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Abstract

Fitting stochastic epidemic models to data is a non-standard problem because data on the
infection processes defined in such models are rarely observed directly. This in turn means that
the likelihood of the observed data is intractable in the sense that it is very computationally
expensive to obtain. Although data-augmentated Markov chain Monte Carlo (MCMC) methods
provide a solution to this problem, employing a tractable augmented likelihood, such methods
typically deteriorate in large populations due to poor mixing and increased computation time.
Here we describe a new approach that seeks to approximate the likelihood by exploiting the
underlying structure of the epidemic model. Simulation study results show that this approach
can be a serious competitor to data-augmented MCMC methods. Our approach can be applied
to a wide variety of disease transmission models, and we provide examples with applications to
the common cold, Ebola and foot-and-mouth disease.

Key words: Epidemic models; Likelihood approximation; Markov chain Monte Carlo methods;
Stochastic epidemic models

1 Introduction

Mathematical models of infectious disease transmission are now routinely used as tools to assist
with the analysis, prediction and control of real-life epidemics. Such models may be deterministic
or stochastic, are usually mechanistic in the sense that they seek to describe the process of disease
spread between individuals, and invariably contain parameters such as infection rates that must
be assigned values. The natural statistical problem that arises is to estimate the parameters of an
epidemic model given observed data on one or more outbreaks of disease.

In this paper we focus exclusively on stochastic epidemic models. Fitting such a model to data
in a frequentist or Bayesian framework requires evaluation of the likelihood of the observed data. In
many situations, this is a non-standard problem because the infection process defined in the model
is not observed in reality. Consequently, evaluation of the likelihood involves integrating over the set
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of all possible infection events that are compatible with the observed data, which is often a highly
non-trivial exercise. Within the Bayesian framework, one solution is to use data augmentation,
specifically including the unknown infection events as additional model parameters, which in turn
leads to a computationally tractable likelihood. The posterior distribution of the model parameters
given the data can then be explored via Markov chain Monte Carlo (MCMC) methods (Gibson and
Renshaw, 1998; O’Neill and Roberts, 1999). However, such methods can struggle for large-scale
problems, partly because the computational cost of evaluating the augmented-data likelihood in-
creases, and partly because the missing data are strongly correlated to the model parameters which
in turn creates mixing problems for the Markov chain. Although reparameterisation techniques
such as non-centering can help (Kypraios, 2007), it is still desirable to find alternative approaches.

In this paper we describe a method for approximating the likelihood of a partially observed
stochastic epidemic model without the need for data augmentation. The key idea is to approximate
the likelihood by a product of tractable terms that relate to either single individuals or pairs of
individuals. Our approach is somewhat inspired by, but distinct from, a likelihood expression
derived in Eichner and Dietz (2003) for a stochastic smallpox transmission model. As explained
later, this expression is actually not the true likelihood for the model, but as shown in Stockdale
and others (2017) it yields very similar parameter estimates to those obtained from a full data-
augmented MCMC approach using the correct likelihood. Note also that our methods are unrelated
to pair-approximation techniques used in the analysis of deterministic epidemic models (Keeling
and others, 1997).

Our main aim is to explore the potential utility of using approximate likelihood methods in
fitting stochastic epidemic models to data. The work presented here is in some sense preliminary,
since there are many possible future directions that could be taken, but also contains many promis-
ing results. The paper is structured as follows. Section 2 defines the epidemic model of interest
and associated notation. The likelihood approximations are developed in Section 3 and illustrated
via three applications in Section 4. Brief conclusions are given in Section 5. Details of proofs and
results from an extensive simulation study can be found in the Supplementary Material.

2 Preliminary material

For ease of exposition, we shall describe likelihood approximations for a specific stochastic epidemic
model defined below. However, similar approximations can be derived for more complex models,
as illustrated in Section 4.

2.1 Stochastic epidemic model

The following epidemic model generalises the well-known general stochastic epidemic (see e.g. Bai-
ley, 1975; Andersson and Britton, 2000) so that the infection rate between a pair of individuals is
allowed to depend on who the individuals are, and infectious period distributions can vary between
individuals.

Consider a population consisting of N individuals, labelled 1, . . . , N . At any time, each individ-
ual is either susceptible, meaning they are capable of contracting the disease in question, infective,
meaning that they have the disease and can infect others, or removed, meaning that they are no
longer able to infect others and cannot be re-infected. The precise interpretation of the removed
state depends on the disease in question, examples including isolation, recovery, or death. Initially,
the population is entirely susceptible apart from a few infective individuals. Each individual who
becomes infective remains so for a period of time known as the infectious period. The infectious
period of individual j is distributed according to some pre-specified random variable Ij . At the
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end of its infectious period, an individual becomes removed. The infectious periods of different
individuals are assumed to be independent.

During its infectious period, a given infective individual j has contacts with susceptible individ-
ual k at times given by the points of a Poisson process of rate βjk. All such Poisson processes are
mutually independent and independent of the infectious periods. Any contact that occurs results
in the susceptible individual k immediately becoming infective. We define the infectious pressure
acting on susceptible k at time t as the hazard rate of infection at time t, in other words Σβjk
where the sum is over all individuals j who are infective at time t.

The epidemic continues until there are no infectives remaining. Thus at the end of the epidemic,
each initially susceptible individual is either still susceptible, or removed. Finally, the population
is assumed to be closed in the sense that no individuals may enter or leave during the epidemic.

The model defined above is rather general and contains N(N − 1) infection rate parameters
corresponding to all possible choices of the ordered pair (j, k), j 6= k. For specific modelling
situations we usually use a model with fewer parameters, which can be obtained by making suitable
assignments for the βjk and the parameters governing the infectious period distributions. Examples
include the general stochastic epidemic, i.e. the standard homogeneously-mixing SIR (Susceptible-
Infective-Removed) model, multi-type models, models with two or more levels of mixing, and spatial
models.

2.2 Notation, data and likelihood

In real-life epidemics, the actual transmission process of infection between individuals is rarely
observed. We therefore suppose henceforth that the observed data consist of the times of all
removal events, and re-label members of the population such that individuals 1, . . . , n are those
who are ultimately removed, and n + 1, . . . , N are those (if any) who remain susceptible, where
n ≤ N . We are thus implicitly assuming that each removal event in the model corresponds to a
real-life observable event such as the appearance of symptoms in an individual, and furthermore
that the individual is then unable to infect others, perhaps due to isolation. We are also assuming
that the epidemic has come to an end, so that there are no unobserved removals.

For j = 1, . . . , n let rj denote the time of removal of individual j, with the convention that
rj = ∞ if j is never removed, i.e. if j > n. Similarly define ij as the time at which j becomes
infected, with ij = ∞ if this never occurs. We assume that there is a single initial infective α,
so that α ∈ {1, . . . , n}, but we do not assume that α is known from the data. The assumption
of a single initial infective is not necessary, but simplifies our exposition and is often realistic in
practice. Let r = (r1, . . . , rn) and i = (i1, . . . , iα−1, iα+1, . . . , in), so that i contains all infection
times other than iα. Denote by β = {βjk : 1 ≤ j, k ≤ N, j 6= k} the set of infection rate parameters
in the model.

Let θj denote the parameter vector of the infectious period distribution for individual j, j =
1, . . . , n. Our main focus will be upon the cases where the infectious periods are either exponential
or Erlang with known shape parameter, where in both cases θj is one-dimensional. Finally let
θ = {θj : 1 ≤ j ≤ n} denote the set of infectious period distribution parameters.

Our objective is to make inference for the parameters β and θ given the data r, assuming the
population size N is known. Any likelihood-based approach therefore requires evaluation of the
likelihood π(r|β,θ) but calculating this quantity is highly computationally expensive. The reason
for this is that any such calculation implicitly or explicitly involves integrating over all possible
values of the unknown infection times, the set of which is non-trivial due to the constraints that (i)
ij < rj for j = 1, . . . , n and (ii) at any time during the epidemic, there cannot be more removals
than infections (see e.g. Clancy and O’Neill, 2008).
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One solution to this problem is to instead work with the tractable augmented likelihood
π(i, r|β,θ, α, iα), given explicitly below. For instance, in a Bayesian framework the unknown
infection times can be incorporated as extra parameters and an MCMC algorithm can be used to
sample from the resulting posterior distribution, as described in O’Neill and Roberts (1999). Our
objective here, however, is to find a way of approximating the likelihood π(r|β,θ) that avoids any
data augmentation.

3 Pair-based likelihood approximation

3.1 Notation and augmented likelihood

Consider an individual j who becomes infected at time ij and removed at time rj . Define

ψj = P (j avoids infection until time ij),

χj = infectious pressure acting on j as they become infected,

and φj = P (j fails to infect any of the N − n never-infected individuals).

