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Abstract. In addition to the direct effect of insecticide-treated nets (ITNs), there has been evidence for spatial indirect
effects. Spatial analyses in cluster randomized trials (CRTs) are rare, but a large-scaleCRT from1993wasoneof thefirst to
conduct a spatial analysis of ITNs in CRTs. We revisit these data by applying a broader range of contemporary spatial
methods to further explore spatial spillover. We conducted three analyses: 1) exploratory spatial analysis, considering
spatial patterns and spillover in the data; 2) spatialmodeling, estimating the intervention effect considering spatial effects;
and 3) analysis of distance-based spillover and interaction with the intervention, characterizing the functional distance
over which the spillover effect was present. There were consistent indications of spatial patterns from the exploratory
analysis. Bed nets were associated with a 17% reduction in all-cause mortality for children aged 6–59 months, and the
intervention estimate remained robust when allowing for the spatial structure of the data. There was strong evidence of a
spatial spillover effect: for every additional 100 m that a control household was from an intervention household (and
vice versa), the standardized mortality ratio (SMR) increased by 1.7% (SMR 1.017, 95% credible interval 1.006–1.026).
Despite evidence of a spatial spillover effect, the conclusions of the trial remain unaffected by spatial model specifica-
tions. Use of ITNs was clearly beneficial for individuals, and there was compelling evidence that they provide an indirect
benefit to individuals living nearby. This article demonstrates the extra utility that spatial methods can provide when
analyzing a CRT.

INTRODUCTION

A series of cluster randomized trials (CRTs) carried out two
decades ago in endemic areas in Africa demonstrated strong
evidence that insecticide-treated bed nets (ITNs) can reduce
child mortality.1–5 For instance, a large-scale CRT of ITNs in
the Kassena-Nankana (Navrongo) district of northern Ghana
found a 17% reduction in all-cause child mortality in children
aged 6 months to 4 years (standardized mortality ratio [SMR]
0.83, 95% CI: 0.69–1.00).3 The CRT began in July 1993 and
provided 31,000 ITNs to intervention participants in 48 geo-
graphically defined polygon clusters. From a meta-analysis
of all the CRTs involving ITNs, the average reduction in all-
cause mortality was estimated to be 18% (RR: 0.82, 95%CI:
0.76–0.89).6

In addition to the direct effect, there was evidence for pos-
itive spillovers, or spatial indirect effects.6–8 Using data from
the Navrongo CRT, a subsequent study by Binka et al.9 found
reductions in mortality among individuals without ITNs who
lived close to individuals who did. From a recent systematic
review, this example of positive spillover was found to be the
first evidence of a spatial indirect effect of the bed net inter-
vention, in addition to the direct effect that ITNs had in re-
ducing mortality for those using them.10 Binka et al. used
information on household location to gain insight into spatial
indirect effects. Subsequent analyses have also demon-
strated positive spillover with ITNs,5,7,8,11,12 although at least
one study failed to find evidence of spatial indirect effects.13

The approach to estimating the spatial indirect effect used
by Binka et al.9 was novel at the time, but in subsequent years,
the emergence of a subdisciplinary focus on spatial epide-
miology has led to abroader rangeof applicablemethods.14,15

The specification of new spatial models, particularly in light of
the continued growth of computational capacity, and refine-
ment of optimization methods have made advanced spatial
regression approaches tractable. In this article, we revisit the
Kassena-Nankana CRT using contemporary spatial methods
to explore the existence of positive spillovers, estimate the
spatial indirect effects, and consider their impact, if any, on the
overall trial conclusions.
To theauthors’ knowledge, this article presents the first time

that many of these methods have been applied to a CRT. In
addition, we propose a new method called cluster realloca-
tion, which allows trialists to consider if spatial spillover is
present in a CRT. As well as demonstrating the application of
contemporary spatial methods, this enhanced and extended
reanalysis demonstrates the additional utility of collecting
GPS coordinates during trials. We argue that beyond being a
useful resource for trial management or for mapping trial
context, an explicit analysis of location can yield important
additional information about the functioning of particular in-
terventions in CRTs.

