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Boundary observers for a reaction-diffusion system

under time-delayed and sampled-data measurements
Anton Selivanov and Emilia Fridman, Senior Member, IEEE

Abstract—We construct finite-dimensional observers for a 1D
reaction-diffusion system with boundary measurements subject
to time-delays and data sampling. The system has a finite
number of unstable modes approximated by a Luenberger-type
observer. The remaining modes vanish exponentially. For a given
reaction coefficient, we show how many modes one should use to
achieve a desired rate of convergence. The finite-dimensional part
is analyzed using appropriate Lyapunov–Krasovskii functionals
that lead to LMI-based convergence conditions feasible for small
enough time-delay and sampling period. The LMIs can be used
to find appropriate injection gains.

I. INTRODUCTION

Time-delays and data sampling are inevitable in practice

due to finite speed of signal processing/transmission and

digital nature of most controllers. Since the delay may lead to

instability in the reaction-diffusion systems (see the examples

in [1] and in Section IV below), these phenomena should be

carefully studied.

Reaction-diffusion systems with various types of in-domain

measurements/actuators subject to time-delays and sampling

have been considered in [1]–[3]. These papers proposed

observers/controllers that work if the delay, sampling pe-

riod, and the distances between adjacent sensors/actuators are

small enough. That is, the system should have enough high-

frequency sensors/actuators.

The case of only one boundary sensor/actuator is more

difficult to study. For diffusion-reaction systems, boundary

controllers can be constructed using the backstepping approach

[4], [5] or modal decomposition technique [6]–[9]. It has been

shown in [10] that both approaches are robust to data sampling.

In [11], modal decomposition technique was combined with

a predictor to compensate a constant delay in the boundary

controller. Robustness to small delays of general linear PDEs

was studied in [12].

In this paper, we construct finite-dimensional observers for

a 1D reaction-diffusion system with boundary measurements

subject to time-delays and data sampling. Due to diffusion,

there is a finite number of unstable modes, which we approx-

imate by a Luenberger-type observer. The remaining modes

vanish exponentially. For a given reaction coefficient, we show

how many modes one should use to achieve a desired rate

of convergence. Similar constructions have been proposed in

[13], where a “lifting” technique and singular perturbation
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theory were used to obtain qualitative results. To obtain quanti-

tative conditions, we use Lyapunov-Krasovskii functionals that

lead to LMIs, which are feasible for small enough delay and

sampling period and allow to find admissible upper bounds of

these quantities.

Lemma 1 (Cauchy-Schwarz inequality): For f ∈ L2(0, 1),

(
∫ 1

0

f(x) dx

)2

≤
∫ 1

0

(f(x))
2
dx. (1)

Lemma 2 (Wirtinger inequality [14]): If f ∈H1(a, b) is such

that f(a) = 0 or f(b) = 0 then

‖f‖L2 ≤ 2(b− a)

π
‖f ′‖L2 . (2)

II. TIME-DELAYED BOUNDARY MEASUREMENTS

Consider the reaction-diffusion system

zt(x, t) = zxx(x, t) + az(x, t), (3a)

zx(0, t) = z(1, t) = 0, (3b)

z(x, 0) = z0(x) (3c)

with the state z : [0, 1]× [0,∞) → R, reaction coefficient a ∈
R, and initial function z0 : [0, 1] → R.

In this section, we construct an observer for the system (3)

under the time-delayed boundary measurements

y(t) =

{

z(0, t− τ(t)), t− τ(t) ≥ 0,

0, t− τ(t) < 0,
(4)

where τ(t) ∈ [τm, τM ] ⊂ (0,∞) is a known delay such that

∃ t∗ ∈ [τm, τM ] :

{

t− τ(t) ≥ 0, t ≥ t∗,

t− τ(t) < 0, t < t∗.
(5)

The condition 0 < τm ≤ τ(t) allows to use the step method

for the well-posedness analysis (see Lemma 3). We perform

robustness analysis with respect to the time delay, that is, the

observer will converge to the system state for any τ(t) ≤ τM
with a small enough τM . Following [15], we require (5) to

simplify the analysis on the interval where t− τ(t) < 0.