It follows from the definition of the epidemic model that

ψj = exp

− n∑
k=1
k 6=j

βkjτkj

 , (1)

χj =
n∑
k=1
k 6=j

βkj1{ik<ij<rk}, (2)

and φj = exp

(
−

N∑
k=n+1

βjk(rj − ij)

)
= exp (−(rj − ij)Bj) , (3)

say, where, with ∧ denoting minimum,

τkj = rk ∧ ij − ik ∧ ij (4)

is the length of time during which k is infective and j susceptible, and 1A denotes the indicator
function of the event A. Note that the summation terms in (1) and (2) could both be written
without excluding k 6= j, since both τjj and 1{ij<ij<rj} are zero. However, when translating
formulae into computer code it is helpful to know what can be excluded from sums or products, so
our derivations will make this explicit.

For ease of exposition, we assume that the infectious period distributions are continuous and
let fj denote the probability density function of Ij ; the arguments below also hold without this
assumption. The augmented likelihood of all infection and removal events may be written as

π(i, r|β,θ, α, iα) =


n∏
j=1
j 6=α

χjψjφjfj(rj − ij |θj)

φαfα(rα − iα|θα). (5)

We now briefly explain Equation (5); a more detailed explanation for the special case of the general
stochastic epidemic can be found in Andersson and Britton (2000). The product term accounts for
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each ever-infected individual j (other than α) avoiding infection until time ij , becoming infected at
time ij , remaining infective until time rj , and whilst infective failing to infect the N −n individuals
who avoid infection entirely. Note that the probability of j failing to infect another individual
k, prior to k’s own infection at time ik, will be accounted for in ψk. Finally, the corresponding
likelihood contribution for α is similar to that of j, but does not account for how α became infected
since the epidemic model only describes events after the initial infection.

Equation (5) is not the only way to write the likelihood: for example, all of the ψj and φj terms
could be combined together to give the total probability of individuals avoiding infection during
the epidemic. However, (5) is in a form suitable for our purposes. Note also that the ψj and χj
terms appearing in the product do not only depend on individual j, but also on the infection and
removal times of other individuals.

3.2 Derivation of the pair-based approximation

We now derive an approximation to the desired likelihood π(r|β,θ). First note that

π(r|β,θ) =

∫
π(i, r|β,θ, α, iα)π(iα, α)di diα dα,

where the integral represents integration over i, iα and summation over α, and where (iα, α) is
assumed to be independent of (β,θ) a priori. Thus,

π(r|β,θ) =
n∑

α=1

π(α)

∫
π(i, r|β,θ, α, iα)π(iα|α)di diα

=

n∑
α=1

π(α)

∫ 
n∏
j=1
j 6=α

χjψjφj

φαπ(iα|α)


n∏
j=1

fj(rj − ij |θj)

 di diα

=

n∑
α=1

π(α)

∫ 
n∏
j=1
j 6=α

χjψj

π(iα|α)


n∏
j=1

φjfj(rj − ij |θj)

 di diα, (6)

where π(α) denotes the prior probability that α is the initial infective. For j = 1, . . . , n,

φjfj(rj − ij |θj) = exp (−(rj − ij)Bj) fj(rj − ij |θj)
= a(θ,Bj)gj(rj − ij |θj),

say, where gj is the probability density function defined for x > 0 by

gj(x|θj) =
exp(−xBj)fj(x|θj)∫
exp(−xBj)fj(x|θj) dx

=
exp(−xBj)fj(x|θj)

a(θj , Bj)
, (7)
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and gj(x|θj) = 0 for x ≤ 0. Thus a(θj , Bj) is the moment generating function of the infectious
period Ij evaluated at Bj . Substituting into (6) yields

π(r|β,θ) =


n∏
j=1

a(θj , Bj)


n∑

α=1

π(α)

∫ 
n∏
j=1
j 6=α

χjψj

π(iα|α)


n∏
j=1

gj(rj − ij |θj)

 di diα

=


n∏
j=1

a(θj , Bj)


n∑

α=1

π(α)Eg

π(iα|α)
n∏
j=1
j 6=α

χjψj

 , (8)

where Eg denotes expectation of (r1 − i1, . . . , rn − in) with respect to the product density

g(x1, . . . , xn|θ) =
n∏
j=1

gj(xj |θj). (9)

Note that here we regard r as fixed and the infection times as random variables, and thus sampling
from g essentially generates a sample from (i, iα). Evaluating the required likelihood thus requires
evaluation of the expectation term in (8).

Before turning to approximations we make some remarks about the exact equation (8). First,
equation (6) can clearly be written as an expectation with respect to the product density obtained
by multiplying the fj terms together. The advantage of the approach leading to (8) is that the φj
terms are absorbed into the expectation, and thus we do not need to evaluate or approximate them.
Second, let I denote the set of values of (i, iα) such that the term inside the expectation in (8) is
non-zero. Although the expectation is taken with respect to independent random variables, I is
complicated in structure, which makes analytical progress difficult. Finally, a random sample from
g is not guaranteed to lie inside I, which makes standard Monte Carlo estimation inefficient. An
importance sampling estimator could be constructed, although it is not obvious how to construct an
efficient proposal distribution for the infection times. We therefore proceed via an approximation
in which we assume independence of the product terms in the expectation term in (8), as follows.

First, we assume that

Eg

π(iα|α)
n∏
j=1
j 6=α

χjψj

 ≈ Eg [π(iα|α)]
n∏
j=1
j 6=α

Eg [χjψj ] . (10)

Evaluation of the first expectation in (10) depends on the choice of prior density π(iα|α), but is
often straightforward in practice. For the second expectation, first note that

ψj = exp

− n∑
l=1
l 6=j

βljτlj

 =

n∏
l=1
l 6=j

exp(−βljτlj) =

n∏
l=1
l 6=j

ψjl,
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say. Then

Eg [χjψj ] =
n∑
k=1
k 6=j

βkjEg

[
1{ik<ij<rk}ψj

]

=

n∑
k=1
k 6=j

βkjEg

1{ik<ij<rk}

n∏
l=1
l 6=j

ψjl



=

n∑
k=1
k 6=j

βkjEg

1{ik<ij<rk}ψjk

n∏
l=1
l 6=j,k

ψjl


≈

n∑
k=1
k 6=j

βkjEg

[
1{ik<ij<rk}ψjk

] n∏
l=1
l 6=j,k

Eg [ψjl] , (11)

where (11) only contains terms that concern pairs of individuals. For computational purposes, it
is useful to re-write (11) as

Eg [χjψj ] ≈


n∏
l=1
l 6=j

Eg [ψjl]


n∑
k=1
k 6=j

βkjEg

[
1{ik<ij<rk}ψjk

]
(Eg [ψjk])

−1 , (12)

to avoid computing the product terms in (11) separately for each term in the sum.

Definition 1 We refer to the approximation arising from equations and (8), (10) and (12) as the
standard pair-based likelihood approximation (PBLA).

To evaluate (12) we need to compute, for j 6= k,

Eg [ψjk] = Egj ,gk [exp(−βkjτkj)] , (13)

which is the probability that j avoids infection from k while k is infective and j susceptible, and
the related quantity

Eg

[
1{ik<ij<rk}ψjk

]
= Egj ,gk

[
1{ik<ij<rk} exp(−βkjτkj)

]
. (14)

Explicit expressions for (13) and (14) for the case of exponential or Erlang infectious period distri-
butions are given below in Sections 3.4 and 3.5, respectively.

Finally, it is important to note that the standard approximation, and those described below,
become exact in the special case where infectious periods are non-random, since the expectations
are redundant. This in turn suggests that the less variability an infectious period distribution has,
the more accurate the approximation will be.

3.3 Alternative approximations

The derivation of (12) is clearly not the only way to derive an approximate likelihood, and here we
mention some alternatives.
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3.3.1 Use fj for expectations

As mentioned previously one could proceed without introducing the change of density from fj to
gj , so that (8) becomes

π(r|β, θ) =
n∑

α=1

π(α)Ef

φαπ(iα|α)
n∏
j=1
j 6=α

χjψjφj

 (15)

where the expectation is with respect to the product density
∏n
j=1 fj(xj |θj) (cf. (9)). Following

the arguments above leads naturally to terms of the form

Ef [χjψjφj ] ≈ Ef [χjφj ]Ef [ψj ]

≈ Ef [χjφj ]

n∏
k=1
k 6=j

Ef [ψjk],

evaluation of which requires the equivalent of (13) with f replacing g, and

Ef [χjφj ] = Ef

[
1{ik<ij<rk} exp (−(rj − ij)Bj)

]
.