MATERIALS AND METHODS

Study. The trial was conducted between July 1993 and June
1995 in the Kassena-Nankana district in the Upper East
Region of Ghana. The study design has been described pre-
viously.3 In short, a parallel CRT with 96 geographically contig-
uous clusters (Figure 1) with an average of roughly 1,400 people
per cluster and an average of 124 compounds per cluster was
conducted. The intervention of permethrin-impregnated bed
netswas allocated to 48 clusters and the outcomewas all-cause
mortality in children aged 6 months to 4 years.
Data. The data contain one record per compound, with

variables for the location coordinates (WestingsandNorthings
projected in WGS 84/UTM zone 30 N), and the observed and
expected number of deaths per compound. As per Binka
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et al.,9 “The expected number of deaths for each cluster was
calculated by applying age-specific death rates derived from
preintervention population to the postintervention time at risk.”
Thedistance from intervention households to the nearest control
and vice versa, referred to as the distance to the discordant pair,
had been calculated previously.9 These distances were verified
by calculating the Euclidean distance based on the UTM coor-
dinates inQGIS2.18.1416 andR3.4.2.17 Theoutcome is anSMR
and was calculated by dividing the observed deaths in each
household by the expected number of deaths.
Statistical analyses. We conducted three broad sets of

analyses: 1) exploratory spatial analysis, considering spatial
patterns and spillover in the data; 2) spatial modeling, esti-
mating the intervention effect considering spatial effects; and
3) analysis of distance-based spillover and interactionwith the
intervention, characterizing the functional distanceoverwhich
the spillover effect was present. R 3.4.217 was used for all
statistical analyses with the following packages.18–31

Exploratory spatial analysis. We explored spatial pat-
terns in the intervention assignment through the use of a join
count statistic,32 and spatial correlation of the outcome was
assessedusingMoran’s I.33 Spatial heterogeneity of the effect
of bed nets over the study region was considered through the
use of geographically weighted regression (GWR).34 Evidence
of a spillover effect across cluster boundaries was assessed
using a novel method we developed called cluster realloca-
tion. The spatial patterns were also assessed visually through
the use of maps. To the extent of our knowledge, with the
exception of Moran’s I, this was the first time these methods
have been applied to a CRT.
The join count statistic was calculated to assess whether there

was a spatial pattern in treatment assignment. The join count
method assesses spatial correlation for binary variables and in-
volves counting all pairs of neighboring (Queen’s case) clusters in
the trial by type of adjacency: intervention–intervention, control–
control, or intervention–control.32 Neighbors were defined us-
ing Queen’s case where clusters that share a boundary or

vertex were considered neighbors. Using a hypothesis testing
framework, we then assessed whether the observed counts of
these three possible adjacencies in the trial deviate from the
expected counts based on a random pattern.33 Although the
allocation of intervention to clusters is based on a random
process, it could still result in a nonrandom spatial pattern. For
example, randomizationcould result in all control clusters being
in one area and all intervention clusters being in another area of
the study. In this case, the study area could be split into two
sections: an area with only intervention clusters present and an
area with only control clusters present; this may present issues
when trying to measure spatial effects as few intervention
clusters may border control clusters.
Moran’s I statistic was used to assess the presence of global

spatial autocorrelation in the SMRs at the cluster level.Moran’s
I is an extension of Pearson’s product–moment correlation into
two dimensions; it considers the strength of association and
the spatial lag over which it is present. TheSMRwas calculated
for each cluster, with a binary spatial weight matrix (Queen’s
case) used to represent the connectivity between clusters. The
spatial weight matrix takes a value of one if the clusters share a
boundary or vertex, and zero otherwise. Moran’s I was calcu-
lated for the whole study area, and for the control and in-
tervention clusters separately.Moran’s Iwas also calculated on
Pearson’s residuals from a multilevel model with a random ef-
fect (IID) for cluster and a fixed effect for intervention. The re-
siduals were aggregated to the cluster level, which calculates
Moran’s I adjusted for the intervention effect and the clustering.
P-values for Moran’s I were calculated using Monte Carlo

simulation. This was achieved through a permutation test
where the values for each cluster were shuffled to different
locations and the statistics recalculated. This process was
repeated many times and the observed value was compared
with the sampling distribution of the simulated values to test
for evidence of deviation from a random spatial pattern.
Spatial heterogeneity of the intervention estimates was ex-

