

Darby, SC; (1976) A Bayesian approach to parallel line bioassay. PhD thesis, London School of Hygiene \& Tropical Medicine. DOI: https://doi.org/10.17037/PUBS. 04655099

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/4655099/
DOI: https://doi.org/10.17037/PUBS. 04655099

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

A BAYESIAN APPROACH TO PARALLEL LINE BIOASSAY

by

SARAH CAROL INE DARISY

Thesis submitted for tho degree of Doator of Philosophy of the Univarsity of London.

Londan School of Hygiane \& Tropioal Medicine.
Octuber, 1976

MNDIT
LNIV

Sa man varo. molto ban frovata.

ABtr Cantury Annnymoum.

-2-

Abstract

This thesis considers parallel ine bloassay from a Bayasian point of viaw along tha lines laid out by Lindlay (1072) and da Finetti (1975). The mathematical madal uned for the analysis is a non-linear one in which the log potency ratio nppaars explicitiy as a paramater. This anables prior knowledge about the lag potency ratio to be incorporated stralghtforwardly in the onalysis. The mathod of analysis follows elasely the Ideas of Lindlay and Smith (1972) for the 1fnuar model. Extended models in which experimental design features such as randonized blocks and Latin squares are accounted for are also considered, and a method for the use of priar information ta design an assay is givan.

In addltion to the analysis of a aingle assay the problam of combining information from several ossays is considered and two different models which combine such informatian are disoussed.

Acknowladgemante

 muidence and muparvision durimg the remearch. Thanke Bre slea due to mise M. V. Muodett and Mr. T. RIrmwood of the
 Mre. M.J. Ellin of St. Thamas'B Motoital Mdelcal School por

 af thla raamarch.

c-nilest

Chapter

1 INTRODUKT ITAN 12
2 ANALYSIS DF A SINGLE ASSAY WITH KNUWM RLSIUAALVARTANCE
2.1 The Model 46
2.2 Poeterior Dietrihutinn 4 4
2.3 Larga Sampla Qistributians 28
2.4 Estimatian of Log Patancy Ratio 34
2.5 A Eaneratad nata sat 36
(3) USE OF THE PRIOR OISTGIEUTION IN DESIGNIPGTHE EMPERIMENT
3.1 Introduction 41
3.2 Application to Parallal Line Bloaseay 42
3.3 MaEimization or $\left|x^{\top} X * \sigma^{2} I^{-1}\right|$ 45
3. 4 TWO Exstolaw 59

* ANALYSIS OF A SINGLE ASSAY WITH UNKNOWNRESIOUAL UARIANCE

4. 1 Madel and Poseterior Dintribution 56
4.2 A Spacial Cowe 59
4.3 Eitimatiom of LoE Potancy Fatio 62
5. An Areument supparting an mppraximation Suggeatad in Saction 4.3 84
6. 5 An Fxampleat Tobramyain Data 74

Pantar

EXTENSIUN OF THE MODEL TO NCCEUMY FOR A TIRE COMPLEX IEEICN STRUCTLHE
5.1 tntraductian 78
S. 2 Randamized Black Design W1th Knomn Voriaricen B1
5.3 Randanlzed Block Dosign With
Unknown Variance: 85
5.4 Latin Square Dasign 8
5.5 An Examplal Factor VIII Cota 96
A PODEL COMEINING INFGRMATION FROM SEVERAL ASSAVS
B. 1 Intraductian 100
 cevarianea Struetura 102
 Thespy 112
B. 4 Arl Ex日mplat Im?ulin Dato 117
A MOPE SPECAALIZED MDDEL CUFBINIRG IFFORMATIEN FRGM SEVEMAL VERY SIMILAR ASSAYS
7.1 Intraduction 126
2.2 Pateriar Dietributiona for Known Covariance structura 120
7.3 Larce semple Dietributions 433
7.4 A Pathologscal Exempia 130
7.5 Unknown Variancee 145
7.f Ar Kangley fobreyelo Hata 1 x

Chapter

a COHCLUSIONS

6. 1 Genaral Remarks 155
8.2 Possibilities for Further Work 457
Q. 3 A Note on Hypothasis Tests 159
APPENDIX
A TEST FOR SYNERGISM BETWEEN TWO DRUGS
Papar to appear in Applied Statistics. Volume 25, Part 3. 160
REFERENCES 169

Fleures

2.1 Marginal posterior dansity of μ for the genarated
 data set whun the prior distribution for μ is $\mu \sim N(0.000,0.500)$

2.2 Marginal postartor dansity of μ for the ganoratad
data set when the prior distribution for μ is $\mu \backsim N(0.500,0.500)$
2.3 Marginal posterior consity of μ for the generated
cata set when the prier dietribution for μ is N(0.000, 0.0203)
2.4 Marginal posterior denaity of μ for tha generated
data set when tha prior distribution for μ is N(0.000, 0.0149)
4. 1 Marginal posterior density of μ for data from first tobramycin assay.
4.2 Approximate marginal posterior dansity of μ.
neglacting prior information about α and β, for deto from the first tobramyein assay.
4.3 Approximate marginal posterior denaity of μ.
assuming σ^{2} to be known and squal to its value at the mode of the joint density of μ and σ^{2}, for data from the first tobranycin assay.
5.1 Approximate marginal posterior density of μ, asauming 83 s^{2} to be known and equal to its value at the mode of the joint densisy of μ and s^{2}. for the factor VIII data.

Figureq $/$ conc.

Porg

140 BquAtion 7-11 Tat varying B. An untraker 119 -
 Inta a mecond stationary poinv in tha 11kalihood.
7.2 Panterias demsity bf if for the data bivan in

Teble 7.1 with parametera

7.3 Paitarior dimitty of for the datd givan in

Tabl. 2.t dew nansmetere
$\left(i+1+a^{2}+1+\left(\begin{array}{cc}\frac{1}{4} & 0 \\ 0 & \frac{1}{3}\end{array}\right) \cdot \mu_{6}=1 \cdot \Sigma_{33} \frac{1}{4} \cdot 9^{-1}=0\right.$.
7.4 Poetariar density of u for inn data given in

Tabla 7.1 with paramatara de4.
$\sigma^{2}=\frac{1}{3} \cdot \Sigma=\left(\begin{array}{ll}4 & 0 \\ 0 & \frac{1}{3}\end{array}\right) \cdot \mu_{0}=4, \Sigma_{33}-4, \underbrace{-1}=0$

7,5 Agnrowimate margiral poatarlar danaity of H for
trabramycin data asauming \& ta ba known and aqual to Let value at the mode of the joint dansity of μ and s^{-1}. Priar paraneters are $v=0$,
$\stackrel{8}{2}_{-1}^{=0}, 0=2, R=\left(.4 \times 10^{5} \quad .1 \times 10^{5}\right)$

Pary

32 distribution uling the genorated cata evi for varylag prior diatributions.
4.1 Data from four replicate amaye of the antiblotic toteramyein
4.2 Results of analymis of firat tobramycin aamey with priar naramatora $\left(\begin{array}{l}a \\ 1 \\ 4\end{array}\right)\left(\begin{array}{l}1.24 \times 10 \\ -14014 \\ .00\end{array}\right)$.
$Z=\left(\begin{array}{ccc}.5 \times 10^{5} & 0 & 0 \\ 0 & .2 \times 10 & 0 \\ 0 & 0 & .4 \times 10^{3}\end{array}\right), \nu=0, \lambda=0$,
5.1 Data from factor VIII ansay,
5.2 Resulte of analyela of factar VIII deta with priar
 $\mathrm{I}_{1: \rightarrow}=\Sigma_{22} \rightarrow$.
 cumant inmuifn,
6. 2 Data from eaveral assayB of Ay-日zg diacetyl inau:in

 120 againat 2 noulin [cantinuad).
6.4 Mann of appraximare large mampla distribution

Tables / cont.
6.5

Modes of joint pasterior dansities using insulin assay data with prior parametara $v=0, ?^{-1}=0$,

$$
p=3 . \underset{\sim}{R}=\left[\begin{array}{ccc}
460 . & -1.8 & -230 . \\
-1.8 & .21 & -.23 \\
230 & -.25 & 1200 .
\end{array}\right]
$$

B. 6 Moda of

$$
\begin{aligned}
& \pi\left(a_{0}, \beta_{0}, \mu_{0}, \Sigma_{\sim}^{-1}, \alpha_{1}, \beta_{1}, \mu_{1}, \sigma_{1}^{2}, \ldots, a_{m}, \beta_{m}+\mu_{m}, a_{m}^{2} \mid \underline{y_{1}} \ldots, \underline{y}_{m}, \underline{Q}, v,{\underset{\sim}{r}}^{2}, p\right) \\
& \text { for insulin assay data with prior paramaters } \overbrace{}^{-1}=0 \text {, } \\
& p=3 \text { and } \mathrm{R} \text { as indicated. }
\end{aligned}
$$

B. 2 Moda of

$$
\begin{aligned}
& \pi\left(a_{0}, \beta_{0}, \mu_{0}, \Sigma^{-1} \cdot \mu_{1}, \sigma_{1}^{2}, \cdots \mu_{m}, \sigma_{m}^{2} \mid y_{1}, \cdots y_{m}, \triangleq, v, R, p\right) \\
& \text { for insulin ossay data with prior parametera } \\
& v=0, Q^{-1}=0, p=3 \text { and } \underset{R}{R} \text { as indicated. }
\end{aligned}
$$

7.1 Results of tiwo hypathetical assays.
7.2 Mean of approximate large sample distribution using 153 data of four replicate tobramycin assays.
7.3 Results of analysis of four replioate tobramyoin 154 paremeters with prior paramnters $\rho=2$, and $\underset{\sim}{\mathrm{R}}$ as indicated.

-11-

Transparanoies [Inatde back oavar)

1. Approximate large sample denasty of μ :N $(0.243,0.0296)$
2. $N(0.0,0.0291)$ denaity
3. $N(0.0,0.0143)$ density
4. $N(0.0,0.00993)$ density
5. Approximate marginal posterior density of μ. neglecting prior information about α and B, for data from first tobramyoin assay.
B. Approximate marginal posterlor density of μ, aasuming a^{2} to be known and equal to its value at the modu of the joint dansity of μ and a^{2}, for data from the firat tobranyoin assay.
6. Approximate marginal pastarior dansity of μ for tobramyein data, assuming $\underset{\sim}{5}$ to be known and equal to its value at the made of the joint density of μ and S^{-1}. Prior parameters are $v=0, \phi^{-1}=0$. $p=2 \cdot \underset{\sim}{R}=\left(\begin{array}{ll}.4 \times 10^{4} & .1 \times 10^{4} \\ .1 \times 10^{4} & .4 \times 10^{3}\end{array}\right)$

B Approximato marginal posterior density of μ for tobramyoin deta, assuming S to be known and equal to its valua at the mode of the joint density of μ and \underline{S}^{-1}. Prior parameters ara $\mathrm{v}=0 . Q^{-1}=0$. $p=2 \cdot \stackrel{R}{R}=\left(\begin{array}{ll}.4 \times 10^{6} & .1 \times 10^{6} \\ .1 \times 10^{5} & .4 \times 10^{5}\end{array}\right)$

Chantar 1 Irtroductian

Many drugs in ladat thin prwament tima ara of auch a aumplax natura that it in $\mathbf{1 m p o s a i b l a}$ to aradict ot all accurataly thu etrangth of a partscular proparation by consicuring tha inyradiente and proceswen involvec in producing $1 t$. In such caatas the straneth of every proparation of the drue has so be datsmined exporimantally after tha manufacturing process ie complata. Experimante of this nature invaluing biojogical matorlal ara callad blalogical aplays or, moro comonly, bleabeby.
 masuring tha activity of a preparation of a arug, which we whall call the teet praporation, in mbological syetam. This infarmation alone if of little practical use nisce the activity of the iest proparetiom will dopend very hasvily on the particulas biological material uiked, and it in likely to vary conaiderabiy pron sxparimant to expariment. What is required is a messura of the activity of the test preparation that is independent of
 obtained by carrying out simultancously a eimilar axpmelmont using atandard proparation. A mmasure of the activity of the test preparation ralative to the atandarc preparasion is then avallable and this would be independent of the bialogical madium Invojued in the experimentation. Standard praparations of drugg ara normally of an artitrarily dafined etrangth. Far many druga national or international etandarda have been adapted, and mamples of those ara avaliabla from or agrame fasuing laboratory.

Bloaseay experimanta take several different formu lupanding on the wbitancem and the ounay madium cuncurnad. Onm possibility
is that mpecipied dased of both tent and etandard preporetione aro edministarad to axperimental unita and tha reaulting quantitacive
 typer, but for a widil claan of druge the leg-doms rieponma curve fe roughly linmar for a range of domes, anc flattane aut for dosen abave or balow thin range giving me1gnid curve altatuthmr. In the Ideal bleaseay the test and wtandard preparstian buhove e* if thay contain diffurant concuntrations af the wame active ingresiont, and ac the twa log-dale ranparim curves will hava
ddentical shapes but will be displacea horiznntaily. In practice the active ingrodiont of the two preparationis in Leunlly imilar but not identloal so thia is only approximately trie. In thene asaya the linuar mection of the log-coea ranponee curven for the two subutances will ba apprakimataly parallal, and consoquently thay arim known an parallel-11ns ansaye. Thim featura of intarawt 1n the alsay in tha horizontad dietance bituman the lineas sectiana of the twa lag-dane rerpanme curves. which in callad tha lus patancy ratia. Commonly accuring pharmaceutical mubatances calibrated in thla way are 1 maulin, vitamin C_{1} ame many antibiotiea.

The reault of parallel line blcemeym have been analyaed for many yenrs uing wampling ehacry tacknsguts. Parallal
Fegrassian linss are fitted to the linear eactions of the two logedase rampanie curvas uing the mathod of laat equaraik, and narmal rasiduale are alsumed. The squationi of the fitted linen are

$$
\begin{aligned}
& y_{S}=y_{S} \cdot b\left[x_{S}-x_{S}\right) \\
& y_{T}=y_{T} \cdot \operatorname{sic}+y_{1}+
\end{aligned}
$$

Whare b sa the common slape of tha IInel. \vec{x}_{5} and \bar{y}_{5} are the mesty of the log-desen and ranponeee for tha etandard praparation ard Y. is the fitted responee for a log-ciosen x_{s} of the atandard praparation. The sufix T rafers to tha tent praparation in - Lmilar wny. The estimated log potency ratio Min than the differance in the lag-dcman of the twa mbatance requirad tu five the semm fitted reapanme, that is

$$
M=\vec{x}_{S}-\vec{x}_{T}-\frac{\left(y_{S}-\vec{y}_{T}\right)}{0}
$$

The mapians dietributiona of $\left(\bar{y}_{\mathrm{S}}-\bar{y}_{\mathrm{T}}\right)$ and io arm both normal dintributionm and are mutually innmpandent so confldance limite For the loz-potency ratia can be colcularad using pleiler. thmurum. Frequantiy information from several absaye reaco to be combinad, ene 14 one takes ehie abave approach this provaa - difficult problem which hea remalnad unalved for many yaars. Several emplricel mathods, in the perm of weighted
avarages, were augigegtad by Fimnay (7964], and mare recently of
 aquivelant both to yonesalized laast Bquares mad to maximum 1ikeliheod entimation.

In thse enoali wo have coneldermd the problem outlined atova from a Bayblian point of viow, alung the 21 nam lald out by Lireddey (197la) and da Finatti (1975),

We aggin by taking a eritical jook ot tha paramatsization of the atandard apgroach. An unusual festure in that the paramater of central interatat, the lug potency ratio. dom not eppear in the baslc model. In tho mayesian frammwark information
 end efter an mpperimant. in thi fosm of diatributian. Thim
 1s primazily $\ddagger \mathrm{nk}$ eratetad occur axplicitly in tha madal. Hence our firat dectelan abaut the model wa whould use is that the lag potancy ratio ahould ocaur axplicitly in our basic formularion. Thare now remaine the taisk of diciding on the remaining parametrizotion of the madel. Mathmacleally a madel far two
 be dascribad uming threa parametora. Phyajcaliy ena can aamaciate Pour exmpla meaningful quantitian with the witiationt the harizontal dietance betwaen the limes, the Jaint glopio o the Linge and the two intarcapta of the Lines. The decivion tofore U: It which two af the lase thram quantitien to include an parameters in our model. We tave came ta ene eonclugion that the corract modal will depand on the pracian axperimprtal eltuation under conelderation. The problem wit ara primarily concarned to atudy 1a that of calibrating ralativisly unknown toat vubutancie with aralatively wollknown ttandard. In thla Goss wioblimve that the monelmontar wauld be momt happy about quantifying hie priar bildeff bbaut the ragraswion ilne fas the etandard praparation completely, anct then guancifying, pomaibly indepandentiy. his arler baliefe about the 11 kaly 1 g g potency ratio of the teet preparation when compared with the atanderd. If norraliy diatributed arcors are alaumed then we mave the following mondel fat ofmervatiana on the standard praparathons
 thermarmmion inna of ite intoreapt mend
 obearvetians on the tast praparations

$$
y=N\left(a+B(\mu+N), d^{2}\right)
$$

 Engle Equation tr basic modal 1s
mhare z it a durmy var1able takyrs the valut 0 when a doea of the atanderd preperatson tie umed and 1 when a dese of the telte preparation 1a used.

Thie medel has an sbulaus giagovantand in that it is
 mora ratural one than tha one wead in the teandary aamplimg thaary analyeia. and in particular we bolisug that tho proklam

 apptadeh.

 by Lindley E Smith [1972] for tha linear model, edapting tham Where necembincy to thib non=linear caear

Chapter 2. Anslysia of a Singla Asoay With Known Romidual
 Varlanca

2.1 The Mudal

The firat analymia wha' athompt is that of a aingle analay. For inftial ifmplicity we mhall anaure that tha raeicuol variance is known, and then in a later chaptar we shall remave this restriction. Ya carry out our firnt afalyise wo mhell use the fodjawing twa atera model,

1et tages $y-N\left\{(a+8 u z * 8 x), 0^{2}\right\}$

2nd stage: $\left(\begin{array}{l}a \\ \beta \\ \mu\end{array}\right)=\left\{\left(\begin{array}{l}a \\ \beta_{0} \\ \mu_{0} \\ \hline\end{array}\right), \stackrel{\Sigma}{\sim}\right\}$

Where y is the renponme, x is the lng-dose, and z is a durmy vaxiable taling value 0 when a dow of the etandard urmparitian 1a uned and 1 when a dase of the tant praparation is uand. The emecand atage of the mocel deacribas priar knowledge about the perametars in the first atagaj a_{0}, B_{0} if and the wimente of \underline{E}
 all the lumanti of Σ can be non-zara, but in many callean some of the aff-Eiaganal mamante will be zero. The approprlete form in any perticular cana will dupand on the pracian natura of the prior information avaslable,

As an exemple of a cese whure mome of the wlementa ap I are rara, lat we consdar the fallowing altuation. Suppasi wo want to detemina the sctivity of a teet prmparation of vitamin 0 by comparienn with a wall known atandard, and suppane wh are going in earry out thin particular alasy on chickare. It mo happans that we heve corriad out many oasay an thin madium using aur currant beandard and other tant praparetiona, bue the only assaye wa have done with aur currment palir af aubstancas have usuc ratu insteau of chickanl.

By considering the ranulia we have otealned in the peot for the mtandard preparatian in ameay on chickinn, wh hnuld be able to form an idea of what ex menct naxt tima. Lut the
intercopt with the x-Bxis, and thm wapa of the linaar fart of the lag-doan responae curve be a 目 rempectlvaly. We canatruct

$$
\binom{\alpha}{B}-N\left\{\binom{\alpha_{0}}{\beta_{0}},\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{12} & \Sigma_{22}
\end{array}\right]\right\}
$$

Alse, by considering the wxtant of the linanr part of the logedome
 the range of dasa to be unsed for tho mtandard preparaticn.

Ouite incwpandently of the obove win now censldar the resule of the ras acsays. Let the log potancy ratia of the twn eubetancee cancerned be u. We conetruct volumil ψ_{0} and Σ_{3} men that apgroximataly

$$
H=N\left\{H_{0} I_{13}\right\}
$$

We can now dacide an the range of domee to be umed Por the temt prsparation and than an the final deaien. A mathod for

Amalgarating the orice information fram the iwo axporata anureae the aecand tage of the morial bacamea

$$
\left(\begin{array}{l}
\alpha \\
B \\
u
\end{array}\right)-N\left[\left(\begin{array}{l}
\alpha_{0} \\
\beta_{0} \\
u_{0}
\end{array}\right) \cdot\left[\begin{array}{lll}
\Sigma_{11} & \Sigma_{12} & 0 \\
\Sigma_{12} & \Sigma_{22} & 0 \\
0 & 0 & \Sigma_{33}
\end{array}\right]\right\}
$$

The situation denerited abova will occur rathar infireguentiy. Mawovar. the implimd Etructure por $[$ will hald appraxsmakely In many caman whera prior intormation about the log putancy; ratia of the two mbatancal concerfad 10 al |ened separatily firm prior information about the tuhavioul of the standard preparation using the currant basay medium,
2.2 Pantarior niet*ibutivn

Aptar the agaby ramulte hava tan ontaimed wien man ruitigly togather the Ifkelihand and the prior denaity as eiven by 2,1, ta form tha poatarios density of tha thrae paramatars 0,8 ard u up to - multiplicative conitant.

THIs givas:
whers in 2s the numbar of subjecta in the samey. z_{1} and x_{1}

As might be oxpmetad, this daen nat correspend to any atandard diatribution, and consmquently 1 te propartias are difficult to exemsne. For uxampla, wh have bean unablata fard athar the maan or the varlance analytically= wa can. howevar,
find the modiw. this occure at.

$$
\begin{equation*}
\frac{n}{e^{2}}+\Sigma^{12} \tag{23}
\end{equation*}
$$

$$
\begin{align*}
& -28\left(\frac{\Sigma_{1} y_{1}+\mu \Sigma y_{1} z_{2}}{y^{I}}+\theta_{0} \Sigma^{2 z_{2}}+a_{0} \Sigma^{2 z}\left(\mu-\mu_{0}\right)^{z 23}\right) \tag{array}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\beta^{2} \eta z_{1}{ }^{2}}{\sigma^{2}}+\Sigma^{23}
\end{aligned}
$$

 the alementiv of t wily becoma axtrenaly larise and commequantly the biemants of \sum^{-1} wil1 becom very emali. In the $11 m 1 t 1 \pi 8$ came of no prior knowludge they w 111 all be $20 \times \mathrm{a}$ and the made will occur at$$
\begin{aligned}
& -\vec{y}-\vec{B} \mu \bar{z}-6 \vec{x} .
\end{aligned}
$$

$$
\begin{aligned}
& \mu=\sum_{y_{1} z_{1}-\Delta \Sigma_{1} z_{1}-a n} . \\
& B \Sigma_{1}^{2}
\end{aligned}
$$

 $x_{1}+z_{2}, \ldots z_{n}$ and $\vec{x}_{1 s}$ the avarage of $x_{1}=x_{2} * * x_{n}$. subetituting far a in the wxpreseian for w, and for a and y in themprameinn Por gives

$$
B=\frac{S_{x y}-\frac{S_{x z} S_{y z}}{S_{z z}}}{s_{x x}-\left(S_{x z}\right)^{2}} S_{z z}
$$

$$
\mu=\frac{S_{y z^{-\beta S}} x z}{B S_{z z}}
$$

Tha exprepzlom for β andju. nlthough disguland by the uae口f tha dummy variablo k, are axactly the estemstas of siopilaf regreasion IIn* and 20 g poramay rasio obtasmed ty the itancard sampling theury analymis. Thín can araily bu wagn ai follow. If wa difpenew wlth tha dummy vaflabla z wo have the folidwing swlationmh1pa:
$S_{x y}-\sum_{s}\left(x_{1}-x_{5}\right)\left(y_{1}-\bar{y}_{5}\right)+\sum_{T}\left(x_{1}-\bar{x}_{T}\right)\left(y_{1}-\bar{y}_{T}\right)+\underline{n}_{n}^{n} n_{T}\left(\bar{x}_{T}-\bar{x}_{s}\right)\left(\bar{y}_{T}-\bar{y}_{5}\right)=$
$S_{x z}=\frac{n_{s} n_{r}}{n}\left(x_{r}-x_{s}\right)$
$s_{Y z} \frac{m_{B} n_{T}\left(y_{T}-y_{B}\right)}{n}$
$S_{22^{-n}} S^{n} T$
$S_{x x}=\sum_{S}\left(x_{1}-\bar{x}_{\mathrm{B}}\right)^{2}+\underset{T}{ }\left(x_{1}-\bar{x}_{T}\right)^{2}+{\underset{S}{n} T}_{n}^{n}\left(\bar{x}_{B}-\bar{x}_{T}\right)^{2}$,
whar mufficen and T refer ta mtondand and tent preparatians respeetiyely. On subesttucing thase relationshipe into zha modal valuen for f and po wa get

By axbindre the form of the joint wantwrior danisty given in 2.2 , it can on amen that the guint alstibutian of a and a for limed value of vin in the form of obvariate narmal dietribution. We can tharvfose intograta ovar a and 0
to antain tha margiral poatarior donaity of u up ea s rultiplicativi onnetant. Thie calculetion elves

$$
\begin{aligned}
& h=\frac{\Sigma x_{1} y_{1}}{e^{2}}+\frac{\mu \Sigma y_{1} z_{1}}{\theta^{2}} \cdot 8_{e} \sum^{22} \cdot a_{0} \Sigma^{12}-\left(\mu-\mu_{0}\right) x^{23}
\end{aligned}
$$

Again, this density dave rot correspond to any mtandard distributiona and it is avan more intractabia than tha jexpt poetarior denisey in the menam that the mode zianngt biefound analytically. For a cloam imuetigation of ita banaviour wo have rasartad to numbricily techniqual in mpecial comen mam mection 2.5.

