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Abstract

This article investigates the potential for an r-adaptation algorithm to improve the effi-
ciency of space-time residual distribution schemes in the approximation of time-dependent
hyperbolic conservation laws, e.g. scalar advection, shallow water flows, on unstructured,
triangular meshes. In this adaptive framework the connectivity of the mesh, and hence
the number of degrees of freedom, remain fixed, but the mesh nodes are continually “relo-
cated” as the flow evolves so that features of interest remain resolved as they move within
the domain.

Adaptive strategies of this type are well suited to the space-time residual distribution
framework because, when the discrete representation is allowed to be discontinuous in
time, these algorithms can be designed to be positive (and hence stable) for any choice of
time-step, even on the distorted space-time prisms which arise from moving the nodes of
an unstructured triangular mesh. Consequently, a local increase in mesh resolution does
not impose a more restrictive stability constraint on the time-step, which can instead
be chosen according to accuracy requirements. The order of accuracy of the fixed-mesh
scheme is retained on the moving mesh in the majority of applications tested.

Space-time schemes of this type are analogous to conservative ALE formulations and
automatically satisfy a discrete geometric conservation law, so moving the mesh does not
artificially change the flow volume for pure conservation laws. For shallow water flows
over variable bed topography, the so-called C-property (retention of hydrostatic balance
between flux and source terms, required to maintain the steady state of still, flat, water)
can also be satisfied by considering the mass balance equation in terms of free surface
level instead of water depth, even when the mesh is moved.

The r-adaptation is applied within each time-step by interleaving the iterations of the
nonlinear solver with updates to mesh node positions. The node movement is driven by a
monitor function based on weighted approximations of the scaled gradient and Laplacian
of the local solution and regularised by a smoothing iteration. Numerical results are shown
in two dimensions for both scalar advection and for shallow water flow over a variable bed
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which show that, even for this simple implementation of the mesh movement, reductions
in cpu times of up to 60% can be attained without increasing the error.

Keywords: moving meshes, conservative ALE, upwind residual distribution, shallow
water equations, discontinuous space-time representation, well-balanced schemes

1. Introduction

Residual distribution schemes [1, 2] have been developed as an alternative to flux-
based approaches [3, 4, 5] for approximating hyperbolic conservation laws. They provide
a framework within which the underlying flow physics can be represented in a genuinely
multidimensional manner, unlike the approximate Riemann solvers employed in finite vol-
ume and discontinuous Galerkin schemes [5], while simultaneously avoiding the introduc-
tion of spurious numerical oscillations, especially in the vicinity of discontinuities. Robust
and accurate steady-state schemes appeared in the 1980s and 1990s and were combined
with adaptive mesh movement to improve their shock-capturing capabilities [6]. Since
then, both explicit, Runge-Kutta [7, 8], and implicit, space-time [9, 10], schemes have
been developed for simulating time-dependent problems.

Recent research has focussed on improving the efficiency of these time-dependent meth-
ods by moving the computational mesh so that the features of interest are resolved by
regions in which mesh nodes are more densely clustered (r-adaptivity). The aim is to
make the most efficient use of a fixed number of degrees of freedom by placing them
where they will most effectively reduce the error. Explicit residual distribution schemes
have been combined successfully with mesh movement in [11, 12, 13] – this paper will
discuss the application of moving meshes in the space-time framework. There are par-
ticular attractions of combining mesh movement with these implicit methods because,
by allowing a discontinuous-in-time representation, they can be constructed in a manner
which is unconditionally stable [10], so (as long as the nonlinear implicit solver can be
persuaded to converge) the size of the time-step can be chosen on the basis of accuracy –
it is not limited by a CFL constraint determined by the size of the computational mesh.

The implicit nature of our scheme allows us to interleave the iterations of our nonlinear
solver with adjustments to the positions of the mesh nodes at the new time level in the
space-time mesh. In line with many standard approaches, e.g. [14, 15], the mesh movement
is determined by an iteration which, at convergence, aims to equidistribute a monitor
function which is chosen to indicate regions where the local error is high. We choose a
monitor based on first and second derivatives of the dependent variable, to demonstrate
the algorithm and give an indication of the potential of combining mesh movement with
space-time residual distribution.

All mesh movement algorithms should satisfy a discrete geometric conservation law
(DGCL) [16] – this guarantees that no mass is artificially created or destroyed by the
movement of the mesh – and conservative space-time schemes inherit this property au-
tomatically. In fact, the space-time schemes are closely related to standard arbitrary
Lagrangian-Eulerian (ALE) schemes, and can be used to derive ALE schemes which in-
herit the DGCL. As such, they might be classed as velocity-based moving mesh methods
[17, 18], in which the node displacements from one time level to the next imply a mesh
velocity field. This contrasts with the transformation-based approach, which has been ap-
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plied to the explicit residual distribution schemes in [11, 19], though the two approaches
are related.

We aim to apply space-time residual distribution with moving meshes to the shallow
water equations, a nonlinear, hyperbolic, system of partial differential equations com-
monly used to study the hydrodynamics of coastal and river flows. This raises an ad-
ditional issue, the preservation of the “lake-at-rest” steady state, in which the numerical
approximations to the flux and source terms balance perfectly when the bed topography
varies. This is also known as the C-property or well-balanced property, and has been the
subject of much research in the last 20 years, particularly in the context of flux-based
schemes [20, 21, 22]. It is actually more natural for residual distribution schemes to
satisfy this property because the discrete flux and source terms which must balance are
both evaluated using volume integrals, and appropriate schemes have been developed on
fixed meshes. We will show how this can be extended to moving meshes for the space-
time approach, linking it with recent work combining moving meshes with the explicit,
Runge-Kutta, schemes [11].

The paper is organised as follows: in Section 2.1 we introduce the space-time residual
distribution framework for a scalar hyperbolic conservation law and describe how it can be
applied on the distorted triangular prisms that arise from moving the mesh in two space
dimensions. This is supplemented by a proof that, when allowing discontinuities in time,
the space-time N scheme satisfies a discrete maximum principle for any time-step. The
extension to nonlinear systems of equations is described in Section 2.2 and its application
to the shallow water equations is given in Section 2.3, with particular attention paid to
the issues relating to producing a scheme which is both conservative and well-balanced
when the mesh is moved over a variable bed topography. A simple moving mesh iteration
is described in Section 2.4, along with an outline of how it is combined with the nonlinear
implicit solver. Numerical results which demonstrate the potential of the adaptive scheme
when applied to scalar conservation laws and the shallow water equations in two space
dimensions are provided in Section 3 and concluding remarks are given in Section 4.

2. Residual Distribution on Moving Meshes

In this section, we present a description for space-time discontinuous residual distri-
bution (STDRD) schemes for hyperbolic conservation laws with zero right-hand side on
distorted triangular prisms, ones in which the two triangular faces are parallel (each is
fixed at a constant time level) but may otherwise be different. A detailed description of
STDRD schemes on right triangular prisms can be found in [10]. We will show how ap-
plying this scheme on distorted prisms relates to ALE-type approaches [13, 19] which are
more commonly considered when the spatial mesh is allowed to change from one time-step
to the next.

Consider a two-dimensional spatial domain Ω ⊂ R
2, its triangular tessellations at

time levels n and n + 1, Ωn
h and Ωn+1

h respectively, and the corresponding space-time
mesh, (Ωt

h)
n, between these two time levels. Let En denote a given triangular element

of the spatial mesh at time level n, Et
n denote the corresponding space-time element,

defined by joining the corresponding vertices of En and En+1 with straight lines (see
Figure 1), and define Di = ∪i∈EE to be the patch of elements with vertex i in common
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(the superscript indicating the time level has been dropped because the spatial mesh
connectivity is assumed to remain unchanged throughout the computation). Note that
the lateral faces of Et

n can be constructed using bilinear transformations of those of a right
prism, forming a “distorted prism” which will not necessarily be a polyhedron because the
vertices of each lateral face are not constrained to be coplanar. The residual distribution
schemes described in the following sections generalise straightforwardly to three space
dimensions.

2.1. Scalar Equations

Consider the scalar conservation law

∂u

∂t
+∇ · f(u) = 0 or

∂u

∂t
+ a(u) · ∇u = 0 (1)

with appropriate initial conditions and Dirichlet boundary conditions at the inflow part
of the domain. Here f(u) represents the conservative flux vector and a(u) = ∂f/∂u is
the corresponding wave speed. The associated residual over the space-time element Et

n

is given by

φn
Et

=

tn+1
∫

tn

∫

E(t)

(

∂u

∂t
+∇ · f

)

dΩdt . (2)

For the original (non-discretised) equation (1), it therefore holds that

tn+1
∫

tn

∫

Ω(t)

(

∂u

∂t
+∇ · f

)

dΩdt =
∑

En
t
∈(Ωt

h
)n

φn
Et
, (3)

provided that the solution u is bounded and piecewise differentiable.
It is also worth recalling here that, by the Reynolds transport theorem,

d

dt

∫

E(t)

u dΩ =

∫

E(t)

∂u

∂t
dΩ +

∫

∂E(t)

uv · n̂ dΓ , (4)

in which n̂ is the outward-pointing unit vector normal to the element boundary ∂E(t) and
v is the velocity of this moving boundary. Applying the divergence theorem, integrating
with respect to time, and combining with Equation (2) then gives

φn
Et

=

∫

E(tn+1)

u(tn+1) dΩ−
∫

E(tn)

u(tn) dΩ +

tn+1
∫

tn

∫

∂E(t)

(f − uv) · n̂ dΓ dt , (5)

i.e. solving φn
Et

= 0 for all elements is equivalent to updating the solution according
to the Reynolds transport theorem. This observation is presented to emphasise the close
relationship between the residual distribution method derived in this paper by integrating
the residual over a space-time element and the family of conservative ALE methods based
on discretising the Reynolds transport theorem [23, 24]. From now on the superscript ·n
will be dropped from the notation where the time level is obvious from the context.
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2.1.1. Distributing the Residual

For STDRD, only right prisms have been considered so far in the literature [9, 10],
i.e. when the spatial coordinates of En and En+1 are exactly the same. In this work, the
positions of the mesh nodes at time level tn+1 are allowed to differ from their positions
at time level tn. Even though the STDRD framework allows for discontinuities in time,
the spatial coordinates of En are fixed at the values obtained in the previous time-step
to avoid having to apply a conservative reconstruction of the dependent variable on the
new mesh. For simplicity, it is also assumed that the shape of the domain Ω remains
unchanged, and that boundary nodes only move along the boundary, not perpendicular
to it. This condition could be relaxed, as long as the movement of the boundary can
be predicted accurately and an appropriate boundary condition can be defined on the
moving boundary.

The derivation of the STDRD numerical discretisation to be used here follows precisely
that presented in [10] for fixed meshes. In particular, it is assumed that the dependent
variable has a piecewise linear continuous representation in space at any given time, but
discontinuities are allowed in time. This leads to a family of schemes which are second-
order accurate and unconditionally stable – higher-order schemes have been derived on
fixed meshes [25, 26, 27, 28, 29, 30, 31, 32]. The discretisation consists of the following
general steps:

1. In every space-time element, replace the unknown variable u with an approximation
uh that varies linearly along the edges of the element.

