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Robust sampled-data implementation of PID controller

Anton Selivanov and Emilia Fridman

Abstract— We study a sampled-data implementation of the
PID controller. Since the derivative is hard to measure directly,
it is approximated using a finite difference giving rise to a
delayed sampled-data controller. We suggest a novel method for
the analysis of the resulting closed-loop system that allows to use
only the last two measurements, while the existing results used
a history of measurements. This method also leads to essentially
larger sampling period. We show that, if the sampling period is
small enough, then the performance of the closed-loop system
under the sampled-data PID controller is preserved close to the
one under the continuous-time PID controller. The maximum
sampling period is obtained from LMIs derived using an
appropriate Lyapunov-Krasovskii functional. These LMIs allow
to consider systems with uncertain parameters. Finally, we
develop an event-triggering mechanism that allows to reduce
the amount of sampled control signals used for stabilization.

I. INTRODUCTION

Proportional integral derivative (PID) controllers are ex-

tremely popular in the control engineering practice. These

controllers depend on the output derivative that can hardly be

measured in practice. Instead, the derivative can be approxi-

mated using the finite difference ẏ ≈ (y(t)−y(t−τ))/τ . This

gives rise to a time-delayed controller, which was studied,

e.g., in [1], [2] using the frequency domain approach.

In this paper, we study the sampled-data implementation of

PID. This problem has been recently considered in [3]. One

of the ideas (originated in [4], [5]) was to use the Taylor’s

expansion for the delayed term with the remainder in the

integral form. The remainder is then compensated by an

appropriate Lyapunov-Krasovskii term. The data sampling

was studied using the time-delay approach [6].

Here, we significantly improve the results of [3]. The key

novelty is that the sampling error is calculated for the deriva-

tive approximation, while in [3] it was calculated for the

delayed measurement. This idea allows to write the stability

conditions in terms of the controller gains used in the original

continuous PID, while [3] used the sampling-dependent

gains obtained after substituting the approximation into the

continuous PID (see Remark 3). One of the consequences is

that the sampled-data implementation of PID requires to use

only the last two measurements, while [3] used a history of

measurement whose length was increasing for a decreasing

sampling period. Moreover, we obtain significantly larger

sampling periods compared to [3] (see Example 1). The

stability conditions are formulated in terms of LMIs that are

affine with respect to the system parameters. This allows to

use them to study systems with uncertain parameters.
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Finally, we develop an event-triggering mechanism that

allows to reduce the amount of sampled control signals

used for stabilization [7], [8]. Some of the ideas presented

here have been generalized in [9] to study time-delayed and

sampled-data implementation of control depending on high-

order output derivatives.

The analysis will employ the following inequalities.

Lemma 1 (Exponential Wirtinger’s inequality [10]): Let

f : [a, b] → R
n be an absolutely continuous function with a

square integrable first order derivative such that f(a) = 0
or f(b) = 0. Then, for any α ∈ R and 0 ≤W ∈ R

n×n,

∫ b

a

e2αtfT (t)Wf(t) dt

≤ e2|α|(b−a) 4(b− a)2

π2

∫ b

a

e2αtḟT (t)Wḟ(t) dt

Lemma 2 (Jensen’s inequality [11]): If f : [a, b] → R

and ρ : [a, b] → [0,∞) are such that the integration con-

cerned is well-defined, then
[

∫ b

a

ρ(s)f(s) ds

]2

≤

∫ b

a

ρ(s) ds

∫ b

a

ρ(s)f2(s) ds.

II. SAMPLED-DATA PID CONTROL

Consider the scalar system

ÿ(t) + a1ẏ(t) + a2y(t) = bu(t) (1)

and the PID controller

u(t) = k̄py(t) + k̄i

∫ t

0

y(s) ds+ k̄dẏ(t). (2)

The controller (2) depends on the output derivative, which

is hard to measure directly. Instead, the derivative can be

approximated by the finite-difference

ẏ(t) ≈ y1(t) =
y(t)− y(t− h)

h
, h > 0. (3)

This approximation leads to the delay-dependent control

u(t) = k̄py(t) + k̄i

∫ t

0

y(s) ds+ k̄dy1(t)

