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Limit cycle dynamics can guide 
the evolution of gene regulatory 
networks towards point attractors
Stuart P. Wilson  ͷȗ, Sebastian S. James  ͷ, Daniel J. Whiteleyͷ & Leah A. Krubitzer͸ǡ͹

Developmental dynamics in Boolean models of gene networks self-organize, either into point attractors 

(stable repeating patterns of gene expression) or limit cycles (stable repeating sequences of patterns), 

depending on the network interactions speciƤed by a genome of evolvable bitsǤ Genome speciƤcations 
for dynamics that can map speciƤc gene expression patterns in early development onto speciƤc point 
attractor patterns in later development are essentially impossible to discover by chance mutation 

alone, even for small networks. We show that selection for approximate mappings, dynamically 

maintained in the states comprising limit cycles, can accelerate evolution by at least an order of 

magnitude. These results suggest that self-organizing dynamics that occur within lifetimes can, in 

principle, guide natural selection across lifetimes.

Self-organization and natural selection are fundamental forces that shape all biological systems. Self-organization 
describes a dynamic in a system whereby local interactions between components collectively yield a global order 
that is unobservable, in its entirety, to the individual components. herefore, self-organization describes dynam-
ics that occur across all spatial and temporal scales throughout the lifetimes of all organisms. Natural selection 
is instead a description of dynamics that occur primarily between lifetimes, via the communication of genetic 
information from organisms to their ofspring. It is clear how natural selection can operate on the self-organizing 
processes by which organisms develop and compete, because information passed on by genetic inheritance speci-
ies the interactions within and between those self-organizing processes. But the extent to which self-organization 
can operate on natural selection is not yet understood. Can selection, modelled as a global optimization of the 
genotype by itness maximization between lifetimes, exploit the emergence of structure in the local mapping from 
genotype to phenotype that occurs within lifetimes? Here we show that itness landscapes can be modiied by the 
intrinsic properties of dynamical network self-organization, via a simple, biologically plausible mechanism that is 
compatible with conventional descriptions of evolution by natural selection.

Consider a network of n interacting genes and assume for simplicity that their expression levels may be either 
high or low only. he network interactions can be speciied by assigning to each gene a truth table that determines 
its next expression level in response to each of the 2n possible patterns of expression. he developmental dynamics 
of the network can thus be completely speciied by a string comprising =N n2n binary digits. Whilst acknowl-
edging the obvious limitations of the analogy, we can, for convenience, refer to this binary string as a ‘genome’. he 
genome has 2N possible conigurations. See Fig. 1.

he dynamics in these networks self-organize to reveal attractors1–3. From a given initial state (a state is a pat-
tern of n binary expression levels), the network activity will eventually settle, either into an endless repetition of a 
single state, known as a point attractor, or into a limit cycle, where a speciic sequence of states repeats endlessly 
(see4,5). In the broadest terms, diferent initial states represent diferent contexts in which the network dynamics 
may develop, as determined by factors extrinsic to the network, such as the transient inluence of another gene or 
gene network, diferences between cell or tissue types, or diferent temperature or chemical conditions (food, oxy-
gen, hormones etc.). hus we might consider a mapping from a given initial state to a point attractor to constitute 
a robust response of the network in that context. Assuming that the initial states are determined by such extrinsic 
factors, the problem for natural selection is to conigure an N-dimensional genome such that the resulting net-
work interactions will map a given set of initial states to a given set of point attractor states.
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An instructive example was considered by Giacomantonio & Goodhill6, concerning the interactions between 
genes Fgf87,8, Emx29–11, Pax611,12, Coup-tf113,14, and Sp814,15, which specify position information in the embryonic 
neocortex and ultimately guide the growth of thalamocortical axons by chemoattraction (e.g.16,17; see18,19 for 
reviews). At embryonic day 9.5 (E9.5), before the other transcription factors are known to be expressed, the tel-
encephalic morphogen Fgf820 is secreted only at the anterior neural ridge of the developing forebrain8 (see18 for a 
review). Together with other signalling molecules and patterning centers, the secretion of Fgf8 at E9.5 induces the 
graded expression of Emx2, Pax6, Coup-tf1, and Sp8 in the progenitor cells in the ventricular zone. Interactions 
between these genes yield posterior to anterior gradients in Emx2 and Coup-tf1 expression and anterior to pos-
terior gradients in Pax6 and Sp8 expression. Hence, in two contexts, deined by the diferential expression of Fgf8, 
=n 5 genes map initial state [00000] to the target point attractor [01010] in the posterior domain, and map initial 

state [10000] to the target point attractor [10101] in the anterior domain (binary expression levels ordered as the 
names of the genes are listed above). See Fig. 2.

