

LSHTM Research Online

Grolle, Katja; Ensink, Jeroen; Gibson, Walter; Torondel, Belen; Zeeman, Grietje; (2018) Efficiency of additives and internal physical chemical factors for pit latrine lifetime extension. Waterlines, 37 (3). pp. 207-228. ISSN 0262-8104 DOI: https://doi.org/10.3362/1756-3488.18-00011

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/4655082/

DOI: https://doi.org/10.3362/1756-3488.18-00011

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/

Efficiency of additives and internal physical chemical factors for pit latrine lifetime extension

Katja Grolle, Jeroen Ensink, Walter Gibson, Belen Torondel, and Grietje Zeeman

Abstract: Pit latrines are the most common form of on-site sanitation, but are blighted by the problem of pit fill-up. Little is known about what factors and conditions affect decomposition of pit content and thus govern pit filling, but the liquid–mass balance is the key factor. Under laboratory conditions the effect of inorganic and biological additives and the effect of physical chemical factors on solids hydrolysis of black water and human faeces were investigated to establish the potential of these to extend pit latrine lifetime. Additives did little or nothing to enhance net solids hydrolysis in batch tests or to reduce pit fill height in miniature simulated pit latrines. Physical chemical factors such as redox condition and initial pH increased solids hydrolysis, whereas temperature and substrate moisture did little. Since additives need contact with the substrate to act, measurements on faeces crust formation speed and strength were performed and showed that crusts formed within three hours and persisted after covering with fresh faeces or water.

Keywords: additives, solids hydrolysis, human faeces, pit latrines

Introduction

An estimated 1.77 billion people globally use pit latrines for daily containment of 2.1 billion kilograms of urine and faeces (Graham and Polizzotto, 2013). The design and size of the pit latrine aim to service a certain number of people for a certain amount of time: the pit lifetime (Buckley et al., 2008; WHO n.d.). When the pit is full it needs emptying or a new pit is required, which comes at a cost of money, health issues, and possibly land requirement.

Pit lifetime is determined by in- and out-flows in the latrine and by pit content conversions. This 'working' of pit latrines is difficult to define and to investigate, which is partially due to the variation in influent composition and loading, and conditions in the pits (Buckley et al., 2008; Nwaneri et al., 2008; Torondel, 2010). Furthermore, defining whether a latrine is 'good' or 'efficient' or 'bad' is more or less determined by the amount of human resources needed to prevent it from becoming a health, smell,

Katja Grolle (katja.grolle@wur.nl) Wageningen University, the Netherlands; Jeroen Ensink (Jeroen.Ensink@lshtm.ac.uk) London School of Hygiene and Tropical Medicine, UK; Walter Gibson (waltergibson@bearvalleyventures.com) Bear Valley Ventures, UK; Belen Torondel (Belen.Torondel@lshtm.ac.uk) London School of Hygiene and Tropical Medicine, UK; Grietje Zeeman (grietje.zeeman@wur.nl) Wageningen University, the Netherlands © The authors. This open access article is published by Practical Action Publishing and distributed under a Creative Commons Attribution Non-commercial No-derivatives CC BY license https://creativecommons.org/licenses/by/4.0/ ISSN: 0262-8104/1756-3488 or financial nuisance (Still, 2002; Buckley et al., 2008; Graham and Polizzotto, 2013). On that basis, a 'good' pit latrine can be defined as a latrine that requires little or no human intervention to fulfil its function. An ideal working pit latrine would convert all incoming waste into pathogen-free liquid with soluble harmless minerals, exiting the pit at such a rate that a correctly dimensioned pit never fully fills (WHO n.d.) For that, the incoming waste material needs to be fully degraded and liquid needs to be able to exit the pit via percolation and/or evaporation. Such ideal pit latrines do not exist since not all incoming pit waste is biologically degradable; however, the waste that is degradable should be stabilized as much as possible. Physical chemical factors such as temperature and the oxygen concentration of the pit content and the conditions surrounding a pit, e.g. soil drainage characteristics and groundwater table level, are important variables in the physical, chemical, and biological dynamics of a pit latrine.

Without human intervention, material can exit pit latrines as gas, but mainly does so as liquid since the main constituent of human excrements is water: 93–99 per cent water in urine and 66–85 per cent water in faeces (Torondel, 2010). The outflow potential of pit content is related to hydrolysis of solids into dissolved components, conversion of solids into biogas, and the ability of the liquid to percolate or evaporate. It should be noted that the exiting pit latrine liquid can be a health hazard if it pollutes surface or groundwater sources (Cave and Kolsky, 1999; Abay, 2010; Graham and Polizzotto, 2013). However, pit emptying also poses a health hazard to the pit-emptying personnel and via spillage during transport from the pit to a waste disposal or treatment site (Still, 2002; Buckley et al., 2008).

Pit latrine additives can be inorganic or organic and act as conditioners for enhancing conversion processes inside a pit, or increasing the potential beneficial biomass inside the pit. Pit latrine additives should enhance the degree, and, if possible, also the rate, of organic matter degradation, and enhance the dewatering capacity of the pit contents. The added additive quantity should not exceed pit content reduction. In practice, additives are used as a curative measure in 'bad' latrines or are applied on a maintenance basis with the objective of avoiding problems.

Biological additives need contact time with substrate to work and mobility within the substrate matrix to continue working. The pit content consistency (viscosity and yield stress) will influence the contact, contact time, and mobility of additives. The pit content consistency is mainly determined by the moisture levels of substrate. An obstacle in additive contact with the substrate can originate from crust formation on substrate.

The objective of this research is to investigate the effect of pit latrine additives and physical chemical aspects on the conversion of human faeces, aiming to extend the lifetime of pit latrines by analysing:

- degradation (COD (chemical oxygen demand) hydrolysis) of faecal solids into soluble or gaseous products with and without additives;
- degradation (COD hydrolysis) of faecal solids into soluble or gaseous products under different physical chemical conditions such as pH, redox condition, water content, and temperature; and
- pit fill height reduction or air space increase and COD reduction of faecesloaded miniature simulation pit latrines with and without additives and varied redox conditions.

Material and methods

In total, 47 different pit latrine additives were screened for their efficiency regarding solubilization of faecal solids in batch tests. Based on the results, the most promising additives were used for creating three additive mixes. The selected additive mixes, a commercial product, and aeration were all tested in standardized simulation pit latrines for their effectiveness regarding pit fill height reduction and COD conversion. The effect of physical chemical aspects such as pH, temperature, water content, and gas phase composition on the solubilization of solids was tested in batch tests.

Materials

As substrates, black water and human faeces were used. The black water was collected from a demonstration facility in Sneek (Lemmerweg, the Netherlands) and was stored at 4°C. This black water was collected with vacuum toilets with a 1 litre (L) flush (de Graaff et al., 2011). Before use in tests, the black water was sieved through a kitchen sieve (mesh size 2 mm) to remove large particles, mainly toilet paper, to facilitate easy sampling. Eleven batches of black water were used over the whole experimental period. The COD concentration variation of the used black water batches is given in Table 1. The total solids (TS) content was around 5 g/L (\pm 0.08).

The substrate used for investigating the effect of substrate moisture levels on solids solubilization and for pit latrine simulation was human faeces. Two batches of faeces were used, produced by at least 17 adults, who were kindly requested to chew well and to avoid consuming peanuts and sweetcorn. The faeces were immediately stored at 4°C after production and used for experiments within four weeks. Before use, the faeces were blended and mixed well in an anaerobic cabinet using a kitchen mixer. The original TS was 203 g/kg (\pm 1.2). Varying the moisture level was done by adding tap water. The COD values are given in Table 1.