ploredusingGWR.34Thismethod involvedapplyinga regression

FIGURE 1. Study area, spatial variation of standardized mortality ratio, and spatial heterogeneity of intervention effect from the geographically
weighted regression model. This figure appears in color at www.ajtmh.org.
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model to a spatial subset of the data (a neighborhood) and then
recording thecoefficientsof thatmodel; adifferentneighborhood
is then chosen and the model reapplied. This process was re-
peated over the entire study area to give one estimate of the
coefficient for each neighborhood. As is standard, the neigh-
borhood was a radius around each point. The distribution of the
coefficients was then explored visually on a map, helping to
determine sources of heterogeneity in the data. In situations
where data are spatially heterogeneous, GWR produces co-
efficient estimates that vary over space, indicating local areas of
departure from a global process. A Poisson regression model
without a random effect for cluster was used for the GWR.
To assess for the presence of spatial spillover, we developed a

new method called cluster reallocation, which considers how
changes in the definition of cluster boundaries affect the in-
tervention estimates of the trial. Cluster reallocation is a compu-
tationally intensivemethod that involves reallocating individuals to
either the intervention or control arm based on their proximity to
cluster boundaries. At each step, a model is applied to estimate
the intervention effect. In this analysis, clusters were dilated
(buffered) incrementally between 0m (original case: no change to
cluster) and 1,000 m in steps of 100 m. The process was carried
out independently for intervention and control clusters.
At each 100 m increment, households were reassigned to

intervention or control clusters, and the main trial model
refitted. In the absence of spillover, we hypothesized that as
the size of either control or intervention clusters grew, esti-
mates of the intervention effect would attenuate to the null as
differences between the intervention and control arms are
diluted. However, if alternatively, a spatial spillover is present,
thenwewould expect themagnitude of the intervention effect
estimate to increase over the functional distance of the spill-
over, as the intervention cluster is dilated.
Modeling spatial dependence. The main result of the

original trial article3 was replicated using a IID for cluster and a
fixed effect for the intervention. Three approaches were
considered for adjusting for spatial structure: a conditional
autoregressive model (CAR)35–37; a Besag, Yorke, and Mollie
model (BYM)38; and a Gaussian process model (GPm).39,40

The three spatial models were chosen for the different ways
they incorporate spatial dependency. The approaches differ by
whether they assume the underlying spatial process is discrete,
called a Gaussian Markov random field (GMRF), or continuous,
called a Gaussian process (GP). A GMRF is a collection of spa-
tially indexed randomvariableswith aMarkovproperty, where all
possible combinations of the random variables are multivari-
ate normally distributed (MVN).41 Gaussian Markov random
fields are commonly used when data are recorded for distinct
areas covering an entire region, such as clusters in aCRT. AGP
assumes that the spatial process isMVN, typically with a mean
of zero and a covariance function that incorporates distance;
therefore, changes in outcome due to the spatial process are a
function of distance. Gaussian processes are commonly used
when data are recorded for some points in an area and in-
formation ismissing in other locations, such as households in a
CRT.42 In classical spatial statistics, GMRFs refer to areal data
and GPs to geostatistical models.15,36

The CAR and BYM models incorporate spatial structure at
the cluster level. Fitting a CAR model to the data requires the
aggregation of households to clusters as the model is re-
stricted to only one observation per spatial area. By contrast,
theBYMmodel can be fitted to the individual (household)-level

data. The CAR model includes a spatially structured random
effect for the clusters. TheBYMmodel extends theCARmodel
to includeanadditional independent randomeffect and relaxes
the link of one observation per cluster. The spatially structured
random effect relaxes the assumption of independence be-
tween clusters and allows clusters that are adjacent to share
information.Abinaryspatialweightmatrix (Queens’scase)was
used where clusters sharing a common boundary or vertex
were considered to be adjacent. The BYM model effectively
reproduces the standard approach to analyzing a CRT, but
with an additional spatial effect at the cluster level.
The GPm incorporates spatial structure at an individual level