Remark 1: The results of this paper can be extended to a

more general system

∂z
∂t
(x, t) = ∂

∂x

(

p(x) ∂
∂x
z(x, t)

)

+ q(x)z(x, t),

a1z(0, t) + a2zx(0, t) = 0,

b1z(1, t) + b2zx(1, t) = 0,

(6)

where p ∈ C1([0, 1]; (0,∞)), q ∈ C([0, 1];R), a2 6= 0, |b1|+
|b2| 6= 0. We consider the simplified system (3) to avoid some

technical details.
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A strong solution of (3) is a function

z ∈ L2((0,∞);H2(0, 1)) ∩ C([0,∞);H1(0, 1)),
zt ∈ L2((0,∞);L2(0, 1))

(7)

that satisfies (3c) for t = 0 and (3a), (3b) for almost all t > 0.

By [16, Theorem 7.7], (3) has a unique strong solution for

z0 ∈ H1(0, 1) s.t. z0(1) = 0. (8)

To construct a finite-dimensional observer, note that (3) has

a finite number of unstable modes, while the remaining modes

converge to zero. Namely, the system (3) can be presented as

dz

dt
+Az = 0, z(0) = z0, (9)

where z : [0,∞) → L2(0, 1) and

A : D(A) ⊂ L2(0, 1) → L2(0, 1),
Aw = −w′′ − aw

(10)

is a symmetric operator with the domain

D(A) = {w ∈ H2(0, 1) |w′(0) = w(1) = 0} (11)

dense in L2(0, 1). The eigenfunctions of A, given by

φn(x) =
√
2 cos

(

x
√
λn + a

)

,

λn = (2n−1)2π2

4 − a,
n ∈ N, (12)

form an orthonormal basis in L2(0, 1) [16, Corollary 3.26].

Thus, the solution of (3) can be presented as

z(·, t) = ∑∞

n=1 zn(t)φn(·) (13)

with zn(t) = 〈z(·, t), φn〉. Using the symmetry of A,

żn(t) = 〈zt(·, t), φn〉
(9)
= −〈Az(·, t), φn〉

= −〈z(·, t),Aφn〉 = −λn〈z(·, t), φn〉 = −λnzn(t). (14)

That is,

żn(t) = −λnzn(t), n ∈ N. (15)

Let δ > 0 be a desired decay rate of the observer estimation

error. Since limn→∞ λn = +∞, there exists N ∈ N such that

−λn ≤ −δ, ∀n > N. (16)

We will show that (16) implies the exponential convergence

of
∑

n>N zn(t)φn(·) with the decay rate δ. Thus, it can be

approximated by zero. The term
∑N

n=1zn(t)φn(·) is approxi-

mated using the Luenberger-type observer

ẑ(x, t) =
∑N

n=1 ẑn(t)φn(x), (17a)

d
dt
ẑn(t) = −λnẑn(t)− ln[ẑ(0, t− τ(t))− y(t)], (17b)

ẑn(t) = 0, t ≤ 0, n = 1, . . . , N (17c)

with the injection gains l1, . . . , lN ∈ R.

Remark 2: Our results can be easily extended to arbitrary

initial conditions ẑn(t) = z0n, n = 1, . . . , N . We consider

(17c) to avoid some technical details.

Introduce the estimation error

e(x, t) = ẑ(x, t)− z(x, t). (18)

If e(·, t) ∈ L2(0, 1), it can be presented as

e(·, t) =
∑∞

n=1 en(t)φn(·), (19)

where, in view of (13) and (17a),

en(t) = ẑn(t)− zn(t), n ≤ N, (20a)

en(t) = −zn(t), n > N. (20b)

In view of (15) and (17b), relation (20a) implies

ėn(t) = −λnen(t)− lne(0, t− τ(t)), n ≤ N, (21)

which can be presented as

˙̄e(t) = Aē(t)− LCē(t− τ(t)) + Lζ(t− τ(t)) (22)

with
ē = (e1, . . . , eN )T ,
A = diag{−λ1, . . . ,−λN},
L = (l1, . . . , lN )T ,

C = (φ1(0), . . . , φN (0)) = (
√
2, . . . ,

√
2),

ζ(t) =
∑N

n=1 en(t)φn(0)− e(0, t).

(23)

Since λ1, . . . , λN are different, the pair (A,C) is observable.