Several types of additives were screened in batch tests for their faecal solids hydrolysis capacity: two soils (including soil bacteria); three inorganic conditioners; fifteen pure strain bacteria species spores; three bacterial spore mixes; one fungus spore mix; four commercial bacterial spores products; two live bacteria consortia; six enzyme concentrates; plus one mix and ten faeces extracts of herbivores. The faeces extracts were prepared as follows: 5 g natural fresh faeces mixed in 45 ml basal bacterial medium (Lindeboom, 2014), followed by two minutes of

Table 1 The average total, soluble, and calculated suspended solids (ss) COD values of the 11 black
water batches (analysed in triplicate or 12-fold, standard deviation between brackets) and of the two
faeces batches (analysed as single or in triplicate, standard deviation between brackets)

COD (mg COD/L)	COD _{total}	COD _{soluble}	COD _{ss}
Black water (11 batches)	7,125 (822)	2,876 (798)	4,249 (502)
COD (g COD/kg)	COD _{total}	COD _{soluble}	COD _{ss}
Faeces (batch 1)	358	81 (0.75)	277 (0.75)
Faeces (batch 2)	328	51.5	276.5

ultrasonic treatment (Branson 510, USA, at 47 kHz and 185 W), one night shaking at 30°C, and again two minutes of ultrasonic treatment. The filtrate from sieving the mix through a sieve mesh size 1 mm is the faeces extract.

The advised commercial bio-additive dosages in real pit latrines is 100 g dry material in a pit of approximately 3,000 L (0.03 g/L), whereas the application of dry additives in our screening experiments is 1 g/L to establish the ultimate solids solubilization within a relatively short testing time. This applied amount of solid organic additive is a considerable addition to the faecal substrate solids. Assuming 1 g of organic additive solids is 1 g COD, then this additive quantity equals 23.5 per cent of the average black water solids COD (4,249 mg COD_{ss}/L). The dry additive material was added to the testing bottles and mixed well with the black water. For the moisture level testing, human faeces were used as substrate, which is too viscous to mix by swirling. Here, the additives were blended into the substrate by stirring before inserting the substrate with the additives in the testing bottles.

The effect of additives on solids hydrolysis was assessed from the difference between hydrolysis of substrate with and without an additive (natural biological activity) using the same batch of substrate.

In the simulation pit latrines, the bacterial mixes A–C (see Table 2) and a bacterial commercial product were tested. Besides the bacterial mixes, the application of air into the substrate was also investigated.

For the four-month-long pit simulations the additive dosage was 0.1 g dry material in 10 ml lukewarm water added on top of 280–550 g faeces (= 0.2-0.36 g/L) per month. The content of the aerated simulation pit latrine was injected close to the bottom with 50–100 ml air daily.

Experimental set-up

The batch bottles were mixed at 100–125 rpm on rotational shakers (Innova 400, USA). The test temperature used was 30°C, except for the temperature variation tests. The choice of gas phase condition depends on the type of additive under investigation. Aerobic microorganisms were tested under aerobic conditions, and anaerobic microorganisms under anaerobic conditions. Non-specific additives were subjected to a more realistic latrine scenario: initially aerobic (~2 days), followed by anaerobic conditions. Correction of pH was maintained between pH 6.5 and 7.8. If required, the pH was adjusted to pH 7 \pm 0.1 with HCl or NaOH. For aerobic

Table 2	Simulation	pit latrine e	experimental	set-up,	additive	mix pure	strain	bacteria	compone	nts,
and mix	ratios									

Pit no. Additive type Additive mix components and ratio - None = Blank, 4°C			
 None = Blank, 4°C None = Blank, 30°C × 2 Mix A, 30°C P. pantothrophus + 1 B. megaterium Mix B, 30°C I. E. dissolvens + 1 B. megaterium + 1 R. pyrdinivorans Mix C, 30°C I. B. megaterium + 1 R. pyrdinivorans 	Pit no.	Additive type	Additive mix components and ratio
6 Commercial product 4, 30°C	- 1, 2 3 4 5 6	None = Blank, 4°C None = Blank, 30°C × 2 Mix A, 30°C Mix B, 30°C Mix C, 30°C Commercial product 4, 30°C	1 P. pantothrophus + 1 B. megaterium 1 E. dissolvens + 1 B. megaterium + 1 R. pyrdinivorans 1 B. megaterium + 1 R. pyrdinivorans
7 Air, 30°C	7	Air, 30°C	

conditions, the gas phase was replenished with fresh air to guarantee sufficient O_2 . No additional buffering or nutrients were added to the black water.

Aerobic experiments were performed in 500 ml Schott bottles closed with a manometer or airtight cap and a rubber liner with NaOH pellets after filling with 100 ml black water and additive, with air as gas phase. The NaOH absorbs the produced CO_2 . As a consequence, gas pressure change is due to O_2 consumption as long as denitrification does not proceed which should not be the case in aerobic circumstances. Nitrification was allowed to proceed, since nitrification would probably proceed in a real pit at sufficient O_2 levels. The concentrations of NO_3^- and NO_2^- were measured at the end of the experiment to correct for O_2 consumption for the nitrification and to correct the $COD_{soluble}$ measurement.

Aerobic-anaerobic experiments were performed in 245 ml serum bottles closed with butyl stoppers and crimp caps after filling with 100 ml black water and additive, with air as gas phase. The gas pressure was measured with a handheld pressure meter. The gas composition $(CH_4, CO_2, and H_2)$ was measured by gas chromatograph (GC). Anaerobic experiments were performed in 245 ml serum bottles closed with butyl stoppers and crimp caps after filling with 100 ml black water and additive, and flushing the gas phase for five seconds with N₂ gas. The gas pressure was measured with a handheld pressure meter. The gas composition $(CH_4, CO_2, and H_2)$ was measured by GC.

Standardized small-scale simulation pit latrines were used for measuring the effect of additive mixes in human faeces on pit fill height (Figure 1).

The bottom of a two-litre PET (polyethylene terephthalate) water bottle was removed. This set-up has a maximum internal surface area for pit content to the air of 69.4 cm². The cut bottom was punctured and used as a lid on the simulation pit, allowing air exchange and evaporation and to keep out insects (Figure 1). The bottle top opening, with a diameter of 25 mm, was covered with stocking fabric fixed by an elastic band and string. The stocking-covered opening was the bottom of the simulation pit, keeping the faeces inside the bottle and allowing for the drainage of liquid. To generate liquid suction out of the pit, tissue paper in a plastic band; this also prevented evaporation from the tissue paper. The tissue paper was in contact with the pit bottom opening. The amount of drained water could easily be determined by weighing the tissue paper, including the bag, before and after loading. A measuring tape was attached to the side of the bottle to measure the height of pit fill. The simulation pit latrine was placed in a beaker to keep it upright.

In this pit latrine simulation, the volume, drainage surface area, and air contact area are scaled down in a standardized way. However, the penetration depth of atmospheric oxygen into the substrate cannot be scaled down. As a consequence, the simulation pit will have a relatively larger aerobic zone than a real pit latrine.

The simulation pit latrines were operated at 30°C; no additional buffering or nutrients were added. Substrate was loaded in the pits once or twice a month with larger amounts of faeces in preference to loading small daily amounts. This reduced the effect of air oxygen penetration. The experiment was started with 185 g faeces in each pit. After two weeks all pits had received a load of 280–375 g faeces per month.

Figure 1 Schematic drawing of two-litre PET bottle used as miniature simulation pit latrine set-up

Methods

Batch experiments were sampled for analysis at the start of the experiment (t = 0) and after 15 (t = 1) and 20 (t = end) days for the enzyme additives. The anaerobic (an), aerobic-anaerobic (ae-an), aerobic (ae), and extended aerobic (ext. ae) tests with other additives were sampled at the start of the experiment and at least twice after

20–120 days, to establish if the ultimate hydrolytic conversion was reached. The batch tests were performed in triplicate (black water samples), four-fold (faecal samples), or 12-fold (pH 7 at 30°C) depending on ease of sampling. All determinations of components were performed as singular determinations, with the exception of the start substrate solids COD analysis which was determined in triplicate.