(here: household). Gaussian processmodels tend to have dense
spatialmatrices,whichmakes computation difficult. Fortunately,
a link between the continuously indexed GP and the discretely
indexed GMRFs has been proposed, which uses stochastic
partial differential equations (SPDEs).43 In short, Lindgren et al.43

demonstrated that a Matérn covariance model (a GP with a
constantmean, andMatérn covariance) is a solution to anSPDE.
They showed that approximating an area with a finite number of
triangles or a “mesh” allows the solution of the SPDE to be rep-
resentedas theweightedsumof theverticesof the “mesh.”Then
assumingaMarkovpropertyon themesh, it canbemodeledasa
GMRF. The GP is a solution of an SPDE, and the SPDE can be
approximately solved by using a GMRF. Thus, the GP can be
modeledusingGMRFmethods through theuseof themesh.The
choice of mesh is a trade-off between how accurately the area
can be represented and computational costs. Further adjust-
mentscanbemadeso that themesh isfiner in locationswithdata
and less fine where there are less data (or information). Further
details of the SPDE approach are described by Simpson et al.
and Blangiardo et al.44,45

The four models in this section were fitted using integrated
nested Laplace approximation (INLA), using noninformative
priors.25 Integrated nested Laplace approximation is a deter-
ministic algorithmwhichhasproven tobecapableof providing
fast and reliable results for a wide range of models.45,46 Inte-
grated nested Laplace approximation was well suited to this
analysis because of the complexity of the model types
and the size of data when accounting for spatial structure
(12,000 observations giving a spatial weight matrix with 144
million elements). Once fitted, the posterior distributions of
all models were sampled and the mean and 95% credible
intervals (CrIs) calculated. Further details of the models are
provided in Table 1.
Spillover effect and interaction. A frequentist approach

was used for exploring spillover and interaction as this ismore
commonly used in the analysis of CRTs.47 Evidence for pos-
itive spillover was assessed directly, by including distance to
discordant pair as a variable in the IID model. The form of the
distance variable was explored further to account for non-
linearity by using quadratic terms. In the geographic literature,
this form of variable is often referred to as “distance decay.”48

Effect modification of the intervention effect by distance to
discordant pair was assessed by including distance as a
continuous variable using the IID model with an interaction
term.For easeof interpretation, an interaction termwithabinary
distance variable (threshold 400 m) was used. The distance of
400 m was chosen as the spillover effect appears to attenuate
at this distance based on the exploratory spatial analyses.
Robustness to distributional assumptions for the spillover

effect was assessed using parametric bootstrapping.49,50 We
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calculated 2,000 bootstrap samples, and these were per-
formed at the sciCORE scientific computing core facility,
University of Basel (http://scicore.unibas.ch/).
Distance to discordant household was also fitted for the

BYM and GP models (using INLA and, therefore, Bayesian
inference) to see if accounting for spatial structure affected the
estimate of the spillover effect of the intervention.

RESULTS

General characteristics. There were 11,944 compounds,
with 6,123 (51.2%) compounds receiving ITNs. Over the
course of the trial, there were 861 deaths, resulting in an SMR
of 1.24. The SMR in the control arm was 1.37 and was 0.25
units higher than that in the intervention arm (SMR 1.12). The
median distance to the nearest discordant household was

618 m (interquartile range [IQR] 311–1,106 m). The median
distance to the nearest bed net for control households was
591 m (IQR 305–1,010 m). The main trial results and a spatial
analysis have been presented previously.3,9

Exploratory spatial analysis.Therewas no suggestion of a
spatial pattern for the allocation of treatment for either the
interventionor the control, as canbe seen inTable 2 (join count
statistic). There was strong evidence (P < 0.001) to suggest a
spatial pattern for the SMR aggregated at the cluster level.
This patternwas consistent when only considering the control
clusters and when tested on residuals after adjusting for in-
tervention, but was no longer apparent when only the in-
tervention clusters were tested.
The IQR for the GWR intervention estimate ranged from

0.77 to 1.09, suggesting some spatial heterogeneity andmost
areas having a beneficial intervention effect. Despite this,

TABLE 1
Estimate of intervention effect by spatial model type

Model
Standardized mortality ratio

(95% credible interval) of intervention* Equation Description

IID 0.83 (0.71–0.98) yijk =α+βxi + uj Multilevel model with independent
random effect for cluster

Conditional autoregressive model 0.84 (0.72–0.98) yijk =α+βxi + vj Conditional autoregressive model
BYM 0.84 (0.72–0.98) yijk =α+βxi + uj + vj Besag, Yorke, and Mollie model
GPm 0.83 (0.70–0.97) yijk =α+βxi + uj + vk Gaussian process model fitted using

stochastic partial differential equation
approach

IID + discordant distance 0.82 (0.70–0.95) yijk =α+βxi + uj +ψdk Distance to discordant pair included
in the modelBYM + discordant distance 0.84 (0.72–0.98) yijk =α+βxi + uj + vj +dψk

