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Observer-based input-to-state stabilization

of networked control systemswith large uncertain delays

Anton Selivanov, Emilia Fridman

School of Electrical Engineering, Tel Aviv University, Israel

Abstract

We consider output-feedback predictor-based stabilization of networked control systems with large unknown time-varying communi-
cation delays. For systems with two networks (sensors-to-controller and controller-to-actuators), we design a sampled-data observer
that gives an estimate of the system state. This estimate is used in a predictor that partially compensates unknown network delays.
We emphasize the purely sampled-data nature of the measurement delays in the observer dynamics. This allows an efficient analysis
via the Wirtinger inequality, which is extended here to obtain exponential stability. To reduce the number of sent control signals,
we incorporate the event-triggering mechanism. For systems with only a controller-to-actuators network, we take advantage of
continuously available measurements by using a continuous-time predictor and employing a recently proposed switching approach
to event-triggered control. For systems with only a sensors-to-controller network, we construct a continuous observer that better
estimates the system state and increases the maximum output sampling, therefore, reducing the number of required measurements.
A numerical example illustrates that the predictor-based control allows one to significantly increase the network-induced delays,
whereas the event-triggering mechanism significantly reduces the network workload.

Key words: Predictor-based control, Observer-based control, Networked control systems, Event-triggered control

1 Introduction

In networked control systems (NCSs), which are comprised
of sensors, controllers, and actuators connected through
a communication medium, transmitted signals are sam-
pled in time and are subject to time-delays. Most exist-
ing papers on NCSs study robust stability with respect
to small communication delays (see, e.g., [2,5,6,14]). To
compensate large transport delays, a predictor-based ap-
proach can be employed. This was done in [10] for sampled-
data state-feedback control of nonlinear systems and in [11]
for an output-feedback control with approximate predic-
tors. Sampled-data predictor-based state-feedback control
of linear systems under continuous-time measurements has
been considered in [18]. Nonlinear systems under sampled-
data measurements and continuous output-feedback con-
trol have been studied in [1,12].

All the aforementioned works deal with known constant
network-induced delays. Predictor-based networked con-
trol under uncertain time-varying delays has been consid-
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ered in [22], where a state-feedback controller has been
studied. In this paper, we propose a predictor-based dy-
namic output-feedback controller for NCSs with uncertain
time-varying delays. We present a new model of a closed-
loop observer-based NCS in the framework of the time-
delay approach. In such a model, several delays appear due
to sampling and network-induced delays. We emphasize
the purely sampled-data nature of measurement delays in
the observer dynamics. This allows an efficient analysis via
the Wirtinger inequality, which is extended here to obtain
exponential stability.

We start by considering the case of two networks: sensors-
to-controller and controller-to-actuators (Section 2). Both
networks introduce large time-varying delays. We assume
that the messages sent from the sensors are time stamped
[25]. This allows the controller to calculate the sensors-
to-controller delay. The controller-to-actuators delay is as-
sumed to be unknown but belongs to a known delay inter-
val. We design an observer that is calculated on the con-
troller side and gives an estimate of the system state. This
estimate is used in a predictor, which partially compen-
sates both delays. To reduce the workload of the controller-
to-actuators network, we incorporate the event-triggering
mechanism [23].
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Fig. 1. NCS with two networks

In Section 3, we proceed to NCSs with continuous mea-
surements and controller-to-actuators networks, where we
demonstrate that a recently proposed switching approach
to event-triggered control [21] takes advantage of continu-
ously available measurements and further reduces the num-
ber of sent control signals. For the case of continuous con-
trol and sampled measurements, we construct a continu-
ous observer that better estimates the system state and
increases the maximum output sampling, therefore, reduc-
ing the number of required measurements (Section 4). All
the results are demonstrated in Section 5 by an example
borrowed from [25].

First, we present an extension of the Wirtinger inequality
[17, Lemma 3.1].

Lemma 1 (Wirtinger inequality) Let a, b, α ∈ R, 0 ≤
W ∈ R

n×n, and f : [a, b] → R
n be an absolutely continuous

function with a square integrable first derivative such that
f(a) = 0 or f(b) = 0. Then
∫ b

a
e2αtfT (t)Wf(t) dt

≤ e2|α|(b−a) 4(b−a)2

π2

∫ b

a
e2αtḟT (t)Wḟ(t) dt.

Proof is based on an idea from [7, Lemma A.18]. If α ≥ 0,
we have

∫ b

a
e2αtfT (t)Wf(t) dt ≤ e2αb

∫ b

a
fT (t)Wf(t) dt

≤ e2αb 4(b−a)2

π2

∫ b

a
ḟT (t)Wḟ(t) dt

≤ e2|α|(b−a) 4(b−a)2

π2

∫ b

a
e2αtḟT (t)Wḟ(t) dt,

(1)

where the second inequality follows from [17, Lemma 3.1].
If α < 0, the proof is similar but e2αb should be replaced
by e2αa after the first and second inequalities in (1). �

If α = 0, Lemma 1 coincides with [17, Lemma 3.1] that
was used in [15] to construct a Lyapunov functional for
stability analysis of a sampled-data system. Here we use the
extended Wirtinger inequality of Lemma 1 for Lyapunov-
based exponential stability analysis (see VW term in (A.1)).