3.3.2 Separate all χ and ψ terms

We could write

Eg [χjψj ] ≈ Eg [ψj ]Eg [χj ]

≈


n∏
l=1
l 6=j

Eg [ψjl]


n∑
k=1
k 6=j

βkjEg

[
1{ik<ij<rk}

]
,

following the arguments leading to (12). We found that this formulation is numerically fairly similar
to (12), although it involves marginally more approximation because the indicator function and ψjk
terms are separated.

3.3.3 Approximate product of ψ terms

We could attempt to approximate the entire product of ψj terms. The expectation in equation (8)
may be approximated by

Eg

π(iα|α)
n∏
j=1
j 6=α

χjψj

 ≈ Eg [π(iα|α)]


n∏
j=1
j 6=α

Eg [χj ]


Eg

 n∏
j=1
j 6=α

ψj


 , (16)

where as above we have

Eg [χj ] =

n∑
k=1
k 6=j

βkjEg

[
1{ik<ij<rk}

]
, (17)

8



while

Eg

 n∏
j=1
j 6=α

ψj

 = Eg

exp

− n∑
j=1
j 6=α

n∑
k=1
k 6=j

βkjτkj


 . (18)

In Section 3.4.2 below we describe methods that exploit (18) for the case where βkj = β/N and
infectious periods are exponentially distributed.

3.3.4 Eichner and Dietz approximation

Eichner and Dietz (2003) define a stochastic model for smallpox transmission, and give a likelihood
expression which is used for maximum likelihood estimation of the model parameters. Although
not presented as such, their expression is actually an approximation to the true likelihood. For our
model, their method is as follows. For j = 1, . . . , n define

λj(u) =

n∑
k=1
k 6=j

βkj1{ik<u<rk}

as the infectious pressure acting on individual j at time u. Note that χj = λj(ij). The Eichner-Dietz
(ED) likelihood approximation is

π(r|β, θ) ≈ πED(r|β, θ) =


n∏
j=1

(∫ rj

−∞
E[λj(ij)] exp

(
−
∫ ij

−∞
E[λj(s)] ds

)
fj(rj − ij |θj) dij

)
×

N∏
j=n+1

exp

(
−
∫ rn

−∞
E[λj(s)] ds

)
, (19)

where

E[λj(u)] =
n∑
k=1
k 6=j

βkjP (ik < u < rk) =
n∑
k=1
k 6=j

βkj1{u<rk}

∫ ∞
rk−u

fk(s|θk) ds, (20)

since rk − ik has density fk.
The ED approximation could be derived as follows. The starting point is to assume that the

likelihood takes the form

LED = Ef

 n∏
j=1

χjψjφj

 , (21)

which bears some resemblance to the exact expression at (15) (e.g. by setting π(α) = 1{α=1}), but
differs because the initial infective is not explicitly included. Now,

n∏
j=1

φj = exp

− n∑
j=1

N∑
k=n+1

βjk(rj − ij)

 =

N∏
k=n+1

exp

− n∑
j=1

βjkτjk

 =

N∏
k=n+1

φ̃k,

say, since τjk = (rk−ik) for k > n. Note that φ̃k is the probability that individual k avoids infection
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throughout the epidemic. Thus (21) may be written as

LED = Ef


n∏
j=1

χjψj


{

N∏
k=n+1

φ̃k

}
≈


n∏
j=1

Ef [χjψj ]


{

N∏
k=n+1

Ef [φ̃k]

}

≈


n∏
j=1

Efj [Ef [χj |ij ]Ef [ψj |ij ]]


{

N∏
k=n+1

Ef [φ̃k]

}
, (22)

where Efj denotes expectation of ij with respect to fj(rj − ij |θj). The expectations in (22) are
then evaluated using further approximations as shown in (19).

The main difficulty with (19) is that, in practice, it involves numerical integration. As shown
below, even for the general stochastic epidemic the integral appears to be analytically intractable.
However, conditioning on ij is an attractive feature of the ED approximation, since it removes one
of the sources of approximation in the pair-based methods.

3.4 Exponential infectious periods

In this section we assume that for j = 1, . . . , n the infectious period random variable Ij is exponential
with rate parameter θj = γj , denoted by Ij ∼ Exp(γj). Such models, particularly the case where
γj = γ for all j, appear frequently in the epidemic modelling literature, largely because of their
relative mathematical tractability.

Let x > 0. Since fj(x|θj) = γj exp(−γjx) then for j = 1, . . . , n, (7) gives

gj(x|θj) =
γj exp(−(γj +Bj)x)

γj/(γj +Bj)
= δj exp(−δjx),

say, so that gj is the probability density function of an exponential random variable with rate
δj = γj +Bj , and

a(θj , Bj) = a(γj , Bj) = γj/(γj +Bj) = γj/δj .

3.4.1 The standard pair-based approximation with exponential infectious periods

We require expressions for (13) and (14). Recall from (4) that τkj = rk ∧ ij − ik ∧ ij .

Lemma 1 Let 1 ≤ j, k ≤ n with j 6= k, and β > 0. Then

Egj ,gk [exp(−βτkj)]

=


1− βδj {(δj + δk)(β + δk)}−1 exp(−δk(rk − rj)) if rj < rk,

δk(β + δk)
−1 + βδk {(δj + δk)(β + δk)}−1 exp(−δj(rj − rk)) if rj > rk,

Egj ,gk
[
1{ik<ij<rk} exp(−βτkj)

]

=


δjδk {(δj + δk)(β + δk)}−1 exp(−δk(rk − rj)) if rj < rk,

δjδk {(δj + δk)(β + δk)}−1 exp(−δj(rj − rk)) if rj > rk.

10



Lemma 1 can be proved either by direction calculation or by probability arguments; see the
Supplementary Material for details.

3.4.2 Approximations for the general stochastic epidemic

Suppose now that for 1 ≤ j, k ≤ N , βkj = β/N and γj = γ, so that the epidemic model is the general
stochastic epidemic. From (3) we have Bj = (N − n)β/N , and thus δj = γ + (N − n)β/N = δ,
say. This in turn leads to some simplifications in the expressions in Lemma 1 for the standard
approximation.

We now focus on approximations that involve the product of ψ terms. Note that (18) becomes

Eg

 n∏
j=1
j 6=α

ψj

 = Eg

exp

−(β/N)
n∑
j=1
j 6=α

n∑
k=1
k 6=j

τkj


 . (23)

Recall from (4) that τkj is the length of time during which k is able to infect j. Thus for a given
set of infection times, one of τkj and τjk is zero. To exploit this dependency we rewrite the double
sum in (23), also using the facts that τkα = τjj = 0, to give

n∑
j=1
j 6=α

n∑
k=1
k 6=j

τkj =

n−1∑
j=1

n∑
k=j+1

(τkj + τjk) =

n−1∑
j=1

n∑
k=j+1

ωjk = X, (24)

say, where, since rj < rk for j < k, we have

ωjk =



ij − ik if ik < ij ,

ik − ij if ij < ik < rj ,

rj − ij if ik > rj .

(25)

Note that ωjk is the length of time that j exerts infectious pressure on k, or vice versa. We are
thus concerned with the behaviour of X given that r1− i1, . . . , rn− in are independent exponential
distributions with parameter δ. The following result, proved in the Supplementary Material, pro-
vides an explicit distribution for the total infectious pressure time among any subset of individuals
in {1, . . . , n}.

Lemma 2 Let K be any subset of {1, . . . , n} with K ≥ 2 elements. If {rj − ij : j ∈ K} is a set of
independent Exp(δ) random variables, then∑

j,k∈K
j<k

ωjk ∼
K−1∑
j=1

Yj

where Yj ∼ Exp(δ/j) and Y1, . . . , YK−1 are independent.

Setting K = 2 in Lemma 2 yields that ωjk ∼ Exp(δ) for any j 6= k, and setting K = n yields an
explicit distribution for X in (24). Furthermore, (23) and Lemma 2 yield the result

Eg

 n∏
j=1
j 6=α

ψj

 =

n−1∏
j=1

(
δ

(βj/N) + δ

)
.

11



The behaviour of X as n → ∞ is given in the following result, proved in the Supplementary
Material.