GPm + discordant distance 0.82 (0.70–0.96) yijk =α+βxi + uj + vk +ψdk

Notation
Observed variables yijk Outcome for the kthparticipant in the jthcluster in the ithtreatment arm

xi Binary variable for intervention effect
dk Distance to discordant pair

Parameters α; β; ψ Intercept, intervention effect, and spatial spillover effect
Random effects/unobserved

variables
u Independent and identically distributed randomeffectwhere u∼Nð0,σ2Þ
vj Cluster level spatially correlated random effect where vj ∼ MVNð0,σ2Σ)

and Σ= ði� ρWÞ�1

vk Individual level spatially correlated random effect where
vk ∼MVNðfðzÞ, σ2

vÞ and f ∼GPðμð×ÞΣðdÞ)
Spatial ρ,W Spatial correlation parameter, spatial weight matrix

μð:Þ,ΣðdÞ Mean function, covariance function based on distance
BYM = Besag, Yorke, and Mollie model; GPm = Gaussian process model; IID = multi-level model with a random effect.

TABLE 2
Summary of analyses of spatial patterns of dependence, heterogeneity, and spillover

Method Test statistic P-value

Spatial correlation of intervention allocation
Join count—control 10.105 0.979
Join count—intervention 11.282 0.744

Spatial correlation of SMR
Moran’s I—entire study area 0.237 < 0.001
Moran’s I—control 0.396 < 0.001
Moran’s I—intervention 0.095 0.176
Moran’s I—residuals 0.134 0.0198

Spatial heterogeneity of intervention SMR
Geographically weighted regression,

median (interquartile range)
– 0.94 (0.77–1.09)

Impact of spillover on intervention effect* – SMR
Cluster reallocation method
Original cluster definition – 0.827
Controls cluster larger, mean (min, max) – 0.885 (0.855–0.916)
Intervention clusters larger, mean (min, max) – 0.781 (0.742–0.827)
SMR = standardized mortality ratio.
* This summary represents the mean of the intervention estimates that derive from increasing either the control or intervention cluster boundaries based on the cluster reallocation method.
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there were areas where the intervention estimate is greater
than one. Of the 96 clusters in the trial, 37 (38.5%) had an
intervention estimate greater than one and of these, 22 were
control clusters. Figure 1 presents maps of the intervention
assignment, spatial distribution of SMR at the cluster level,
and the intervention estimates fromGWR. There is no obvious
pattern, with the effect of bed nets appearing unrelated to
whether surrounding areas have high and lowmortality ratios,
or the density of intervention clusters nearby.
The cluster reallocation method provided a strong sugges-

tion of a spillover effect from intervention clusters toward con-
trol clusters. Expanding the intervention cluster boundary
resulted in stronger (bed nets more effective) intervention esti-
mates compared with the original cluster definitions up to
around 400 m (Figure 2). This is consistent with individuals
within 400mof the intervention receiving an indirect benefit due
toproximity. Expanding thecontrol cluster attenuated theeffect
estimate to the null. This was consistent with an absence of
spillover from control to intervention, as with each increase in
buffer, the newly defined intervention and control arms contain
more similar participants. Past 500 m, the number of partici-
pants in each armbecamevery unbalanced, and thus, the point
estimates from these models should be treated with caution
(Figure 2, lower graph). However, even when the buffering was
at 1,000 m, the smaller arm still had greater than 1,000 obser-
vations, which was reflected in the consistent size of the CIs.

Analysis of the spatial autocorrelation of cluster-level
SMRs, the heterogeneity in the intervention estimate over
space, and the behavior of the intervention estimate under
cluster dilution were all suggestive of a spatial spillover effect
from the intervention to the control clusters. Furthermore, this
effect was unlikely to be an artifact of the initial intervention
allocation to the clusters, as therewas no evidence of a spatial
pattern in the cluster allocation.
Spatial models. Bed nets were associated with a 17% re-

duction in all-causemortality for children aged 6–59months. For
the CAR and BYMmodels, adjusting for cluster-level spatial ef-
fects made negligible difference to estimated effects, and no
difference to theconclusionsof the trial. TheGPmalso resulted in
near-identical estimates to that of the nonspatialmodel (Table 1).
Adjusting for distance to discordant pair did not greatly in-

