and 1, defined by a linear behaviour
(2, 3).

PL,eq =1, ifLmin < Lreq < Lyax (D
Lyeq = —Lmin—abs .
PLreq = e s 1f Linin—abs < Lreq < Lmin
Lyin — —Lmin—abs
(2)
Liax—abs — _Lreq
P = ,IifL < Lyeg < Lipax—
Lyeq Lor—apstt — Ly S Linax req max—abs
(3)

Py =0, ifLreq < Lmin—abs, OrLreq > Lyax—abs 4

Compatibility 4

1
Normal Range

Extreme Range
<« : >

VCapability

mefnbs me er-q Lma\ an\fabs

Fig. 1 Fuzzy set for process capabilities (adapted from [59])

Using [22] possibility theory, [30] defines two different
cases that occur in compatibility evaluation: possibility
and necessity are defined. Possibility assesses to what
extent a feature satisfies the request (optimistic selection
strategy); on the other hand, necessity expresses to what
extent a features certainly satisfies the query. The latter
adapts pessimistic selection strategy by measuring the
impossibility of the opposite event, determined using the
complementary probability of the event itself.

Figure 2 illustrates the process of performing the calcu-
lations, using Egs. 1 to 4 to determine the possibility and
necessity values for a linear request. In order to evaluate
values of possibility and necessity, a unique compatibility
number is required, [30] used a factor called g that repre-
sents the level of optimisms or pessimism that is acceptable
to the decision maker. Factor B is 1 for an optimist deci-
sion maker and O for a negative one (so always a value in
the interval 8 € (0, 1)). A weighted average is calculated
for each requirement between possibility and necessity
values, mediated by factor 8 (possibility) and 1 — 8 (neces-
sity). Using this methodology, a compatibility measure has
been assigned to every process/product selection features.
A geometric weighted mean is used for aggregating all nth
compatibility values (5). Weight (w) is assigned to every
feature using linguistic values. Each of them is calculated as
in Eq. 6.

N
PLreq)), Lreq). . Liregn) = [ [ P(Lreg)™  (5)
i=1
wj

’ Doy wi ©
Giachetti [30] applies this theory to the first stages of prod-
uct design and process selection, including a broad range of
processes and material as possible candidates. Perzyk and
Meftah [54] use fuzzy logic for developing design for man-
ufacturability of a single component. Functional require-
ments, manufacturing rules and material processability are
evaluated for a single component through a process index,
taking into consideration evaluating production volume,
appearance, surface properties, dimensional tolerances and
material structure. The index is a triplet-type fuzzy num-
ber, which is combined with the ideal process (depending on
the product requirements). Daws et al. [19] limit the search
to casting processes, including investment, mould (perma-
nent, ceramic and full), shell, sand, die and squeeze casting.
Similarly, [60] apply a fuzzy logic approach to the cutting
process selection that considers the material-thickness rela-
tion, cutting speed, piece complexity and process tolerance
capabilities.

Knowledge-based systems use empirical data (usually
collected in databases) in order to support selection process.
Knowledge-based systems are usually flexible and leave
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Fig.2 Schematic of possibility

(left) and necessity (right)
calculations for a linear
requirement [30]
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the decision making process to the user, providing all the
required information to operate. A pioneering knowledge-
based system in this area was reported by [65] to aid
designers in choosing the best alloy and casting process
for a particular set of specifications. The database displays
both numerical and linguistic description of the processes,
suitable for a certain material. The database includes a list
of available material, selecting priorly to the manufacturing
process (i.e. first list of processes are the material
compatible ones). The designer selects qualitatively the
best processes from its description, having excluded the
unsuitable ones (i.e. relating to material and product
specifications). Yu et al. [79] develop a computer-based
routine which connects the geometrical factors, material
and production factors attributes for identifying the most
suitable process (i.e. selecting from casting, hot and cold
forging processes). The algorithm uses a developed design
compatibility analysis which quantifies the compatibility of
every analysed category, by comparing the required values
with datasets, for every considered process. Darwish and
El-Tamimi [17] propose a knowledge-based algorithm for
casting process selection, basing their decision criteria on
design, production and manufacturing attributes. The author
compare the process manufacturing attributes quantitatively
(minimum thickness, tolerances, mass range, surface
roughness, economic lot size), qualitatively (porosity,
dimensional accuracy, mechanical properties) as well as
the cost (tooling, labour, finishing and scrap costs). The
available range of materials is used as a screening criteria for
the processes. Similarly, [25] develop a system for casting
process selection including a comparative cost routine
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(Fig. 3). According to the previous papers, the authors
screen the processes on different levels (casting alloy,
geometric complexity, casting accuracy, production quantity
and comparative costs). In contrast to other researchers,
geometric complexity has been quantified through questions
regarding the product (e.g. undercuts or internal holes
presence). The selected material has been used as screening
factor, taking into consideration the resulting and required
mechanical properties. Xu et al. [78] develop a knowledge-
based system for additive layer manufacturing, including
the process cost as a decision criterion.