2. Transform the element residual into a space-time boundary integral:

φEt
=

tn+1
∫

tn

∫

E(t)

(

∂uh
∂t

+∇ · fh

)

dΩdt =

∫

Et

∇t · f t dΩt =

∫

∂Et

f t · n̂t dΓt , (6)

where ∇t = (∂/∂t, ∂/∂x, ∂/∂y), f t = (uh, fh), and n̂t is the outward-pointing unit
vector normal to the surface of the space-time element.

In this work, it is assumed that the edges of each space-time element are straight
lines (the mesh node velocities are assumed to be constant within each time-step)
and that the surface of each lateral face is defined by the bilinear interpolant of its
four vertices. The outward-pointing normal to a lateral face nt is therefore parallel to
(0, e)∧ (1, v), in which e is the anticlockwise-oriented edge of the triangle obtained
from the intersection of the space-time element with the x-plane at t ∈ [tn, tn+1]
(see Figure 1) and v is the local mesh velocity, defined by linear interpolation of the
velocities at the two vertices defining this edge. Since v at each spatial mesh node
is assumed to be constant in time, it is simple to show that

(0, e) ∧ (1, v) = (−n · v,n) . (7)

Furthermore, n̂t in Equation (6) is the unit vector normal to the surface of the space-
time element, with direction nt = (−n · v,n) on the lateral faces and nt = (±1, 0)
on the triangular faces.
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tn+1

E(t)
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nt(t)
n(t)

t

Plan View

Figure 1: Geometry of the space-time element (in which the lateral faces are bilinear transformations of
those of a right triangular prism) for the moving mesh algorithm.

3. Integrate over the two triangular faces and apply the trapezoidal rule in time to the
lateral faces, giving

φEt
=

∫

En+1

un+1
h dΩ−

∫

En

unh dΩ +

∫

lateral

f t · n̂t dΓt

=

∫

En+1

un+1
h dΩ−

∫

En

unh dΩ +

tn+1
∫

tn

∫

∂E(t)

(fh · n̂− uhv · n̂) dΓ dt

≈
∫

En+1

un+1
h dΩ−

∫

En

unh dΩ

+
∆t

2







∫

∂En

(f (unh)− unhv) · n̂ dΓ +

∫

∂En+1

(

f(un+1
h )− un+1

h v
)

· n̂ dΓ







=

∫

En+1

un+1
h dΩ−

∫

En

unh dΩ +
∆t

2
(φn

E + φn+1
E ) ,

(8)

in which

φE =

∫

E

(∇ · fh −∇ · (uhv)) dΩ =

∫

∂E

(fh − uhv) · n̂ dΓ . (9)

This is immediately recognisable as a conservative ALE formulation [23] (see Equa-
tion (5)), as has already been applied within the RD framework in [11, 13]. This
formulation may also be derived in terms of mappings between the meshes at the
two time levels [19]. This is a second-order accurate approximation of the space-
time element residual, as long as the spatial residuals, φn

E and φn+1
E , are computed

to be at least one order more accurate than the discretisation itself.

4. Distribute the space-time element residual, φEt
in Equation (8), to the six vertices

of the element in a conservative manner, i.e. the fractions of the residual sent to
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vertex with spatial index i at time levels n and n+ 1 are defined as

φE
i,n = βE

i,nφEt
and φE

i,n+1 = βE
i,n+1φEt

, (10)

in which the distribution coefficients are defined such that
∑

i∈E

βE
i,n +

∑

i∈E

βE
i,n+1 = 1 . (11)

5. Integrate across the discontinuity in time, to produce additional residuals which,
since the initial spatial mesh for the new time-step is constrained to be the same
as the final spatial mesh at the previous time-step, can be viewed as space-time
residuals evaluated in the limit ∆t → 0, i.e.

ψE = lim
∆t→0

∫

∂Et

f t · n̂t dΓt =

∫

E

[unh] dΩ =
|En|
3

∑

i∈E

[uni ] , (12)

where |En| is the area of the triangular element En, [un] = un
+ − un

−

(in which
un

±

= limt→(tn)± uh) represents the jump across the triangular face and piecewise
linear variation of uh in space has been assumed. The ± superscripts are suppressed
in the majority of what follows: within a space-time element n and n+1 implicitly
indicate n+ and (n + 1)−, respectively, and ψE is evaluated at time level n.

Distribute this residual to the three vertices of the element En in a conservative
manner: the simple vertex-centred distribution

ψE
i,n =

|En|
3

[uni ] , (13)

was shown in [10, 33, 34] to have all the properties one might ask of a residual
distribution scheme, and this is the formulation that is used throughout this article.
No modification is required to accommodate the moving meshes. We emphasise
that there is a distinction between Equation (13) and a pure Galerkin distribution
of the interface residual. In fact, the distribution defined by (13) is purely upwind
in time. Furthermore, the spatial distribution of the residual (12) is derived from
applying mass lumping to the contribution of the integral of the time derivative
to the space-time residual [34]. This leads to a weak, pointwise, imposition of the
solution at the previous time-step. The proof in Appendix B demonstrates that this
choice will not produce spurious numerical oscillations.

6. Solve the nonlinear algebraic system derived by distributing the residuals, (10) and
(13), to the vertices of the space-time elements:

∑

E∈Di

(

φE
i,n + ψE

i,n

)

= 0

∑

E∈Di

φE
i,n+1 = 0

(14)

∀i ∈ Ωh at each time-step.

It remains to evaluate the spatial residual, φE in (8), and the distribution coefficients, βE
i

in (10).
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2.1.2. Evaluating the Residual

Since both uh and v are assumed to vary linearly along each edge of the spatial mesh,
φE in (9) can be evaluated exactly using Simpson’s rule, for appropriate fluxes, leading
to

φE =

∫

∂E

(f (uh)− uhv) · n̂ dΓ

=
∑

i∈E

(

−1

2
a · ni +

1

2

(

vi · ni −
1

3
(vj − vi) · nk −

1

3
(vk − vi) · nj

))

ui ,

(15)

in which φE can be evaluated at any time t and j, k are the vertices of E which are not i.
It is assumed here that a conservative linearisation [35] is available for the PDE (1) and
that a is the corresponding averaged velocity, e.g. for divergence-free scalar advection this
is the arithmetic mean of the vertex values.

The form of the residual is simplified somewhat if the trapezoidal rule (an approxi-
mation which retains second-order accuracy) is used to evaluate the integrals along the
mesh edges, giving

φE ≈
∑

i∈E

(

−1

2
(a− vi) · ni

)

ui . (16)

When ∇ · v = 0 the two forms for the residual, (15) and (16), are equivalent for linearly
varying u and v. However, the terms corresponding to the mesh movement cannot be
incorporated within the conservative linearisation in either formulation because the mesh
velocity field does not, in general, satisfy ∇ · v = 0. Previous implementations [13] have
included an element-averaged value of v in the linearisation but added a source term to
compensate for the mesh velocity-divergence.

Having evaluated φE, it is now possible to write the discrete residual over the space-
time element in the form

φEt
=
∑

i∈E

ki,nu
n
i +

∑

i∈E

ki,n+1u
n+1
i . (17)

where, from (15),

ki,n = −∆t

4
an · nn

i

+
∆t

4

(

vi · nn
i −

1

3
(vj − vi) · nn

k −
1

3
(vk − vi) · nn

j

)

− |En|
3

,

ki,n+1 = −∆t

4
an+1 · nn+1

i

+
∆t

4

(

vi · nn+1
i − 1

3
(vj − vi) · nn+1

k − 1

3
(vk − vi) · nn+1

j

)

+
|En+1|

3
,

(18)

ni being the outward-pointing normal vector (in space only) opposite node i, at the
specified time level, scaled by the length of the edge opposite node i. Note that v is
assumed to remain unchanged during a time-step so the superscripts denoting the time
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level have been dropped. If, as in (16), the residuals are approximated instead using the
trapezoidal rule, then

ki,n = −∆t

4
(an − vi) · nn

i −
|En|
3

,

ki,n+1 = −∆t

4

(

an+1 − vi

)

· nn+1
i +

|En+1|
3

.

(19)

In fact, for both approximations,
∑

i∈E

ki,n +
∑

i∈E

ki,n+1 = 0 , (20)

so either (18) or (19) can be used to define the inflow parameters in any of the standard
residual distribution schemes (proof provided in Appendix C).

There are two important consequences of (20).

1. The space-time N scheme (detailed in [2] and outlined in the next section) may be
used in its standard form with the new definitions of the ‘inflow’ parameters ki,n
and ki,n+1 taken from either (18) or (19). It also allows us to define the quantities

k+i,n = max(0, ki,n) , k−i,n = min(0, ki,n) ,

k+i,n+1 = max(0, ki,n+1) , k−i,n+1 = min(0, ki,n+1) ,

Nt =
1

∑

i∈E k
+
i,n +

∑

i∈E k
+
i,n+1

,

(21)

which will be used in the distribution schemes described in the next section.

2. Any conservative residual distribution scheme, i.e. one for which
∑

i∈E

βE
i,n +

∑

i∈E

βE
i,n+1 = 1 , (22)

will satisfy a discrete geometric conservation law (DGCL) [16], i.e. the trivial solu-
tion u ≡ constant is preserved when the mesh is moved.

This is easy to show because, for all of the schemes defined in Section 2.1.3, Equa-
tions (17) (or (6)) and (21) give

un+1 = un
+

= un
−

= K ⇒ φE
i,n = ψE

i,n = φE
i,n+1 = 0 . (23)

Thus un+1 = K satisfies (14) and is a possible solution at the new time level. More-
over, it is the solution that would be found by the pseudo-time-stepping iteration
described in Section 2.1.4.
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2.1.3. Evaluating the Distribution Coefficients

The typical design requirements for RD schemes include [36]

• positivity, which warrants that the numerical approximations are free of spurious
oscillations;

• linearity preservation, which ensures that a (k−1)th-order polynomial representation
of uh leads to a kth-order accurate scheme [26];

• conservation, which guarantees that discontinuities are captured correctly and that
the approximation converges to a weak solution of (1) as the mesh is refined;

• compactness, which is primarily for computational efficiency and requires that the
element residual be distributed to its own vertices only; and

• continuous dependence of the coefficients on both the solution and the advection
velocity, which enhances the iterative convergence of any algebraic solver applied to
(14).

The schemes are also often designed to be upwind, i.e. the discretised model propagates
information in the same direction and at the same velocity as its non-discretised counter-
part. Since this provides positivity and improved numerical stability relative to centred
schemes, we choose to consider upwind schemes in this work, though other successful RD
schemes have been developed [2].

We briefly describe here the space-time upwind schemes that are the focus of this
investigation. As before, the use of n and n + 1 within an element residual implies n+

and (n + 1)−.

• The space-time N (STN) scheme is here defined in a form suitable for the con-
servative residual distribution (CRD) formulation [37] (which will later be used in
the approximation of the shallow water equations), i.e.

uint = Nt

(

∑

j∈E

k+j,nu
n
j +

∑

j∈E

k+j,n+1u
n+1
j − φEt

)

,

(

φE
i,n

)N
= k+i,n

(

uni − uint
)

,
(

φE
i,n+1

)N
= k+i,n+1

(

un+1
i − uint

)

,

(24)

using the inflow parameter definitions given by Equation (21). This is a linear
scheme that has all the desired properties except linearity preservation.