fluence the estimate of the intervention effect, and this was
consistent even when taking account of the spatial structure
of the trial using the BYM and GP approaches.
Spillover effect and interaction. Distance to discordant

pair was strongly associated with child mortality (P = 0.005);
for every additional 100 m that a control household was from
an intervention household (and vice versa), the mortality in-
creased by 1.7% (SMR 1.017, 95% CI: 1.006–1.026). The re-
sult was consistent when adjusting for spatial structure and
was robust to distributional assumptions with a bootstrapped
estimate of 1.014 (95% CI: 1.005–1.025) (Table 3).

FIGURE 2. Change in effect estimate calculated by cluster reallocation of intervention participants to the control arm and vice versa. This figure
appears in color at www.ajtmh.org.
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There was no statistical evidence (P = 0.214) for effect
modification between the distance to discordant pair and use
of bed nets. However, the study was not powered to test for
interaction, and thus likely has low power.51 Contrastingly to
the statistical evidence, the stratum-specific SMRs were
suggestive of interaction. The distance to the nearest bed net
household from a control household was associated with re-
duced mortality, with increasing distance resulting in in-
creased mortality. By contrast, the distance to the nearest
control household from a bed net household was not asso-
ciated with mortality. Treating distance to discordant pair as
binary (threshold of 400 m) suggests no increase in mortality
for control households living within 400 m of bed net house-
holds, but did suggest an increase in mortality for those living
further than 400 m away (Table 3). These results were con-
sistent with the evidence of a spillover effect and the results in
the original and spatial analysis of the Binka et al. trial.3,9

DISCUSSION

We examined the existence of spatial spillovers and the
impact of spatial effects on the overall trial conclusions in a
CRT of ITNs. Multiple approaches strongly suggested evi-
dence of a positive spatial spillover effect due to being near
households who use bed nets. Allowing for detailed spatial
correlations and spillover effects did not change the primary
conclusions of the trial.3

Our analysis suggests that for every additional 100 m a
control household was from an intervention household (and
vice versa), the standardized child mortality ratio increased by
1.7% (SMR 1.017, 95% CrI: 1.006–1.026). Bed nets were
associated with a 17% reduction in all-cause mortality for
children aged 6–59 months (SMR 0.83, 95% CI: 0.71–0.98).
This effect estimate remained robust to models with different
spatial specifications and raises the question of whether
standard CRT analyses are always robust to spatial spillover
effects. This trial was conducted over a large study area, with
large clusters, meaning that spillover effects may need to be
substantial to impact the study results. An alternative expla-
nation is that the spatial models were also subject to the same
biases as the standard CRT model. Spatial effects of different
strengths and distances could be tested through simulation
studies to test the impact on CRT results.

Although therewasnostatistical evidenceof interaction (P=
0.214), the stratum-specific effects suggested that distance
from bed net households affects mortality, but distance from
control households does not. Furthermore, it suggests that
the use of bed nets was more effective when comparing in-
dividuals more than 400 m apart. This interaction effect is
plausible; if spillover was present, we may expect control
households to receive a benefit from being nearby to inter-
vention households, but not vice versa. Moreover, we would
expect the mortality of control households that were close to
bed net households to be more similar to intervention
households than those who were further away. The assess-
ment of interaction between distance from bed nets and the
use of bed nets should be evaluated in other existing ITN CRT
data where locations have been collected. In addition, the
interaction could be assessed in studies with more complex
interventions which include additional vector controls.
Wewere surprised at the strength of the spillover effect, but

using bootstrapping to test robustness to distributional as-
sumptions of the model, we obtained consistent results (SMR
1.014, 95% CI: 1.007–1.027). The spillover effect could be
explained by reducedpopulations ofmosquitoes in areas near
ITNs and was consistent with “mass killing” effects, found
previously.7,12 Despite this, adjusting for distance to discor-
dant household had negligible impact on the main trial result.
There were several limitations of this analysis; the data were

aggregated at a household level, which may have resulted in
potential loss of information. However, the results were con-
sistent with an individual-level analysis and any spatial anal-
yses would require aggregating the spatial information at a
household level. There were also gaps between some of the
clusterswhere no spatial datawere collected, whichmay have
affected results.
A further weakness is the use of household coordinates to

represent the spatial structure or mechanism of the spillover.
Household locationwas at best one of themany locations that
an individual visited during the study period. This resulted in
omissions of many of the spatial locations related to each
participant. However, this was probably of minimal impact in
the context of mosquitoes and ITNs where transmission is
likely to happen at night when at home. Despite this, the value
of household location in other contexts should be considered.
In future, the possibility of tracking movement of people or