Complexity measurement is another tool adopted by
researcher for quantifying and ranking manufacturing pro-
cess in order to select the most suitable. The complexity
approach logic defines the lowest process chain complex-
ity (including process and product design) as easiest from
manufacturing the component. Product complexity influ-
ences directly the manufacturing complexity, so an effective
understanding of complexity nature and its relative measure
can directly connect them. Product complexity increases
with the number and diversity of “features” to be manu-
factured, as well as the nature and difficulty of the tasks
required to produce the features [24]. Cooper et al. [16] have
measured product complexity as a volume weighted aver-
age; meanwhile, [32] has used entropy for the information
number evaluation. EIMaraghy and Urbanic [24] developed
a complete formula for evaluating the product complexity
by measuring its entropy (given by the information num-
ber and uniqueness o features) and the complexity of each
of its features. Features and specification are defined and
evaluated for every characteristic, assigning them a factor (0
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Fig.3 Casting process selection
parametres and their interactions
(25]

[ CASTING PROCESS SELECTION }

.

Casting alloy
P & Properties

TECHNICAL DESIGN FACTORS

requirements

>

low effort, 0.5 medium effort, 1 high effort). All the factors
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weighted by their percentage of presence in the component.

A matrix methodology is used to determine the relative
complexity coefficient [24]. Complexity matrix describes all
product characteristics and specifications. A factor indicates
the relative effort to produce each of them or to perform
the related task. Features and specification are defined and
evaluated for every characteristic, assigning them a factor (0
low effort, 0.5 medium effort, 1 high effort). All the factors
are incorporated in the feature complexity coefficient and
weighted by their percentage of presence in the component.

The complexity index (obtained through the correspon-
dent matrix) represents the difficulty of producing the
component. A complexity index number does not have any
meaning by itself. Comparing processes’ complex indexes
defines the closest one to the final shape, in terms of less
needed manufacturing effort. Wiendahl and Scholtissek [75]
expand the complexity concept to the whole manufactur-
ing process, including product design, operation (process
equipment, tools and labour) and structure. Similar to the
previous authors, [48] quantity the manufacturing complex-
ity using an entropic approach. Their model evaluates both
the various component types and technologies used in a
manufacturing system on the system’s structural complex-
ity. The authors apply their model by selecting the lowest
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complex manufacturing system configuration of an engine
cylinder head. Kerbrat et al. [41] use the manufacturing
complexity for evaluating how to combine subtracting and
additive layer process for producing a mould. A modular
CAD tool has been developed for comparing every sin-
gle feature of the mould, selecting the less complex one
to produce. Guenov [32] identifies two measuring systems
for high-level decision makers. The aim is to compare
alternatives during pre-competitive studies or during the
architectural design process of composite systems. Simi-
larly, the previous authors, the first measure is a complexity
estimation of the Boltzmann’s entropy, meanwhile the sec-
ond measure is intended to estimate the costs and benefits
related to system’s performance.

Methodological investigations use a qualitative approach
to determine the best process selection. The outputs of
these papers consist usually in framework or flowcharts.
For example, [1] develop a complex framework for material
and process selection, taking into consideration the whole
product life-cycle. The framework analyses the product
life-cycle, diving it into three main phases: manufacturing,
service and design/development. A dedicated part of the
framework tries to rationalise the activities of requirements
definition (design) and satisfaction (process). Xu et al. [77]
develop a system for estimating the impact of different
applications of rapid prototyping processes. Using product

@ Springer
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requirements and process cost, the methodology is able to
quantify the process characteristics and compare different
processes. Shercliff and Lovatt [64] define the interaction
of process, material and design is peculiar to every
category of processes (e.g. differences between casting
and welding of an aluminium alloy). For the authors,
the product requirements need to be matched one-by-
one with the process attributes: these requirements can be
design-related (e.g. mechanical properties or dimensional
characteristics), production-related (e.g. production volume
and production rate) or processing-related. Similarly, the
attributes can be process-, material- or design-related. A
pair matching is evaluated on technical feasibility, avoiding
in-process defects, product performance (i.e. final product
characteristics) and economic bases. Different from all the
other authors, [44] try to develop a connection between
process modelling and process selection. They define
the cost models and technical models mostly used in
process selection, in order to validate the process candidate.
Chakraborty and Dey [13] use the Quality Function
Development (QFD) chart, usually called house of quality,
for matching the technical and design requirements as well
as connecting them with the customer requirements. The
authors developed a total score from this well-known quality
enhancement instrument, using a score matrix.