A proof of the unconditional positivity of this scheme on the space-time elements
generated by the mesh movement is provided in Appendix B. In addition we note
that positivity is only formally guaranteed if (17) is used for the computation of
φEt

, though it is not always possible or desirable to evaluate the residual in this
way. Nevertheless, oscillation-free behaviour is also often observed in computational
experiments [2] for the CRD scheme when an appropriate quadrature rule is used
to evaluate φEt

directly from (6). The advantage of the CRD formulation is that it
becomes simple to guarantee conservation, even when a conservative linearisation is
not available or is prohibitively expensive to compute.

10



• The space-time LDA (STLDA) [37] scheme is defined as

(

φE
i,n

)LDA
= k+i,nNt φEt

,
(

φE
i,n+1

)LDA
= k+i,n+1Nt φEt

, (25)

which is also a linear scheme and has all the desired properties except positivity.

• By Godunov’s theorem [24, 38], only nonlinear schemes can satisfy the conditions
for both positivity and linearity preservation. Therefore, in order to obtain all of
the desired properties, nonlinear schemes must be considered.

The space-time blended (STB) scheme combines two linear schemes, the STN
and STLDA schemes, for example, through a nonlinear blending coefficient θ,

(

φE
i,n

)B
= θ

(

φE
i,n

)N
+ (1− θ)

(

φE
i,n

)LDA
,

(

φE
i,n+1

)B
= θ

(

φE
i,n+1

)N
+ (1− θ)

(

φE
i,n+1

)LDA
.

(26)

The blending coefficient determines how ‘well’ the required properties, especially
positivity, are satisfied. The choice adopted in this article, taken from [39], is

θ =
|φEt

|
∑

i∈E

∣

∣

∣

(

φE
i,n

)N
∣

∣

∣
+
∑

i∈E

∣

∣

∣

(

φE
i,n+1

)N
∣

∣

∣

. (27)

Note also that the STN scheme can be written as the STLDA scheme plus additional
dissipation [40], so the STB scheme may be considered in these terms (as it can be
in the space-only case).

2.1.4. Solving the Discrete System

Once the distribution of the residual has been determined, the system (14) is solved
using the following simple pseudo-time-stepping algorithm:

(

un
+

i

u
(n+1)−

i

)

m+1

=

(

un
+

i

u
(n+1)−

i

)

m

− τi
∑

E∈Di

(

φE
i,n + ψE

i,n

φE
i,n+1

)

m

, (28)

where i is the spatial mesh node index. The subscript m is the index for the pseudo-time-
step and the iteration is fully explicit. In order to provide an iteration which is positive at
each step (and hence will not diverge), the local pseudo-time-step τi is chosen to satisfy

τi ≤
1

∑

E∈Di
k+i,n +

∑

E∈Di
k+i,n+1

. (29)

In this work τi is chosen to be CFLτ times its maximum value, where CFLτ ≤ 1. The
value of τ is allowed to change from node to node in order to accelerate convergence of
the iteration.
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2.2. Nonlinear Systems

Consider now the nonlinear hyperbolic system of conservation laws,

∂U

∂t
+∇ · F = 0 or

∂U

∂t
+A(U) · ∇U = 0 , (30)

where A(U) = [Ax,Ay] = [∂Fx/∂U, ∂Fy/∂U ] = ∂F /∂U is the wave-speed tensor. Fol-
lowing the same approximation procedure as for the scalar equation (Section 2.1.1) gives
a space-time residual of

ΦEt
≈
∫

En+1

Un+1
h dΩ−

∫

En

Un
h dΩ

+
∆t

2





∫

∂En

(F (Un
h )− Un

h v) · n̂ dΓ +

∫

∂En+1

(

F (Un+1
h )− Un+1

h v
)

· n̂ dΓ



 .

(31)

2.2.1. Evaluating the Residual

The residuals in (31) may be approximated as

ΦEt
≈
∑

i∈E

Ki,nU
n
i +

∑

i∈E

Ki,n+1U
n+1
i (32)

in which the K matrices are defined by, cf. Equation (18),

Ki,n ≈ −∆t

4
A

n · nn
i

+
∆t

4

(

vi · nn
i −

1

3
(vj − vi) · nn

k −
1

3
(vk − vi) · nn

j

)

I − |En|
3

I ,

Ki,n+1 ≈ −∆t

4
A

n+1 · nn+1
i

+
∆t

4

(

vi · nn+1
i − 1

3
(vj − vi) · nn+1

k − 1

3
(vk − vi) · nn+1

j

)

I +
|En+1|

3
I ,
(33)

where I is the identity matrix and A represents an averaged state of the flux Jacobian
A. In the simpler situation where the trapezoidal rule is used to approximate the spatial
integrals, cf. Equation (19), the K matrices would be defined by

Ki,n ≈ −∆t

4
A

n · nn
i +

∆t

4
vi · nn

i I − |En|
3

I ,

Ki,n+1 ≈ −∆t

4
A

n+1 · nn+1
i +

∆t

4
vi · nn+1

i I +
|En+1|

3
I .

(34)

For some systems, including the shallow water equations, ΦEt
and A can be derived

from a conservative linearisation [35], so that (32) is an exact evaluation of the discrete
residual. This approach is described in more detail in [10]. However, if the conservative
linearisation is not known or its implementation is not practical, it is still possible to
achieve conservation by evaluating the space-time element residual directly from (31) via
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a higher-order quadrature rule – this is one of the concepts behind the CRD schemes
[41, 42]. The K matrices in (34), which are required by the distribution schemes, are then
evaluated using appropriate averaged states which depend on the time level at which
A is being evaluated. In this work, for the shallow water equations, A

n
and A

n+1
are

evaluated using the arithmetic means of the spatial element vertex values of the primitive
variables, depth and velocity, at their respective time levels [10].

2.2.2. Evaluating the Distribution Coefficients

Assuming that the inflow matrices defined in (34) are diagonalisable, we have Ki,n =
RDR−1, where D is the diagonal matrix of eigenvalues, R−1 is the matrix of the left and R
of the right eigenvectors. Defining D± = 1

2
(D ± |D|) with |D| denoting the absolute values

of the entries, we can generalise the inflow parameters defined in (21) to the matrices

K+
i,n =

(

RD+R−1
)

i,n
, K+

i,n+1 =
(

RD+R−1
)

i,n+1
,

K−
i,n =

(

RD−R−1
)

i,n
, K−

i,n+1 =
(

RD−R−1
)

i,n+1
,

Nt =

(

∑

i∈E

K+
i,n +

∑

i∈E

K+
i,n+1

)−1

.

(35)

These matrices are used to define upwind RD schemes along the lines of the scalar case
(24)–(26). Note that the presence of the volume term in the space-time residual, which
corresponds to the time derivative, ensures that the eigenvalues of the K parameters can-
not all vanish simultaneously [9, 43]. Consequently, Nt can always be evaluated without
any need for regularisation.

• The space-time N (STN) scheme for systems [2, 37] is defined as

U in
t = Nt

(

∑

j∈E

K+
j,nU

n
j +

∑

j∈E

K+
j,n+1U

n+1
j − ΦEt

)

,

(

ΦE
i,n

)N
= K+

i,n

(

Un
i − U in

t

)

,
(

ΦE
i,n+1

)N
= K+

i,n+1

(

Un+1
i − U in

t

)

.

(36)

The CRD formulation is again used here, where ΦEt
is computed by integrating

Equation (31) with an appropriate quadrature rule. If a conservative linearisation
exists, and (32) is used to evaluate ΦEt

, then an alternative form must be used for
U in (32) and (36) to retain conservation: this is described in more detail for the
shallow water equations in [10].

• The space-time LDA (STLDA) scheme for systems [2, 37] is defined as

(

ΦE
i,n

)LDA
= K+

i,nNtΦEt
,

(

ΦE
i,n+1

)LDA
= K+

i,n+1NtΦEt
. (37)

• The space-time blended (STB) scheme for systems [2] is still defined as a com-
bination of STN and the STLDA schemes,

(

ΦE
i,n

)B
= Θ

(

ΦE
i,n

)N
+ (I −Θ)

(

ΦE
i,n

)LDA
,

(

ΦE
i,n+1

)B
= Θ

(

ΦE
i,n+1

)N
+ (I −Θ)

(

ΦE
i,n+1

)LDA
.

(38)
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The matrix blending parameter Θ can be computed in a number of different ways
[44, 45]. The simplest generalisation of (27) is

Θ1 = diag





|ΦEt
|

∑

i∈E

∣

∣

∣

(

ΦE
i,n

)N
∣

∣

∣
+
∑

i∈E

∣

∣

∣

(

ΦE
i,n+1

)N
∣

∣

∣



 , (39)

where the division should be understood as an element-wise operation. Another
possibility, proposed in [44] and used in this work, is to choose a particular direction
ξ = (ξx, ξy) and compute the decomposition A · ξ = RξDξR−1

ξ . The blending (38)
is then carried out on the “characteristic” residuals

ΦN
i,n = (R−1

ξ )nΦ
N
i,n , ΦN

i,n+1 = (R−1
ξ )n+1Φ

N
i,n+1 ,

ΦLDA
i,n = (R−1

ξ )nΦ
LDA
i,n , ΦLDA

i,n+1 = (R−1
ξ )n+1Φ

LDA
i,n+1 ,

(40)

with the blending parameter computed as

Θ2 = diag

(
∣

∣

∑

i∈E Φ
N
i,n +

∑

i∈E Φ
N
i,n+1

∣

∣

∑

i∈E

∣

∣ΦN
i,n

∣

∣+
∑

i∈E

∣

∣ΦN
i,n+1

∣

∣

)

, (41)

where we drop the superscript E to avoid clutter. Finally, we calculate the
blended residuals based on the original variables by ΦB

i,n = (Rξ)nΦ
B
i,n and ΦB

i,n+1 =
(Rξ)n+1Φ

B
i,n+1. In this work, in order to aid iterative convergence within each time-

step, the blending parameter, Θ2, is fixed after the first pseudo-time-step.

The treatment of the discontinuity in time is directly analogous to (13). The residual
due to the discontinuity in time is given by

ΨE =

∫

E

[Un
h ] dΩ =

|En|
3

∑

i∈E

[Un
i ] , (42)

and the corresponding contributions are defined as [33]

ΨE
i =

|En|
3

[Un
i ] . (43)

Combining this with the distribution of the element residuals leads to a system of nonlinear
algebraic equations of the form

∑

E∈Di

(

ΦE
i,n +ΨE

i,n

)

= 0

∑

E∈Di

ΦE
i,n+1 = 0

(44)

∀i ∈ Ωh, which needs to be solved at each time-step. Boundary conditions are applied as
described in [46].
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2.2.3. Solving the Discrete System

In this work a simple pseudo-time-stepping algorithm is used to solve Equation (44):
(

Un+

i

U
(n+1)−

i

)

m+1

=

(

Un+

i

U
(n+1)−

i

)

m

− τi
∑

E∈Di

(

ΦE
i,n +ΨE

i,n

ΦE
i,n+1

)

m

. (45)

The local pseudo-time-step τi is chosen to satisfy

τi ≤
1

∑

E∈Di
̺(K+

i,n) +
∑

E∈Di
̺(K+

i,n+1)
, (46)

in which ̺(M) denotes the spectral radius of a given matrix M, so ̺(K+
i ) = max diagD+

i ,
and the Ki are given by (34). As in the scalar case, CFLτ ≤ 1 is chosen. The constraint
provided by (46) is chosen so that in the scalar case the iteration reduces to one which
satisfies a provable discrete maximum principle.