2 NCSs with two networks

Consider a linear system

ẋ(t) = Ax(t) +Bu(t) + w1(t),

y(t) = Cx(t) + w2(t),
t ≥ 0 (2)

Fig. 2. Time-delays and updating times

with the state x ∈ R
n, input u ∈ R

m, output y ∈ R
l,

exogenous disturbance w1 ∈ R
n, measurement noise w2 ∈

R
l, and constant matrices A, B, and C. We assume that

(A,B) is stabilizable and (A,C) is detectable meaning that
there exist constant matrices K ∈ R

m×n and L ∈ R
n×l

such that A + BK and A + LC are Hurwitz. Let {sk} be
sampling instants such that

0 = s1 < s2 < . . . , limk→∞ sk = ∞, sk+1 − sk ≤ h.

In this section, we assume that at each sampling time sk
(k ∈ N throughout the paper) the output y(sk) is trans-
mitted to a controller, which generates a control signal and
transmits it to actuators, where it is applied through zero-
order hold (see Fig. 1). The controller and actuators are
event-driven with updating times (see Fig. 2)

ξk = sk + r0 + ηk, tk = ξk + r1 + µk,

where r0 and r1 are known constant transport delays, ηk
and µk are time-varying delays such that

0 ≤ ηk ≤ ηM , 0 ≤ µk ≤ µM , ξk ≤ ξk+1, tk ≤ tk+1. (3)

Note that the sequences {ξk} and {tk} should be increas-
ing, but we do not require ηk + µk to be less than a sam-
pling interval. We assume that the sensors’ and controller’s
clocks are synchronized [25] and together with y(sk) the
time stamp sk is transmitted so that ηk = ξk − sk − r0 can
be calculated by the controller. The delay uncertainty µk

is unknown.

To reduce the workload of a controller-to-actuators net-
work, we incorporate the event-triggering mechanism [23].
The idea is to send only those control signals u(ξk) which
relative change is greater than some threshold. Namely, let
the nominal control (without event-triggering) be

u(t) =

{

0, t < ξ1,

u(ξk), t ∈ [ξk, ξk+1),

where u(ξk) will be constructed later. Then the applied
control signal ū(t) is 0 for t < ξ1 and

ū(t) =

{

ū(ξk−1), t ∈ [ξk, ξk+1), (5) is true,

u(ξk), t ∈ [ξk, ξk+1), (5) is not true,
(4)

where the event-triggering rule is given by

[ū(ξk−1)−u(ξk)]
T
Ω [ū(ξk−1)−u(ξk)]≤σu

T(ξk)Ωu(ξk) (5)

with event-triggering parameters 0 ≤ Ω ∈ R
m×m, σ ∈

[0, 1), and initial value ū(ξ0) = 0. Then the system (2)
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transforms into

ẋ(t) = Ax(t) + w1(t), t ∈ [0, t1),

ẋ(t) = Ax(t) +Bū(ξk) + w1(t), t ∈ [tk, tk+1),

y(t) = Cx(sk) + w2(sk), t ∈ [sk, sk+1).

(6)

The purpose of this section is to construct a predictor-
based controller that stabilizes (6). First, we construct the
following observer for x(t):

˙̂x(t) = Ax̂(t) +Bu(t− r1)− L[y(t)− ŷ(t)], t ≥ 0,

ŷ(t) = Cx̂(sk), t ∈ [sk, sk+1)
(7)

with x̂(0) = 0. The idea of this observer is the following.
The system (6) suggests that one should use ū(ξk) for t ∈
[tk, tk+1) instead of u(t−r1) in (7) to obtain a “control-free”
system for the estimation error x(t)− x̂(t). However, this is
not possible, since the value tk = ξk+r1+µk depends on the
unknown µk. Then one may intend to use ū(t−r1) = ū(ξk)
for t ∈ [ξk + r1, ξk+1 + r1) in (7). This, however, leads
to additional event-triggering error, which can be avoided
using u(t− r1).

Consider the change of variables [13,3]

z(t) = eA(r0+r1)x(t) +
∫ t+r0
t−r1

eA(t+r0−θ)Bu(θ) dθ,

ẑ(t) = eA(r0+r1)x̂(t) +
∫ t+r0
t−r1

eA(t+r0−θ)Bu(θ) dθ,
(8)

for t ≥ 0 and z(t) = ẑ(t) = 0 for t < 0. Then we obtain

ż(t)=Az(t)+Bu(t+r0)−e
A(r0+r1)Bu(t−r1)

+ eA(r0+r1)w1(t), t ∈ [0, t1),

ż(t)=Az(t)+Bu(t+r0)+e
A(r0+r1)B[ū(ξk)−u(t−r1)],

+ eA(r0+r1)w1(t), t ∈ [tk, tk+1),

˙̂z(t)=Aẑ(t)+Bu(t+ r0)−e
A(r0+r1)L [y(t)−ŷ(t)] , t ≥ 0.

(9)
If µM = 0, it is reasonable to take ū(θ) instead of u(θ) in (8)
to obtain a more precise state prediction. For µM 6= 0 we
take u(θ) to avoid additional event-triggering errors that
otherwise would appear in (9) (see [22] for details). As the
nominal control law, we take u(t) = 0 for t < ξ1 and

u(t) = Kẑ(sk) = K[eA(r0+r1)x̂(sk)

+
∫ sk+r0
sk−r1

eA(sk+r0−θ)Bu(θ) dθ], t ∈ [ξk, ξk+1).
(10)

The value of y(sk) is available to the controller at time
ξk, therefore, x̂(sk) can be calculated by solving (7) on
[sk−1, sk]. Since the time stamp sk is sent together with
y(sk), the control signal (10) can be calculated on the con-
troller side. Moreover, no numerical difficulties arise while
calculating the integral term in (10), since u(θ) is piecewise
constant.