The posteriar marginal density of a can be found in a simsiaz fauhion and appeario mo lasa complicotad.

In our mubamquent dimcubsion, aither for thmoratical eimpliolty, or at an appraximation to a raal itituatian, wim may with to consicer tha cala where wa havs lietle or no prior infarmation sbout ane or more of the parametern in tur madel. Fcr asampla, raduction of priar 1nformatian about would taume
 allowing the 1imitine attuation of no prior knowladge zo occur We mhauld examing cerspully the conedquancen for the posterior diatributiony invalvad.

In thim fallowing argument we ghaw that prior igmorance shout μ causen the jaint postarior dan mity to be unnormad. Thin Aoer nat happan whon therm is no priar knowladge abaut a or B. We an bums thraushout shek for at laatt one of tho preparatione et leat twc diffirent dotem ara adminieterad.

The casus we wiuh to consider are to let ong or more of $\Sigma_{11}, \Sigma_{22}, \Sigma_{33}$ tend to infinity in Σ. If $\Sigma_{11} \rightarrow \infty, \Sigma^{1 j}=\Sigma^{11}=0$ for $J=1,2,3$. Let the expression an the right hand aide of the © sign in 2.2 be $f(a, B, \mu)$, than $\pi(a, B, \mu \mid y)$ will ba a normed density function only when $\int / S+(a, \beta, \mu) d a d B d \mu$ is finite.

From 2.6 If $f(a, B, \mu)$ dad $B-(A(\mu))^{-\frac{1}{2}} B(\mu) \operatorname{explC}(\mu)$
where $A(\mu)=\left\{\left(\frac{n}{}+\Sigma^{11}\right)\left(\frac{\Sigma x_{1}{ }^{2}+2 \mu \Sigma x_{1} z_{1}}{\sigma^{2}}+\frac{\mu^{2} \Sigma z_{1}{ }^{2}+\Sigma^{22}}{\sigma^{2}}\right)-\left(\frac{\Sigma x_{1}+\mu \Sigma z_{1}+\Sigma^{2}}{\sigma^{2}} \frac{\sigma^{2}}{\sigma^{2}}\right)^{2}\right\}$
$\mathrm{B}(\mu)=\operatorname{axp}-1\left\{\mu^{2} z^{33}-2 \mu\left(\alpha_{0} \Sigma^{13}+\beta_{0} \Sigma^{23}+\mu_{0} \Sigma^{33}\right\}\right)$
$C(\mu)=\frac{1}{A(\mu)} \times\left\{\left(\frac{n y^{2}+\alpha_{0} \Sigma^{11}+B_{0} \Sigma^{12}-\left(\mu-\mu_{0} 1 \Sigma^{13}\right.}{a^{2}}\right)^{2}\left(\frac{\Sigma x_{1}^{2}}{a^{2}} \frac{2 \mu \Sigma x_{1} z_{1}}{a^{2}}+\frac{\mu^{2} \Sigma z_{1}^{2}}{a^{2}}+\Sigma^{22}\right)\right.$

$$
\left.+\left(\frac{\Sigma x_{1} y_{1}+n \Sigma y_{1} z_{1}+\beta_{0} \Sigma^{22}+a_{0} z^{12}-\left(\mu-\mu_{0}\right) \Sigma^{23}}{a^{2}}\right)^{2}\left(\begin{array}{l}
n+\Sigma^{11} \\
- \\
\sigma^{2}
\end{array}\right)\right\}
$$

This result is true for all the cases we wish to considar. although various terms in $A(\mu), B(\mu)$ and $C(\mu)$ will be zero when one or more of $\Sigma_{11}, \Sigma_{22}, \Sigma_{33} \rightarrow \infty$.

We can rewrite $A(u)$ in the form
$A(\mu)=\Sigma^{11} \Sigma^{22}-\left(\Sigma^{12}\right)^{2}+\frac{1}{a^{2}}\left(\Sigma^{11} \Sigma\left(x_{1}+\mu z_{1}\right)^{2}-2 \Sigma^{12} \Sigma\left(x_{1}+\mu z_{1}\right)+n \Sigma^{22}\right)$

$$
\begin{equation*}
\frac{a^{4}}{n} \Sigma\left\{x_{i}-\bar{x}+\mu\left(z_{1}-\bar{z}\right)\right\}^{2} \tag{2.7}
\end{equation*}
$$

For all the cases we wish to consider the matrix $\left[\begin{array}{ll}\Sigma^{11} & \Sigma^{12} \\ \Sigma^{12} & \Sigma^{22}\end{array}\right]$
Is pasitive semidefinite and so its deturminant will be non-
nagative, that is $\Sigma^{11} \Sigma^{22}-\left(\Sigma^{12}\right)^{2} \geqslant 0$.
A1so
$\left(\Sigma^{11} \Sigma\left(x_{1}+\mu z_{1}\right)^{2}-2 \Sigma^{12} \Sigma\left(x_{1}+\mu z_{1}\right)+n \Sigma^{2 \Sigma}\right) \geqslant 0$. since it is the sum of n quadratic forms in $\left[\begin{array}{cc}\Sigma^{12} & \Sigma^{12} \\ \Sigma^{12} & \Sigma^{22}\end{array}\right]$. Lastiy $\Sigma\left\{x_{1}-\bar{x}+\mu\left(z_{1}-\bar{z}\right)\right\}^{2}>0$.
since we have assumed that at least two differant doses ere used for at least one of the praparations. Henco we have that $A(u)>0 . \forall u$.

Firatly let us consider the case when the coefficient of μ^{2}
in $A(\mu)$ is etriotiy positive, that is
$\left\{\frac{n}{a^{4}} S_{z z}+\frac{\Sigma^{11} \Sigma z_{i}^{2}}{a^{2}}\right\}>0$. We can rewrite $\mathrm{C}(\mu)$ in the form
$C(\mu)=\left[\frac{\mu^{2}\left(\Sigma^{13}\right)^{2} \Sigma z_{1}{ }^{2}}{\frac{n}{\alpha^{2}} S_{z z^{2}}+\Sigma z_{1}{ }^{2} \Sigma^{11}}\right]+2 \Sigma^{13} a \mu+\left[\frac{b \mu^{2}+\sigma u+\sigma}{A(\mu)}\right]$
whare a,b,e \& d are constants which do not depend on 4 Let

$$
\left.B^{*}(u)=\theta(u) \exp \right\}\left\{\begin{array}{l}
\frac{u^{2}\left(\Sigma^{13}\right)^{2} \Sigma z_{1}{ }^{2}}{n}+2 \Sigma^{13} a u \\
-S_{z z}+\Sigma^{11} \Sigma z_{1}^{2} \\
\sigma^{2}
\end{array}\right\},
$$

and

$$
C^{*}(u)=\frac{b u^{2}+a u+d}{A(u)}
$$

Since $A(v)$ has no real roats $C^{*}(\mu)$ will be brunded above and below, and $\{A(\mu)\}^{-\frac{1}{2}}$ will be bounded above. It fallows that there exist ϵ_{L}, E_{u} and η_{U} all strictily poastive such that

$$
\epsilon_{L} \leqslant \operatorname{mpj} C^{\circ}\{\omega] \quad \epsilon_{u}
$$

cases under consideration.

Now suppasa $\Sigma_{33} \rightarrow \infty, B^{*}(\mu)=1$, and
$\iiint f(\alpha, B, \mu) d a d B d u=\int\{A(u)\}^{-1} B *(\mu) \exp \left\{C^{*}(\mu) d u\right.$

$$
\left.\geqslant \xi_{L}{\underset{-\infty}{\infty}}_{\infty}^{A(\mu)}\right\}^{-1} d \mu
$$

$$
=\infty \text { as is shown belaw. }
$$

From 2.7 we can write $A(u)$ in tha form $A(u)=a(u+g)^{2}+h$
where
and

$$
h=\Sigma^{11} \Sigma^{22-\left(\Sigma^{12}\right)^{2}+1\left(\Sigma x_{1}^{2} \Sigma^{11}-2 \Sigma^{12} \Sigma x_{1}+n \Sigma^{22}\right)+n S x x ~ . ~}
$$

$$
\begin{aligned}
& \text { and }(A(\mu))^{-1} \leqslant \eta_{u} \\
& \text { for all } \mu \text {. } \\
& \text { Suppose } \mathbb{E}_{33}<\boldsymbol{\infty} \text {. then } \\
& \iint S f(\alpha, B, \mu) \text { dadEd } \mu-\int(A(\mu)\}^{-1} B *(\mu) \exp \frac{1}{2} C^{*}(\mu) d \mu \\
& \leqslant E_{-}{ }^{n} \delta B^{*}(\mu) d u
\end{aligned}
$$

$$
\begin{aligned}
& <\infty \text {. since }\left\{\begin{array}{c}
\Sigma^{33}-\left(\Sigma^{13}\right)^{2} \Sigma_{z_{i}}{ }^{2} \\
\frac{n S_{z z}+\Sigma^{11} \Sigma z_{i}}{}{ }^{2} \\
a^{2}
\end{array}\right\}>0 \text { in all tha }
\end{aligned}
$$

In the present case both e and h are strictly positive, tat us transfarm fram μ ta t whers tant $=\left(\frac{d}{-}\right)^{1}(\mu+g]$, then

$$
\begin{aligned}
\int_{-\infty}^{\infty}(A(u)\}^{-3} d u & =\int_{-\infty}^{\infty} \frac{1}{\left\{e\{\mu+\pi)^{2}+h\right\}^{2}} d \mu \\
& =2 e^{-\frac{1}{2}} \int_{0}^{\pi / 2} \operatorname{sact} d t \\
& =2 e^{-\frac{1}{3} 11 m}[\log (\operatorname{sen} t+\tan t)]_{0}^{\pi / 2}-\delta \\
& =2 e^{-\frac{1}{2}} 11 m \log \left[\sec \left(\frac{\pi-6}{2}\right)+\tan \left(\frac{\pi-d}{2}\right)\right]
\end{aligned}
$$

Thia completes the argument when the coefficient of μ^{2} in $A(\mu)$ is strietiy positive. This coefficient cannot be negative, but it can be zero, and we now consider this case.
 In two different ways; either we can hove $S_{z z}=0$ and $\Sigma^{11}=0$ or wh can heve $S_{z z}=0$ and $\Sigma \Sigma_{1}{ }^{2}=0$. If the first of these posa12111tias is true than

$$
\begin{gathered}
A(u)=n \Sigma^{22}+n 5 \times x \\
- \\
a^{2} \\
a^{4}
\end{gathered}
$$

end

$$
c(\mu)=\frac{\left(\Sigma^{23}\right)^{2} \mu^{2}}{\varepsilon^{22}+\frac{3 x x}{g^{2}}}+2 j \mu+k
$$

whore 1 \& k are constants Independent of μ.

$$
\begin{aligned}
& <\operatorname{mincs}\left\{\Sigma^{33}-\left(\Sigma^{23}\right)^{2} \Sigma^{22}+\frac{5 x x}{a^{2}}\right\}>0 \text { in a11 the cases undar consideration. }
\end{aligned}
$$

Now suppose $\Sigma_{33} \rightarrow \infty . \mathrm{B}(\mu)=1$ and both the terms in $\mathrm{C}(\mu)$ involving μ dissappear, hence $C(\mu)=k$.

$$
\begin{aligned}
\iint f f(a, B, \mu) d a d B d \mu & \left\{\frac{n}{\sigma^{2}}\left(\frac{\Sigma^{22}+\frac{5 x x}{\sigma^{2}}}{\varepsilon^{2}}\right)\right\}^{-\frac{1}{2}} \operatorname{axp} \frac{k}{2} \int_{-\infty}^{\infty} 1 . d u \\
& =\infty
\end{aligned}
$$

 In this case

$$
\begin{aligned}
& A(\mu)=\Sigma^{11} \Sigma^{22}-\left(\Sigma^{12}\right)^{2}+1\left(\Sigma^{11} \Sigma x_{1}{ }^{2}-2 \Sigma^{12} \Sigma x_{1}+n \Sigma^{22}\right)+n S x x-1 \text { say }, \\
& \mathbf{C}(\mu)=\left[\Sigma^{11}\left(\Sigma^{23}\right)^{2}+\Sigma^{22}\left(\Sigma^{13}\right)^{2}-2 \Sigma^{12} \Sigma^{13} \Sigma^{23}+1\left(\left(\Sigma^{13}\right)^{2} \Sigma x_{1}{ }^{2}-2 \Sigma^{13} \Sigma^{23} \Sigma x_{1}+n\left(\Sigma^{23}\right)^{2}\right)\right] \mu^{2}
\end{aligned}
$$

where $1, m 8 n$ are constants Independent of μ.
Suppose $\Sigma_{33}<\omega_{,}, \int f f f(a, B, \mu)$ dadBdu= ℓ^{-1}

$$
x \int \exp -\frac{1}{2}\left\{\mu^{2} p-2 \mu\left(\alpha_{0} 2^{13}+\beta_{0} \Sigma^{23}+\mu_{0} \Sigma^{33}+m\right)-n\right\} d \mu
$$

Nata

$$
\left\{\begin{array}{l}
p=\Sigma^{33}- \\
\Sigma^{12}\left(\Sigma^{23}\right)^{2}+\Sigma^{22}\left(\Sigma^{13}\right)^{2}-2 \Sigma^{12} \Sigma^{14} \Sigma^{23} \cdot 1\left\{\left(\Sigma^{132} I^{2} \Sigma x_{i}^{2}-2 \Sigma^{13} \Sigma^{23} \Sigma x_{i}+n\left(\Sigma^{23} I^{2}\right\}\right.\right.
\end{array}\right\}
$$

It can asaily be shaturn thet $p>0$ fos alı the caman undax ccmeldexation, find hance

$$
\text { I/f } \uparrow\left(a_{2}, B, \mu\right) \text { dad } \beta d \mu<\text {. }
$$

 becomen eonmtant. Honce

$$
\text { fff } \#(0, B, u) d a d B d \mu+\alpha_{a \times p}^{-\frac{1}{a}} \int_{-\infty}^{-} 1 \cdot d \mu
$$

Thie complates the arsumant.

It was hot ataisiad the initial asamptian of at lanat
 have held provided $A(\mu)\rangle 0$ for ali μ, From 2.7 this will be true 1 i

$$
I^{12} I\left(x_{1}+\mu z_{L}\right)^{2}-2 I^{1 x_{1}}\left[x_{1}+\omega x_{L}\right]+n^{-22}>D_{n}
$$

thet if $\$ 4$ eithar $\left.\Sigma^{22}\right\rangle 0$, or $E^{11}>0$ and a non-zerg down of the
 prlor information about thes sopa of bhe log"dose reaponse In In
 intarcept of this line with the y-axis and experimanqal knowledgu about mome cthar paint or 15, thus anabling thm siopa to ta -

In tha 11 ght of the praceding ramult mehali in our Bubmamuant diecussion conetder wetny unxform prioriz for a
 a paraliel Line bioansay ona obtains Information abcut log potancy ratid in o pathan indieget wey and conspaumntiy the resulting intarmation is imprimcise. Theresult oompares ofth tha faet that in the atandard ampling thaory analysiat tha
 Whase bampling diatributionn fre normal and mutuadiy indepmedienta Consaguantiy ths banpling distribution of the antinatm af 1ag potency retia hes no utnite momertie.

2．3 Large Sample Distributionn

Lindlay（196i）has shown that givan n Inctepondant obaervations $\underset{y}{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\top}$ each with probability density ply｜⿹勹巳 ），whera $\underline{\theta}=\left(\theta_{1}, 0_{2} \ldots \theta_{p}\right)$ is a veator of paramatars，than provided p（y｜s） is sufficientiy ragular，the asyrptotio dietcibution af $\overbrace{-}^{9}$ is
$\pi[\underline{a} \mid y)-(2 x)^{-p / 2}|\underline{y}|^{-1}$ exp－1 $\left\{(\underline{\theta}-\hat{0}\}^{2} \underline{w}^{-1}(\underline{0}-\hat{0})\right\}$
where the $(1, j)^{\text {th }}$ element of W^{-1} is

$$
\frac{-a^{2}}{\partial \theta_{1} \partial \theta j}\left\{\begin{array}{l}
\frac{n}{\Sigma} \quad \text { log } n\left(y_{k} \mid 0-\hat{\hat{\theta}}\right) \\
k-1
\end{array}\right\}
$$

and $\hat{\theta}$ is the usuai maximum 14kelishood valua of $\hat{\theta}$ ．
Considering tha currant madel，the ragularity conditians ere satisfied，and the maximum likelinheod values ara

$$
\begin{aligned}
& \hat{\alpha}-\bar{y}-\hat{\beta} \mu \bar{z}-\hat{B} \bar{x},
\end{aligned}
$$

$$
\begin{align*}
& \hat{\mu}=\frac{-5 x z}{5 z z}+\frac{5 y z}{\hat{⿺} s z z} . \tag{2.5}
\end{align*}
$$

Hence we have that for sssays with an infinito number of responses the three parameters are normally distributod with means açual
to the mode of thal joint patarier aneley for finita uamplea when the tarme invoiving the prior knowladga are nagiwcsed.
 matimatos of \& \& atvan by tha standerd aampling therey anolyala. It can easily bil shawn thot the variance of 8 is fqual to the Eampling varlance of the Etandard wetimata of miopa. and that the varlance of is if equal to tha appraximate fommla frigumetly usad as tha mempling varianae of the standard entimata of lag potancy ratio.

2.4 Entimation of Los Potoncy Rotio

Following ob Finett (1975) we fael that, within the Beyasien frememork, the netural way oo prosent the sulution af - Atatiatical prabiam ia to give tho ralavant poltarior divtribution. In the prement ceme thiv ía the marginal pouterior diatribution
 labelled with partycular etrangthe and wo thare is a read for a more cancisn raprasentation of the avallabla infamation in the form of a point ustimete of u and alan possibly a confidence Intarval

We andil approdeh the problem of point entimation frame decimian thearetie point of vimw, and whali sasum for the -aka af definitaname that o quadratie lame function io appropriata. In thite edeg tha baiet aretimate of log potmncy ratio will be tha marginel potarlar man of μ. calculatlan of whien wild Involve two une-dimenvional numerical inemgrations. At the present tima there ara fate and reliebla computar packages which parform ona-dimenelonal numarical Lntegratsona of the type required and a this calculation showld not present too great a prablam. If neceeanry, however, on cauld approximata the marginal pagtariar mean by tha marginal posterior mada, the calculation of which is a much simglar froblem nummeicadjy. A Purthin posaibla astimata of the log potancy ratic is the value af y et the mode of the solnt postarlor distribution of $4 . A$. and u os iven by 2.3. It large quantitiea of data wara auallabla tha joint pasemplar dietribution of a.s and u wauld be appeasimataly multivarlata normal, and the jaint madu weuld be appramimately aqual to tha marginal poaterior mana. Hawever, data from a single asamy ara unlikily to bo mufficiantly amtunslva for thin to be the came,

	Test Praparation Log dose		Standand Preparation	
	1	2	1.5	2.5
0.413	0.959	0.381	1.551	
	1.193	1.757	0.083	1.537
0.937	1.415	0.411	0.833	
0.233	1.135	0.388	1.409	
0.303	1.619	0.980	2.330	
0.698	1.401	1.179	1.799	
-0.574	1.305	0.010	1.557	
0.839	1.496	1.108	2.340	

Table 2.1 Banerated data sot

[^0]

Figuru 2.4 Marginad Dostarjor dansity of w for the genirated dath

Priar mexan of μ	Prior varianca of 4	Merglinal posterior masm \quad f $\stackrel{\square}{4}$	Varlance of mar Bnal $^{\text {fal }}$ pavierior dietribution of L	Valua of μ at marginal pontarior	Value of at made of joint posterior donasy - $(a, b, y) y$
D.000	0.530	0.207	0.0330	0.23 合	0.229
D. 500	0. 500	0.253	0.0313	0.284	0.257
1.000	0. 500	0.270	0.0313	0.270	0.285
0.000	0.0288	0.110	0.0172	C. 120	0.114
0.500	0.0238	C. 368	0.0146	0.369	0. 368
1.000	0.0298	0.832	0.0182	C. 819	0.821
0.000	0.0149	0.0719	0.0191	C.0783	0.0723
0.500	0.0148	0.412	0, 00974	0. 411	0.410
1.000	0.10148	Q. 727	0. 0131	0.769	0.772

generated data ant for varying Frloc dietributiana.

Paramavera af thi priar dietributian

Man ${ }^{\text {a }}$	Varianca E_{3}
0.000	0.500
0.500	0. 500
4.000	0,500
0.000	0.0298
0.500	0.0298
1.000	0.0298
C.000	0. 0149
0. 500	0.0149
1.0001	0.0149

Paramatera of the appraximata ngrmel poitarlor distribution

Pray int	Varimaca $\mathrm{O}_{2}{ }^{2}$
0.228	0.0281
0.297	0,0281
0.2 Am	0.0289
0.122	0.0149
9. 372	0.0149
0.022	0.0149
0.0904	0.00993
0.414	C. 00993
0.748	0.00883

Tatia 2.3 Faramatary of thm napraximetararmal pailimitar

dietributione.

2.5 A Gunaratad Oata Sat

In this aaction we shall sljustrate the sdwas losd out In the fruviou sactionewith the aid af an artificially senarated data mat. Date for 4 - paint asmay with ofmanurmanta at aech point were conatructad hith the following paramater
Yく1อง\%

$$
\begin{aligned}
a & =-1.0, \\
B & =1.0, \\
\nu & =0.51 \\
a^{2} & =0.2
\end{aligned}
$$

The log danes worm 1.0 and 2.0 for the tent praparation and 1.5 and 2.5 fer the mendard praporation. Tha data arm given in Tmble 2.1.

Taking the priox distributions to tw unjporm for a and

2 sal- $\frac{\left[m-u_{a}\right]^{2}}{2 \Sigma_{33}}$

Uning large mampla thaory the appraximate pulorior dietribution of u 10 N(0.243, Co2sal. For various prier dimeributionim of u the constant of integration was founc numarically using faume Marmita quadrature as daacribed by Frobarg (19B5). Sarm ckemples of tha rasulting gointion dannitiwe ora lilumtratod in Figures 2.1 - 2.4. The valume of 0.02 目 and 0.0149 for tha prior variance of h arts intanded to raprament estuntion where the priof information carrime approxitataly the ama mount of information ma the data, and approximataly twico an much information as the data. For each of the frior dietritutsenm conilidurad the value of μ at the mode of the joint pasterior density of $\omega_{1} B$ and w, the valum of w at the mode of tril marsinal ponterior densty of H . and the rean and variance of the
marginal paptorlor Alatrigution of wari caleukatwd. The resulte ere \#iven in Table 2.2. The marylnal poeterior maen of u is thearaticojly tha tues paint eytimata of ws but wa can we that in this cawa both the value of ut the mada of tha targinel dencity af and ite value at tha mode of the folnt painertop dansity of \%, B, and u ara gaad apprakimation to the marginal postarior man. Of thma tua mudel appranimaticma the une baasd on the nareinal poatmriur diatribution should on theormeical grounds be the bettar ona, although for that data est tha astimate baod on the joint diatributian in eloser to the marginal poeterior mean far almete all the prior diatributions coneidarad.

On Inspaetion tha dansitian 11גutratod In Figuran 2.1-
2. 4 look es 14 they may not be wery differemt from natmel donaitien. Thile raimant thequention an ta whethar they can be masanam $2 y$ appraxkmotad by normal danaitiane If atiafoctory epproximations cauld be found it might ve poesesble to apply them without accuse to a computar. Thil danaity corrampunding e the largu ample appromimata diatribution is 2 1luntratad Is Tranmparancy 4 Inmide tha bock cover. Cimparisan of the treneparancy with Figurein $2.1=2.4$ showilithis density to bu - raamanabia appraximation te the mall sample density anly when thare in dittlu prlar informotion avadlabla. A marm useful spproximation might be cotsined by cambingni the priak Infarmetion with the epproulmate larga semple diteributian in eome way. Suppoin thi approximate large acmple dietribution of u
 data ali 14 it winge singla absarvation M fram a normal dimiribution with veriance s^{2}. The pontarior dintribution of w would then ba $\mu * N\left(y_{2}, \sigma_{2}{ }^{2}\right)$ where

and

$$
\sigma_{2}^{2}=\frac{1}{1 / s^{2}+1 / z_{33}}
$$

Tho posterfor means and vorioneas which this approximation Eivas for our data aet with variaun prior distributions are Eivan in Table 2.3. Also normal donsities with varlancus corresponding to the situations illustrated in Figures 2.1 2.4 are illustrated in Transparencius $2-4$. For this data set the approximata procedure outlined above seams to give reasonably good results. Wo regret to say, however, that we have baen unable ta Justify it theoretically.

Ehaptar 3. Une up that Priar Diatribution in DuilignIng \&ha

Erperimant.

3.1

Intracuction

Whan we have avaidnble prior information about the parametare in af asaly. It maime roamanabla that thil information mhould influmen the doaes used.

The use of priar diatributionil in cesigning exparimanta tor paramator wistimation in non-11naar rodmle has bean dixcusised by Drepar i Hunter \{1987). We mhell nod give en whort Bummary of the relevare parte of chia paper. Suppoee wa wien to mako n obacurvations of the form

$$
y_{1}=f\left(x_{1}, 0\right) \cdot x_{1},(1=n, 2 \ldots n)
$$

Where the ${ }_{1}$ " are independently nermally diftributed with zury maan and varlance $\sigma_{4}^{2} x=\left\{x_{1}, x_{2} \ldots \ldots x^{T}\right.$ ia a vector of
 be estimeted, and $f(x, 0)$ in a non=innear function of x a
 in the form of a mitiverlatw normal diEtribution with mamen es and cavariance matrix E.