2.3. Application to the Shallow Water System

The space-time RD framework has been applied to the frictionless shallow water equa-
tions with variable bed topography [10],

∂U

∂t
+∇ · F (U) + S(U) = 0 on Ωt , (47)

where, in two space dimensions,

U =





d
du
dv



 , F =
[

Fx Fy

]

=





du dv

du2 + gd2

2
duv

duv dv2 + gd2

2



 , S = −







0

gd∂b(x,y)
∂x

gd∂b(x,y)
∂y






, (48)

in which d is the water height, u = (u, v) is the flow velocity and b is the height of the
bed topography. The level of the free surface is defined as η = d + b. One of the main
challenges of discretising this system is the retention of the hydrostatic balance property
(the C-property [20]) satisfied by the underlying equations, within the framework of a
conservative scheme. In [11] this is simplified by approximating a “pre-balanced” form of
the equations [47]: in this work we simply modify the mass balance equation, as described
in Section 2.3.1.

The CRD formulation, which guarantees conservation, is also applied [41], using the
arithmetic means d, u, v of the values at the vertices of the triangular spatial elements
as the averaged states in (34). The positivity of the STN scheme is formally lost, but
we have typically observed oscillation-free solutions in our numerical experiments. There
is no guarantee that this will always be the case, as shown in [48], in which a blending
coefficient is derived using more rigorous arguments. In order to preserve hydrostatic
balance, as described in the following section, the element-averaged free surface and bed
levels, η and b respectively, must be evaluated in the same way as d wherever they appear.
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2.3.1. Preserving Hydrostatic Balance

The shallow water system (47)–(48) is, by construction, in hydrostatic balance. Over
a general non-flat bed, however, care is needed to ensure exact preservation of the C-
property by the numerical algorithm. Some progress has been made on the development of
well-balanced space-time discontinuous Galerkin schemes for the shallow water equations
on moving meshes [49].

It was proved in [42] that, when the water height d and the bottom topography b are
both assumed to be linearly varying, the linearity preserving CRD schemes satisfy the
C-property [42, 50, 51] on fixed meshes, as long as the contribution of the source term to
the augmented space-time element residual, ΦEt

+ Φb
Et

at a given time level is computed
as

Φb
Et

= ∆t
gd

2

∑

i∈E

[

0
bini

]

≈
tn+1
∫

tn

∫

E(t)

S(U) dΩdt , (49)

where ni is the outward normal to the edge opposite vertex i scaled by the length of the
edge. In order for the STN scheme (36) (and the corresponding STB schemes) to satisfy
hydrostatic balance, a slightly modified version of (36) must be applied. For fixed bed
topography, ∂d

∂t
= ∂η

∂t
, so U = [d, du, dv]T can be replaced by V = [η, du, dv]T in the CRD

formulation, using the arithmetic mean η in the approximation of the spatial integral of
the time derivative term. This leads to

V in
t = Nt

(

∑

j∈E

K+
j,nV

n
j +

∑

j∈E

K+
j,n+1V

n+1
j − ΦEt

− Φb
Et

)

,

(

ΦE
i,n

)N
= K+

i,n

(

V n
i − V in

t

)

,
(

ΦE
i,n+1

)N
= K+

i,n+1

(

V n+1
i − V in

t

)

.

(50)

A proof that this modified N scheme satisfies the C-property on fixed meshes is given in
[10].

The proofs that the C-property is satisfied generalise straightforwardly to moving
meshes because the STN and STLDA schemes take precisely the same general forms,
(36) and (37) respectively: only the definitions of the K matrices and the residuals Φ are
different. The forms of the K matrices do not affect the proofs, so it only remains to
construct the form of Φb

Et
(a generalisation of Equation (49)) which, when combined with

the residual in Equations (31) and (42), satisfies

ΨE + ΦEt
+ Φb

Et
= 0 when V = [η, du, dv]T = [const, 0, 0]T . (51)

In order to satisfy the C-property on a moving mesh, the contribution of the source term
to the space-time element residual should be computed in our schemes as

Φb
Et

=
∆t

2

(

gd
n

2

∑

i∈E

[

0
bni n

n
i

]

+
gd

n+1

2

∑

i∈E

[

0
bn+1
i nn+1

i

]

)

. (52)

The details of the proof are given in Appendix A.
As a consequence of choosing to approximate the residual using ∂η

∂t
instead of ∂d

∂t
, the

resulting numerical scheme locally conserves the quantity
∫

ηh dΩ−
∫

b(x) dΩ =

∫

dh dΩ +

∫

bh − b(x) dΩ (53)
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at convergence of the pseudo-time-stepping iteration described in Section 2.2.3. Here ηh,
dh and bh are the piecewise linear approximations obtained by interpolating the nodal
values and b(x) is the exact bed topography. This is equivalent to mass conservation
(
∫

dh dΩ remains constant) in the special case where the mesh movement over the bed
topography satisfies

|En+1| bn+1 − |En| bn − ∆t

2

∑

i∈E

(

bn+1
i vi · nn+1

i + bni vi · nn
i

)

= 0 . (54)

The left-hand side of this equation is simply the residual of the equation bt = 0 approx-
imated on the moving mesh. Equation (54) is satisfied when the mesh is fixed or when
the bed topography is constant.

2.4. The Moving Mesh Algorithm

The mesh movement is implemented in a simple manner by interleaving the pseudo-
time-stepping iteration used to solve the systems of equations, given by (28) in the scalar
case and (45) for nonlinear systems, with another iteration which updates the node posi-
tions at the new time level. It would be possible to select a different approach to moving
the mesh, e.g. the variational approaches of Huang and Russell, described in the review
paper [18] and the references therein, but instead of using the techniques they propose we
observe that it is natural to embed the relaxation towards an equidistributed mesh within
the existing nonlinear iteration. In this paper we show that r-adaptivity is potentially
beneficial, and future work will seek to improve how to link the mesh movement with the
PDE solver.

In this work, one iteration of the mesh movement consists of moving each mesh node
to a weighted average of the positions of the centroids of its adjacent elements, i.e.

(δn+1
i )m =

∑

E∈Di
WE[(x

n+1
E )m − (xn+1

i )m]
∑

E∈Di
WE

where xE =
1

3

∑

j∈E

xj . (55)

At this stage, it is possible to relax the nodal movement by updating the nodal positions
using

(xn+1
i )m+1 = (xn+1

i )m + µ(δn+1
i )m , (56)

having initialised the iteration with (xn+1
i )0 = xn

i . For simplicity, µ is chosen to have
the same value for all nodes. However, during each iteration the displacements of each
node may be restricted geometrically, if necessary, to avoid mesh tangling. A simple limit,
which guarantees no tangling and depends only on the original mesh is given by retaining
the direction of the displacement, but adjusting xn+1

i for each node, so that [6, 52]

|(xn+1
i )m+1 − xn

i | ≤ min
E∈Di

( |En|
max lEn

)

, (57)

where lE are the lengths of the edges of the triangular element E. Boundary nodes
are restricted to remain on the boundary by ignoring the component of the movement
perpendicular to the boundary. A more sophisticated treatment of boundary nodes will
be necessary for concave domains, so that this projection does not induce mesh tangling.
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Note also that the constraint (57) inhibits the rotation of spatial mesh elements and, in
all cases investigated here, has ensured that the distortion of the space-time element does
not cause it to collapse. If this did occur then a smaller time-step would be needed to
reduce the mesh movement and avoid tangling.

The mesh velocity corresponding to the movement of each node, required for the
subsequent residual distribution iteration, is calculated using the displacement relative to
the nodal positions at the start of the iteration and given by

(vi)m+1 =
(xn+1

i )m+1 − xn
i

∆t
. (58)

There are many possible choices for the element weights, WE (see, for example, [15, 18]
and references therein). In this work, following [11], they are chosen so that nodes are
moved towards regions of higher local solution gradients and Laplacians. The specific
choice made here is given by

WE(χ) =
√

1 + α(max(||∇χ||∗, ||∇2χ||∗))2 , (59)

where the || · ||∗ are defined by

||∇χ||∗ = min

(

1,
||∇χ||2

βmax ||∇χ||2

)

and ||∇2χ||∗ = min

(

1,
||∇2χ||2

γmax ||∇2χ||2

)

,

(60)
in which || · ||2 indicates a discrete l2 norm. For the scalar equations, χ = u, and for the
shallow water equations, χ = η. The quantities α, β and γ are free constant parameters,
chosen according to the test case. These weights may be scaled locally by the initial
element sizes if a predetermined mesh distribution, for example one in which the nodes
are clustered around complex boundary geometry, is to be retained.

On its own, this weighted averaging can produce distorted meshes which are detri-
mental to the quality of the approximate solution, so the algorithm also makes use of a
Laplacian smoothing step, which is achieved by taking WE ≡ 1 in Equation (55). The
relaxation parameter µ can be chosen separately in this step.

2.4.1. Implementation Details

Given an initial mesh and initial conditions and before initiating the time-stepping,
the complete algorithm first adapts the mesh to the initial conditions. In this work a fixed
number of iterations (Ninit) is used, each of which consists of the following steps.

1. Update the mesh node positions, using one iteration of (55)/(56), with the chosen
element weights WE , limiting the node movement according to (57) to avoid mesh
tangling.

2. Smooth the moved mesh using one relaxed Laplacian smoothing iteration, (55) with
WE ≡ 1, and limiting the node movement according to (57) to avoid mesh tangling.

3. Recompute the initial conditions and (if required) the bed topography at the new
mesh node positions.
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Once the initial conditions have been adapted to, each time-step involves both mesh
movement and pseudo-time-stepping iterations, which are initially interleaved.

1. The following steps are repeated until the stopping criteria for the adaptation are
satisfied.

(a) Update the mesh node positions at the new time level, using one iteration of
(55)/(56), with the chosen element weights WE , and limiting the node move-
ment according to (57) to avoid mesh tangling.

(b) Smooth the mesh at the new time level using one relaxed Laplacian smoothing
iteration, (55) with WE ≡ 1, and limiting the node movement according to
(57) to avoid mesh tangling.

(c) If required, recompute the bed topography at the new mesh node positions.

(d) Carry out one iteration of the pseudo-time-stepping, (28) or (45), using the
residuals calculated on the current distorted space-time prismatic elements
and the chosen distribution scheme.

2. Fix the nodal positions for the new time level, but continue the pseudo-time-stepping
iterations, (28) or (45), using the residuals calculated on the distorted space-time
prismatic elements and the chosen distribution scheme, until the stopping criteria
for the pseudo-time-stepping are satisfied.

3. Replace the mesh at the old time level with the mesh at the new time level, including
the updated bed topography and solution.