Lemma 3 If r1 − i1, . . . , rn − in ∼ Exp(δ) are independent then∑n−1
j=1

∑n
k=j+1(ωjk − Eg[ωjk])

sn
=

∑n−1
j=1

∑n
k=j+1(ωjk − δ−1)

sn

converges in distribution to a standard Gaussian random variable as n→∞, where

s2n =
n−1∑
j=1

n∑
k=j+1

n−1∑
l=1

n∑
m=j+1

(Eg[ωjkωlm]− Eg[ωjk]Eg[ωlm])

=
n(n− 1)(2n− 1)

6δ2
.

Lemma 3 implies that, for large n, X is approximately Gaussian with mean
(
n
2

)
δ−1 and variance

s2n, and thus the right-hand side of (23) is approximately equal to the moment generating function
of this Gaussian distribution evaluated at the point −β/N . This yields the approximation

Eg

 n∏
j=1
j 6=α

ψj

 ≈ exp

{
− β

Nδ

(
n

2

)
+

β2

12δ2N2
n(n− 1)(2n− 1)

}
,

which along with equations (8), (16) and (17) yields a likelihood approximation for large n.

3.4.3 Eichner and Dietz approximation with exponential infectious periods

We now consider the ED approximation given in (19) under the assumption that Ij ∼ Exp(γj).
First, (20) becomes

E[λj(u)] =
n∑
k=1
k 6=j

βkj exp(−γk(rk − u))1{u<rk},

and direct calculation yields that∫ t

−∞
E[λj(s)] ds =

n∑
k=1
k 6=j

βkjγ
−1
k exp {−γk(rk − (t ∧ rk))} = Aj(t),

say. It follows that (19) becomes

πED(r|β, θ) =


n∏
j=1

γj

∫ rj

−∞

n∑
k=1
k 6=j

βkj exp {−γj(rj − t)− γk(rk − t)−Aj(t)} 1{t<rk} dt




× exp

− N∑
j=n+1

n∑
k=1

βkjγ
−1
k

 ,

where the integral term does not appear to be available in closed form and thus must be evaluated
numerically.
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3.5 Erlang infectious periods

In this section we assume that infectious period random variable Ij has an Erlang distribution,
i.e. a Gamma distribution with positive integer shape parameter mj and rate parameter νj . Thus
θj = (mj , νj), and we write Ij ∼ Γ(mj , νj). Such a model is usually more appropriate for real-life
diseases than the assumption of exponential infectious period distributions.

Let x > 0. We have fj(x|θj) = ν
mj

j xmj−1 exp(−νjx)/(mj−1)! and for j = 1, . . . , n, (7) becomes

gj(x|θj) =
ν
mj

j xmj−1 exp(−(νj +Bj)x)/(mj − 1)!

[νj/(νj +Bj)]mj
= δ

mj

j xmj−1 exp(−δjx)/(mj − 1)!,

where δj = νj + Bj , so that gj is the probability density function of a Γ(mj , δj) random variable,
and

a(θj , Bj) = a((mj , νj), Bj) = [νj/(νj +Bj)]
mj = (νj/δj)

mj .

3.5.1 The standard pair-based approximation with Erlang infectious periods

Lemma 4 Let 1 ≤ j, k ≤ n with j 6= k, and β > 0. Then

Egj ,gk [exp(−βτkj)]

=



1 + exp(−δk(rk − rj))δ
mj

j

∑mk−1
l=0 δlk

[(
δk

δk+β

)mk−l
− 1

]
×
∑l

p=0
1

(l−p)!
(
mj+p−1

p

) (rk−rj)l−p

(δj+δk)
mj+p if rj < rk,

1− Fmj ,δj (rj − rk)
[
1−

(
δk

δk+β

)mk
]

+ exp(−δk(rj − rk))δ
mj

j

∑mk−1
l=0 δlk

[(
δk

δk+β

)mk−l
− 1

]
×
∑mj−1

p=0
1

(mj−p−1)!
(
l+p
p

) (rj−rk)mj−p−1

(δj+δk)l+p+1 if rj > rk,

Egj ,gk
[
1{ik<ij<rk} exp(−βτkj)

]

=



exp(−δk(rk − rj))δ
mj

j δmk
k

∑mk−1
l=0

(
1

δk+β

)mk−l

×
∑l

p=0
1

(l−p)!
(
mj+p−1

p

) (rk−rj)l−p

(δj+δk)
mj+p if rj < rk,

exp(−δk(rj − rk))δ
mj

j δmk
k

∑mk−1
l=0

(
1

δk+β

)mk−l

×
∑mj−1

p=0
1

(mj−p−1)!
(
l+p
p

) (rj−rk)mj−p−1

(δj+δk)l+p+1 if rj > rk,

where Fm,ν denotes the distribution function of a Γ(m, ν) random variable.

3.5.2 The Eichner and Dietz approximation with Erlang infectious periods

First note that

E[λj(u)] =

n∑
k=1
k 6=j

βkj1{u<rk} exp(−νk(rk − u))

mk−1∑
l=0

(νk(rk − u))l

l!
,

13



from which we obtain∫ t

−∞
E[λj(s)] ds =

n∑
k=1
k 6=j

βkjν
−1
k exp {−νk(rk − (t ∧ rk))}

mk−1∑
l=0

[νk(rk − (t ∧ rk))]l

l!
(mk − l)

= Cj(t),

say. It follows that

πED(r|β,θ) =
n∏
j=1

∫ rj

−∞
fj(rj − t|mj , νj)

n∑
k=1
k 6=j

βkj exp {−νk(rk − t)− Cj(t)} 1{t<rk}

mk−1∑
l=0

[νk(rk − t)]l

l!
dt




× exp

− N∑
j=n+1

n∑
k=1

βkjmkν
−1
k

 ,

where fj(rj − t|mj , νj) = ν
mj

j (rj − t)mj−1 exp(−νj(rj − t))/(mj − 1)!.

4 Applications to data

Having derived PBLA methods, it is natural to assess their performance for both simulated and
real data. Here we briefly describe the findings of a simulation study, and then illustrate the PBLA
methods via three examples involving real-life data. In each case of the latter, the setting goes
beyond that of a simple SIR model in a homogeneously-mixing population, thus illustrating the
potential flexibility of the PBLA methods. For comparison, in each case we also provide results
from an alternative analysis such as standard MCMC with data-augmentation.

4.1 Simulation study

Details of an extensive simulation study can be found in the Supplementary Material, in which
the performance of the PBLA methods is explored for the SIR model across a range of data sets
and parameter values. Comparisons with other methods are also described. The focus is on the
homogenously-mixing case, since it seems natural to assess the methods in this setting. Broadly
speaking the methods (i) are found to work well in situations where the proportion of individuals
infected is not larger than around 70%, (ii) are competitive with data-augmented MCMC methods
for large population sizes, and (iii) improve in accuracy as the shape parameter of the Erlang
distribution increases. As an example, Figure 1 shows maximum likelihood estimates taken from
1000 simulated data sets for both the PBLA and the Eichner-Dietz methods. Full details are given
in the Supplementary Material.

4.2 Respiratory disease in Tristan da Cunha

We now apply our methods to a data set described in full and analysed in Becker and Hopper
(1983) and Hayakawa and others (2003). The data set consists of case diagnosis times of individ-
uals who contracted the common cold during an outbreak which occurred between October and
November of 1967 on the island of Tristan da Cunha in the South Atlantic. The population of 255
islanders comprised three age groups, namely infants, children and adults, which we label 1, 2 and
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Figure 1: Comparison of maximum likelihood estimates as β and γ vary, using simulated data sets
with exponential infectious periods and N = 100, R0 = 1.5. Top panels: β = 3, γ = 2. Bottom
panels: β = 0.3, γ = 0.2. Vertical lines show the true values.

3 respectively. As there was one unidentified case, we suppose that N = 254. The initial number of
susceptibles in each group are N1 = 25, N2 = 36 and N3 = 192. We assume that the initial infective
is the individual who was diagnosed first, which is not unreasonable since one week elapsed between
the first and second diagnosed cases. The number of cases in each group was n1 = 9, n2 = 6 and
n2 = 25.

4.2.1 Transmission model

Following Hayakawa and others (2003) we consider a multi-type stochastic SIR model in which the
population is divided into three groups. Infectious periods are exponentially distributed with mean
γ−1, and the infection rate from individual i to j is βij = βG(j), where G(j) denotes the group
(1, 2 or 3) of individual j. This model assumes that the population mixes homogeneously and
that all infectives are equally infectious, but that the susceptibility of individuals depends on their
age group. We relate this model to the data by assuming that case diagnosis times correspond to
removal times. We carried out a Bayesian analysis using MCMC in which the target density is the
posterior distribution of the four model parameters given the observed removal times under the
assumption of the PBLA likelihood. We used the independent prior distributions in Hayakawa and
others (2003), namely that γ ∼ Γ(10−4, 10−3), βj ∼ Γ(10−8, 10−5) for j = 1, 2, 3.
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PBLA mean MCMC mean E-D MAP

β1 0.00641 0.00451 0.0104
β2 0.00239 0.00181 0.00408
β3 0.00171 0.00121 0.00289
γ 0.499 0.371 0.879
R0 1.2 1.2 1.1

Table 1: Posterior means from PBLA method and from data-augmented MCMC methods
(Hayakawa and others, 2003), and maximum a posteriori (MAP) estimates using the Eichner-Dietz
method, for the Tristan da Cunha data set.