By chance mutation alone, the problem of inding a genome coniguration to facilitate such developmental 
dynamics is very difficult. Even for =n 3 genes, the genome is of length = × =N 3 2 243 , and there are 
=2 16777216N  possible genome conigurations. An exhaustive search reveals that 11384 of these possible con-

igurations (0.068%) map diferential expression of one gene to diferential expression of n genes, e.g., mapping 
initial states [000] and [100] to point attractors [010] and [101]. Current computing power does not allow for an 
equivalent igure to be determined by an exhaustive search of the genome space for more than three genes. How 

Figure 1. Gene interaction network. A network of =n 5 interacting genes, shown labelled a–e, each with 
inputs labelled i–v. he truth table determines the expression level of each gene in response to each of the 
=2 32n  possible patterns of gene expression. he coloured elements thus constitute a ‘genome’ of 
= =N n2 160n  bits, which in this case speciies a maximally it network ( =f 1).

https://doi.org/10.1038/s41598-019-53251-w
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then has natural selection been able to discover gene-interaction networks that yield stable developmental 
dynamics, i.e., the emergence of point attractors?

Results
Modelling the interaction between self-organization and selection. Discovering the genetic con-
ditions from which speciic point attractors can emerge becomes tractable, even for larger networks, if we assume 
that self-organization, i.e., the emergence of attractor dynamics during development, is able to interact with nat-
ural selection in the following way. Starting with a random genome, a network of =n 5 genes ( =N 160) might 
from some initial state, e.g., [00000], settle into a particular limit cycle, e.g., [11000] then [00011] then [01011], 
before repeating [11000] and continuing indeinitely. As the network continues to cycle through these three states, 
the ive genes will be expressed for the following proportions of time: 1/3, 2/3, 0/3, 2/3, 2/3. hese values corre-
spond to the relative production rates of ive proteins. If the target point attractor state is e.g., [01010], then the 
protein production levels are ‘correct’ in the following proportions: 2/3, 2/3, 3/3, 2/3, 1/3. he mathematical product  
of these values thus represents the extent to which downstream processes will be orchestrated by the correct dis-
tribution of proteins, and as such it can be used as a measure of the itness of the genome,
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where x is an index over X contexts (each deined by an initial network state), t is an index over T states compris-
ing the attractor for context x, and s′ is the target level of gene expression.

In simulation, states s can be identiied simply by iterating the network dynamics 2n times (to guarantee that 
an attractor is reached) and then iterating a further T times until a repetition is detected. Natural selection can 
then be represented in its simplest terms by lipping each of the N genome bits with probability ∈ .p [0, 0 5), 
accepting the modiied genome if ∆ ≥f 0, and repeating the process for each simulated generation.

It is important to emphasise that according to Eq. (1), the itness is derived from the developmental dynamics of 
a network by comparing the target state with the time average expression level of each gene, given that the network 
will cycle through the states in its attractor indeinitely. Hence the model represents an assumption that dynamics 
in gene networks can propagate quickly with respect to the timescale over which the corresponding protein levels 
accumulate and interact with downstream processes (see4,5). Note that according to Eq. (1), =f 1 only if all initial 
states map to the target states as point attractors. Note also that =f 0 if any gene (g) is expressed incorrectly in any 
attractor state (s) that is visited in any context (x). Furthermore, note that none of the states in the limit cycle are 
required to correspond exactly to the target state for the network to be considered to have positive itness, as is the 
case for the example considered above. Finally, note that setting = .p 0 5 deines a control condition in which the 
evolutionary process becomes equivalent to a random sampling of points in the genome space.