In all the iterations, we use a stopping criterion which combines a maximum number
of iterations with a drop tolerance on the residual norm,

rel_tol =
‖ (Ψn, Ψn+1)

T

m ‖1
‖ (Ψn, Ψn+1)T0 ‖1

< REL_TOL , (61)

where, throughout this work, REL_TOL = 10−3 for the pseudo-time-stepping. In addi-
tion, there is one intermediate stopping criterion: when the mesh is moved according to
the weighted averaging defined by (55)/(56), the node positions are fixed when either
rel_tol ≤ REL_TOL_MOVE is satisfied or a specified number of iterations (Nmove) has
been reached.

2.4.2. Parameter Choices

The mesh movement algorithm has introduced a number of free parameters which
can be modified to control the mesh movement. The optimal choices will be problem-
dependent, as is widely observed (see, for example, [11, 18] and the references therein),
but varying each parameter affects the approximation in a particular way.

• In Equation (59) α governs the strength of the effect of local features. Increasing
its value will increase the resolution of the mesh where the first or second derivative
of the solution is relatively high.
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• In Equation (60) β and γ govern the extent of the region where the mesh is affected
by local features. Increasing their values reduces the size of the region over which
the mesh is adapted. The adaptation becomes a pure smoothing step if β, γ ≥ 1.

• The larger the values of Ninit and Nmove, the maximum numbers of mesh movement
iterations allowed at each stage, the closer the initial mesh and the meshes at each
time-step (in the absence of any smoothing iteration) get to equidistributing the
monitor function. Reducing REL_TOL_MOVE (when it is active) has a similar effect.

• The smoothness with which the mesh changes resolution from one region to another
can be adjusted using the relaxation parameter µ in Equation (56). Increasing
its value in the smoothing iteration (where WE ≡ 1) will tend to make the mesh
elements more uniform in size.

3. Numerical Results

For all computations the CFL specified for the time-stepping is relative to the past-
shield condition, whereby no residual can be distributed backwards in time, i.e.

k+i,n = 0 ∀i or K+
i,n = 0 ∀i , (62)

for scalar equations and systems of equations, respectively. The CFL specified for the
pseudo-time-stepping, CFLτ , is relative to the maximum pseudo-time-step size specified,
i.e. (29) or (46), depending on the system being solved. In all cases, only l2 estimates of
the errors are shown: typically adapting the mesh shows greater benefits for the l∞ norm,
which typically selects a node in the region where the mesh resolution has been increased,
but less benefits for the l1 norm which includes more significant contributions from nodes
where the mesh resolution has been decreased.

3.1. Scalar Advection

In this section we consider the scalar conservation law (1) with f = au. For the test
case studied here, a varies linearly in space with ∇ · a = 0, so the conservation law is
equivalent to the advection equation,

∂u

∂t
+ a · ∇u = 0 , (63)

with u specified on inflow boundaries.

3.1.1. Circular Advection

This test case considers advection of a smooth (C3) initial profile through the domain
Ω = [−1, 1]× [−1, 1] with velocity a = (−y, x). The exact time-dependent solution profile
is given by

u(x, y, t) =

{

cos4(1.25πr) if r < 0.4 ,

0 otherwise ,
(64)

in which r =
√

(x− xc)2 + (y − yc)2 is the radius of the non-zero region, xc = 0.5 sin(t−
0.5π) and yc = 0.5 cos(t−0.5π). The initial conditions are given at t = 0 and the boundary
conditions were set to u(x, y, t) = 0 on the inflow sections of the boundary.
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The accuracy and efficiency of the simulations were assessed for a sequence of fixed,
uniform, unstructured triangular meshes with characteristic mesh sizes h = 1

5
, 1

10
, 1

20
,

1
40

, 1
80

. These were also used as the initial meshes for simulations carried out using the
adaptive procedure described in Section 2.4 and, to demonstrate the robustness of the
space-time residual distribution algorithm on moving meshes, imposing movement on
each mesh node using

x = X + 0.1 sin(2πX) sin(πY ) sin(t) ,

y = Y + 0.2 sin(2πX) sin(πY ) sin(2t) ,
(65)

in which X = (X, Y ) represents the initial (reference) coordinates. At t = 2π, the end
time for these numerical experiments, the mesh nodes return to their original positions.

The accuracy and efficiency of the approximations obtained using the STB scheme
are illustrated in Figure 2. The mesh movement used to improve the fit to the initial
conditions is included in the cpu times. Results are shown for different adaptive strategies
for deciding when to terminate the mesh movement iterations within each time-step:
after a fixed number of iterations, Nmove = 5, 10 or 20 in this case; or after the space-
time residual norm has dropped below a given tolerance, REL_TOL_MOVE = 10−1. In all
adaptive cases the initial mesh is created by applying Ninit = 200 iterations of the mesh
movement algorithm to the fixed mesh, the monitor function parameters are chosen to be
α = 100, β = γ = 0.2, and the relaxation parameter for the mesh smoothing was µ = 0.5.
These values have been chosen to obtain an efficient adaptive strategy for a broad range
of mesh sizes: they are not chosen to provide the most accurate approximations. For the
time-stepping, CFL = 2.0 and CFLτ = 0.9.

-2 -1.6 -1.2 -0.8

LOG
10

(h)

-3

-2.5

-2

-1.5

-1

L
O

G
1
0

(l
2
 e

rr
o
r)

STB scheme -- accuracy

fixed

moved

5 iters

10 iters

20 iters

res/10

slope 1.5

-2 -1 0 1 2 3 4

LOG
10

(cpu)

-3

-2.5

-2

-1.5

-1

L
O

G
1

0
(l

2
 e

rr
o
r)

STB scheme: efficiency

fixed

5 iters

10 iters

20 iters

res/10

Figure 2: Comparison of accuracy and efficiency for circular advection (t = 2π), using the STB scheme on
fixed meshes (blue circles, solid line), adapted meshes (green or empty symbols, dashed line) and meshes
moved according to (65) (red symbols, solid line).

The same CFL is chosen for the time-stepping in both the fixed and moving mesh
simulations. CFL = 2 is close to the optimal value for the efficiency of the fixed mesh
computations [10]: fewer time-steps are required if the CFL is increased further, but the
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overall computation time decreases very little because the magnitude of the upper limit
on the pseudo-time-step, Equation (29), is inversely proportional to the time-step, so
the total number of pseudo-time-steps remains roughly constant. Furthermore, the error
starts to increase, so running the adaptive computations at a larger CFL (e.g. using the
same time-step as the fixed mesh instead of the same CFL) doesn’t necessarily improve
efficiency.

Each of the adaptive meshing strategies provides more accurate approximations than
the corresponding fixed mesh. The errors can be reduced further by increasing Nmove

but the rate at which it decreases is outweighed by the additional time it takes for the
computations to run, so the results are not presented here. The order of accuracy on the
moving meshes remains similar to that on the fixed meshes.

Using between 10 and 20 mesh movement iterations per time-step seems to be the
most efficient adaptive strategy in this case. At the finer mesh resolutions it consistently
provides approximately a 30% reduction in error for a given cpu time. Adapting the
meshes locally reduces the element size where the solution is non-zero to provide smaller
errors but, since the CFL is fixed, the time-step sizes will also be reduced if the mesh
movement increases the resolution in regions of high flow velocity, so more time-steps may
be required. Table 1 suggests that is not the case here (the fastest flow is at the corners
of the square domain) and that the mesh movement has a beneficial effect on the iterative
convergence rates of the pseudo-time-stepping. However, each mesh movement iteration
requires about 3 times as much cpu time as each residual distribution step (largely due
to the expense of computing the weights and the checks for mesh tangling) so overall cpu
times are not often reduced. As noted previously, increasing the CFL does not improve
the efficiency.

Movement #ts #pts #pts/#ts #move cpu time (s) l2 error
Fixed 407 24950 61.30 0 61.91 1.983× 10−2

Nmove = 5 385 16204 42.09 1925 52.04 1.354× 10−2

Nmove = 10 390 15615 40.04 3900 60.70 1.219× 10−2

Nmove = 20 403 17855 44.31 8060 87.07 1.096× 10−2

REL_TOL_MOVE = 10−1 383 16820 43.92 1148 50.32 1.491× 10−2

Table 1: Comparison of numbers of time-steps (#ts), numbers of pseudo-time-steps (#pts), number of
mesh movement iterations (#move) and runtimes for fixed and adapted meshes for the circular advection
test case on the mesh with h = 1

40
in the fixed case using the STB scheme.

The node velocities and the mesh in the bottom-right quadrant of the domain at t = π
4
,

for an adaptive strategy with 20 mesh movement iterations per time-step, are shown on
the left in Figure 3. Ideally, the mesh would move with the advection velocity, in which
case the initial profile would be preserved by our scheme to machine accuracy. Instead
the nodes are continually being recruited at the leading edge of the moving profile and
discarded at the trailing edge in order to retain high resolution where the solution is
non-zero: the mesh inside this region moves much less. The right-hand plots in Figure
3 show the node velocities and mesh obtained at t = π

4
when Ninit = 5000 and Nmove =

500, which approaches a situation where the monitor function is equidistributed (subject
to smoothing) at each time-step. This simulation has a block of mesh moving in the
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approximate direction of the underlying advection, for which the activity in front of and
behind the non-zero region is much reduced. On closer inspection, the circle of higher
resolution mesh contains nodes moving at a similar velocity and in a similar direction to
each other, a rather different pattern to the actual advection velocity, (−y, x). Therefore
the method does not benefit from increased accuracy due to mesh nodes following the
flow (something that can also happen when methods of this type are applied in one
dimension and is inherent in methods which attempt to maintain equidistribution of a
monitor function from one time-step to the next) and the error on the mesh shown on the
right-hand side of Figure 3 is slightly higher: it also takes about 18 times as long to run.
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Figure 3: Comparison of node velocities (top) and meshes (bottom) in the bottom right quadrant of the
computational domain at t = π

4
for circular advection, using the STB scheme with Nmove = 20 (left) and

Nmove = 500 (right).
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A single iteration of the STB scheme for a scalar equation requires little computational
effort, so mesh movement iterations have a relatively significant effect on the overall
computation time. It is worth noting though, that the mesh movement should tend to be
more beneficial in 3D: second-order schemes, such as the ones considered here, typically
require 16 times as much work to reduce the error by a factor of 4 using uniform refinement
in 3D, whereas it only requires 8 times as much work to reduce the error by the same
amount in 2D. One might expect the mesh movement, which does not increase the size of
the system to solve, to have similar cost-benefit ratios in both 2D and 3D, so the efficiency
of the adaptive approach should scale much better in 3D relative to uniform refinement
(assuming that the same error reduction can be achieved).

Figure 4 shows the effect of switching between the approximate and exact quadrature
rules proposed for evaluating the flow sensors in (18) and (19). The exact quadrature
(Simpson’s rule) is marginally the more efficient of the two strategies and is therefore the
one which has been used to obtain all of the other numerical results shown in this paper.
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Figure 4: Comparison of accuracy and efficiency for circular advection, using the STB scheme on fixed
meshes (blue circles, solid line) and adapted meshes (green or empty symbols, dashed line). Results are
shown for when the trapezoid and Simpson rules are used to compute the flow sensors, Equations (19)
and (18), respectively.