Therefore, we can choose L = (l1, . . . , lN )T ∈ R
N such that

∃P > 0: P (A− LC) + (A− LC)TP < −2δP. (24)

If τ(t) ≡ 0, then (24) guarantees ISS of (22) with respect to

ζ(t), which decays exponentially (we show this below). Thus,

(22) is exponentially stable for τ(t) ≡ 0 and remains so for

τ(t) ≤ τM with a small enough τM . The next theorem allows

to find admissible τM .

Theorem 1: Consider the system (3) with the measurements

(4) subject to (5) and the boundary observer (17) with λn,

φn from (12), N satisfying (16) with an arbitrary decay rate

δ > 0, and L = (l1, . . . , lN )T ∈ R
N . Let there exist matrices

P2, P3, G ∈ R
N×N and positive-definite matrices P, S,R ∈

R
N×N such that1

Φ < 0 and
[

R G
GT R

]

≥ 0, (25)

where Φ = {Φij} is the symmetric matrix composed from

Φ11 = ATP2 + PT
2 A+ 2δP + S − e−2δτMR,

Φ12 = P − PT
2 +ATP3, Φ13 = e−2δτM (R−G)− PT

2 LC,

Φ14 = e−2δτMG, Φ22 = −P3 − PT
3 + τ2MR,

Φ23 = −PT
3 LC, Φ24 = 0, Φ33 = −e−2δτM (2R−G−GT ),

Φ34 = e−2δτM (R−G), Φ44 = −e−2δτM (S +R)
(26)

with A and C from (23). Then there exists M > 0 such that

‖ẑ(·, t)− z(·, t)‖L2 ≤Me−δt‖z0‖H1 , t ≥ 0 (27)

for any initial function z0 from (8).

Proof: Since φn and λn defined in (12) are eigenfunctions

and eigenvalues of the operator A defined in (10),

ẑt(x, t)
(17a)
=

∑N
n=1

d
dt
ẑn(t)φn(x)

(17b)
= −∑N

n=1 λnẑn(t)φn(x)

−∑N
n=1 ln[ẑ(0, t− τ(t))− z(0, t− τ(t))]φn(x)

= −∑N
n=1 ẑn(t)Aφn

−∑N
n=1 ln[ẑ(0, t− τ(t))− z(0, t− τ(t))]φn(x)

(10)
= ẑxx(x, t) + aẑ(x, t)

−l(x)[ẑ(0, t− τ(t))− z(0, t− τ(t))],
(28)

1MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/TAC18a
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where l(x) =
∑N

n=1 lnφn(x). The latter, (3), and (18) imply

et(x, t) = exx(x, t) + ae(x, t)− l(x)e(0, t− τ(t)), (29a)

ex(0, t) = e(1, t) = 0, (29b)

e(·, 0) = −z0, e(·, t) = 0, t < 0. (29c)

Lemma 3: There exists a unique strong solution of (29) for

any initial function z0 satisfying (8).

Proof is given in Appendix A.

The strong solution e(·, t) of (29) can be presented as the

series (19) and, by Parseval’s identity,

‖e(·, t)‖2L2 =
∑N

n=1 e
2
n(t) +

∑

n>N e2n(t). (30)

The second term can be bounded as

∑

n>N e2n(t)
(20b)
=

∑

n>N z2n(t)
(15)
=

∑

n>N e−2λntz2n(0)
(16)

≤ e−2δt
∑

n>N z2n(0) ≤ e−2δt‖z(·, 0)‖2L2

(29c)
= e−2δt‖e(·, 0)‖2L2

Lem.2

≤ e−2δt 4
π2 ‖ex(·, 0)‖2L2 .

(31)

To bound the first summand of (30), i.e., the state of (22),

we first show that ζ(t) exponentially converges to zero. Since

φn(1) = e(1, t) = 0 and ‖φ′n‖2L2 = λn + a, we have

ζ2(t) =
(

∑N
n=1 en(t)φn(0)− e(0, t)

)2

=
(

∫ 1

0

(

∑N
n=1 en(t)φ

′
n(x)− ex(x, t)

)

dx
)2

Lem.1

≤
∥

∥

∥

∑N
n=1 en(t)φ

′
n(·)− ex(·, t)

∥

∥

∥

2

L2

=
∥

∥

∑

n>N en(t)φ
′
n

∥

∥

2

L2
=

∑

n>N (λn + a)e2n(t)

≤ e−2δt
∑∞

n=1(λn + a)e2n(0) = e−2δt‖ex(·, 0)‖2L2 .
(32)

The last inequality is obtained in a manner similar to (31).