The simulation pit latrine experimental set-up consisted of one blank substrate collection pot and seven simulation pit latrines. The blank substrate collection pot received the same amounts and samples of substrate without additive and was stored over the running period at 4°C. This sample was used as the untreated substrate sample (input). Two of the simulation pits were used as blanks for determination of the natural activity of the substrate, and the remaining five simulation pits were loaded with substrate and additives or air, running at 30°C.

Throughout the duration of the experiment, well-mixed substrate was loaded into the simulation pits and also into the untreated sample pot. At the end of the experiment the blank simulation pits without additives gave the natural activity of the substrate and were compared with the simulation pits with additives.

The mass loading of the substrate was recorded via weight and the pit fill height was read from the measuring tape fixed to the simulation pits. The mass of liquid drained was recorded via weight. An airtight plastic bag with tissue paper was weighed before use (dry) and after use, with the mass difference being the amount of drained liquid. The liquid evaporation from the simulation pit was measured by weighing the whole set-up. Sample preparation for analysis at the end of the pit latrine simulation involved emptying the entire simulation pit content into a mixing bowl and mixing with a kitchen mixer to ensure a representative sample for the whole pit. The contents of one of the blank pits was scooped out in layers to collect vertical profile samples.

Analysis and measurements

The analysis of substrate total and soluble COD fractions, and volatile fatty acids (VFAs), the total solids (TS), and volatile solids (VS), and the preparation of the soluble liquid fraction were performed using methods described by Fernandes et al. (2012) and APHA (2005). The gas pressure of the batch bottles was measured using a handheld pressure meter (GMH 3150, Greisinger Electronic GmbH, Germany). The gas phase CH_4 , CO_2 , and H_2 composition was measured according to the method described by Fernandes et al. (2012). The COD of the gas phase was calculated using the ideal gas law discounting dissolved methane in the liquid.

N-NO₂⁻ and N-NO₃⁻ were determined from the soluble fraction of the liquid with kits (Hach Lange, Germany) and the results were used for correcting the O₂ consumption from the gas phase due to nitrification. The COD determination was also corrected for the presence of NO₂⁻.

The pH of faeces was measured in samples diluted two times with demineralized water by means of a pH meter (MeterLab[®] Radiometer Analytical, France); black water was measured undiluted. The pH was determined directly after opening batch bottles.

To quantify crust formation on faeces, puncture tests were performed using an XT Plus Texture Analyzer (Texture Technologies Corp. Hamilton, MA, USA) mounted with a 500 g load cell. An Allen key with a tip diameter of 6.16 mm was used as a puncturing probe. Ten disposable plastic 125 ml cups (Bellaplast AG, Altstätten, Switzerland) were filled with 60 g well-mixed faeces (~20 per cent TS), the surface smoothed with a spatula. The puncture force of the sample faeces–air interface was measured over time during 0.89 days (relative humidity during the day was 75–80 per cent). The puncture speed was 5 mm/s. Crust persistence after a fresh donation of substrate was measured as follows. On the 0.89-day-old crust in five of the cups, 10 ml water was poured and left for 15 minutes. The puncture force of the intermediate crust (crust 1; see Figure 2) was determined five times. To the other five 0.89-day-old cups, 15 g of fresh faeces was added and the surface smoothed carefully. In these cups, the intermediate crust 1 was measured after approximately five hours.

Figure 2 Set-up for measuring the puncture force of crusts

Calculations

In batch experiments, the substrate with additive was compared with substrate without additives to assess the effect of the additives in relation to their ability to hydrolyse solids, since black water and faeces have a natural capability to do so. The equations used are as follows:

Substrate natural solids hydrolysis percentage at ultimate conversion (t = x) =

$$COD_{suspended solids hydrolysed natural}(\%)$$
= 100 × COD_{hydrolysed natural t=x}/COD_{suspended solids t=0}
(1)

The natural hydrolysis COD at t = x

$$COD_{suspended solids hydrolysed natural t=x} (mg/L)$$

$$= COD_{soluble t=x} + COD_{CH_4 produced + O2consumed t=x} - COD_{soluble t=0}$$
(2)

The suspended solids COD at t = 0

$$COD_{suspended solids t=0} (mg/L) = COD_{total t=0} - COD_{soluble t=0}$$
(3)

Substrate with additive hydrolysis percentage at ultimate conversion (t = x)

$$COD_{suspended solids hydrolysed natural + additive} (\%)$$

$$= 100 \times COD_{hydrolysed natural + additive t=x} / COD_{suspended solids + additive t=0} (4)$$

The natural + additive hydrolysis COD at t = x

$$COD_{suspended solids hydrolysed natural + additive t=x} (mg/L)$$

$$= COD_{soluble t=x} + COD_{CH4 produced + O2consumed t=x} - COD_{soluble t=0}$$
(5)

The suspended solids COD at t = 0

$$COD_{suspended solids + additive t=0} (mg/L) = COD_{total + additive t=0} - COD_{soluble t=0}$$
(6)

where the $\text{COD}_{\text{suspended solids additive}}$ is estimated at 1 g COD/g dry organic solids added. The additives net solubilization of solids COD percentage (ANS%) at t = x =

$$ANS(\%) = COD_{suspended solids hydrolysed natural + additive}(\%) - COD_{suspended solids hydrolysed natural}(\%) (7)$$

The ANS% of the substrate without additive is thus normalized (= 0). The ANS% when additives are used is positive if the additive has a positive influence on solids hydrolysis, or negative when the activity of the additive does not remove more solids than by natural activity plus what was added as an additive. The ANS% of an additive is considered significant when it exceeds the sum of the standard deviations of ANS% of the substrate without additive and the ANS% of the substrate with additive.

In batch experiments, the effect of physical chemical aspects on solids hydrolysis at ultimate conversion (t=x) was compared with other conditions. The solids hydrolysis percentage was calculated as follows:

$$COD_{suspended solids hydrolysed t=x} (\%) = COD_{hydrolysed t=x} / COD_{suspended solids t=0}$$
(8)

The hydrolysis COD at t = x

$$COD_{suspended solids hydrolysed natural t=x} (mg/L) = COD_{soluble t=x} + COD_{CH4 produced + O2 consumed t=x} - COD_{soluble t=0}$$
(9)

The suspended solids COD at t = 0

$$COD_{suspended solids t=0} (mg/L) = COD_{total t=0} - COD_{soluble t=0}$$
(10)

The total COD removal percentage at t = x was calculated as follows:

$$COD_{total removed t=x} (\%) = 100 \times COD_{total t=x} / COD_{total untreated}$$
(11)

Results and discussion

The ANS% from these batch tests are presented in Table 3 (see Appendix A for the raw data).

Of all the tested additives, a significant positive ANS% was found for *Rhodococcus pyridinivorans* with an ANS% of +5% (2) at 21 days aerobic condition, which is not a likely scenario for a pit latrine, and with llama and ring tail lemur faeces extracts at aerobic-anaerobic conditions with an ANS% of 4% (0) and +2% (1) respectively. All other additives did not enhance or hinder hydrolysis of solids COD.

The effect of physical chemical conditions such as redox condition, pH, temperature, and water content on faecal solids hydrolysis was tested with black water or faeces as substrate without any additives. The results are presented as solids hydrolysis percentage on COD basis according to equation 8 (Table 4), comparing the start amount of solids to the ultimate (t = x) solids.

The applied redox condition shows that ultimate faecal solids hydrolysis percentage at aerobic conditions is 82 per cent and 26 per cent higher than at anaerobic conditions.

The initial pH has a marked effect on ultimate solids solubilization of black water. A pH of 5 yielded the lowest and pH 9 the highest COD_{ss} hydrolysis. The bottles with an initial pH of 9 ended with an average pH of 7.4. A higher pH tends to solubilize substrate by increasing the solubility of proteins and ionizing VFAs, making it easier to convert biologically as long as the biomass is active at the given pH (Lin Lin et al., 2013).