Some authors have been able to implement process
selection into optimization algorithms developing complex
models for assessing the process applicability. Working
on reconfigurable manufacturing systems, [9] use genetic
algorithms and a simulation-based optimization for process
planning for a single product type, taking into consideration
market demand fluctuation and minimum production vol-
ume (i.e. for making the production feasible). The functions
to optimize have been defined as machine usage and change
costs, configuration change cost, tool usage and change
costs. A genetic algorithm (i.e. optimizing product design
and machines data) and demand simulation software (i.e.
providing) provide the most economic chain configuration.
Vinodh et al. [74] apply a fuzzy analytic network, using dif-
ferent criteria for evaluating the best process and the best
supplier to select. Qualitative scores have been assigned
to different criteria for evaluating the process/supplier. A
matrix assigns the value to the process for every criterion
and the algorithm rank the different possible combina-
tion. The selected criteria are coefficients that belong to
business improvement, product quality, supplier service and
risk.

Topological models describe how elements (Finite Ele-
ment Analysis) are bounded and connected. These numeri-
cal analyses are used for describing numerically the product
features (e.g. using rules of proximity, the FEM elements
identify an undercut). In this way, algorithm can assess all
features of a component and assess the best process for
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realizing them. Holland et al. [36] develop a CAD-based
algorithm that can identify cost-effective manufacturing
options for metal forming. The matching is based on
database shapes and features. The optimal and economic
processes to associate with every feature are stored in
database as well. The orientation of the feature is deter-
mined by the algorithm. This determines the most suitable
process, defining the forming direction and the realizable
features. A similar approach has been used by [43], devel-
oping a process-oriented forming features in cold extrusion
to develop a process selection module (CAPP). The module
is able to detect feature shape, main dimensions, and vol-
umes, connecting them with the best suitable cold extrusion
process option (i.e. giving also an indication of the stage
numbers).

Material selection investigations can be taxonomized
using the same categories of the process selection. Regard-
ing process selection, the most part of the author use the
workable material as screening for the available processes.
However, some of the authors include material selection
in their process selection method: [1] include a material
selection in its methodology approach. Giachetti [30] use
fuzzy logic also for material selection, using a variable
request for predicting the different final properties. This
allows the author to extend their probabilistic approach to
the material selection. Brechet et al. [11] review the mate-
rial selection methodology, pointing out the efficacy of the
multi-objective criteria selection. Ashby has pioneered this
field with several works (some of them extended to material
selection). Ashby [6] identify firstly some material perfor-
mance index for materials. The author develop instruments
for material selection, mapping the Young modulus on the
density of different materials and the linear expansion on
the thermal conductivity. The mapping is dependent on
the final product requirements (thermal distortion): dedi-
cated procedures need to be developed in order to measure
the material attributes for the particular product design.
Ashby [5] applies single and multi-criteria optimization to
material selection. The authors derive, from the objective
function, some differential equations, using multiple input
variables and boundary conditions as constraints. In the
multi-criteria selection, the solution of the equations are
trade-off Pareto surfaces. As single target, the author use
the minimization of the component mass. In their appli-
cations, the author uses the multi-criteria for minimizing
mass and cost (determining a Pareto trade-off solution) or
using combined parameters to minimize (depending on the
component requirements and functionality). For example,
the author uses product of cost and density on the elastic
limit (i.e. square root) and the density on the elastic limit
(i.e. square root), forming another trade-off Pareto selection.
Kutz [42] review some quantitative methods for mate-
rial selection, pointing out the fundamental role of expert
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systems and numerical assistance (databases and knowledge
base selection). Lately, the usage of stochastic and heuris-
tic algorithms to material selection has rapidly increased.
For example, [50] apply Analytic Network Process (ANP)
to multi-criteria selection: the material characteristics taken
under consideration are density, thermal attributes (operat-
ing temperature, conductivity), physical properties, fatigue
and mechanical characteristic. The network is able to estab-
lish a ranking of different materials for single product
requirements.

1.2 Review synthesis

In conclusion, fuzzy logic is capable of ranking the can-
didate processes in order of their features’ compatibility
with requested ones. Usually, these features include techno-
logical and other quantifiable requirements (e.g. tolerances,
surface roughness), although it can be easily extended to
every required feature (e.g. material usage, labour cost). The
compatibility values are able to rank the processes and mate-
rials for the given requirements. Fuzzy logic is also able to
quantify the compatibility qualitative features compatibility
and deal with uncertainty.

Complexity approaches have similar potential, although
their application appears to be oriented to product redesign
and supply chain simplification. Similarly, topological
optimization merges CAD and features identification, being
currently used in many software packages. However, it fails
to analyse complex problems, where uncertainty is present.
Analytical models are less subjective and achieved highest
precision in quantification of process/material compatibly,
particularly when few features are considered. However,
they are limited in dealing with uncertainty and complex
connections between options. Further, analytical papers
are limited to consider few selection criteria into their
selections. Optimization papers overcome this problem by
relying on probabilistic and analytical models, merging
them with numerical capabilities and iteration.

Qualitative, methodological and knowledge-based
approaches are most flexible and capable of dealing with
complex interactions between material, design nd manu-
facturing process. However, the inability of quantifying
feature’s compatibility and generally low levels of subjec-
tivity limits them to the selection of relatively restricted
categories of process and materials.