4.2.2 Results

Figure 2 shows marginal posterior distributions of the four model parameters from the PBLA
analysis and for R0, and also the corresponding posterior means from the analysis in Hayakawa and
others (2003) which was carried out using MCMC methods featuring data augmentation for the
unknown infection times. The latter can be regarded as the ‘gold-standard’ results in the Bayesian
setting. Table 1 contains numerical values for the posterior means from the PBLA and data-
augmented MCMC approaches. There is good agreement which shows that the PBLA methods
provide a good approximation in this case. For comparison, Figure 2 also shows maximum a
posteriori estimates using the Eichner-Dietz approach, which appears to perform rather less well
than PBLA here.

4.3 Ebola in West Africa

Our second example uses publicly available data from the Centers for Disease Control and Preven-
tion (CDC) on the outbreaks of Ebola virus in Guinea, Sierra Leone and Liberia during 2014. Each
data set consists of the numbers of deaths each day due to Ebola. For comparison, we also fit these
data to a deterministic epidemic model similar to one proposed by Althaus (2014). This model
features latent periods, i.e. it is a Susceptible-Exposed-Infective-Removed (SEIR) model, and also
a time-dependent infection rate. We thus have to adapt the PBLA approach to incorporate both
these features.

4.3.1 Latent periods in the PBLA framework

The model described in Section 2.1 can be extended to an SEIR model by stipulating that when
a susceptible individual j is contacted by an infective, the susceptible immediately enters a latent
(or exposed) period at time ej , say, before becoming infective at time ij . During the latent period,
the individual is unable to infect others, and cannot themselves be re-infected. In the following,
we shall assume that latent periods are of a known fixed duration c. Although this is partly for
analytical convenience, in reality it is pragmatic to make strong assumptions about either infectious
or latent periods if the only available data are removal times. This is essentially because a single
data point rj is insufficient to estimate both ej and ij separately without additional assumptions.

Without latent periods, infection times such as ij play two roles in the PBLA approximation,
namely (i) the start of j’s infectious period and (ii) the time at which j becomes infected. With
latent periods, these times are ij and ej , respectively. For example, the quantity τkj defined at (4)
now becomes

τkj = rk ∧ ej − ik ∧ ej .
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Figure 2: Marginal posterior distributions for the Tristan Da Cunha data using the PBLA method.
For comparison, solid lines show the posterior means from Hayakawa and others (2003) and dashed
lines show maximum a posteriori estimates from the Eichner-Dietz method.
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However, ej = ij − c, and so the probability distribution of ej given that rj is identical to the
distribution of ij given rj − c. By following such arguments, it can be shown the results in lemmas
1 and 4 can be used for the SEIR model by simply replacing rj with rj − c throughout.

4.3.2 Deterministic model for Ebola

Let s(t), e(t), i(t) and r(t) denote respectively the numbers of susceptible, exposed, infective and
removed individuals in a population of size N at time t and assume that s(t)+e(t)+ i(t)+r(t) = N
for all t ≥ τ0, where τ0 denotes the initial time point of the epidemic. We define a deterministic
model by the set of differential equations

ds

dt
= −β(t)

si

N
,

de

dt
= β(t)

si

N
− σe,

di

dt
= σe− γi,

dr

dt
= γi,

with initial conditions s(τ0) = N − 1, i(τ0) = 1, where

β(t) = b0 exp(−k(t+ τ0)).

This model is a simplification of that proposed by Althaus (2014), the difference being that the latter
also accounts for non-fatal cases. This means we can compare our methods (which are designed for
data on one kind of observation, namely removal times), directly with the deterministic modelling
approach without having to make extra assumptions for how to deal a second kind of observation,
namely non-fatal cases.

The time-dependent infection rate β(t) is motivated by the impact of control measures; τ0 is
the time at which the initial infective appears, and is relevant because when fitting the model to
data, it is necessary to decide when the epidemic begins. The parameters σ and γ are the rates at
which individuals move from the exposed to infective and infective to removed classes, respectively.

Following Althaus (2014), we assume that (i) the average lengths of the latent and infectious
periods are σ−1 = 5.3 and γ−1 = 5.61 days, respectively, and that N = 106 for each country, while
(ii) the parameter τ0 is known for the Guinea outbreak but unknown for the other outbreaks. The
remaining parameters b0 and k, and τ0 if required, are estimated from the data as follows, again
using the approach of Althaus (2014). First note that the data take the form {r(ti) : i = 1, . . . ,M},
i.e. M observations of the total number of removals, which are assumed to correspond to deaths.
A likelihood can be constructed by assuming the observed number of removals at time t is drawn
from a Poisson distribution with mean r(t), where r(t) can be computed by numerical solution of
the differential equation system, and with independence between different observations. It is then
straightforward to obtain numerical maximum likelihood estimates of the model parameters.

4.3.3 PBLA method

To implement the PBLA method we assume that infectious periods are exponential with mean
γ−1 = 5.61 days and latent periods are all c = σ−1 = 5.3 days. As usual we assume that individuals
1, . . . , n are those who become infected and set r1 < . . . < rn. For simplicity we set τ0 equal to the
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b0 k

Guinea 0.243 0.00105
PBLA Sierra Leone 0.335 0.00289

Liberia 0.266 0.00214

Guinea 0.231 0.000712
Althaus Sierra Leone 0.277 0.00180

Liberia 0.303 0.00251

Table 2: Maximium likelihood estimates from the PBLA method and from the Althaus model for
the Ebola deaths data from CDC.

estimated values from Althaus (2014). Since the PBLA method assumes that the infection rate
between any two individuals is fixed, and not time-dependent, we set

βjk = b0 exp(−k(Tjk + τ0))

where Tjk is the expected mid-point of the time during which j can infect k. Thus for 1 ≤ j, k ≤ n,

Tjk = (E[rj ∧ ek] + E[ij ∧ ek])/2

=

{
rk − γ−1 − σ−1 − (4γ)−1 exp(−γ(rj − rk + σ−1)) if rj > rk − σ−1,
rj − (2γ)−1 + 3(4γ)−1 exp(−γ(rk − rj − σ−1)) if rj < rk − σ−1,

while for 1 ≤ j ≤ n and k > n, Tjk = rj − (2γ)−1. We found in practice that other reasonable
definitions of Tjk, e.g. taking into account the exponentially decaying nature of β(t), gave similar
results.

4.3.4 Results

Since the PBLA method is not designed to approximate a Poisson likelihood for an ordinary dif-
ferential equation model, it is interesting to see how the two approaches compare. Figure 3 shows
profile log-likelihood plots for the PBLA method, with maximum likelihood estimates from the
Althaus model for comparison. Table 2 contains the numerical values of the maximum likelihood
estimates for both approaches. It can be seen that the PBLA method gives reasonably similar
results. Point estimates of the basic reproduction number, R0 = β0/γ, for PBLA (Althaus) are 1.4
(1.3), 1.9 (1.6) and 1.7 (1.5) for Guinea, Sierra Leone and Liberia respectively, which again show
reasonable agreement.

4.4 Foot-and-Mouth disease in Cumbria, UK

Our final application concerns a large data set taken from the 2001 Foot and Mouth disease outbreak
in the UK county of Cumbria. In this outbreak, the disease spread between farms, and if detected
on a farm the animals there were culled in order to prevent further transmission. The particular
data that we consider are described in Kypraios (2007), Jewell and others (2009) and Xiang and
Neal (2014). In summary, for each farm in Cumbria the data comprise (i) its geographic location,
(ii) the numbers of cattle and sheep, and (iii) the culling date if the farm was deemed to have been
infected. In total, n = 1021 of N = 5378 farms were infected.
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Figure 3: Profile log-likelihoods for b0 and k for the PBLA log-likelihood, using Ebola deaths data
from CDC. For comparison, the dashed lines show the maximum likelihood estimates using the
Althaus model.
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θ θ̂MAP (PBLA) E[θ|r] Rel. Diff. θ̂MAP (E-D)

β0 7.05× 10−7 6.07× 10−7 0.16 7.10× 10−7

γ 0.45 0.52 0.13 0.54
v 0.0048 0.0065 0.26 0.0049
ε 1.57 1.45 0.08 2.32
ξ 2.39 2.32 0.03 2.20
ζ 0.32 0.32 0 0.31

Table 3: MAP estimates (PBLA method) and posterior means from Kypraios (2007) for the Foot
and Mouth data set, along with the relative difference |θ̂MAP − E[θ|r]|/E[θ|r]. For comparison,
the final column shows the Eichner-Dietz MAP estimates.