We analyse the system(9) under event-triggered control
(4), (5), (10) using the time-delay approach to NCSs [5,6,4].
Define the following time-delays

τ0(t) = t− sk, t ∈ [ξk − r0, ξk+1 − r0),

τ1(t) = t− sk, t ∈ [ξk + r1, ξk+1 + r1),

τ2(t) = t− sk, t ∈ [tk, tk+1).

(11)

It is easy to check that for t ≥ t1 the following holds:

0 ≤ τ0(t) ≤ τ̄ = h+ ηM ,

r0 + r1 ≤ τ1(t) ≤ τ2(t) ≤ τM = r0 + r1 + h+ ηM + µM .

To avoid some technical complications, we assume that τ̄ ≤
r0+r1. The control law (10) implies u(t+r0) = Kẑ(sk) for
t ∈ [ξk−r0, ξk+1−r0). Therefore, u(t+r0) = Kẑ(t−τ0(t)).
Similarly, u(t − r1) = Kẑ(t − τ1(t)). Define the event-
triggering error e(t) by 0 for t < t1 and

e(t) = ū(ξk)− u(ξk), t ∈ [tk, tk+1).

Then for t ∈ [tk, tk+1) we have

ū(ξk) = u(ξk) + e(t) = Kẑ(t− τ2(t)) + e(t)

and the event-triggering (4), (5) for t ≥ t1 implies

0 ≤ σẑT (t− τ2(t))K
TΩKẑ(t− τ2(t))− eT (t)Ωe(t). (12)

For t ∈ [sk, sk+1) predictors (8) imply

y(t)− ŷ(t) = C[x(sk)− x̂(sk)] + w2(sk)

= Ce−A(r0+r1)[z(sk)− ẑ(sk)] + w2(sk).

Using the notation δz(t) = z(t)− ẑ(t), we obtain

˙̂z(t) =Aẑ(t) +BKẑ(t− τ0(t))−Dδz(sk)

−eA(r0+r1)Lw2(sk), t ∈ [sk, sk+1) ∩ [t1,∞)

δ̇z(t) =Aδz(t) +Dδz(sk) + eA(r0+r1)Be(t)

+ eA(r0+r1)BK[ẑ(t− τ2(t))− ẑ(t− τ1(t))]

+ eA(r0+r1)[w1(t)− Lw2(sk)],

t ∈ [sk, sk+1) ∩ [t1,∞),

(13)

where D = eA(r0+r1)LCe−A(r0+r1).

Remark 1 While the state estimate ẑ enters (13) with
different time-delays, the estimation error δz has a delay
due to sampled-data only (does not undergo additional de-
lays). This allows an efficient analysis via Wirtinger-based
Lyapunov-Krasovskii functional (see VW term in (A.1)).

Theorem 1 For given event-triggering parameter σ ≥ 0
and decay rate α > 0 let there exist n× n matrices P1 > 0,
P2 > 0, n×n non-negative matrices S, S0, S1, R0, R1,W ,
anm×mmatrixΩ ≥ 0, and n×nmatricesGi (i = 0, . . . , 3)
such that

Φ < 0,
[

R0 G0

∗ R0

]

≥ 0,
[

R1 Gi

∗ R1

]

≥ 0, i = 1, 2, 3,

where Φ = {Φij} is a symmetric matrix composed from

Φ11=P1A+ATP1 + 2αP1 + S0 − ρ̄R0, Φ13= ρ̄G0,

Φ12=P1BK+ρ̄(R0−G0),Φ18=Φ19=−P1D,Φ1,11=A
TH,

Φ23= ρ̄(R0 −G0), Φ22=−Φ23 − ΦT
23, Φ2,11=(BK)TH,

Φ33= ρ̄(S − S0 −R0),Φ44=e
−2α(r0+r1)(S1 − S)−ρMR1,

Φ45=ρM (R1 −G1), Φ46=ρM (G1 −G2), Φ47=ρMG2,

Φ55=−Φ45 − ΦT
45,Φ57=ρM (G3 −G2),Φ56=Φ45 − Φ57,

Φ67=ρM (R1 −G3), Φ68=−Φ58=(ρABK)TP2,

Φ6,12=−Φ5,12=he
αh(ρABK)TW, Φ77=−ρM (S1 +R1),

Φ66=−Φ67 − ΦT
67 + σKTΩK, Φ8,11=Φ9,11=−DTH,

Φ88=P2(A+D) + (A+D)TP2 + 2αP2, Φ89=P2D,

3



Fig. 3. NCS with a controller-to-actuators network

Φ8,10=P2ρAB,Φ8,12=he
αh(A+D)TW,Φ99=−π2W/4,

Φ9,12=he
αhDTW,Φ10,10=−Ω,Φ10,12=he

αh(ρAB)TW,

Φ11,11=−H, Φ12,12=−W

with H = τ̄2R0 + (τM − r0 − r1)
2R1, ρA = eA(r0+r1),

ρ̄ = e−2ατ̄ , ρM = e−2ατM . Then the system (6), (7) under
the predictor-based event-triggered controller (4), (5), (10)
is input-to-state stable with the decay rate α, i.e.

∃M : |x(t)| ≤Me−αt|x(0)|+M sup
s∈[0,t]

|w(t)|,

|x̂(t)| ≤Me−αt|x(0)|+M sup
s∈[0,t]

|w(t)|,
(14)

where w(t) = col{w1(t), w2(sk)} for t ∈ [sk, sk+1).

Proof is given in Appendix A.