Consequently,

ζ2(t− τ(t)) ≤ e−2δ(t−τ(t))‖ex(·, 0)‖2L2

≤ e2δτM e−2δt‖ex(·, 0)‖2L2 . (33)

Consider the functional Vτ = V0 + VS + VR with

V0 = ēT (t)P ē(t),

VS =

∫ t

t−τM

e−2δ(t−s)ēT (s)Sē(s) ds,

VR = τM

∫ 0

−τM

∫ t

t+θ

e−2δ(t−s) ˙̄eT (s)R ˙̄e(s) ds dθ.

(34)

We consider Vτ (t) on [t∗,∞) with t∗ from (5). On this

interval, (22) does not depend on ē(t) with t < 0. Thus, we

formally set ē(t) = ē(0) for t < 0 to define Vτ on [t∗, τM )
(see [15]). We have

V̇0 + 2δV0 = 2ēTP ˙̄e+ 2δēTP ē,

V̇S + 2δVS = ēTSē− e−2δτM ēT (t− τM )Sē(t− τM ),

V̇R + 2δVR = τ2M ˙̄eTR ˙̄e− τM

∫ t

t−τM

e−2δ(t−s) ˙̄eT (s)R ˙̄e(s) ds.

(35)

Using Jensen’s inequality [17, Proposition B.8] and recipro-

cally convex approach [18, Theorem 1], we have

−τM
∫ t

t−τM
e−2δ(t−s) ˙̄eT (s)R ˙̄e(s) ds ≤ −τMe−2δτM×

[

∫ t

t−τ(t)
˙̄eT (s)R ˙̄e(s) ds+

∫ t−τ(t)

t−τM
˙̄eT (s)R ˙̄e(s) ds

]

≤ −e−2δτM τM
τ(t)

[

∫ t

t−τ(t)
˙̄e(s) ds

]T

R
[

∫ t

t−τ(t)
˙̄e(s) ds

]

−e−2δτM τM
τM−τ(t)

[

∫ t−τ(t)

t−τM
˙̄e(s) ds

]T

R
[

∫ t−τ(t)

t−τM
˙̄e(s) ds

]

≤ −e−2δτM
[

ē(t)−ē(t−τ(t))
ē(t−τ(t))−ē(t−τM )

]T
[

R G
GT R

]

[

ē(t)−ē(t−τ(t))
ē(t−τ(t))−ē(t−τM )

]

.

(36)

Similarly to [19], we use the descriptor representation of (22)

0 = 2[ēTPT
2 + ˙̄eTPT

3 ][− ˙̄e+Aē−LCē(t−τ(t))+Lζ(t−τ(t))].
(37)

Summing up (35) and (37), for γ > 0 we obtain

V̇τ (t) + 2δVτ (t)− γζ2(t− τ(t)) ≤ ψT (t)Ψψ(t), (38)

where ψ = col{ē(t), ˙̄e(t), ē(t− τ(t)), ē(t− τM ), ζ(t− τ(t))},

Ψ =









Φ
PT
2 L

PT
3 L

02N×1

LTP2 L
TP3 01×2N −γ









(39)

Since Φ < 0, the inequality Ψ < 0 holds for a large enough

γ ∈ R. Moreover, Φ < 0 holds with δ replaced by δ + ǫ if

ǫ > 0 is small enough. Thus,

V̇τ (t) ≤ −2(δ + ǫ)Vτ (t) + γζ2(t− τ(t))
(33)

≤ −2(δ + ǫ)Vτ (t) + γe2δτM e−2δt‖ex(·, 0)‖2L2 .
(40)

The comparison principle implies:

Vτ (t) ≤ e−2δ(t−t∗)Vτ (t∗) +
γe2δτM

2ǫ
e−2δt‖ex(·, 0)‖2L2 . (41)

Due to (5), ˙̄e(t) = Aē(t) for t ∈ [0, t∗), thus, |ē(t)| ≤ eκt|ē(0)|
for t ∈ [0, t∗) with some κ > 0. Therefore, for some C > 0,

Vτ (t∗) ≤ Cmaxt∈[t∗−τM ,t∗] |ē(t)|2
≤ Ce2κt∗ |ē(0)|2 ≤ Ce2κt∗

∑∞

n=1 e
2
n(0)

= Ce2κt∗‖e(·, 0)‖2L2

Lem.2

≤ Ce2κt∗ 4
π2 ‖ex(·, 0)‖2L2 .