2 Product, Geometry, Manufacturing,
and Material Matching (ProGeMa3)
methodology

The authors propose a NNS selection methodology that
extends the capabilities of the reported systems (known as

Product, Geometry, Manufacturing, and Material Matching
(ProGeMa3)). The methodology is illustrated schematically
in Fig. 4. The aim of the methodology is to combine an
existent product design with a combination of material
and process in order to identify the most appropriate NNS
manufacturing operation.

The methodology is composed of four main steps:

1. Economic opportunities screening: identifies opportu-
nities for NNS applications

2. Material Selection: selects the material in relationship
to its functional requirements

3. Process Screening Matrix (ProSMa): acting as a filter,
sets viable processes for the combination of shape,
material and production volume.

4. Process Compatibility Evaluation (Fuzzy logic): after
the “static” selection tool (ProSMa), fuzzy logic
acts with a “dynamic” selection the viable processes
selected in the previous Step

Each of these steps are now described in detail:

Economic opportunities screening (step 1) is mainly
devoted to screening and identifying components whose
manufacturing costs could potentially be improved by
application of alternative NNS processes. Each step of the
component’s manufacturing chain needs to be examined
with aim of identifying production processes with the
following features:

— High machining rate

— High raw material cost impact
— High production volume

— High lead time

The high complexity of the product design and manufac-
turing chain could be other factors in the identification
of NNS opportunities. However, quantifying process chain
complexity is difficult and consequently approximate evalu-
ations have to be made in order to identify possible existing
products to target. After this phase, the required information
for the component production needs to be obtained.

Material selection (step 2) has been done subsequent to
the components selected in step 1, using the method pro-
posed by [6]. By using fuzzy logic, it is possible to select
an optimal material based on the component requirements
and usage conditions. In choosing this order of operations
(i.e. material prior to process selection) ProGeMa3, simi-
larly [17, 25, 70], effectively limits the resulting number of
combinations and interactions.

Process screening matrix (ProSMA) (step 3) examines
the technical feasibility of candidate processes to reduce the
number of possible manufacturing processes to investigate.
Central to this step, a selection matrix (ProSMa), whose
rows and columns are associated with input are the
component’s geometry and production volume selected in
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Fig.4 Product Geometry,
Manufacturing and Material
Matching (ProGeMa3)
Methodology schematization
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step 1 and the material, selected in step 2 (or, in alternative,
the material currently in use), gives in output a set (array) of
viable processes (which could include the processes used in
the original component production).

Production volume, material and shape are classified in
categories as follows:

— Material: irons, steel (carbon); steel (alloy, tool);
stainless steel; copper and alloys; aluminium and
alloys; magnesium and alloys; zinc and alloys; tin and
alloys; lead and alloys; nickel and alloys; titanium and
alloys.

—  Production volume: very low (1 to 100); low (100 to
1,000); low to medium (1,000 to 10,000); medium to high
(10,000 to 100,000); high (100,000+); all quantities.

— Component shape: 12 different component shapes can
be selected, as showed in Table 1. The categories
include three general geometric form (i.e. round, bar,
tube) and five possible shapes derived from them (i.e.

@ Springer

Ranked array of
viable processes

1. Process3
2. Processn
3. Process1

uniform cross section, change at the end, change at the
centre, transverse element, and irregular).

The material and production volume categories are adapted
from [39, 61] and [70].

The identification of the shape from the Table 1 is a
qualitative assessment of existent shape in comparison with
the general cases.

ProSMa is presented in Tables 2, 3, 4 and 5. The matrix is
an extension of the [70] work, although their PRIMA matrix
uses as input only the production volume and material.
The number of casting and forming processes defined
in [70] matrix do not take into consideration innovative
technologies, whereas ProSMa include process such as
semi-solid metal casting processes. Also is ProSMA, the
additive layer manufacturing processes have been added.
The ProSMa construction is based on the process review
from [7, 8, 10, 18, 21, 23, 28, 29, 31, 33-35, 38, 51-53, 55,
56, 61-63, 66, 69, 70, 76, 80].
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Table 1 Component shape
selected combinations and
nomenclature, adapted from

[61] 0

o Uniform
Abbreviation Cross
Section

Increasing Spatial Complexity —

1 2 3 4
Change at Change at Irregular
the end the centre (Complex)

Transverse
element

R(ound)

Q
Y

B(ar)

T(ube)

The manufacturing processes in output have been
indexed and divided in three macro-categories as follows:

— Casting: sand casting(C.1); shell moulding (C.2);
plaster moulding (C.3); lost foam casting (C.4);
investment casting (C.5); ceramic mould casting (C.6);
gravity-die casting (C.7); gravity-die casting (C.8);
vacuum-die casting (C.9); pressure die casting (C.10);
true-centrifugal casting (C.11); semi-centrifugal casting
(C.12); centrifuge casting (C.13); squeeze -casting
(C.14); thixocasting, rheocasting (C.15); thixoforming
(C.16).