Remark 2 The proposed approach can be easily extended
to cope with packet dropouts with bounded number of con-
secutive packet losses. Consider an unreliable network with
the maximum number of consecutive packet losses dsc (from
a sensor to a controller) and dca (from the controller to
an actuator). To cope with this issue, we set the sensor to
send the measurement y(sk) d

sc + 1 times at time instants
sk + ihd/d

sc, where i = 0, . . . , dsc, hd > 0. The same strat-
egy is applied to the data sent from the controller. Denote by
rsck and rcak network delays that correspond to the first suc-
cessfully sent packets. Then the closed-loop system is given
by (13) with

ηk = (dsck /d
sc + dcak /d

ca)hd + rsck + rcak ≤ ηM ,

where dsck and dcak are the actual numbers of consecutive
packets that were lost. If rsck + rcak < ηM , one can choose
hd > 0 such that ηk ≤ ηM and apply the results of this
section. This approach can be improved by introducing the
acknowledgement signal of successful reception as suggested
in [9].

3 NCSs with a controller-to-actuators network

In this section, we consider a system with a controller-
to-actuator network and continuously available measure-
ments (see Fig. 3). Based on the available measurements,
a controller continuously calculates a control signal and
transmits it at the sampling times ξk. To obtain appropri-
ate sequence of ξk, we use a switching approach to event-
triggered control [21] that takes advantage of continuously

available measurements. Namely, we take ξ1 = 0 and

ξk+1 = min{ξ ≥ ξk + h | (u(ξk)− u(ξ))TΩ(u(ξk)− u(ξ))

≥ σuT (ξ)Ωu(ξ)}, (15)

with event-triggering parameters 0 ≤ Ω ∈ R
m×m, σ ∈

[0, 1), h > 0. According to (15), after the controller sends
out the control signal u(ξk), it waits for at least the time
period h. Then it starts to continuously check the event-
triggering rule and sends the next control signal when the
event-triggering condition is violated. The idea of a switch-
ing approach to event-triggered control is to present the
closed-loop system as a switching between a system with
sampling h and a system with continuous event-triggering
mechanism. This ensures large inter-event times and re-
duces the number of sent signals [21].

The system takes the form

ẋ(t) = Ax(t) + w1(t), t ∈ [0, t1),

ẋ(t) = Ax(t) +Bu(ξk) + w1(t), t ∈ [tk, tk+1),

y(t) = Cx(t) + w2(t).

(16)

Recall that tk = ξk + r1 + µk are the actuators updating
times.We take the observer (7) with continuously changing
u(t), y(t), and ŷ(t) = Cx̂(t). Performing the change of
variable (8) (with r0 = 0), we obtain the system (9) with
ū(ξk) = u(ξk). As the nominal control law we take

u(t)=Kẑ(t)=K[eAr1 x̂(t)+
∫ sk
sk−r1

eA(sk−θ)Bu(θ) dθ] (17)

for t ≥ 0 and u(t) = 0 for t < 0. Since u(θ) enters the
integral term in (17), one needs to continuously calculate
u(θ) and x̂(t). Therefore, the implementation of (17) is
more complicated than that of (10) with a piecewise con-
stant u(θ) [19]. On the other hand, (7) with continuously
changing u(t), y(t), ŷ(t) gives a better estimate of the state
x(t) and, as a results, allows to transmit less control signals
(see Section 5 for details). Further analysis is based on a
switching approach to event-triggered control [21]. Define

t∗k = min{tk + h, tk+1},

τ3(t) = t− ξk − r1, t ∈ [tk, t
∗
k),

µ(t) = µk + (t− t∗k)
µk+1 − µk

tk+1 − t∗k
, t ∈ [t∗k, tk+1),

e1(t) = u(ξk)− u(t− r1 − µ(t)), t ∈ [t∗k, tk+1),

where 0 ≤ τ3(t) ≤ τ̄3 = h+µM . The function µ(t) is chosen
so that t − r1 − µ(t) ∈ [ξk + h, ξk+1) for t ∈ [t∗k, tk+1),
therefore, (15) implies

0≤σẑT(t−r1−µ(t))K
TΩKẑ(t−r1−µ(t))−e

T
1 (t)Ωe1(t) (18)

for t ∈ [t∗k, tk+1). Using the time-delay approach described
in the previous section and denoting δz(t) = z(t) − ẑ(t),

4



we obtain
˙̂z(t) =(A+BK)ẑ(t)−Dδ(t)− eAr1Lw2(t), t ≥ 0,

δ̇z(t) =(A+D)δz(t)− eAr1BKẑ(t−r1)

+ eAr1 [w1(t)− Lw2(t)], t ∈ [0, t1),

δ̇z(t) =(A+D)δz(t) + eAr1 [w1(t)− Lw2(t)]

+ eAr1BK[ẑ(t−r1−τ3(t))−ẑ(t−r1)], t ∈ [tk, t
∗
k),

δ̇z(t) =(A+D)δz(t) + eAr1Be1(t)

+ eAr1BK[ẑ(t−r1−µ(t))−ẑ(t−r1)]

+ eAr1 [w1(t)− Lw2(t)], t ∈ [t∗k, tk+1),
(19)

with D = eAr1LCe−Ar1 .