Limit cycle dynamics can guide evolution. We consider irst the example from neocortical development 
( =n 5, =X 2), where initial state [00000] should map to state [01010] as a point attractor, and initial state [10000] 
should map to state [10101] as a point attractor. Evolving for a total of 108 simulated generations at each mutation 

Figure 2. Attractor landscape. he developmental dynamics of the network that is speciied by the genome 
in Fig. 1 reveals ive attractors (four point attractors and one with a limit cycle of length two). Every possible 
gene expression pattern is represented by one dot, and the transitions between states are represented by arrows. 
Initial states [10000] and [00000] map to target states [10101] and [01010] as point attractors. he blue path 
corresponds to the development of the network in the anterior context and the red path corresponds to the 
development of the network in the posterior context.

https://doi.org/10.1038/s41598-019-53251-w
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rate, from = .p 0 05 to = .p 0 45 at increments of 0.05, revealed dynamics similar to ‘punctuated equilibria’21,22,  
whereby long periods of stasis (∆ =f 0) were punctuated by increments in itness (see Fig. 3). he distribution of 
the number of generations in each period of stasis is shown in Supplementary Material S1.

At each mutation rate, the distribution of the number of generations required to discover a maximally it 
genome ( =f 1) was long-tailed, conforming increasingly to a log-normal distribution for smaller values of p, i.e., 
for an increasingly local search of the genome space (see Fig. 4). At = .p 0 05, the number of =f 1 genomes dis-
covered was 70 times greater than by random sampling ( = .p 0 5), with discovery taking 853 generations on 
average. Reducing the mutation rate further (i.e., lipping an average of 6 or less bits per generation) reduced the 
evolutionary speed-up, conirming that the itness landscape is not smooth near the itness peaks. Overall, the 
average number of generations required to discover =f 1 networks, µ, was well approximated by 

µ = . + .p e( ) p8 90 6 22 for > .p 0 05 (for values of p less than 0.05, µ → ∞ as →p N1/  and µ = ∞(0) ).
hese results show that self-organization can accelerate selection under the assumption that dynamically sta-

ble protein production levels that are more similar to ideal levels yield better itness. Under this assumption, 
approximate network solutions that emerge within a lifetime as limit cycle attractors can provide a scafold of 
graded itness around otherwise isolated peaks in the itness landscape, for natural selection to climb. We thus 
refer to this mechanism as attractor scafolding. Self-organization can only assist selection via attractor scafolding 
if the embedding of attractor landscapes in the N-dimensional genome space is locally structured, as is evidenced 
here by further accelerations in the discovery of =f 1 genomes at lower mutation rates, i.e., as the search through 
genome space is more local.

Fit networks and random networks have equal complexity. Many known biological networks com-
prise Boolean functions that belong to particular classes of low complexity, such as threshold functions and can-
alizing functions, i.e., genes for which either expression level is guaranteed by a speciic expression level (1 or 0) 
in at least one other gene1,2,23,24. To investigate whether networks generated by attractor scafolding belong to such 
classes, we compared the complexity of functions generated in ten thousand =f 1 networks to the complexity of 
functions generated in ten thousand randomly conigured networks. Following Gherardi & Rotondo25, we used 
the Quine-McCluskey algorithm to derive, for each gene, an equivalent Boolean logic expression (in disjunctive 
normal form) with the fewest terms, and measured the complexity of each as the number of terms normalised by 
2n. A t-test revealed no signiicant diference between the mean complexity of Boolean functions in =f 1 networks  
(mean = 0.23 ± 0.017) and in randomly generated networks (mean = 0.23 ± 0.017). As we might therefore expect, 
very few it networks (0.11%), like random networks (0.11%), contained canalizing functions, which are typically 
observed in =n 5 networks for complexities of around 0.125. here was also no diference between it and random 
networks in terms of the bias, i.e., the proportion of truth table values that are 1 (mean = 0.50 ± 0.04 versus 
0.50 ± 0.04), or the number of attractors (mean = 2.46 ± 1.12 versus mean = 2.43 ± 1.12). Hence we conclude that 
networks generated by attractor scafolding are equal in complexity to randomly conigured networks.