= kpy(t) + ki

∫ t

0

y(s) ds+ kdy(t− h),

(4)

where1 y(t) = y(0) for t < 0 and

kp = k̄p +
k̄d
h
, ki = k̄i, kd = −

k̄d
h
. (5)

1Then ẏ(t) with t ∈ [0, h) is approximated by 0



We study the sampled-data implementation of the controller

(4) that is obtained using the approximations

∫ t

0

y(s) ds ≈

∫ tk

0

y(s) ds ≈ h

k−1
∑

j=0

y(tj),

ẏ(t) ≈ ẏ(tk) ≈ y1(tk) =
y(tk)− y(tk−1)

h
,

t ∈ [tk, tk+1),

where h > 0 is the sampling period, tk = kh, k ∈ N0,

are the sampling instants, and y(t−1) = y(t0). Substituting

these approximations into (2), we obtain the sampled-data

controller

u(t) = k̄py(tk) + k̄ih

k−1
∑

j=0

y(tj) + k̄dy1(tk)

= kpy(tk) + kih

k−1
∑

j=0

y(tj) + kdy(tk−1),

t ∈ [tk, tk+1), k ∈ N0

(6)

with kp, ki, and kd defined in (5).

We will show that the sampled-data controller (6) stabi-

lizes the system (1) if (2) stabilizes (1) and the sampling

period h > 0 is small enough. Moreover, we will derive

LMIs that allow to find appropriate h.

First, we present the estimation error ẏ(t) − y1(t) in a

convenient integral form.

Lemma 3: If y ∈ C1 and ẏ is absolutely continuous, then

y1 defined in (3) satisfies

y1(t) = ẏ(t) + κ(t), κ =

∫ t

t−h

t− h− s

h
ÿ(s) ds. (7)

Proof: Taylor’s expansion with the remainder in the

integral form gives

y(t− h) = y(t)− ẏ(t)h−

∫ t

t−h

(t− h− s)ÿ(s) ds.

Reorganizing the terms, we obtain

y1(t) =
y(t)− y(t− h)

h
= ẏ(t) +

∫ t

t−h

t− h− s

h
ÿ(s)ds.

To study the stability of (1) under the sampled-data PID

control (6), we rewrite the closed-loop system in the state

space. Let

x(t) =





x1(t)
x2(t)
x3(t)



 =





y(t)
ẏ(t)

(t− tk)y(tk) + h
∑k−1

j=0 y(tj)





for t ∈ [tk, tk+1). Introduce the errors due to sampling

v(t) = x(tk)− x(t),

δ(t) = y1(tk)− y1(t),
t ∈ [tk, tk+1), k ∈ N0.

Using these representations and (7) in (6), we obtain

u(t) = k̄px1(tk) + k̄ix3(tk) + k̄dy1(tk)

= [k̄p, k̄d, k̄i]x+ [k̄p, 0, k̄i]v + k̄d (κ+ δ) .
(8)

Then the system (1) under the sampled-data PID control (8)

can be presented as

ẋ = Ax+Avv +B (κ+ δ) ,

y = Cx,
(9)

where

A =





0 1 0
−a2 + bk̄p −a1 + bk̄d bk̄i

1 0 0



 ,

Av =





0 0 0
bk̄p 0 bk̄i
1 0 0



 , B =





0
bk̄d
0



 , C =
[

1 0 0
]

.

(10)

Theorem 1: Consider the system (1).

(i) For given sampling period h > 0, controller gains k̄p,

k̄i, k̄d, and decay rate α > 0, let there exist positive-

definite matrices P, S ∈ R
3×3 and nonnegative scalars

W , R such that2 Ψ ≤ 0, where Ψ = {Ψij} is the

symmetric matrix composed from

Ψ11 = PA+ATP + 2αP, Ψ12 = PAv,

Ψ13 = Ψ14 = PB, Ψ15 = ATG, Ψ22 = −π2

4 S,
Ψ25 = AT

vG, Ψ35 = Ψ45 = BTG,

Ψ33 = −W π2

4 e
−2αh, Ψ44 = −Re−2αh, Ψ55 = −G,

G = h2e2αhS + h2
[

0 0 0
0 1 0
0 0 0

]

( 14R+ e2αhW )

with A, Av , B, and C given in (10). Then, the sampled-

data PID controller (6) exponentially stabilizes the sys-

tem (1) with the decay rate α.