(42)

The latter and (41) imply

∑N
n=1 e

2
n(t) ≤ λ−1

min(P )Vτ (t) ≤M1e
−2δt‖ex(·, 0)‖2L2 (43)

with some M1 > 0. Finally, we have

‖ẑ(·, t)− z(·, t)‖2L2 = ‖e(·, t)‖2L2

=
∑N

n=1 e
2
n(t) +

∑∞

n=N+1 e
2
n(t)

(43),(31)

≤ M2e−2δt‖ex(·, 0)‖2L2

(44)

with some M > 0. Thus, (27) is true.

Remark 3: We have to use the H1-norm in the right-hand

side of (27), since the L2-norm does not take into account

the point values that we use as measurements (4). Namely, we

cannot bound ζ without using the space derivative as in (33).

Corollary 1: The observer (17) with L = (l1, . . . , lN )T

satisfying (24) converges to (3) with the decay rate δ in the

sense of (27) if the delay bound τM is small enough.
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Proof: Take P from (24), P2 = P , P3 = εI > 0, R =
µ−1I > 0, G = S = 0, and τM = 0. Then

Φ
(26)
=

[

M1 M2

MT
2 M3

]

with

M1 =

[

ATP + PA+ 2δP − µ−1I εAT

∗ −2εI

]

,

M2 =

[

µ−1I − PLC 0
−εLC 0

]

, M3 =

[

−2µ−1I µ−1I

∗ −µ−1I

]

.

Clearly,

M3 < 0 and M−1
3 = −µ

[

I I

I 2I

]

.

By Schur’s complement lemma, Φ < 0 is equivalent to

M1 −M2M
−1
3 MT

2 =
[

P (A− LC) + (A− LC)TP + 2δP ε(A− LC)T

ε(A− LC) −2εI

]

+ µ

[

PLC

εLC

] [

PLC

εLC

]T

< 0. (45)

In view of (24), the later holds for small ε > 0 and µ > 0.

Thus, Φ < 0 is feasible for τM = 0. By continuity, it remains

so for a small τM > 0. Then Theorem 1 implies (27).

The well-posedness of (8), (29) with τ(t) ≡ 0 can be proved

using [20, Theorem 6.3.1]. Then Theorem 1 and Corollary 1

imply the following result.

Corollary 2: For τ(t) ≡ 0, the observer (17) with L =
(l1, . . . , lN )T satisfying (24) exponentially converges to (3)

with the decay rate δ in the sense of (27).

Remark 4: The LMIs of Theorem 1 allow to find appropriate

injection gain L = (l1, . . . , lN )T . Following [21, Section 5.2],

one can take P3 = εP2, where ε is a tuning parameter, and use

Y = PT
2 L as a new decision variable. After solving the result-

ing LMIs, the injection gain can be found as L = (PT
2 )−1Y .

III. SAMPLED-DATA BOUNDARY MEASUREMENTS

In this section, we construct an observer for the system (3)

under the sampled in time boundary measurements

y(t) = z(0, tk), t ∈ [tk, tk+1), k ∈ N, (46)

where 0 = t1 < t2 < t3 < · · · are sampling instants satisfying

0 < tk+1 − tk ≤ h, limk→∞ tk = ∞. (47)

Remark 5: The output (46) can be presented as (4) with

τ(t) = t− tk, t ∈ [tk, tk+1), k ∈ N (48)

such that 0 ≤ τ(t) ≤ τM = h and (5) is satisfied with t∗ = 0.

The condition 0 < τm ≤ τ(t) was imposed only to establish

the well-posedness of (29) (see Lemma 3) and we will show

that it is not required for the measurements (46). Therefore, the

results of Theorem 1 can be applied. However, we will perform

a more subtle analysis using the ideas of [22], which take

into account the saw-tooth shape of τ(t) and lead to simpler

convergence conditions.

Similarly to (17), the boundary observer is constructed as

ẑ(x, t) =
∑N

n=1 ẑn(t)φn(x),
d
dt
ẑn(t) = −λnẑn(t)− ln[ẑ(0, tk)− y(t)],

t ∈ [tk, tk+1), k ∈ N,

ẑn(0) = 0, n = 1, . . . , N.