We aheule 11 he to choosit the on pointe $x_{1}(1=1,2, \ldots, n)$ to obtain tha bast postarior dimteibution. Tha critarian for beet is takwn to be so maximiza the final postarior dansity both with reapect to send $x,(1=1, z, \ldots, n)$. By epproximating $f\left(x_{1}\right.$, d) by the firat twa theme it iti raylas expert an at ut Cin thamaximum 19 kelihood metsmator of aftar the expmrimant hay besm carried out, the best dasign is found to ba that whioh maximizme

$$
\left|x^{7} x \cdot o^{2} z^{-1}\right|
$$

with reepact to $x(1=1,2, \ldots n)$. whare the $\{1, j\}^{\text {th }}$ wlement of x L商

eo the $[J . k)^{\text {th }}$ alemant of $x^{\top} x$ is

Since on is nut availabla baform tha enparimant io purfarmada we hava ta approximbte b by θ_{0} thum obteymine eracticaliy applicibla critarian.

3.2. AFpi1Eatian ta Faralial LIna Eioismoy

In waing thla procadure to dielen a para13al 11 ma bloderay wa ahalim uea of sheptar Z.

In this partitular application a further conatraint will

 part of the las-ciose respanse curve, Ww shalı aopume thot the
 mtandard prmparatione for ramponios Jytni totwnen twa particular

学uch that

The region whach watifflea theme constraint is a convex hull
and we shall call it the fanalole ragion.
To raturn to the optimizing ersearion of Drapur it Munter, in this application $f\left(x, 0_{0}\right)-a \cdot B u z \cdot d x$ and $b_{0}^{\top}=\left(a_{w}, B_{w}, w_{a}\right)$.

Suppose n_{f} of the douma orel on this test preparation, and the
 on the standard preparation and the average of the log-dosee f a

In practice σ^{2} would tidally be unknown and ec S would have to be mated rather than E. This natation Elves

$$
\begin{aligned}
& { }^{*}\left(-\pi_{S_{0}}{ }_{0}^{2}-\pi_{0}{ }^{2} g^{11}+2 \varepsilon_{0} g^{13}-5^{35}\right) n_{T}{ }^{2} x_{T}{ }^{2} \\
& V(-\pi)^{2} a^{\left.2+)^{3 i}\right) n_{2} 2 n^{2}} \\
& -2\left\{B_{0} s^{13}-s^{35}\right] n_{1} n_{n} x^{n} n_{n}
\end{aligned}
$$

$$
x H_{r}{ }^{3}+
$$

$+2 \mathrm{in}_{T}{ }_{o} S^{23}+n_{T}{ }_{0} \mu_{0} S^{13}-n_{T} T_{0}^{2} S^{12}-n_{T} H_{o} S^{33}-S^{12} S^{33}+S^{13} S^{23} 1 n_{S^{\prime}} \bar{x}_{S}$

* torma mat involving the k_{1},

If wh $+1 \times$ ty at particular poaitive integer no bigger than n, the above expreseman will bi e canvex function of the x_{1} if the matrix E is pooltive definite, where
and

CWill bo pasitive definite if and only if ali ite principait mánerg arn poyitive. Thía impliaz two ata of conditiona:

$$
\begin{array}{ll}
\text { 1. } p+n q>0_{n} & 0 \leqslant m \leqslant n_{T} \\
\text { 2. }\left((\mu+1 \Gamma)\left(p e n_{T} q\right)-n_{T} 1 s^{2}\right)>0, & 4 \leqslant 1 \leqslant n_{g}
\end{array}
$$

Canotdering the firet eut of aonditions,

$$
\begin{aligned}
& p=n_{T} n^{3} S_{0}^{2}+n S^{33}-2 n_{T} \beta_{o}^{2} S^{11}+n_{T} B_{o^{2}} S^{11}+S^{11} S^{33}-\left(S^{13}\right)^{2} \\
& \mathrm{q}^{=-n_{n}} \mathrm{~s}^{B_{0}^{2}-B_{0}^{2} \mathrm{~S}^{11}+2 \mathrm{~B}_{0} \mathrm{~S}^{13}-\mathrm{s}^{33}, ~} \\
& r=-n_{T} H_{0}^{2}-S^{33}, \\
& s=3_{0} 5^{13}-s^{33}, \\
& \text { Ij 1s the } 1 x J \text { Identity matrix } \\
& \frac{1}{3} \times h^{\text {ie the }} 1 \times h \text { matrix whose ajemmita ara all } 1
\end{aligned}
$$

Fram 1ta definition. $\mathrm{S}=\sigma^{-2} \mathrm{E}$ whera \& 1- the covariancu matrix of a multivarlate normel aletributian and a^{2} is a varianea, Hence S will ba positiva defintia ond consmguently $S^{*}=\left[\begin{array}{l}S^{11} \mathrm{~S}^{13} \\ \mathrm{~S}^{13} \mathrm{~S}^{33}\end{array}\right]$ w111 alac be peaitbve dap1n1ta, Thie 2 mplim that $\beta_{0}^{2} s^{1}-2 \beta_{0} S^{13} \cdot s^{13}=\left(\beta_{0}-1\right) S^{*}\left\{\beta_{0}^{-1}\right)^{\top}$. s^{13}. and $\left(s^{11} s^{33}-\left\{S^{13}\right)^{2}\right\}=\left|s^{2}\right|$
are all merictdy positiver sa it follow that $口+m$ will be merictly positiue for $\mathbb{m}=0,1, \ldots . \mathrm{T}_{\mathrm{T}}$ and the firgt ent of een 1 elariu 4 e -3woys matiafimd.

Considering the wacand wit of conditians, on subststution
 etrictiy positive for $1=1,2$, ..enc from the poaitive definitenele of s°.

Hence we heve the rowit that for fliced n_{T} $\left|x^{7} x+u^{2} \Sigma^{2}\right|$ 1s a convalx function of tha x_{1}.
3.3 Maximization of $\left|x^{\top} x * a^{2} \Sigma^{-1}\right|$

We can now apply the Eriterlon of Drapar \& Huntar by
firate fixing the number of daves on each of thi taet and atancard praparations and masimising the raviltink empresialon for $\left|X^{\top} X+\mathrm{a}^{2} \Sigma^{-1}\right|$. We can than conaider the resulting maximum and
maximiza it with rempert to n_{T} -
Firat lat ye $f 1 x$ the numter of dosen on tha tapt
primparation at n_{p}, 2aaving ($n-n_{4}$) dosisis on the standard
preparation. Maximizetion of $\left|X^{\top} x+0^{2} r^{-1}\right|$ aver tha peasible
Iwyian enon amounte to maxdmizing a convex function over a
canvea hull. The maximum will theraforialie in vertax of the Feasiole region. This mionn that for each of the two proparationil
 h_{T} domes of the test promparatior and k dowes of the etandard ereparation arm at the hichast poraitted laveis. Than from the

$\left(n_{T}-k_{T}\right)$ of them w111 take value $\left(\frac{y_{1}-a_{0}}{s_{0}}-\mu_{0}\right)$, k_{S} of them will take value $\left(\frac{y_{2}-\alpha_{0}}{\beta_{0}}\right)$ and $\left(n_{S^{-k}}\right)^{\prime}$ of them w111 take value
$\left(\frac{y_{1}-a_{0}}{s_{0}}\right)$. In preparation for writing $\left|x^{\top} x+a^{2} \underline{g}^{-1}\right|$ as given by 3.2 as a function of K_{T} and K_{S}, if wa let $\mathrm{y}_{2}-\mathrm{y}_{1}$ " F , we have

$$
n_{T}^{2} \bar{x}_{T}^{2}{ }^{2} k_{T}{ }^{2} r^{2}+2 k_{T} n_{T} T_{0}^{2}-\left\{\frac{y_{1}-a_{0}}{s_{0}}-u_{0}\right\}
$$

$$
n_{s}^{2} \bar{x}_{s}^{2}-\frac{k_{s^{2}} x^{2}+2 k_{S} n^{n}}{\beta_{0}^{2}}-\left\{\frac{y_{1}-\alpha_{0}}{\beta_{0}}\right\}^{* n_{s}^{2}}\left\{\frac{y_{1}-a_{0}}{\beta_{0}}\right\}^{2}
$$

$$
\begin{aligned}
& n_{T} \bar{x}_{T}=\frac{k_{T} r}{\bar{\beta}_{0}}+n_{T}\left\{\frac{y_{1}-\alpha_{0}}{\beta_{0}}-\mu_{0}\right\} \\
& n_{S} \bar{x}_{S}-k_{S} \bar{\beta}_{0}^{r}+n_{S}\left\{\frac{y_{1}-\alpha_{0}}{\beta_{0}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -2 \mu_{0} n^{n} T\left\{\frac{y_{1}-a_{0}}{\beta_{0}}\right\}^{+n_{1} T_{0}}{ }^{2} .
\end{aligned}
$$

Inamrting theae watherimet into 3,2 . wa have

* Devini not invalvinil on in the.

Conafuering $\mid x^{\top} x_{\bullet-\sigma^{2} \Sigma^{-1} \mid}$ (3.3)

Inserting these expressions into 3.z. will have

$$
\begin{aligned}
& \left.+k_{S^{2}}{c^{2}}^{\{-n} T^{6} e^{2}-5^{33}\right\}+2 k T^{k} S^{r^{2}}\left(-5^{33}+\beta_{0} 5^{1 / 1}\right\}
\end{aligned}
$$

- $\left.2 r\left(-n_{-} B^{n} s^{23}+8^{11} s^{23}+s^{13} s^{23}+8 s^{12} s^{13}-s^{13} s^{33}\right)\right]$

- terms not involving kT nr K_{S}.

Considering $\left|x^{\top} x_{0} g^{2} \Sigma^{2}\right|$ as a quadratic form in $\left(h_{T}, k_{S}\right)^{\top}$, $\left|x^{7} x_{0} d^{2}{ }^{1}\right|$ will be concave if the matrix M in positive definite.

For H ta basitive definjte wim nod

1．$\quad S^{B} a^{2}+B_{a}^{2} S^{2 L}-2 B a^{s^{13}+S^{31}>0_{0}}$

2．$\quad 0_{0}^{2}\left(n_{T} n_{S_{0}}^{2}+n_{T_{0}} 0_{0}^{2} S^{12}-2 n_{7^{B}} S^{13}+n S^{33}+S^{14} s^{12}-\left(S^{13}\right)^{2}\right)>0$ ．

Thesa conditions are both antisfied dum to tha positive dwfinitaneme of $\mathrm{s}^{\mathbf{a}}$ ．

It follown that $\left|X^{7} \times \cdot \sigma^{2} \Sigma^{-1}\right|$ w 111 achiava 180 maxsmum gt the salution of the twa simultareoul lirmar equetiona

$$
\underset{x}{3}\left|x^{T} x * a^{2} x^{-1}\right|=0 \quad 1
$$

e $\quad\left|x^{1} x+\sigma^{2} \Sigma^{-1}\right|=0$ ．
ons

From 3．3 chis 1s the point

$$
\begin{equation*}
m_{r}=\frac{n_{1}^{-s^{2 j}}}{2} \frac{\left(y_{1}^{-a} a_{a}{ }^{5} / 2\right)}{r_{a}} s^{11} \tag{3.4}
\end{equation*}
$$

$k=\frac{n_{s}+s^{23}-\left(y_{1}-a_{0} 0^{r} / 2\right)}{2} \frac{r s_{0}}{2}\left(s^{13}-\theta_{0} s^{11}\right)-B_{0}^{s^{12}}$.

Aabuming tha vaduas obtadined for k_{I} and k_{g} arier much tiat
 to， $\mathrm{H}_{\mathrm{g}} 1$ wa can now mubsどとuta these valuer back into $\left|\mathrm{X}^{\top} \mathrm{X} \cdot \mathrm{g}^{2} \mathrm{I}^{-1}\right|$
and we get

$$
\begin{aligned}
\left|\underline{x}^{T} x+\sigma^{2} \Sigma^{-1}\right|= & \left\{\frac{\left.n r^{2}+\left(y_{1}-a_{0}{ }^{2} / 2\right)^{2} s^{11}-2\left(y_{1}-a_{0}+{ }^{5} / 2\right) \beta_{0} s^{12}+s_{0} s^{22}\right\} \times}{}\right. \\
& \left\{-n_{T}{ }^{2}+n_{T}\left(n+s^{11}-\frac{2 s^{12}}{\beta_{0}}\right)\right\}+\text { terns not invalving } n_{T} .
\end{aligned}
$$

This will hava a turning point et

$$
\begin{equation*}
\frac{\mathrm{T}_{T}-n+S_{11}-S^{13}}{\frac{B_{0}}{2}} \tag{3.5}
\end{equation*}
$$

Since S is poaitive definite $\left[\begin{array}{l}S^{11} S^{12} \\ S^{12} S^{22}\end{array}\right]$ w112 be positive

$-\left[\begin{array}{c}\left(y_{1}-\alpha_{0}+{ }^{r} / 2\right) \\ -\beta_{0}\end{array}\right]^{T}\left[\begin{array}{c}S^{11} s^{12} \\ s^{12} S^{22}\end{array}\right]\left[\begin{array}{c}\left(y_{1}-\alpha_{0}+{ }^{r} / 2\right) \\ -\beta_{0}\end{array}\right]$ w112 be positive. Consequently
the coefficient of $n_{T}{ }^{2}$ in the absve expression is negetive, and the turning point is a maximum. Assuming the value of n_{T} at the turning point lius in the interve: $[0, r]$ we cen substitute it into the expressions for k_{T} and k_{S} to get
$\left.k_{1}-\frac{n+s^{11}}{4}+\left(\frac{y_{1}-a_{0}}{r_{0}}\right)^{s_{0}}\right)_{r}^{13}-s^{23}$.

$$
\left(n_{T}-k_{T}\right)=n+\frac{S^{11}}{4}\left(\frac{y_{1}-a_{0}}{r B_{0}}\right)^{5^{13}-\frac{s^{13}+S^{23}}{\beta_{0}} \frac{}{r}}
$$

$\left.k_{s} \frac{n}{4}+\frac{s^{11}}{4}+\left(\frac{y_{1}-a_{0}}{r}\right)^{5^{11}-\beta_{0} s^{12}-\left(\frac{y_{1}-a_{2}}{r}\right.} \frac{s^{13}+s^{23}}{r}\right)^{r}$

Mance we have the rneutr zhat tru opetmal diaign is to place Fr and k_{s} dama at the highmet poraitiv dean for the teat and standard proparations respectively, and $\left(n_{T}-k_{T}\right)$ and ($\left.n_{S}{ }^{-k} S_{S}\right)$ dowes at the lowet pasalble cosn for the tast and atandard preparations, where k_{T}, $k_{5}\left(n_{T} h_{T}\right) \&\left(n_{S} h_{5}\right)$ are an given abovi.

This procidura doms not quertintes to place an integral
 difficulty we uggent the preatatic epproach of wattlng n_{+}equal to that integur neareut to the velua Eiven by 3.5. and then using this integral value of m_{T}. Pinding k_{T} and k_{S} irom 3.4 by the name matrod.

un

In order for the ealution 3.6 tapmeaningful. n_{T} must 11e in the interval [0, $n]$, k_{T} in the interval $\left[0, n_{T}\right]$, and k_{S} in the interval $\left[0, n_{5}\right]$. This implios the following inequalities:

$$
\begin{align*}
& -n \leqslant s^{11}-2 s^{13} \leqslant n \text {. } \\
& \text { 5. } \\
& 0 \leqslant n+\frac{s^{11}}{4}+\left(\frac{y_{1}-a_{0}}{r \beta_{0}}\right)^{s^{13}-s^{23}} \frac{s^{11}}{2}-\frac{s^{23}}{2} \cdot \\
& \left.0 \leqslant \frac{n}{4} \cdot \frac{s^{11}}{4}+\left(\frac{y_{1}-\alpha_{0}}{r}\right)^{s^{11}-\beta_{0} 5^{12}} \frac{y_{1}-a_{0}}{r}\right)^{5^{13}+s^{23}} \frac{n}{r} \leqslant \frac{n}{2}-\frac{s^{11}+11}{2}
\end{align*}
$$

It doas not ream mosaiblim to intazprat thale inaqualitiae in any detall for the ganoral expartitant. Gna came whan they wijI all hold is bhan the elwmente of S^{1} are mall compared with n. that ia the mimmente of Σ^{-1} ara $3 m 11$ corpared with $\mathrm{N} / \mathrm{d}^{2}$. Thle

Widi ectur when the pride infermation ie rather diffure whan comparad with the emount of inforfation one hopan ta esin from the Exparimant, It in quite posalola to find axamples whare not ali the inacualitian hoid. Supgo日e the optimal value for H_{f} givan by 3.5 in greater than n. intuitively this meane ehat there 18 10 much more priar informitian avallable about tha mancard preparaizion that aven if we davated the whodi axperimant ta the taat proparation wa would etill know Jawn atiout it Lhear about the meandard proparaticn, A firit Euggestion would be to sot n_{T} equal to n and then uns 3.4 to ind k_{Y}. Howware evan in the nase where a crumt finel 18 elready hnawn obout the atandard preparation it will raraly be derirabla to carry aut an asasy whara the etendard proparatich if not unad at all. A pasaibla compromion mighe be te qia jowt two deene of the

 range might to marm happily ealvad by eetisng ko equal te © or n_{T}. whichever woe eppropriate. The same appliem to k_{S}
3.4

Two Examplaz

Suppasa we wiah ta callbraze a ralativily now teat
 kncwledge about tho test preparatian w111 va vegul comparac with our prior knowladge about the btandard praparatian. Mowever. juet canalderine one pregaration, our dzlor oginions about the reapunse for difierant downe will be equally precise. or in other wofds the vasianca af our prior fradic*ions of ramponsen at diffarent domen will ba quial. Suppoese we cenisdar the fallowima modelı

$$
\begin{aligned}
& \text { 2nd utagen }\left(\begin{array}{l}
a^{2} \\
\beta \\
u
\end{array}\right)-N\left(\left(\begin{array}{l}
a_{0}{ }^{1} \\
B_{0} \\
\mu_{0}
\end{array}\right),\left[\begin{array}{lll}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & \Sigma_{3}
\end{array}\right]\right\} \text {. }
\end{aligned}
$$

where $x_{M S}$ is thu mid-polnt of the permitted renge of 10 -dosos for the atandard preparation. We nand only ouneldes the fous Extroma dosas which figury in tha apt1mal design. If we astimate $\alpha^{1}, \beta^{g} \mu$ by $a_{0}{ }^{1}, \beta_{0} g_{0} \mu_{0}$ and $I T$ wa $1 a t x_{U S}$ be tir pas hant log-coas and $x_{i s}$ the lowant $\log _{\text {-dose in tha permittad range }}$ for the atandard, then our pradictad responsa for thi highost possible dose on the stondapd $1=y=a_{0}^{1}+\beta_{0}\left(x_{u s}-x_{m S}\right)$ with varlanos $V(y)=\Sigma_{1}+\left(x_{U S}-x_{M S}\right)^{2} \Sigma_{2}$. The pradlated raspansa for the Inwest
 varisance $V(y)=\Sigma_{1}+\left(x_{L S}-x_{M S}\right)^{2} \Sigma_{2}$. The two varianceas are equal. The predicted raspansas for the highest and lowest possible doses on the test preparation aro the sama as those for the standard. The vorlances are again squal, this time with value $\Sigma_{1}+\left(x_{\text {us }}-x_{\text {ms }}\right)^{2} \Sigma_{2}+\left(\Sigma_{2}+\beta_{0}^{2}\right) \Sigma_{3}$. This 1 g greater than the corresponding variance for the standard proparation by the quantity $\left[\Sigma_{2}+\beta_{0}^{2}\right) \Sigma_{3}$. It fallows that this model denoribes the required situation.

This model is a special caea of the more general model dasaribed in the previous mections of this chapter. To illustrate this wa naod to sat $a=a^{1}-B x_{M S}$ and $a_{0}{ }^{2} \alpha_{0}^{1-\beta_{0} x_{M S}}$ in the ganaral modal. It fallows from the flrst of these relations, and from the diaganel covariance matr $1 \times$ in this example, that we need to set

$$
\left[\begin{array}{c}
\Sigma_{11} \Sigma_{12} \Sigma_{13} \\
\Sigma_{12} \Sigma_{22} \Sigma_{23} \\
\Sigma_{13} \Sigma_{23} \Sigma_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\left(\Sigma_{1}+x_{M S}^{2} \Sigma_{2}\right) & -x_{M s} \Sigma_{2} & 0 \\
-x_{M s} \Sigma_{2} & \Sigma_{2} & 0 \\
0 & 0 & \Sigma_{3}
\end{array}\right]
$$

From this the alements of $g^{-1}=g^{2} g^{-1}$ are $a^{2}[$

$$
\left[\begin{array}{ccc}
\frac{1}{\Sigma_{1}} & \frac{x_{m s}}{\Sigma_{1}} & 0 \\
\frac{x_{m s}}{\Sigma_{1}}\left(\frac{1}{\Sigma_{2}} \cdot \frac{x_{m s}^{2}}{\Sigma_{1}}\right.
\end{array}\right) 0
$$

Substrtuting thase valuer of the wlamenta of S in tha ganarel

$$
4 \quad 4 I_{1}
$$

and $\mathrm{k}_{\mathrm{s}}=\left[\mathrm{n}_{\mathrm{s}}-\mathrm{k}_{\mathrm{s}}\right]=\frac{n}{4}-\frac{0^{2}}{4 \Sigma_{1}}$. Hence the optiral danign in thin
 of the peaniole rargo for the tolt praparation and $\frac{n}{4}-\frac{o^{2}}{16}$,
 stapdard priperaticm. Tha inacualitian givan by 3az reduea td

 preperetion and one should dewota all tte avaliebla resourceat En *ploring the tome progaraticra
 knowladge bbout tait end tiandard preparationim in yymratris in
 abcut the other. Wo can madmi Ehis dituatson me fallewni

$$
\begin{aligned}
& \text { 1at etages } y-N\left(\left(a^{2} \cdot B u\{z-1) \cdot \theta\left(x-A_{H y}\right)\right)=a^{2}\right\} \\
& \text { 2nd stage: }\left(\begin{array}{l}
a^{2} \\
B \\
\mu
\end{array}\right)-N\left\{\left(\begin{array}{l}
a_{0}{ }^{1} \\
B_{0} \\
\mu_{0}
\end{array}\right) \cdot\left[\begin{array}{lll}
x_{1} & 0 & 0 \\
0 & \Sigma_{2} & 0 \\
0 & 0 & \Sigma_{3}
\end{array}\right]\right\}
\end{aligned}
$$

whara XMST io Eha everepie of the Mid-pointa of the permitted Fenze of log-dowes for the two sutstences. The predicten roapcneas for dases accurring in tha pptiral dangen arofor tha

- 5^{2} -

Whem calats the general model ta this oxampla by eintting

From \&he 11 rat of zhase relatycha ard from the diaguhul furm af the covarlance matrix, it follaws that wio nued in the ganmrel modal

Hancy the simments of 3^{-1} ara

Subutituting thom valuma of the dimmanta of S^{-1} into The semeral aptimal daing siven by 3.5 we have

$$
h_{T}-n_{T}-k_{p}=h_{5}-h_{g}-n_{5}^{-n} \text {, Hence the optimaj damign in this case is }
$$

 extrame dees painte. As one mithtexpect from the seneral gymentry of the situation the inmquelicies givan by 3.7 are alwgys motimfiad in this case.

Chaptar A.

Analyois of a Single Absay with Unknown Festdual Varlance.

4.1 Model and Posterior Distributions

In chapter 2 we made the assumption that the residual varlance was known. In practice this will raraly be the case so We now remove this unrealistic assumption and obtain a model which is suitable for the analysis of data. If the residual varlance is unknown it will be a parametor in the model and consequently we shall need to spacify a priar distribution for 1t. We shall use tha relevant conjugate prior distribution whiah is that $v \lambda$ has $a x^{2}$-distribution on v degrees of frondem

$$
\overline{\mathbf{o}^{2}}
$$

where v and λ are known constante whose values dopend on our prior knowledge about a^{2}. The prior density of a^{2} w111 therefore be

$$
\pi\left(\sigma^{2} \mid v, \lambda\right) \propto\left(\sigma^{2}\right)^{-\frac{v+2}{2}} \exp -\left\{\frac{v \lambda}{2 a^{2}}\right\}, \sigma^{2}>0 .
$$

We shall assume that our prior knowledge about a^{2} is Independent of our prior knowledge about the pthar parameters.