Both temperature and moisture content given in weight–weight ratios have little impact in the tested range on the hydrolysis of solids.

To assess pit fill height and COD reduction in pit latrines, miniature simulation pits were loaded with faeces approximately once a month, and the additives suspended in water were added on top of the freshly added faecal matter. After 129 days, the pit content was sampled and analysed. The results are given in Table 5 (see also Appendix B).

As the pits were emptied, crust formation on the bottom of the pits was noticed. Drainage from the pits into the tissue paper did not proceed. For future experiments, wetted tissue paper could avoid this phenomenon. Evaporation was highest in the pit with aeration. Aeration proved the strongest driver for pit height reduction and COD removal compared with the blanks. This agrees with the findings of Nwaneri et al. (2008), who found that the main COD removal occurs in the aerobic zone of the pit latrine. Bacterial commercial product 4 did slightly enhance COD_{total} removal in comparison to the blanks, but did not reduce pit fill height. The bacterial mixes A, B, and C did not enhance COD_{total} removal or reduce pit fill height compared with the blanks.

Simulation pit 1 (no additive) was sampled at the end of the experiment at several heights. The results are presented in Table 6. The solubilization $(COD_{soluble})$

Additive	ANS%	Redox	Additive material type and dosage
	(st. dev. %)	condition	71 5
Inorganic additives:			
Tanzanian roadside dirt	-11 (1 + 2)	ae-an	Mainly inorganic solids
Perlite EMP1	0(7+6)	ae-an	Dosage 1 g/L black water
Dutch roadside dirt	-8(2+2)	ae-an	
Talcum 30/80	+3(0+6)	ae-an	
Diatobon TGM	+3(2+6)	ae-an	
Commercial bacterial:			
Product 1	-7(4+2)	ae-an	Mainly organic solids (spores/bran)
Product 2	-9(4+2)	ae-an	Dosage 1 g/L black water
Product 3	-6(1+6)	ae-an	
Product 4	-9(4+3)	ae-an	
Enzymes:	- (
Amvlase	-4(1+0)	an	Mainly organic liquid
Protease	-4(0+0)	an	Dosage 0.1 ml/L black water
Hemicellulase	-2(2+0)	an	g
lipase	-3(1+0)	an	
Cellulase complex	-1(3+0)	an	
Pectate lvase	-2(3+0)	an	
Mix of above enzymes	-4(1+0)	an	Dosage 0.5 ml/L black water
Fungi:	. (,		g
Blend of 4 fungi	-2(9+5)	ae	Mainly organic solids (spores)
			Dosage 1 g/L black water
Pure strain microorganisms:			, , , , , , , , , , , , , , , , , , ,
R. erythropolis	-23 (5 + 1)	ae	Mainly organic solids
P. monteilii	-20(5+1)	ae	(spores/bran)
B. amyloliquefaciens	-4(3+1)	ae	Dosage 1 g/L black water
	-12(2+5)	ext. ae	5 5
B. amyloliquefaciens	-45(3+1)	ae	
P. pantotrophus	+6 (7 + 1)	ae	
	+3(8+5)	ext. ae	
	+3(1+3)	ae-an	
B. subtilis	-10(2+1)	ae	
	-16 (3 + 5)	ext. ae	
B. pumilus	-32 (5 + 3)	ae	
E. dissolvens	-8 (5 + 3)	ae	
	+1 (2 + 3)	ae-an	
B. amyloliquefaciens	-39 (2 + 1)	ae	
B. licheniformis	-8 (10 + 1)	ae	
	–10 (11 + 5)	ext. ae	
	–1 (1 + 6)	ae-an	
B. megaterium	-2 (6 + 1)	ae	
	-9 (8 + 5)	ext. ae	
	-18 (1 + 3)	ae-an	
R. pyridinivorans	+5 (2 + 1)	ae	
	-10	ext. ae	
	-4 (9 + 3)	ae-an	
B. amyloliquefaciens	–12 (2 + 1)	ae	
	–11 (9 + 5)	ext. ae	
	-5 (0 + 6)	ae-an	

Table 3 Ultimate additive net solids solubilization (ANS%) on COD basis of black water solids at given conditions (standard deviation of substrate with additive plus standard deviation of the substrate without additive between brackets; significant ANS% in bold)

(continued)

Table 3 (continued)

Additive	ANS%	Redox	Additive material type and dosage
	(st. dev. %)	condition	
P. denitrificans	–17 (7 + 1)	ae	
	+4 (0 + 6)	ae-an	
B. pumilus	–11 (2 + 1)	ae	
	–16 (3 + 5)	ext. ae	
	-6 (1 + 6)	ae-an	
Microorganisms live:			
Eerbeek granular sludge	-25	an	Mainly organic solids (live)
+ digested cow manure			Dosage 12 g VSS + 1.2 g VS/L black water
Bennekom MWTP	-25	ae	Mainly organic solids (live)
activated sludge			Dosage 450 mg VSS/L black water
Microorganisms mixes:			
Mix A	–13 (6 + 3)	ae-an	Mainly organic solids (spores/bran)
Mix B	-2 (1 + 3)	ae-an	Dosage 1 g/L black water
Mix C	+2 (1 + 3)	ae-an	
Faeces extracts:			
domestic goat	+1 (1 + 0)	ae-an	Mainly organic liquid
ring tail lemur	+2 (1 + 0)	ae-an	Dosage 10 ml faeces extract/L black
African elephant	–1 (1 + 0)	ae-an	water
Bennett's wallaby	0 (0 + 0)	ae-an	
Bactrian camel	+1 (1 + 0)	ae-an	
Chapman's zebra	0 (1 + 0)	ae-an	
Rothschild's giraffe	-1 (0 + 0)	ae-an	
domestic yak	-7 (0 + 0)	ae-an	
llama	+4 (0 + 0)	ae-an	
red panda	-6 (1 + 0)	ae-an	

 Table 4
 Solids hydrolysis percentage at different gas phase redox conditions, initial pH, temperature, or water content in batch (standard deviation between brackets)

Substrate type Applied condition	Varied condition	Run time (days)	% solids solubilization
Black water	Aerobic	21	82.3
At 30°C, pH 7	Aerobic + anaerobic	169	55.8 (3)
Black water	рН 5	169	25.3 (1)
Aerobic + anaerobic	pH 7	169	55.8 (3)
at 30°C	pH 9	169	65.3 (2)
Black water	20°C	160	62.7 (0)
Aerobic + anaerobic, pH 7	37°C	169	66.6 (1)
Faeces and water	Faeces 1 : Water 0	158	8.60 (9)
Aerobic + anaerobic, pH 7, 30°C	Faeces 1 : Water 1	158	10.9 (2)
	Faeces 1 : Water 3	158	6.11 (4)

Table 5 End pit fill heights and	COD	of simulation	pit latrines
----------------------------------	-----	---------------	--------------

Additive type	Blank	Mix A	Mix B	Mix C	Product 4	Air
Pit no.	1/2	3	4	5	6	7
End pit height (cm)	19.5/18.5	20.5	19.5	19.5	18.5	14.0
COD removed (%)	4.4/5.8	2.2	0.8	3.2	7.6	10.5

,				
Sample height (cm)	COD _{total} (g/kg)	COD _{soluble} (g/kg)	COD _{vfa} (g/kg)	рН (–)
14.6	369	119	64.2	6.50
10	355	118	65.8	6.48
7	351	124	70.5	6.35
Total mixed sample	359	119		

Table 6 COD_{total}, COD_{soluble}, COD_{VFA}, and pH in blank pit latrine at different heights from the bottom at day 129

and acidification (COD_{VFA}) were higher and the pH decreased slightly, whereas the COD_{total} decreased as the sample came from lower down in the simulation pit holding the first loaded material. This indicates that hydrolysis and further degradation proceed over time within the pit latrine when the substrate is covered with new substrate.