(49)

Theorem 2: Consider the system (3) with the measurements

(46) subject to (47) and the boundary observer (49) with λn,

φn from (12), N satisfying (16) with an arbitrary decay rate

δ > 0, and L = (l1, . . . , lN )T ∈ R
N . Let there exist matrices

P2, P3 ∈ R
N×N and positive-definite matrices P,W ∈ R

N×N

such that2 Υ < 0, where Υ = {Υij} is the symmetric matrix

composed from

Υ11 = (A− LC)TP2 + PT
2 (A− LC) + 2δP,

Υ12 = P − PT
2 + (A− LC)TP3, Υ13 = −PT

2 LC,

Υ22 = −P3 − PT
3 + h2e2δhW, Υ23 = −PT

3 LC,

Υ33 = −π2

4 W

(50)

with A and C from (23). Then there exists M > 0 such that

(27) holds for any initial function z0 from (8).

Proof: Similarly to (29), the estimation error e(x, t) =
ẑ(x, t)− z(x, t) satisfies

et(x, t) = exx(x, t) + ae(x, t)− l(x)e(0, tk),
t ∈ [tk, tk+1), k ∈ N,

ex(0, t) = e(1, t) = 0,
e(·, 0) = −z0,

(51)

where l(x) =
∑N

n=1 lnφn(x). Similarly to Lemma 3, the well-

posedness of (8), (51) is established considering f(x, t) =
−l(x)e(0, tk) as constant inhomogeneities on every step

[tk, tk+1), k ∈ N. Presenting e as (19), we obtain (cf. (22))

˙̄e(t) = (A−LC)ē(t)−LCv(t)+Lζ(tk), t ∈ [tk, tk+1), (52)

where v(t) = ē(tk) − ē(t) for t ∈ [tk, tk+1) and the other

notations are from (23). Consider the functional Vh = V0+VW
with V0 = ēT (t)P ē(t) and

VW = h2e2δh
∫ t

tk

e−2δ(t−s) ˙̄eT (s)W ˙̄e(s) ds

− π2

4

∫ t

tk

e−2δ(t−s)vT (s)Wv(s) ds, t ∈ [tk, tk+1). (53)

Note that VW ≥ 0 due to the exponential Wirtinger inequality

[23, Lemma 1]. Moreover, Vh does not increase in the jumps

at tk and is continuous elsewhere. We have

V̇0 + 2δV0 = 2ēTP ˙̄e+ 2δēTP ē,

V̇W + 2δVW = h2e2δh ˙̄eT (t)W ˙̄e(t)− π2

4 v
T (t)Wv(t),

0 = 2[ēTPT
2 + ˙̄eTPT

3 ]×
[− ˙̄e+ (A− LC)ē(t)− LCv(t) + Lζ(tk)], t ∈ [tk, tk+1).

(54)

Summing up, we obtain

V̇h + 2δVh − γζ2(tk) = ξTΞξ, (55)

2MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/TAC18a
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where ξ = col{ē, ˙̄e, v, ζ(tk)} and

Ξ =









Υ
PT
2 L

PT
3 L

0N×1

LTP2 L
TP3 01×N −γ









. (56)

The rest of the proof is similar to that of Theorem 1.

Corollary 3: The observer (49) with L = (l1, . . . , lN )T

satisfying (24) converges to (3) with the decay rate δ in the

sense of (27) if the sampling period h is small enough.

Proof: Take P from (24), P2 = P , P3 = εI > 0, W =
µ−1I > 0, and h = 0. Calculating the Schur complement, we

find that Υ < 0 is equivalent to (45), which, in view of (24),

holds for small ε > 0 and µ > 0. Thus, Υ < 0 is feasible

for h = 0 and, by continuity, remains so for a small τM > 0.

Then Theorem 2 implies (27).

Remark 6: The LMIs of Theorem 2 can be transformed to

solve the design problem in a manner similar to Remark 4.

Remark 7: If the sampling is uniform, i.e., tk = kh,

the system (52) can be studied using the discretization [21,

Section 7.1.1]. Combining it with the modal decomposition

technique, one will obtain necessary and sufficient conditions

for (3), (46), (49) to satisfy (27). The advantage of the

Lyapunov-Krasovskii approach developed here is that it leads

to simple conditions under variable sampling (47).