4.4.1 Transmission model

Kypraios (2007) describes a stochastic SIR transmission model in which individuals are farms,
infectious periods are assumed to follow independent Γ(4, γ) distributions, and the infection rate
from farm i to farm j is given by

βij = β0
v

ρ2ij + v2
(ε(nci )

ζ + (nsi )
ζ)(ξ(ncj)

ζ + (nsj)
ζ),

where ρij denotes the Euclidean distance between farms i and j, while nci and nsi denote respectively
the number of cattle and sheep on farm i. The model is thus explicitly spatial and multi-type, and
has six parameters. This model is related to the data by assuming that culling dates correspond
to removal events. Kypraios (2007) carries out parameter estimation in a Bayesian framework by
augmenting the parameter space with the unknown infection times. This is a very computationally
demanding approach, due to the combination of a large number of infected farms, a six-dimensional
model parameter space, and the inherent posterior correlations between the infection times and the
model parameters.

We adopted the same independent prior distributions as those of Kypraios (2007), namely that
β0, γ ∼ Γ(0.001, 0.001), v ∼ Exp(0.1) and ε, ξ, ζ ∼ Exp(0.001). We used the PBLA method to
obtain maximum a posteriori (MAP) point estimates for all six parameters.

4.4.2 Results

Figure 4 shows profile log-likelihood plots along with the posterior mean estimates from Kypraios
(2007), and table 3 compares the latter with the MAP estimates from the PBLA analysis. MAP
estimates from the Kypraios analysis are not available, but since the marginal posterior density
plots reported are reasonably symmetric then the posterior means would presumably be fairly close.
It can be seen that there is reasonable agreement between the PBLA approach and the Kypraios
analysis. For comparison we also present the corresponding MAP estimates from the Eichner-Dietz
approximation, which are slightly less accurate than the PBLA estimates.

5 Conclusions

We have developed likelihood approximation methods for partially observed stochastic epidemic
models. We regard such methods as an addition to the toolkit for analysing infectious disease
data, with potential to provide parameter estimates in situations where other methods (such as
the ‘gold-standard’ of data-augmented MCMC, or likelihood-free methods such as Approximate
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Figure 4: Profile log-likelihoods for the Foot and Mouth disease model parameters. For comparison,
the solid lines show posterior mean estimates from Kypraios (2007) and the dashed lines show
corresponding Eichner-Dietz MAP estimates.
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Bayesian Computation) may struggle due to their computational burden. Our work is somewhat
preliminary but demonstrates that likelihood-approximation approaches have useful potential.

Our approach can be summarised as follows. Broadly speaking, the true likelihood can be
described by considering all individuals who ever become infected. It then takes account of these
individuals avoiding infection, becoming infected, remaining infected for a period of time, and either
infecting or failing to infect others whilst infective. Due to the fact that these events are dependent
for different individuals, the likelihood is then typically intractable. The key to our approximation
method is to consider pairs of ever-infected individuals in the population, since the likelihood
contribution from such pairs are often tractable, depending on the choice of infectious period
distribution. We then assume independence between such pairs in order to form an approximate
likelihood.

The PBLA approach appears to work reasonably well in settings encountered in practice, specif-
ically where the total proportion of the population infected is not too large. This makes intuitive
sense, since the extent to which the likelihood can be approximated by independent components
will clearly become less plausible as the proportion infected increases. The general idea of basing
approximations on the interactions of pairs of individuals is widely applicable, as we have demon-
strated via several examples. It seems likely that such methods could also be applied to models
where individuals enter and leave the population, for instance models for nosocomial infections in
hospital wards (Wei and others, 2018). Another possible extension is to epidemics in progress, re-
laxing our assumption that the observed outbreak has terminated. The challenge in that situation
is that both the infection times and total number of ever-infected individuals in the population are
both unknown.

Unlike data-augmented MCMC, the PBLA approach gives a relatively fast way to obtain ap-
proximate maximum likelihood values for model parameters. For small data sets the PBLA method
can produce maximum likelihood estimates in seconds or less, while even the Ebola data set with
N = 106 individuals takes around one minute on a standard laptop. Further work is needed to
develop approaches that can improve the speed and accuracy of the approximation across more sce-
narios, for instance by taking greater account of the fact that not all configurations of the unknown
infection times are possible if the epidemic is not to die out prematurely.

6 Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org and
code and data sets from the paper are available at https://github.com/jessicastockdale/PBLA
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Pair-based likelihood approximations for stochastic epidemic models

Supplementary Material

J. E. Stockdale∗, T. Kypraios†, P. D. O’Neill†

1 Proofs

1.1 Proofs of Lemmas 1 and 4

We give two methods of proof for the first result in lemma 1; the other parts of both lemmas can
be proved in a similar fashion. First note that

τkj = rk ∧ ij − ik ∧ ij =



0 if ij < ik,

ij − ik if ik < ij < rk,

rk − ik if ij > rk.

Thus

Egj ,gk [exp(−βτkj)]

= Egj ,gk
[
exp(−βτkj)1{ij<ik}

]
+ Egj ,gk

[
exp(−βτkj)1{ik<ij<rk}

]
+ Egj ,gk

[
exp(−βτkj)1{ij>rk}

]
= Egj ,gk

[
1{ij<ik}

]
+ Egj ,gk

[
exp(−β(ij − ik))1{ik<ij<rk}

]
+ Egj ,gk

[
exp(−β(rk − ik))1{ij>rk}

]
(1)

and all three terms in (1) can be evaluated directly; for instance, if rj < rk then

Egj ,gk
[
1{ij<ik}

]
=

∫ rj

−∞

∫ rk

ij

δk exp(−δk(rk − ik))δj exp(−δj(rj − ij)) dikdij

= 1− δj(δj + δk)
−1 exp(−δk(rk − rj)), (2)

Egj ,gk
[
exp(−β(ij − ik))1{ik<ij<rk}

]
=

∫ rj

−∞

∫ ij

−∞
exp(−β(ij − ik))δk exp(−δk(rk − ik))δj exp(−δj(rj − ij)) dikdij

= δjδk {(δj + δk)(δk + β)}−1 exp(−δk(rk − rj)), (3)

∗Department of Mathematics, Simon Fraser University
†School of Mathematical Sciences, University of Nottingham
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and the third term is zero since ij < rj < rk, whence 1{ij>rk} = 0. Combining (2) and (3) yields
the first result in lemma 1.

Alternatively, a direct probabilistic proof is as follows. From (1) we have

Egj ,gk [exp(−βτkj)]
= Pgj ,gk(ij < ik) + Egj ,gk [exp(−β(ij − ik))|ik < ij < rk]Pgj ,gk(ik < ij < rk). (4)

Both terms in (4) can be evaluated by considering a reverse-time construction of ij and ik, as follows
(see also the proof of lemma 2 below for a similar approach). Recall that rj < rk. Start at time rk
and run a Poisson process of rate δk backwards in time. If a point occurs at time t ∈ (rj , rk) then
set ik = t, and run a new Poisson process of rate δj backwards in time from rj and set ij equal to
the time of its first point. If not, at time rj increase the Poisson process rate to δj + δk; when the
first point appears at time t < rj , set ij = t with probability δj(δj + δk)

−1, otherwise set ik = t. In
the former case reduce the Poisson process rate to δk, and in the latter reduce it to δj . Continue
back in time; the next point to appear will be the remaining infection time. It is straightforward
to see that this construction yields ij and ik such that rj − ij and rk − ik are independent Exp(δj)
and Exp(δk) random variables, respectively.