— Forming: open-die forging (F.1); closed-die forging
(F.2); isothermal forging (F.3); precision forging (F.4);
cold forming (F.5); injection forging (F.6); rotary
forging (F.7); shear forming (F.8); flow forming (F.9);
hydroforming (F.10); powder forging (F.11); isostatic
pressing (F.12); metal injection moulding (F.13).

— Additive Layer Manufacturing: selective laser sintering
(SLS) (AM.1); selective laser melting (SLM) (AM.2);
direct metal laser sintering (DMLS) (AM.3); electron
beam melting (EBM) (AM.4); laser-based metal depo-
sition (LBDM) (AM.5); electron beam-based metal
deposition (EBMD) (AM.6); plasma deposition manu-
facturing (PDM) (AM.7).

The ProSMa is intended to be used for existing products
that are designed as a single component part. Referring to
Table 1, for all Round (R), Barr (B) and Tubular (T) basic
geometries, the irregular (complex) shape (classified as 4)
is meant to absorb all the cases that are not included in the
other categories (uniform cross section, change at the end,

change at the centre, transverse element). If the shape cannot
be identified from its spatial complexity (not associable to
any of the categories form O to 4), all the process for the
identified basic geometry (Round, Barr or Tube) should be
taken into consideration (all from O to 4) for the considered
material and production volume.

The ProSMa can be used as guidance for mapping
the manufacturing implications of design changes (passing
from a geometric category to a different one). While
ProSMa is not meant to be a tool for generating new product
designs (given the difficulty of representing all the possible
functional features) and similarly cannot be used for joining
components or assembly processes. However, it can provide
guidance for the manufacturing of merged geometries (e.g.
passing from two distinct simple components to a single
one).

Process compatibility evaluation (stage 4) uses fuzzy
logic to enable identification of the most suitable manufac-
turing processes from the viable ones, selected in stage 3.
This stage has a dual function:

— Final screening: the processes that form particular
features of components are excluded at this stage (e.g.
thickness section).

— Process ranking: all the viable processes are ranked
in order of their compatibility (between product
requirements and process capabilities).

The fuzzy logic approach allows these two objectives to
be achieved by associating the request with a four level
fuzzy description of the process capabilities. The process
capabilities are described by four levels and trapezoidal

@ Springer
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Table 6 Linguistic evaluation scale used in fuzzy logic

Table 8 Possibility probability calculation for Request = Value

Request = Valuey

Possibility

Linguistic evaluation Value
High 5
Moderate to high 4
Moderate 3
Low to moderate 2
Low 1

If Levell < Request < Level2
If Level2 < Request < Level3
If Level3 < Request < Level4

(Req — Levy)/(Levy — Levy)
1
1-(Req — Levs)/(Levs — Levs)

If Request < Levell 0
If Request > Leveld 0

probabilistic behaviour: the medium levels (2 and 3) are
associated with the normal process capabilities, so the
assigned probability to be achieved is 1. The extreme ranges
(i.e. 1 and 4) are the maximum and minimum capabilities
reachable by the process. Between these values and the
normal operative ranges (i.e. between 1 and 2 and between
3 and 4), the fuzzy probability needs to be taken into
consideration, by assuming a linear behaviour between
the two points. Using the Egs. 1, 2, 3, 4, 5 and 6, it is
possible to determine the process compatibility by assessing
the required levels, for a number of product attributes,
and comparing them with four capabilities levels (fuzzy
trapezoidal shape) of the processes. The following four
characteristics are taken into consideration:

— Technological attributes (tolerances and surface rough-
ness)

— Feasibility attributes (minimum section and weight)

— Resulting mechanical properties

— Process costs (tooling, equipment and labour)

The first two categories are numerical, meanwhile the last
two are usually evaluated on a qualitative scale. The linguis-
tic evaluation scale is showed in Table 6: in this way it is
possible to translate qualitative evaluation into a numerical
one and using the result for probability calculation. The cal-
culated compatibility for each characteristic are combined
to a single compatibility value using Eqs. 5 and 6. The com-
patibility values are ranked using a weighing scale shown
in Table 7. As mentioned previously, [30] introduced a
method of combining measures of possibility and necessity
presented here as Eq. 7.

Ci = Pi(B)Ni(1 - B) (N

Table 7 Weighing scale used in fuzzy logic

For the each of the ith attribute: C; is the compatibility
for the single attribute; P; is the possibility probabilistic
evaluation of the request; N; is the necessity probabilistic
evaluation; f is the *optimism’ level.

Egs. 1, 2, 3 and 4, that calculate the single feature
probability, need to be modified depending on the request
form. If the request is a single value (R.4), the possibility
and necessity values are calculated as in Tables 8 and 9,
using the four capabilities levels (Levy, Levy, Levs, Levs).
Similarly, if the request is smaller or bigger than certain
values, the possibility and necessity formulas need to be
modified accordingly, as displayed in Tables 10, 11, 12
and 13 respectively.