For a given set of ansay results we can obtain the foint posterior density of the four paramaters α, β, μ and a^{2} up to a multiplicative constant. We get

$$
\begin{aligned}
& -n+v+2 \\
& \pi\left(a, \beta, \mu, \alpha^{2} \mid \underline{y}\right] \alpha\left(\sigma^{2}\right) \quad 2 \\
& \operatorname{axp}-1\left[\frac{\sum y_{1}{ }^{2}}{a^{2}} \frac{v \lambda+a^{2}}{a^{2}}\left(\frac{n}{a^{2}}+\Sigma \Sigma^{11}\right)+2 a a_{2}\left(\frac{\mu \Sigma z_{1}}{\frac{\sigma^{2}}{a^{2}} \frac{\Sigma x_{1}}{\sigma^{2}}+\Sigma^{12}}\right)\right. \\
& +B^{2}\left(\mu^{2} \frac{\Sigma z_{1}}{a^{2}}+2 u \Sigma x_{1} z_{1}+\Sigma x_{1}{ }^{2}+\Sigma^{22}\right) \\
& -2 a\left(\frac{\varepsilon y_{1}}{a^{2}}+\alpha_{0} \Sigma^{11}+B_{0} \Sigma^{12}-\left(y-\mu_{0} 1 \Sigma^{13}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& -2 \beta / \frac{\mu \Sigma y_{1} z_{1}}{a^{2}}+\frac{\sum x_{1} y_{1}}{a^{2}} a^{2 a^{2}}+\beta_{0} \Sigma^{22}-\left(\mu-\nu_{0}\right) L^{23} \\
& \left.+\mu^{2} \Sigma^{33}-2 \mu\left(a_{0}{ }^{22^{13}}+B_{0}{ }^{2^{23}+\mu_{0}}{ }^{33^{33}}\right)\right] \\
& \text { (4, 1) }
\end{aligned}
$$

This is an obvious extension of the joint posterior density of a, a and μ for known σ^{2} given by 2.2 . Its mode is at the point given by 2.3 where d^{2} is now given by

$$
a^{2}=\Sigma\left(\frac{\left.y_{1}-a-B u z_{1}-B x_{1}\right)^{2}+v \lambda}{n+v+2}\right.
$$

As in the case where a^{2} is known, we can integrate over a and B in 4.1 to obtain the posterior dansity of ν and a^{2} up to a multiplicotive constant. We get

$$
\begin{align*}
& \pi\left(1, \sigma^{2} \mid \underline{y}\right)=\left(\sigma^{2}\right)^{-\frac{(n+v+2)}{2}}|\underline{v}|^{\frac{1}{2}} \exp \frac{-1}{2}\left\{\frac{\Sigma y_{1}^{2}}{a^{2}} \frac{v \lambda+\mu^{2}}{a^{2}} z^{33}-2 u\left(a_{0} \Sigma^{13}+\xi_{0} \Sigma^{23}+\mu_{0} \Sigma^{33}\right)\right. \\
& {\left[\left[\begin{array}{l}
a \\
0
\end{array}\right]^{T} \stackrel{v}{-}\left[\begin{array}{l}
a \\
0
\end{array}\right]\right\} } \tag{4.2}
\end{align*}
$$

where a,b and $\underset{\sim}{V}$ are as $g i v e n$ by 2.6 . We can also integrate ever α^{2} in 4.1 to obtoin the joint pastarior density of $a_{*} \beta$ and u; $\pi(\alpha, \beta, \nu \mid \underset{\sim}{y})=\left(v \lambda+\Sigma\left(y_{1}-\alpha-B \mu z_{1}-B x_{1}\right)^{2}\right)^{-\frac{n+v}{2}} \exp -\frac{1}{}\left[\begin{array}{l}a-\alpha_{0} \\ \beta-\beta_{0} \\ \mu-\mu_{0}\end{array}\right]^{\top} \underline{z}^{-1}\left[\begin{array}{c}\alpha-\alpha_{0} \\ \beta-\beta_{0} \\ \mu-\mu_{0}\end{array}\right] \cdot(4.3)$

Wo cannat in general perform analytioally the integrations necessary to obtain the marginal pasterior distribution of μ.

The large sample reaults obtained in section 2,3 carry over to the unknawn rasidual varianes case. except that now a^{2} is normally dintributed with mean
$\hat{a}^{2}=\Sigma\left(y_{1}-\hat{a}-\hat{\beta} \mu z_{1}-\hat{B} x_{1}\right)^{2} / n$ and varianme $2 \hat{a}^{4} / n$. Alnu In 3.1 , the expression for the large sample voriance of α, β and $x \cdot \bar{\sigma}^{2}$
roplaces a^{2}.

4.2 A Spocial Cose.

If wo conolder the case whera we have uniform priar distributions for a and B, the jaint poaterior efatribution of μ and a^{2} as given by 4.2 becomas

$$
\begin{aligned}
& \pi\left(\mu, \sigma^{2} \mid \underline{y}\right)=\left(\sigma^{2}\right)^{-\frac{(n+v)}{2}}\left(S x x+2 \mu S x z+\mu^{2} S z z\right)^{-1} \\
& \quad \times \exp -\frac{1}{2 \alpha^{2}}\left\{\begin{array}{r}
\left.v \lambda+S y y-\frac{(S x y+5 y z)^{2}}{\left(S x x+2 \mu S x z+\mu^{2} S z z\right)}\right\}
\end{array}\right\} \operatorname{exp-1(\mu ^{2}-2uu_{0})z^{33}.}
\end{aligned}
$$

In this spectal sase we can perform the necessary integration over j^{2} to obtain tha marginal postarior distribution of μ up to a multiplicative constant. Wo got
$\left.\pi(\mu \mid \underline{y}) \propto\left(5 x x+2 \mu S x z+\mu^{2} S z z\right)^{-\frac{1}{2}}\left(\nu \lambda+S y y-\frac{(S x y+\mu S y z)^{2}}{S x x+2 \mu S x z+\mu^{2} S z z}\right)\right)^{\frac{(n+v-2)}{2}}$
$\times \exp -1\left(\mu^{2}-2 \mu \mu_{0}\right) \Sigma^{33}$

Befora proceding any further we can now show that provided $\Sigma_{33}<\infty$. and we have more than two observations, than a vague prior for a^{2}, that is one where $v=0$, does not cause the joint postarior dunsity of a, β, μ and σ^{2} to be unnormed, whether or not we have uniform priors far a and B. We use the notation π * 1 to indicate unnormalized density functions as calculated. The joint poaterior density of α, β, u and α^{2} will be normod provided $\iiint f \pi^{*}\left(\alpha, \beta, \mu, v^{2} \mid \underline{y}\right) d a d B d a^{2} d u<\omega$

We know that $\pi^{*}\left(\alpha, \beta, u \mid \sigma^{2}, y\right) \leqslant k x^{*}\left(\alpha, \beta, u \mid \underset{\sim}{y}, \sigma^{2}, \Sigma_{11}, \Sigma_{22} \rightarrow \infty\right)$ for soma positive nonstant k, so
$\iiint \int^{*}\left(a, B, k, a^{2} \mid \underline{y}, v=0, \Sigma_{33}<m\right) d a d B d a^{2} \mathrm{~d} u$
$\leqslant k / \delta \int S \pi^{*}\left(a, \beta, \mu, \sigma^{2} \mid \underline{y}, v=0, \Sigma_{33}<D_{1} \Sigma_{21}, \Sigma_{22} \rightarrow-\infty\right) d a d \beta_{d \sigma^{2}} d v, \sum_{35}<\infty$
$-\int\left(S x x+2 u S x z+\mu^{2} S z z\right)^{-1}\left(\frac{s y y-\frac{(S x y+u S y z)^{2}}{5 x x+2 \mu S x z+\mu^{2} s z z}}{)^{-\frac{(n-2)}{2}} \exp -1\left(u^{2}-2 \omega u_{0}\right) z^{3 j} d \mu}\right.$
$\leqslant\left(\frac{s x x-\frac{s^{2} x z}{s z z}}{)^{-1}}\left(\frac{\left.\left.5 y y-\frac{s x y+\hat{\mu} s y z}{\hat{\beta}}\right)^{-\frac{(n-2)}{2}} \int \exp -\frac{1}{\left(\mu^{2}-2 u p\right.}\right) z^{33} d \mu}{}\right.\right.$
Whare \hat{i} and \hat{s} are the lerge sampla estinates of V and B $\left\langle\right.$ - since $\Sigma^{33}>0$.

This result is not surprising since ane would expect that the data contain, in some sense, quite a lat of information about tha residual variance.

Let us return to the marginal posterior distribution of γ when $\Sigma_{11}, \Sigma_{22} \rightarrow \infty$, given up to a eonstant by 4.4 . If our prior distribution for μ had been a t-distribution of a particular form instaad of a normal distribution than we would be abla to write down the posteriar distribution of μ exaotly rather than Just up to a multiplicative constant. Using the notation $x \sim t^{v}(a, b)$ to indicate that $(x-a) / \sqrt{b}$ follows a t-distribution with v degreas of frendam, let the prior distribution for p be

$$
H-t_{n+v-4}\left\{\frac{-s x z}{S z z}, \frac{\left(S x x S z z-s^{2} x z\right)}{(n+v-4) s^{2} z z}\right\}
$$

that is

$$
\pi(\mu) \propto\left(\$ x x+2 \mu S x z+\mu^{2} s z z\right)-\frac{(n+v-3)}{2}
$$

This is a nonaensical prior distribution in that the mean depends on the design to be used and the variance on the number of observations ta be taken, however multiplying the above dansity with the 11 ka 21 hood and integratiig over a and B we get $\pi(\mu \mid \underset{\sim}{y}) \propto\left\{(v \lambda+S y y)\left(5 x x x+2 u S x z+\nu^{2} S z z\right)-(S x y+u S y z)^{2}\right\}^{-\frac{(n+v+2)}{2}}$
that is the posterior distribution of u is $t_{n+v-3}(a, b)$,
whare $a=-\frac{((v \lambda+5 y y) S x z-S y z 5 x y)}{\left((v \lambda+5 y y) 5 z z-5^{2} y z\right)}$.
and $b=\frac{1}{n+v-3}\left[\frac{\left((v \lambda+5 y y) S x x-S^{2} x y\right)}{\left((v \lambda+S y y) S z z-S^{2} y z\right)}-\frac{((v \lambda+S y y) S x z-S x y S y z)^{2}}{\left((v \lambda+5 y y) S z z-s^{2} y z\right)^{2}}\right]$.

Hence the posterior mnan of μ is a, and its posterior variance is $(n+v-3) b /(n+v-5)$.

In the case of vague prior knowledge for a^{2} these simplify to

5xySyz-5xz5yy

$5 y y S z z-5^{2} y z$
for the maan, and

Syy (SxxSyySzz-SxxS $\left.y^{2} z-S y y S^{2} x^{2} z-S z z S^{2} x y+2 S x y S x z S y z\right)$

$$
(n-5)(\text { Syyszz-5yz } 2)^{2}
$$

for the variance. These rusulte fo not abrm to correspond in
any simple way to the large sample resulta, and the result appears to be of no practical volue.

4.3 Eatimetion af Laf Patency Ratio

Suppese we are in the patition of unifarn orior knawledge for a and \& . The way to procemd ie thun clear. Wo can obtaln the marginal ponterior dietritutiom of w up to a multigilcetive canstant, ol glvan by 4.4, and with tha halp of onm-dimanaloral numerical intwgratione wa man obtain the posterlar man of μ and c confldance interval far it.

Unfortunately, the above will raraly be the caes, and wis whail heva to reaort ither to more complex numwifical tachniquea or to appraximazions. An exact numerscal triatmant wauld find the thareinal posteriar density of u numurically from the joint postarior deneity of y and a^{2}, a Eiven by 4,2 , and then bana infarances and daciwioni concmening y on thia numerical dunity.

Thie procadure requiren a two-dimanaianal numerical intreration. Such integrations ere guite posaible of ... ilise damonatrated if section 4.5, howevar the computing poher iequirad 1s conmiderable, poinibiy more than might ta aveliable to a laberatory carrying out bloalsays. In medeson wa have nat found any atisefactory computer packagen that inill farry mut nu-arical integrations in more tham one-dimansion. Ale rasult of this we feal that approximatlona which raquire fewer computing parilitian ara worth conaidurima.

Suppose we hove avallable o certain amount of prior knowledgen about a and A, but not a eraet deal. One posimility would the to diaregord ths information and procond an in tha fifre paragraph of thie eection. Wm shall demanmerate in ametion 4.4 thet the postarlar danility for oonvargea uniformiy to the posterior density for 4 givin Lniform prior dieteitutions for a and B, an prior knowiedien about a and B becoma mora and mara vagum.

If thera is eubatantial price knowladge about a and B than the soove apprnimation will mot be satisfactory since it naglacta abileantial amaunt of information. In this coew thara are two posioibla types of approact.

The firat is to astimatie uty fte value ot the moda of a

 one would expect the made of $7\left(u, v^{2} \mid y\right)$ to bo the bert appromimation
 diztributian of twa parammtern rathor than thrma og TQur. All thmes madal cetimetarim infer fram the defact that thare is no whutaug conficance Int=rvil thet can ber sesocyetod with thmm.
 be appraxLmatejy nammal.
 Eax \& 11ad \{49731. Th由 data mbuld contain quite a lot nf Infomation atout a^{2} a and connapuantiy the dansity w $\left(c^{2} d y\right)$ bhould be rasanably bharp, with most of its promability mise emmesntratiad cyer a mmali reficn about ito mareinat madenoz way.

 an the une of computing timm, or cousd sparanimate ot by the valum

 postariar man and a confldence fmemmal could be antimatmd.

Sactlon 4.3

In this asction wo ghall show thes, as pryot komowiade
 of μ conwergus unifarmly to the posterior denndty af μ atimuming unifarm wrior dietributionm for a and 0 an givan by 4.4.

Wa shall atesme throughaut bhat 5 , 5 and 9 are
 Ftastar than twa.
$t=t$

and len
whara $W(\nu)=\Sigma^{1 t}\left[I x_{1}{ }^{2}+2 \mu L x_{1}{ }^{2} \cdot{ }^{4} \mu^{2} \Sigma z_{1}{ }^{2}\right]-2 \Sigma^{12} \Sigma\left(x_{1}+H z_{1}\right)+n \Sigma^{A 2}$,
$x(u)=S x x+2 \mu S x z=u^{2} 5 z z$.
$Y(w)=5 x y * y^{*} y z$.
$z \quad-\Sigma^{11} \Sigma^{22}-\left(\Sigma^{12}\right)^{2}$.

$$
\begin{aligned}
& V=\left[\left(\frac{n}{o^{2}} \cdot \frac{L^{12}}{m}\right) \quad\left(\frac{\Sigma_{x_{1}}}{0^{2}}-\frac{w \Sigma z_{2}}{a^{2}}+\frac{E^{12}}{m}\right) \quad\right]_{-}^{-1}
\end{aligned}
$$

This is equivalant to cansidering a waquence offrior distributione

$$
\left[\begin{array}{lll}
\Sigma^{11} & \Sigma^{12} & \Sigma^{13} \\
m & m & m \\
\Sigma^{12} & \Sigma^{22} & \Sigma^{23} \\
m & m & m \\
\Sigma^{13} & \Sigma^{23} & \Sigma^{33}
\end{array}\right] \cdots \cdots
$$

Evary metrix in this sequence is positive definitc it the ifret mantar $L_{y}{ }^{-1}$ Is positive dafinita.
We wiah to nhow that for alle c D, thora mxisti an M such that for all F) M .

$$
\left|\int_{a^{2}=0}^{\infty} f d a^{2}-\int_{d^{2}=0}^{\infty} f_{m} \operatorname{riq}^{2}\right|<c
$$

for a 11 H.
It will be enought to ahow that there exist M and $\sigma>0$ such that
(1) $\left|\int_{6}^{\infty} f d o^{2}\right|<\varepsilon / 3$
(11) $|\int_{\sigma}^{\infty} \overbrace{m} \pm a^{2}|<\varepsilon / 3$
(111) $\left|\int_{0}^{6} f d \sigma^{2}-\int_{0}^{S} f_{n L^{2}} d d^{2}\right|<\varepsilon /_{3}$
for all m$>m$ and all μ.
We shall consider these thrae points in turn.
(1) Since $x(\mu)=S x x+2 u 5 x z+u^{2} S z z \geqslant S x x-S^{2} x z / S z z>0$, we know that

$$
\{x(u))^{-i} \leqslant\left\{5 \times x-\frac{s^{2} x z}{s z z}\right\}^{-1}
$$

for all μ. It can bo shown that $\left.\left(v \lambda+5 y y-y^{2}(\mu) / X(\mu)\right)\right\rangle 0$, so

$$
\left|\exp -\frac{1}{2 e^{2}}\left\{v \lambda+5 y y-\frac{y^{2}(u)}{x(u)}\right\}\right|<1
$$

for all μ and all $\sigma^{2} \in[6, \infty)$ Since $\left(\mu-\mu_{0}\right)^{2} \tau^{33} \geqslant 0$.
for all 4 . Hence, from 4.5,

$$
\begin{aligned}
& \leqslant n^{-\frac{1}{2}}\left\{5 x x-\frac{S^{2} x z}{S z z}\right\}^{-1} \operatorname{exph} u_{0}^{2} I^{33} \cdot \frac{2}{(n+v-2)} \cdot \frac{1}{(8)}\left(\frac{(n v \gamma-2}{2}\right) \\
& <6 / 3 \\
& \text { for all sufficiently large } \delta \text {. }
\end{aligned}
$$

(11) Since $n, W(\mu), X(\mu)$ and Z are all strictly positive,

$$
1>\left\{1+\frac{\sigma^{2}}{m n} \cdot \frac{W(\mu)}{x(\mu)}+\frac{\sigma^{4}}{m^{2} n} \cdot \frac{z}{x(\mu)}\right\}^{-1}>0
$$

for all m, all u and all $a^{2} \in[0, \infty)$. Let

$$
\xi\left(m, 13, \sigma^{2}\right)=-\frac{1}{2} \mu^{2} \Sigma^{33}+1\left(\mu_{0} z^{33}+a_{0} \frac{\Sigma}{2}^{13}+\beta_{m} \frac{\Sigma}{2}^{23}\right) \cdot i_{m}\left[\begin{array}{l}
a_{m} \\
b_{m}
\end{array}\right]^{\top} \underset{m}{v_{m}}\left[\begin{array}{l}
a_{m} \\
b_{m}
\end{array}\right] .
$$

It cam sassily be show that for positive 4
and for negation μ

$$
\begin{aligned}
& \xi\left(m, \mu, a^{2}\right) \leqslant \frac{\varepsilon_{4} \omega \omega^{\omega}-\varepsilon_{3} \mu^{3}+\varepsilon_{2} \mu^{2}-\epsilon_{1} \mu+\varepsilon_{n}}{6} \\
& \frac{n}{s^{2}}\left\{\frac{s x x-s^{2} x z}{s z z}\right]
\end{aligned}
$$

wharf E_{0}, E_{1}, E_{2}, and K_{1} are content indepandant of m, or or ${ }^{2}$

$$
a_{a^{6}}=-\Sigma^{23} \sum_{z} \frac{\Sigma_{z}}{\theta^{2}} 1^{2}\left\{\frac{\Sigma^{11} z^{11}}{m}\left(\Sigma^{12}\right)^{2}\right\}
$$

 $\left.\xi\left(m, u, d^{2}\right) w 11\right]$ to bounded above that $18 \varepsilon\left[m, \mu, o^{2}\right] \leqslant \varepsilon$ for

$$
\left|\operatorname{nxp}-\frac{1}{2^{0^{2}}}\left(v x+\Sigma y_{1}^{2}\right)\right|<1
$$

$$
\begin{aligned}
& \left|\int_{0}^{\infty} \mathrm{m}^{\infty} d \sigma^{2}\right| \leqslant n^{-\frac{1}{2}}\left\{S x x-\frac{s^{2} \times z}{S z z}\right\}^{-\frac{1}{2}} \exp 5 \max \int_{\delta}^{\infty}\left(\sigma^{2}\right)^{\frac{n+v}{2}} d \sigma^{2} \\
& \leqslant n^{-1}\left\{S \times x-\frac{3^{2} \times z}{5 z z}\right\}^{-\frac{1}{2}} \exp E_{\operatorname{tnax}} \cdot\left(\frac{2}{n+v-2}\right) \frac{1}{(6)} \frac{a+v-2}{2} \\
& \text { c/3 } \\
& \text { for all } m \text { and all p fer auffialent } 2 y \text { large } 6
\end{aligned}
$$

(111)

Wo wauld 12 km to show that for any large 8 there

$$
\left|\int_{0}^{6} f d a^{2}-\int_{0}^{6} f_{m^{2}} d d^{2}\right|<c / 3
$$

 m) $m_{3}|f-4|$ or for alı y end alb $o^{2} \leqslant 40.6$)

We ohall noed the railudt that
$\left(\alpha^{2}\right)=\frac{(n+v)}{2} \exp -\frac{-1}{2^{2}}\left\{\left[v x+5 y y-\frac{y^{2}(\mu)}{x(\mu)}\right\} \leqslant\left\{\frac{v \lambda+5 y y-\frac{y^{2}(\mu)}{x(\mu)}}{n+v}\right\}^{-\frac{(n+v)}{2}} \operatorname{sxp-\frac {(n+v)}{2}}\right.$

Lat ue first condider the cana whera y 1 e either viery 3 arse and posieive ar very laree and nerativa, Applying identitime alraady obtained ta 4.5 and 4.6 will have thet
$\left|H_{f}\right| \leqslant \beta A\left\{\operatorname{axp}-1\left(\mu^{2}-2 \mu \mu_{0}\right) \Sigma^{33} \cdot \operatorname{axp}\left(m, \mu, o^{2}\right)\right)$.
$A=n^{-1}\left\{5 x x-\frac{s^{2} x z}{S z z}\right\}^{-1}\left\{v \lambda+5 y y-\frac{y^{2}(\hat{\mu})}{x(u)}\right\}^{-\frac{(n+v)}{2}} \quad u x p-\frac{(n+v)}{2}$.
and

 $|u|>K_{a}$ for eufficient $y_{y} I$ argm K.

It can anilly te ohuwn that for politive p

$$
c\left(m, u \cdot \sigma^{2}\right) \leqslant \frac{c_{4} u^{4}+c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}}{n\left\{5 \times x-\frac{s^{2} \times z}{5 z z}\right\}}
$$

and for nagativa u

$$
\zeta\left(m, \mu, \sigma^{2}\right) \leqslant \frac{64 \mu^{4}-53 \mu^{3}+c_{2 \mu}^{2}-\kappa_{1 \mu} \mu+\xi_{0}}{n\left\{5 x x-\frac{s^{2} \times z}{5 z z}\right\}}
$$

where $\zeta_{0}, \zeta_{1}, \zeta_{2}$ and ζ_{3} are constants independent of $m \mu$ or a^{2}, and

$$
c_{4}=-n S z z-\Sigma z_{1}{ }^{2}\left\{\frac{\Sigma^{11} z^{33}}{m}-\frac{\left(z^{13}\right)^{2}}{m^{2}}\right\}
$$

54. will be strictly negative for all m , so $c\left(\mathrm{~m}, \mathrm{u}, \mathrm{a}^{2}\right) \rightarrow \cdots$ as

m, for all $a^{2} \in[0, \delta]$ and for all u such that $\left.|\mu|\right\rangle K$, for suffielently larga K.

Combining these results we have that $\left|f-f_{m}\right|\langle\delta \mathrm{c} / 3$, for all in, for all $a^{2} c[0,5]$ and for all u such that $|u|>K$, for suffiaiantly large K.

Now let us cansider μ lying in any finite interval $(-K, K)$.
From 4.5 and 4.6 we have that

$$
\left.\times \exp \frac{5\left(m, 1, \sigma^{2}\right)}{m} \right\rvert\, \quad(4.7)
$$

where $\xi\left(m_{,} \mu, \sigma^{2}\right)=\frac{m}{2}\left\{\left[\begin{array}{l}a_{m} \\ b_{n}\end{array}\right]^{\top} y_{m}\left[\begin{array}{l}a_{m} \\ b_{m}\end{array}\right] \frac{-n \bar{y}}{a^{2}}-\frac{y^{2}(\mu)}{a^{2} x(\mu)}\right\}$.
It. can easily be shown that

$$
\varepsilon\left(m, \mu, \sigma^{2}\right)=\frac{\frac{q^{4} R(\mu)}{m^{2}}+\frac{\sigma^{2} S(\mu)}{m}+T(u)+\gamma^{2}(u)\left\{\frac{\sigma^{2} z}{m \times(\mu)} \frac{-W(\mu)}{X(\mu)}\right\}}{\frac{\sigma^{4}}{a^{2}}+\frac{\sigma^{2} w(\mu)+n \times(u)}{m}},
$$

 independent $\mathrm{of} m$ and a^{2}. I\& wim consicmr $L \notin f-K, K 1$, then
Ef $\left(m, u, a^{2}\right)$ w111 be boundag both atoova and belaw for 111 mind all $a^{2}=[a, 8]$. Hance far sufficiantly large m

$$
\operatorname{sxp} 1\left\{\mu\left(a_{0} I^{13}+\theta_{\theta} E^{2]}\right\}+\left[\left(m, \mu, \sigma^{2}\right)\right\}\right.
$$

 to

Conshquantly, by Exenining 4.7 wim can wer that for mfficienely
 3
any finite Interval f-k.k.

4.5 An Examples labra-ynin 日at -

We thall now try aut aur 1dmas on sorn Teble 4.1 contains data from four replieata aisaya of the

 Walls are cut in thm agar piol and f111ad with a doea cf the preparation of antibiotic. Tha antioiatic will than diffuse into tho gal in zana around tha wall and that arganisma will E inhibitid from growing in thie zare. The we of the fanibition gone will depand an tha amaumt of antitiotio fn the wel1 and the remponee verieble meseured is the arma of the inhitition zonm. In thia wection wir shall consider the data fram the fitnt arsay In sabation. The Firat task is ta dacian on valuea for the parematwre of the prior diatributians. Wo have unied the following vinumi for the wacond itcoga parametarea

$$
\left(\begin{array}{l}
a_{0} \\
s_{0} \\
\mu_{0}
\end{array}\right)=\left(\begin{array}{lll}
.29 \times 10^{5} \\
.04 \times 10^{4} \\
.00 & \Sigma
\end{array}\right) \cdot\left(\begin{array}{lll}
.000 \times 10^{5} & .000 & .000 \\
.000 & .200 \times 20^{5} & .000 \\
.000 & .000 & .4000 \times 10^{-3}
\end{array}\right]
$$

The values of a_{a}. B_{0} and w_{0} were obtainad from the dota for tha remalnirg thrae tobremyein ageaye, and I wat chawen wo that wa would ampact the price infarmatian to carry about half as much Weitett an thedarain the analysie. Wo hava int voh=0 in the prior danalty of c^{2} an tha data should contaln a bubstartial ancunt of information about a^{2}.