Theorem 2 For given event-triggering parameter σ ≥ 0
and decay rate α > 0 let there exist n× n matrices P1 > 0,
P2 > 0, n× n non-negative matrices S, S0, S1, R0, R1, an
m×m matrix Ω ≥ 0, and n×n matrices G0, G1 such that

Ξ ≤ 0, Ψ ≤ 0,
[

R0 G0

∗ R0

]

≥ 0,
[

R1 G1

∗ R1

]

≥ 0,

where Ξ = {Ξij}, Ψ = {Ψij} are symmetric matrices com-
posed from

Ξ11=Ψ11=P2(A+D) + (A+D)TP2 + 2αP2,

Ξ12=Ψ12=−DTP1,Ξ15=−Ξ13=Ψ14=−Ψ13=P2ρABK,

Ξ22=Ψ22=P1(A+BK) + (A+BK)TP1 + 2αP1 + S,

Ξ27=Ψ28=(A+BK)TH,Ξ17=Ψ18=−DTH,Ξ34=ρMR0,

Ξ33=Ψ33=e
−2αr1(S0−S)−ρMR0,Ξ45=Ξ56= ρ̄(R1−G1),

Ξ44=Ψ55=ρM (S1 − S0 −R0)− ρ̄R1, Ξ55=−Ξ45 − ΞT
45,

Ξ46= ρ̄G1, Ξ66=−ρ̄(S1 +R1), Ξ77=Ψ88=−H,

Ψ17=P2ρAB, Ψ35=ρMG0, Ψ34=Ψ45=ρM (R0 −G0),

Ψ44=−Ψ34 −ΨT
34 + σKTΩK, Ψ56= ρ̄R1,

Ψ66=−ρ̄(S1 +R1), Ψ77=−Ω

with H = µ2
MR0 + h2R1, ρA = eAr1 , ρM = e−2α(r1+µM ),

ρ̄ = e−2α(r1+τ̄3). Then the system (7), (15)–(17)with ŷ(t) =
Cx̂(t) is input-to-state stable with the decay rate α in the
sense of (14).

Proof is given in Appendix B.

Remark 3 Note that the event-triggering rules (5) and
(15) guarantee the Zeno behaviour avoidance (that is
limk ξk = ∞). For (5), this follows from the condition
limk sk = ∞ and the definition of ξk. The event-triggering
rule (15) explicitly guarantees that ξk+1 − ξk ≥ h > 0.

4 NCSs with a sensors-to-controller network

In this section, we consider a systems with a continuous
control and a sensor-to-controller network (see Fig. 4) with
sampling instants sk = kh, k ∈ N:

ẋ(t) = Ax(t) +Bu(t) + w1(t),

y(t) = Cx(sk) + w2(sk), t ∈ [sk, sk+1).
(20)

Fig. 4. NCS with a sensors-to-controller network

We use the observer (7) with r1 = 0. The change of variable
(8) for t ≥ 0 leads to

ż(t)=Az(t)+Bu(t+r0) + eA(r0+r1)w1(t),

˙̂z(t)=Aẑ(t)+Bu(t+r0)−e
A(r0+r1)L(y(t)−ŷ(t)).

(21)

As one can see from (21), the time delay r0 is compensated
by the predictors (8), therefore, one could intend to use
u(t) = Kẑ(t− r0). However, the value of ẑ(t− r0) cannot
be calculated by the controller for t ∈ [ξ∗k, ξk+1), where
ξ∗k = min{ξk, sk+1 + r0}, since it depends on y(sk+1) that
is not available to the controller. The latest value of ẑ that
can be calculated by the controller for t ∈ [ξ∗k, ξk+1) is
ẑ(sk + h) = ẑ(sk+1). Therefore, we take u(t) = ẑ(t − r0)
for t ∈ [ξk, ξ

∗
k) and u(t) = ẑ(sk+1) for t ∈ [ξ∗k, ξk+1) or,

equivalently, u(t) = 0 for t < ξ1 and

u(t) = Kẑ(t− r0 − η(t)), (22)

where

η(t) =

{

0, t ∈ [ξk, ξ
∗
k),

t− sk+1 − r0, t ∈ [ξ∗k, ξk+1).

Note that η(t) ≤ ηM . Using the time-delay approach de-
scribed in Section 2 and denoting δz(t) = z(t) − ẑ(t) for
t ∈ [sk, sk+1), we obtain

˙̂z(t) = Aẑ(t) +BKẑ(t− η(t))−Dδz(sk)

− eA(r0+r1)Lw2(sk),

δ̇z(t) = Aδz(t) +Dδz(sk) + eA(r0+r1)[w1(t)− Lw2(sk)],

where D = eA(r0+r1)LCe−A(r0+r1).

Theorem 3 For a given decay rate α > 0 let there exist
n×nmatrices P1 > 0, P2 > 0, n×n non-negative matrices
S, R, W , and n× n matrix G such that

N ≤ 0, [R G
∗ R ] ≥ 0,

where N = {Nij} is a symmetric matrix composed from

N11=P1A+ATP1+2αP1+S−ρMR,N12=N15=−P1D,

N13=P1BK + ρM (R−G), N14=ρMG,N16=ηMA
TR,

N22=P2(A+D) + (A+D)TP2 + 2αP2, N25=P2D,

N26=N56=−ηMD
TR, N27=he

αh(A+D)TW,

N34=ρM (R−G), N33=−N34−N
T
34, N36=ηM (BK)TR,

N44=−ρM (S +R), N55=−π2W/4, N56=−ηMD
TR,

N57=he
αhDTW, N66=−R, N77=−W
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r0 = 0.1, ηM = 0.005 r0 = ηM = 0
σ h SCS σ h SCS

Sampled predictor (10) 0 0.044 228 0 0.057 176
Sampled event-triggering (4), (5), (10) 0.01 0.039 147.7 0.01 0.052 124.6

Continuous predictor (17) — — — 0 0.088 114
Switching event-triggering (15), (17) — — — 0.01 0.088 97.6

Table 1
Average numbers of sent control signals (SCS) for different control strategies (r1 = 0.1, µM = 0.005, α = 0.001, ‖w1(t)‖ ≤ 10−3,
‖w2(t)‖ ≤ 10−3)

with ρM = e−2αηM . Then the system (7), (8), (20), (22)
is input-to-state stable with the decay rate α in the sense
of (14).