3 Case study: application of ProGeMa3
methodology

The ProGeMa3 methodology has been applied to the manu-
facturing of a control valve (Fig. 5), which was a product of
a collaborating company. Commercial confidentiality pre-
vents some details of the components and its production
target being reported here.

The following paragraphs describe the application of
each step of the ProGeMa3 method.

Step 1: component screening—Investigating the current
production parameters (general details given in Table 14),
as a consequence of which valve cage (Fig. 6) was found to
have highest machining rate and raw material cost impact
ratio among control valve’s components (Fig. 5) production.

The control valve’s cage has a high number of variants
in size (from 50 to 600 mm) and material (various Stainless
Steel), so the most frequently produced size and material

Table 9 Necessity probability calculation for Request = Value

Features Importance category Weight Request = Value Necessity

Very important 5 If Levell < Request < Level2  1-(Req — Levy)/(Levy — Levy)
Important 4 If Level2 < Request < Level3 1

Medium important 3 If Level3 < Request < Level4 1-(Req — Lev3)/(Levs — Levs))
Low important 2 If Request < Levell 0

Almost negligible 1 If Request > Level4 0
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Table 10 Possibility probability calculation for Request < Value

Table 12 Possibility probability calculation for Request > Value

Request < Value Possibility

Request > Value Possibility

If Levell < Request < Level2 (Req — Levy)/(Levy — Levy)

If Level2 < Request < Level3 1
If Level3 < Request < Level4 1
If Request < Levell 0
If Request > Level4 1

If Levell < Request < Level2 1-(Req — Lev3)/(Levs — Levs)
If Level2 < Request < Level3 1
If Level3 < Request < Level4 1
If Request < Levell 0
If Request > Level4 1

combination has been selected (300 mm and 420 stainless
steel) for the case study. The production volume is less
than 100 units per year. The extensive machining and the
very high material cost (i.e. stainless steel) are the main
reasons for the selection of this component. Currently, the
component is forged as solid blank and machined (turning
and drilling) to the final shape.

Step 2: material selection—In the valve cage case, the
material selection has been constrained by three factors

— Application environment: material is selected by
the required erosion/corrosion resistance, particularly
for fracking pumps, centrifugal and vertical pumps.
Changing material requires extensive testing.

— Production variants: all the components already include
different material variants, selected by specific cus-
tomer requests.

— Industrial sector: material choice is dictated by the
customer request for pumps/vales (i.e. Oil & Gas sector)
and product standards for valves (i.e. Nuclear sector).
Customer are unwilling to accept any new material for
these components, without extensive validation.

Therefore, the material selection remains unchanged
(i.e. Stainless Steel). Step 3: process selection matrix
application—As showed in Table 14, the selected compo-
nent can be classified using the Table 1 as well as the defined
material categories and production volume ranges in. Valve
cage can be classified as:

— Geometry: T1. Tubular with a single change of section
at the end (Table 1)

— Material: stainless steel

—  Production volume: low (< 100 units per year).

Table 11 Necessity probability calculation for Request < Value

Using these input, the ProSMa (Tables 2 and 3), identify a
cell that contains the following potential NNS process:

— Sand casting

— Lost foam casting
— Investment casting
—  Ceramic moulding
— Flow forming

Table 14 shows also the application of ProSMa to the other
components of the assembly.

Step 4: process compatibility evaluation—To apply the
fuzzy logic screening and ranking of these candidates,
the following characteristics (for both component and
processes) have been selected.

— Radial (or planar) tolerance (=mm) (numerical evalua-
tion).

— Axial (or vertical) tolerance (=mm) (numerical evalua-
tion).

—  Surface roughness (Ra) (numerical evaluation).

— Section thickness (mm) (numerical evaluation).

—  Weight (kg) (numerical evaluation).

— Resulting mechanical proprieties (linguistic evalua-
tion).

— Tooling cost (linguistic evaluation).

— Equipment cost (linguistic evaluation).

— Labour cost (linguistic evaluation).

These characteristics will evaluated for the requested
characteristics (product and targets) and process working
ranges (fuzzy sets) and compared between them. The four
levels required for defining the centrifugal casting’s fuzzy
sets have been drawn from the literature. In particular,
for tolerances and roughness, the fuzzy ranges have been

Table 13 Necessity probability calculation for Request > Value

Request < Value Necessity

Request > Value Necessity

If Levell < Request < Level2 1-(Req — Levy)/(Levy — Levy)
If Level2 < Request < Level3 0
If Level3 < Request < Level4 0
If Request < Levell 1
If Request > Level4 0

If Levell < Request < Level2 1
If Level2 < Request < Level3 (Req — Lev3)/(Levd — Lev3)
If Level3 < Request < Level4 1
If Request < Levell 1
If Request > Level4 0
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Fig.5 Control valve (case
study): assembly and
components’ nomenclature

derived from [12, 18, 39, 61, 62, 70, 71]; meanwhile
workable weights and section thickness ranges have been
defined for the investigated processes as in [4, 12, 14, 39, 61,
62, 67, 68, 70].The resulting mechanical properties [2, 4, 39,
57,61, 76] as well as the tooling, equipment and labour cost
[4, 15, 39, 61, 70] have been evaluated to define qualitative
levels (i.e. low, moderate to low, moderate, moderate to
high, high).