In the simulation pit latrines, crusts on the surface of the faeces were formed. In the aerated pit the crusts did not disappear when a new layer of faeces was added. This will likely hamper the mobility of bacteria, degassing, and mass transfer. Therefore, the speed and strength of crust formation were measured on faeces. After crust formation, the faeces was covered with water or new faeces and the stability of the intermediate crust was measured (Table 7).

The formation of crusts on faecal matter takes place within three to five hours. The crust is dry to the touch (tested with gloves on) after four hours. The crusts show a few shrinkage cracks. Crusts covered with water for 15 minutes softened the previously formed crust by 47 per cent. This simulates faeces crusts coming into contact with urine. It is unlikely that urine will cover faeces for 15 minutes; more probably it will run off and seep through fissures and cracks in a real pit latrine. The covering with fresh faeces for 4.75 hours softened the previously formed crust by 8.5 per cent. This is a simulation of faeces crusts covered with new faeces. The speed of formation and persistence of crusts indicate that the mixing and contact possibilities of additives in a real pit latrine would not be positive unless the additive is motile with some force and it does not run off the substrate.

The mixing and temperature conditions in the batch tests were applied for fast conversions. The liquid nature of the black water substrate allowed easy mass and additive transport. The conditions in a real pit latrine are likely to lead to slower conversion rates and may result in a lower ultimate extent of conversion.

Different types of microorganisms are involved in the complete anaerobic digestion of converting biodegradable solids into biogas. In our experiments, the degree of solids hydrolysis and ANS% was consistently found not to be dependent on methane production (see results in Appendix A). In other words, accumulation of hydrolysis (waste) products such as mono- and oligomers or VFAs did not influence the extent of the hydrolysis. The pH in our experiments remained between 6.8 and 7.2. The effect of pH and VFAs on the hydrolysis of organic solid waste was investigated by Veeken et al. (2000). They found that a VFA concentration of up to 30 g/L, dissociated or not, did not affect the hydrolysis rate, but the pH, tested between 5 and 7, did.

in brackets)			
Time (hours)	Puncture force (mN)	Puncture force of intermediate crust after H ₂ O coverage (mN)	Puncture force of intermediate crust after faeces coverage (mN)
0	0		
1.4	0		
3	126 (39.8)		
5	154 (13.4)		
21.3	639 (48.6)	338 (29.3)	585 (26.1)

Table 7 Average puncture force (crust strength) of faeces over time, measured 10 times, and after coverage with water or new faeces, measured in five fold (standard deviation (%) in brackets)

The tested additives and additive mixes either had no effect or had only a very small effect on the hydrolysis of solids in batch experiments, nor did they reduce COD and pit fill height in simulation pit latrines compared with the natural activity of the waste under fairly favourable controlled laboratory conditions. Aeration did enhance COD removal and evaporation and reduced pit fill height in a simulation pit latrine. These findings are in line with the results of Buckley et al. (2008) regarding COD removal and pit fill height reduction by bio-additives, both in lab experiments and in field trials.

Conclusions

The negative or meagre solid hydrolysis (ANS%) results, the lack of height reduction and the resulting filling space increase in simulation pit latrines, and the crust formation on the substrate under favourable lab conditions compared with conditions in real pit latrines make additives unlikely candidates for solving pit fill problems. Our results show that additives mainly act as extra substrate in the pit or even hinder solids hydrolysis.

Physical chemical environment control of the substrate offers greater promise in terms of enhancing faecal solids breakdown, in particular extended aeration compared with anaerobic redox conditions, and raising the initial pH to around 9 compared with the naturally occurring pH.

Acknowledgments

This paper is dedicated to the memory of Dr Jeroen Ensink, our friend and colleague. This research was supported by a grant to the London School of Hygiene and Tropical Medicine from the Bill & Melinda Gates Foundation.

The additives were donated by several companies, Ouwehand Zoo (Rhenen, the Netherlands), and Frederick Salukele, who collected and transported Tanzanian roadside dirt. The black water substrate was donated by the DESAR test facility site in Sneek (the Netherlands) and the faeces by volunteers.

Average COD _{solids} , COD _s tests with black water so	_{oluble} , COD _C	_{IH} , and COE r given conc	002 results in ditions, with	n mg O h and	² /L and u without a	ltimate idditive	ANS% (³ s (stand	*unless state ard deviatio	d differen n between	tly) of the s 1 brackets)	creening
Additive	Redox	COD soluble	Ξ	me = 0		COD_{0_2}	COD_{CH_4}	COD _{soluble} +		Time = x	
	condition	mgO ₂ /L	COD _{solids} mgO ₂ /L	Run Days	COD _{soluble} mgO ₂ /L	mgO ₂ /L	mgO ₂ /L	$COD_{O_2} + COD_{CH_4}$ COD_{CH_4} mgO_2/L	$COD_{hydrolized}$ mgO_2/L	$\begin{array}{l} COD_{hydrolized} \\ of \ COD_{solids} \\ t = 0 \ \% \end{array}$	ANS%
		А	В		υ	D	E	F	U	Н	-
None	ae-an⁺	3686 (44)	4001 (60)	87	4930	414	337	5681 (129)	1995	50	0 (2)
Tanzanian roadside	ae-an	3663 (81)	4001 (60)	87	735	409	4090	5234 (48)	1571	39	-11 (1)
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
Perlite EMP1	ae-an	1786 (44)	4524 (55)	93	1014	425	2597	4036 (300)	2250	50	0 (7)
None	ae-an	3686 (44)	4001 (60)	87	4930	414	337	5681 (129)	1995	50	0 (2)
Dutch roadside	ae-an	3621 (17)	4001 (60)	87	784	408	4105	5297 (91)	1676	42	-8 (2)
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
Talcum 30/80	ae-an	1820 (96)	4524 (55)	93	1035	436	2714	4185 (16)	2365	52	+3 (0) ns
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
Diatobon TGM	ae-an	1766 (37)	4524 (55)	93	978	431	2725	4134 (100)	2368	52	+3 (2) ns
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
Product 1	ae-an	1815 (19)	5524 (55)	93	1383	425	3094	4902 (122)	3087	56	+6 (2) ns
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
Product 2	ae-an	2023 (74)	5524 (55)	93	1522	433	3088	5043 (61)	3020	55	+5 (1) ns
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
Product 3	ae-an	1790 (44)	5524 (55)	93	1029	440	2749	4218 (24)	2428	44	-6 (1)
None	ae-an	3397 (42)	3637 (183)	169	1138	399	3889	5426 (160)	2029	56	0 (3)
Product 4	ae-an	3822 (59)	4637 (183)	169	1100	396	4483	5979 (211)	2157	47	-9 (4)
None	an	2264 (16)	4589 (46)	21*	3521	00	260	3781 (19)	1517	33	0 (1)
Amylase	an	2351 (17)	4589 (46)	21*	3437		264	3701 (21)	1350	29	-4 (1)
											continued)