We have followed saveral of the budgetione made in bection 4.3 for the antimation of dae potancy ratio and our rasulta ara eummarizea in fable 4.2 and Figurea 4.9-3. The different ตntimatas of μ ara all vary similar. Thaman mind mode of tha merginel di解rlbutson of u nre a $114 t l$ migher than the other
 marginal dunsity of μ and the twa approximate marginal densitide abtained ith the firse ceae by 1 Emoring the prior information about a and s. and in eha simcond casa by amsuming a^{2} im knuwn and aqual Re 1te value at the mode of the foint dittribution of y and a^{2} a ara 1)luintratad in fieurall 4.4-4.3. Thia threa daneltien can te
compored uning Transporencias 5 and 6 . In this case either of the opproxinationa seema quite satisfactory,

The calculations involved in obtaining these resulta wero quite simple, using oniy a small amount of programing and stondard computer routines in all but one case. This was in the calculation of the marginal postarlor density of μ. Analytically we can only find the joint dansity of u and θ^{2} up to a nultiplicative canatant. Let this be $f\left(w, \sigma^{2}\right)$. The conatant must be calculated numaricaliy and this requires a two-dimensional numerical integration. We performad the calculation by using two one-dimensianal numarical integrations hiararchicaliy. We wished to entimate

$$
I=\int_{\mu=-\infty}^{\infty} \int_{0^{2}=0}^{\infty} f\left[\mu, \sigma^{2}\right] d d^{2} d \mu .
$$

If we let $J(\mu)=\int_{\sigma^{2} \mu D}^{\infty} f\left(\mu, \sigma^{2}\right) d \sigma^{2}$, then $I=\int_{\mu=-\infty}^{\infty} J(\mu) d \mu$.

We carried out a series of one-dimansional integrations to evaluate $J(\mu)$ at those values of μ required to estimate the one dimenaional integral

$$
I=\int_{\mu=-\infty}^{\infty} J(u) d u .
$$

The marginal posterior density of $u I_{s}$ then $J(u) /_{I}$, and wo can use those values of $J(\mu)$ which we hava alruady calculated to plot the donsity and also in finding the marginal posterior mean of μ. This method proved straight forward to program and gave answers of the required accuracy quite quickly.

3tandard Praparation

Dose		. 054	. 030	. 15
Assay	1	10072.	13668.	16861.
		10063.	13712.	15425.
		10041.	13814.	18848.
		9958.	13712.	16444.
		10104.	13838.	17012.
		10082.	14051.	167 ¢2.
Assay	2	10053.	13835.	18619.
		10074.	13377.	15520.
		9997.	13757.	15840.
		10151.	13730.	18482.
		10052.	13012.	16549.
		10049.	13829.	16830.
Aosay	3	10078.	13545.	16506.
		10213.	13610.	16917.
		10097.	13319.	16503.
		10102.	13517.	17012.
		10030.	13369.	16700.
		10063.	13115.	18633.
Assay 4.		8954.	13345.	18750.
		2865.	13446.	16582.
		10102.	13102.	15720.
		9305.	13370.	16834.
		9887.	13661.	17093.
		10110.	13186.	16524.

Teast Preparation

$$
.054 \quad .090 \quad .15
$$

$$
\text { 10113. 13564. } 15433 .
$$

$$
10004 . \quad 13395 .
$$

$$
\text { 10188. 13674. } 16757 .
$$

$$
\text { 10053. 13340. } 15427 .
$$

10305. 13654. 16308.

$$
\text { 10434. 13458. } 16012 .
$$

$$
\text { 10151. } 13592 .
$$

$$
\text { 9933. 13560. } 16370 .
$$

$$
\text { 10228. } 13457 . \quad 16681 .
$$

$$
\text { 10112. 13536. } 18645 .
$$

$$
\text { 10140. 13436. } 16532 .
$$

$$
\text { 10165. } 13423 . \quad 16666 .
$$

$$
\text { 10245. } 13949 .
$$

$$
\text { 10515. 14340. } 17080 .
$$

$$
\text { 10239. } 13824 .
$$

$$
\text { 10528. 14136. } 16343 .
$$

$$
\text { 10259. } 14079 . \quad 15333 .
$$

$$
\text { 10179. 13868. } 13478 .
$$

$$
\text { 10383. 13869. } 16745 .
$$

10208. 13915. 16856.

$$
\text { 10183. } 14140, \quad 15487 .
$$

$$
\text { 10420. 13866. } 15851 .
$$

$$
\text { 10664. } 13931 .
$$

$$
\text { 10229. } 13858 .
$$

Table 4.1 Data from four replicate assays of the antibiotic tobramycin.

	1	a	*	0^{2}
tanan of $=(\mu \mid y)$	-.0G678			
Fade of T $[u \mid y)$	-.00941			
Mode of ($a_{*} B^{3}, 4 \sigma^{2} \mid y^{1}$	-. 0128	28000.	6370.	49000.
Made of $T(a, \theta, \mu \mid y)$	-. 0128	28900.	6970.	
Prode of $\bar{\square}\left(u, a^{2} \mid y\right]$	-. 0127			1 ,
	-. 0123			
	-. 012 B			
Man of tulyo ${ }^{2}$]	$-.0127$			
(a^{2} 1a velue of a^{2} at moda of $\left.-\left(u, o^{2} \mid y\right)\right]$				
Man af Approximate Large Sample Distribution.	-. 0173	28800.	8370.	52100.

fable tor Reaulte of analyila of firat tobremyein alsey mith prior papicatera

$$
\left.\left(\begin{array}{l}
u_{0} \\
x_{e} \\
v_{2}
\end{array}\right)+\left|\begin{array}{l}
.29 \times 10^{5} \\
.84 \times 10^{4} \\
.00
\end{array}\right| \cdot \frac{\Sigma}{=}=\left\lvert\, \begin{array}{ccc}
-6 \times 10^{5} & 0 & 0 \\
0 & .2 \times 10^{5} & 0 \\
0 & 0 & .4 \times 10^{-3}
\end{array}\right.\right]
$$

$$
\underline{v-0 . i+0 .}
$$

- 75 -

1 $\underbrace{-0.05}_{-0.0}$

[^1]at the mode of the joint density of μ end d^{2}. for data from the firat totrambcin acsay.

5.1 Introdurt?an

Vary cammendy. experimental deaign eaturea are incarporated
 ereaturea much as ratis a complete aseay might conilist of neveral Ldentical amay abch carciad cut on a mit of litter matem, Thia type of dialgn ia a randarizad plaen demign.

In athor typea of ammays such ae frime fat will absoye the experimantal urite may af some point tu plawwit in atuart configuration while undergoing mom form of trasimant. It may be thought likely that there are two wources of variation corresponding ta the vertical and harizantal positian of an amperimantal unit in the equare. If this is the eame than it may bo peasible te arrang tha fxperimantal unita In a Latin
 In a pmp quere, than thara wolld be 5 dosage 3 evole in tha asiay, mach occuring once in mact row in the square, once in aach column in the aquare ancl p ifes aztagether in thel arlaye

We Mave tpiad to actand buF bavise modal, ae deseribed In chapteri 2 and 4 . In two meparate ways to cover tha two typan of dianign demaribed abavan

For the ramdamized biock design, alliuming g blacke with m ekperimental unita in sach block we have uead the fallowing tradial for an abasevation in tha $k^{\text {th }}$ blooka

$$
\text { indepandently for } 1=1 \ldots \ldots m_{1} k=1 \ldots . .
$$

2nd atager $\left(\begin{array}{l}a \\ \beta \\ \mu\end{array}\right)^{-N}\left\{\left(\begin{array}{l}a_{0} \\ \beta_{0} \\ u_{0}\end{array}\right), \quad \Sigma 1\right.$

$$
\varepsilon_{k}-N\left[0_{4} g_{k}^{2} \text { indigundantly for } k=9, \ldots q\right. \text {. }
$$

The priar diatritutian for mach if 1 a amemmed indegandant of that
for evary other and alao of the prier diatrioutiona for *. 8 ent . .

For the pxp Latin square dinign wa have aasumed tha followling model for an otiwarvation in the $k^{\text {th }}$ vertical ond the $2^{\text {th }}$ horizental peleltian
 1ndapandently for k=3,...p. 1=1,...p. 1=1, ...p.

2nd stage

$$
\left.\left(\begin{array}{l}
a \\
B \\
\mu
\end{array}\right)^{\sim} N\left(\begin{array}{l}
a_{0} \\
B_{0} \\
\mu_{0}
\end{array}\right) \cdot \underline{z}\right\},
$$

Whero again Indepandenca of the prior diatritution for wach γ and from all other ericr diatrivutiona is saaumed.

Bafors procming with ealculation any pastarior distrizutione one or two remarke anem appropr $\begin{gathered}\text { ation }\end{gathered}$

Firatiy. these twa madele arm more compllcazed than our baile model in that more parorretara aril involved. Conaequantly we expect thase postarior dietribution which ara obtainabla analyifeally to mora complicatad ard in ganaral to invalva mora parametari than in the eraviaul call. In order ta make Inferancey Ghout the los-potency ratio we mould therefare expact to nove to raly mare heavily than bufore on apfrakimatiana and numarical emchniguee.
 ingluiduel en, ye and bermpectively. We thould like to etrane that this aasumption may not awaym ki appropriate, aplosally Lf the cana of the Latin equare denign whera in many casme pricer eanaldaratians would indicete Yi< Yac... < VD.

Leatly, 14 we had poaci uniform prior dietributians for manis of the ck. Yil and 5 einataed of finine them ot thu particular value of zerc. thun wo uhould have had za introduce canstrainea Inta that model of the type dibcusamed ty Smith fir73). This would hew mace the model coneaptually mora capplscated. Givan the exchangeability ommumption, any prier information about the masa

- 80 -

 digtributsen of a. Manait thara in no lale of eararality in fixing the masana.

5.2 Randomixied gleck Lamign With known Varianceit

We shald firett candider tha randomized black devign ord
in this aection whehall ameumin that beth the reasdusl veriance 0^{2} and the botween blocks varlonca o^{2} are hnawn.

Wear can muticly together tha likelinood and the prider denaitien os givan by 5.1 to ontestn, up ta malesplicetive conetanta tha jaint poltarlar dansity of ald quantitima Invalvedi

a m m a \quad m

q m q an

The mode of thia dunslty accury bt
 $a^{2} \quad a^{2} \quad a^{2}$

$$
\frac{n}{e^{2}}
$$

$$
9\left[\quad \left[x_{1}^{2}+2 u x_{1} z_{1}+\mu^{2} z_{1}^{2} 1+2^{29}\right.\right.
$$

As in the cases of tha ampla macal, far givan w, tha athar garanatera are jointly normslly diutributad and ea we can obtain tha marzinal ponterior danaity of u up to a multiplicative conetant:

and 4 1s the matrix whan fnvares is

$$
\begin{aligned}
& d-\sum_{a^{2}}^{\sum}\left(x_{1} y_{1} \cdot 9+u y_{1}, z_{1}\right) \cdot s_{0} L^{22}+a_{0} z^{12}-\left(u-u_{0}\right) \Sigma^{23} \\
& e_{k} \frac{m \bar{y} \cdot k}{a^{2}} ; k=1 \ldots q
\end{aligned}
$$

$$
\begin{aligned}
& \frac{m}{a^{2}}+\frac{1}{a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n B^{2} \Sigma_{I_{2}}^{2}}{-1} \cdot E^{33}
\end{aligned}
$$

where 2 q is the $\mathrm{q} \times 1$ matrix whose elements are al1 1.

Since the calculation of $\mathbb{*}$ and $|\mathbb{W}|$ is a somwhat lengthy operation we give final forma here.

$$
W=\frac{1}{\Delta}\left[\begin{array}{cc:c}
W_{11} & W_{12} & W_{131}^{1} \\
W_{12} & W_{22} & W_{231}^{T} \\
\hdashline W_{131}^{1} & W_{23}-q & W_{33} 1 \\
& & (2)
\end{array}\right]
$$

and $|W|=\Delta^{-1}\left(\sigma^{2} / \sigma^{2} c^{+m}\right)^{-(q-1)}\left(\sigma^{2}\right)^{q}$.
whara $\Delta=\left(\frac{a^{2}}{a^{2} c}+m\right)\left[\left\{z^{11}+\frac{m q}{a^{2}}\right\}\left\{z^{22}+\frac{q}{a^{2}} \sum_{1=1}^{2}\left(x_{1}{ }^{2}+2 \mu x_{1} z_{1}+\mu^{2} z_{1}{ }^{2} 1\right\}-z^{12}+\frac{m q(\bar{x}+u \bar{z})}{a^{2}}\right\}^{2}\right\}$

$$
\begin{aligned}
& -\frac{q \mathrm{~g}^{2}}{\sigma^{2}}\left[\Sigma^{11}(\bar{x}+\mu \bar{z})^{2}-2 \Sigma^{12}(\bar{x}+u \bar{z})+\Sigma^{22}+\underset{\sigma^{2}}{g}\left(S x x+2 u S x z+u^{2} s z z\right)\right] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& W_{12}=-\left[z^{12}\left(a^{2} / a^{2} c^{+m)}+\frac{m q}{c^{2} c}(\bar{x}+, \bar{z})\right]\right. \text {, } \\
& W_{1} 3=-m\left[r^{22}-z^{12}(\bar{x}+\mu \bar{z}) * \underline{q^{2}}\left(5 z z+2 u S x z+u^{2} s \pm z\right)\right] 9
\end{aligned}
$$

$$
\begin{aligned}
& W_{22}-\Sigma^{1}\left(\frac{a^{2}}{a^{2} \varepsilon}+m\right) \cdot \frac{m q}{a^{2} \varepsilon} \text {. } \\
& W_{23^{*}}-m\left(\Sigma^{11}(\bar{x}+y \bar{z})-\Sigma^{12}\right) \text {, } \\
& W_{33}{ }^{(1)}=\sigma^{2} \Delta /\left(\sigma^{2} / a^{2} e^{+(n)}\right) \text {. } \\
& W_{33^{\prime \prime} m^{2}}^{(z)}\left[z^{11}(\bar{x}+\mu \bar{z})^{2}-2 \Sigma^{12}(\bar{x}+u \bar{z})+\Sigma^{22}+\frac{q}{a^{2}}\left(S x x+2 \mu S x z+\mu^{2} s z z\right)\right] . \\
& \left(0^{2} / a^{2} c^{+m}\right)
\end{aligned}
$$

This dansity, although algubraically somawhat more complicatad, Is Vary similar in form to the corrasponding dunsity for the simple madel given by 2.6.

In the case where we have uniform prior dietributions for α and a a slight simplification accurs which will be usaful in the next soction. The uniform prior diatributions imply that all the elements in $\underline{\Sigma}^{-1}$ opart from Σ^{33} are zera, and cansequently wo can write W in the form $W=d^{2} W_{0}$, whare a^{2} and $a^{2}{ }_{c}$ only occur in W_{0} in the
 where c_{0}, d_{e} and e_{0} are Independent of σ^{2} and $\sigma^{2} c_{0}$. Hence wa can write

$$
(5.6)
$$

Where $c_{0}, d_{0}, a_{1} \ldots q_{q}$, and W_{0} only invalve σ^{2} and $a_{c}{ }_{c}$ in the ratio $a^{2} / \sigma^{2} c$.

5.3 Randamized Blook Dadign With Lnknnan Variencem

In practico the residual verionce, d^{2}, and the batwoar block varlanca. 0_{z}^{2}, will be unknown and bhauld ba repordisd at perameteri in the modml. Followfig smetion 4.1 wir bhal2 uee the reluvant conjugate priar dimtributiona which are that $\frac{v \lambda}{a^{2}}$ hat a
 ara known conetanta. If wa eal2 the expreainson on tha right hand
 poiteriar danaity of $\omega_{A} \beta, \mu_{*}+1, \ldots \varepsilon_{q}, \sigma^{2}$ and a^{2} is
$\left.\psi(a, \beta, v, c) \ldots+\varepsilon_{q}=q^{2}=o^{2} \mid y\right)=\left(o^{2}\right) \frac{(m q+v+2)}{2}\left(\sigma_{\varepsilon}^{2}\right)^{-\frac{\left(q+v_{g}+2\right)}{2}}$

The made of thile densety caccure at the eaint elven by 5,4 with a m

- $4=11=1$
$m q * y+2$

We can integrate out from this density either $\left(\alpha, \beta, L_{1}, \ldots \xi_{q}\right)$, or σ^{2} and σ^{2}. Since the Pormar poasibility lmaves a diatribution of 3 paramatera while the latter bmavas a distribution of (3-q) paramatere ma considar herm ondy the famme pamesbility. Carrying out the integration wat get
wharif $12\left(\mu, o^{2}, \sigma^{2}\right)$ it the exprasialan on the right hand wide of the $=\mathrm{Bign}$ in 5.5.

Unfortunately, in the ganaral cane, wa can proceed na furtner. Tha axact numaricad teatmant wauld raquire a Ehres-dimminianal numerical integration. Sueh an intagration whoule be quite posisble but we hava not at present ottempted 1t. It would prohebly he prohibitivmly mepminiva for routina analysie of data. Cansequantly we munt resort to some epproximetiona. Taking the approach augeasted in the lant paragraph of aection 4.3 we could aseign the values of 0^{2} and σ^{2}, at the mode of
 variances. Thim epproximation ahould bil quite good as ragardin α^{2} einew the dato should cantoin a wubstantial anount of information mbut the residual variancw. Unfortunately tha some cannet be and for a^{2}. Thi problen coule bl surmounted in part by
 joint dietribution of μ and a^{2} for known $\left.a^{2}, ~=i k, a^{2} \mid a^{2}, y\right)$ and then pinding the moite of the marginal dietribution of $a^{2} e^{-}$. Elum the annigned valuc of a^{2}. Ey a aerles of ona-dimeneional numerical integrationa ovex u.

In the case where whave uniform prior diatributions for a mind 8 wa can pracued alightiy furthur. From 5,8

$$
\begin{aligned}
& (m-8 q+y) \quad(p+y+z)
\end{aligned}
$$

$\times \exp -1\left\{\frac{v_{e} c^{2} c}{a^{2} c},\left(\mu^{2}-2 u u_{0}\right) \Sigma^{33}\right\}$.
If we nuw make a ironmformation of vartarlas frum u, o^{2} and o^{2} to u. o^{2} and S_{-}^{2} where $s^{2}=a^{2} / a^{2}$, we have

$$
\times\left|{w_{0}}_{0}\right|^{\frac{1}{2}}\left(s^{2}\right) \frac{\left(q+v_{2}\right)}{2} \operatorname{nxp-1}\left(\mu^{2}-2 \mu \mu_{0}\right) \Sigma^{33} .
$$

We can now integrate over a^{2} to obtain the biveriate density:

The same ramorks can be made concerning the estimation of 10 g potancy ratio from this distribution as ware made in section 4.3 concerning the joint distribution of is and a^{2} in the basic modal.
5.4 Latin Squara Derign.

To avold repetition we woll coneider the Latin struarw demign with unknown raildual, hatwaen row and batwuen celumn variances etrasht away. Wis ahall assume the relavant conjugata frior diatributionn and tume notation amilar so that n atetion 5.3 . Talling the model ar ateted in 5.2 the joint postarior darisity of all quantitiall in

$$
\begin{aligned}
& \times\left(\sigma_{\gamma}^{2}\right)^{-\frac{\left(v^{\prime} \gamma+p+2\right)}{2}}\left(\sigma_{\delta}^{2}\right)^{-\frac{\left(v_{s}+p+2\right)}{2}} \\
& \text { * = wv-i }\left\{\begin{array}{l}
p \\
\Sigma \\
k=11=1 \\
k \\
y_{k}^{2} \\
\sigma^{2} \\
\sigma^{2} \\
\sigma^{2}
\end{array} \frac{v \gamma^{2} y}{\sigma^{2} \gamma}+\frac{v_{\sigma} \delta_{z}}{\sigma^{2} \delta}\right\}
\end{aligned}
$$

$-2 \varepsilon\left\{\frac{p}{\sum^{\Sigma} \bar{q}^{2} 1=1} \bar{y} \ldots(i)\left(x_{1}+u z_{1}\right)+\beta_{0} z^{22}+a_{0} \Sigma^{12}-\left(u-u_{0}\right) \Sigma^{13}\right\}$

$$
-\frac{2 p}{a^{2}} \sum_{k=1}^{p} \quad y_{k}+1.1 x_{k}-\frac{2 p^{p}}{d^{2} 1-1} \quad y_{1}, 1.1 \epsilon_{1}
$$

$$
\begin{equation*}
\left.+\mu^{2} \Sigma^{33}-2 \mu\left(\alpha_{o} \Sigma^{13}+\beta_{0} \Sigma^{23}+\mu_{o} \Sigma^{33}\right)\right], \tag{5.12}
\end{equation*}
$$

where $\bar{y} \ldots()-.\frac{1}{p^{2}} \frac{p}{i} \frac{p}{2} y_{k 11}(1) . \bar{y}_{k=1} \cdot()-.\frac{p}{p 1-1} y_{k 1(1)}, \bar{y}_{\cdot 1}()=.\frac{1}{p} y_{k=1}^{p} y_{k 1}$.

$$
\bar{y} \cdots(1) \frac{\sum_{p}^{p k=11=1}}{\substack{p}} \begin{gathered}
(i \quad f i x<v)
\end{gathered}
$$

$$
\sum_{p 1=1}^{\bar{x}=\frac{p}{z}} x_{1}, \frac{\bar{z}=\frac{p}{p 1=1}}{z_{1}} .
$$

The mode of this density ocours at

$$
\begin{equation*}
\frac{\gamma_{k}=\frac{a^{2}}{\bar{y}_{k}} \cdot(.)-\frac{p}{\sigma^{2}}(a+\bar{\delta},)-\frac{p}{a^{2}} B(\bar{x}+\mu \bar{z})}{\frac{p}{a^{2}}+\frac{1}{\sigma^{2}} \gamma}, \quad k=1 \ldots p, \tag{5.13}
\end{equation*}
$$

$$
\begin{aligned}
& \alpha=\frac{p^{2}}{a^{2}} \bar{y} \cdot(.)-\frac{p^{2}}{a^{2}}(\bar{x}+u \bar{z})-\frac{p^{2}}{a^{2}} \cdot \frac{-p^{2}}{a^{2}} \gamma \cdot+a_{o} \Sigma^{11}-\left(B-\beta_{o}\right) \Sigma^{12}-\left(\mu-\mu_{o}\right) s^{13}, \\
& \frac{p^{2}}{\alpha^{2}}+\varepsilon^{2 I}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{a^{2} i=1}{\sum_{i}^{p}}\left(x_{1}{ }^{2}+2 \mu x_{1} z_{1}+\mu^{2} z_{1}{ }^{2}\right)+z^{22}
\end{aligned}
$$

We can integration aver $a_{1} B_{, ~ y}, \ldots, y_{p}, 6_{1}, \ldots \delta_{p}$ giving the joint posterior density of $u, 0^{2}, 0^{2} \gamma^{4}$ and $a^{2}{ }_{G}$,

$$
\begin{aligned}
& \frac{x^{2}+4 x^{2}+\frac{5}{2}+1}{4+201}
\end{aligned}
$$

- 84 -

15.074!
whare $f-\frac{p^{2} y}{d^{2}},()+.\alpha_{0} z^{11}+B_{d^{2}} z^{12}-\left(\omega-u_{0}\right) \Sigma^{n t}$

$$
J_{2}=\frac{p}{p^{2}} \bar{y} \cdot{ }_{2}\{-j, \quad 1=1, \ldots p .
$$

and L is thi motrix whese invaram is

$$
\begin{aligned}
& M_{k}=\frac{2}{o^{2}} y_{k} \cdot i .1, k=1 \ldots . \ldots D .
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }|\underline{y}|=\left(\frac{\sigma^{2}}{\sigma^{2}}, p\right)^{p-1}\left(\frac{\sigma^{2}}{\sigma^{2} \delta}, o\right)^{p-1}\left(\sigma^{2}\right)^{-2 p}+
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\frac{a^{4}}{\sigma_{\gamma}^{2} \sigma_{6}^{2}}+\frac{\mathrm{po}^{2}}{\sigma_{Y}^{2}}+\frac{\mathrm{po}^{2}}{\sigma_{8}^{2}}\right)
\end{aligned}
$$

$$
\mathrm{U}_{22}=\left(\frac{p a^{2}+\frac{p g^{2}}{a^{2}}+\frac{a^{6}}{\sigma^{2}}, \sigma^{11}+\frac{p^{2}}{a^{2}} \frac{a^{6}}{\sigma^{2} \sigma^{2}}}{\frac{1}{\pi}}\right.
$$

$$
\begin{gathered}
U_{2}=-\operatorname{cog}^{2}\left(\Sigma^{11}(\bar{x}+u z)-\Sigma^{12}\right) \\
\Gamma^{2}
\end{gathered}
$$

$U_{24}=-\mathcal{B q}^{2}\left(\Sigma^{11}(x * \mu z)-\Sigma^{12}\right)$.

$$
U_{33}=\frac{a^{2} p}{\left(a^{2} / a^{2}+p\right)}
$$

$$
\text { (2) } U_{13} \left\lvert\, \frac{\mu^{2} g^{2}}{\sigma^{2} g}\left(x^{81}(x+u 2)^{2}-2 L^{12}(x+u z) \cdot \Sigma^{22}+\underset{a^{2}}{E}\left(5 x k+2 \mu S x x+u^{2} S \angle z\right]\right)\right.
$$

$$
\left.\cdot p 0^{2}\left(z^{14} z^{22}-\left[z^{12}\right]^{2}+\varepsilon^{11} p_{1}\left[5 x x+2 u s x z * u^{2} S z z\right]\right)\right]\left(\frac{a^{2}}{a^{2}} \cdot p\right)^{-1}
$$

$$
U_{14}-\left[o^{2}\left(\Sigma^{12} z^{22}-\left(\Sigma^{12}\right)^{2}\right) \cdot p \Sigma^{12}\left(5 x x \cdot 2 v 5 \times z \cdot v^{2} 5 z 21\right]\right.
$$

$$
\begin{aligned}
& U_{13}-\sum_{d^{2}}\left(\varepsilon^{22}-\Sigma^{12}(x+y z) * E\left(5 x x+22-5 x z+\mu^{2} 52 z\right)\right) \text {, } \\
& U_{14}=-\frac{\mu g^{2}}{g^{2}}\left(z^{22}-\varepsilon^{12}(x+u \bar{z}) \psi\left(S x x+2 u S x z+u^{2} z z z\right)\right)
\end{aligned}
$$

(0
$U b=\frac{g^{2} \Gamma}{\left(\sigma^{2} /-\sigma^{2}-D\right)}$

Ae In the case of the mathonat block dwaign we can proceed no further analytically. An approximate posterior density for μ can be obtained by assuming σ^{2}, σ^{2} and σ^{2} ara known and that they take the values of the model of $i\left(1, o^{2}, s^{2}, v^{2}{ }_{\mathrm{f}} \mid y\right)$.