The requested levels of the considered characteristics,
are showed in Table 15. The component requirements are
defined by industrial data (tolerances, roughness, dimen-
sions and weight), quality (mechanical properties) and pro-
duction (costs) targets. Required tolerances, surface rough-
ness, workable thickness and workable weight levels have
been taken from current component properties for the
selected size (300 mm in diameter). Resulting mechanical
proprieties have been set to be “bigger than” the estimation
of the current and required mechanical proprieties. Simi-
larly, Costs required levels have been set to be “lower than”
the current manufacturing costs.

Table 15 also displays the weighting coefficients for
the considered features. The highest weight (value =
5) has been given to the workable weight and section
thickness, because these properties determine the viability
of components manufactured with a given process. The
tolerances and surface roughness have been assigned with

Table 14 ProSMa application to control valve’s component manufacturing

Control Valve Parts
a) Body

b) Cage

c) Cage Seat

d) Plug

e) Stem

f) Cover

g) Bonnet

a high relevance (value = 4), because an NNS approach
should aim to achieve properties as close as possible to
the request specification. Medium (value = 3) has been
given to the mechanical properties, because of the low
resistance required by the component. The compatibility
weights for the labour, equipment and tooling costs have
been set to medium (value = 3) because of the low level
of approximation. The B coefficient (7) has been set to a
constant with a value of 0.5 based on the recommendation
of [30].

The target requirements and relative weighting coeffi-
cients have been defined in collaboration with the case study
company.

Compeatibilities for single features (1, 2, 3, 4) and process
(5 and 6) could be calculated using the developed fuzzy sets
and requirements data (Table 15).

For each process, the total compatibility (7) is calculated
using the selected weights (Table 15) and calculating the
ranked weight (6).

4 Results and discussion

Table 16 displays the total compatibility values of the
case study component with each NNS candidate process
identified and ranked by the ProGeMa3.

Component Production volume Material Geometry Feasible processes (ProSMa)

Bonnet 10-100 Stainless steel T7 C.6 C.10F7F8F.10 AM.1 AM.2 AM.3 AM.4 AM.5 AM.6 AM.7
Body 10-100 Alloy steel T6 C.6F7FE10

Disc 10-100 Stainless steel T7 C.6 C.10F7F8F.10 AM.1 AM.2 AM.3 AM.4 AM.5 AM.6 AM.7
Seat 10-100 Stainless steel T1 C.6C.1I0F1E7E8FI9F10

Plug stem 10-100 Stainless steel R2 C6C.11FE1

Cage (Gasket) 10-100 Stainless steel T1 C.1C4CS5C6C.11E9
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Fig.6 Component selection for NNS investigation (Cage)

The zero results for sand casting, investment casting and
lost foam casting suggest they are not appropriate for the
NNS manufacturing of valve cage.

This because tolerances, roughness and mechanical
properties compatibly values make these casting process
less suitable for this application. For sand casting and lost
foam casting, the tolerances, roughness and mechanical
properties capabilities are not sufficient for allowing the
process to produce the requested characteristics. Investment
casting is also not appropriate because of its high costs.

However, three processes (centrifugal casting, ceramic
moulding and flow forming) are considered compatible
with the requirements of the valve cage manufacturing.
The centrifugal casting process is the most suitable (0.92),
followed by flow forming (0.77) and ceramic moulding
(0.68) (Fig. 7).

Figure 8 shows the compatibility of the single features
for all the considerer processes. Centrifugal casting satisfies

Table 15 Required levels for process compatibly evaluation through
fuzzy logic

Component request and weights Requests Weighting
factors
Radial tolerance (+mm) 0.25 4
Axial tolerance (+mm) 0.25 4
Surface roughness (Ra) 1.6 4
Workable section thickness (mm) 80 5
Workable weight (kg) 360 5
Resulting mechanical proprieties >4 3
Tooling cost <3 3
Equipment cost <3 3
Labour cost 3 3

Table 16 Compatibility rankings of the processes by fuzzy logic

Manufacturing process Total compatibility (case study II)

Centrifugal casting 0.92
Ceramic moulding 0.68
Flow forming 0.77
Sand casting 0.00
Lost foam casting 0.00
Investment casting 0.00

almost completely the requested levels. Flow forming
exceed centrifugal casting capabilities on some of the
features. However, similarly to ceramic moulding, different
ranges in workable thickness and weight reduce their
total compatibility (given the weights applied to the
coefficients). This results in the highest compatibility
being for centrifugal casting in comparison with ceramic
moulding or flow forming process.