3.2. Shallow Water Flow

In this section we consider simulations of the two-dimensional shallow water equations
with variable bed topography. The mesh is adapted to the free surface level, not the
depth, so the bed topography only influences the mesh through its effects on the flow.
Although we do not present the results of the simulations, we note here that it was
confirmed that all of the mesh movement strategies employed preserved the “lake at rest”
solution on a variable bed to machine precision. For all shallow water simulations, the
largest value of the blending parameter, θmax

2 = maxΘ2 (where Θ2 is defined in Equation
(41)), is applied to all variables of the residual in order to achieve an additional stabilising
effect. Furthermore, to improve iterative convergence, its value is frozen after the first
pseudo-time-step in each time-step.

24



3.2.1. Travelling Vortex

To evaluate the accuracy and (mesh) convergence properties of the STB schemes, we
simulate a travelling vortex with known exact solution [51, 53]. Given a flat bottom
topography, the exact velocity field is expressed as u∞ + u ′, with

u ′ =

{

Γ (1 + cos(ωrc)) (yc − y, x− xc) if ωrc < π ,

(0, 0) otherwise ,

and u∞ being constant. The constant Γ is the vortex intensity parameter, (xc, yc) are the
coordinates of the centre of the vortex, rc is the distance from the centre of the vortex,
and ω is the angular wave frequency associated with the diameter of the vortex. The
water height is then given as

d(rc) = d∞ +

{

1
g

(

Γ
ω

)2
(κ(ωrc)− κ(π)) if ωrc < π ,

0 otherwise ,

with

κ(x) = 2 cos(x) + 2x sin(x) +
1

8
cos(2x) +

x

4
sin(2x) +

3

4
x2

and d∞ = 1.
For the mesh-convergence study, we set u∞ = (6, 0), Γ = 15, ω = 4π, g = 9.80665 and

use a sequence of five unstructured triangulations of the domain Ω = [0, 2] × [0, 1] with
characteristic mesh sizes h = 1

10
, 1
20
, 1
40
, 1
80
, 1
160

, respectively. At the initial state the centre
of the vortex is at (xc, yc) = (0.5, 0.5) and the time marching stops at t = 1/6, when
(xc, yc) = (1.5, 0.5). Freestream characteristic boundary conditions are used everywhere.

The accuracy and efficiency of the approximations obtained using the STB schemes
are illustrated in Figure 5. Results are shown for fixed meshes and for different adaptive
strategies for deciding when to terminate the mesh movement iterations within each time-
step: after a fixed number of iterations, Nmove = 10, 30 or 50 in this case; or after the
space-time residual norm has dropped below a given tolerance, REL_TOL_MOVE = 10−1.
In all adaptive cases the initial mesh is created by applying Ninit = 500 iterations of the
mesh movement algorithm to the fixed mesh, the monitor function parameters are chosen
to be α = 100, β = γ = 0.05, and the relaxation parameter for the mesh smoothing was
µ = 1.0. For the time-stepping, CFL = 4.0, close to the optimal value found for efficiency
on fixed meshes in [10], and CFLτ = 0.3.

In this case, the order of accuracy demonstrated on the finer meshes is slightly lower
on the adapted meshes than on the fixed meshes. As a result, the mesh adaptation
provides most benefit for meshes of intermediate resolution, on which improvements in
efficiency of more than 60% can be obtained by moving the mesh. In this case, using
30 mesh movement iterations per time-step gave the best efficiency – a higher number
than for scalar advection, not only because the accuracy starts to deteriorate if more
mesh movement iterations are used, but also because the computational time required for
a single mesh movement iteration is lower relative to a single application of residual
distribution for a nonlinear system. The total number of mesh movement iterations
relative to the total number of pseudo-time-stepping iterations is shown in Table 2. The
residual distribution step is about 5 times as expensive as in the scalar case, so the time
required to move the mesh is relatively less significant. Moving the mesh also appears to
accelerate the convergence of the pseudo-time-stepping iteration.
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Figure 5: Comparison of accuracy and efficiency for the travelling vortex, using the STB scheme on fixed
meshes (blue circles, solid line) and adapted meshes (green or empty symbols, dashed line).

Movement #ts #pts #pts/#ts #move cpu time (s) l2 error in d
Fixed 66 7322 110.94 0 325.20 3.724× 10−3

Nmove = 10 91 8144 89.49 910 396.54 2.870× 10−3

Nmove = 30 103 8851 85.93 3090 461.50 2.044× 10−3

Nmove = 50 104 10036 96.50 5200 548.87 2.073× 10−3

REL_TOL_MOVE = 10−1 103 8539 82.90 2622 439.72 2.124× 10−3

Table 2: Comparison of numbers of time-steps (#ts), numbers of pseudo-time-steps (#pts), number of
mesh movement iterations (#move) and runtimes for fixed and adapted meshes for the travelling vortex
test case on the mesh with h = 1

80
in the fixed case using the STB scheme.

3.2.2. Small Perturbation of a Lake at Rest

In order to test the adaptive method in a situation with smoothly varying bed topog-
raphy, this test case considers the flow of a small perturbation to the lake at rest solution
over an elliptic exponential bump [54]. The computational domain is given by [0, 2]× [0, 1]
with bed topography

b(x, y) = 0.8 exp(−5(x− 0.9)2 − 50(y − 0.5)2) (66)

and initial conditions,

η(x, y) =

{

1.01 if 0.05 < x < 0.15 ,

1 otherwise ,
u ≡ v ≡ 0 . (67)

Solid-wall boundary conditions are used at the top and bottom boundaries while free-flow
boundary conditions are imposed at the remaining boundaries.

Numerical results obtained using a mesh with h ≈ 0.02 (with 5953 nodes and 17556
elements) are presented in Figures 6 and 7. Snapshots of the fluid and mesh velocities
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are shown in Figure 8. In all adaptive cases the initial mesh is created by applying
Ninit = 1000 iterations of the mesh movement algorithm to the fixed mesh, the monitor
function parameters are chosen to be α = 100, β = γ = 0.2, and the relaxation parameter
for the mesh smoothing was µ = 0.7. For the time-stepping, CFL = 4.0 and CFLτ = 0.9.

Figure 6: Comparison of isolines of free surface level η for the shallow water equations with a variable
bed and a perturbation to the lake at rest equilibrium, using the STB scheme on a fixed mesh (top) and
an adapted mesh with Nmove = 20 (bottom): t = 0.24 (left), t = 0.48 (right). The interval between
contours is 0.0005 and the isolines shown are in the ranges [0.99925, 1.0725] (top left), [0.99575, 1.00275]
(top right), [0.99825, 1.00975] (bottom left), [0.99325, 1.00325] (bottom right).

The mesh adaptation clearly resolves the features of the flow much more sharply. The
adapted solution is compared with approximations obtained on this fixed mesh and a finer
fixed mesh (h ≈ 0.01, giving 23515 nodes and 69942 elements) in Figure 9. Two differ-
ent adaptive strategies are used, in which a fixed number of mesh movement iterations,
Nmove = 10 or 20, are applied within each time-step. Adapting the mesh clearly improves
the approximation, giving estimates of local maxima and minima which are close to those
obtained on the fixed fine mesh for all regions except the small peak just downstream of
the main trough at t = 0.48. The improvements are greater when 20 mesh movement
iterations are used, but this is at the expense of computational time. The efficiency is illus-
trated in Table 3, which shows maximal and minimal values for different meshes alongside
the runtimes. These results include an intermediate mesh, for which h ≈ 0.01

√
2 and the

runtime is similar to those for the adapted coarse mesh. Both adapted coarse meshes give
better maximal and minimal value approximations than the intermediate mesh for either
a similar (Nmove = 20) or significantly lower (Nmove = 10) runtime.

27



Figure 7: Adapted meshes with Nmove = 20 for the shallow water equations with a variable bed and a
perturbation to the lake at rest equilibrium, obtained using the STB scheme at times t = 0.24 (left),
t = 0.48 (right).
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Figure 8: Fluid (left) and mesh (right) velocities obtained using the STB scheme on an adapted mesh
with Nmove = 20, for a perturbation to the lake at rest equilibrium, at time t = 0.48.

Mesh # nodes Movement cpu time (s) min(η) max(η)
Coarse 5953 None 47.18 0.995548 1.003152

Nmove = 10 82.74 0.993329 1.003473
Nmove = 20 140.04 0.992780 1.003531

Intermediate 11924 None 139.67 0.993751 1.003426
Fine 23515 None 381.76 0.992074 1.003663

Table 3: Comparison of maximum/minimum values of η and runtimes for fixed and adapted meshes for
the perturbed lake at rest when t = 0.48 using the STB scheme.
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Figure 9: Comparison of profiles of free surface level η along y = 0.5 for the shallow water equations with
a variable bed and a perturbation to the lake at rest equilibrium, using the STB scheme on coarse and
fine meshes, both fixed and adapted, at times t = 0.24 (top) and t = 0.48 (bottom). Results are shown
for 10 (left) and 20 (right) mesh movement iterations per time-step. The thick black line illustrates the
shape of the bed topography: this is not drawn to scale.
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3.2.3. Circular Dam-Break over a Non-Smooth Bed

The final test case has been chosen to illustrate the ability of the moving mesh to fol-
low sharp features which interact in geometrically complex ways. It simulates an initially
radially-symmetric dam-break over a discontinuous bed topography [10]. The computa-
tional domain is given by [0, 30]× [0, 30] with bed topography

b(x, y) =

{

0 if x+ y < 30 ,

0.2 otherwise ,
(68)

and initial conditions,

η(x, y) =

{

1.461837 if r < 15 ,

0.308732 otherwise ,
u ≡ v ≡ 0 , (69)

where r =
√

x2 + y2 is the radius of the dam. Solid-wall boundary conditions are used at
the left and bottom boundaries while characteristic boundary conditions are imposed at
the remaining boundaries. The characteristic mesh size is h ≈ 0.3 (giving a mesh of 11831
nodes and 35090 elements). The simulation follows the wave hitting the underwater wall,
then partially reflecting from it and partially moving forward and exiting the domain.
There is also a stationary shock wave along the discontinuity of the bed, which slowly
weakens as time progresses.

In all adaptive cases the initial mesh is created by applying Ninit = 1000 iterations
of the mesh movement algorithm to the fixed mesh, the monitor function parameters are
chosen to be α = 100, β = γ = 0.05, and the relaxation parameter for the mesh smoothing
was µ = 0.7. A fixed number of mesh movement iterations, Nmove = 20, are applied within
each time-step. For the time-stepping, CFL = 2.0 and CFLτ = 0.9.

Snapshots of the numerical results on fixed and adapted meshes are compared in Figure
10. Once more, the adapted meshes (shown in Figure 11) capture the flow features much
more sharply, following them throughout the simulation without distorting their shapes.
The mesh movement parameters (α, β, γ, µ, Ninit and Nmove) can be adjusted to fit more
or less strongly to these features, though it should always be borne in mind that reducing
the element size increases the number of time-steps required to run at the same CFL and
increasing the number of mesh movement iterations per time-step will typically increase
the overall number of pseudo-time-stepping iterations that are required.