Waterlines Vol. 37 No. 3

Appendix A

Appendix A (continu	(pər										
Additive	Redox	COD soluble	Ξ.	me = 0		COD ₀₂	COD _{CH4}	COD _{soluble} +		Time = x	
	condition	mgO ₂ /L	COD _{solids} mgO ₂ /L	Run Days	COD _{soluble} mgO ₂ /L	mgO ₂ /L	mgO ₂ /L	$COD_{0_2} + COD_{CH_4}$ COD_{CH_4} mgO_2/L	COD _{hydrolized} mgO ₂ /L	$\begin{array}{l} \text{COD}_{\text{hydrolized}} \\ \text{of COD}_{\text{solids}} \\ t = 0 \ \% \end{array}$	ANS%
		А	В		υ	D	E	F	0	Н	-
None	an	2264 (16)	4589 (46)	21*	3521	0	260	3781 (19)	1517	33	0(1)
Protease	an	2361 (15)	4589 (46)	21*	3484	0	214	3698 (0)	1337	29	-4 (0)
None	an	2264 (16)	4589 (46)	21*	3521	0	260	3781 (19)	1517	33	0 (1)
Hemicellulase	an	2371 (24)	4589 (46)	21*	3511	0	272	3783 (74)	1412	31	-2 (2)
None	an	2264 (16)	4589 (46)	21*	3521	0	260	3781 (19)	1517	33	0 (1)
Lipase	an	2301 (5)	4589 (46)	21*	3437	0	259	3696 (25)	1395	30	-3 (1)
None	an	2264 (16)	4589 (46)	21*	3521	0	260	3781 (19)	1517	33	0 (1)
Cellulase complex	an	2359 (50)	4589 (46)	21*	3560	0	278	3838 (126)	1479	32	-1 (3)
None	an	2264 (16)	4589 (46)	21*	3521	0	260	3781 (19)	1517	33	0 (1)
Pectate lyase	an	2292 (16)	4589 (46)	21*	3465	0	265	3730 (95)	1438	31	-2 (3)
None	an	2264 (16)	4589 (46)	21*	3521	0	260	3781 (19)	1517	33	0 (1)
mix of the above enzymes	an	2550 (21)	4589 (46)	21*	3681	0	214	3895 (24)	1345	29	-4 (1)
None	ae	1577 (78)	4819 (200)	70	995	4294	0	5289 (255)	3712	77	0 (5)
Blend of 4 fungi	ае	1672 (71)	5819 (200)	70	1153	4877	0	6030 (537)	4358	75	-2 (9)
None	ае	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
R. erythropolis	ае	2303 (16)	5410 (109)	21	728	4194	0	4922 (227)	2619	48	-23 (5)
None	ae	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
P. monteilii	ае	2352 (39)	5410 (109)	21	652	4463	0	5115 (248)	2763	51	-20(5)
None	ae	1577 (78)	4819 (200)	23	695	4040	0	4735 (66)	3158	99	0 (1)
B. amyloliquefaciens	ае	1948 (104)	5819 (200)	23	843	4689	0	5532 (154)	3584	62	-4 (3)
None	ext.ae	1577 (78)	4819 (200)	70	995	4294	0	5289 (255)	3712	77	0 (5)
B. amyloliquefaciens	ext.ae	1948 (104)	5819 (200)	70	820	4906	0	5726 (80)	3778	65	-12 (2)
None	ае	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
B. amyloliquefaciens	ае	2823 (70)	5410 (109)	21	1237	3012	0	4249 (124)	1426	26	-45 (3)
										C	continued)

6
3
-
2)
5
-
4
<u> </u>
- :
\sim
ŝ
ŝ
e)
-
<u> </u>
D.
<
<u>`</u>
<u> </u>
Γ
-
2
7
~
\sim
¥
9
-
23
\sim
6
<u> </u>
Ξ
<u>ನ</u>
(1
ດ້
1
1
÷
e
р
ц
5
ž
~
ĭ ≓
2
5
. સ
5
õ
e)
n
H
÷.,
1
_
01
00
000
-0001
8-0001
18-0001
.18-0001
8.18-0001
88.18-0001
488.18-0001
3488.18-0001
5-3488.18-0001
6-3488.18-0001
56-3488.18-0001
756-3488.18-0001
1756-3488.18-0001
2/1756-3488.18-0001
52/1756-3488.18-0001
362/1756-3488.18-0001
3362/1756-3488.18-0001
.3362/1756-3488.18-0001
0.3362/1756-3488.18-0001
10.3362/1756-3488.18-0001
7/10.3362/1756-3488.18-0001
If/10.3362/1756-3488.18-0001
odf/10.3362/1756-3488.18-0001
/pdf/10.3362/1756-3488.18-0001
i/pdf/10.3362/1756-3488.18-0001
oi/pdf/10.3362/1756-3488.18-0001
'doi/pdf/10.3362/1756-3488.18-0001
$\eta/doi/pdf/10.3362/1756-3488.18-0001$
m/doi/pdf/10.3362/1756-3488.18-0001
om/doi/pdf/10.3362/1756-3488.18-0001
com/doi/pdf/10.3362/1756-3488.18-0001
f.com/doi/pdf/10.3362/1756-3488.18-0001
Jf.com/doi/pdf/10.3362/1756-3488.18-0001
nelf.com/doi/pdf/10.3362/1756-3488.18-0001
shelf.com/doi/pdf/10.3362/1756-3488.18-0001
cshelf.com/doi/pdf/10.3362/1756-3488.18-0001
okshelf.com/doi/pdf/10.3362/1756-3488.18-0001
ookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
ookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
tbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
ntbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
entbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
nentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
mentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
pmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
opmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
slopmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
velopmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
svelopmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
levelopmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
. development book shelf. com/doi/pdf/10.3362/1756-3488.18-0001
w.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
vw.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
ww.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
www.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
/www.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
://www.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
s://www.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
ps://www.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
ttps://www.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001
https://www.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-0001

\frown
0
Ū.
-
2
-
2
-
0
U U
· ·
\sim
<u> </u>
Ā
Ā
× A (
lix A (
dix A (
ndix A (
endix A (
endix A (
pendix A (
ppendix A (
Appendix A (

Additive	Redox	COD soluble	Tin	ne = 0			COD_{CH_4}	COD _{soluble} +		Time = x	
	condition	mg0 ^z /L	COD _{solids} mgO ₂ /L	Run Days	COD _{soluble} mgO ₂ /L	mgO ₂ /L	mgO ₂ /L	$COD_{O_2} + COD_{CH_4}$ COD_{CH_4} mgO_2/L	COD _{hydralized} mgO ₂ /L	$\begin{array}{l} COD_{hydrolized} \\ of \ COD_{solids} \\ t = 0 \ \% \end{array}$	ANS%
		А	В		υ	D	E	F	J	н	_
None D nantotronbus	ae	1577 (78) 1609 (52)	4819 (200) 5819 (200)	23	695 769	4040	00	4735 (66) 5701 (304)	3158 4182	66 77	0 (1)
None	extae	1577 (78)	4819 (200)	20Z	995	4294		5289 (255)	3712	77	0 (5)
P. pantotrophus	ext.ae	1609 (52)	5819 (200)	20	785	5477	0	6262 (529)	4653	80	+3 (8) ns
None	ae-an	3686 (44)	4001 (60)	87	4930	414	337	5681 (129)	1995	50	0 (2)
P. pantotrophus	ae-an	3709 (21)	5001 (60)	87	1169	415	4666	6199 (84)	2490	50	0 (1)
None	ае	1577 (78)	4819 (200)	23	695	4040	0	4735 (66)	3158	99	0 (1)
B. subtilis	ае	2027 (105)	5819 (200)	23	951	4323	0	5274 (127)	3247	56	-10 (2)
None	ext.ae	1577 (78)	4819 (200)	70	995	4294	0	5289 (255)	3712	77	0 (5)
B. subtilis	ext.ae	2027 (105)	5819 (200)	70	887	4713	0	5600 (163)	3573	61	-16 (3)
None	ae	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
B. pumilus	ае	2863 (31)	5410 (109)	21	1306	3698	0	5004 (241)	2141	40	-32(5)
None	ae	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
E. dissolvens	ае	2324 (21)	5410 (109)	21	717	5050	0	5767 (295)	3443	64	-8 (5)
None	ae-an	3686 (44)	4001 (60)	87	4930	414	337	5681 (129)	1995	50	0 (2)
E. dissolvens	ae-an	3784 (28)	5001 (60)	87	1986	407	3902	6295 (125)	2511	50	0 (2)
None	ae	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
B. amyloliquefaciens	ае	2752 (63)	5410 (109)	21	1125	5050	0	4519 (100)	1767	33	-39 (2)
None	ае	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
B. licheniformis	ae	2782 (57)	5410 (109)	21	979	5670	0	6649 (357)	3867	71	0 (5)
None	ext.ae	1577 (78)	4819 (200)	70	995	4294	0	5289 (255)	3712	77	0(5)
B. licheniformis	ext.ae	2120 (74)	5819 (200)	70	885	5143	0	6028 (669)	3908	67	-10 (11)
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
B. licheniformis	ae-an	2259 (80)	5524 (55)	93	2315	440	2189	4944 (25)	2685	49	-1 (1)
)	continued)