Figure 3. Punctuated equilibria. Evolution of ten genomes by attractor scafolding (mutation rate = .p 0 1), 
with the generations at which =f 1 aligned to zero. Evolution yields long periods of stasis punctuated by sharp 
itness increments. he bold trace shows the evolution that gave rise to the network detailed in Figs 1 and 2.

https://doi.org/10.1038/s41598-019-53251-w


5SCIENTIFIC REPORTS |         (2019) 9:16750  | httpsǣȀȀdoiǤorgȀͷͶǤͷͶ͹;ȀsͺͷͻͿ;ǦͶͷͿǦͻ͹͸ͻͷǦw

www.nature.com/scientificreportswww.nature.com/scientificreports/

Attractor scaơolding is robust to the choice of contexts and integration methodǤ We next inves-
tigated whether attractor scafolding is sensitive to the choice of the initial and target states that deine each con-
text. In the example from neocortical development, the initial states difered by one bit (the expression level of the 
irst gene, representing Fgf8) and the target states difered by n bits (i.e., deining n binary gradients). So we irst 
repeated the original simulations using an anterior initial state that difered from the posterior initial state by a 
Hamming distance that ranged from 1 (e.g., state [10000] as used originally) to n (e.g., [11111]). he choice of the 
initial state had no efect on the evolutionary dynamics. Next we repeated the original simulations using an ante-
rior target state that difered from the posterior target state by a Hamming distance that ranged from 1 (e.g., state 
[11010]) to n (e.g., [10101] as used originally). Figure 5 shows how attractor scafolding depends on the distance 
between the two target states. he number of generations required to discover =f 1 networks was found to 
decrease as the Hamming distance between the two target states was increased, with networks mapping from 
initial states that difered by one bit to target states that difered by one bit discovered in 3574 generations on 
average, corresponding to an evolutionary speed-up of 16. Note that the choice of target state had no efect on the 
distribution of discovery times in the = .p 0 5 control condition.

he evolutionary speed-up was also afected by the number of contexts, X. For an arbitrary choice of initial 
and target states (all unique), we ran simulations for =X 2, =X 3, and =X 4 contexts. he simulation was 
evolved at a range of mutation rates ( < .p 0 5) until 1000 networks were discovered for each combination of X and 
p. As the number of contexts was increased, more generations were required to discover it genomes (see Fig. 6). 
To obtain suicient data for analysis, the model was run for the = .p 0 5 control condition through 108 ( =X 2), 
5 × 109 ( =X 3), and 2 × 1011 ( =X 4) generations. Although the shortest =f 1 discovery period increased with 
X, the discovery period in the = .p 0 5 control case increased at a far greater rate. Deined as the mean discovery 
period at = .p 0 5 (where periods were always maximal) divided by the mean discovery period at = .p 0 05 (where 
periods were always minimal), the evolutionary speed-up by attractor scafolding increased with the number of 
contexts. Remarkably, the speed-up increased at an approximately exponential rate with the number of contexts 
(Fig. 7). hus, as the set of target attractors increased in size, the efectiveness of attractor scafolding was main-
tained, despite an exponential increase in the diiculty of the search.

As a inal test of robustness, we adapted the original simulation (neocortical example with =X 2) to instead 
update the state of the network asynchronously. Instead of changing the states of all n genes at the current time-
step based on the states of all n genes at the previous timestep, asynchronous updating involves iteratively chang-
ing the state of one randomly selected gene at a time. To compute the itness, these dynamics were iterated 
=T N2  times from the initial state in each context and Eq. (1) was calculated with respect to all XT visited states; 

an evolutionary run was terminated when > .f 0 95. Overall, the average number of generations, µ, required to 
discover it networks was well approximated by µ = . + .p e( ) p13 60 5 33 for > .p 0 15 (for values of p less than 0.15, 

µ → ∞ as →p N1/  and µ = ∞(0) ) (Fig. 8). he efect of attractor scafolding is therefore robust when the 
implicit assumptions of a synchronous clock and deterministic network interactions are relaxed.

Figure 4. Limit cycle dynamics guide evolution. Distribution of generations required to discover =f 1 
networks at a range of mutation rates p. Evolution at lower mutation rates corresponds to searching the itness 
landscape more locally, and is shown here to increasingly accelerate the discovery of maximally it =f 1 
networks. Note that = .p 0 5 corresponds to a random search.

https://doi.org/10.1038/s41598-019-53251-w
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Discussion
he efect of self-organization by attractor scafolding resembles that presented by Hinton & Nowlan26. In their 
seminal model, some genome bits are adaptable within the lifetime of each member of a population, and their 
genomes are recombined with a probability that decreases with the number of lips of these adaptable bits before 
a target genome is discovered. he state of adaptable bits is not inherited, but inheritance of the ability to lip 

Figure 5. Attractor scafolding varies with distance between targets. he number of generations required to 
discover maximally it networks decreases as the Hamming distance (h) between =X 2 target states increases. 
Solid lines show its for distributions obtained using a mutation rate of = .p 0 1. Distributions for each h were 
identical for the = .p 0 5 control (dashed line). he minimum evolutionary speed-up was a factor of 16 
(comparing the mean evolutions at = .p 0 1 and = .p 0 5 for =h 1).