Proof is similar to that of Theorem 1 and, therefore, is
omitted here.

Remark 4 MATLAB codes for solving the LMIs of
Theorems 1–3 are available at https: // github. com/
AntonSelivanov/ Aut16

5 Example: an inverted pendulum on a cart

Consider an inverted pendulum on a moving cart [24] de-
scribed by (2) with

A =

[

0 1 0 0
0 0 −mg/M 0
0 0 0 1
0 0 g/l 0

]

, B =

[

0
1/M
0

−1/(Ml)

]

, C = [ 1 0 0 0
0 0 1 0 ]

and x(0) = [0.98, 0, 0.2, 0]T , where x1 is the cart’s position,
x2 is the cart’s speed, x3 is the pendulum’s bob angle with
respect to the vertical, x4 is its speed, M = 10 is the
cart mass, m = 1 is the pendulum mass, l = 3 is the
length of the pendulum arm, and g = 10 is the gravitational
acceleration. For

K = [ 2 12 378 210 ] , L =

[−11.7 1.2
−37 8.9
1.2 −11
7.9 −36

]

the matrices A+BK and A+ LC are Hurwitz. Below we
compare different control strategies proposed in this paper.

First, consider a system with two networks (sensors-to-
controller and controller-to-actuators). According to nu-
merical simulations, the system (6), (7) under the control
input ū(ξk) = Kx̂(sk) (without a predictor and event-
triggering) is not stable for r0 = r1 = 0.1, h = 0.035, and
ηM = µM = 0. If σ = 0 (no event-triggering), the condi-
tions of Theorem 1 are satisfied for the same h and larger
r0 = r1 = 0.17, ηM = µM = 0.005. That is, the predictor-
based controller (10) admits larger network delays.

For r0 = r1 = 0.1, ηM = µM = 0.005, α = 0.001, σ = 0
Theorem 1 gives the maximum sampling period h = 0.044.
This implies that, without event-triggering, within 10 sec-
onds of simulations ⌊10/h⌋ + 1 = 228 control signals are
sent in the system (6), (7) under the predictor-based con-
troller (10) (⌊·⌋ stands for the integer part). For the event-
triggered controller (4), (5), (10) with σ = 0.01 Theo-
rem 1 gives h = 0.039. To obtain the number of sent

control signals under the event-triggering, we perform 10
numerical simulations with random i.i.d. ηk and µk sat-
isfying (3) and w1(t), w2(t) satisfying ‖w1(t)‖ ≤ 10−3,
‖w2(t)‖ ≤ 10−3. The results are given in Table 1. As one
can see, event-triggering allows to reduce the workload
of the controller-to-actuators network by more than 35%.
Note that for event-triggered control (σ > 0) the sampling
period h is smaller than for periodic control. That is, by in-
troducing the event-triggering mechanism, we reduce the
number of sent control signals but increase the number of
sent measurements. However, the total number of signals
sent through both sensors-to-controller and controller-to-
actuators networks is reduced by more than 10%.

Now we consider a system with a controller-to-actuators
network and continuous measurements (r0 = ηM = 0). For
this case, one can apply the sampled predictor-based con-
troller (10) or the sampled event-triggered controller (4),
(5), (10) (with sk = ξk). The sampled approach simplifies
the calculation of the integral term in (8) but does not take
advantage of continuously available measurements. Indeed,
as one can see from Table 1, the continuous predictor (17)
without event-triggering (ξk = kh) reduces the network
workload compared to the sampled predictor (10) by more
than 35%.

To compare the sampled event-triggering mechanism (4),
(5), (10) and the switching event-triggering (15), (17) for
α = 0.001 and σ = 0.01 we apply Theorems 1 and 2 to
find the maximum allowable h. Then we perform 10 nu-
merical simulations with random i.i.d. µk subject to (3)
(r1 = 0.1, µM = 0.005). In Table 1 one can see that the
switching event-triggering reduces the number of sent con-
trol signals by more than 20% compared to the sampled
event-triggering and by almost 15% compared to the con-
tinuous predictor without event-triggering. The total num-
bers of sent measurements are reduced by 33% and 7%,
respectively.

Finally, consider the system (20) with only sensors-to-
controller network (sk = kh). For the continuous controller
(22) with the observer (7) Theorem 3 gives h = 0.124. For
the sampled controller (10) with the observer (7) Theo-
rem 1 gives h = 0.056. That is, by using the continuous
controller, one can significantly reduce the number of
required measurements y(kh).
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A Proof of Theorem 1

For t ≥ t1 consider the functional

V = V1 + V2 + VS0
+ VR0

+ VS + VS1
+ VR1

+ VW ,

where

V1 = ẑT (t)P1ẑ(t), V2 = δTz (t)P2δz(t),

VS0
=

∫ t

t−τ̄
e2α(s−t)ẑT (s)S0ẑ(s) ds,

VR0
= τ̄

∫ 0

−τ̄

∫ t

t+θ
e2α(s−t) ˙̂zT (s)R0

˙̂z(s) ds dθ,

VS =
∫ t−τ̄

t−r0−r1
e2α(s−t)ẑT (s)Sẑ(s) ds,

VS1
=

∫ t−r0−r1
t−τM

e2α(s−t)ẑT (s)S1ẑ(s) ds,

VR1
= (τM − r0 − r1)×
∫ −r0−r1
−τM

∫ t

t+θ
e2α(s−t) ˙̂zT (s)R1

˙̂z(s) ds dθ,

VW = h2e2αh
∫ t

sk
e2α(s−t)δ̇Tz (s)Wδ̇z(s) ds

−π2

4

∫ t

sk
e2α(s−t)vT (s)Wv(s) ds, t ∈ [sk, sk+1)

(A.1)

with v(t) = δz(sk) − δz(t) for t ∈ [sk, sk+1). Wirtinger-
based term VW is non-negative due to Lemma 1, therefore,
V is positive-definite. Due to VW , the functional V has
finite jumps at t = sk, but since VW = 0 for t = sk,
V (sk − 0) ≥ V (sk).