RESEARCH ARTICLE: EFFICIENCY OF ADDITIVES FOR PIT LATRINE EXTENSION 223

Additive	Redox	COD soluble	Τi	ne = 0		COD_{O_2}	COD _{CH4}	COD soluble +		Time = x	
	condition	mg0 ₂ /L	COD _{solids} mgO ₂ /L	Run Days	COD _{soluble} mgO ₂ /L	mgO ₂ /L	mgO ₂ /L	$COD_{O_2} + COD_{CH_4}$ COD_{CH_4} mgO_2/L	COD _{hydrolized} mgO ₂ /L	$\begin{array}{l} \text{COD}_{hydrolized} \\ of \ \text{COD}_{solids} \\ t = 0 \ \% \end{array}$	ANS%
		А	В		U	D	E	F	0	Н	-
None	ae	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
B. megaterium	ae	2626 (24)	5410 (109)	21	778	5561	0	6339 (291)	3713	69	-3 (5)
None	ext.ae	1577 (78)	4819 (200)	70	995	4294	0	5289 (255)	3712	77	0 (5)
B. megaterium	ext.ae	1996 (109)	5819 (200)	70	750	5199	0	5949 (502)	3953	68	-9 (8)
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
B. megaterium	ae-an	2084 (61)	5524 (55)	93	1505	436	3015	4956 (47)	2872	52	+2 (1) ns
None	ae	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
R. pyridinivorans	ae	2353 (22)	5410 (109)	21	885	5608	0	6493 (140)	4140	77	+5 (2) s
None	ext.ae	1577 (78)	4819 (200)	70	995	4294	0	5289 (255)	3712	77	0 (5)
R. pyridinivorans	ext.ae	1709 (45)	5819 (200)	70	684	4921	0	5605	3896	67	-10
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
R. pyridinivorans	ae-an	1981 (63)	5524 (55)	93	1650	442	2879	4971 (186)	2990	54	+4 (4) ns
None	ae	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
B. amyloliquefaciens	ае	2481 (25)	5410 (109)	21	941	5219	0	6160 (40)	3679	68	-3 (1)
None	ext.ae	1577 (78)	4819 (200)	70	995	4294	0	5289 (255)	3712	77	0 (5)
B. amyloliquefaciens	ext.ae	1837 (50)	5819 (200)	70	1209	4445	0	5654 (498)	3817	66	-11 (9)
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
B. amyloliquefaciens	ae-an	2115 (33)	5524 (55)	93	2364	433	1791	4588 (18)	2473	45	-5 (0)
None	ae	2244 (16)	4410 (109)	21	653	4731	0	5384 (80)	3140	71	0 (1)
P. denitrificans	ае	2796 (125)	5410 (109)	21	1098	4631	0	5729 (405)	2933	54	-17 (7)
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
P. denitrificans	ae-an	2175 (53)	5524 (55)	93	4441	434	240	5115 (13)	2940	53	+4 (0) ns
None	ae	1577 (78)	4819 (200)	23	695	4040	0	4735 (66)	3158	66	0 (1)
B. pumilus	ae	2240 (48)	5819 (200)	23	1003	4388	0	5391 (119)	3151	54	-11 (2)

Appendix A (continued)

(continued)

Appendix A (continu	(pər										
Additive	Redox	COD soluble	Τi	ne = 0		COD_{o_2}	COD_{CH_4}	COD _{soluble} +		Time = x	
	condition	mgO _z /L	COD _{solids} mgO ₂ /L	Run Days	COD _{soluble} mgO ₂ /L	mg0 ₂ /L	mgO_2/L	$COD_{O_2} + COD_{CH_4}$ COD_{CH_4} mgO_2/L	COD _{hydrolized} mgO ₂ /L	$\begin{array}{l} COD_{hydrolized} \\ of \ COD_{solids} \\ t = 0 \ \% \end{array}$	ANS%
		A	В		U	D	E	F	U	н	-
None	ext.ae	1577 (78)	4819 (200)	70	995	4294	0	5289 (255)	3712	77	0 (5)
B. pumilus	ext.ae	2240 (48)	5819 (200)	70	983	4824	0	5807 (176)	3567	61	-16 (3)
None	ae-an	1858 (32)	4524 (55)	93	1585	442	2080	4107 (242)	2249	50	0 (6)
B. pumilus	ae-an	2462 (70)	5524 (55)	93	2167	441	2255	4863 (33)	2410	43	-6 (1)
None	an	2830	3192	39	4179	0	556	4735	1905	60	0
Live anaerobe	an	3320	4432	35	993	0	3857	4850	1530	35	-25
None	ае	3561	2947	14	1131	5054	0	6185	2624	89	0
Live aerobe	ae	3389	3397	14	667	4900	0	5567	2178	64	-25
None	ae-an	3397 (42)	3637 (183)	169	1138	399	3889	5426 (160)	2029	56	0 (3)
Mix A	ae-an	3717 (56)	4637 (183)	169	1176	412	4111	5699 (335)	1982	43	-13 (6)
None	ae-an	3397 (42)	3637 (183)	169	1138	399	3889	5426 (160)	2029	56	0 (3)
Mix B	ae-an	3613 (48)	4637 (183)	169	1197	400	4502	(92) 6609	2486	54	-2 (1)
None	ae-an	3397 (42)	3637 (183)	169	1138	399	3889	5426 (160)	2029	56	0 (3)
Mix C	ae-an	3749 (46)	4637 (183)	169	1206	397	4805	6408 (55)	2659	57	+2 (1) ns
None	ae-an	2780 (63)	4149 (103)	89	1038	406	3081	4525 (9)	1745	42	0 (0)
goat	ae-an	2703 (34)	4149 (103)	89	884	399	3197	4480 (43)	1777	43	+1 (1)
None	ae-an	2780 (63)	4149 (103)	89	1038	406	3081	4525 (9)	1745	42	0 (0)
ring tail lemur	ae-an	2666 (13)	4149 (103)	89	858	402	3309	4569 (45)	1903	46	+2 (1) s
None	ae-an	2780 (63)	4149 (103)	89	1038	406	3081	4525 (9)	1745	42	0 (0)
African elephant	ae-an	2696 (33)	4149 (103)	89	861	400	3141	4402 (49)	1706	41	-1 (1)
None	ae-an	2780 (63)	4149 (103)	89	1038	406	3081	4525 (9)	1745	42	0 (0)
wallaby	ae-an	2696 (60)	4149 (103)	89	865	392	3202	4459 (15)	1763	42	0 (0)
None	ae-an	2780 (63)	4149 (103)	89	1038	406	3081	4525 (9)	1745	42	0 (0)
Bactrian camel	ae-an	2771 (6)	4149 (103)	89	892	397	3269	4558 (36)	1787	43	+1 (1)
										C	continued)