Figure 6. Attractor scafolding varies with the number of contexts. As the number of contexts X increases, 
more generations are required to discover it genomes. For each value of X, the mean discovery period µ 
increased approximately exponentially with the mutation rate p (its shown by solid lines). Error bars show 95% 
conidence intervals, determined by a bootstrap analysis of the mean, µ, with 1024 resamples.

https://doi.org/10.1038/s41598-019-53251-w
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state nevertheless increases the discovery rate. Faster discovery of target states within lifetimes therefore directs 
selection pressure in favour of genetic conditions from which targets can be more rapidly acquired. Attractor scaf-
folding confers a similar advantage; in both cases an approximation to the target is maintained within the lifetime 
and communicated only indirectly between lifetimes. An important distinction is that by attractor scafolding, the 
beneit of distributing approximate solutions across limit cycle states, rather than across members of a population, 
is conferred by developmental dynamics intrinsic to individual organisms.

Figure 7. Evolutionary speed-up increases with the number of targets. he maximum average discovery period 
b (for the = .p 0 5 control condition), divided by the minimum average discovery period a (for = .p 0 05) yields 
an estimate of the evolutionary speed-up by attractor scafolding (circles connected by a thick line), and is here 
shown to increase exponentially with the number of contexts X.

Figure 8. Asynchronous updating. he simulation used to create Fig. 4 was modiied to update the state of the 
network asynchronously. he trend for faster discovery of it networks at lower mutation rates was comparable, 
though note that the maximum evolutionary speed-up was obtained at = .p 0 15. Attractor scafolding is 
therefore robust to the choice of integration method.

https://doi.org/10.1038/s41598-019-53251-w
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It is interesting that attractor scafolding was afected by the similarity between the target states. One impli-
cation of this result is that networks like that described for cortical arealization, which can be perturbed by the 
expression of a morphogen into generating orthogonal patterns of stable gene expression, may be more likely to 
be discovered by natural selection. It is also interesting that the evolutionary speed-up via attractor scafolding 
increases exponentially with the number of target attractors. his result suggests that the challenge for an evolu-
tionary search based on iterative evaluation of chance mutations may scale with the complexity of the phenotype 
(i.e., with properties of the emergent attractor landscape) rather than with the complexity of the genotype (i.e., 
with the naturally occurring frequency of it network speciications).

Attractor scafolding ofers a potential mechanism for genetic assimilation; by the gradual evolution of limit 
cycle dynamics towards point attractor dynamics. hus, it might support a range of epigenetic phenomena, such 
as the Baldwin efect(s)27–30. Similar principles may help to explain the ‘molecular logic’ of speciic gene networks, 
e.g., networks responsible for the embryonic development of neocortical circuits6,18,31,32, and how intrinsic prop-
erties of network self-organisation may similarly constrain the evolution and development of functional neuronal 
networks33–36. Practical applications may involve new methods for programming large circuits of logic operations. 
For example, we found that an =n 7 circuit, for which the space of conigurations comprises =N 2896 possibili-
ties, can be conigured to robustly map three initial states to three distinct target states in a few million computa-
tionally inexpensive steps.

Methods
A standalone implementation of the model is provided as Supplementary Material S2 and a script for recreat-
ing Fig. 4 from the main text is provided as Supplementary Material S3. Copy the text from S2 into a ile with 
a .cpp extension, e.g., evolve.cpp, and copy the text from S3 into a ile with a .py extension, e.g., plot.py. From the 
command line compile using e.g., ‘g++ -O3 evolve.cpp -o evolve’, run the model using ‘./evolve’, then plot using 
‘python plot.py’. hese programs are part of a full repository of code and additional analysis and visualization 
tools maintained at https://github.com/ABRG-Models/AttractorScafolding.
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