We also note that the combination of the monitor choice and the application of smooth-
ing produces meshes which tend to align with lower-dimensional features such as shocks,
but vary smoothly throughout the domain. In fact, away from the discontinuities, the
choices made for β and γ ensure that the mesh tends towards a uniform distribution of
nodes. This combines well with the STB residual distribution schemes which can capture
these discontinuities relatively sharply, without inducing spurious oscillations. Without
the smoothing the meshes for all of the test cases would be of much lower quality and
might be better paired with a more grid-insensitive approach to approximating the PDE.

4. Concluding Remarks and Outlook

In this paper we have described the generalisation of a space-time discontinuous resid-
ual distribution (STDRD) scheme [10] to moving meshes. Within the STDRD framework

30



Figure 10: Comparison of isolines of free surface level η for the shallow water equations with a discontin-
uous bed, using the STB scheme on a fixed mesh (left) and an adapted mesh (right): t = 3 (top), t = 9
(middle), t = 15 (bottom). The interval between contours is 0.04 and the isolines shown are in the ranges
[0.32, 1.44] (top), [0.2, 0.64] (middle), [0.08, 0.4] (bottom).
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Figure 11: Adapted meshes for the shallow water equations with a discontinuous bed at times t = 0 (top
left), t = 3 (top right), t = 9 (bottom left), t = 15 (bottom right). The mesh is shaded according to the
local height of the free surface η.
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this entails the design of schemes for distributing the residual on distorted space-time
prisms, and Section 2 describes how schemes developed for prisms aligned with time can
be extended to allow the spatial mesh to change between time-steps, while retaining the
order of accuracy and positivity properties of the original distribution. Furthermore,
the modified schemes inherently guarantee that the mesh movement satisfies a discrete
geometric conservation law (DGCL), so adapting the mesh does not disturb a constant
solution.

The new algorithm is applied to the two-dimensional scalar advection equation and
the two-dimensional shallow water equations with variable bed topography. In the latter
case, the schemes are designed so that the C-property is satisfied, i.e. still, flat water is
maintained as a steady-state solution over a variable bed even when the mesh is being
moved. The STDRD schemes are combined with a simple mesh adaptation algorithm to
demonstrate that (i) more accurate approximations can be obtained by moving the mesh
to follow features of the flow and (ii) there is the potential for the mesh movement to
reduce the computational time required to provide approximations to within a specified
level of accuracy.

The numerical results show that the mesh movement does improve the accuracy of
the approximations compared to fixed, uniform meshes with the same number of nodes
and connectivity. The accuracy and the efficiency of the computations both depend
on the choices of a number of user-specified parameters. It is not yet clear what the
optimal choices are, but it has been shown that moving the mesh can be beneficial, with
reductions in cpu times of up to 60% achieved, compared to fixed mesh computations with
the same accuracy. However in some cases the reduction in error is counterbalanced by the
additional computational effort required and mesh movement is not currently effective.

This work has demonstrated that mesh movement can be used to improve the efficiency
of STDRD schemes, without losing any of their fixed-mesh properties, even with a simple
mesh movement strategy. However, there remain many areas in which both the fixed and
moving mesh algorithms might be improved.

• The mesh movement strategy is very simple. More sophisticated approaches, such as
the nonlinear iteration described in [11], might allow for a reduction in the number
of mesh movement iterations required relative to the number of pseudo-time-steps.
In particular, a much faster algorithm for equidistributing the initial mesh could be
found.

• The limit on the pseudo-time-step is inversely proportional to the size of the time-
step, so using a larger CFL (which is possible due to the unconditional stability of
the STDRD schemes) on the adapted mesh does not tend to decrease the overall
workload. A sophisticated nonlinear solver, for which the convergence rate was
independent of the time-step, would improve efficiency on both fixed and adapted
meshes.

• We would expect the mesh movement to have greater benefits for more complex
systems of nonlinear equations (for which the expense of residual distribution is
higher relative to the mesh movement) and in three space dimensions (where it
requires more work to reduce the error by the same amount using uniform mesh

33



refinement). These are applications which should be investigated, particularly in
situations where anisotropic mesh refinement is likely to be beneficial.

• Moving meshes would naturally be appropriate for moving boundary problems. In
the context of the shallow water equations it would be of interest to consider prob-
lems with wetting and drying.

• Moving the mesh might affect the best choice of blending function to use in the
STB scheme. There was no clear pattern visible in the components of Θ2 in (41)
generated by the test cases shown in this paper, so one possibility might be to use
machine learning techniques to determine an appropriate sensor.

Even with these improvements, there will remain situations in which it is not appropriate
to apply mesh movement and hp-refinement will have more effect. However, it is likely to
be beneficial in situations where the accuracy with which the quantities of interest can be
predicted depends on the ability of the method to track and align the mesh with sharp
local features.
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Appendix A. Proof of the C-property

Proposition

The space-time element residuals of the STDRD schemes for the shallow water equations
on moving meshes, defined by Equations (31), and (42), satisfy

ΨE + ΦEt
+ Φb

Et
= 0 (A.1)

when V = [η, du, dv]T = [const, 0, 0]T and

Φb
Et

=
∆t

2

(

gd
n+

2

∑

i∈E

[

0

bn
+

i nn+

i

]

+
gd

(n+1)−

2

∑

i∈E
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0

b
(n+1)−

i n
(n+1)−

i

]

)

. (A.2)

Hence, the STN, STLDA and STB schemes based on the use of V instead of U all satisfy
the C-property on moving meshes.

Proof

The superscripts ·n−

, ·n+

and ·(n+1)− are used explicitly here for completeness, although
the ± are suppressed in the main body of the paper where the meaning should be clear
from the context.

First note that ΨE = 0 when V n+

= V n−

, and there is no contribution from the source
term when integrating across the temporal discontinuity, so we need only consider the
balance within the space-time element. Now, when u = v = 0,

ΦEt
+ Φb

Et
=

∫

En+1

[

d(n+1)−

0

]

dΩ−
∫

En
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+

0
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dΩ

+

tn+1
∫

tn

∫

∂E(t)

[−dv · n̂
gd2

2
n̂

]

dΓ dt−
tn+1
∫

tn

∫

E(t)

[

0
gd∇b

]

dΩdt , (A.3)

in which n̂ is the unit outward-pointing normal to ∂E(t).

Mass balance: Since ∂b
∂t

= 0 in the exact case, integrating the Reynolds transport
theorem for the bed level b on a moving mesh over a single time-step gives

∫

En+1

b(n+1)− dΩ−
∫

En

bn
+

dΩ−
tn+1
∫

tn

∫

∂E(t)

bv · n̂ dΓ = 0 , (A.4)

so, since η = d+ b, the residual for the mass balance equation in (A.3) can be written as

∫

En+1

η(n+1)− dΩ−
∫

En

ηn
+

dΩ−
tn+1
∫

tn

∫

∂E(t)

ηv · n̂ dΓ (A.5)
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≈ |En+1| η(n+1)− − |En| ηn+ − ∆t

2







∫

∂E(tn+1)

η(n+1)−v · n̂n+1 dΓ +

∫

∂E(tn)

ηn
+

v · n̂n dΓ






,

in which we have used the approximation to the residual adopted in the STDRD schemes.
Now, since the nodal velocities vi are assumed constant within each time-step, it follows
from geometric arguments applied to the space-time element that

|En+1| − |En| − ∆t

2

∑

i∈E

(

vi · nn+1
i + vi · nn

i

)

≡ 0 . (A.6)

It immediately follows that substituting η(n+1)− = ηn
+

= const in to (A.5) gives zero
residual in the mass balance equation when η is piecewise linear.

Momentum balance: Our STDRD schemes evaluate the residual using Simpson’s rule
to approximate the surface integrals. This is exact for piecewise linear d, so

∫

∂E(t)

gd2

2
n̂ dΓ = −

∑

i∈E

gd

2
dini . (A.7)

This is clearly gives zero total residual in the momentum balance equations when η =
d + b = const is substituted in to (A.3) and the source residual is approximated at any
given time using

∫

E(t)

gd∇b dΩ = −
∑

i∈E

gd

2
bini , (A.8)

which is exact for piecewise linear d and b.

Full system: It follows from the arguments above that η(n+1)− = ηn
+

= const gives zero
residual in the full system, having applied the trapezoid rule in time in (A.3), when

Φb
Et

=
∆t

2

(

gd
n+

2

∑

i∈E

[

0

bn
+

i nn+

i

]

+
gd

(n+1)−

2

∑

i∈E

[

0

b
(n+1)−

i n
(n+1)−

i

]

)

. (A.9)

Therefore [η, du, dv]T = [const, 0, 0]T is a solution to the discrete problem. Moreover, since
the pseudo-time-stepping is initialised with (V n+

)0 = (V (n+1)−)0 = V n−

= [const, 0, 0]T ,
it follows that

(ΨEt
+ ΦEt

+ Φb
Et
)0 = 0 (A.10)

and the total residual remains zero for any subsequent pseudo-time-steps. Hence, the C-
property is satisfied for any linearity preserving STDRD scheme, such as STLDA. Finally,
from [10], the residuals for the STN scheme are

ΦN
i,n = K+

i,nNt

∑

j∈E

K+
j,n

(

V n+

i − V n+

j

)

+ K+
i,nNt

∑

j∈E

K+
j,n+1

(

V n+

i − V
(n+1)−

j

)

+ ΦLDA
i,n ,
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ΦN
i,n+1 = K+

i,n+1Nt

∑

j∈E

K+
j,n

(

V
(n+1)−

i − V n+

j

)

+ K+
i,n+1Nt

∑

j∈E

K+
j,n+1

(

V
(n+1)−

i − V
(n+1)−

j

)

+ ΦLDA
i,n+1 . (A.11)

These residuals are also clearly zero for (V n+

)0 = (V (n+1)−)0 = V n−

= [const, 0, 0]T , so
the STN scheme (and hence the STB scheme) also satisfies the C-property.
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Appendix B. Proof of the Discrete Maximum Principle

Proposition:

When a conservative linearisation exists for the scalar advection equation (so the resid-
ual can be evaluated exactly using (17)) the space-time N scheme (24) combined with
discontinuities in time verifies the discrete maximum principle,

un
−

min = min
j
un

−

j ≤ un
+

i , u
(n+1)−

i ≤ max
j
un

−

j = un
−

max ∀i , (B.1)

for any time-step ∆t > 0 on moving meshes when there is no mesh tangling.

Proof

This proof follows closely the structure of the proof of Proposition 3.8 in [2].

First write out the space-time N scheme with discontinuities in time in full, by substituting
(24), (17) and (13) into (14), to give

|Sn
i |(un

+

i − un
−

i )

+
∑

E∈Di

[

−
∑

j∈E

k+i,nNtk
−
j,n(u

n+

i − un
+

j )−
∑

j∈E

k+i,nNtk
−
j,n+1(u

n+

i − u
(n+1)−

j )

]

= 0

∑

E∈Di

[

−
∑

j∈E

k+i,n+1Ntk
−
j,n(u

(n+1)−

i − un
+

j )−
∑

j∈E

k+i,n+1Ntk
−
j,n+1(u

(n+1)−

i − u
(n+1)−

j )

]

= 0 .