Appendix A (continu	ied)										
Additive	Redox	COD soluble	il.	ne = 0		COD ₀₂	COD _{CH4}	COD _{soluble} +		Time = x	
	condition	mgO ₂ /L	COD _{solids} mgO ₂ /L	Run Days	COD _{soluble} mgO ₂ /L	mgO ₂ /L	mgO ₂ /L	$COD_{02} + COD_{CH_4}$ COD_{CH_4} mgO_2/L	COD _{hydrolized} mgO ₂ /L	$\begin{array}{l} \text{COD}_{\text{hydrolized}} \\ \text{of COD}_{\text{solids}} \\ t = 0 \ \% \end{array}$	ANS%
		А	В		υ	D	E	F	5	н	-
None	ae-an	2780 (63)	4149 (103)	89	1038	406	3081	4525 (9)	1745	42	0 (0)
zebra	ae-an	2722 (69)	4149 (103)	89	868	410	3190	4468 (57)	1746	42	0 (1)
None	ae-an	2780 (63)	4149 (103)	89	1038	406	3081	4525 (9)	1745	42	0 (0)
giraffe	ae-an	2766 (53)	4149 (103)	89	873	404	3191	4468 (16)	1702	41	-1 (0)
None	ae-an	3686 (44)	4001 (60)	87	4930	414	337	5681 (129)	1995	50	0 (2)
yak	ae-an	3694 (85)	4001 (60)	87	865	402	4121	5398 (25)	1704	43	-7 (0)
None	ae-an	2780 (63)	4149 (103)	89	1038	406	3081	4525 (9)	1745	42	0 (0)
Ilama	ae-an	2720 (17)	4149 (103)	89	931	410	3318	4659 (20)	1939	47	+4 (0) s
None	ae-an	3686 (44)	4001 (60)	87	4930	414	337	5681 (129)	1995	50	0 (2)
red panda	ae-an	3694 (54)	4001 (60)	87	868	412	4158	5438 (60)	1744	44	-6 (1)
Notes: ¹ Redox condition: at * Conversion not ultimate bi ⁶ A positive ANS% of an addit marked with s). If not, it is cor Live anaerobe = Bennekom MW Column A = 0.45 µm pore si Column B = COD soluts = COD Column B = COA produced in Column F = CH ₄ produced in Column F = CH ₄ produced in Column H = 100 × (G/B) Column I = ANS% = (H of bo	e = aerobic; a ut limited to ive is significa sidered 'not vTP activated ze membrar ze membrar ithe gas phi the gas phi ottle with add	the anaerobi ±20 days. Th ant when it ex significant' (r naerobic gran d aerobic sluc the filtrate COI ate - 0.45 µm ate - 0.45 µm ate of the bat ase of the bat ase of the bat ase of the bat	c; ae-an = init e extended ae ceeds the surr ceeds the surr s). Negative A ullar sludge + Jge. D measureme D measureme Ch bottle t = > cch bottle t = > cch bottle t = >	ially aer in of the s of the survey digeste mbrann smbrann s, gas p s, gas p s, gas p o, addit	obic ± day. ssts were le standard de tits are not t acc now maa sd cow maa atch bottle ressure and ressure and ressure and	s followe eft to reac aken into aken into nure. Content i content i asured, c asured, c	d by anae th the ultiin account s account s i = 0 i = 0 i = 1 i = x account s i = 0 i = 1 i = 1	robic; ext.ae - mate convers e' (blank) ANS ince they did 0 0 1 n _{o2} via gas la measured, ca	= aerobic ulti ion. % and the ac not demonst not demonst aw, t = x lculation n _{cr}	imate conver dditive ANS% rate usefulnes , via gas law,	sion. (results :s. t = x

https://www.developmentbookshelf.com/doi/pdf/10.3362/1756-3488.18-00011 - Tuesday, November 12, 2019 2:16:48 AM - IP Address:2.141.75.139

Input and end COD total	and soluble, TS, and	d VS concentratio	ons, COD remova	l, weights, and pi	it heights of simu	lation pit latrines
(no standard deviation –	all pits were run as	singles, except fo	or the blanks, pits	: 1 and 2)		
Additive type	Blank/blank	Mix A	Mix B	Mix C	Commercial product 4	Air
Cum. load faeces (g)	1158/1156	1163	1159	1162	1158	1157
Additive donations	0/0	3 x 0.1 g	3 x 0.1 g	3 x 0.1 g	3 x 0.1 g	60 ml air/d
(Weight loss =)						
Cum. evaporation (g)	147/183	155	153	170	204	365
End pit height (cm)	19.5/18.5	20.5	19.5	19.5	18.5	14
Input TS (g/kg)	203/203	203	203	203	203	203
Input VS (g/kg)	173/173	173	173	173	173	173
End TS (g/kg)	197/199	199	197	204	198	296
End VS (g/kg)	157/154	158	162	164	162	236
End VS/TS	0.80/0.77	0.79	0.82	0.80	0.82	0.80
Input COD _{total} (g/kg)	328/328	328	328	328	328	328
Input COD (g/kg)	81/81	81	81	81	81	81
End COD _{fortal} (g/kg)	359/367	370	375	372	368	429
End COD soluble (g/kg)	119/115	117	111	100	109	79
COD mass balance						
COD _{total} input (g/pit)	380/379	382	380	381	380	380
COD _{total} end (g/pit)	363/357	373	377	369	351	340
COD removed (g/pit)	17/22	6	3	12	29	40
COD removed (%)	4.4/5.8	2.2	0.8	3.2	7.6	10.5

Appendix B

References

Abay, G.K. (2010) 'The impact of low cost sanitation on groundwater contamination in the city of Addis Ababa', PhD thesis, University of South Africa.

APHA (2005) *Standard Methods for the Examination of Water and Wastewater*, 21st edn, American Public Health Association (APHA), Washington DC.

Buckley, C.A., Foxon, K.M., Brouckaert C.J., Rodda, N., Nwaneri, C., Balboni, E., Couderc, A. and Magagna, D. (2008) 'Scientific support for the design and operation of ventilated improved pit latrines (VIPs) and the efficacy of pit latrine additives', WRC report TT 357/08, Water Research Commission (WRC), Pretoria.

Cave, B. and Kolsky, P. (1999) 'Groundwater, latrines and health', WELL Study Task 163, London School of Hygiene and Tropical Medicine and WEDC, Loughborough University, London and Loughborough.

de Graaff, M.S., Temmink, H., Zeeman G. and Buisman, C.J.N. (2011) 'Energy and phosphorus recovery from black water', *Water Science & Technology*. 63 (11): 2759–65 http://dx.doi.org/10.2166/wst.2011.558> [accessed 20 May 2018].

Fernandes, T.V., Keesman, K.J., Zeeman, G. and van Lier, J.B. (2012) 'Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin', *Biomass and Bioenergy* 47: 316–23 https://doi.org/10.1016/j.biombioe.2012.09.029> [accessed 20 May 2018].

Graham, J.P. and Polizzotto, M.L. (2013) 'Pit latrines and their impact on groundwater quality: a systematic review', *Environmental Health Perspectives* 121 (5): 521–30 <http://dx.doi. org/10.1289/ehp.1206028> [accessed 20 May 2018].

Lin Lin, Chunli Wan, Xiang Liu, Duu-Jong Lee, Zongfang Lei, Yi Zang and Joo Hwa Tay (2013) 'Effect of initial pH on mesophilic hydrolysis and acidification of swine manure', *Bioresource Technology* 136: 302–8 http://dx.doi.org/10.1016/j.biortech.2013.02.106> [accessed 20 May 2018].

Lindeboom, R.E.F. (2014) 'Autogenerative high pressure digestion', PhD thesis, Wageningen University, the Netherlands.

Nwaneri, C.F., Foxon, K.M., Bakfare, B.F. and Buckley, C.A. (2008) 'Biological degradation processes within a pit latrine', WISA Conference, Sun City, South Africa, 19–22 May.

Still, D.A. (2002) 'After the pit is full ... what then? Effective options for pit latrine management', WISA Conference, Durban, South Africa, 19–23 May.

Torondel, B. (2010) 'Literature review: on-site sanitation waste characteristics', Workstream 2, London School of Hygiene and Tropical Medicine, London.

Veeken, A., Kalyuzhnyi, S., Scharff, H. and Hamelers, B. (2000) 'The effect of pH and VFA on the hydrolysis of organic solid waste', *Journal of Environmental Engineering* 126 (12): 1076–81 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:12(1076) [accessed 20 May 2018].

WHO (n.d.) 'Fact sheet 3.4: simple pit latrines', World Health Organization (WHO), Geneva. Available from: http://www.who.int/water_sanitation_health/hygiene/emergencies/fs3_4.pdf [accessed 20 May 2018].