As a direct result of this analysis, centrifugal casting was
adopted for valve cage production generating 26.5%, saving
490 machining hours and 18.9 tons of raw material. The
NNS process feasibility study and application details can be
found in [46].

In comparison with the literature, ProGeMa3 investigat-
ing only metals (similarly to [25] and [12]) although they
are both restricted in scope to casting processes. Swift and
Booker [70] investigate metals, composites and plastic, but
the approach is restricted to traditional manufacturing pro-
cesses. The methodologies of [1, 30]and [5] can be applied
to all material and target process.

The general methodologies ([1, 30] and [5]) are also the
most adaptable ones, and the casting-dedicated approaches
the least flexible. Giachetti [30] uses fuzzy logic approach to
process selection, ranking the process candidates feasibility
for the target production, meanwhile [70] use a combination
of a selection matrix (used as a filter) and cost analysis (use
a final decisional criteria). In contrast, ProGeMa3 combine
their key features, using a combination of process selection
matrix and fuzzy logic, to rank the process candidates, using
NNS criteria.

The impact of a product requirements’ precision on the
process selection is lower on the less quantitative (based on
archival data) or qualitative methodologies. Meanwhile it
heavily influences the quantitative ones, for example in [5]
by selecting the criteria and targets of the value functions.
The procedures based on fuzzy logic are highly influenced
by the dimensional precision demanded by the product
requirements and consequently has a significant impact on
the the ranking process.

Differently from [12, 70] and [1], ProGeMa3 does not
rely only static archival data, which are less suitable for
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Fig.7 Ranking of process
compatibilities for the NNS
manufacturing of the case study
component 0.80

0.90

0.70

0.60

0.50

Total Compatibility

0.40
0.30
0.20
0.10

0.00
Centrifugal Casting

defining new and emerging processes. Fuzzy (for example,
[30] and ProGeMa3) and analytical (for example [5])
approaches can adapt to experimental data and be updated
in an agile manner.

ProGeMa3 selects the material before process selection
(like [12, 70] and [25]), while, [30] and [5] approaches have
interactive process and material selections.

Albifiana and C. Vila [1], and Er and Dias [25] use
both qualitative methods, the first using a knowledge-based

Fig.8 Process compatibilities
breakdown for the NNS
manufacturing of the case study
component

— Sand Casting

Equipment Cost ¢

@ Springer

Ceramic Moulding

——Centrifugal Casting

Labour Cost

Flow Forming Sand Casting Lost Foam Casting  Investment Casting
framework selection, the second a rule-based selection.
The different methodologies consider different attributes
for selecting the process. ProGeMa3 use cost, prod-
uct geometry, mechanical properties, production volume
and materials (used into the selection matrix phase. Gia-
chetti [30] take into considerations more variables, mate-
rial, product geometry, process features, mechanical prop-
erties, production volume and cost into its fuzzy logic

model.

——Ceramic Moulding ——Flow Forming

Lost Foam Casting

— Investment Casting

Axial Tolerance

0.92

Surface Roughness
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Different from [30] and [5], ProGeMa3 is not be able to
assess the optimal selection, as it restricts its working field
through ProSMa.

5 Conclusion

The ProGeMa3 methodology has been successfully applied
to an industrial case study. The assumption of material
constancy during the process selection is viable in a
case study application and align with previously reported
approaches in the literature.

The methodology can be potentially expanded to
include ceramic and plastic materials, including their ded-
icated processes. Similarly, sheet manufacturing and con-
tinuous processes could be added into the process selection
matrix.

The methodology has potential to be automated as an
online service with a graphical user interface to facilitate its
usage by non-expert users.

Customer needs and market influence are difficult to
quantify, although they have a great impact on requirement
definition and supply chain stability. Complexity of
quantifying this kind of information makes it difficult to
include these characteristics in a quantitative methodology.
Potential quality enhancement (related to the application
of different processes) is difficult to quantify during the
selection stage. Similarly, production volume variabilities
and changes in relationship to any other modifications.

Similarly, environmental and energy impacts are difficult
to quantify at process selection stage, although they have a
great impact on the supply chain sustainability. In this sense,
ProGeMa3 can be coupled with other quantitative method-
ologies, such as life-cycle assessment (LCA) to quantify
the process selection influence on environmental impact.
However, the dependency of supply chain management and
product life-cycle on product requirements, suppliers and
external factors (such as governmental policy and market
regulations) make these factors strongly “case-dependent”
and difficult to categorize.

The combination of selection matrix and fuzzy logic
provides a very efficient mechanism for quickly focusing
the process selection on a small number of potential
candidates. Once the process databases have been created,
the ProGeMa3 methodology reduces the amount of
subjectivity in the process and consequently supports non
expert-users [60]. Requirements definition results critical as
they could lead to different results in the process selection.
In this sense, availability of information is critical for the
application of section methodologies.

The ProSMa matrix is provided for download with
source files so other researches can expand and update the
methodology (electronically available at [45]).
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