(ii) Let there exist k̄p, k̄i, k̄d such that the PID controller (2)

exponentially stabilizes the system (1) with a decay rate

α′. Then, the sampled-data PID controller (6) with kp,

ki, kd given by (5) exponentially stabilizes the system

(1) with any given decay rate α < α′ if the sampling

period h > 0 is small enough.

Proof: (i) Consider the functional

V = V0 + Vv + Vδ + Vy + Vκ (11)

with

V0 =xTPx,

Vv =h2e2αh
∫ t

tk

e−2α(t−s)ẋT (s)Sẋ(s) ds

−
π2

4

∫ t

tk

e−2α(t−s)vT (s)Sv(s) ds,

Vδ =Wh2
∫ t

tk

e−2α(t−s)ẏ21(s) ds

−W
π2

4
e−2αh

∫ t

tk

e−2α(t−s)δ2(s)ds,

Vy =Wh2e2αh
∫ t

t−h

e−2α(t−s) s− t+ h

h
ÿ2(s) ds,

Vκ =R

∫ t

t−h

e−2α(t−s) (s− t+ h)2

4
ÿ2(s) ds.

2MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/CDC18a

https://github.com/AntonSelivanov/CDC18a


Wirtinger’s inequality (Lemma 1) implies Vv ≥ 0 and

Vδ ≥ 0. Using the representation (9), we obtain

V̇0 + 2αV0 = 2xTP [Ax+Avv +B(κ+ δ)]+2αxTPx,

V̇v + 2αVv = h2e2αhẋTSẋ−
π2

4
vTSv,

V̇δ + 2αVδ =Wh2ẏ21 −W
π2

4
e−2αhδ2.

Using Jensen’s inequality (Lemma 2) with ρ ≡ 1, we get

V̇y + 2αVy =Wh2e2αhÿ2−Whe2αh
∫ t

t−h

e−2α(t−s)ÿ2(s) ds

≤Wh2e2αhÿ2 −W

[
∫ t

t−h

ÿ(s) ds

]2

.

Differentiating (7), we obtain

ẏ1 =

∫ t

t−h

ÿ(s)

h
ds.

Therefore,

V̇y + 2αVy ≤Wh2e2αhÿ2 −Wh2ẏ21 .

Using Jensen’s inequality (Lemma 2) with ρ(s) = s− t+h,

we obtain

V̇κ + 2αVκ =R
h2

4
ÿ2 −R

∫ t

t−h

e−2α(t−s) s− t+ h

2
ÿ2(s) ds

≤R
h2

4
ÿ2 −Re−2αhκ2.

Summing up, we have

V̇ + 2αV ≤ ψT Ψ̄ψ + ẋTGẋ,

where ψ = col{x, v, δ, κ} and Ψ̄ is obtained from Ψ by

removing the last two block-columns and block-rows. Substi-

tuting (9) for ẋ and applying the Schur complement, we find

that Ψ ≤ 0 guarantees V̇ ≤ −2αV . Since V (tk) ≤ V (t−k ),
the latter implies exponential stability of the system (9) and,

therefore, of (1), (6).

(ii) The closed-loop system (1), (2) is equivalent to ẋ =
Ax. Since (1), (2) is exponentially stable with the decay rate

α′, there exists P > 0 such that PA + ATP + 2αP < 0
for any α < α′. Choose S = 1

h
I2, R = 1

h
, and W = 1

h
.

Applying the Schur complement to Ψ ≤ 0, we obtain

PA+ATP + 2αP + hF (e−2αh) < 0.

The latter holds for small h > 0. Thus, (i) guarantees (ii).

Remark 1: Since the LMIs of Theorem 1 are affine in a1,

a2, and b, they can be used to study uncertain systems of

the form (1) with a1 ∈ [a1, ā1], a2 ∈ [a2, ā2], and b ∈ [b, b̄].
In this case, one needs to solve the LMIs of Theorem 1 for

each combination of (a1, a2, b) with a1 ∈ {a1, ā1}, a2 ∈
{a2, ā2}, b ∈ {b, b̄} applying the same decision variables.

Using the descriptor approach [6], the LMIs of Theorem 1

can be modified to cope with system uncertainties better.

In Example 2 considered below this leads to insignificant

improvements (h = 0.023 using Theorem 1 as it is and h =
0.024 using Theorem 1 with a descriptor).