Jensen’s inequality [8] and Park’s theorem [20] lead to

V̇R0
+ 2αVR0

= τ̄2 ˙̂zT (t)R0
˙̂z(t)

−τ̄
∫ t

t−τ̄
e2α(s−t) ˙̂zT (s)R0

˙̂z(s) ds ≤ τ̄2 ˙̂zT (t)R0
˙̂z(t)

−e−2ατ̄
[

ẑ(t)−ẑ(t−τ0(t))
ẑ(t−τ0(t))−ẑ(t−τ̄)

]T[R0 G0

GT

0
R0

][

ẑ(t)−ẑ(t−τ0(t))
ẑ(t−τ0(t))−ẑ(t−τ̄)

]

,

(A.2)

V̇R1
+ 2αVR1

= (τM − r0 − r1)
2 ˙̂zT (t)R1

˙̂z(t)

−(τM − r0 − r1)
∫ t−r0−r1
t−τM

e2α(s−t) ˙̂zT (s)R1
˙̂z(s) ds

≤ (τM − r0 − r1)
2 ˙̂zT (t)R1

˙̂z(t)− e−2ατM×
[

ẑ(t−r0−r1)−ẑ(t−τ1(t))
ẑ(t−τ1(t))−ẑ(t−τ2(t))
ẑ(t−τ2(t))−ẑ(t−τM )

]T[
R1 G1 G2

∗ R1 G3

∗ ∗ R1

][

ẑ(t−r0−r1)−ẑ(t−τ1(t))
ẑ(t−τ1(t))−ẑ(t−τ2(t))
ẑ(t−τ2(t))−ẑ(t−τM )

]

.

(A.3)

By calculating V̇ and adding (12), in view of (A.2), (A.3),
we obtain

V̇ + 2αV − β ≤ ϕT (t)Φϕ(t) + ϕT (t)Ψψ(t)

+ ˙̂zT (t)H ˙̂z + e2αhh2δ̇Tz (t)Wδ̇z(t)− β,
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where ϕ(t) = col{ẑ(t), ẑ(t − τ0(t)), ẑ(t − τ̄), ẑ(t − r0 −
r1), ẑ(t − τ1(t)), ẑ(t − τ2(t)), ẑ(t − τM ), δz(t), v(t), e(t)},
ψ(t) = col{eA(r0+r1)w1(t), e

A(r0+r1)Lw2(sk)}, Φ is ob-
tained from Φ by taking away the last two block-columns
and block-rows, and Ψ is (9n+m)× 2n matrix. By taking

β=βw sup
s∈[0,t]

|eA(r0+r1)w1(t)|
2+βw sup

s∈[0,t]

|eA(r0+r1)Lw2(t)|
2,

substituting ˙̂z(t), δ̇z(t) and applying Schur’s complement
formula, we obtain that if

[

Φ Ψ′

∗ −βwI2n

]

≤ 0, (A.4)

where Ψ′ is (11n + m) × 2n matrix, then V̇ (t) ≤
−2αV (t) + β. Since Φ < 0, the relation (A.4) is true for
large enough βw. Therefore,

V (t) ≤ e−2α(t−t1)V (t1) +
β

2α
, t ≥ t1.

Since z(t) = ẑ(t) + δz(t) and the initial time interval does
not influence exponential decay rate analysis [16], the latter
implies

|ẑ(t)| ≤ C1(e
−αt|z(0)|+ sup

s∈[0,t]

|w(t)|),

|z(t)| ≤ C1(e
−αt|z(0)|+ sup

s∈[0,t]

|w(t)|),
t ≥ 0

for some C1 > 0. From (8), we have

x(t) = e−A(r0+r1)z(t)

−
∫ t+r0
t−r1

eA(t−r1−θ)BKẑ(θ − r0 − τ0(θ − r0)) dθ, t ≥ 0,

therefore, there exists C2 > 0 such that

|x(t)| ≤ C2(e
−αt|z(0)|+ sup

s∈[0,t]

|w(t)|)

≤ C2e
−αt

∥

∥

∥
eA(r0+r1)

∥

∥

∥
|x(0)|+ C2 sup

s∈[0,t]

|w(t)|.

Similarly, |x̂(t)| ≤Me−αt|x(0)|+M sups∈[0,t] |w(t)|.

B Proof of Theorem 2

For t ≥ ξ1 consider the functional

V = V1 + V2 + VS + VS0
+ VR0

+ VS1
+ VR1

,

where V1, V2 are given in (A.1) and

VS =
∫ t

t−r1
e2α(s−t)ẑT (s)Sẑ(s) ds,

VS0
=

∫ t−r1
t−r1−µM

e2α(s−t)ẑT (s)S0ẑ(s) ds,

VR0
= µM

∫ −r1
−r1−µM

∫ t

t+θ
e2α(s−t) ˙̂zT (s)R0

˙̂z(s) ds dθ,

VS1
=

∫ t−r1−µM

t−r1−τ̄3
e2α(s−t)ẑT (s)S1ẑ(s) ds,

VR1
= (τ̄3 − µM )×
∫ −r1−µM

−r1−τ̄3

∫ t

t+θ
e2α(s−t) ˙̂zT (s)R1

˙̂z(s) ds dθ.