IV. EXAMPLE

Consider the system (3) with a = 25 and sampled in time

boundary measurements (46) subject to (47). We consider an

unstable plant since otherwise ẑ(x, t) = 0 is an exponentially

converging estimate. Let δ = 1 be the desired rate of

convergence of the observation error. Since (16) holds with

N = 2, the observer (49) with appropriate injection gains

l1, l2 provides exponentially converging state estimate for a

small enough sampling period h. To find l1, l2, and h, we take

small h and increase it while the design LMIs with ε = 0.5
(see Remarks 4 and 6) remain feasible. This gives

h = 0.048, L =

[

l1
l2

]

≈
[

23.2
−1.1

]

. (57)

The analytical bound for the uniform sampling is h ≈ 0.081,

which we found using the method described in Remark 7. Note

that we used the Lyapunov functional with the Wirtinger-based

term (53) that leads to simple LMIs on the account of some

conservatism. Less conservative conditions may be derived

using other types of Lyapunov functionals (see, e.g., [24]).

The results of numerical simulations for the initial function

z0(x) = sin(2πx), x ∈ [0, 1] (58)

are given in Figs. 1 and 2. For comparison, Fig. 2 also shows

the error under the continuous measurements y(t) = z(0, t).
The observer (49) coincides with (17) for τ(t) defined

in (48). Thus, it can be studied using Theorem 1 and Remark 4.

In the considered example, these conditions lead to a smaller

sampling period h = 0.031 with approximately the same

injection gains l1, l2.

Fig. 1. Estimation error ẑ(x, t) − z(x, t) of the observer (49) under the
sampled-data measurements (46)

Fig. 2. Evolution of ‖ẑ(·, t)−z(·, t)‖2
L2

for sampled-data (dashed blue line)
and continuous-time (solid red line) measurements

V. CONCLUSION

We have designed finite-dimensional observers for a 1D

reaction-diffusion system under delayed and sampled in time

boundary measurements. We showed how to choose the ob-

server injection gains and proved that it provides exponentially

converging estimate if the time-delay or sampling period are

small enough. The obtained LMIs allow to find admissible

bounds on the delay and sampling period. The proposed

observers can be used to design network-based controllers for

parabolic systems. This may be a subject of the future research.

APPENDIX A

PROOF OF LEMMA 3

The proof is based on [16, Theorem 7.7] and the step

method. Since t− τ(t) ≤ 0 for t ∈ [0, τm],

f(x, t) = −l(x)e(0, t− τ(t)), t ∈ [0, τm] (59)

can be viewed as inhomogeneity f : [0, τm] → L2(0, 1) and

∫ τm

0
‖f(s)‖2L2 ds

(29c)

≤
∫ τm

0
‖l(·)z0(0)‖2L2 ds

= τmz
2
0(0)‖l‖2L2 <∞. (60)
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Therefore, f ∈ L2((0, τm);L2(0, 1)) and [16, Theorem 7.7]

guarantees the existence of a unique strong solution e ∈
C([0, τm];H1).

Since t− τ(t) ≤ τm for t ∈ [τm, 2τm],

f(x, t) = −l(x)e(0, t− τ(t)), t ∈ [τm, 2τm] (61)

can be viewed as inhomogeneity f : [τm, 2τm] → L2(0, 1).
Since e(·, t) is continuous on [0, τm] in H1, e(0, t) is also

continuous on [0, τm]:

|e(0, t1)− e(0, t2)| =
∣

∣

∣

∫ 1

0
(ex(y, t1)− ex(y, t2)) dy

∣

∣

∣

≤ ‖ex(·, t1)− ex(·, t2)‖L2 . (62)

Thus, there exists Me ∈ R such that supt≤τm
|e(0, t)| ≤ Me.

Clearly,
∫ 2τm
τm

‖f(s)‖2L2 ds ≤ τmM
2
e ‖l‖2L2 <∞. (63)

Therefore, f ∈ L2((τm, 2τm);L2(0, 1)) and [16, Theorem 7.7]

guarantees the existence of a unique strong solution e ∈
C([τm, 2τm];H1). Repeating the same reasoning consequently

on every interval [jτm, (j+1)τm] with j = 2, 3, . . ., we obtain

the existence of a unique strong solution on [0,∞).
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