The case of uniform prior oletrybutionil for a and ie again Binllar to that of the ra-dmized block deign.

 1-1...-5. only involve $\sigma^{2}=o^{2} y$ and d^{2} \& in in e ration σ^{2} / n^{2} and

 of $x_{4} 3^{\prime}+9^{x}$

- 95 -

$$
\begin{aligned}
& \times\left.\quad \operatorname{lig}_{0}\right|^{3}\left(S_{\gamma}^{2}\right)^{\frac{p^{v} \gamma}{2}}\left(S_{\delta}^{2}\right)^{\frac{\left.p^{+}\right)_{\delta}^{2}}{2}} \operatorname{exp-1(u^{2}-2u\mu _{\alpha })\Sigma ^{33}} \text {. (5.15) }
\end{aligned}
$$

Eatimation of μ can be mada after finding an approximate marginal postarior distribution of $i f$ as suggested in the prevlous paragraph.

5.5 An Example। Factor VIII Data

In this ambtion wimalyan data fram an absay of factor VIII, Factar VIII is one of khe enain af enzymag rempenwible for bloud clotting in man and daficiancy of factor VIII laadi to
 the sima tahuh for a clat to form after a dese of pactor VIIT La added to a spt of reagents. The larger tha dosa the mora quickly a clot is formad sa the alopi of the fittad rogreanion Isnes will oe negativm. The data are given in Tahag 5.4. Tha asaay was repaated on flua conmecutive days and wn our thenry for rendomizad block dmelign: la appropriate.

Rufarn analyeing tha data will had very little Luma of khe 1skaly reaulte and sa we have uem uniform priar denilities for a and 6 and let $v=0$ in our prior distributian far a^{2}. Wa cannot put $v_{c}=0$ in the orior dimtribution for a^{2} eince this impliee that tha block effectitere al2 zero. a point which

 for the reasunis dimcumand in chapter 2 and mo will hava tatan the prior diatribution for μ to be NIO.0, 1.5). Thim prior diatribution and the ana far d^{2} ara batad on intraspaetion and Fethar arbitrary. It 1 a claar from the pantacior diatribution that the priar dimtribution far b carrime very littia information compered with the dath, while ths orlor dineribuelon fur o ${ }^{2}$ carrian am Ittio informattian as foreibla and is not contraciletad by the data.

The reaslte of our anazyela arb mimmarizod in Tabling.2
 very imilar indead, Mowever, tharm is a diecrepancy butwean ime modal entimatas af σ^{2} and σ^{2} from $\quad\left(0, B, 4, c, \ldots, c s, o^{2}, o^{2}, \mid y\right)$ and the model eatimetg of $\mathrm{s}^{2}=0^{2} / \mathrm{e}^{2}$ f fram $\quad\left(w, S^{2} \mid y\right)$.

```
- 87 =
```


Table 5.1 Eata from faceor VIII

Mod of $M[a, B, W, r] \ldots . \ldots s, o^{2}, o^{2}|y|$

$$
\begin{aligned}
& a=-20.5 \\
& B=-15.6 \\
& y=-.257 \\
& \varepsilon_{1}=.694 \\
& c_{2}=-1.47 \\
& \varepsilon_{3}=3.29 \\
& c_{4}=-1.85 \\
& 4=1.193 \\
& a^{2}=1.52 \\
& a_{c}^{2}=3.78
\end{aligned}
$$

Mode of (w. $\left.S^{2} \mid y\right)$

$$
\begin{array}{r}
u=-254 \\
s^{2}=-251
\end{array}
$$

Mean of $\left.(u) y .5^{2}\right)$

$$
+.21 n
$$

[S^{2} 10 the value $n \not S^{2}$ at the made of $\left.m\left(\mu, S^{2} \mid y\right)\right)$

8. 1 Intraduction

In many cases the nead arisas to candim Liniarmation from Bevaral diffarant aseaym, and we shall devote the naxt fow chaptare to considaring this problem. The nadel thet we whall consider firat in a model combining information fram lieveral ossaya and we shall aisume our priar knowiedga of the paramatern of every sway t b be mechangabla. Thim model ia a seraight forward extansion of the twe atage madil for the andiymim of alngle away that wai diwcussad in choutar 2 tu a thrae atage model. The extra atofe in necmseery bince the data will now contain Hom information soaut the perematers in the eecond etage of the
 than tha model fo for follemul
 2nd stager $\left(a_{s}\right)-h\left(a_{1}\right), \quad$ indeponaenty for j-9.....m. 3ni stase $\left.\left\{\begin{array}{l}a \\ 0_{0} \\ 0 \\ n_{0}\end{array}\right)\left\{\begin{array}{l}n \\ n_{3} \\ n_{2} \\ n_{3}\end{array}\right) \quad 0 \right\rvert\,$
 a matrix of the form

$$
x_{j}=\left[\begin{array}{lll}
1 & z_{1 j} & x_{1 j} \\
1 & z_{2 j} & x_{2 j} \\
\vdots & \vdots & \vdots \\
1 & z_{n j 1} & x_{n j} 1
\end{array}\right]
$$

Thera sres two main ottugtions wharg thit modal may ber approprtate, The firet is where o mervitacturar haw trave Bavagai batchat of a preparationa nas calibratad thom all Againgt
 fak由 infermncen about the manufacturing procediain genieral. Tha
 Dut aibay宛

 asch Aesay wi:2 be carmiad aut by a diffarant porgon in a difperant lebaretary, end 14 may bo that for acoma eypma eq allay the aftoct Ef varistion in parmonal tachnigua ia grnat mraugh

 In tha firat camm win have nat oivewid for any trends in tha
 menge gre carriad gut on the muma mediut . The model gauld be

In both the Ensen desertbed mbove interest w111 cuntra on the becand etgae paremetere. In the cais of thamanufagturbr Earrying dut aseay on diffarmit batenea of apraparatson, metimates of the sweond wterem parametmes cauld tim umut In
 masyaia of an aseay on a furthwr tatch of praparation. In tha callmboeativa anely infarbaceg about tha lag potancy ratio of
 or the merginal poytertor digtributimin is y

Ewfore combining tha information fram thw date with Dur priar infarmatlam, wa nued ta combine tha information in the ascond and third atagea of tha modal. We get tha faliowing priat denaity for the Firnt nnd zecond atage paramstaral

$$
\begin{align*}
& \left.-2\left[\left(\begin{array}{l}
\vec{a} \\
\vec{a} \\
\vec{s} \\
\vec{i}
\end{array}\right)^{T} \underline{L}^{-1} \cdot\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)^{T}\right\}^{-1}\right], \tag{6.2}
\end{align*}
$$

whara $a=\frac{1}{m} y=1$ and imilarly for 9 and u.

Comhining tha aboul density with the likelinood, tha join pos: arior danaity of the firat and sacend etage garamatara isa
18.3]

If our prior knowledge at the khird htaga of the madel in axtromaly wak. the alamente of 0^{-4} w111 bu zero, arid those tarma Invaiving $\boldsymbol{-}^{-1}$ in the oxponont of $(8,3)$ will disappair. Tha conditiona
 at the and of the saetion.

The modit of (6, 3) accura at tha modnt:

$\frac{31}{05}+311$
nj
$\left.\mu_{j} \frac{B_{f}}{a_{j}^{2}}{ }_{k=1}^{2} z_{k j}\left(y_{k j}-a_{j}-B_{j} x_{k j}\right)=u_{0} 2^{33}-6 a_{j}-a_{0}\right) 2^{13}-\left(B_{j}-B_{0}\right) z^{33}, j=1 \ldots m$,

$$
\frac{3_{j}^{2}}{a^{2}} \sum_{k=1}^{n j} z_{k j}^{2}+\Sigma^{33}
$$

The madsl values for the firet btaga parargatera of an Individual amsey are vary similar to the mode of the joint pantarier danity of the firat etage paramazari in the onalyuik of a

 they ware known, and escandly. t second staga veriance i mas a sllghtiy diffirant itatue in sin Two tasas. In themultipla asaay casa L axprmase our opinion about the inilarity of tha garmatarn of the different asayt, while thm atranith of our
 In the thicd stage varkance of. Jy tntegratink ovar the mecond

Hance the prior dineribueior for zhe firet atese paramatare of an indluidual asady. may the $j^{\text {th }}$ is

$$
\left.\left(\begin{array}{l}
a_{1} \\
a_{j} \\
u_{j}
\end{array}\right)-\left\{\begin{array}{l}
\left(a^{*}\right. \\
a^{*} \\
\omega^{*}
\end{array}\right),(\Sigma * *)\right\}
$$

 an the two mourcal of variation and wil: bac comparabia with (z-0) in tha multiple awnay case.

By Intemrating owar $\mathrm{a}_{2} \mathrm{~B}_{1} \ldots \ldots \mathrm{~m}_{\mathrm{m}}$. B_{m} in E .3 wo can find the
 This means we cannat obtain the rarginal dietributions of tra
 will not be nia to find these distributione nurtericaliy eithar. aince to da ea would invalva carrying out numarical integrationa In m dimensione. If we are intercatas in thathraa wacond etega
 Evan thie mode cannat be paund analyticaliy but mist be obtained

 1

$$
\begin{aligned}
& o_{j}=\frac{1}{a_{1}^{2}} \sum_{k=1}^{n j} y_{k j} \quad,
\end{aligned}
$$

where \mathbb{Y}^{-1}. $\left[\begin{array}{ll}0^{11} & 12 \\ 0^{12} & \phi^{22}\end{array}\right], \theta^{1 j}$ being the $\left[1 \mathrm{j} 1^{\text {th }}\right.$ elament of \underline{q}^{-1}.

$$
s^{-1} \cdot\left[\begin{array}{ll}
\Sigma^{11} & \Sigma^{12} \\
\Sigma^{12} & \Sigma^{22}
\end{array}\right]
$$

On could estimata $u_{\text {e }}$ by the made of 5.7 . This can be found mumarleally.

Whe can procesd ona btop further and find the joint dannity of Fi,K by intagrating ovar woin 8.7. Thio diefmity will raraly be of ary practical intarant but it in unmful in
snvestigating tho canditiana undar which if is permifeible to culvolume unlfurm μ l bury for all thrae third itage paranetere. If we oft $2^{-1}-0$ in $\pi\left\{u_{1} \ldots \ldots u_{m} \mid y\right)$, then

$$
\begin{aligned}
& \left.-\underline{x}^{\top}\left(g^{-1}+g^{-1}{\underset{\Sigma}{2}}_{j=1}^{m} v_{s} \sum_{1}\right)^{-1} \stackrel{x}{-}\right]^{(8.7)}
\end{aligned}
$$

$$
\begin{align*}
& \left.-\sum_{j=1}^{m}\left\{\binom{a_{j}}{b_{j}}^{-\mu_{j}}\binom{\Sigma^{13}}{\Sigma^{23}}\right\}^{T} v_{j}\left\{\binom{a_{j}}{b_{j}}^{-\mu_{j}}\binom{\Sigma^{13}}{z^{23}}\right] .\right] . \tag{6,0}
\end{align*}
$$

It we call the axpreselon on tha right nasa man af the es en
 all the other postarior densitiae given in thia section, will bu narame whan $2^{-4}=0$ only if them m-dinionusomal integral
 we give loose argumant indicating when this ineagral will tis 1lnite. We have not givmin a rigeraus proaf sfince suc is praof. Glehough straightormard. would be vary dongthy.

We arbuma that there ore at leant two azays wnder conalderation. and that for each of thm at least twa diffaront dasam hova bath edministerad for of laset ons praparation, and at leest one dose of each priparation has baen odrinistored. Wel alko almume that 2 iv a punitive de*nite bymetric matrix. Examination of the exprasaianm

and $\left|s^{*+} t_{j=1}^{m} \quad v_{-1}\right|^{t}$ shows them ta be baunded abou and below for als $j=1$

M . $j-1, \ldots m$, and to tand to Einite limits all ali the s, uecome
eifultanaausiy large in aboluta value. Ajao $\sum_{j=1}^{\sum_{-j}} \mathrm{~V}_{\mathrm{j}}^{\mathrm{D}} \mathrm{J}^{-1}$
18 Imay皿 atrictly graztor than zara alnca
the u, are linrga in atsalute valua
fer ame pasitive canitant k.

Adea, we heve tha following liniting realitat

So if all the μ_{4} ara lorge In obsolute value.

whara $\varepsilon_{1} \ldots c_{m}$ are constants Intependunt of $\mu_{1} \ldots \mu_{m}$,

where $d_{j}=\sum_{k=1}^{n j} z_{k j}^{2}$
$k=1$
$\frac{n j S z z^{3}}{\sigma_{j}^{2}}+z^{2 \lambda z^{n j}} z_{k=1}^{2}$
and $\theta_{1}=\frac{n j}{a_{j}^{2}} S z z^{1}$

$$
\frac{n j}{a_{3}^{2}} s z z^{1} \cdot z_{k=1}^{n j} z_{k j}^{2}
$$

If W is positive definite the integral $f \ldots \mathrm{~g}_{\mathrm{g}}\left(\mu_{1} \ldots \mu_{m}\right) d \mu_{1} \ldots d u_{m}$ will be findte, otherwise it will not, the term
$\pi\left|y_{y}\right|^{1}$ playing a similar role to $\{A(H)\}^{-1}$ in the disouvnion $j=1$
surrounding 2.7. In order for W to be positive definita, all its principal minore muat bu positive. For this we need

$$
\begin{aligned}
& \text { - } 111 \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8.8) }
\end{aligned}
$$

whare $f 1=\Sigma^{33}-\left(\Sigma^{13}\right)^{2} d 1$.

After some algebra we can show that 6. . holda pracisely when
$\binom{z^{13}}{z^{23}}^{\top} \stackrel{S}{-}\binom{z^{13}}{z^{23}}-\frac{\left(z^{13}\right)^{2}>0 . \quad \text { Wo man also show that } z^{11}}{}$

Consequantly wa can set $\sum^{-1}=\underline{q}$ pravidod Σ_{23} is not aqual to zuro Unfortunately we hava not been very succeasful in our attempts to interpret this condition. Suppose in (E.1) that $\mathrm{S}^{-1}=\mathrm{g}$ and $\Sigma_{13}{ }^{-\Sigma_{23}-0 \text {, then we heve effeatively a undform prion ofiotribution }}$ for each μ_{j} at tho second stage. Independently of the priar distributions for any α_{j} or β_{j}. Thia situation is very similar to having a uniform prior distribution for μ in the single assay case and so it seams quite reasonable that the posterior distributions are unnarmed. It now ramains to explain why a non-zero Σ_{13} daes not affeot the above situation, wh11a a non-zera Σ_{23} does. We fesl that this must be due to the esymetry in the firat stage of the model but we have been unebla to make any preciee statements about it.

6. 3 Unknewn Vartances and Large Sample Theary

We naw romove the assumptions, nade in the last seation, that the first atage reaidual variancea $\sigma_{j}^{2}, j=1 \ldots$. ${ }_{j}$ and tha second stage covarlance matr $-x$ § are all known. Wo whel1 Lue tha relevant aonjugate prior distributions for each of these parametars: that is the inverse χ^{2}-distribution for the residual variances and the $W 1$ shart distribution for \sum^{-1}. In the line with our assumption of exchangeable prior knowledge about the other parameters it would be most raasonable to assume exchangeable prior knowledge obout the residual varlances of the assays, however for simplloity wa hava taken identical Independent priur distributione for these. Our prior densities will be:
$\pi\left\{\sigma^{2}{ }_{j} \mid v, \lambda\right]=\left(\sigma^{2} j^{-\frac{(v+2)}{2}} \operatorname{axp}\left\{-\frac{v \lambda}{2 a^{2}}\right\},\left[a_{j}^{2}\right\rangle 0\right]$ indupundently for 1 $14 \ldots$. , and independant of the sbeva danaities,
$\pi\left(\Sigma^{-1} \mid \underline{R}, \rho\right) \alpha|\Sigma|^{-1(\rho-4)} \exp -\frac{1}{} \operatorname{tr}\left(\Sigma^{-1} \underline{\Omega}\right) ; \quad \Sigma>0$.
R is a 3×3 matrix, P is an integer, and the values of theme two together with the valuas of v and λ depend an the natura and pracision of our prior knowledga about tha paramaters concarned. We can now write down the jotnt posterfor distribution of all the parameters in the model:

$$
\begin{align*}
& \times \underset{\sim}{|z|^{-\frac{m}{2}} \operatorname{exp-1}} \underset{1=1}{ }\left[\begin{array}{l}
\alpha_{j}-\alpha_{0} \\
\beta_{j}-3 \\
\mu_{j}-\mu_{0}
\end{array}\right]^{\top} \underline{z}^{-1}\left[\left.\begin{array}{ll}
\alpha_{j} & d \\
s_{j} & d \\
\mu_{j} & 0
\end{array} \right\rvert\,\right. \\
& x \operatorname{axp}-\frac{3}{3} \left\lvert\, \begin{array}{l}
-n_{1} \\
0_{0}-n_{2} \\
u_{0}-n_{3}
\end{array}\right. \|^{\top}\left[\begin{array}{l}
a_{0}-n_{1} \\
a_{0}-n_{2} \\
u_{0}-n_{1}
\end{array}\right] \tag{6,11}\\
& \times\left(a^{2} 1 \ldots a_{m}^{2}\right)^{-\frac{(v+2)}{2}} \exp -\frac{v \lambda}{2}\left(\frac{1}{a^{2} 2}+\ldots+\frac{1}{a^{2}}\right) \\
& \times|\Sigma|^{\frac{(p-t)}{2}} \exp \left\{-\frac{\operatorname{tar}\left(\Sigma^{-1}\right.}{(R)}\right) .
\end{align*}
$$

The made of this distribution occur n at the point given by 6.4 except that $a^{2}, j=1, \ldots m$ and the momenta of $q^{-1}, i_{1} \pi^{*}$ sad of being constant e are now given ty

Integrating over ay*+sie fists in 5.11 we obtain

$$
\text { and integrating over } a_{0} \text { and } B_{c} \text { in } 6.13 \text { we obtain }
$$

If estimatus of all the wacond wtege parametary are required we mug\#ant using the maje of G. 13. Alternativaly if only u in of intmrast wh magant using the moda of B. 14. . We do not fael altagether happy about than muggatieni inca there are so many nutsance parnmatera in beth 8.93 and 6.14 In the typan af wituation whare tha prooort rodel in approprictw thara may wall be fairly Ierge minurito of data eweilebla. In andte of thit, unlase on anormose number of aramya are invaluad, the amount of infarmation about the mecond atagm paraneturk may not be very graati not mrough ta alsume that githar G. 13 CF ©. 14
 on the madal astimates would be to find an approaimation to the marginal diatribution of the paramatars of interiet. Ari
 In the last paragraph of wacthon 4.3.

Supposia we have data from m aimilar asisaye. and suppame wo have by whatavar mothod, obtainud estimatem of a of is and 2. Wa now wieh to wade theme whimatial sn deciding on tha perametase of a peige distribution fur the analysis, unine the model of chepter 4, of an furthur gsaay winich will fupace to bo mimilaf to qur preuiqus assays. Wa can usil our aatimatan of $a_{a} \beta_{a}$ and μ_{c} dirmetiy an the fucond staga milana but we should not uan I diractly an the mecth gtaga varianca. Thara ara two raamone for this. firntly wimult nemarbar that folaya a difintant rola in the tho moditle, and tha appropriata prior varianow off $(x) w 111$ be I [In the sucand model) pluatta pomerior $\binom{B}{\mu}$
variamca of $\left(a_{0}\right)$ I eacondly wh cunnot be abaolutilly cartain that $\binom{\mathrm{B}_{\mathrm{e}}}{\mathrm{Ba}_{\mathrm{a}}}$
the onsay we arm abuut to ahalyma ia camparable with pur previaum asmoym. Experimantal canditiona may have cmanged in mame way without oup knowladge. In princtple, one could cope wleh the firnt of thean prints thearezically by findina the aparaximnte vapience of tha atmimatme of thimagns. Howevar the uletributions Invalved are vury camplicatad and we magest that the expsrimentar tekn tha pragmatie mpraach of madinf on to I a matrix, poasibly
a diagonal ane, that raprusents a subjocsiva vikw of the uncertainty frum these twa sourcan.

Finally, a word about the large sample thaury for this model. Let m ba a fixad integer graotar than ona, and suppose the number of rosponses available for sach of $\mathrm{m}=1 \mathrm{milar}$ assays tends to infinity. The posterior cistritutiona of the assay parametars will now depend entiraly on the likelihaod, given by the first stage of the model, and tha form of the prior densities, givan by the second and third stages of the model, are irrelevant. The $11 k e 11$ hood of the m assays combined is the produat of tha 11 kelihoods of the mincividual assays. Consaquent $2 y$ we cease to regord the assays as similar or dependent in any way and we treat them as in independent single assays. Tha lorge samplo theary for singla ansays has already been EIvan in sactions 2.3 and 4.1 .

6.4 An Examplei Inwulin Data

In Tablat 8.1 6. 4 B. B will haum data for 11 aseay of
 preparationa of $A_{1}-\mathrm{B}_{29}$ diacatyl insulin ari rapeatad dilutionim uf this same stcck solution. It is unlikely that the atock solution changmd apprecianly during the perlod in which the dilutsons ware mada, howevar, we gxpetet thare to be mame variation in the atrangth of the twet praparations due to Inaccuracian in the dilutian procaem.

Before analymint the data whave to choome valuan for the parametere af our prifor dietributions. We heve put $v=0$ and $\boldsymbol{p}^{-1}=0$. This bhould not caube any difilculties pravided win allcw Σ_{23} to ob non-zara. It rurning to chanell valuen for p ard Q. Latting Rea and $p=0$ waid give the Jeffroym" 土marance prior diveribution, but ula of weh a prier diatribution gaveat the joint postarlor density of all the parametera (B. 11) to
 To avald thie we have ast pes, the mmallaet value nnmesmene with the convergance of the prior diatrituison of Σ^{-1}, In the
 valua for R by making a quess at i ant mitiplying it by 3 . Since whave very little idea of what I may be, we hava taken as out guesm ite unbianed estimate obtained from the makimum 1ikelimaed estamates of the parmetara. The maximum likmlifood entimater have the samu valuen an the larin sample meins and ora Eivin in Tobla E.4. Lising thaterulifig value of R we havi calculatad the made of the jaint costerior cenalty of all the paranatera, Ifven ty 66.111 . and tha mede of the pesterior dunulty of $\left(a_{0}, B_{0}, \mu_{0}, x^{-1}, \mu_{1}, a^{2}, \ldots, \mu_{m^{4}} a^{2}\right)^{2}$ given by (6.13). In ordwr to check the menaltivity of the procedura to cur gumes at I wa have rapasted the procedire with a guaan tmn times and ons tanth our orifinal ons. Tha rasulte are hown in rables E.5-E.7.