Under this construction, ik < ij if and only if (i) the Poisson process has no point in (rj , rk),
which has probability exp(−δk(rk − rj)), and (ii) independently of this, ij is chosen when the first
point of the rate-(δj + δk) Poisson process appears, which has probability δj(δj + δk)

−1. Thus the
first term in (4) is

Pgj ,gk(ij < ik) = 1− Pgj ,gk(ik < ij) = 1− δj(δj + δk)
−1 exp(−δk(rk − rj)),

in agreement with (2). Next, since ij < rj < rk we have

Pgj ,gk(ik < ij < rk) = Pgj ,gk(ik < ij) = δj(δj + δk)
−1 exp(−δk(rk − rj)). (5)

Finally, to evaluate the expectation term in (4), consider a Poisson process of rate β that runs
backwards in time from ij , independently of the rate-δk Poisson process that is used if ik < ij . The
expectation is simply the probability that the former process has no points before the first point of
the latter process, yielding

Egj ,gk [exp(−β(ij − ik))|ik < ij < rk] = δk(δk + β)−1

which along with (5) yields the same expression as (3).
The remaining cases in lemma 1, and 4, can be proved using either direct calculation or proba-

bilistic arguments. For the case of Erlang distributed infectious periods, the probabilistic arguments
require splitting infectious periods into exponentially-distributed stages. Full details can be found
in Stockdale (2018).

1.2 Proof of Lemma 2

Note that in the following, we focus exclusively on the individuals in K and ignore all other indi-
viduals in the population. For ease of exposition, re-label the members of K as 1, . . . ,K. Given
these individuals’ removal times r1 < . . . < rK , their infection times i1, . . . , iK can be constructed

as follows. Start at time rK and consider the Markov process
{

(S̃(t), Ĩ(t)) : t < rK

}
which runs

backwards in time such that (i) (S̃(t), Ĩ(t))→ (S̃(t) + 1, Ĩ(t)− 1) at rate δĨ(t); (ii) at each removal
time, Ĩ(t) increases by 1. Here S̃(t) and Ĩ(t) denote respectively the numbers of susceptibles and
infectives in K at time t and initially (i.e. just before time rK) there are no susceptibles and one
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infective. Transitions of type 1 generate infection times, and at each such event one of the currently
infected individuals is selected uniformly at random to be the individual who is infected at that
time. The process terminates as soon as S(t) = K, which occurs when the last of the required
infection times is generated; call this time ia.

Consider the total time during which infectious pressure is exerted, i.e.∑
j<k

ωjk =

∫ rK

ia

S̃(t)Ĩ(t) dt.

This quantity can be similarly constructed in reverse time as follows. For u < rK define

T (u) =

∫ rK

u
S̃(t)Ĩ(t) dt

and observe that, starting at rK and moving backwards in time, T is a piecewise linear function
that increases at rate S̃(t)Ĩ(t) at time t.

Next, consider a random time-transformation in which (i) the clock runs at rate Ĩ−1 when there
are Ĩ ≥ 1 infectives, and (ii) the clock stops running whenever Ĩ = 0. This has no impact on the
ultimate value of T , because in each time period during which S̃(t)Ĩ(t) does not change, T increases
by the same amount in both the original and transformed time scales. In the transformed time
scale, still in reverse time, (i) T increases at rate S̃ when there are S̃ susceptibles, and removal
times do not affect this rate because they do not change the number of susceptibles, while (ii) the
number of susceptibles increases by one at rate δ, corresponding to an increase at rate δĨ(t) in the
original time-scale.

Combining these observations means that, in the transformed time-scale, T is as a function
which starts at zero, and as soon as the first susceptible appears increases at rate 1; then increases
at rate 2 once the second susceptible appears, and so on until all K susceptibles appear. Since the
times at which susceptibles appear are the points of a Poisson process of rate δ, it follows that

∑
j<k

ωjk = T (ia) =
K−1∑
j=1

jYj

where the Yj are independent Exp(δ) random variables, and the result follows since jExp(δ) ∼
Exp(δ/j).

1.3 Proof of Lemma 3

1.3.1 Preliminaries

For n ≥ 1 let Dn = {(i, j) : 1 ≤ i < j ≤ n} denote the set of 2-element subsets of Nn = {1, . . . , n}.
For (i, j), (k, l) ∈ Dn, |(i, j) ∩ (k, l)| is the number of elements of Nn that (i, j) and (k, l) have in
common, which can equal either 0, 1 or 2. We require the following result, which is essentially
Theorem 2.1 from Barbour and Eagleson (1985) restricted to our setting.

Lemma 1 Let {Xij : (i, j) ∈ Dn} be a collection of zero-mean random variables such that E[|Xij |3] <
∞ for all (i, j) ∈ Dn, and Xij and Xkl are independent if |(i, j) ∩ (k, l)| = 0. Let

σ2n =
∑

(i,j),(k,l)∈Dn

E[XijXkl].
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Then σ−1n
∑

(i,j)∈Dn
Xij converges in distribution as n→∞ to a standard normal random variable

if

σ−3n
∑

(i,j)∈Dn

(E[|Xij |3])1/3
 ∑

(k,l):|(i,j)∩(k,l)|=0

(E[|Xkl|3])1/3
2

→ 0. (6)

1.3.2 Proof of Lemma 3

For (i, j) ∈ Dn set Xij = ωij − E[ωij ] = ωij − δ−1, since ωij ∼ Exp(δ) from lemma 2. Then
E[Xij ] = 0, E[X2

ij ] = δ−2, (E[|Xij |3])1/3 = c > 0, say, E[XijXkl] = E[ωijωkl] and σ2n = s2n. Thus

the left hand side of (6) equals σ−3n c3
(
n
2

)(
n−2
2

)2
and the result follows if σ3n = O(n4+η) for some

η > 0. Now

σ2n =
∑

(i,j),(k,l)∈Dn

E[XijXkl]

=
∑

(i,j),(k,l)∈Dn

|(i,j)∩(k,l)|=0

E[XijXkl] +
∑

(i,j),(k,l)∈Dn

|(i,j)∩(k,l)|=1

E[XijXkl] +
∑

(i,j),(k,l)∈Dn

|(i,j)∩(k,l)|=2

E[XijXkl]

=
∑

(i,j),(k,l)∈Dn

|(i,j)∩(k,l)|=0

E[Xij ]E[Xkl] +
∑

(i,j),(k,l)∈Dn

|(i,j)∩(k,l)|=1

E[XijXkl] +
∑

(i,j)∈Dn

E[X2
ij ]

=
∑

(i,j),(k,l)∈Dn

|(i,j)∩(k,l)|=1

E[XijXkl] +

(
n

2

)
δ−2.

For 1 ≤ j < k < l ≤ n define
Ωjkl = ωjkωjl + ωjkωkl + ωjlωkl,

whence ∑
(i,j),(k,l)∈Dn

|(i,j)∩(k,l)|=1

E[XijXkl] =
∑

1≤j<k<l≤n
E[Ωjkl].

Now

E[Ωjkl] = cov(ωjk, ωjl) + cov(ωjk, ωkl) + cov(ωjl, ωkl) + E[ωjk]E[ωjl] + E[ωjk]E[ωkl] + E[ωjl]E[ωkl]

= cov(ωjk, ωjl) + cov(ωjk, ωkl) + cov(ωjl, ωkl) + 3δ−2

= (var(ωjk + ωjl + ωkl)− var(ωjk)− var(ωjl)− var(ωkl)) /2 + 3δ−2

=
(
5δ−2 − 3δ2)

)
/2 + 3δ−2

= 4δ−2,

since var(ωjk +ωjl +ωkl) = var(Exp(δ)) + var(Exp(δ/2)) = 5δ−2 from lemma 2 with K = 3. Thus

σ2n = 4

(
n

3

)
δ−2 +

(
n

2

)
δ−2 =

n(n− 1)(2n− 1)

6δ2
= O(n3),

and so σ3n = O(n9/2) as required.
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2 Simulation study

In this section we assess the performance of the PBLA and ED approximations using simulated
data. Throughout we assume that βij = βN−1 for all i, j, and that infectious periods are identically
distributed, since it seems most natural to assess the methods in the most basic setting. More
complex settings are considered in the real-life data examples in the main text. We will also be
concerned with the basic reproduction number R0, defined as the number of infections caused by
a single infective in an infinite population of susceptibles (see e.g. Andersson and Britton, 2000).

Our main focus is on the standard PBLA method, since we found that the alternative approxi-
mations described in section 3.3 in the main text were either numerically similar, or performed less
well (see 2.4 below for details).

2.1 Exponential infectious periods

Suppose that Ij ∼ Exp(γ) for all j = 1, . . . , n. Then R0 = βγ−1.
We first consider the performance of the PBLA and ED methods as various combinations of β,

γ, R0 and N vary. Specifically, in each setting we simulate a large number of data sets, typically
500 or 1000, each consisting of removal times r1, . . . , rn. For each data set we then find maximum
likelihood estimates of (β, γ) for both the PBLA and ED approximation using standard numerical
optimisation methods. To provide a visual representation of the estimates we use them to create
kernel density estimates.