Remark 2: Using the ideas of [3], the results of this paper

can be easily extended to the vector systems

ÿ(t) +A1ẏ(t) +A2y(t) = Bu(t)

under the sampled-data PID control

u(t) = K̄py(tk) + K̄ih

k−1
∑

j=0

y(tj) + K̄dy1(tk), t ∈ [tk, tk+1),

where y ∈ R
l, u ∈ R

m and A1, A2, B, K̄p, K̄i, K̄d are

matrices of appropriate dimensions.

Remark 3: In [3], the system (1) was studied under the

sampled-data feedback (cf. (6))

u(t) = kpy(tk) + kih

k−1
∑

j=0

y(tj) + kdy(tk−q),

t ∈ [tk, tk+1), k ∈ N0, (12)

where q is an integer delay. In the analysis, the errors due to

sampling y(tk)−y(t) and y(tk−q)−y(t−qh) were multiplied

by kp = k̄p + k̄d/(qh) and kd = −k̄d/(qh) that grow when

qh→ 0. Consequently, one had to increase the discrete delay

q while reducing the sampling period h to maintain kp and

kd bounded. Here, the errors due to sampling are multiplied

by k̄p and k̄d that do not depend on h (see v and δ in (8)).

This allows to use q = 1 and, therefore, smaller memory is

required to implement (6) (see Example 1).

III. EVENT-TRIGGERED PID CONTROL

We introduce the event-triggering mechanism to reduce

the amount of transmitted control signals [7], [8]. Namely,

we consider the system

ÿ(t) + a1ẏ(t) + a2y(t) = bûk, t ∈ [tk, tk+1), k ∈ N0,
(13)

where ûk is the event-triggered control: û0 = u(t0),

ûk =

{

u(tk), if (15) is true,
ûk−1, if (15) is false

(14)

with u(t) from (6) and the event-triggering condition

(u(tk)− ûk−1)
2 > σu2(tk). (15)

Here, σ ∈ [0, 1) is the event-triggering threshold.

Remark 4: We consider the event-triggering mechanism

with respect to the control signal, since the event-triggering

with respect to the measurements ŷk = y(tk) + ek leads to

an accumulating error in the integral term:

∫ tk

0

y(s) ds ≈ h

k−1
∑

j=0

ŷj = h

k−1
∑

j=0

y(tj) + h

k−1
∑

j=0

ej .

Theorem 2: Consider the system (13).

(i) For given sampling period h > 0, controller gains k̄p,

k̄i, k̄d, event-triggering threshold σ ∈ [0, 1), and decay

rate α > 0, let there exist positive-definite matrices



P, S ∈ R
3×3 and nonnegative scalars W , R, ω such

that3 Φ ≤ 0, where

Φ =





















PBk̄−1
d Φ17

0 Φ27

Ψ 0 σωk̄d
0 σωk̄d

GBk̄−1
d 0

∗ ∗ ∗ ∗ ∗ −ω 0
∗ ∗ ∗ ∗ ∗ 0 −σω





















,

Φ17 = σω





k̄p
k̄d
k̄i



 , Φ27 = σω





k̄p
0
k̄i





with A, Av , B, and C given in (10). Then, the event-

triggered PID controller (6), (14), (15) exponentially

stabilizes the system (13) with the decay rate α.

(ii) Let there exist k̄p, k̄i, k̄d such that the PID controller (2)

exponentially stabilizes the system (1) with a decay rate

α′. Then, the event-triggered PID controller (6), (14),

(15) exponentially stabilizes the system (13) with any

given decay rate α < α′ if the sampling period h > 0
and the event-triggering threshold σ are small enough.

Proof: Introduce the event-triggering error e = ûk −
u(tk) for t ∈ [tk, tk+1). Then (13) under the event-triggered

PID control (6), (14), (15) can be presented as

ẋ = Ax+Avv +B(κ+ δ + k̄−1
d e),

y = Cx,
(16)

for t ∈ [tk, tk+1), k ∈ N0, with A, Av , B, and C defined

in (10). Consider the functional (11). For ω ≥ 0, the event-

triggering rule (14), (15) guarantees

0 ≤ ωσu2(tk)− ωe2.