If wo comoare tha twa modey in Tabia E. 5 with the large
 $\Psi_{1}{ }^{\prime}$ and a_{2}^{21} a in table 0.5 are all pulled together comperad with thair large amply counturparte as anmemghtexpect. Comparing the two madea in Tabla B.5 with mich othar, the geinalnes

 1nsulin oitalnt: 1 -

Tabla 6.2 Data from saveral assoya of $A_{1}-B_{29}$ diacsty 1 fraulin againat insulin (continued)

Assay	1	37.2	.200	-74.7	42.8
	2	42.3	.219	-101.	45.4
	3	15.5	. 0351	-105.	16.0
	4	5.59	. 706	-54.9	30.0
	5	8.42	. 234	-83.5	9.50
	8	22.0	. 201	-98.5	5.76
	7	13.8	. 112	-89.5	5.37
	8	13.0	.471	-77.4	37.0
	9	6.84	. 208	-68. ${ }^{\text {b }}$	11.3
	10	10.9	.234	-47.4	14.1
	11	27.5	. 600	-55.9	58.3

Tabla 6.4 Masn of approximate large tample distribution using insulin assay data.
$\underline{\text { Moder of } \pi\left(a_{0}, B_{0}, H_{0}, \Sigma^{-1}, a_{1}, \beta_{1}, \mu 1, \sigma^{2}, \ldots a_{m}, \beta_{m}, H_{m} \sigma_{m}^{2} \mid y_{1}, \ldots y_{m}, \theta_{1}, v_{, ~ R}, p\right)}$

Mode of $\pi\left\{a_{0}, B_{0}, \mu_{0}, \Sigma^{-1}, \mu_{1}, a^{2} \ldots \mu_{m},\left.a^{2}\right|_{\underline{y}} ^{y_{1}} \ldots{\underset{\sim}{m}}_{m}, v, v, R, p\right\}$

Tabie 0.5 Modes of Joint postorior donsities uaine assay data with prlor paramatara $\nu=0$, है $^{-1}=\underline{q}, p=3, R=\left[\begin{array}{ccc}400 & -1.8 & -230 . \\ -1.0 & .21 & -.23 \\ -230 . & -.23 & 1200\end{array}\right]$

Qf $\mathrm{a}_{\mathrm{B}} \mathrm{B}_{\mathrm{B}}, \mathrm{H}_{\mathrm{o}}$ and the H_{A} "象 are almoet the wans a 1 though chat
 secanc: mode. Tha estimatom of E are vory mindlar with the exemption of I_{12} where there is cameidereble diffarance,

 but Σ_{12} differy from wither of thmemtimatos. E23 almo differs frcm our oatimates although the tho intimatis arim viry simslar in thili caag.

Compsring the zwo modaje in Tabla B. 6 with thait countarpart
 and the $\mu_{i}{ }^{\prime s}$ hovel acarcely ctiangad. Theris heva been ame 1:
 the astimate of Σ. Thim dimcrepancy samen to be greatar for the larger A than the amallar R. Vmry olmiler remarka opply wher comparing fabla 0.7 witn 1 c e cuunterpart in 7 aula 0.5 mxcu川t

$212\left[\begin{array}{rrr}4800 . & -41 & -2300 . \\ -18 . & 3.1 & -2.3 \\ -2300, & -2.3 & 12020 .\end{array}\right]$
Asaay 1

37.9	-201	-75.5	38.5
44.9	- 222	-88.4	45.5
15.2	-0952	-403.	17.3
7.11	. 659	-54.7	28.0
8.47	. 232	-83.2	A.60
22.0	. 202	- . 1	5.85
13.7	-113	-80. 2	5.20
13, 3	. 482	-77.2	32.4
6. 3 ¢	. 203	-88,9	8.80
11.0	. 234	-48.1	12.2
27.7	. 595	- .	82.4

$$
\left(\begin{array}{c}
a_{m} \\
\sigma_{0} \\
\mu_{0}
\end{array}\right)\left(\begin{array}{c}
14.7 \\
.292 \\
-77.1
\end{array}\right) \quad \Sigma=\left(\begin{array}{ccc}
591 . & -2.04 & -301 . \\
-2.04 & .248 & 2.04 \\
-301 . & 2.04 & 1547 .
\end{array}\right)
$$

0) R. $\left[\begin{array}{ccc}48 . & .18 & -23 y \\ -.18 & .029 & -.023 \\ -23 . & .023 & 120 .\end{array}\right]$
Assey 4

\cdots	\%	8	0^{2}
37.9	. 117	-80.1	31.4
39.8	. 233	- 84.3	34.3
14.3	. 0827	-78.0	26.0
12.4	. 432	52.3	30.3
8. 54	. 978	-70.8	21.6
20.5	. 993	-77.9	33.8
13.0	. 110	-75.4	10.9
17.3	. 317	-65.0	55.2
8.87	. 201	-68. 7	12,5
11.2	. 238	-52.8	8. 23
30.2	. 513	-54.4	92. ${ }^{\text {B }}$

Tabde a, Bocia of

far inculis amyny fata with pricr garamatera on ${ }^{-1}$. $D=3$ and

R as indicoted

- 125 -

a) $\mathrm{R}=\left[\begin{array}{rrr}4800 . & -18 . & -2300 . \\ -13 . & 2.1 & -2.3 \\ -2300 . & -2.3 & 12000 .\end{array}\right]$

Assay 1

μ	σ^{2}
-75.5	42.8
-97.9	45.5
-103.	15.1
-55.2	37.9
-63.2	3.49
-85.7	5.77
-87.5	5.38
-77.6	35.9
-88.6	11.3
-48.2	14.1
-58.4	89.1

$$
\begin{array}{ll}
\left(\begin{array}{l}
a_{0} \\
B_{0} \\
u_{0}
\end{array}\right) & =\left(\begin{array}{c}
18.0 \\
.294 \\
-77.2
\end{array}\right)
\end{array}
$$

b)

$$
\text { R. }\left[\begin{array}{c}
48 . \\
-.11 \\
-23 .
\end{array}\right.
$$

Assay 1

$$
\begin{gathered}
\mu \\
-80.9
\end{gathered} \frac{\sigma^{2}}{43.3}
$$

$$
2-90.4 \quad 46.4
$$

$$
-50.7 \quad 16.7
$$

$$
-54.4 \quad 40.3
$$

$$
-80.3 \quad 9.53
$$

$$
-92.3 \quad 5.91
$$

$$
-85.2 \quad 5.41
$$

$$
-71.6 \quad 38.7
$$

$$
\left(\begin{array}{l}
a_{0} \\
B_{0} \\
1_{0}
\end{array}\right)=\left(\begin{array}{c}
19.4 \\
.264 \\
-75.5
\end{array}\right)
$$

$$
\Sigma=\left[\begin{array}{ccc}
144 . & .111 & -51.8 \\
.111 & .0230 & 1.47 \\
-51.8 & 1.47 & 218 .
\end{array}\right]
$$

 for insulin assay data with prior parameters $v=0,2^{-1}=0, p=3$ and R as Indicated.

7.1 Introduction

Suppoas that ane wishas to assay a particular preparation, and that using the rolevant assay method and apparatus one Ia 1imited to a certain size of assay. If the amount of information that can be gainad frum one such assay is not sufficient. then several assays will be carried out and the information from tham all will need to be combined. Replloate assays of this type will be very aimilar to one another in several respects. Firstly the true patency ratio will be the same throughaut, although biological variation will cause the pairs of \log dose-response curves to vary in other respacta. Secondly the assays will ba corried out in the same laboratory and probably alas by the sama peraon ubing tha sane apparatua. As a result of this wa conjecture that a suitable modol for the analysis of such raplicate assays stipulates that the log potancy ratio ramalns unchanged throughout. Anothor, more minor, stipulation is that the residual variance for all the assays is the sama. These two assumptiona give the following model:

2nd stage: $\binom{\alpha_{j}}{\beta_{j}}-N\left\{\left(\begin{array}{l}a_{0} \\ \beta_{0} \\ 0\end{array}\right) \cdot\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22}\end{array}\right)\right\} ;$ indepundently for $\mathrm{j}=1 \ldots \mathrm{~m}$.
H - N($\left.\mu_{0}, \Sigma_{33}\right) ;$ independent of the distributsons of

$$
\binom{a_{j}}{g_{j}} \cdot j=1 \ldots m_{,}
$$

3rd atage: $\binom{a_{0}}{s_{0}}-N\left\{\binom{n_{1}}{n_{2}} \cdot \geqslant\right\}$.

Again, wa ansums for the momant that all varlancas and covartances are known. This modal con in a sense bs derived from the model describad in asotion 6.1 by setting $a^{2} j^{*} \sigma^{2} j f=1 \ldots \pi$. and by satting the $(3,3)$ elemant of the oovariance matrix in the seoond stage of equation 6.1 to zero. The prior information obout in in the second stage of equation 7.1 is comparable with the prior Information about μ_{0} in the thlrd stage of aguetian 6.1.

In addition to the analysis of replicate assays this model may be the corract one for certain collaborative assay where variation in personal assoy technique is thought to be unimpartant. Also, as will be apparent in the follewing suctions, this modal is considerably more tractable than the model desoribed in chapter 6 , and so it may bo a useful approximate madel even in ceses where the assumptions do not hold pracisely.

7.2 Postariar Distributians for Known Covariance Structure

Combining the $12 k e 11 h o o d$ with the sacond and third atage priar dansitias, the foint postetior density of the first end second stage paramaters is

$$
\begin{aligned}
& \pi\left(a_{0}, B_{n}, \mu_{2} \alpha_{1}, B_{1}, \ldots, a_{m}, B_{m} \mid y_{1}, \ldots y_{m}, H_{0}, n_{1}, n_{2}\right)
\end{aligned}
$$

where we now let $\mathcal{L}=\binom{\Sigma_{11} \Sigma_{12}}{\Sigma_{12} \Sigma_{22}}$. Thit is a anange in notation
from tha preceding ohaptars. Integrating over the second stage maans α_{θ} and B_{Q}, the joint dietribution of the remaining parameters is

$$
\begin{aligned}
& \pi\left(\mu_{1} \alpha_{1}, \beta_{1}, \ldots, \mu_{m}, B_{m} \mid y_{1}, \ldots y_{m}, \mu_{0}, n_{1}, n_{2}\right) \propto
\end{aligned}
$$

The made of this density ocours at the point

$$
j+1=:=0=6
$$

Suppore wa have very 11ttla prior knowladga of the lacsision of eithas aso ar u. Wa will thwn hava * ${ }^{1}-0$ and 1 el. It will bw shown at the and of this mection rhsk much \boldsymbol{z}_{33}
1mpraper priar distributions de nat caura tha gantarior dsetributiena to be unnormad. In thia casa tha foda of the joint poaterlar

$$
\frac{\pi 1}{d^{2}} \cdot c^{11}
$$

$$
\frac{\sum_{j=1}^{j=\sum_{k=1}^{m j} \sum_{k j}^{n j}\left(y_{k j}-\alpha_{j}-B_{j} x_{k j}\right) z_{k j}}}{\sum_{j=1}^{m} B_{j}^{2} \sum_{k j}^{n j} z_{k j}^{2}}
$$

This model is rather more tractable then the model dasoribed in tha pravious chapter in that we can now Integrate ovar $\alpha_{1}, \beta_{1}, \ldots a_{m} \times \beta_{m}$ in 7.3 and obtain the marginal pasterior distribution of μ t

$\times \exp -1\left[\frac{\left(\nu-\mu_{n}\right)^{2}-\Sigma}{\Sigma_{33}} \quad j=1\binom{a_{j}}{0_{j}}^{\top}\left(\underline{D}_{j}+\Sigma^{-1}\right)^{-1}\binom{a_{j}}{b_{j}}\right.$
$-\left\{\begin{array}{l}m \\ \Sigma \\ j=1 \\ \Sigma^{-1}\left(D_{j}+\Sigma^{-1}\right) \\ \sim\end{array}\binom{a_{j}}{D_{j}}^{+Q^{-1}}-\binom{n_{1}}{n_{2}}\right\}^{\top}\left[\begin{array}{ll}m \Sigma^{-1} \cdot 0^{-1}-\Sigma^{m} & \left.\Sigma^{-1}\left(D_{j}+\Sigma^{-1}\right)^{-1} \Sigma^{-1}\right]^{-1}\end{array}\right]^{-1}$
$\times\left\{\begin{array}{l}\mathrm{m} \\ j=1\end{array} \Sigma^{-1}\left(0_{j}+z^{-1} \mathrm{z}^{-1}\binom{a_{j}}{a_{j}}^{+q^{-1}}\binom{n_{1}}{n_{2}}\right\}\right]$
(7.6)
where $a_{g} \frac{n_{1} \bar{x}_{1}}{a^{2}}$.

$$
b_{j}=\frac{1}{a^{2} k=1} \sum_{k j}\left(x_{k j}+z_{k j}\right.
$$

This nctation is
ellehtly differunt from that of ehapter 日. In the ane $t^{1}=0$,
$1-0$ the marginal diatribulton of μ simplif1am to
E_{33}

$\left.=\operatorname{expl}\left[\begin{array}{l}m \\ \sum=1 \\ j=1 \\ b_{j}\end{array}\right)^{-}\left(D_{j}+\Sigma^{-1}\right)^{-1}\binom{a_{j}}{b_{j}}^{+}\left\{\begin{array}{l}m \\ \Sigma \\ j-1 \\ \Sigma^{-1}\left(D_{j}+\Sigma^{-1}\right) \\ a^{-1} \\ b_{j}\end{array}\right)\right\}^{\frac{1}{j}}$

In ordar to aem 1 f thiz danalty 13 nommo wo nead to gxamime the expremsion on the right hand wide of the $=$ gign in 7.7. 1f thi integral of this expraimion wich rebpect to $\}$

 ebeolulu value. The aeme epplies ta the term

from the fact that, providud m in at Imant z,

7.J Lorge sampia पistributions

Uaing tha thmory dascribed in maction 2.3 wo car bhow that the digeribution of $w_{1} a_{1}, H_{1} \ldots, \ldots$. A a the number of rasponama in aach ansay becoman vary large is amymptaslealy

$m p$

If we naw curn beck to the mode of the joins pastarior clatribution af $\nu, a_{1}, \beta_{1}, \ldots . a_{n}, a_{m}$ wa oan see that in tra cose

 and the overoll everago of the a_{f}, adjustad for dupendance on the B_{j}, The wighte dopend on the gize of the axnoyn. the rastouel veriance ant the satond etage cevariance matrix I. Walghted averages of thie type oecur frequantly in expreanione for ponterlar maen uning linmar modaib, ane for axampla Lindlay [1974 bl. Parallel rumarke apply to tha velue of th:e B_{1} at this mods. The expransian for y at the mode has a almilar form to the iarge sampio man, howavar after subatitution for a_{1}. β_{1} in the ond saes and $a_{j} \cdot s_{j}$ in the other, the twa volull will not bo rantical.

The equations for the mude of tre gotnt demaity of v." $-111 \cdots+x^{-1}$, Non N
zera, given by 7.4, ara mora complicated welghted avarogea involving the pelar knowladge about the iocation of the paramaters. We can eliminate $\hat{a}_{j}, j=1, \ldots m$ from the expressions for μ and $\hat{\beta}_{j}, j=1, \ldots m$ in 7.8 . This gives the following expressions for the large sample postorior means for $\hat{\mu}$ and $\hat{\beta}_{j}, j=1 \ldots m$:
$\hat{u}_{\boldsymbol{u}=\tilde{z}}^{\operatorname{B}} \hat{B}_{j}\left(S y z-\hat{B}_{j} S x z\right)$
$j=1 \quad 3$
$\sum_{i}^{m} \hat{B}_{j}{ }^{2} \mathrm{Szz}$
$j=1$
$\hat{b}_{1}=\hat{H}+\underset{y}{1} \quad 1$
$\hat{\mu}^{2} S z z+2 \hat{\mu} S \times z+S \times x+1=1, \ldots m$.
A sampling theory approach to the situation undar conoideration
has been inveatigated by Armitage et al (1976). It is interesting
to mate that althaugh their model has been aet up vary differently
from aurs, they obtain maximum $11 k e l i$ hood eatimates of the
log potency ratio and the slopes of the individuel assay
identical to those in 7. Th. The asymptotic sampling variance
of their maximun 11 kolihood astimate of log potency ratio is

7．4 A Pathalagieal Exampla

Wa have had very 11 tule succean in trying to bxamio tha Farm of tha postariar cistribution of u analyticallys tha algabra 1 a too caropifeatad．Wa have concontratiod in tuad on two mpecial Cassar in section 7.6 me attampt ta combine ganuina data from Eaveral esexye which ara in moorl agremmint with ons anothar，and In this maction we mominim highty artificial data fram twa asemys which disagre violantly with ono another，

Suppoee we cerry out two four－point aseay＝，in both of
 atandard preparations．Suppowe triat in the firat memay aach puint in raglicatiad jumt cncu．and in the macond wamy bach paint is replicatad a timas，ehn seme responte aecurimg for ainch dosu

 the residual variance to be tho same for coth assbye and equal to

$$
\begin{aligned}
& \vec{u}=2=[\text { 。 } \\
& \begin{array}{l}
\vec{x}=2=0, \\
y-2^{=0},
\end{array} \\
& \bar{y}-1=0 \text { 。 } \\
& \text { } \bar{z} \cdot \sqrt{-1} \text {. } \\
& \begin{array}{l}
\bar{x}=2=0, \\
y-z^{=}=0,
\end{array} \\
& 5_{x x}-1 \text {. } \\
& 21-1 . \\
& 5^{\frac{1}{2}}=0 \text {. } \\
& 5_{y^{2}}^{x-1-1} \\
& 5_{t i 2}^{Y^{x}}=1 \\
& \text { z.2.1 } \\
& S_{x x}-a_{i} \\
& 5_{x y}=0 \\
& S_{x z}=0 \\
& 5_{x^{2}}^{2}-s d x \\
& s_{2 z}^{2}=0 .
\end{aligned}
$$

These espays ara intendad ta provida complately contradietary snformation about w，with the wecand assay containing a tmas as muxh Infarmatiun an the Alrat．In edditicn to velume of a greator than 1 we mhell aleg coneider values a\＆aying bitweun 0 \＆1．Thie correponde to the firet asmay boing replicetar erv mot the secnnd．

Looking at tha firet Aasay fy itemp we have tho following 1arga mampla reavital

y	x	z
	$\frac{d}{2}-\frac{1}{2}+\varepsilon$	$-\frac{1}{2}$
	$\frac{d}{2}+\frac{1}{2}-\varepsilon$	$+\frac{1}{2}$
	$-\frac{d}{2}-\frac{1}{2}-\varepsilon$	$-\frac{1}{2}$
	$-\frac{d}{2}+\frac{1}{2} * \varepsilon$	1

Assay 2
$-\frac{d}{2}-\frac{1}{2}+c$

$$
-\frac{1}{2}
$$

$$
\begin{equation*}
-\frac{d}{2}+\frac{1}{2}-\varepsilon \tag{0}
\end{equation*}
$$

$$
+\frac{1}{2}
$$

$\frac{d}{2}-\frac{1}{2}-c$

$$
-\frac{1}{2}
$$

$$
\frac{d}{2} \cdot \frac{1}{2}+\varepsilon
$$

(Each dose and rasponse in assay 2 ia roplicated a timea)

Table 7.1 Results of two hypathetical assays.


```
and =1mL2arly, looking at the lucond asmay by 1tselpi
```



```
If we cambins tha informacton iram cha two eamaya we heve the following mgubtions for the largw mompla maanei
```

```
\[
\begin{aligned}
& \hat{B}_{1}=\frac{-d \mu+1}{\hat{u}^{2}-1} \\
& a_{2}+-\dot{B}_{12} \hat{N}_{2} \\
& B_{2}=\frac{d \dot{d}+9}{\dot{j}^{2}+1}+ \\
& \bar{i}=\frac{\left.d-i_{i}+\vec{v}_{2}\right)}{y_{1}^{2}++i_{2}^{2}} .
\end{aligned}
\]
Eliminating \(\vec{i}_{i}\) and \(\vec{\Delta}_{2}\) from thexprasiolon for \(\mu\) we have tha follawing quadratic for \(u\)
\[
d(a-1) \mu^{2}+\left(1-d^{2}\right)(1+a) \omega-d[a-4]-0 .
\]
1\% \(-=1\) and \(d \mathbb{1}\) Lhen \(\mu=0\), and \(I f \quad a=d=9\) than any value of \(u\)
```


malutions for nt

$$
\dot{u}=-b \pm \sqrt{1+b^{2}}
$$

[F. $2 \boldsymbol{1 4}$

whara $b=\frac{\left(1-q^{2}\right)(1-a)}{2 a(a-1)}$.

In ardar sa sen which of tnma solutiont accura at e maxitum in the likalihand 1 ne need to Examine the metplx of sacord darivativan of the log-11kwlinaad. A solutzon to the mpations 7.10 w112 be a marimum if the fallowing metrix is peaitiva dafinitui

The matrix will Le pasitive gaffnite it all its principal minora
 primeipal minafi aria alway stractly foaitiva, and aftar a littla algwbra it can bi ghown that theifin principlaminor is etrictly poeitive 14

$$
\begin{equation*}
\left.2 d u(a-1) \cdot\left(1-d^{2}\right)(1+a)\right) 0 \tag{7,13}
\end{equation*}
$$

If a=1 then 7,13 1s matiefied if $d<1$. It a<1 then 7.19 is
 It can agaily be thewn shat wheri thara are twa molutjon ta 7.14 thm ascund bolution is at point which is nolehwr maximuas Mor a minsmum in tha 18kelihoads We cen invertigotu the behaviaur of the salutions tc 7.11 for verjing a and shil in
 the case a< 0 . Thia is intuitivaif a very plaasing reault, The

 tnan the second, near ed whan the second aisay eonsians much more
$142=$

Figura 7.1 Sch mentic reprevel ation of the matation te equitian

 This can be axplainad an pallana. The datiara now batear

 anc And amali valuea of $\hat{\beta}$. and β, 1 arply burgie valuen of tha maximum Iikelihood value for fh. The casa dmi in the bordarlina betwen tha two pravicus caums. The raximum 11halihood value takue the value -1 when $a<1$ and $* 1$ whan a >1, when $a=1$ the 11kelihood has no maximum.

The arymptotic varimace of y ia

$$
\frac{a^{2}(1+\mu)^{2}}{\left(1-d^{2}\right)(1+a)-2 u d[1-a)}
$$

whare H is the ralovant oolutian ta 7.11 .
We have emamined the erral2 sample case by platting the posterias dengity of y for various values af a and a. In aach casan wava lat $\mu_{\text {a }}$. thempriar man of is, requal co that tha sucand esayy mupporta aut priop belfefs while the first one cantradicts them. We heve let $e^{-1}-0$ and changmithe mecond etage vamaneas accordint to ous value of d चa thet the dtecrapancy betwan the alsays whan compared witt the strength of tha prior intarmation remaine roughly the faria. For 112ust-ation wheme taken $a^{2}=1$ thraughout. In our +2 Fat akampla $d=\frac{1}{2}$ with amcand
 pomeriaer danalty of u whan $a=9$ and $a=5$ gra 11 luatratud in Figure 7.z. Ais we mspht uxpeet frof the large eample riasulte the density is unimodal, with moda lyimy riar -d when a=?

a-5. and it in vary amilar tot cala d=1. Tre pantasiar danelever for thame twe valuen ef d rarain unimodal ard of umilar shapos avan when the roainuel variance if very stmalis we hava examined coses down to $c^{2}=1 / 10, c 00$. Finaliy we have takan

 $(-2,4)$ era extramaly imprctabla. Whan a*9 the dansity is unimadal. with mode at $u=7.4$. mhili negative valuen of u ara
 by the priar intormation. Whar am 3 thw auntity ia dyain unimodal

7.5 Hnknown Vorlanes.

Wa now cansider the reafeuid varianca of ond the wecond
 aemume that our priar knowisige arout ainch of thum is indapendent and fallaw tha relevint f fours matrioution, and wo wa have the followimg prive densition:
$v\left(a^{2} \mid v, \lambda\right)=\left\{a^{2}\right)^{\frac{(v+2]}{2}}$ axp $-\frac{v \lambda}{2 \sigma^{2}}, \sigma^{2}>0$.

where R Ia a 2×2 metrix, f is an 1 metiser and the vakem of R. A. v and itapend an the netwrim and precision of aur priar hnowledge.

In tnis saction wa shall aswume that our priar knowladge of the lacation of a, E_{o} and v ? vegua. and conamquantily

papticular applicetion, but olr mribmanta can masyly ba adjultad 17 neconeary.

The Saint poekariot danm:まy of all the poramatara in the nolshl 3

$$
\begin{aligned}
& |\underline{y}|^{-\frac{m}{2}} \text { exp-1 } \sum_{j=1}^{\frac{m}{m}}\binom{a_{j}-a_{a}}{B_{j-B_{0}}}^{T} \quad j^{-2}\left(\begin{array}{ll}
a_{j} & a_{0} \\
b_{j} & z_{0}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \quad\left[\theta^{2}\right] \frac{\frac{(y+2)}{2}}{x} \operatorname{sgn}-\frac{1}{2 a^{2}} \\
& \times \quad \underline{[}-\frac{(p-3)}{2} \operatorname{exp-3} \operatorname{tr} \Sigma^{-1} R
\end{aligned}
$$

Intogrenting aver a and a_{0} in 7.14 the joint pasterior denaity of the zemaining parametara in

The mode af eni denaity occuri et the polnt givar ty fols but

$\because\left(\mu, a_{1}, a_{1}, \ldots a_{m} \cdot \theta_{m} \mid y_{1}, . y_{1}=41, ~ Q, p\right)=$

$$
\begin{align*}
& \left.\times \quad \int_{j=1}^{R_{j}-\bar{B}}\binom{a_{j}-\bar{a}}{B_{j}-\bar{B}}\binom{a_{j}-\bar{a}}{0_{j}-\vec{B}}^{T} \right\rvert\,-\frac{(m+2-1)}{2} . \tag{7,17}
\end{align*}
$$

The rodi of this density also occurs at that point 7.3. exeapt
w^{2} and E ara now estimatac by
 .