2.1.1 Varying β and γ with N and R0 fixed

Figure 1 illustrates that both the PBLA and ED methods are largely unaffected by variations in
the actual values of β and γ, at least while N and R0 are fixed. The PBLA method appears to
perform slightly better in terms of being able to estimate the true parameter values.

2.1.2 Varying N with β and γ fixed

Figure 2 shows the impact of varying N while β and γ are fixed. Again we see that there is
little variation, and that PBLA performs better than the ED method. Note that since R0 is fixed,
increasing N leads to larger values of the outbreak size n, and so here we see evidence that both
approximation methods are able to cope with large n values.

2.1.3 Varying R0

Figure 3, in conjunction with the top panel in Figure 2, shows how variation in R0 impacts the
performance of the PBLA and ED methods, specifically for R0 = 0.5, 1.5 and 2. For both approxi-
mations, the performance deteriorates as R0 increases. To understand this, first note that the value
of N − n contributes to the true likelihood (5), in this case via the product term

n∏
j=1

φj = exp

−βN−1(N − n)

n∑
j=1

(rj − ij)

 .

As the proportion of the population infected, n/N , increases, so the relative importance of the φ
terms compared to the other terms in (5) decreases, and thus to obtain a good overall approximation
it becomes increasingly important to have a good approximation for the ψ terms. However, the
latter are themselves the subject of the least accurate approximation, essentially because each of
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Figure 1: Comparison of maximum likelihood estimates as β and γ vary, using simulated data sets
with exponential infectious periods and N = 100, R0 = 1.5. Top panels: β = 3, γ = 2. Bottom
panels: β = 0.3, γ = 0.2. Vertical lines show the true values.

the ψj terms is itself approximated by a product. Roughly speaking, we found that provided n/N
is less than around 0.7, then the relative importance of the φ terms is sufficient to provide good
approximations for β and γ. However, for larger values of n/N this is no longer the case, and the
overall approximation suffers. From a practical point of view this does not seem to be particularly
restrictive, since real-life outbreaks rarely infect such high proportions of the susceptible population.

2.2 Erlang infectious periods

Suppose now that Ij ∼ Γ(m, γ) for all j = 1, . . . , n, where m is a positive integer. Then R0 =
βmγ−1. We now briefly show that the broad conclusions of the simulation study for the case of
exponential infectious periods also hold true in this setting. We also show that the approximations
improve as the variance of the infectious period decreases while its mean is kept fixed.

2.2.1 Varying β and γ with N and R0 fixed

Figure 4 illustrates that both the PBLA and ED methods are largely unaffected by variations in
the actual values of β and γ, at least while N and R0 are fixed. The PBLA method appears to
perform slightly better in terms of being able to estimate the true parameter values.

6



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

b

D
en
si
ty

PBLA
E+D

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

1.
2

g

D
en
si
ty

PBLA
E+D

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

b

D
en
si
ty

PBLA
E+D

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

g

D
en
si
ty

PBLA
E+D

Figure 2: Comparison of maximum likelihood estimates as N varies, using simulated data sets with
exponential infectious periods and β = 1.5, γ = 1, R0 = 1.5. Top panels: N = 500. Bottom panels:
N = 40. Vertical lines show the true values.

2.2.2 Varying N with β and γ fixed

Figure 5 shows the impact of varying N while β and γ are fixed. The results are broadly similar to
the exponential infectious period case, with relatively little variation in the mode of the estimates
as N increases, but that the variance of the estimates decreases with N . The latter feature suggests
that having more data enables better estimation in the sense that the average error is reduced. We
illustrate this graphically in figure 6 which shows mean square error values as N varies. This error
reduction is clearly a desirable property of both the PBLA and ED approximation methods, but
one that is not obviously true at first sight since larger data sets lead to more approximations being
used in both methods.

2.2.3 Varying R0 with m and γ fixed.

Figure 7 shows the impact of varying R0 whilst keeping the infectious period distribution parameters
m and γ fixed. As for the exponential infectious periods case, and for the same underlying reasons,
estimation for both β and γ becomes less accurate as R0 increases.
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Figure 3: Comparison of maximum likelihood estimates as R0 varies, using simulated data sets
with exponential infectious periods and N = 500. Top panels: β = 0.5, γ = 1, R0 = 1.5. Bottom
panels: β = 2, γ = 1, R0 = 2. Vertical lines show the true values.

2.2.4 Varying m with N and R0 fixed.

If the mean of the infectious period distribution, m/γ, is kept fixed, then increasing m will reduce
the variability of the infectious period. In this situation we expect the accuracy of both the ED and
PBLA methods to improve, since the underlying assumptions of independence between different
components of the likelihood become less unrealistic. Figures 8 and 9 illustrate that this is indeed
the case. What is most striking is that marked improvement in estimation from m = 1 and m = 2,
while increasing m further only provides modest further gains.

2.3 Computational performance

One motivation for the PBLA approach is to dispense with the need for data augmentation. How-
ever, since the PBLA likelihood can be costly to compute, it is natural to ask how it compares to the
standard data-augmented MCMC (DA-MCMC) method described in O’Neill and Roberts (1999)
which generates samples from the posterior density π(β, γ|r). To address this question we first
generated several simulated data sets, consisting of removal times, from the SIR model. On each
data set we then ran both the standard DA-MCMC algorithm, with β, γ and all unknown infection
times updated at each iteration, and an MCMC algorithm with the PBLA likelihood in which β and
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Figure 4: Comparison of maximum likelihood estimates as β and γ vary, using simulated data sets
with Erlang infectious periods and N = 100, m = 2, R0 = 2.4. Top panels: β = 12, γ = 10. Middle
panels: β = 1.2, γ = 1. Bottom panels: β = 0.12, γ = 0.1. Vertical lines show the true values.

γ were updated separately at each iteration using a Gaussian random walk proposal mechanism.
Both algorithms were initialised in stationarity, following burn-in, and then run for the same num-
ber of iterations, ns. We then calculated the effective sample size ESS = ns(1 + 2

∑∞
k=1 ρ(k))−1,

where ρ(k) denotes the sample correlation at lag k, and where the sum was truncated at lag M if
ρ(M + 1) < 0.05. We assigned independent Exp(10−4) prior distributions to both β and γ.

Figure 10 shows the effective sample size per second for DA-MCMC and PBLA for exponential
infectious periods and Erlang infectious periods with shape parametersm = 2, 5. In each case PBLA
eventually outperforms DA-MCMC as N increases, although the improvement is less marked as m
increases, due to the increasing cost of computing the PBLA likelihood.
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Figure 5: Comparison of maximum likelihood estimates as N varies, using simulated data sets with
Erlang infectious periods and β = 1.2, γ = 1, m = 2, R0 = 2.4. From top to bottom panels:
N = 15, N = 100, N = 250, N = 500. Vertical lines show the true values.
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Figure 6: Mean square error (MSE) values as N varies, using simulated data sets with Erlang
infectious periods and β = 1.2, γ = 1, m = 2, R0 = 2.4.

2.4 Comparison of alternative approximations

The main text describes five possible likelihood approximations, namely (i) the standard approx-
imation (section 3.2), (ii) using fi for expectations (3.3.1), (iii) separating all χ and ψ terms
(3.3.2),(iv) approximating the product of ψ terms (3.4.2) and (v) use of the central limit theorem
(3.4.2). Note that the last two approximations were developed for the special case of the general
stochastic epidemic whereas the first three are more general.

Our numerical experiments showed that the standard approximation generally performed best,
although approximations (iv) and (v) are less numerically intensive. Figure 11 shows typical results
based on 1000 simulations for the general stochastic epidemic model. Two key observations are that
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Figure 7: Comparison of maximum likelihood estimates as R0 varies, using simulated data sets
with Erlang infectious periods and N = 80, γ = 1, m = 5. Top panel: β = 0.16, R0 = 0.8. Middle
panel: β = 0.31, R0 = 1.55. Bottom panel: β = 0.8, R0 = 2. Vertical lines show the true values.

the fi expectation method is generally inferior to the others, and that the central limit theorem
approximation improves as N increases, as expected.
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Figure 10: Log effective sample size per second of PBLA and DA-MCMC algorithms as N varies
for exponential (top panels), Erlang shape m = 2 (middle panels) and Erlang shape m = 5 (bottom
panels) infectious period distributions.
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Figure 11: Comparison of different approximations. Plots show maximum likelihood estimates with
β = 1.5 and γ = 1 for 1000 simulations. Solid line = standard, long dashes = fi expectations, dots
= χ−ψ separate, short dashes = ψ product and dot-dashes = central limit theorem. Vertical lines
show the true values.
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