We have

V̇R0
+ 2αVR0

= µ2
M

˙̂zT (t)R0
˙̂z(t)

−µM

∫ t−r1
t−r1−µM

e2α(s−t) ˙̂zT (s)R0
˙̂z(s) ds,

V̇R1
+ 2αVR1

= h2 ˙̂zT (t)R1
˙̂z(t)

−h
∫ t−r1−µM

t−r1−τ̄3
e2α(s−t) ˙̂zT (s)R1

˙̂z(s) ds.

For t ∈ [tk, t
∗
k), τ3(t) ∈ [µM , τ̄3] Jensen’s inequality and

Park’s theorem imply

−µM

∫ t−r1
t−r1−µM

e2α(s−t) ˙̂zT (s)R0
˙̂z(s) ds≤−e−2α(r1+µM )×

[ẑ(t−r1)−ẑ(t−r1−µM )]TR0[ẑ(t−r1)−ẑ(t−r1−µM )],

(B.1)

−h
∫ t−r1−µM

t−r1−τ̄3
e2α(s−t) ˙̂zT (s)R1

˙̂z(s) ds ≤ −e−2α(r1+τ̄3)×
[

ẑ(t−r1−µM )−ẑ(t−r1−τ3(t))
ẑ(t−r1−τ3(t))−ẑ(t−r1−τ̄3)

]T[R1 G1

GT

1
R1

][

ẑ(t−r1−µM )−ẑ(t−r1−τ3(t))
ẑ(t−r1−τ3(t))−ẑ(t−r1−τ̄3)

]

.

(B.2)

Calculating V̇ for t ∈ [tk, t
∗
k), τ3(t) ∈ [µM , τ̄3] in view of

(B.1), (B.2), we obtain

V̇ +2αV −β ≤ ξT (t)Ξξ(t)+ξT (t)ΦφT (t)+ ˙̂zT (t)H ˙̂z(t)−β,

where ξ(t) = col{δz(t), ẑ(t), ẑ(t− r1), ẑ(t− r1−µM ), ẑ(t−
r1 − τ3(t)), ẑ(t − r1 − τ̄3)}, φ(t) = col{eA(r0+r1)w1(t),
eA(r0+r1)Lw2(sk)}, Ξ is obtained from Ξ by taking away
the last block-column and block-row, and Φ is 6n × 2n
matrix. By taking

β=βw sup
s∈[0,t]

|eA(r0+r1)w1(t)|
2+βw sup

s∈[0,t]

|eA(r0+r1)Lw2(t)|
2,

substituting ˙̂z(t) and applying Schur’s complement for-
mula, we obtain that if

[

Ξ Φ′

∗ −βwI2n

]

≤ 0, (B.3)

where Φ′ is 7n × 2n matrix, then V̇ (t) ≤ −2αV (t) + β.
Since Ξ < 0, the relation (B.3) is true for large enough

βw. Therefore, V̇ (t) ≤ −2αV (t)+ β for t ∈ [tk, t
∗
k), τ3(t) ∈

[µM , τ̄ ].

For t ∈ [t∗k, tk+1) Jensen’s inequality and Park’s theorem
imply

−µM

∫ t−r1
t−r1−µM

e2α(s−t) ˙̂zT (s)R0
˙̂z(s) ds≤−e−2α(r1+µM )×

[

ẑ(t−r1)−ẑ(t−r1−µ(t))
ẑ(t−r1−µ(t))−ẑ(t−r1−µM )

]T[R0 G0

GT

0
R0

][

ẑ(t−r1)−ẑ(t−r1−µ(t))
ẑ(t−r1−µ(t))−ẑ(t−r1−µM )

]

,

(B.4)

−h
∫ t−r1−µM

t−r1−τ̄3
e2α(s−t) ˙̂zT (s)R1

˙̂z(s) ds ≤ −e−2α(r1+τ̄3)×

[ẑ(t−r1−µM )−ẑ(t−r1−τ̄3)]
TR1[ẑ(t−r1−µM )−ẑ(t−r1−τ̄3)].

(B.5)

Calculating V̇ for t ∈ [t∗k, tk+1) in view of (B.4), (B.5) and
adding (18), we obtain

V̇ +2αV −β ≤ ψT (t)Ψψ(t)+ψT (t)Φφ(t)+ ˙̂zT (t)H ˙̂z(t)−β,

where ψ(t) = col{δz(t), ẑ(t), ẑ(t−r1), ẑ(t−r1−µ(t)), ẑ(t−
r1 − µM ), ẑ(t − r1 − τ̄), e1(t)}, Ψ is obtained from Ψ by
taking away the last block-column and block-row, and Φ
is (6n+m)× 2n matrix. Similarly to the previous case, we

obtain V̇ (t) ≤ −2αV (t) + β for t ∈ [t∗k, tk+1).
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For t ∈ [tk, t
∗
k), τ3(t) ∈ [0, µM ) the system (19) is described

by the last line of (19) with e1(t) = 0 satisfying (18), there-

fore, V̇ ≤ −2αV + β for t ≥ ξ1. The end of the proof is
similar to that of Theorem 1.
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