TABLE 3
Spillover effect of distance to discordant pair presented by model type and interaction of distance with bed net intervention

Variable Model SMR (95% credible interval)

Distance to discordant pair (per 100 m) IID 1.017 (1.006 to 1.026)
Besag, Yorke, and Mollie model 1.012 (1.004 to 1.020)
Gaussian process 1.018 (1.005 to 1.029)
Bootstrapped model (95% CI) 1.014 (1.005 to 1.025)

Stratum-specific SMRs (Global test for interaction, P = 0.214) SMR (95% CI)
Distance to discordant pair Intervention
400 m or nearer Bed nets 1.00

No bed nets 1.05 (0.79 to 1.40)
Further than 400 m Bed nets 1.00

No bed nets 1.29 (1.05 to 1.57)
Intervention Distance to discordant pair
Bed nets Further than 400 m 1.00

400 m or nearer 0.90 (0.72 to 1.13)
No bed nets Further than 400 m 1.00

400 m or nearer 0.74 (0.64 to 0.95)
SMR = standardized mortality ratio.
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mosquitoes may provide improved insights into the mecha-
nism behind spatial spillover effects.
These analyses demonstrate that collection of GPS data

allows exploration of intervention mechanisms beyond the
creation of maps. The spatial analyses helped identify the
distance over which spillover effects were present. They also
reflected the spatial heterogeneity of the effect estimate, and
potential effect modification of the intervention effect by dis-
tance. In this context, it demonstrated that individuals living
within 400mof an ITNmay receive an indirect benefit from the
intervention. This could have important implications for
implementation of ITNs in scarce resource settings where the
number of available nets may be fewer than the number of
individuals who require them.
A key benefit of our approach was that it did not require any

additional data collection as the spatial analysis only needs
GPS coordinates which are often collected in CRTs. There-
fore, this approach could be used to reanalyze previous
geographical CRTs that collected coordinates, thus gaining
extra utility from previously collected data. We explored a
range of spatial methods, allowing for comparison of different
spatial approaches, and the conclusions of our analysis
remained consistent with the original analyses conducted in
the 1990s.
A further difficulty of spatial analyses is that they require

specialist spatial statistical skills and would be difficult to
conductwithout considerable effort or further training for a trial
statistician. The exploratory approaches require familiarity
with spatial data, although the actual analyses were relatively
straightforward once the data were loaded. By contrast, the
spatial models fitted using INLA require much greater effort,
and furthermore, the GPm is very computationally intensive
and may be less feasible on very large trials.
These analyses add to the expanding literature on the spatial

indirect effects of ITNs on mosquitoes and spatial analyses of
CRTs.6,10 Further details of other approaches can be found in a
review of methods used for spatial analysis of CRTs published
in 2017.10 The review categorized the approaches into spatial
variable and spatial modeling approaches.
This analysis raises important implications for the design

of future trials. Consideration of the spatial structure of the
trial design and the possibility of spillover effects is needed.
Alternative design approaches have been suggested to re-
duce or help measure spillover effects. Silkey et al. propose
the use of stepped-wedge trials. McCann et al. developed an
approach that involves fully including or fully excluding
available clusters in a defined study region.52,53 Combining
the design approaches with historical spatial analyses of
existing trial data could help provide a rich resource of in-
formation for decision makers to use when designing future
studies.
In summary, despite evidence of a spatial spillover effect,

the conclusions of the trial were unaffected by spatial model
specifications. Use of ITNs was clearly beneficial for individ-
uals, and there was compelling evidence that they provide an
indirect benefit to individuals living nearby. Although this ar-
ticle demonstrates robustness of CRT analyses to spatial ef-
fects, this was the only scenario, and the clusters may have
been large compared with the level of spillover in this study.
Simulation studies could be used to evaluate the robustness
of intervention estimates in CRTs for differing distances and
strengths of spatial effects.
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