(B.2)
in which Di = ∪i∈EE, k± and Nt are defined by (21) and (18) or (19), and |Sn

i | =
1
3

∑

E∈Di
|En|. This system of equations can be written in the form AUnew = BUold:

[

An+,n+ An+,(n+1)−

A(n+1)− ,n+ A(n+1)−,(n+1)−

] [

Un+

U (n+1)−

]

=

[

Bn−

0

]

[

Un−
]

(B.3)
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in which U represents a vector of nodal values of u at the specified time level and

(An+,n+)ii = |Sn
i | −

∑

E∈Di

[

∑

j∈E,j 6=i

k+i,nNtk
−
j,n +

∑

j∈E

k+i,nNtk
−
j,n+1

]

∀ i

(An+,n+)ij =
∑

E∈Di|j∈E

k+i,nNtk
−
j,n ∀ i, j | i 6= j

(An+,(n+1)−)ij =
∑

E∈Di|j∈E

k+i,nNtk
−
j,n+1 ∀ i, j

(A(n+1)− ,n+)ij =
∑

E∈Di|j∈E

k+i,n+1Ntk
−
j,n ∀ i, j

(A(n+1)−,(n+1)−)ij =
∑

E∈Di|j∈E

k+i,n+1Ntk
−
j,n+1 ∀ i, j | i 6= j

(A(n+1)−,(n+1)−)ii = −
∑

E∈Di

[

∑

j∈E

k+i,n+1Ntk
−
j,n +

∑

j∈E,j 6=i

k+i,n+1Ntk
−
j,n+1

]

∀ i

(Bn−)ii = |Sn
i | ∀ i

(Bn−)ij = 0 ∀ i, j | i 6= j .
(B.4)

The majority of the entries in A will be zero because the set {E ∈ Di|j ∈ E} is empty
unless i and j are vertices of a common mesh element. The indices i and j both run from
1 to the total number of unknowns. First note that

(An+,n+)ii ≥ 0 (A(n+1)−,(n+1)−)ii ≥ 0 ∀ i
(An+,n+)ij ≤ 0 (A(n+1)−,(n+1)−)ij ≤ 0 ∀ i, j | i 6= j

(An+,(n+1)−)ij ≤ 0 (A(n+1)−,n+)ij ≤ 0 ∀ i, j ,
(B.5)

since k+, Nt ≥ 0 and k− ≤ 0. Moreover,

|(An+,n+)ii| −
∑

j∈Di|j 6=i

|(An+,n+)ij | −
∑

j∈Di

|(An+,(n+1)−)ij | = |Sn
i | > 0

|(A(n+1)−,(n+1)−)ii| −
∑

j∈Di|j 6=i

|(A(n+1)−,(n+1)−)ij | −
∑

j∈Di

|(A(n+1)−,n+)ij | = 0 .
(B.6)

Therefore, the matrix A is diagonally dominant for any time-step and any mesh as long as
|Sn

i | > 0 (no tangling). Hence, because of the conditions in (B.5), A is an M-matrix, so A
is invertible and A−1 is positive, i.e. (A−1)ij ≥ 0 ∀ i, j. Note also that (Bn−)ij ≥ 0 ∀ i, j
for any time-step and any mesh as long as the mesh has not tangled.

Consider now the vector Umin, which has the same length as U (n+1)− , Un+

and Un−

, but
with elements all equal to un

−

min. It follows from (Bn−)ij ≥ 0 ∀ i, j and un
−

i ≥ un
−

min ∀ i
that

(Bn−Un−

)i ≥ (Bn−Umin)i ∀ i . (B.7)

This can be manipulated to give

(Bn−Umin)i =
∑

j∈Di

(Bn−)iju
n−

min = |Sn
i |un

−

min , (B.8)
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using the definitions given in (B.4). Summing the elements in the rows of the top half of
A gives

∑

j∈Di

(An+,n+)ij +
∑

j∈Di

(An+,(n+1)−)ij = |Sn
i | ∀i , (B.9)

so, from (B.8),

(Bn−Umin)i = |Sn
i |un

−

min =
∑

j∈Di

(An+,n+)iju
n−

min +
∑

j∈Di

(An+,(n+1)−)iju
n−

min

= An+,n+Umin + An+,(n+1)−Umin .

(B.10)

Now, (B.3) gives
An+,n+Un+

+ An+,(n+1)−U
(n+1)− = Bn−Un−

, (B.11)

so it follows from (B.7), (B.10) and (B.11) that

(An+,n+Un+

+ An+,(n+1)−U
(n+1)−)i ≥ (An+,n+Umin + An+,(n+1)−Umin)i ∀i . (B.12)

Summing elements in the rows of the bottom half of A gives
∑

j∈Di

(A(n+1)−,n+)ij +
∑

j∈Di

(A(n+1)−,(n+1)−)ij = 0 ∀i , (B.13)

from which it follows that

(A(n+1)−,(n+1)−Umin + A(n+1)−,n+Umin)i

=
∑

j∈Di

(A(n+1)−,n+)iju
n−

min +
∑

j∈Di

(A(n+1)−,(n+1)−)iju
n−

min = 0 ∀i , (B.14)

so, from (B.3) and (B.14),

(A(n+1)−,n+Un+

+A(n+1)−,(n+1)−U
(n+1)−)i = 0 = (A(n+1)−,n+Umin+A(n+1)−,(n+1)−Umin)i ∀i .

(B.15)
Putting together (B.12) and (B.15),
[

An+,n+ An+,(n+1)−

A(n+1)−,n+ A(n+1)− ,(n+1)−

] [

Un+

U (n+1)−

]

≥
[

An+,n+ An+,(n+1)−

A(n+1)−,n+ A(n+1)−,(n+1)−

] [

Umin

Umin

]

, (B.16)

in the sense that the inequality holds for each row of the system and, since A−1 exists and
is positive when there is no mesh tangling, we can premultiply both sides by A−1 to get

[

Un+

U (n+1)−

]

≥
[

Umin

Umin

]

. (B.17)

The positivity of A−1 therefore implies that

un
−

min = min
j
un

−

j ≤ un
+

i , u
(n+1)−

i ∀i . (B.18)

A similar argument can be used to prove that

un
−

max = max
j
un

−

j ≥ un
+

i , u
(n+1)−

i ∀i . (B.19)

We also note the following.
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• This proof holds for any time-step and any meshes at the old and new time levels,
as long as there is no mesh tangling, i.e. element areas remain positive.

• This is a global condition, not a local condition. It therefore prohibits the creation
of new global extrema, but new local extrema may appear.

• A similar proof can be followed for the N scheme without the discontinuity in time
but now a consistency condition, ki,n ≤ 0 ∀i in every element, must be adhered to
(the past-shield condition). This places a restriction on the time-step.

• Note that, in the context of space-time residual distribution schemes, the CFL condi-
tion is defined in terms of the past-shield condition for the element residuals (which,
if satisfied, automatically implies that un

+

i = un
−

i ∀i, even when the approximation
is allowed to be discontinuous in time), i.e. from Equation (19)

ki,n ≤ 0 ⇒ −∆t

4
(an − vi) · nn

i −
|En|
3

≤ 0 . (B.20)

This imposes a limit on ∆t which is different to the positivity condition for the
pseudo-time-stepping used to find a steady-state scheme or to solve the space-time
system given by (28).
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Appendix C. Proof of the Consistency of Inflow Parameters for Residual Dis-

tribution Schemes

Proposition:

Under the definitions given by (18) or (19)

∑

i∈E

ki,n +
∑

i∈E

ki,n+1 = 0 . (C.1)

Proof

First note that it follows immediately from (19) that

∑

i∈E

ki,n =

(

∑

i∈E

∆t

4
vi · nn

i

)

− |En| ,

∑

i∈E

ki,n+1 =

(

∑

i∈E

∆t

4
vi · nn+1

i

)

+ |En+1| , (C.2)

for any time level, since
∑

i∈E ni = 0. Furthermore, the definitions of the inflow parame-
ters obtained using Simpson’s rule, given in (18), also lead to (C.2) because

∑

i∈E

((vj − vi) · nk + (vk − vi) · nj) =
∑

i∈E

(vj − vi) · nk +
∑

i∈E

(vk − vi) · nj

=
∑

i∈E

(vj − vi) · nk +
∑

i∈E

(vi − vj) · nk

= 0

(C.3)

This assumes that for vertex i of the element, vertices j and k are the other vertices,
labelled anticlockwise. It therefore follows that, in both cases,

∑

i∈E

ki,n +
∑

i∈E

ki,n+1 = |En+1| − |En|+ ∆t

4

(

∑

i∈E

vi · nn
i +

∑

i∈E

vi · nn+1
i

)

. (C.4)

Now, by definition,

|En| = 1

2
(xj − xi) ∧ (xk − xi)

|En+1| = 1

2
((xj +∆tvj)− (xi +∆tvi)) ∧ ((xk +∆tvk)− (xi +∆tvi)) ,

(C.5)

where i is any vertex of the element and j and k are again the other vertices, labelled
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anticlockwise, so

|En+1| − |En| = 1

2
((xj − xi) + ∆t (vj − vi)) ∧ ((xk − xi) + ∆t (vk − vi))

− 1

2
(xj − xi) ∧ (xk − xi)

=
∆t

2
(xj − xi) ∧ (vk − vi) +

∆t

2
(vj − vi) ∧ (xk − xi)

+
∆t2

2
(vj − vi) ∧ (vk − vi)

=
∆t

2
(vk − vi) ∧ (xi − xj) +

∆t

2
(vj − vi) ∧ (xk − xi)

+
∆t2

2
(vj − vi) ∧ (vk − vi)

=
∆t

2
vi ∧ (xj − xk) +

∆t

2
vj ∧ (xk − xi) +

∆t

2
vk ∧ (xi − xj)

+
∆t2

2
(vj − vi) ∧ (vk − vi)

=
∆t

2

(

∑

i∈E

vi ∧ (xj − xk)

)

+
∆t2

2
(vi ∧ vj + vj ∧ vk + vk ∧ vi)

(C.6)

Similar manipulation, using ni ⊥ xk − xj, leads to

∆t

4

(

∑

i∈E

vi · nn
i +

∑

i∈E

vi · nn+1
i

)

=
∆t

4

(

∑

i∈E

vi ∧ (xk − xj) +
∑

i∈E

vi ∧ ((xk +∆tvk)− (xj +∆tvj))

)

=
∆t

4

(

∑

i∈E

vi ∧ (xk − xj) +
∑

i∈E

vi ∧ (xk − xj) +
∑

i∈E

∆tvi ∧ (vk − vj)

)

=
∆t

2

(

∑

i∈E

vi ∧ (xk − xj)

)

+
∆t2

4

(

∑

i∈E

vi ∧ (vk − vj)

)

=
∆t

2

(

∑

i∈E

vi ∧ (xk − xj)

)

− ∆t2

2
(vi ∧ vj + vj ∧ vk + vk ∧ vi)

(C.7)

Hence, substituting (C.6) and (C.7) into (C.4) gives

∑

i∈E

ki,n +
∑

i∈E

ki,n+1 = 0 . (C.8)
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