 Etie jwint pumbarlor denmity gf best and E^{-1} ia

7.5 Unknown Varlancal

We naw canstder the rastdual vartanca σ^{2} and the sacond stage covariance matrix \sum as paraneters in the model. We shall assuma that our prior knowledge abcut each of them is Indopandent and follows the relevent conjugate diatribut 1 an , and so wa have the following priar densities:
$\pi\left(a^{2} \mid v, \lambda\right)=\left(a^{2}\right)^{-\frac{(v+2)}{2}} \exp -\frac{v \lambda}{2 a^{2}}, a^{2}>0$,
and $\pi\left(\Sigma^{-1} \mid \underset{\sim}{R}, p\right)=|\underset{\sim}{\Sigma}|^{-\frac{(p-3)}{2}} \operatorname{exp-1}: \operatorname{rg}^{-1} \underset{\sim}{R}, \underline{\Sigma}>0$.
where \underline{R} is a 2×2 matrix, P is sn integar and the values of R, P, \bar{v} and x depend on the nature and praciaston of our prior knowledge.

In this sectian wo shall asoume that aur prior knowledge of tha location of a_{0}, B_{0} and $\mu 1 s$ yogue, and coneequently $\underline{p}^{-1}-\underline{0}$ and $\frac{1}{\Sigma_{33}}=0$. Thas may nos be a valid assumption for any
perticular application, but our argumants can aasily be adjuated If necessery.

The joint pastarior densisy of all the parameters in the model its
$\pi\left(a_{0}, \beta_{0}, \mu, \alpha_{1}, \beta_{i}, \ldots, a_{m}, \beta_{m}, a^{2},{\underset{\sim}{2}}^{-1} \mid{\underset{y}{\mid}}_{1}, \ldots,{\underset{y}{m}}^{y_{n}}, v, \lambda, \underline{R}, \rho\right)=$

$$
\times|\underline{\sim}|^{-\frac{m}{2}} \operatorname{axp}-1 \stackrel{m}{j} \underset{j=1}{\frac{m}{z}}\binom{a_{j}-\alpha_{0}}{\beta_{j}-\beta_{0}}^{\top} \zeta^{-2}\left(\begin{array}{ll}
a_{j} & a_{0} \\
s_{j} & b_{0}
\end{array}\right)
$$

$$
\begin{aligned}
& \times\left[\sigma^{2}\right] \frac{-(v-2)}{2}=x p-\frac{v \lambda}{2 \sigma^{2}} \\
& \times \left\lvert\, \frac{\Sigma}{\times}+\frac{[\rho-3]}{2}=\times p-1+r \Sigma 1_{R}\right.
\end{aligned}
$$

Intograting aume a_{a} and E_{0} in 7.14 thim joint poztariar danaity of the remaining paramatore if

$\left(v^{2}\right) \frac{\left(\begin{array}{c}m \\ \sum \\ j-1\end{array}\right)}{2}$

$$
\begin{align*}
& \times \quad \operatorname{exp-1} \operatorname{tr} \underline{2}^{-1}\left\{\begin{array}{l}
m+\bar{z} \\
\left.-1=1\binom{a_{j}-\bar{a}}{a_{j}-\bar{B}}\binom{\alpha_{j}-\bar{a}}{B_{j}-\bar{B}}\right\} .
\end{array}\right\} . \tag{7.15}
\end{align*}
$$

The mode of this density occura ot the point givan by fola but

(7.15)

PAGE
 M|SSING

Intamrating avar a^{2} and E^{-4} in 7.15 the jeles paliterior dangity

$\because\left[\mu_{1} \alpha_{1}, \beta_{1} \ldots, a_{m}, a_{m} \mid y_{1} \ldots y_{m}, V_{1}, \lambda_{n}, R_{1}=\right.$
$=\left|\underset{j=1}{\underset{\sim}{R+2}}\binom{a_{j}-\vec{a}}{B_{j}-\bar{b}}\binom{a_{j}-\bar{a}}{B_{j}-\tilde{b}}^{\top}\right|-\frac{(n+p-1)}{2}$.
 0^{2} ahl Σ are now asiamated by

(7.18)

the joint poaterlor density of $u . s^{2}$ and Σ^{-1} It

 mode of thit danality cancot be fauns anaiyeciasizy.

In the onase : ${ }^{-1}$ - 0 , elthough not othenwter, we cen procesed ons stap furethar by tranaforming from the variables u, a^{2} end
 Thin givan tha postarior cansity of L and 5^{-1}
 of this density cannct ion found analytically.

As in enveral of our prewioul mactels we cancat find the marginal poaterior danalty of u anelyelcally. We cauld find an appraximation ta it by mubatituting an antimeto of 9 in 3.20 . Alternativaly, with only trirae oulaance porametmes invalved. calculation of the dunalty mumarically sa not out of kma quereion, Hownar, in contrant to the previaum camae, If wera cormining a foirly large number of anesyif, we may have availabla a eubstantial onount of information about both y and S. Consequmetly the joint posteriar diatifitution $口=H$ and S may not be vary diffarant from a multivoriata nomal distritutian. In enis cosm the value of h at the mode of the jolnt dinelty would be epprovimately equal to the man of ite marginal poatepior diatributian. and
 almo be made by laoking of the curvature of the joint dannlty et Ite made.

The theory dencrised in chaptar 5 to taka account of
 farwardly both to the prasent mafial and ta the mgdnl deacritued In chapter 6 . We hawl not rapaavad the cheory for asther of thace two eaeca aince trí algetra il cumberaomans no now la@as are involued.

We small now analyee tha ceta fror four raplicate masay of the entibiotic tobremycin given in Table 4.4. We fmum asturag that our priar knowledge tif thi likely valuan of the
 [3]
in aur prion diatributiana. If $n=106$ A=0 and ow the joint poetaricr danaity of all the parmeation (7.14) in infinite

 the large mimple rmatim, which ara givini in Tebla 7.2 . The untiased estinata of Σ in this cale Ili not positive deflnite mo wa have taken as cur estimate the suris af squares and cecea-praducta of the larem Bample mane divided by 3.

Uwing ena bove paramatara in our prsor distelbution we have eet lmated p in edilaral diffarant wiys. We have them rapaated the axaraima with R tan tirail and ana tanth aur

 भ are almogt identical, whotaver dietribution thmy are tsend on, and regardiass of fi. An approkirgte pottarior danstty af in te
 be almae unchanged bach far the smaller and for tha larger a

As regards that ofhar paratasaria ir the mode of the jaint
 pulled together comparad with the largai sampla manma but are largaly indapendant of our choice of A. Tha aielmatas of I degwnd quita hwavily on our choi=w of R, Our orlalnel gume at I hast - f2a100. 7230 . f and thls is eonzistant with our 1000. 」
atimate of E banad on themsdicie value of Re
In the moda of tha goint censiey of μ and S^{1}, that antimata ef S agein changas with our valua of $\boldsymbol{R}_{\mathrm{g}}$ and thare are wome inconsistencian bitwon eur astirates and our estimetem of そ and a^{2} in the previaus caua.

- 153 -

μ - . .0135
$a_{1}=20700$.
$\alpha_{2}=20700$.
$a_{3}-29000$.
$0_{4}=28900$.
$s_{1}=8360$.
$B_{2}=6360$.
\#3 $=6450$.
$B_{4}=6420$.
$a^{2}=52500$.

Tabla 7.2 Minon of approximata large sanple distribution using data of four replisasa tobramycin assays.

a)	$8=\left[\begin{array}{l}.4 \times 10^{5} \\ .9 \times 10^{\frac{5}{3}}\end{array}\right.$	$\left.\begin{array}{l}.4 \times 10^{5} \\ .4 * 1 C^{2}\end{array}\right]$	b) $P=\left[\begin{array}{l}.4 \times 10^{6} \\ .1 \times 10^{6}\end{array}\right.$	$.1 \times 90^{4}$ $.4 \times 10^{3}$	c) ROO $\begin{array}{r}1.4 \times 10^{6} \\ {\left[.4 \times 10^{3}\right.}\end{array}$. 1×40^{6}
\cdots	. 0185		. 0185		. 0185	
81	1.61		9.14		S. 51	
*)	. 500		. 382		1.54	
s_{22}	, 1all		. 127		. 609	

a) E	$8=\left[\begin{array}{l}.4 \times 10^{3} \\ .1 \times 10^{3}\end{array}\right.$	$.4 \times 10^{3}$ $.4 \times 10^{-1}$	EJ 月 $=1.4 \times 10^{6}$	$\left[\begin{array}{l}.4 \times 10^{4} \\ .4 \times 10^{3}\end{array}\right]$	c) $R=\left[\begin{array}{l}.4 \times 10^{6} \\ -1 \times 10^{6}\end{array}\right.$	$.4 \times 10^{6}$ $.4 \times 1 c^{-1}$
	$\begin{gathered} 5-5.81 \\ {[.500} \end{gathered}$.5007 $.186]$	$s=\left\{\begin{array}{l}1.94 \\ .362\end{array}\right.$.3627 $.127]$	$S=\left\{\begin{array}{l}5.51 \\ 1.54\end{array}\right.$	1.547 $.804]$
Maan	. 0185		. 0185		.0106	
Made	. 0485		.0485		. 0108	

Chaptín 9

Caneiusians.

B. 1 General Reqnoris

 attemnte to loak at par=11-1 14ne blosemey fram a Baymeian point of viaw. we fpul alma that dmpita the algebraic complenitice involved thara ara atvantages to be galnad fecm our manlimear farmulation of the problams and um ar matisfiad that the major idoas buhlid the theory for the elayamion dimaer model oat out by Lindley bsith (1972) carry ovmr to thi nan=lingar cana.

A majur gubantare of ous aporiemoh when comparad with thm itimndard sempling thacry mpproacin in khat Logicimly thin way to pracied 1 very etraightforwarda the marininal postariar fansity
 markedly with the thauxaticel complexitien of combining infarmation
 In Its stendamd 11neme formulation.

 pmrhigs rathap unusual in that fadrky prectas information about the patan=Lan of bath tas\% Bnd

 dowis Pur which thia 19 wo will depend criticelly on tha potemesme of the praparationk cancerfied. in the obserce of prevtots deta e pilat seudy in the form of a smad amiay is oftan einried out
 are tand aniy ta derommina the dosen far ine main allaby and ara then igmorede In our prabant approach further use could ba made af ther reililta cif buch o pilot atudy in aseimating the paramaters of the priar dietribution to be used far anazyesme the ramults of the masn asyay.

A entrd advantage of bur aparaach whin conadderlng wevmral

 to thw gratitm that wat hove weer,

a.2 Poasfosilesim for Furthuz

Wh to nat Faal that this thoais is in ony menie a rorplate Eroatment of bhe problem in mane. On particular point which desuryas further theormtical 1ruastigation ia tha evtimation of log patency railo in caaas whara iti marginul diatribution ie not obtainable analytically. Multid:-ncoinnal numikical irtegrationm provide B partial answar to the problem, ard facilitien for carrying them qut are 11 kbly to Do betser in the future than thay havim bean in the past. The ability te carry out such intagratione in up to flve dimanmionm would enab? nunarical whtmation of the marginal denaity ef μ in all ina sasan consadered oxcept that of chaptar 6. In this cawe the diranioion of the intwerotion necaseary ta astimate tha pontarior man op w $14702 m$ where in is the numajar of ayeaye for whach information iv avallabla.

Thera ara two other poin\&a wheh we feel daserua a fuller
 of using iose function ather tnar a quacratic one in the paint entimatien of log patancy ratio. For deula wuch as antibioticil en Evarastimate of the patancy in a maril sariole fault than an underestimate, and tris indieates that an obymmetric lose furcticn might be more appropriate then e gymetric ons. we fal thet these topic would be best approachad by a deteiled conulderation of one ar twa particuler druyt.

The other point which woult bie worth puriming sis more Ecphinticated appracch ta the metination of priar diatributione
 pxeparation may occut and allower =a inou2d temade for this. We feal that an oppraach viry firi11ar ta our approoch

 dase af prwpuration admintatarect Eather than theiogedasm. The
 the bleps of the lineaz tection zi the dowb-ramponie curuo for the mtendard prmparetion is A, sfin the wlopt of the marresponding
 of tha tiate praparation in tarmi of the intandard. The firat

thus be

$$
y=N(!a+\theta p \times z+g \times(1-z)\}, d^{2}
$$

Thata . a a, z and a^{2} have the wame Incargresatian ee in the perallal 11ne cana, and it in now the dosim achinlibterad rathep than eha ldg-dase. Dther aspacts of the problem erie identicsl with the parsliel dina ealla and mach of ouT theary can uansly be odapted by replacing x and z in the perallai-1ine case iy $x z$ and $x(1-z)$ In the 1 lona-ratio caaen

a. 3 A Nate on Hypotheoin Teats.

In thia thasis we have made no mantion of teating models to see if they are adaquate desorlptione of the data. There is dofinitaly a nend for a Bayesian ocuivalunt to the sarpling theury testa for 1 fnaarity and parallalism in a single assay and aleo a test to dotect butilers in a group of assays. The reason for this amisalan is that we have found thera to be no penaral concansus of opinion on tha subject of hypothesis tasting in the 11terature, whith in many cases is af a very abstract natura.

In the appendix we heve included a short papar written in response to a requast for a test for bynargism batween mixturas of drugs in parallel-1ine bloassoys. The paper is written entirely from a sampling theory point of $v i$ ew since we wore unsuccessful in producing a Bayastan teat.

A Test for Symargisa Helween Twa Hrugl

S.C. Putr - Department of Medical Suuristics nnt pplatemlolegy, London Schous of Hyalene and Tropical Madicine.

aned

M.J. Ellis $=$ Department of Modicine, St. Thomas' Hospital Medical School, Londun.

A Ifkolihoed ratio tent is devised to detect the preancou of aynorgime betwoon twa druga which have almilar actions. An example ita given.

Keywords

BICASSAY, INSILIN, LTKLLIHOOD RAIIO, MAKIMLH
EIKELIHLID, SYVRRGTSM.

1. Introduct ion

Suppoge ewo drugl produce quantivarive respomsell which are qualitetively shallar. It wixtures of the drugs ore applied, the quegtion ariges as to whecher the druge arc additive or aynergistic. ay miditiva we mean that oue drua can be replaced at in conationt proportion by the othnr without affecting the responsm, and by synerglatic we mean that the petency of a wixture of the drugn depends not only on the potency of the individual druge but also on the proparciong If thich they are mixed. The typu of jotne aetion
deocribed by the additive madel sa often called simple niohtar motion, see for exsmple finney (1971) and Aahford and Cobby (1974). hit use the word aynergian to denote any kind of daviation from additivity, including both potentlation mid mentagoniam. The mode] that we usa is a tarhemarical one. We have not attemped to reprament the underlying mote of pharmacological or biolugical action of the drugs al Ashtiont and cobby (1974) havie done- Finney (1971) has consldered the equivalent qualitative eme. We devime a teat to detect the preacnce of auch myongism between the two drugs. The direction of the aynergiam can be doteralned graphically.
2. The TescThe cwo droigs, A and B, and all mixeurea of themare anaumed to have parallal log-dose reaponse curvenWhich nre Inear over the wame rengc of remponsis.We sisuave that an sisay ligs been carried out on qsittures of the druga, one misture belng pure A,We placd no reatriction on tha number of dopes ofbech mixture alyayed, 由wcept that more then one dosemunt be und in et least one mixture. Thia isaeceamary in order to be sble to entimato tha miopeof the Jinear part of the 20 g dose resporse curve, andhenco to obtialn the residual suss of sguarcs, We havealso nestimed thent eath polnt in *ha aisay in raplicatod n timen althounh vary aimilar thevry holdo whan dificturt

Ho teat tho null hyporhesis, Ho, that the effect
 that the strength of any parcicular mixturc in a property of that mixture hlane. Thit genctal miternative will cover most Eypan of synergism betwern the drugs.

Utrder the rull hypotheshim we msuma that a dose of x units of A and z unite of B is equivalent to a dose of $x+1,2$ unten of A. Let the $j^{\text {th }}$ dose of the $1^{\text {th }}$ mixture be $\left.\left(x_{i f}\right)^{2} y_{i}\right)$ and the $k^{\text {th }}$ replicate response be $\boldsymbol{y}_{1 j \mathrm{k}}$. The mosel is

$$
\mathbf{E}\left(y_{1 j k}\right)=\alpha+\beta \log \left(x_{i j}+\mu z_{i j}\right) .
$$

Errors are assubed independently normally distributed. Taf any fixed a phe regression parmmerera ran be estimated using naximue likelshoed. Fhis giver
residual sua of squares:

$$
\begin{aligned}
& \text { k, J,k } \\
& \left.-\bar{y}_{\ldots+}\right)^{2}-\frac{\left[\sum_{i, j}\left(\bar{y}_{i j} \cdot-\bar{y}_{i}\right)\left(\log \left(x_{i j}+\mu z_{i j}\right)-\sum_{i, j} \log \left(x_{i j}+\mu z_{i j}\right)\right)\right.}{\sum_{i, j}\left(\log \left(x_{i j}+\mu z_{i j}\right)-\sum_{i, j} \frac{\log \left(x_{i j}+\mu z_{i j}\right)}{\pi}\right)^{2}},
\end{aligned}
$$

where \equiv Is the cotal number of different domas in the amany, Y... it the mean reaponso for the entire mssig, and ${ }_{i j}$. Le tha mean response for tha $f^{\text {th }}$ dose of the $i^{\text {th }}$ mixeurc. This rasidual surs of sutaree has m-2 degrees of ficedow. In order to find the maximum Thelthood eartmate of 1 ve minimies the above exprenaion numerically with respect to u_{0} Thle tainlmuas is the mestuni gum of equarse mior Ho, RSS ho with mu-3 tegreal of freadom.

Inder the aleernative hypothesis we angume that In the $1^{t h}$ nixture a dose of x urates of A ind z unted of H Bro equivalont to a doae of $x+i y$ undta of A, The mindel

Frrord are agoln assumed independentiy nommally
diseribured.
In the ${ }^{\text {th }}$ moture let 1 in $P_{1} x_{1}$ then the model breome

$$
\mathrm{N}\left(y_{1 j k}\right)=v_{1}+\beta \log _{2}\left(x_{1 j}+z_{1 j}\right)
$$

where 1 - $\quad+\beta \operatorname{cog}\left\{\left(1+\mu_{i} p_{i}\right) /\left(1+p_{i}\right)\right\}$.

H_{1} Is not dorindt shene p_{i} In zera. From thils
Tambulation the slretraselve hypothesis cma be sean ta be 日ytatetrie with rospect to che two drugs A and H. Thl类 model la Ineare and so straightforward estimation of the parameter by manimua likolihodi ia possibla.

 of different domes of the $1^{\text {th }}$-ixeure that eccur, and $y_{1}-$ 1s the averese respanse for the $1^{\text {th }}$ niteure.

The test of Ho against H_{A} is made by considering the ratio

$$
\frac{\mathrm{RSS}_{\mathrm{Ho}}-\mathrm{RSS}_{\mathrm{H}_{\mathrm{A}}}}{\frac{\mathrm{q}-2}{\frac{\mathrm{RSS}_{\mathrm{H}}}{\mathrm{~min}-\mathrm{q}-1}}}
$$

and referring it to the $F(q-2, m n-q-1)$ distribution. Asymptotic theory would suggest use of the 1 ikelihood ratio test statistic and the X^{2} distribution here, however we conjecture that for finite samples, by analogy with the thoory for IInear models, use of the above test statistic and the F distribution will be a better approximation. The authors feel this point merits further investigation.

If there is evidence of synergista, a simple graphical method of determining its direction can bo made by drawing an isobol or plot of the doses $\left(x_{i j}, z_{i j}\right)$ which, under the alternative hypothesis, are estimated to produce the same response for each mixture assayed (Loewe, 1957). This can be done without calculating the estimated values for the μ_{1}. These valites can of course be obtained if they are needed for furcher study.

The test described above may lack power due to considering arbitrary μ_{i} in the altermative hypothesis. Potentially more powerful tests for synergism might be developed for particular drugs by considering a more restricted elass of altornatives. For example one could write the alternative model in the equivalent form

$$
\begin{aligned}
& \left.\left.\mathbf{E}\left(y_{1, j k}\right)=a+\beta \log \ln H_{i}\right) x\left\{x_{i j}+\mu z_{i, j}\right)\right\}_{2} \\
& \text { with } \pi_{i}-x_{i j} /\left(x_{i j} * \operatorname{HN}_{4}\right)^{\prime} \text {, amj is is the putency ratito } \\
& \text { of } \operatorname{th} \text { in cermas of } A \text { - In the abova discuanion } f\left(n_{i}\right) \text { ia } \\
& \text { completely general except that } f(a)=\mathrm{f}(1)=1 \text {, but a } \\
& \text { parametric form could be posed for it. A point emtlmate } \\
& \text { of } f\left(\pi_{i}\right) \text { for onch of the varicus fulxtures can be } \\
& \text { obtadited frow ekc isobol. }
\end{aligned}
$$

3. An Enample

The toptc under Investigation is the Interaction of inmulin and a chemically modified inaulin, Al-y29 euterayl insulin, it the cellular Ioval. Tha reapsise mensured is the conversion of (3-3H) tivcoae to tolutno Forractable Iipida in inolated rat fat celle (Momy et at, 1974). The two drugs grosuce perallel log dose response curves which ore linear swir the ranko under consideration. The data are given in Tabla 1.

Table i here

The restual suma or squares for these date are RSS $_{H z}-2(0)$. I with 53 degroeal of friodon, and $\mathrm{RSS}_{\mathrm{H}_{\mathrm{A}}}=194.4$ with 4 y doercees of freedon. The test stativic is trill with 5 and ta laommer of freedom, and lo signiflcins at the af leval. Henco thia essay profides etrong midence that the effectin of the two druge ara not additive.

Figure 1 hare
An isobul (sea Pigure 1) indtcates that kreater amounts
of the two subatances arg required when they are in
comhtnation than when brgiled indepentintly, thus

raaulea in furtion assaya wll be raported ilsowhera,

Acknowledgements
The authors would liketo thank Professor P. Armitage and Dr. P.H. SOnksen for thelr guidance and supervision during the research. S.C.D. is the reciplent of a Medical Research Council studentship, and M.J.E. is a New Zealand recipient of a Commonwealth Postgraduate Scholarship in the United Kingdom.

References
ASHFORD, J.R., and COBBY, J.M. (1974). A system of models for the action of drugs applied singly or jointly to biological organisms. Biometries, 30 , 11-31.

FINNEY, D. J. (1971). Probit Analysis (3rd ed.).
London: Cambridge University Press.
LOEWE, S. (1957) . Antagonisms and Antagonists.

MOODY, A.J., STAN, M.A., STAN, M., and GliemanN, J.
(1974). A simple free fat coll bionssay for
insulin. Horm. Metab. Res., 6, 12-16.

TARIE 1. RESUTIS OF ASSN:

Mixture	Ratio of Insulin to A1-B29 Suberoy 1 Insulin	Total Dose (pmol $\left.t^{-1}\right)$	Responses for 4 replicates			
1	1:0	20.9	14.0	14.4	14.3	15.2
		41.9	24.6	22.4	22.4	26.7
2	1:1.85	. 52.9	11.7	15.0	12.9	8.3
		106.	20.6	18.0	19.6	20.5
3	1:5.56	101.	10.6	13.9	11.5	15.5
		202.	23.4	19.6	20.0	17.8
4	1:16.7	162.	13.8	12.6	12.3	14.0
		362.	15.8	17.4	18.0	17.0
5	1:50.0	261.	B. 5	9.0	13.4	13.5
		522.	20.6	17.5	17.9	16.8
6	1:150	309.	12.7	9.5	12.1	8.9
		617.	18.6	20.0	19.0	21.1
7	$0: 1$	340.	12.3	15.0	10.1	8. 8
		681.	20.9	17.1	17.2	17.4

FIG 1. Isobol of assay drta. The points are the estianatod doses repuired to produce zero responsa under the alternative hypothesis. The cotted line reprosenta the thooretical result for additive dzugs. OM/OB is a point estimate of $\mathrm{f}\left(\mathrm{\pi}_{3}\right)$.

Refaran

Armitaga，P．a Eier intt，B．M．an二FIrnwa．D．J．（1g76）．Point and interval matimation in tha conthation of blomamy famite． Journal of Hygian日，75，147－182，由ax，G．E．P．and T\＆eg．G．C．［1973）．Raywaiar Infararag in Statietyeal Anabyin．AddImen－timelay．
de Finatti．\＆．（9975）．Theory of Protability．Vols 1 ह 2 ．London， d118y＝

Drapar．N．f．and Hunter，W．G．［195J］．Tha uen of priar diatributiong In thi deaign a o maparimanta for parametar antimation in nom－ Ifnarer situationa．Binmmerska，84，147－153．

Finnay．D．J．（1984）．Statiatical Mathad in Blalogical Asaay， 2ne ed．Londani Gri\＄fin Ea．Litd．

Frovery，C．E．（188s）．Intraguncich to Numerical Analysion Redlaan－Welay：

Lindialy，D．V．119641．Tha use of prier probability diletibutione 1n titetstical infarance and farisilans．Pracasedinge of the Fourth Garkeler Sympasiun on Mathirasiscad Statimties and Probadility，University of Calitornis Fress．1．453－488．
 Philadalphial Society for Indultrial mend Appliad Mntlunimus．
 ＂Foumdatian of Seatiotieal Inforence＂（V．P．Cadarbe and O．A．Spratt，ndial PF．435－455．Torontos Moita R1nonart and Wintan．

Lindiay．G．V．and Smith，A．F．M．199721．Aayen entimatel far the linaaf modal．J．R．Statimt．Sec．，B，34，1－44．
smith. A.F.M. (1J73), Sayea esshmeces in oneway and timeway madsla. Uqoの日erina, EO, 319-3-3.

[^0]: Figur 2.1 Margimal pasterict dansity of u for the geraraided data set when the prior distribution

[^1]: Figura 4.3 Appraximate marginol pcatersar danaty of w_{i} asauming oz to pa mnown anc agual to ite value