Thus, we have

V̇ + 2αV ≤ V̇ + 2αV + [ωσu2(tk)− ωe2]
≤ ϕT Φ̄ϕ+ ẋTGẋ+ ωσu2(tk),

where ϕ = col{x, v, δ, κ, e} and Φ̄ is obtained from Φ by

removing the blocks Φij with i ∈ {5, 7} or j ∈ {5, 7}.

Substituting (16) for ẋ and (8) for u(tk) and applying the

Schur complement lemma, we find that Φ ≤ 0 guarantees

V̇ ≤ −2αV . The remainer of the proof is similar to that of

Theorem 1.

Remark 5: The results of Theorem 2 can be applied to

uncertain systems in a manner similar to Remark 1.

IV. NUMERICAL EXAMPLES

Example 1: Following [2], [3], we consider (1) with a1 =
8.4, a2 = 0, b = 35.71. The system is not asymptotically

stable if u = 0. The PID controller (2) with k̄p = −10, k̄i =
−40, k̄d = −0.65 exponentially stabilizes (1). Let α = 5 be

the desired decay rate. The LMIs of Theorem 1 are feasible

for h = 0.019, which is larger than h = 4.7×10−3 obtained

in [3]. This leads to the controller gains kp ≈ −44.21, ki =
−40, and kd ≈ 34.21 calculated using (5). Moreover, [3]

3MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/CDC18a

Fig. 1. Example 1: system (1) under continuous-time control (2) (black
solid line), sampled-data control (6) (blue dashed line), event-triggered
control (14) (red dotted line).

Fig. 2. Example 2: system (1) under continuous-time control (2) (black
solid line), sampled-data control (6) (blue dashed line), event-triggered
control (14) (red dotted line).

considered (12) with q = 7. In our case, q = 1, which leads

to a smaller memory used in the implementation.

Consider now the system (13) with the same parameters.

The LMIs of Theorem 2 are feasible for h = 0.016, σ =
0.02, implying that the event-triggered PID controller (6),

(14), (15) stabilizes the system (13). Sampled-data control

(6) requires to transmit ⌊10/h⌋ + 1 = 527 control signals

during 10 seconds of simulations. The event-triggered control

requires to transmit on average 325.9 control signals. This

value was found performing numerical simulations for 10
randomly chosen initial conditions satisfying ‖x(0)‖∞ ≤ 1.

Thus, the even-triggering mechanism reduces the amount of

transmitted control signals by almost 40%. However, due

to a smaller sampling period, it requires to transmit more

measurements. Nevertheless, the total amount of transmitted

signals is reduced by almost 10%. Fig. 1 shows y(t) for

various types of control.

Example 2: Following [12], we consider (1) with

a1 ∈ [0.01248, 9.251], a2 ∈ [5.862, 22.19],
b ∈ [0.03707, 0.04612].

The PID controller (2) with

k̄p = −516.6, k̄i = −143.8, k̄d = −765.5

stabilizes the system (1). The LMIs of Theorem 1 are feasible

for α = 0.1, h = 0.023 implying that the sampled-data

https://github.com/AntonSelivanov/CDC18a


controller (6) with kp ≈ −3.38 × 104, ki = −143.8,

kd ≈ 3.33 × 104 exponentially stabilizes the system (1)

with the decay rate α = 0.1. The LMIs of Theorem 2

are feasible for α = 0.1, h = 0.016, σ = 0.1. Thus,

the system (13) is exponentially stable under the event-

triggered control (6), (14), (15). Sampled-data control (6)

requires to transmit ⌊20/h⌋ + 1 = 870 control signals

during 20 seconds of simulations. The event-triggered control

requires to transmit on average 103.1 control signals. This

value was found performing numerical simulations for a1 =
2.674, a2 = 10.97, b = 0.04107 and 10 randomly chosen

initial conditions satisfying ‖x(0)‖∞ ≤ 1. Thus, the even-

triggering mechanism reduces the amount of transmitted

control signals by more than 88%. The total amount of

transmitted signals is reduced by more than 20%. Fig. 2

shows y(t) for various types of control.

V. CONCLUSION

PID controllers are widely used in the industry. For

practical application, their sampled-data implementation is

important. This paper provides an efficient method for such

implementation. The results are formulated in terms of

simple LMIs and are applicable to uncertain systems.
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